
Tuning Hardware and Software for Multiprocessors

Marghoob Mohiyuddin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-103

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-103.html

May 11, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Tuning Hardware and Software for Multiprocessors

by

Marghoob Mohiyuddin

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor John Wawrzynek, Chair
Professor James Demmel

Professor Ming Gu

Spring 2012

Tuning Hardware and Software for Multiprocessors

Copyright 2012
by

Marghoob Mohiyuddin

1

Abstract

Tuning Hardware and Software for Multiprocessors

by

Marghoob Mohiyuddin

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor John Wawrzynek, Chair

Technology scaling trends have enabled the exponential growth of computing power. How-
ever, the performance of communication subsystems scales less aggressively. This means that
an application constrained by memory/interconnect performance will not be able to use the
available computing power efficiently—in fact, technology scaling will make this efficiency
even worse. This problem can be alleviated if algorithms minimize communication. To this
end, we describe communication-avoiding algorithms and highly optimized implementations
of a sparse linear algebra kernel called “matrix powers”. Results show up to 2.3× improve-
ment in performance over the näıve algorithms on modern architectures. Our multi-core
implementation of matrix powers enables us to develop a communication-avoiding iterative
solver for sparse linear systems which is up to 2.1× faster than a conventional Generalized
Minimal Residual method (GMRES) implementation.

Another problem plaguing the supercomputer industry is the power bottleneck—power
has, in fact, become the pre-eminent design constraint for future high-performance comput-
ing systems which is why computational efficiency is being emphasized over simply peak
performance. Static benchmark codes have traditionally been used to find architectures
optimal with respect to specific metrics. Unfortunately, because compilers generate sub-
optimal code, benchmark performance can be a poor indicator of the performance poten-
tial of architecture design points. Therefore, we present hardware/software co-tuning as a
novel approach for system design. In co-tuning, traditional architecture space exploration
is tightly coupled with software auto-tuning for delivering substantial improvements in area
and power efficiency. We demonstrate co-tuning by exploring the parameter space of a
Tensilica’s Xtensa-based multi-processor running three of the most heavily used kernels
in scientific computing, each with widely varying micro-architectural requirements: sparse
matrix vector multiplication, stencil-based computations, and general matrix-matrix multi-
plication. Results demonstrate that co-tuning improves hardware area and power efficiency
by up to 3× and 2.4× respectively.

i

!H. P AK
 �HPñ� ú» ÿ 	�@ðQK� øQ�
Ó ñïf úÃY	K 	P
!H. P AK
 �IJ. m× ñ» ìm.× ñïf ÿ�� ©ÖÞ�� ú» ÕÎ«

(ÈAJ. �̄ @)
O Lord, let me emulate the example of the moth!

O Lord, let me dote and dart on the candle flame of knowledge!
(excerpt from Allama Iqbal’s “A Child’s Prayer”)

To Ammi, Abba, Nana and Shareen

ii

Contents

1 Introduction 1
1.1 Related Work . 2

1.1.1 Communication-Avoiding Algorithms 2
1.1.2 Software Auto-Tuning . 3
1.1.3 Hardware Design Space Exploration 6

1.2 Contributions of This Work . 8

2 The Matrix Powers Kernel 10
2.1 Background . 10
2.2 Related Work . 12
2.3 Model Problems . 14
2.4 Distributed Memory Parallel Algorithms for Matrix Powers 17

2.4.1 1D meshes . 18
2.4.2 2D and 3D meshes . 22
2.4.3 Summary of Parallel Complexity on Meshes 25
2.4.4 General Graphs . 29

2.5 Sequential Algorithms . 34
2.5.1 1D Meshes . 35
2.5.2 2D and 3D Meshes . 38
2.5.3 Summary of Sequential Complexity on Meshes 39
2.5.4 General Graphs . 40
2.5.5 The Ordering Problem in Sequential Algorithms 41

2.6 Asymptotic Performance Models . 47
2.6.1 Parallel Algorithms . 47
2.6.2 Sequential Algorithms . 49

2.7 Detailed Performance Modeling . 51
2.7.1 Performance Modeling of PA2 . 54
2.7.2 Performance Modeling of SA2 . 77

2.8 Implementation of PA1, P2 and Out-Of-Core SA2 85
2.9 Shared Memory Algorithms for Multi-Cores 87

2.9.1 Parallel Algorithm . 88
2.9.2 Sequential Algorithms . 89

2.10 Multi-Core Implementation . 90

iii

2.10.1 Optimizations . 91
2.10.2 Auto-tuning Matrix Powers . 93
2.10.3 Results . 94

2.11 Integration of Matrix Powers in GMRES . 104
2.11.1 Orthogonalization . 104
2.11.2 CA-GMRES . 106
2.11.3 Performance Results . 107

