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Abstract

Automated Tuberculosis Diagnosis Using Fluorescence Images from a Mobile Microscope
by

Jeannette Nancy Chang

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Jitendra Malik and Professor Daniel Fletcher, Co-Chairs

In low-income countries, the most common method of tuberculosis (TB) diagnosis is visual
identification of rod-shaped TB bacilli in sputum smears by microscope. We present an algorithm
for automated TB detection in smear images taken by digital microscopes such as CellScope [1],
a novel low-cost, portable device capable of brightfield and fluorescence microscopy. Automated
processing on such platforms could save lives by bringing healthcare to rural areas with limited
access to laboratory-based diagnostics. Though the focus of this study is the application of our
automated algorithm to CellScope images, our method may be readily generalized for use with
images from other digital fluorescence microscopes.

Our algorithm applies morphological operations and template matching with a Gaussian kernel
to identify TB-object candidates. We then use moment, geometric, photometric, and oriented
gradient features to characterize these objects and perform discriminative, support vector machine
classification. We test our algorithm on a large set of CellScope fluorescence images from sputum
smears collected at clinics in Uganda (594 images corresponding to 290 patients). Our object-
level classification is highly accurate, with Average Precision of 89.2% + 2.1%. For slide-level
classification, our algorithm performs at the level of human readers, demonstrating the potential
for making a significant impact on global healthcare.
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Chapter 1

Introduction

1.1 Brief Background on Tuberculosis

The bacteria that causes TB disease, known as Mycobacterium tuberculosis, was first identified in
1882 by Robert Koch, a German physician and microbiologist [2]. Infection by TB bacteria usually
happens via exposure to airborne droplets carrying the bacteria [2], [3]. Though the likelihood of
developing TB disease upon being infected with TB bacteria is typically low, certain populations
are at substantially higher risk (e.g., youth, the elderly, and those who are malnourished or have
compromised immune systems). TB most often infects the lungs but may also spread to almost
any other part of the body, such as bone marrow and lymphatic vessels. Symptoms of TB are
diverse, including “chest pain, shortness of breath, fever, night sweats, fatigue, appetite loss, and
unintentional weight loss” [2]. Nevertheless, given TB bacteria’s propensity for pulmonary infection,
the most common symptom associated with active TB infection is prolonged cough.

Though tuberculosis (TB) garners relatively little attention in high-income countries today,
it remains the second leading cause of death from infectious disease worldwide (second only to
HIV/AIDS) [2], [3]. In 2010 alone, 1.2-1.5 million deaths were attributed at least in part to TB.
Low-income parts of the world suffer a disproportionately high fraction of TB-related fatalities,
with approximately 85% of TB cases occurring in Asia and Africa.

1.2 Methods of Tuberculosis Diagnosis

The majority of TB cases may be treated successfully with the appropriate course of antibiotics,
but diagnosis remains a large obstacle to TB eradication. Presently, the most common method of
diagnosing patients with TB is visually screening stained smears prepared from sputum. Techni-
cians use microscopes to view the smears, looking for rod-shaped objects (sometimes characterized
by distinct beading or banding) that may be Mycobacterium tuberculosis. Apart from the costs
of trained technicians, laboratory infrastructure, microscopes and other equipment, this process



Figure 1.1. Two versions of CellScope, a novel mobile microscope. The device may be used
in multiple ways, such as for point-of-care diagnostics or for transmitting images from rural
areas to medical experts. Images used in this study were taken by the prototype on the
right.

suffers from low recall rates, inefficiency, and inconsistency due to fatigue and inter-evaluator vari-
ability [4]. Hence, with the advent of low-cost digital microscopy, automated TB diagnosis presents
a ready opportunity for the application of modern computer vision techniques to a real-world,
high-impact problem.

Additional TB diagnostic procedures include culture and polymerase chain reaction (PCR)-
based methods. Culture results are ideally used to verify smear screenings and are currently the
gold-standard for diagnosis. However, culture assays are more expensive and technically challeng-
ing to perform than smear microscopy and require prolonged incubation: about 2-4 weeks to allow
accurate evaluation of bacteria [5]. Such a delay is far from ideal for a patient who should already
be engaged in an antibiotic treatment to prevent further spread of the disease. PCR-based meth-
ods such as Cepheid’s GeneXpert assess the presence of TB bacterial DNA and are rapid, more
sensitive than smear microscopy, and capable of testing resistance to a common anti-TB antibi-
otic [6]. Notwithstanding, they continue to lag in sensitivity compared to culture and rely on costly
equipment that is poorly suited for low-resource, peripheral healthcare settings [7]. Sputum smear
microscopy continues to be by far the most widely used method of TB diagnosis, suggesting that
enhancements to microscopy-based screening methods could provide significant benefits to large
numbers of TB-burdened communities across the globe.

1.3 CellScope and Related Devices

The CellScope [1] is a novel digital microscope developed by the Fletcher Lab at UC Berke-
ley’s Bioengineering Department (Figure 1.1). Given its compact form factor (20x20x10 cm), light
weight (3 kg), and battery-powered design, the CellScope is a very portable device [2]. It uses a
20x 0.4 numerical aperture (NA) microscope objective, which affords Rayleigh resolution of 0.76
pm (640x490 pm sample-referenced field of view). CellScope images are sampled above Nyquist
frequency, enabling digital magnification via interpolation to effective magnifications of 2000-3000x.
Fluorescence excitation in the device is supplied by a 1 Watt, 460 nm LED. Exposure times for the
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Figure 1.2. Main features of the CellScope prototype used in this study. Slides with the
stained sputum smears are inserted at the slide tray. Position and focus are adjusted
manually using the knobs shown. Image from [2].

CellScope’s 8-bit monochrome CMOS image sensor generally fall within the 100-500 ms range de-
pending on the staining process (though dark noise is negligible in all cases). Given that CellScope
uses components found in commercial cellphones, the target price range for CellScopes is signif-

icantly lower than costs of alternatives such as conventional fluorescence microscopy (FM) and
PCR-based methods.

Various CellScope prototypes have been developed for applications ranging from medical (e.g.,
TB diagnosis and dermatological imaging) to educational uses. In this study, we use images taken
by the prototype seen in Figure 1.2. CellScope is capable of both brightfield microscopy and FM,
but we focus on FM in our discussion because studies suggest it is more sensitive [8], [9] and
faster [6].

A number of other research groups have advanced the development of low-cost, portable mi-
croscopy. In 2006, Yang et al. at the California Institute of Technology demonstrated the use
of microfluidics-based, lensfree microscopy (termed “optofluidic microscopy”) for imaging larval
Caenorhabditis elegans (approximately 10 pum in width) [10]. Ozcan et al. at the University of
California, Los Angeles, have proposed lensfree, holographic cellphone-based microscopy [11]. In
these systems, incoherent LED light illuminates the sample, and light scattering off of the sample
interferes with background light to create a hologram on the CMOS sensor. The microscopic image
of the sample may then be reconstructed from the holographic signatures using digital processing.
Ozcan’s lensfree systems offer a larger field of view (FOV) and could thus provide the benefit of
faster imaging. However, to the best of our knowledge, the current resolution of these lensfree mi-
croscopes is not suitable for performing TB diagnosis. With some of these alternative methods, it’s
also possible that higher per-test costs (compared to standard slide-based diagnostic procedures)
may pose an additional obstacle to adoption in low-resource areas. More recently, researchers at
University of California, Davis, have been exploring single-lens cellphone-based microscopes. These
devices have the advantage of being lower cost and could be very useful in educational settings,



but their current Rayleigh resolution (1.5um) is insufficient for TB diagnosis [12], which requires
submicron resolution.

1.4 Automated Tuberculosis Diagnosis Using CellScope

In this paper, we propose an algorithm for automated TB detection that may be used with dig-
ital imaging devices such as CellScope. CellScope provides an affordable and portable alternative
to standard laboratory-based microscopes, making it a vehicle for bringing healthcare to underde-
veloped areas. To facilitate implementation using the modest computational power of these mobile
phone-based platforms, we seek to develop an effective and robust algorithm. We present results
from a large dataset of sputum smears collected under real-field conditions in Uganda. Our algo-
rithm is highly accurate, performing at the level of human readers when classifying slides, which
opens exciting opportunities for deployment in large-scale clinical settings. We achieve this re-
sult via modern computer vision techniques in object recognition, including segmentation, suitable
feature-based representation, and support vector machine classification.

That our automated method performs on par with human readers could greatly increase the
impact of CellScope in rural settings, where skilled microscopists are scarce. For instance, auto-
mated local processing on CellScope could serve as a first-stage screening and improve point-of-care
efficiency. In addition to the possibility of automated diagnostic capabilities, CellScope’s connec-
tivity as a cellphone-based device holds potential for further extending the reach of healthcare to
low-resource regions. Surprisingly, many of these areas with limited access to healthcare are already
equipped with substantial mobile phone infrastructure. One may thus imagine transmitting images
of microscopic specimen from remote areas to medical experts in urban centers or establishing an
easy-access online image repository.

The remainder of our paper is organized as follows: Chapter 2 provides a summary of related
work by other groups. Chapters 3 and 4 outline our algorithm and dataset, respectively. Chapter
5 contains our experimental results and compares our algorithm’s performance to that of human
readers as well as other automated methods. Chapter 6 is a user’s manual that describes how to
run our algorithm evaluation and training code. As mentioned in the user’s manual, the dataset
and code from this study will be publicly available.