2.12 Summary . 108

3 Hardware/Software Co-Tuning 111
3.1 Introduction . 111

3.1.1 Motivating Examples . 113
3.2 Experimental Setup . 116

3.2.1 Software Setup . 116
3.2.2 Hardware Setup . 121

3.3 Modeling Performance and Energy . 124
3.3.1 Modeling Chip Power . 124
3.3.2 Modeling Chip Area . 124
3.3.3 Modeling DRAM . 125

3.4 Evaluation Metrics . 125
3.5 Software-Based Simulation Results . 127

3.5.1 Performance of Design Parameters 127
3.5.2 Tuning for Power and Area Efficiency 130
3.5.3 Co-Tuning for Multi-Kernel Applications 134

3.6 FPGA-Based Simulation . 136
3.6.1 Approaches for Emulation . 136
3.6.2 Emulation Details . 137
3.6.3 Physical Implementation on a Single FPGA 140
3.6.4 Performance Counters and Configuration Registers 140
3.6.5 Software Infrastructure . 142

3.7 FPGA-based Simulation Results . 142
3.7.1 Single Core Emulation . 142

3.8 Summary . 159

4 Conclusions and Future Work 160
4.1 Conclusions . 160
4.2 Future Work . 162

4.2.1 Matrix Powers . 162
4.2.2 Co-Tuning . 163

Bibliography 165

iv

Acknowledgments

It feels great to acknowledge the contributions of the people who made this thesis pos-
sible. First of all, I thank my advisor Professor John Wawrzynek for giving me enough
freedom and flexibility in research. He was always very patient and understanding, espe-
cially during some tough times in research, and, for this, I am extremely grateful to him. I
also thank Professor Jim Demmel and Professor Kathy Yelick for giving me the opportunity
to work in the Berkeley Benchmarking and Optimization (“BeBOP”) research group—I owe
my continued interest in high-performance computing to this great experience. My Ph.D.
research has been an amalgamation of ideas from Professor Wawrzynek and Professor Dem-
mel, and I am extremely thankful to them for helping me out with finding an interesting
thesis topic. I thank Professor Ming Gu for being on my thesis committee and providing
me useful feedback.

I thank Professor Adnan Aziz, who was my M.S. advisor at the University of Texas at
Austin, for motivating me to pursue a Ph.D. degree. He has been a great mentor and friend
to me and his continued advice and support to this day is always appreciated.

During the course of my graduate studies, I had the opportunity of being a part of mul-
tiple research groups—the BeBOP, Reconfigurable, and ParLab research groups on campus.
It has been a terrific experience working and interacting with so many talented graduate
students and researchers. Among them, I would first like to thank Mark Hoemmen for
not just being a great collaborator but a great friend too—working with him is always
a pleasure. Special thanks to Dave Donofrio and Greg Gibeling for helping me with the
hardware infrastructure—their contributions to GateLib and help with debugging hardware
modules were very crucial. Many other students deserve thanks, in particular Grey Ballard,
Erin Carson, Jike Chong, Kaushik Datta, Shauki Elassaad, Andrew Gearhart, Ankit Jain,
Shoaib Kamil, Alex Krasnov, Nick Knight, Adam Megacz, Mark Murphy, Rajesh Nishtala,
and Sam Williams.

I would like to acknowledge the researchers at the Future Technologies Group at Lawrence
Berkeley National Laboratory (LBNL) and the National Energy Research Scientific Com-
puting Center (NERSC), especially John Shalf, Leonid Oliker, Michael Wehner, Norman
Miller, and Leroy Drummond. It was a great experience working as a Graduate Student
Researcher (GSR) at LBNL and I really enjoyed being involved in the “Green Flash” project.

I acknowledge the use of computing facilities at UC Berkeley (the Millennium cluster)
and the NERSC center. This research used resources of NERSC center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

I thank the Stanford Smart Memories research group, led by Professor Mark Horowitz,
for letting us use their Smart Memories simulator. Special thanks to Amin Firoozshahian
and Alex Solomatnikov for helping us with setting up and running the simulator.

Many thanks to the UC Berkeley staff, especially Ruth Gjerde, Tamille Johnson, La
Shana Polaris, Laura Rebusi, and Shirley Salanio, for helping me with the paperwork and
meeting the administrative deadlines.

My graduate student life has been a fun and memorable one due to lots of wonderful
people: Saurabh Amin, Richa Sharma, Huma Zaidi, Anurag Gupta, Vishnu Narayanan,

v

Kranthi Kiran Mandadapu, Deepthi Aluru, Ambuj Tewari, Anuj Tewari, Aditya Medury,
Debanjan Mukherjee, and Sharanya Prasad. I especially thank Saurabh and Richa for being
there for me at all times, and Huma for the occasional push to finish and stern advice when
necessary. I tremendously enjoyed discussions on anything with Anurag and the visits to
the Recreational Sports Facility with Vishnu. These people added the much needed spice
to the academically charged environment at Berkeley.