Chapter 2

Previous Work

2.1 Automated Tuberculosis Diagnosis For Smear Microscopy

The two main methods of screening sputum samples are fluorescence microscopy (FM) and
brightfield microscopy, in which the sputum smears are stained with auramine-O and Ziehl-Neelsen
respectively (see Figure 2.1). With FM, smears may be screened at lower magnifications and can
thus be examined in less than half the time it takes with brightfield microscopy [6]. Studies also
indicate that FM yields about 10% higher recall than brightfield microscopy [8], [9]. Hence, though
CellScope is capable of both types of microscopy, we choose to use FM images in this study.

Several groups have explored automated TB detection with both FM and brightfield microscopy.
Veropoulos et al. (1999, 2001) [13], [14] and Forero et al. (2004, 2006) [4], [15] considered TB
detection with images from FM. Other groups have devised algorithms for brightfield microscopy,
but many of these algorithms rely on the distinct color characteristics of TB-bacilli stained by
ZN [16]-[18]. As seen in Figure 2.1, color imaging plays a large role in evaluating ZN-stained
smears whereas grayscale imaging suffices for FM smears. Hence, the two types of stained smears
often require different automated classification techniques. In this chapter, we present an overview
of previous automated TB diagnosis studies for both FM and brightfield microscopy.

2.1.1 Fluorescence Microscopy (FM)

Veropoulos’ Algorithm

In the first stage of their algorithm, Veroupoulos et al. applied Canny edge detection, filtered
objects based on size, and used boundary tracing [13], [14]. Fourier descriptors, intensity features,
and compactness were chosen using Branch and Bound or Sequential Forward Selection. A number
of probabilistic methods were then employed to classify objects, with a multilayer neural network
achieving the best performance.
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Figure 2.1. Sample CellScope fluorescence image (left) and sample brightfield image [19]
(right). Best viewed in color.

Segmentation

After initial image capture and normalization, a Canny edge detector was applied to determine
regions in the image. Based on prior knowledge of TB bacteria sizes, regions that were too small or
too large were removed. Then, regions with incomplete contours (generally resulting from occluded
or faint bacilli) were further eliminated to simplify the learning process. It was reasoned that, in
these cases, there are usually enough bacilli in the rest of the sample for reliable positive diagnosis.
Finally, in preparation for finding shape descriptors, Veropoulos implemented boundary tracing
and obtained the inner boundaries of each region.

Feature Selection

The authors employed the Branch and Bound (B&B) and Sequential Forward Selection (SFS)
methods for feature selection (see Appendix B). A separability criterion proposed by Fukunaga
was used to determine the discriminative power of the feature subsets [20]. This metric considers
inter- and intra-cluster differences, rewarding large inter-cluster and small intra-cluster distances.

The features considered were the first 14 Fourier descriptors; compactness; average intensity
inside/around region; standard deviation of intensity /around region; and the intensity of the cen-
troid (see Appendix A). Results from experimenting with various feature subsets suggested that
the most discriminative features included the shape-based features (namely, the 3rd and 4th Fourier
descriptors as well as compactness) and low standard deviation inside the region.

Classification

Veropoulos et al. implemented various neural network and support vector machine classification
methods on a dataset with 65 slides (50 centrifuged and 15 direct auramine-stained smears). The
two sets of smears (centrifuged and direct) were considered separately because of their distinct char-
acteristics, with centrifuged smears exhibiting bacilli clustered at the center of the smear and large
amounts of background debris. Note that Veropoulos et al. consider the algorithm performance at
the TB-object level rather than the slide level. In the case of centrifuged smears, the highest overall
accuracy was achieved using a neural network classifier with ten hidden units, trained using early
stopping and the back-propagation (BP) learning rule (see also Neural Networks in Appendix C).
This optimal classifier achieved object-level performance of 93.9% sensitivity and 79.4% specificity.
The support vector machines achieved slightly lower overall accuracy, while neural network classi-
fiers using BP without early stopping performed substantially worse. With the direct smears, the
neural network classifier trained using early stopping for training achieved superior performance,



though with significant differences between sensitivity and specificity. The neural network classifier
trained using early stopping and the scaled conjugate gradient (SCG) algorithm yielded the highest
overall object-level accuracy (91.4%), with 98.6% sensitivity and 44.6% specificity. The slides used
in our study are comparable to the direct smears, as they have not been centrifuged nor digested.

Forero’s Algorithm

Forero et al. took a generative approach, representing the TB-bacilli class with a Gaussian
mixture model and using Bayesian classification techniques [4], [15]. Features used in the model
were Hu moments, chosen for their invariance to rotation, scaling, and translation. Other candidate
features were considered but eliminated due to redundancy.

Segmentation

Because the green channel contains changes in color intensity due to TB bacilli, Forero extracted
the green channel from the original RGB image for the first segmentation phase. The group then
applied a Canny edge detector, and closing morphological operators were used to mend gaps in
broken edges. Closed regions were then filled, and superfluous edges were removed via an opening
operator. Finally, objects that did not exhibit color within a certain range were eliminated by
thresholding.

Shape and Size-Based Filtering

Once the bacilli-colored objects were obtained from segmentation, they were filtered based
on shape and size using prior knowledge about bacilli. In particular, objects were discarded if
their eccentricity (Appendix A) was too low or their area did not fall within an acceptable range
(determined empirically).

Feature Extraction

Following the shape and size filtering, Forero’s group proposed various shape descriptors for
the objects: area, compactness, major and minor axis lengths, eccentricity, perimeter, solidity, Hu
moments, and Fourier descriptors (see also Appendix A and Section 3.2). Requiring invariance to
translation, rotation, and scaling reduced the list to compactness, eccentricity, Hu moments, and
Fourier descriptors. Among these, Hu moments were chosen for their succinctness and robustness
to noise. Eccentricity was discarded because of its dependence on moments, while compactness was
excluded because it did not improve results in initial experiments. The final remaining features
were thus only Hu moments, which were calculated from the normalized central moments of the
binarized objects. Only the first three and eleventh Hu moments were used, as the symmetric shape
of TB-bacilli make the other Hu moments redundant.

Editing the Training Set

Clinical collaborators mentioned that some ovoid shapes were ambiguous cases; these atypical
bacilli would be marked as non-bacilli when seen in isolation but labeled as bacilli when other
prototypical bacilli were present close by. Keeping these objects in the positive-bacilli training
set could severely degrade the performance of the algorithm. To address this issue, Forero and
his colleagues assumed that the distribution of the bacilli shapes could be modeled as a Gaussian
distribution and eliminated outlier objects (features lower than 3 standard deviations below the
average). In this way, the original training data set of 1412 TB-objects was reduced to 929.



K-Means Clustering and Gaussian Mizture Model (GMM)

To account for inherent variability in TB bacilli shapes (length, thickness, etc.), Forero repre-
sented the bacillus class using multiple clusters rather than a single cluster. In order to estimate
a suitable number of clusters, the group first implemented the k-means clustering algorithm and
verified the effectiveness of the resulting clusters using silhouette plots [21]. The group then charac-
terized the 4-dimensional feature space using a Gaussian Mixture Model (GMM), with a 4-variate
Gaussian corresponding to each cluster in the bacillus class. Expectation maximization was used to
determine the GMM parameters. See Appendix C for more about k-means clustering and GMMs.

Minimum Error Bayesian Classifier

For the final stage of classification, Forero introduced discriminant functions (one associated
with each cluster). The probability of observing a sample feature vector given that the object
belongs to a particular cluster was modeled as a 4-variate Gaussian as described in the previous
section. The algorithm identified the cluster with the maximal discriminant function and then
invoked the Bayesian threshold decision rule corresponding to that cluster. Intuitively, each cluster’s
decision rule may be expressed in terms of the Mahalanobis distance between the sample feature
vector and cluster of interest. See Appendix C for more details.

2.1.2 Brightfield Microscopy

Historically, brightfield or conventional light microscopy has been more popular than FM in
low-income countries because of lower equipment costs. It was only recently that advances in FM
technology and stainings procedures have enabled more widespread adoption of FM microscopy for
TB diagnosis.

In brightfield microscopy, smears are stained with Ziehl-Neelsen (ZN), which causes the TB
bacilli to appear magenta against a light blue background. Like mentioned earlier, automated
algorithms for brightfield microscopy often differ greatly from those for FM because of the distinct
appearance of the two types of microscopic images. Nevertheless, we provide a brief summary here
of three proposed algorithms for automated TB identification in brightfield microscopy [16]-[18].

Costa’s Algorithm

Preprocessing and Segmentation

Costa’s algorithm initially aims to identify the background in the smear images to later segment
the image correctly. The background characterization of the image is performed in the RGB color
space by obtaining the R minus G (R-G) channel, in which the contrast between ZN-stained bacilli
and the background is maximized. This result was achieved after observing the hue histogram and
several RGB transforms of the image.

For the segmentation procedure, the 10-bin histogram of the R-G channel was used to binarize
the image. A global parameter x was chosen empirically and then used to determine a threshold
value L and segment the image in the following way: if the percentage of pixels in a particular bin
is greater than x%, the value of these pixels are assigned to the threshold value, L. Otherwise, the
pixel intensities are set to zero. The motivation behind this binarization scheme is that bacteria
usually appear in a certain shade in ZN-stained images. This thresholding in the R-G channel



classifies the background pixels based on their color information and to highlight potential bacillus
pixels.

Classification

This binarization procedure of the image introduced two types of artifacts. Namely, large
regions and small artifacts (area <200 pixels) in the (R-G) channel were identified as positive
(bacilli) but actually belonged to the background. Morphological filters were used to eliminate
these false positive regions.

Khutlang’s Algorithm

Segmentation

The ZN-stained sputum smear images were segmented in Khutlang’s paper by applying pixel
classifiers to the RGB image pixels. A number of classifiers were combined to attain better clas-
sification results. Bacilli pixels were manually labeled as +1 in 28 training images, while a subset
of the background pixels were labeled as -1. Each pixel was treated as an object and fed into the
classifiers. The data consisted of 40666 pixel objects total, 20637 of which were bacilli pixels (+1).
The outputs of all classifiers were two values per pixel, corresponding to the posterior probability
of the pixel being bacillus/non-bacillus. The main classes of classifiers used were Bayes’, linear
regression, quadratic discriminant and K-nearest neighbor (kNN) (see also Appendix C).

Various classifier combinations were tested on a subset of the images, and their performance
was compared to the manually segmented ground truth. The combination schemes were the mean,
median, minimum, maximum and the products of classifier outputs (posterior probabilities). Each
pixel classification scheme was evaluated based on the common and difference rates (Appendix
D), from which percentages of pixels correctly classified and incorrectly classified were derived
respectively. The best combination of pixel classifiers was determined using these metrics and
applied to the final segmentation.

Feature Extraction

Fourier descriptors, generalized RGB moments, eccentricity and pixel color values were then
extracted from these segmented images as shape and color descriptors (Appendix A). In brief,
Fourier descriptors are obtained by assigning complex values to each point of a closed boundary in
the image and then taking the DFT of the resulting complex sequence. Thus, the reconstruction of
the shape of the object may be achieved using the inverse transform. Here, the number of coefficients
to be kept was determined by the classification accuracy of the nearest neighbor classifier (Appendix

)

In terms of color description, Khutlang calculated the value of the center pixel of the closed-
contour object in each color channel. Other color information such as the mean of all object pixel
values, mean of perimeter pixel values and the corresponding standard deviations were also defined
as color features.

Feature Selection

A. Feature Subset Selection: One method of feature selection is to choose a subset of the
features defined in the previous section. The most effective subset selection methods presented in
the paper generally used several techniques to ensure that chosen features were highly correlated



with the data set while simultaneously highly uncorrelated with other features in the subset. For
details on some common feature subset selection schemes, see Appendix B.

B. Fisher Mapping: Fisher mapping is used to reduce the feature dimensionality after the
features of the images are calculated. This mapping is an alternative to feature subset selection
algorithms and is shown to yield the best bacillus detection results. It performs an optimization
on the feature set, prior to classification.

Classification

In Khutlang’s paper, a variety of classifiers were implemented, including Probabilistic Neural
Networks (PNNs), Support Vector Machines (SVMs) and kNN classifiers (Appendix C). Classifica-
tion results were calculated for feature sets from (1) various combinations of feature subset selection
schemes and (2) Fisher mapping.

Sadaphal’s Algorithm

Color Segmentation

Using the manual segmentation of TB-positive images in the data set, Sadaphal derived a 3-
dimensional probability density function histogram denoting the likelihood of a pixel being a bacillus
pixel for a specific triplet of red, green, and blue pixel values. The density function revealed that
the majority of the bacillus-positive pixels had distinctive RGB values compared to the non-bacillus
pixels. A binary mask was obtained by thresholding the pixel intensities in each channel (RGB)
and enhanced using morphological dilation with a circular structuring element.

Classification

After this color-based segmentation, pixels were tested against various known bacilli shapes and
orientations. Two descriptors were used in this stage, the first being axis ratio (1 for circular objects
and greater than 1 for objects closer to line segments). Objects with axis ratio smaller than 1.25
were classified as non-TB. The next descriptor considered was eccentricity, which generally varies
between 0.9 and 0.96 for bacilli objects. Observing that eccentricity values are centered around
zero for non TB objects, the objects having eccentricity <0.65 were classified as non-TB objects at
this stage.

Following these two stages of shape-based elimination of potential TB objects, the mean object
size and the standard deviation were computed. Objects whose sizes fell outside the 1.50 + 4 range
were labeled as possible TB-object, while objects within the range were labeled as positive-TB
objects.

No quantitative results were provided in this paper, but the algorithm appeared to perform
acceptably based on qualitative observations.

2.2 Evaluation of Automated Algorithms

In these previous studies, inconsistency in the algorithm performance metrics (object-level,
image-level, slide-level) makes it difficult to compare algorithms [4], [14], [16]-[18]. Note that each
patient generally provides a few sputum samples, each of which gives rise to one slide or smear.

10



The patient is considered TB-positive if any of his or her slides results in a positive diagnosis. (For
the Uganda dataset used in this study, we have one sputum slide or smear per patient.) Each
sputum slide or smear in turn usually corresponds to multiple images, and each image may con-
tain anywhere from zero to hundreds of TB bacilli objects. Depending on the type of microscopy
and method of segmentation, the definition of a “negative” object may also vary greatly. More-
over, independent collection of sputum smear image datasets using different equipment and sample
preparation methods results in time-consuming and redundant efforts. We thus intend to make the
dataset used in the development of our algorithm publicly available. We futher recommend the
designation of both a standard dataset and performance metric to facilitate the development and
improvement of automated TB detection algorithms.

2.3 Object Recognition

As a whole, the field of object recognition is a very large and active community, and an ex-
haustive review of its literature is beyond the scope of the discussion here. We refer the interested
reader to textbooks such as Forsyth and Ponce [22] for an updated overview of the subject. The
most closely related family of approaches to our work is that of producing object candidates though
bottom-up segmentation and classifying them, as opposed to multi-scale sliding-window paradigms.
In this tradition, some recent representative papers are [23]-[26]. Here, we draw on classical Hu
moments, geometric/photometric properties, and histograms of oriented gradients as features, and
then use discriminative classifiers such as the intersection-kernel support vector machine (IKSVM).
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Chapter 3

Algorithm

Given the opportunities presented by portable digital microscopes like CellScope, we seek to
develop an automated TB detection algorithm for FM that may be implemented on these mobile
platforms. While our immediate goal is to apply the algorithm to CellScope images, our method may
be generalized for use with laboratory-based digital FM microscopes as well. We draw from modern
computer vision tools and consider techniques previously proposed in the related literature. Our
algorithm consists of three stages: (1) TB-object candidate identification, (2) feature representation
of TB-object candidates, and (3) discriminative classification of the TB-object. A block diagram
of the algorithm is shown in Figure 3.1.

3.1 TB-Object Candidate Identification

In this step, our objective is to identify any bright object that is potentially a TB bacillus.
We initally focused on minimizing missed detections rather than false positives because candidate
objects that are not bacilli may be discarded in the classification stage (whereas missed detections
in the first step have no chance of being recovered). Nevertheless, we found that some candi-
date identification-methods resulted in prohibitive numbers of false positive objects, which in turn
increased computational time in the subsequent stages of the algorithm.

Balancing these two extrema, we decided on the following strategy. We first perform two
methods in parallel (both operating on the original grayscale image): a white top-hat transform
and template matching with a Gaussian kernel. The white top-hat transform reduces noise from
fluctuations in the background staining, and the template matching picks out areas that resemble
bright spots. The resulting images from these two methods are thresholded to obtain binarized
images and then combined via pixel-wise multiplication. From the final binarized image, we extract
connected components as TB-object candidates.

We then consider a region of interest or patch from the input image centered around each
candidate. The patch-size (24x24 pixels) is chosen based on the known size of the TB bacilli
(typically 2-4 pm in length and 0.5 um in width) and CellScope’s sample-referenced pixel spacing

12



] 0.961
I::d)il::::tc: Feature SVM 0.929
P Extraction Classification .
Identification = —
...... 0.037
Input Cellscope - ENHEEE
=] : 0.027
ained Sputu | AHEEEE
Stained Sputum 0.020
smear (Uganda) - [ R R R | [ '
o s~ o]~ HEEETE =
(@) (b) © Output Objects

and Probabilities

Figure 3.1. Overview of algorithm: TB-object candidate identification, feature extraction,
and discriminative classification via SVMs. (a) Array of TB-object candidates. (b) Each
candidate is characterized by a N-dimensional feature vector (N=102). (c) Candidates
sorted by decreasing SVM confidence scores (row-wise, top to bottom). A sample subset
of TB-object candidates with corresponding probabilities of being TB bacilli are shown at
the output. These object-level SVM scores are subsequently used to determine slide-level
diagnosis.

of 0.25um/pixel. Moreover, we empirically found that 24x24 patches provide a good tradeoff
between capturing the TB-object candidates in their entirety and avoiding extraneous neighboring
objects.

3.2 Representation of TB-Object Candidates

Next, we characterize each TB-object candidate using Hu moment invariants [27], geometric
and photometric properties, and histograms of oriented gradients (HoG) features. The Hu mo-
ment, photometric, and HoG features are calculated from the grayscale patch, whereas geometric
properties are determined from a binarized version of the image patch. We calculate eight Hu mo-
ment features, fourteen geometric and photometric descriptors, and eighty HoG features. We thus
obtain a 102-dimensional feature vector representing the appearance of each candidate TB object.
In Section 5.1, we discuss object-level classification results for various subsets of these features.