Last of all, but certainly one of the most important, I express my gratitude to my parents,
grandfather, and sister, for their love, support, patience and understanding over all these
years. I feel truly blessed to have such a wonderful family—I dedicate my thesis to them.

1

Chapter 1

Introduction

Although clock scaling stopped almost a decade ago, the semiconductor industry still
follows Moore’s law by the doubling the computational power per chip every technology
generation. However, raw computational power doesn’t necessarily translate to actual
performance—the software needs to be designed in a way to make an efficient use of the
underlying computational power. With a variety of machine configurations available in the
market, the software needs to be customized (aka “tuned”) for each target to get good
performance. Traditionally, manual software-tuning along with using appropriate compiler
flags, has been done to optimize the code for a target hardware setup. Due to the general-
purpose nature of commonly available compilers (gcc, icc, llvm), näıve code can perform
rather poorly even when using aggressive compiler flags. This makes software tuning a ne-
cessity for high-performance codes. However, manual tuning is prohibitively expensive due
to the overwhelming number of target machines available today as well as possible in the
future. Software auto-tuning is an approach to mitigate the problem of achieving portable
performance. It relies on trying out different algorithms, code variants, data structures and
empirically measuring the performance on the target machine—in the end, the best per-
forming algorithm, code variant, data structure is chosen. Such an approach has yielded
success stories in dense linear algebra (ATLAS [112]), sparse linear algebra (OSKI [106]),
and signal processing (SPIRAL [82], FFTW [39]). More recent work has also focused on
developing auto-tuning frameworks in order to ease the development of auto-tuned codes. In
keeping with this, the unifying theme of this work is “tuning”, i.e., adapting the software to
the target hardware and, going one step further, we propose “hardware/software co-tuning”
as an approach to adapt the software and the hardware to each other for even more efficient
hardware/software solutions.

Another problem we note with the scaling trends is that different technology compo-
nents scale differently—computational power scales more aggressively when compared to
memory/network subsystem latency and bandwidth. We refer to the latter as the commu-
nication subsystem. Current technology trends show exponentially increasing gaps between
computation, bandwidth and latency costs. A study [92] of high performance comput-
ing showed floating point speeds increasing historically at 59%/year, but interprocessor
bandwidth improving only 26%/year, and interprocessor latency improving only 15%/year.

2

Indeed, on certain very large, distributed computing platforms (like the Grid) latencies are
already speed-of-light limited and on the order of milliseconds, as opposed to fractions of
nanoseconds for floating point operations. Similarly, memory (DRAM) bandwidth is im-
proving only at 23%/year, and memory latency at 5.5%/year. For out-of-core algorithms,
with disk bandwidth and latency limited by the rotational speed of disks, the gaps are even
larger. Another study [78] observed that latency improves much more slowly than band-
width across many technologies. These trends suggest that algorithms should be designed
not to minimize arithmetic operations, as is traditional, but to minimize communication
both within a local memory hierarchy and between processors. In this work, we consider the
computations that arise in the communication-intensive Krylov subspace methods (KSMs)
used to solve large sparse linear systems or large sparse eigenvalue problems. On current
machines, KSMs are limited by memory and network performance, because they execute
only a small constant number of arithmetic operations per communicated data value. We re-
place conventional KSMs with “communication avoiding” versions that send fewer messages
and read data less frequently from slow memory at the cost of slightly more arithmetic.

1.1 Related Work

1.1.1 Communication-Avoiding Algorithms

There are two costs to implementing algorithms: “computation” and “communication”.
“Computation” is the useful work done and it involves processing of data. “Communi-
cation” is the movement of data across the system—this data movement can be between
different levels of the memory hierarchy, between different processors in a parallel machine
and between processors and coprocessors. Furthermore, the communication between differ-
ent processors can be through the memory subsystem, an on-chip interconnect network or
an inter-node interconnect. The cost of communication manifests as a hit on performance
as well as energy consumption. Thus, it is desirable to minimize the cost of communication
for an application. In fact, given the current technology scaling trends and the lag between
communication and computation costs for units of data, it may even make sense to per-
form more computation if it cuts down the communication significantly. Thus, applications
must be communication-avoiding, especially if communication can be a significant part of
performance.

At a high-level, communication-avoidance has been a key component of software-tuning.
A very good example of communication-avoidance strategies in software design is cache
blocking optimization commonly seen in key scientific computing kernels [112, 106, 43, 96].
Cache blocking optimizations try to reuse data in the cache as much as possible which
amounts to avoiding data movement across the memory subsystem as much as possible.
Another low-level optimization which can be considered communication-avoiding is register
tiling, which is performed in both dense and sparse linear algebra codes. In the case of dense
linear algebra, register tiling improves register reuse while keeping the same computational
complexity. As for sparse codes, register tiling may result in more computation being
performed but cut down the memory footprint (and, hence, communication cost) to result

3

in an overall improvement in performance. Although, “cache blocking” and “register tiling”
are optimizations commonly used in different computational kernels, they mean different
low-level optimizations depending on the kernel.