3.2.1 Hu Moment Invariants

Hu moment invariants are based on normalized central moments and provide a succinct object-
level representation that is invariant to rotation, translation, and scaling [27]. In this study, we
consider eight Hu moments (first seven and the eleventh), as motivated by Forero et al. [4],
[15]. These moment invariants interpret a binarized or grayscale image as the probability density
function of a 2-D random variable. Whereas Forero et al. calculated the Hu moment invariants
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from binarized versions of the TB-objects, we calculate them directly from the grayscale patches
mentioned above.

Forero et al. excluded moments four through seven on the basis that they will often be close to
zero because of the symmetric shape of bacilli. We, however, include all eight moments and allow
the classifier to determine the relative significance of the moments invariants. The Hu moments
were calculated using the following equations, where f(z,y) represents a binary or grayscale image
with centroid (x.,y.) [4], [15], [28]:

®1 = 1m20 + M02
¢ = (1120 — M02)” + 4n7,
b3 = (130 — 3n21)% + (3m21 — no3)?
¢4 = (130 — n21)* + (21 — no3)*
¢5 = (n30 — 3m21) (M30 + 121) [(M30 + M2)°
— 3(n21 — 103)%] + (3021 — no3) (M21 + M03) [3(n30 + Mm2)* — (n21 + no3)”]
b6 = (120 — M02)[(M30 + m2)? — (21 + no3)] + 41 (30 + m2) (21 + nos)
¢7 = (3121 — m03) (N30 + m2)[(n30 + m2)” — (121 + 103)”]
+ (3m12 — 130) (1121 + M03) [3(m30 + m2)® — (M21 + 703)”]
®11 = M40 — 2m22 + Noa

where 7,5 = 5§; and y =" +1,r+5=2,3,...,00.

bpg = 3 (2 = 2)P(y — ye) f (. y) (3.1)

Ty

3.2.2 Geometric and Photometric Features

In addition, we include fourteen geometric and photometric descriptors: area, convex area, ec-
centricity, equivalent diameter, extent, filled area, major/minor axis length, max/min/mean inten-
sity, perimeter, solidity, and Euler number. The photometric features are calculated from grayscale
TB-object candidates, while geometric descriptors are derived from binarized versions. Binarization
here is achieved using Otsu’s method [29] on the patch, which minimizes the variance within each
of the two resulting pixel classes. We found renormalization at the patch-level prior to applying
Otsu’s method helpful in preventing saturated false positives at the edge of patches. Some patches
contain multiple objects, in which case only the object closest to the center of the patch is used in
calculating the geometric features. We describe several of these descriptors in more detail below.
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Figure 3.2. Visualization of HoG feature calculation. We divide each patch into cells at two
scales, giving 10 cells total with 8 gradient orientation bins per cell (resulting in 80 feature

Scale 2:
Nine 8x8 cells

values).

Feature Name Description

Convex Area Number of pixels in the smallest convex polygon that con-
tains the object

Eccentricity Ratio of distance between an ellipse’s foci and its major
axis length, where ellipse has the same second moment as
the object

Equivalent Diameter Diameter of a circle that has the same area as the object

Extent Ratio between pixels in object and pixels in object’s bound-
ing box

Solidity Proportion of pixels in the convex hull that are also in object

Euler Number Difference between number of object(s) and number of holes

in the objects (In our case, only one object is considered in
each patch)

3.2.3 Histograms of Oriented Gradients

Finally, we incorporate histograms of oriented gradients to achieve robustness against variations
in illumination across patches and images. Histograms of oriented gradients (HoG) are among the
most widespread image descriptors used in the contemporary computer vision community [30],
[31]. To calculate the HoG features, we first divide the image of interest into cells at various scales.
Within each cell, we compute the gradient at each pixel and bin them into K different orientation
bins. We then use L1-normalization in each cell to form a histogram of oriented gradients. Con-



Logistic Sigmoid Function

Figure 3.3. Logistic sigmoid function. Maps real numbers to the interval between 0 and 1.

catenating the histograms of all the cells, HoG gives rise to a KN-dimensional feature vector, where
N is the total number of cells.

In our case, we extract HoG features from each patch at two scales, with one 24x24 pixel cell
containing the entire patch and nine 8x8 pixel cells (Figure 3.2). Within each cell, we bin the
gradients in 8 different orientation bins, resulting in a total of 80 gradient-based features. Note
that HoG is not fundamentally orientation invariant, but the hope is that the training set provides
exemplars for a representative set of bacilli orientations.

3.3 Classification of TB-Object Candidates

For object-level classification, we adopt a discriminative approach, focusing on logistic regression
and support vector machines (SVMs) [32], [33]. Support vector machines, in particular, have
enjoyed tremendous success in practice and hence become one of the most popular tools in machine
learning.

3.3.1 Logistic Regression

Logistic regression is a simple linear classifier based on the logistic sigmoid function (Equa-
tion 3.2). Under this model, the posterior probability of a class C is assumed to take the form of a
logistic function whose argument is a linear function of the input feature vector x (Equation 3.3) [32].

et 1
o(a) = i+l 1tea (32)
P(Cy|x) = o(wlx) (3.3)

As seen in Figure 3.3, the logistic function maps any arbitrarily large real number to a value
between 0 and 1, which can be interpreted as the probability of the input feature vector belonging
to C1. The vector w contains weights corresponding to each input feature value. Large positive
weights indicate that a particular feature is a good indicator of association with the class of interest.
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3.3.2 Linear Support Vector Machines

Support vector machines (SVM) are arguably one of the most effective and widely-used off-
the-shelf classification tools [33], [34]. Intuitively, SVMs attempts to find an optimal hyperplane
in the feature space that separates positive and negative classes, which correspond to TB-positive
and TB-negative here (see Figure 3.4).

Throughout our discussion of SVMs, we will adopt the notation of [35], to which we refer
the reader for more detailed descriptions. Let us denote disty (dist_) to be the smallest distance
between the hyperplane and the closest positive (negative) sample. Further, we define the “margin”
corresponding to that particular hyperplane to be dist; + dist_. In the case of linearly separable
data, the SVM attempts to find the hyperplane that maximizes the resulting margin.

Suppose our training data are constrained by the following inequalities:

x; - w—+b>+41 for y; = +1
x; - w+b<—1fory =-1

or, equivalently,

Yyi(xi - w+b)—1>0Vi (3.4)

where we have input feature vectors x; and corresponding labels y;.

If we consider the sample points for which equality holds in Equation 3.4, we have a pair of
hyperplanes that are parallel to each other and between which no training points fall. Both of
these hyperplanes have normal vector w. Using geometry, it can be shown that dist; = dist_ =
1/||w|| and hence the margin may be expressed as 2/||w||. Thus, to maximize the margin, we may
equivalently minimize the objective function ||w||?, given the constraints in Equation 3.4.

We now turn to the Lagrangian formulation of this optimization problem. The reason for doing
so is two-fold: (1) the resulting constraints on the Lagrange multipliers are much easier to work with
and (2) the training data show up only in the form of dot products, which enables us to generalize
to the nonlinear case [35]. Introducing positive Lagrange multipliers, ; (one corresponding to each
inequality in Equation 3.4), we have the following Lagrangian:

l l
1
Lp = 5||w||2 =) uyi(xi WA + D (3.5)
=1 i=1

We want to minimize Lp with respect to w and b. Simultaneously constraining the gradient of
Lp with respect to w and b to go to zero results in the following:

w = Z i YiXg (3.6)

Zaiyi =0 (37)

We may also consider the equivalent dual formulation of this convex optimization problem.
Namely, we can maximize the following Lp with respect to «;:
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Figure 3.4. A schematic overview of a support vector machine, a max-margin classifier.
Linearly separable case shown. Image from [35].

1
LD = ZO&Z' — 5 Zaiajyiiji . Xj (3.8)
? 2y

In summary, the support vector algorithm seeks to maximize Lp (or equivalently minimize Lp)
with respect to «;, given the constraints set forth by Equation 3.7 and «; > 0. The solution is
given by Equation 3.6.

To address the case of nonseparable data, we relax the constraints in Equation 3.4 by incorpo-
rating positive slack variables &. Our new objective function is thus ||w|?/2 4+ C (3, &)¥ instead
of just ||wl|?/2. The penalty or cost of making erroneous classification decisions may be adjusted
by the user-defined parameter C', with higher C corresponding to larger penalties. In the dual for-
mulation, the nonseparable solution takes on the same form as in the separable case (Equation 3.6)
apart from a modified constraint (0 < o; < C in place of 0 < o).

3.3.3 Nonlinear Support Vector Machines

SVMs may be further generalized to decision functions that are not linear in the data. To do so,
we first observe that the data only show up in dot product form, x; - x;, in the training procedure
(Equation 3.8). We then introduce a mapping ® that takes the data to another space (usually
some higher — perhaps even infinite — dimensional space). With this mapping, we note that we
would have to calculate dot products of the form ®(x;) - ®(x;). We define a “kernel” function
K(xi,%xj) = ®(x;) - (x;). Hence, the solution to our nonlinear SVM only depends on K, and the
complicated mapping ® need not be known explicitly. Much research effort has been devoted to
finding effective kernel functions, but in computer vision applications, the Gaussian radial basis
function (GRBF) and intersection kernel (IK) functions are most commonly used:

GRBF Kernel: K(u,v) = exp(—v|ju — v||?)
Intersection Kernel: K(u,v) =" min(u;, v;)
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Nonlinear SVMs may be computationally expensive because one must calculate the kernel func-
tion of a given test vector with each of the support vectors. Nevertheless, Maji et al. introduced an
efficient method of implementing additive kernel (e.g., IK) SVMs such that the runtime complexity
of the classifier depends logarithmically on the number of support vectors rather than linearly [36].
Further, an approximate classifier is shown to have constant runtime and space requirements re-
gardless of the number of support vectors. In our experiments, we found that running the exact
version of IKSVM yielded acceptable running times. Nevertheless, these recent advances in com-
puting nonlinear SVMs enable us to consider nonlinear methods even for computionally-limited
applications.