There has been theoretical work in bounding the cost of communication [47] and devel-
oping communication-efficient algorithms [9]. The authors in [47] were able to bound the
communication cost of a cache-blocked dense matrix-matrix multiplication as a function of
the cache size. It was shown that the multiplication of two dense n × n matrices using
the conventional Θ(n3) algorithm on a machine with a fast memory of size M , requires
Ω(n3/

√
M) words of data movement between fast and slow memories. This lower bound

is tight as “blocked” algorithms were shown which attain the aforementioned lower bound.
Irony et al. [51] extended the communication bounds to parallel machines and showed that

the lower bound can be expressed as Ω
(

#arithmetic operations√
M

)

, where M is the size of

fast memory for the sequential machine model and size of the local memory for the parallel
machine model. Ballard et al. [9] extended the communication lower bound results to all
direct methods of linear algebra—examples include LU factorization, Cholesky factoriza-
tion, QR factorization, etc. It is also interesting to note that some of the these bounds for
dense and sparse linear algebra operations easily translate to related graph algorithms, e.g.,
all-pairs shortest paths. In addition, Ballard et al. [9] list algorithms which attain the lower
bounds.

1.1.2 Software Auto-Tuning

Software tuning is usually required for high-performance codes because general-purpose
compilers are usually unable to generate good machine code due to their general nature.
Traditionally, careful hand-tuning of software [54] and hand-coded assembly have been used
to get high-performance for critical sections of high-performance applications. Hand-tuning
software is not only time consuming but also does not scale well as applications need to be
deployed on new machines. Furthermore, with the complex interplay between software and
the underlying hardware, it is often difficult to predict performance on a target machine
given a particular piece of code. Auto-tuning has emerged as an approach to mitigate this
problem of tuning software. The idea is fairly simple: write code which automatically adapts
to the target hardware. This necessitates that tuning “knobs” be built into the code—the
values of these “knobs” which result in high performance, are determined empirically by
actually trying out different values and choosing the best performing one. In a way, auto-
tuning of software aims to achieve portable performance using minimal writing of code.
An auto-tuned software performs part of the tuning at install-time (done once per target
machine) and the rest at run-time (which depends on the inputs to the software). A typical
auto-tuner achieves its goal of performance portability by employing the following:

• Parameterized code generators: Given that there may be several ways of writing the
code for the same computations and different code variants may perform well on differ-
ent target machines, code generators are used to generate the different possibilities. At
install-time, these code generators are used to generate different code variants and the

4

performance of these code variants is empirically measured to determine the best one.
A very prominent example of such a code generator is from ATLAS [112], which is an
auto-tuned library for dense linear algebra. ATLAS’s code generator generates differ-
ent variants for the dense matrix-matrix computational kernel. The code generator is
heavily parameterized—examples of some parameters include the matrix dimensions,
loop unroll factor, number of matrix entries to keep in registers, and matrix data
layout (row major or column major format).

• Parameterized routines: While code generators account for different ways of writing
code, parameterized routines are used to account for making run-time decisions for
performance. These run-time decisions may include the choice of data structures, algo-
rithms, core computational codes, etc. As with code generators, the right parameters
are determined empirically by trying out different parameter values at run-time or at
install-time. One good example of such a run-time parameter is the data structure
used to represent a sparse matrix in memory—this is a key decision to be make in case
of a sparse linear algebra library like OSKI [106]. A sparse matrix can be represented
in many ways and the optimal representation (with respect to performance) depends
on the sparsity pattern of the matrix which is only known at runtime.

• Search heuristic: An auto-tuned software may have several tuning knobs built into it
and an exhaustive exploration of the parameter space can be impractical and more so
if the exploration has to be performed at run-time. This necessitates the integration
of an efficient search strategy in the auto-tuner. The search heuristic must be able to
find parameter values yielding good performance in as little time as possible.

There are several success stories involving high-performance libraries which make use of
auto-tuning and, in fact, address a variety of computations:

• Dense linear algebra: One of the early success stories for auto-tuned software has been
ATLAS [112], which can be seen as a successor to PHiPAC [11, 12]. ATLAS aims to
provide a set of high-performance routines for dense linear algebra. At the heart of
ATLAS is a high-performance routine for multiplying two dense matrices (General
Matrix Matrix Multiply or GEMM). ATLAS uses an auto-tuner to figure out a good
performing implementation of GEMM on a target machine. It is interesting that while
the simplest implementation of GEMM (which is basically three nested loops in C)
performs very poorly due to low data reuse, auto-tuned implementations can achieve
close to machine peak performance. Almost all the tuning in for GEMM is done at
install-time as the performance only depends on the matrix dimensions.

• Sparse linear algebra: The OSKI library [106] attempts the same by targeting sparse
linear algebra. One of the key computational kernels in OSKI is Sparse Matrix Vector
Multiplication (SpMV) which is really hard to optimize as the performance is deter-
mined heavily by the sparsity pattern of the matrix [30]. OSKI performs part of the
tuning at install-time and the remaining is done at run-time when the matrix structure
is known.

5

• Discrete Fourier Transforms: FFTW [39] is one of the most popular libraries for
computing the DFT (Discrete Fourier Transform). Given the dimensions of the DFT,
FFTW explores possible ways of computing the DFT—this includes the different ways
the FFT recursion can be done. Since the DFT dimensions are known at run-time,
the first call to the DFT computation can be expensive as auto-tuning is performed
to try out different alternatives and measure their performance. Since an exhaustive
exploration of the search space can be expensive, FFTW includes a fast mode where a
reasonably performing DFT solution is computed quickly. Note that FFTW performs
all of its tuning at run-time.

• Signal processing: SPIRAL [82] is one example of a library targeting signal processing
applications. Given a digital signal processing (DSP) computation expressed as a
formula, SPIRAL uses auto-tuning to generate target-optimized code implementing
the DSP computation. These formulas are expressed in a special “tensor-product”
language and all the tuning is done at compile-time. Like FFTW, SPIRAL can also
be used to compute the DFT but unlike FFTW, it can handle a wider range of DSP
computations.

In addition to the above mentioned libraries, significant efforts have been made in ad-
vancing the state of the art for auto-tuning for individual kernels. Independently of OSKI,
auto-tuned SpMV implementations have been developed targeting multi-cores [113, 114, 16]
and, more recently, GPUs [20]. In a similar vein, Volkov et al. [103] implemented several
key linear algebra kernels on GPUs and use auto-tuning and overlapping CPU and GPU
computations to achieve near peak performance. The PLASMA (Parallel Linear Algebra
for Scalable Multi-core Architectures) and MAGMA (Matrix Algebra on GPU and Multics
Architecture) projects [1] are recent collaborative efforts to develop auto-tuned frameworks
for dense linear algebra on multi-cores as well as hybrid systems involving both multi-cores
as well as GPUs. Datta et al. [25] performed an extensive study comparing auto-tuned
implementations of the 7-point stencil from the heat equation on structured meshes, on sev-
eral platforms ranging from multi-cores, IBM Cell to GPUs. Kamil et al. [55] generalize the
stencil optimization work to develop a framework for generating auto-tuned implementa-
tions of arbitrary stencils specified in a high-level language—this approach is similar to the
SPIRAL framework. Performance comparison against the näıve implementations on several
platforms showed up to 22× speedups.

There has also been work towards developing general frameworks for auto-tuning:

• The POET (Parameterized Optimizations for Empirical Tuning) language [121] was
developed to specify code and the allowed transformations. This lets developers write
domain-specific source code generators which simplifies auto-tuner design. The output
source code generated by the POET compiler can be fed to a low level compiler as
part of the auto-tuning process.

• The ROSE compiler project [88] allows one to be able to build custom source-to-source
generators—this is achieved by ROSE allowing the user to manipulate the abstract
syntax tree (AST) of the source code and then using the AST to generate (“unparse”)

6

the source code. This can be used to target whole applications instead of limiting to
specific kernels. As a proof of concept, ROSE was used as part of PERI [67] to identify
performance bottlenecks and auto-tune the SMG2000 [15] (Semicoarsening Multigrid
Solver) benchmark from DOE which contains about 28k lines of code—the application
was sped up by 1.8× after a bottleneck stencil kernel was auto-tuned.

• CHiLL [19] (Composing High-Level Loops) is a compiler framework for describing and
loop transformations. Polyhedral representations of nested loops are used along with
scripts describing the set of allowed transformations in order to generate the loop code
variants to test for performance tuning. Example loop transformations include loop
unrolling, loop nest permutation, tiling, loop splitting, and copy of data to tempo-
rary locations. As a demonstration, CHiLL scripts were used to auto-tune different
dense linear algebra kernels, e.g., matrix matrix multiplication, LU factorization, and
triangular solve. Performance improvements close to hand-tuned code were reported.

• PERI (Performance Engineering Research Institute) [7] is a major collaborative effort
to automate the process of tuning whole applications (in contrast to just tuning specific
kernels and providing them as libraries). In a way, PERI integrates code profilers,
source code generators, source-to-source translators, and search heuristics to formalize
and implement a methodology for systematic tuning of whole applications.

• The SEJITS (Selective Embedded Just-In-Time Specialization) [17] project is an at-
tempt to bridge the gap between writing productive code in high level languages like
Python and Ruby and the performance of auto-tuned codes written in low level lan-
guages like C. One of the key ideas in SEJITS is providing specializers which describe
source code transformations from a high level language to a low level language. The
specializers, if provided, accelerate the critical portions of the high level code by gen-
erating and executing auto-tuned low level implementations.