In our study, we train object-level classifiers and optimize model parameters using slide-level
performance. Input feature vectors are normalized using maximum-minimum standardization, and
we apply logistic regression to the output of the SVM to obtain output probabilities [37] indicating
the likelihood of each object being a TB bacillus [37]. We consider logistic regression, linear SVM,
and IKSVM classifiers with increasing discriminative power (and hence increasing computational
cost) [34], [38]. With the confidence score outputs, one could provide a microscopist with a ranked
list of potential TB objects for efficient diagnosis. Alternatively, one could establish a threshold
based on an acceptable tradeoff point between recall and precision. These object-level confidence
scores may also serve as the input to a second-level classifier that outputs image-level or slide-level
decisions.

3.4 Slide-Level Classification

We survey a number of methods for determining slide-level diagnosis from object-level scores.
Motivated by the way microscopists rate slides manually, we first propose taking the average of the
top K object scores to obtain a final slide-level confidence score. Let us refer to this method as the
direct average method. An immediately apparent alternative to the direct average method would
be using a linear SVM with a K-dimensional input containing the top K object scores. Let us call
this method the K-top linear SVM method.

One possibility for determining the object-level scores is to concatenate all 102 features together
and train an object-level classifier on the full feature vector. However, as will be shown in Chapter
5, different feature subsets provide complementary information about the TB-object candidates.
Instead of combining all 102 features together in one pool, one may consider grouping the features
into multiple categories in a way that incorporates our knowledge of the construction of these
features. In our case, we split the features into two categories: MPG (moment, photometric,
and geometric features) and HoG. One may envision various multi-level SVM approaches that
strategically combine the complementary information from these two sets of object descriptors.

In particular, we explored variations of the following three schemes (which we term Method
I, 11, and III). In Method I, we combine the MPG and HoG information at the object-level and
proceed with our direct-average pipeline at the slide level. That is, we first train two object-level
classifiers, one using the MPG features and another using HoG features, such that each object is
assigned two scores. We then train a linear SVM that takes the two scores corresponding to each
object and outputs a final object-level score. Once each object has one score, we proceed as before
with the direct average method.

In Method II, we again begin by running two pipelines in parallel, one for MPG features and
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another for HoG features. This time, however, we run both pipelines all the way through the direct
average method. Each of the pipelines thus outputs a final score at the slide-level. We then train
a second-level linear SVM to combine the two slide-level scores to return a final single slide-level
score.

Method III runs two separate pipelines through the object-level score stage. Then, we consider
the top K scores from each of the two pipelines and concatenate them to form a 2K-dimensional
vector corresponding to each slide. We train a linear SVM followed by logistic regression to obtain
a single slide-level score from the 2K-dimensional input. We further explored taking the top K
scores from each of the two object-level SVMs along with the corresponding scores from the other
object-level SVM. Doing this for each of the SVM pipelines would result in a 4K-dimensional array
of scores for each slide.

In our experiments with the Uganda dataset, these methods of combining MPG and HoG
feature information do not result in any significant slide-level performance gain. Collection of more
data could help in further discerning if there is any substantial potential gain from these multi-level
methods. For the remainder of the study, we opt to use the K-top direct average method because
of its computational efficiency (and comparable performance).
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Chapter 4

Data Collection and Performance

Metrics

4.1 Dataset and Ground Truth

Our dataset consists of sputum smear slides collected in the field in Uganda [2], [8]. Smears
were derived from sputum specimen from patients with cough that lasted between 2 and 24 weeks.
These patients were part of the International HIV-Associated Opportunistic Pneumonias (IHOP)
study in Mulago Hospital of Kampala, Uganda (2007-2008). Each patient provided two sputum
samples for the study, one for FM-based diagnosis and one for culture diagnosis. Technicians
at Uganda’s National Tuberculosis Reference Laboratory (NTRL) prepared smears from the FM
samples, staining them with auramine-O.

Monochromatic fluorescence images of the smears were taken using the CellScope device, a novel
mobile microscope with an 8-bit monochrome CMOS camera. CellScope uses a 0.4NA objective,
and the fluorescence emission has A =~ 500nm, giving a Rayleigh resolution of 0.76um. See Section
1.3 for more details about the CellScope digital microscope. Each CellScope image is 1944x2592
pixels, covering a 640x490 pm field of view at the smear. We use 594 CellScope images (296 TB-
positive, 298 TB-negative), which correspond to 290 patients (143 TB-positive, 147 TB-negative).
A human annotator labeled high-confidence and borderline TB-objects in a subset of the culture-
positive CellScope images (92 of the 296 images), resulting in 1597 positive TB objects.

In addition, for all 290 slides, we have slide-level diagnosis results determined by (1) the culture
method, (2) Ugandan technicians using traditional LED FM, and (3) CellScope human readers.
Experienced technicians in Uganda cultured each patient’s first sputum sample using Lowenstein-
Jensen media, providing the gold-standard diagnosis. Using each patient’s second sample, the
technicians then diagnosed patients based on smear readings with a professional LED FM (400x
magnification). Finally, these smears were transported to the U.C. Berkeley under controlled
conditions, where they were restained and read by human readers using the CellScope device.
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Figure 4.1. A fluorescent CellScope image of a sputum smear collected in Uganda. Taken
using 0.4NA objective, with A = 500nm, for a Rayleigh resolution of 0.76um. Acquired
using an 8-bit monochrome CMOS camera digitally sampling the image at above Nyquist

frequency.

Data Entity Positive Negative Total
Slides (Sputum Smears) 143 147 290
Images 296 298 594
TB Bacilli Objects 1597 - -

Table 4.1. Overview of dataset used in this study.

22



Actual

Positive Negative

g E

b3 = TP FP
g £

@

[=

[N

g

@ = FN TN
= 8}

< =

Figure 4.2. Overview of true positive (TP), false positive (FP), false negative (FN), and
true negative (TN).

Performance Metric Definition

Recall TPZ%
Precision TPT+7PFP
Sensitivity TP?JF%
Specificity %

Table 4.2. Performance metrics defined in terms of values from Figure 4.2.

We plan to make our dataset and human annotations publicly available. We will also release our
algorithm and evaluation code, which we hope will provide a helpful reference for future quantitative
study of TB detection.

4.2 Performance Metrics

We present our experimental results using two sets of performance metrics: Recall/Precision
and Sensitivity /Specificity (see Table 4.2), which are widely used in the computer vision and medical
communities, respectively. They are briefly described here:

Recall refers to the fraction of positive objects correctly classified as positives. Range: [0, 1], with
1 being perfect performance.

Precision refers to the fraction of objects classified as positive that are indeed positive. Range:
[f,1], where f the fraction of total objects that are positive, and 1 still corresponds to perfect
performance in terms of precision.

Sensitivity is the same as Recall.
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Specificity refers to the fraction of negative objects correctly classified as negative. Range: [0, 1],
with 1 being perfect performance in terms of specificity.

Recall/Precision are more appropriate for gauging object-level performance because our nega-
tive class size is much larger than the positive class size. At the slide-level, our data has balanced
class sizes, so we consider both Recall/Precision and Sensitivity /Specificity. In this study, we op-
timize over Average Precision (AP) at the slide level, which places equal weight on Recall and
Precision.

Often in practice it is more useful to have either very high specificity or very high sensitivity
(rule-in or rule-out value, respectively) rather than moderately high values for both. In these cases,
one could consider optimizing over the maximum Fpg-measure, defined as

Precision x Recall
(B2 * Precision) + Recall

Fs=(1+6Y) (4.1)

where § < 1 gives more weight to Precision than Recall (5 = 1 gives equal weight to both while
B = 0.5 gives Precison twice the weight of Recall). An alternative to the Fz-measure is to preset the
specificity (sensitivity) value and determine the maximum achievable sensitivity (specificity) value.
This provides a more concrete interpretation of diagnostic performance for the medical community.

For example, acceptable performance for rule-in tuberculosis diagnostic tests at the patient level is
sensitivity of > 0.5 for specificity of 0.96.
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Chapter 5

Experimental Results and Discussion

5.1 Object-Level Evaluation

For the object-level classification task, we use the subset of the TB-positive images for which we
have human annotations and all TB-negative images. Applying our object identification procedure,
we retain 98.8% of the positive TB objects in the dataset after the first step. All objects identified
in TB-negative images are considered negative objects. This results in 1597 positive and 34948
negative objects, which correspond to 390 images (92 positive and 298 negative). Sample positive
and negative objects are shown in Figure 5.1.

We generate five random training-test splits with our object-level data, one of which is reserved
for model parameter selection. The four remaining splits are used to gauge the robustness of the
algorithm’s results. We perform systematic ablation studies as summarized in Figure 5.2, dividing
the features into two subsets: MPG (Hu moment, photometric, and geometric features) and HoG
features. That is, we train a classifier using each of the feature subsets as well as on a combined
feature set in which we concatenate the MPG and HoG features to obtain 102-dimensional feature
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Figure 5.1. Sample positive (left) and negative (right) objects from our test set. Objects
were detected in the first step using a white-top transform and cross-correlation with a
Gaussian kernel.
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Figure 5.2. Object-level test set AP across different (i) classifiers (logistic regression, linear
SVM, and IKSVM) and (ii) feature subsets. Two categories of features: MPG (Hu moment,
geometric, and photometric features) and HOG (histograms of oriented gradients features).

vectors. We also consider three types of discriminative classifiers: logistic regression, linear SVMs,
and intersection kernel SVMs (IKSVMs).