As we can see, although auto-tuning is still an emerging field, significant progress has
been made from the initial work involving custom auto-tuners for specific computational
kernels, to more recent work involving developing frameworks which enable development
of auto-tuners in a more systematic way. Since our goal was simply to demonstrate the
effectiveness of our communication-avoiding algorithms, for the purpose of this work, we
use an almost exhaustive search in our auto-tuned implementation of matrix powers.

1.1.3 Hardware Design Space Exploration

Hardware design space exploration (DSE) is typically performed to determine the op-
timal hardware parameters for a given set of benchmark applications [23, 6, 117]. In fact,
most of the work in computer architecture evaluates hardware design points using bench-
mark codes [75, 66, 64, 76]. Figure 1.1 shows a high-level view of such DSE studies—different
hardware configurations are evaluated using a set of benchmark applications. The DSE may
be constrained (by chip area, cost, power, energy) in order to study the trade-offs involved
and answer questions like:

7

• Should more chip area be devoted to caches?

• Should more money be spent on memory bandwidth?

• Should low voltage be used to trade off speed for power?

Kumar et al. [60] showed that cores, caches and interconnect need to be co-designed
in order to get good performance or energy efficiency. This is due to the non-negligible
cost of the interconnect in terms of area, performance and energy. Interestingly, due to
the high cost of the interconnect for sharing caches, the authors found that the theoretical
performance benefits go away when constraints of area and power are applied. Thus, it is
better to simulate the system as a whole rather than independent components.

Li et al. [66] performed a DSE study under thermal (temperature) and physical (pin
bandwidth, chip area, power) constraints. To cut down the simulation time, the authors
decoupled core simulation from interconnect and memory subsystem simulation. Single core
simulations were used to generate traces which were used for the interconnect and memory
simulations. Thus, multi-core simulation results were actually an extrapolation of results
from single core simulations and interconnect and memory subsystem simulations. As ex-
pected, CPU-bound workloads favored a higher core count while memory-bound workloads
favored larger cache area on chip. Interestingly, thermal constraints dominated physical
constraints and simpler core designs were found to be favorable for more power-efficient
solutions.

Leverich et al. [64] performed a DSE study to compare cache-based multiprocessors
with local store-based ones with respect to energy consumption and performance. The
multiprocessor was designed using Tensilica’s embedded processor XTensa [98] with VLIW
features. Multiple parameters like core counts, bandwidth, and frequency were varied. It was
found that with features like hardware prefetching and non-allocating stores enabled, cache-
based configurations performed close to local store-based configurations. Given that local
store-based configurations require extra programming effort, cache-based configurations had
an overall advantage. The authors hand-tuned some of the benchmarks and found significant
improvement in performance, thus demonstrating the effectiveness of software tuning.

Musoll et al. [76] used DSE to compare multi-threaded with out-of-order single-threaded
superscalar architectures. Hardware multi-threading was shown to be effective at reducing
power consumption as well as area when compared to a superscalar for the same perfor-
mance.

Seo et al. [89] proposed a new software-managed cache design called the extended set-
index cache (ESC). The cache design attempts to have the tag search performance of a set-
associative cache and the miss rate of a fully-associative cache. Interestingly, the hardware
adapts the cache parameters depending on the code being run—this can depend on which
part of which application is being run. It was found that the hardware adaptation at run-
time improved performance significantly for the benchmark applications as there was no one
size fits all solution for the cache parameters.

In a study closest to co-tuning, Shrivastava et al. [90] perform DSE for horizontally par-
titioned cache architectures. The compiler used the hardware configuration information to

8

Figure 1.1: Traditional hardware design space exploration

generate code tuned to minimize energy consumption. The authors found that incorporat-
ing the compiler to generate target specific code gave much better results when compared
to the traditional approach of using fixed codes for all hardware design points.

One major issue with DSE studies is the size of the design space [27, 49, 36, 3, 62, 52],
especially since software simulation of hardware is traditionally used to perform such stud-
ies. To cut down the simulation time, various techniques have been tried to make the DSE
tractable, ranging from relying on “industry experience, intuition and literature surveys” [27]
to statistical sampling for creating trained models using artificial neural networks [49], or
cubic splines [62]. Random sampling of the design space is used to train the statistical
models. Dubach et al. [36] use linear regression to predict the performance of a new ap-
plication using the trained model and performance on a few sampled design points. More
recently, Azizi et al. [3] use posynomial1 functions for the trained models. Given these sta-
tistical techniques, only a small part of the design space need to be actually simulated for
training the statistical model. Once the training is done, the model can be used to predict
the performance over the design space. Since our work explored limited design spaces, we
employed an exhaustive search rather than the sophisticated statistical modeling techniques
currently used in exploring large design spaces. We note that hardware design spaces can be
explored more quickly using FPGA2-acceleration [97, 22]–the acceleration can easily be two
orders of magnitude. This speeding up of hardware simulation also enables exploration of
the larger design space which can also include the software design space. Using hardware to
accelerate also has ramifications with respect to the power consumption–with the speedups
involved, a single FPGA board can easily replace a cluster of machines and yet achieve
the same simulation throughput for a much lower power consumption. Chapter 3 covers
FPGA-acceleration of hardware simulation in more detail.