For the logistic regression and linear SVM cases, the MPG feature subset are substantially more
discriminative than the HoG features. Recall that TB-bacilli show up in different orientations and
that HoG features are sensitive to changes in orientation. Thus, it is not surprising that the HoG
features have low performance when used with linear classifiers.

With the nonlinear IKSVM, we see that the MPG and HoG features provide complementary
information. Including both MPG and HoG features enable us to achieve the highest object-level
performance (89.2% 4 2.1% over the four test sets), higher than the MPG only and HoG only
performance (83.6% + 1.8% and 86.2% =+ 1.8%, respectively).

An array of the test objects sorted by descending output SVM confidence scores is shown in
Figure 5.3. As expected, the objects with the highest SVM confidence scores exhibit the charac-
teristic rod-like morphology of TB bacilli. Objects resulting in low confidence scores are generally
small “hot pixels” or fluctuations in the background staining of the smear sample. Note that there
are a few high-confidence, rod-shaped objects that are negative objects. These objects may be
due to non-TB bacilli that are visually similar to TB bacilli. Alternatively, they may correspond
to TB-positive but culture-negative samples (culture, though the detection gold standard, is not
perfect).

Veropoulos et al. explored a variety of algorithms and evaluated performance at the object level.
We consider their results from direct sputum smears because these slides most closely resemble the
quality of the Uganda smears used in our study [14]. For this part of their study, Veropoulos et al.
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Figure 5.3. Test set objects sorted by their SVM output confidence scores in descending
order (column-wise, from left to right). Red boxes correspond to objects that were labeled
as TB-positive objects by the CellScope human reader. As expected, we generally observe
higher confidence scores for objects that are rod-shaped. With decreasing confidence values,
we see more ‘hot pixel’ objects and broad fluctuations (background staining artifacts). Best
viewed in color.
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Object-Level Classifier Slide-Level AP(%) Slide-Level AS(%)  Slide-Level Fjs5-measure(%)

Logistic Regression 91.44+0.5 87.1+1.2 87.0+1.3
Linear SVM 91.1£1.2 86.44+1.3 87.1+1.3
IKSVM 92.3+0.9 88.0+1.3 87.9+1.3

Table 5.1. Slide-level performance for different types of object-level classifiers. Performance
metrics listed are Average Precision (AP), Average Specificity (AS), and Fjs-measure,
where F{y 5-measure is calculated using recall and precision. Slide-level decision determined
from object-level scores using direct averaging method.

used 15 direct sputum smears (corresponding to 3509 positive objects and 680 negative objects).
They measured performance in terms of the area under the ROC curve, which was defined as (1-
specificity) vs. sensitivity. The multi-layer neural network (scaled conjugate gradient algorithm)
yielded the best results, with an area under the curve of 0.892. At the object level, the area under
our algorithm’s (1-specificity) vs. sensitivity curve is 88.9%41.3%. Note that these performance
metrics were obtained from running each algorithm on each group’s respective dataset, which
were acquired by significantly different microscopes. Unfortunately, the code and dataset used in
Veropoulos’ study are not available publicly, so a fair, direct comparison is not possible.

5.2 Slide-Level Evaluation

We also consider algorithm performance at the slide level, which is more relevant to practical
diagnosis. (Our Uganda dataset has one slide per patient, but in general it is common to have
multiple slides for a single patient.) Because our dataset includes culture results at the slide level,
doing so frees us from the constraints of human reader-based ground truth. We train an object-
level classifier as before, using the slide-level performance as the optimizing criterion for parameter
selection. As mentioned in Section 3.4, one may consider other methods of determining slide-level
performance from object-level performance.

We found that the various methods resulted in similar performance with our current dataset,
so we opt for the direct average method because of its low computational cost. For each slide, we
gather the output SVM confidence scores of all the objects and average the top K object confidence
scores, where K = 3 is chosen via validation experiments. We classify the slide as positive if the
averaged score falls above a given threshold. By varying this threshold, we obtain a Recall-Precision
curve such as shown in Figure 5.4. We again use five random training-test splits, with one of the
splits reserved for object-level classifier parameter selection and the other four to estimate the
robustness of the results.

We consider logistic regression, linear SVM, and IKSVM, and find that all three classifiers
yield high slide-level performance (Table 5.1). We adopt the IKSVM approach because it gives
slightly better performance (at both the object and slide levels). On the test sets of the remaining
four splits, we achieve an Average Precision of 92.3%=+0.9%, Average Specificity of 88.0%41.3%,
maximum Fy s-measure of 87.9%+1.3%, and maximum Fj-measure of 84.9%+2.4%.

28



Method AP(%)  AS(%) Max Fys-meas(%) Max Fi-meas(%)

Standard FM Readers - - 89.2+1.7 88.3+1.1
CellScope Readers - - 82.94+1.8 85.94+1.3
IKSVM Approach 92.3+0.9 88.0+1.3 87.9+1.3 84.9+2.4
Baseline 79.7£3.3 71.944.2 74.34+2.1 78.8£1.8

Table 5.2. Comparison of our IKSVM-based algorithm’s slide-level performance to that of
(1) human readers using conventional FM, (2) human readers using CellScope, and (3) the
baseline method (GMM approach [4]). Average Precision, Average Specificity, Maximum
Fy 5-measure, and Maximum Fj-measure across four test sets.

5.3 Slide-Level Comparison with Baseline and Human Readers

We compare our algorithm’s slide-level performance against that of human readers and Forero’s
GMM approach. Experienced microscopists in Uganda also used standard fluorescence microscopes
to read the smears, achieving an Fj 5-measure of 89.2%41.7% and F}-measure of 88.3%=+1.1% across
the four test sets. Human readers then inspected CellScope images from the same patients visually
and classified each slide with a binary positive-negative decision. These readings resulted in an
Fy s5-measure of 82.9%41.8% and Fi-measure of 85.9%41.3% across the four test sets. Finally, we
train Forero’s algorithm using our data, where the color filtering is reduced to intensity filtering
because CellScope images are monochromatic [4]. Their method achieves Average Precision of
79.7%4+3.3%, Average Specificity of 71.9%+4.2%, maximum Fj5-measure of 74.3%+2.1%, and
maximum Fj-measure of 78.8%+1.8% (see Table 5.1).

Our algorithm’s slide-level performance is similar to that of CellScope human readers (F}-
measure of 84.9%+2.4% versus 85.9%+1.3%). In addition, experienced Ugandan technicians per-
form at a similar level: Fj-measure of 88.3%=+1.1% ( [2] suggests that the performance difference
between CellScope readers and Ugandan technicans is not statistically significant). In the con-
text of the CellScope dataset, our algorithm outperforms the GMM approach proposed in [4].
Note, however, that their GMM-based algorithm was developed using RGB images and incorpo-
rated color filtering whereas CellScope provides monochromatic images. Figure 5.4 presents the
Recall /Precision curves across different methods for a sample training-test split. Again, our algo-
rithm’s performance is comparable to that of CellScope human readers and close to that of standard
FM human readers. Our algorithm also achieves higher performance than Forero’s GMM approach,
with a higher fraction of true positives for most recall values.
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Figure 5.4. Slide-level Recall-Precision curves across different methods for one test set.
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Chapter 6

User’s Manual

This user’s manual is intended to provide some guidance for running the code developed in this
study. Both the dataset and code from this project will be publicly available through UC Berke-
ley’s Computer Vision website (http://www.eecs.berkeley.edu/Research/Projects/CS /vision/). We
thank our collaborators in Uganda and at the University of Caliornia, San Francisco, for making
the data set available to the automated tuberculosis diagnosis research community.

The dataset consists of monochromatic TIF images of the Uganda slides taken by the CellScope
device (see Chapter 4 for more information). As shown in Figure 6.1, the image directory structure
encodes the culture results. There are 594 images (296 culture-positive, 298 culture-negative)
corresponding to 290 (143 culture-positive, 147 culture-negative) patients. Among the 296 culture-
positive images, 92 images have object-level human annotations.

We provide both evaluation code and training code, as described in Sections 6.1 and 6.2,
respectively. The evaluation code is used to run the algorithm on test images. The training code
re-trains the algorithm and should only be needed when there has been some fundamental change
in the data (e.g., using images from a different device).

6.1 Using the Algorithm

At its core, the algorithm takes a fluorescent image as input, identifies potential TB bacilli
objects in the image, and generates confidence scores corresponding to the candidate objects (in-
dicating likelihood of an object being a bacillus). We provide two files for running this part of the
algorithm: “runsingim-_libsvm.m” and “runonim_libsvm.m.”

The MATLAB function “runsingim_libsvim.m” takes a single fluorescent TIF image’s file and
path names as inputs. It generates an output CSV file with centroid coordinates and confidence
scores corresponding to each candidate object.

The MATLAB script “runonim_libsvm.m” is similar but prompts the user to select input images
through MATLAB’s GUI rather than requiring the user to provide file and path names directly as
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input values. The output is generated in the same format as in “runsingim_libsvm.m,” with one
CSV file for each input image specified.