1.2 Contributions of This Work

In light of the key issues discussed previously, two major contributions are made in this
thesis:

• We describe communication-minimizing algorithms, models and implementation of

1A posynomial is a function of the form f(x1, x2, . . . , xn) =
∑K

k=1 ckx
a1,k

1 · · ·xan,k
n where the coordinates

xi and coefficients ck are positive real numbers, and the exponents ai,k are real numbers.
2An FPGA (Field Programmable Gate Array) is a configurable hardware and can be used to quickly

implement a digital circuit

9

“matrix powers”—a linear algebra kernel. Furthermore, in keeping with the overarch-
ing theme of tuning, our implementation of the “matrix powers” kernel is auto-tuned.
We also demonstrate the effectiveness of the matrix powers implementation in an iter-
ative solver for large sparse systems—results (see Section 2.11) show that performance
improves by up to 2.2 over the näıve implementation. Parts of this work have appeared
in [31, 32, 73].

• We describe “hardware/software co-tuning” (henceforth, referred to as simply co-
tuning) as a methodology for hardware design and demonstrate its effectiveness on
a set of well-known kernels from scientific computing and a hardware architecture—
results (see Sections 3.5 and 3.7). Parts of this work have appeared in [74, 111]—
Sections 3.6-3.7, however, are new.

The rest of the thesis describes the aforementioned contributions (see Section 1.2) in
detail. Chapter 2 covers the matrix powers kernel in detail. Chapter 3 discusses co-tuning.
Finally, Chapter 4 covers conclusions and future work.

10

Chapter 2

The Matrix Powers Kernel

2.1 Background

Krylov subspace methods (KSMs) are iterative methods for computing solutions of sparse
linear systems (solving for x in Ax = b) and eigenvalue problems (solving for x in Ax = λx),
particularly when the problems are large. Formally, the Krylov subspace for a matrix A
and a vector v is the following subspace:

Kk(A, v) = span{v, Av, . . . , Akv}, k ∈ N.

A KSM minimizes the residual ‖Ay − b‖ by computing better approximations to the
solution every iteration. At every iteration, the KSM expands the set of basis vectors for
the Krylov subspace—the basis is used to approximate the solution or the eigenvalues and
eigenvectors. Conventional algorithms for KSMs spend most of the time in communication-
limited kernels like sparse matrix-vector multiply (SpMV), vector dot products and sums.
Given the data dependencies in each iteration, only limited performance gains can be made
by overlapping communication with computation. Given that KSMs are an important com-
ponent of scientific and engineering applications, making them communicate less can have
significant impact in improving the performance of those applications.

Conventional implementations of KSMs involve the following computational kernels:

• SpMVs (sparse matrix-vector products): given a sparse matrix A, a vector x, compute
A · x or AT · x.

• AXPYs (vector-vector sums): given vectors x and y, scalar α, compute α · x+ y.

• Dot products: given vectors x and y, compute y∗ · x1

A typical implementation would alternate SpMV with AXPYs and dot products. Note
that all the above mentioned kernels are communication-limited as they perform very few
computations per data word read from memory. Therefore, both the computation and
communication cost of k iterations grows at least proportionally to k.

1For a vector v of complex values, y∗ denotes the conjugate transpose of v.

11

The Generalized Minimal Residual method (GMRES) of Saad and Schultz [86] is a
Krylov subspace method for solving a non-symmetric square system of linear equations Ax =
b. The standard implementation of GMRES alternates between using a sparse matrix-vector
product to generate a new Krylov basis vector, and using BLAS 12 - based Modified Gram-
Schmidt to orthogonalize that vector against all the previously generated and orthogonalized
basis vectors. A number of authors proposed performing GMRES in a different way [108,
28, 53, 4, 38]. Begin with a starting vector v1, and then generate k more vectors v2, . . . ,
vk+1 so that they form a basis of the Krylov subspace

span{v1, v2, . . . , vk+1} = span{v1, Av1, A2v1, . . . , A
jv1} for j = 1, . . . , k.

Then, use a QR factorization3 to orthogonalize the basis vectors. They become therefore
identical to the basis vectors that standard GMRES would generate (modulo a unitary
column scaling). Finally, use the R factor to reconstruct the k + 1 by k upper Hessenberg
matrix4 from standard GMRES, compute a new approximate solution, and restart if the
desired accuracy is not yet reached. Other authors developed similar algorithms, generally
called “s-step Krylov methods,” for conjugate gradient iteration and other Krylov iterations
for symmetric matrices [21, 100]. The above variants of GMRES all require restarting after
each group of k steps.