In order to run either of these files, one must provide an SVM model file. We include two
sample MATLAB model files: “model_out_whog.mat” and “model_out_wohog.mat,” which do and
do not incorporate HoG features, respectively. These models were trained using the Uganda dataset
outlined in Chapter 4.

Both “runsingim_libsvm.m” and “runonim_libsvm.m” automatically call a number of other
functions, including some from the LibSVM implementation of SVMs [38] and Piotr Dollar’s Image
and Video Matlab Toolbox [39].

Using “runsingim_libsvm.m”

USAGE: runsingim _libsvm(fname, pname, dohog)
INPUTS:

e fname: TIF image file name (file extension included).
e pname: Directory that contains TIF image file.

e dohog: 1 to include HoG features (0 to exclude HoG features). Function will automatically
load model_out_whog.mat or model_out_wohog.mat accordingly.

OUTPUT: CSV file containing centroids and scores corresponding to candidate objects (see
below). Name of output file is “out_fname2.csv,” where “fname2” is the same as the input “fname”
without its file extension. Each row in this file corresponds to one candidate object.

e Centroids: Centroid coordinates of each candidate object, sorted by descending confidence
score. Columns 1 and 2 in each row of the CSV file contains the candidate object’s row and
column centroid coordinates, respectively.

e Confidence Scores: Corresponding score indicating likelihood of candidate object being
bacillus (Column 3 in each row of the CSV file).

Using “runonim_libsvm.m”
USAGE: Run “runonim_libsvm.m” script.

INPUTS: None. User will be prompted to select an input image files (or multiple input image
files).

OUTPUTS: One CSV file generated for each input image. Same format as OUTPUT of “run-
singim_libsvm.m.”

6.2 Re-Training the Algorithm

Given a fundamental change in the data characteristics (e.g. new imaging device), it may be
necessary to re-train the algorithm and generate a new model using representative training data
(generate new “model out_whog.mat” or “model_out_wohog.mat” file). To do so, one must provide
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the algorithm with object-level ground truth annotations (at least several hundred bacilli objects is
preferable). See “Obtaining Object-Level Human Annotations” and “Image Directory Structure”
Sections for more information.

? “runall.m”

To re-train the algorithm, one must run two functions: “runall.m” and “trainalg.m.
only needs to be run once for a given data set, after which “trainalg.m” may be run multiple times
with various input sets. Note: If you would like to re-train the algorithm with our data set (i.e.,
just try different parameter settings), you may run “trainalg.m” directly (without first running

“runall.m”).

The MATLAB function “runall.m” extracts candidate objects and features from all images
and generates various MAT-files corresponding to subsets of images. These MAT-files contain the
object and feature information required to run “trainalg.m.”

The MATLAB function “trainalg.m” uses the MAT-files generated by the “runall.m” to train
a new object-level classifier. This classifier is optimized over some slide-level performance metric.
In particular, we allow the user to choose from the following three slide-level performance metrics:
(1) Fg-measure, (2) maximizing specificity for a particular value of sensitivity, and (3) maximizing
sensitivity for a particular value of specificity.

Using “runall.m”
USAGE: Run “runall.m” function.

INPUTS: None. As long as the image directory structure is correct, the function should run
automatically.

OUTPUTS: The following MAT-files are generated (first four pairs of MAT-files correspond to
different image subsets):

e allposobjs.mat and posfeats.mat: Object and features extracted from culture-positive
images with object-level human annotations. Only objects that coincide with human anno-
tations are considered here.

e allposobjs_igntag.mat and posfeats_igntag.mat: Candidate objects and features ex-
tracted from culture-positive images with object-level human annotations. Here, all objects
are considered regardless of whether or not they coincide with human annotations (i.e., ignore
the object-level human annotations).

e allposobjs_wotag.mat and posfeats_wotag.mat: Candidate objects and features ex-
tracted from culture-positive images that never had object-level human annotations.

e allnegobjs.mat and negfeats.mat: Candidate objects and features extracted from culture-
negative images.

e nummissed.mat: Records number of human-annotated objects missed (in each image) dur-
ing candidate-object identification step.

Using “trainalg.m”
USAGE: trainalg(imdir, sel, param, dohog)
INPUTS:
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imdir
Main image directory

posims negims
Directory for Directory for
culture-positive images culture-negative images

poswtag poswotag
With object-level Without object-level
human annotations human annotations

tag untag
Images with color Original grayscale

human annotations images without
overlaid human annotations

Figure 6.1. Image directory structure required to use code to re-train algorithm. Shaded
directories contain image files while unshaded directories contain subdirectories.

e imdir: Directory containing TIF images. IMPORTANT: See “Image Directory Structure”
Section for required directory structure.
e sel: Specifies optimization method. All these metrics refer to slide-level performance. Default
value = 3.
— “sel” = 1: Maximizes Fz-measure over sensitivity/specificity curve.
— “gel” = 2: Maximizes specificity at a preset sensitivity value.
— “sel” = 3: Maximizes sensitivitiy at a preset specificity value.

e param: parameter for optimization method specified by “sel.” Default = 0.96.

— If “sel” = 1, “param” corresponds to 5. Ex: “param” = 1 or 0.5. See also Section 3.4.
— If “sel” = 2, “param” corresponds to preset sensitivity value. Ex: “param” = 0.5.
— If “sel” = 3, “param” corresponds to preset specificity value. Ex: “param” = 0.96.

dohog: 1 to include HoG features (0 to exclude HoG features)

OUTPUT: Creates “model_out_-whog.mat” or “model_out_wohog.mat,” which contains the Lib-
SVM model structure and parameter settings. The output model file should then be put in the
same directory as “runsingim_libsvm.m” and “runonim_libsvm.m,” which will call it when running

the algorithm on new test images.
Obtaining Object-Level Human Annotations

The object-level human annotations in this study were generated in the MS Paint environment,
but other annotations tools could certainly be used. The re-train algorithm code assumes the
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following annotation scheme: red, yellow, and blue annotations corresponding to high-confidence
single-bacillus TB-object, borderline single-bacillus TB-object, and multi-bacilli TB-object, respec-
tively. In our study, both high-confidence and borderline TB-objects were considered positive TB-
objects. Multi-bacilli TB-objects were excluded in the training process, as they happen infrequently
compared to single-bacillus TB-objects and exhibit varied shape characteristics.

Image Directory Structure

The re-train algorithm code assumes a particular image directory structure, as outlined in Figure
6.1. “imdir” specifies the main image directory and contains two subdirectories: “posims” and
“negims,” corresponding to culture-positive and culture-negative images. The “negims” directory
contains the TIF files of culture-negative sputum smears. The “posims” directory further contains
two subdirectories: “poswtag” and “poswotag,” corresponding to images with and without object-
level human annotations. TIF files of culture-positive sputum smears that have no object-level
human annotations are located in the “poswotag”’ directory. Finally, the “poswtag” directory
contains another two subdirectories: “tag” and “untag,” corresponding to the images that have
object-level tags from human readers. TIF files in the “tag” directory are images with the object-
level human annotations (red, yellow, and blue labels), while the corresponding original, untagged
TIF files are located in the “untag” directory.

Applying Code to Images Taken By Other Devices

To apply this code to images taken by other devices, a few parameters need to be changed prior
to re-training the algorithm. In particular, the following need to be adjusted appropriately:

e Patch Size: Size of the square patch (in pixels). This value may be modified in the “System
Parameters” section of the “trainalg.m” file. Patch should be large enough to accommodate
a single TB-bacillus object (ideally without including neighboring bright objects). All the
code developed in this study used a patch size of 24x24 pixels.

e Gaussian Filter Parameters: Size and standard deviation of Gaussian filter. These pa-
rameters may be set in the “xcorrwgauss.m” file, which is located in the “objlevel” folder.
This Gaussian filter is used in the object candidate identification step and must be adjusted
depending on the size of the bacilli in the image. For this study, the Gaussian filter standard
deviation was chosen so that the Gaussian kernel was approximately the width of a typical
bacillus object, and the size of the filter was taken to be 16x16 pixels.

Other than adjusting these parameters, the rest of the algorithm should be able to adapt
automatically during re-training. Please note that the algorithm assumes the input images are
monochromatic.

6.3 Status of Code Deployment

We plan to test the current version of our algorithm in Vietnam during Summer 2012. This
effort is in collaboration with the University of California, San Francisco, and the Vietnamese
National TB Program.

An initial graphical user interface (GUI) has been developed by Mike D’Ambrosio (Fletcher
Lab at UC Berkeley). In the GUI, the user is presented with a global view of the image as well as
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the candidate objects sorted by their corresponding confidence scores from the algorithm. Hovering
over the objects in the global view will highlight the bounding box around the candidate object
and its score. The user is also free to navigate around the image and view zoomed/interpolated
regions of interest.
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Chapter 7

Conclusion

We propose an accurate and robust automated TB detection algorithm that may be used
with low-cost, portable digital microscopes such as CellScope. Applying modern computer vision
techniques to images captured by mobile microscopy could save lives in low-resource communities
burdened by TB and suffering poor access to high-quality TB diagnostics. The sputum smears
used in our study were collected in Uganda and provide a realistic dataset for algorithm training
and evaluation.

Our algorithm first identifies potential TB objects and characterizes each candidate object using
Hu moment, geometric, photometric, and oriented gradient features. We then classify each of the
candidate objects using support vector machines. At the object level, we achieve Average Precision
of 89.2% + 2.1%. At the slide level, our algorithm performs as well as human readers, showing
promise for making a tremendous impact on global TB diagnosis and care. Though this paper is
largely focused on applying our algorithm to CellScope images, our method may be readily trans-
ferred to digital images taken by other FM devices. We plan to release our dataset, annotations,
and algorithm/evaluation code, which we hope will provide helpful insights for future approaches
to quantitative TB diagnosis.
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Appendix A

Shape Descriptors

e Generalized Color Moments: The RGB Color moments of an image are defined as
s = [ [ eyt G ) B dady (A1)

where p+q is defined to be the order and a+b+-c is defined to be the degree of the transform,
R(x,y), G(x,y) and B(x,y) represent the Red, Green and Blue channels of the color image,
respectively [17].

e Compactness: Describes how “compact” the shape is, with the circle being the most com-
; 2 . .
pact shape. Defined as P”ﬁ%m, where the perimeter may refer to inner, outer, or extended

boundary. Using the outer boundary provides rotation, translation, and scale invariance [4].

e Eccentricity: Based on the best-fitting ellipse of the object. The ratio of the distance
between the focal lengths and the major axis length. Circles have eccentricity of zero, and
thus low eccentricity may be interpreted as the object being round. [4]

e Fourier descriptors: Assuming a K-point digital boundary in a 2-D image and starting at
an arbitrary pixel belonging to the boundary, coordinate pairs are encountered in traversing
the boundary in an arbitrary direction (counter-clockwise or clockwise). We can represent
each pixel belonging to the boundary as

s(k) = z(k) + jy(k) (A.2)

where z(k) is the x coordinate and y(k) is the y-coordinate of the k-th boundary pixel, which is
equivalent to considering the x-axis and y-axis to be the real and imaginary axes respectively.
In such a way, the 2-D boundary of the object is represented as a 1-D sequence. Once this
dimension reduction has been carried out, the K-point Discrete Fourier Transform of s(k) can
be computed, which is given by:

a(u) = s(k)e " K (A.3)

The Fourier descriptors of the boundary are defined to be the DFT coefficients, a(u), in
this case (with a possible scaling by K) [28]. These descriptors are relevant to the bacilli-
detection problem, since they carry shape information, i.e., in the inverse transform, they
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can reconstruct the shape of the object. To ensure invariance of the descriptors under affine
transforms, the absolute value of the coefficients( |a(u)| ) were used instead, since |a(u)|
remains unchanged under translation and rotation of the boundary contour. The number of
coefficients to be kept is determined by the classification accuracy of the nearest neighbor
classifier [13], [16].
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Appendix B

Feature Subset Selection Schemes

Often, a subset of the full feature set is selected to reduce the computational complexity of
the classification task. Subset selection methods mentioned in Chapter 2:

— Population-Based Incremental Learning (PBIL): Chooses features in a proba-
bilistic manner, using weights that favor a high evaluation figure-of-merit.

— Correlation-Based Feature Selection (CFS): Calculates the merit of using a subset
of k features and tries to select features that are highly correlated to the current data
vector itself but simultaneously uncorrelated with other features in the subset.

— Sequential Floating Forward/Backward Selection (SFFS/SFBS): Starts with
a base feature and uses a number of forward or backward steps to find the next best
feature. This is done until the number of desired best features has been reached.

— Branch and Bound (B&B): Uses an evaluation function to select the best subset
of features by using a tree structure. It is described as an optimal feature selection
algorithm since it cannot miss the best combination of features.
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Appendix C

Classification Techniques

Below are more detailed descriptions of various classification and related methods mentioned
in Chapter 2:

— Bayes’ Classifier: Khutlang’s segmentation approach relies on a Bayes’ classifier,
which assign an object the class whose probability density function dominates at the pixel
position. For the Bayes’ classifier, the probability density functions of the bacilli/non-
bacilli classes were implicitly assumed to be Gaussian. The mean and covariance of the
two classes in the training dataset were approximated, and the Bayes’ classifier was then
used to classify the query pixel as bacillus/non-bacillus [17].

— Gaussian Mixture Models (GMMs): A linear combination of multivariate Gaussian
variables whose coefficients sum up to one. Intuitively, we can think of the coefficients
as the a priori probability of each individual multivariate Gaussian in the mixture [13],
[32]. Below, we see how a GMM was applied in Forero’s work:

Here, the probability of observing a sample feature vector x given that it belongs to
cluster j of the bacillus class is defined as a 4-variate Gaussian distribution.

p(z) = 35L, p(=(Q)p(2y)
(C.1)
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— K-Means Clustering: A simple clustering algorithm. Number of clusters K is input
parameter. Begin with K arbitrary initial cluster centers. Calculate the distance between
each sample point and the initial cluster centers and assign each point to the closest
cluster center. For each cluster, calculate the average and set that as the new cluster
center. Again calculate the distance between each sample point and the new cluster
centers. Reassign sample points if necessary (such that each point belongs to the cluster
whose center it is closest to). Repeat distance calculations and cluster reassignments
until no changes result from these steps [32].

— K Nearest Neighbors Classifier (kINN): Potential object-level classifier mentioned
in Khutlang et al. . Predicts the classification of each query object by considering
its k closest training example neighbors (bacillus/nonbacillus labels for training set are
known). Proximity of neighbors is determined in terms of Euclidean distance [17].
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— Linear Regression Classifier: Explored by Khutlang et al. as a potential pixel-level
classifier for segmentation. Determines a linear mapping between training examples and
their ground truth labels, which is in turn used to predict labels of new queries. The
mapping is aims to minimize the error between classes (bacillus/non-bacillus) in the
least-squares, Euclidean distance sense [17].

— Minimum Error Bayesian Classifier: We describe the method in which Forero used
a minimum error Bayesian classifier [15]. After modeling the 4-dimensional feature space,
Forero’s group defined discriminant functions g (one associated with each cluster) and
identified the cluster with the maximal discriminant function as given in equation (C.2).

gz‘(ﬂﬁ) = p(fﬂ\Qi)p(Qi)
oz 6ix)

(C.2)

They then invoked maximal discriminant cluster ¢’s Bayesian threshold decision rule for
the final classification. Each cluster’s decision rule may be equivalently expressed more
intuitively, in terms of the Mahalanobis distance between sample feature vector x and
cluster c.

_ Qe if ge(z) >t
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(2 = pe) 'S5 (@ = pe) < —2tc — log|Be| + 2log(p(Qe)) (C.4)

— Neural Networks: Modeled after the way neurons in the brain function, neural net-
works provide a method of classification that does not require density estimation (such
as in the case Forero’s GMM and Bayesian classifier). Multilayer feed-forward neural
networks like those used in Veropoulos’ work consist of layers of nodes, with each node
in a given layer outputting and feeding into every neuron in the following layer. The
layers between the input and output layers are often called the hidden layers. Each
node acts like a perceptron model, which calculates a weighted sum of all the incoming
signals and passes the resulting sum through a threshold or activation function (e.g., a
sigmoid function). This activation function is represents synaptic behavior in the brain,
and is typically the same for all the nodes in a given network. When an input pattern
is fed into the network, it is matched with class ¢ if the i-th output is high and other
outputs are low. Training a neural network consists of finding the appropriate weights
used in calculating the sums. Various learning rules for neural networks have been pro-
posed, with error back-propagation and scaled conjugate gradient being among the most
common [13], [28].

— Quadratic Discriminant Classifier: Another alternative for a pixel-level segmen-
tation classifier explored by Khutlang et al. . Similar to linear regression, except that
the mapping between training examples and their ground truth labels is quadratic. The
class mean and covariance matrices (mean and covariance of the training data set for
bacilli and non-bacilli classes separately) are used to determine the classification bound-
aries [17].

— Support Vector Machines: See Chapter 3.
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Appendix D

Performance Metrics

Common performance metrics used in the computer vision and medical communities:

— Recall: Number of positive objects correctly classified/Number of actual positive ob-
jects. Range: [0,1], with 1 being perfect performance in terms of recall.

— Precision: Number of positive objects correctly classified/Number of objects classified
as positive. Range: [f, 1], where f the fraction of total objects that are positive, and 1
still corresponds to perfect performance in terms of precision.

— Sensitivity: Same as recall. Also known as true positive rate or detection rate. Range:
[0, 1], with 1 being perfect performance in terms of sensitivity. [4], [13]

— Specificity: Number of negative objects correctly classified/Number of actual negative
objects. Also known as true negative rate. Same as 1-(false alarm rate). Range: [0, 1],
with 1 being perfect performance in terms of specificity. [4], [13].

— Overall Accuracy: Correctly classified objects/Total objects. An acceptable metric for
overall performance of a binary classifier if (1) class distributions are relatively constant
and balanced and (2) the error costs of false alarms and missed detections are equal.
Range: [0,1], with 1 being perfect performance. [13].

A few other performance metrics used by Khutlang et al. for evaluating segmentation:

— Common Rate: Number of correctly classified pixels in the reference object. May be
converted to percentage of correctly classified pixels by normalizing with the number of
total object pixels in the reference image [17].

— Difference Rate: Number of pixels that (1) belong to a bacillus object in the ground
truth image but are not segmented as bacillus pixels or (2) belong to the background in
the ground truth image but are labeled as bacillus pixels in the segmentation process.
May be converted to percentage of incorrectly classified pixels by normalizing with the
union of (1) ground truth bacillus pixels and (2) segmented bacillus pixels [17].
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