In this work, we reorganize KSMs so that the communication cost is nearly as small
as theoretically possible. Specifically, we implement a communication-avoiding version of
GMRES called CA-GMRES (communication-avoiding GMRES) to demonstrate the effec-
tiveness of our approach. To this end, communication-avoiding analogues of some compu-
tational kernels were introduced:

• Matrix powers: Given a matrix A in sparse format, a vector x, an integer k > 0,
compute the k vectors [p1(A)x, p2(A)x, . . . , pk(A)x], where pi(A) is a polynomial of
degree i, 1 ≤ i ≤ k. This kernel replaces the SpMV kernel and performs multiple
iterations instead of one iteration at a time which is the case with SpMV.

• Tall Skinny QR (TSQR): Perform the QR factorization of an m × n dense matrix A
with m≫ n.

• Block Gram-Schmidt (BGS): Perform Modified Gram-Schmidt (MGS) orthogonaliza-
tion but instead of processing a column at a time, process a block of columns at a
time to improve performance. It is not really a new kernel but its use in combination
with TSQR is the novel idea here.

In related work [46], we describe numerically stable reorganizations of typical KSMs,
such as GMRES and CG, that leverage a matrix powers kernel (or small variations) to

2The Basic Linear Algebra Subprograms (BLAS) [61], an interface for dense linear algebra computations,
such as dot products (BLAS 1), vector sums (BLAS 1), matrix-vector multiply (BLAS 2), and matrix-matrix
multiply (BLAS 3).

3Given a matrix A, its QR factorization is matrices Q and R such that A = QR, Q is orthogonal and R
is upper triangular.

4An upper Hessenberg matrix has zero entries below the first sub-diagonal.

12

advance k steps in one iteration. That work also describes support for preconditioning,
which is essential to KSMs in practice.

We focus here on the matrix powers kernel with nearly minimal communication time.
On a parallel computer, this means with latency costs that are independent of k. In fact
if the sparse matrix has a suitable (and common) sparsity structure described below, we
will see that the latency cost of matrix powers is just O(1). On a sequential computer,
this means that latency and bandwidth costs are independent of k. Said another way, both
the matrix A and k output vectors will need to be moved between fast and slow memory
just 1 + o(1) times (1 time is obviously the minimum), not k times. Since bandwidth is
always the bottleneck in the sequential case, our approach is always an improvement. Our
communication avoiding approach complements and is more powerful than communication
overlap techniques, which can at best halve the running time. Avoiding communication can
achieve up to k-fold speedups when communication is dominant, and can be combined with
overlap for an additional performance boost.

Specifically, we consider two flavors of the matrix powers kernel:

• Given a matrix A, a vector x, a positive integer k, compute [x,Ax,A2x, . . . , Akx]. This
is a simplification of the general form. When the basis vectors of the Krylov subspace
are computed in this way, we refer to it as the monomial basis. For the purpose of
illustration and explanation, this flavor will be used throughout this chapter.

• Given a matrix A, a vector x, a positive integer k, compute [p1(A)x, . . . , pk(A)x],
where pi(A) = (A − λ1I) · · · (A − λiI). When this form is used, we refer to it as the
Newton basis. Our multi-core implementation of CA-GMRES uses this form.

2.2 Related Work

The optimizations described in this work belong to a collection of techniques for im-
proving the performance of applying a stencil repeatedly to a regular discrete domain, or
multiplying a vector repeatedly by a sparse matrix. They, in turn, are a subset of various
methods known as tiling or blocking. They all involve decompositions of the d-dimensional
domain into d-dimensional sub-domains, and rearranging the order of arithmetic operations
in order to exploit the parallelism and/or temporal locality implicit in those sub-domains.

Tiling research falls into three general categories. The first encompasses performance-
oriented implementations and practical performance models. See, for example, [81, 79,
50, 115, 84, 71, 93, 116, 35, 95, 34, 119, 104, 57, 56]. The second category consists of
theoretical algorithms and asymptotic performance analyses. These are based on sequential
or parallel processing models which account for the memory hierarchy and/or inter-processor
communication costs. Works that specifically discuss stencils or more general sparse matrices
include [47], [63], and [100]. The third category contains suggested applications that call for
repeated application of a stencil (resp. sparse matrix) to a domain (resp. vector). See, for
example, [102, 85, 21, 28, 4, 95].

The idea of using redundant computation to avoid communication or slow memory ac-
cesses in stencil codes may be as old as out-of-core (OOC) stencil codes themselves. Leiserson

13

et al. cite a reference from 1963 [63, 81]. Nevertheless, many tilings do not involve redundant
computation. For example, Douglas et al. describe a parallel tiling algorithm that works on
the interiors of the tiles in parallel, and then finishes the boundaries sequentially [35]. Many
sequential tilings do not require redundant computations [56]; our SA1 algorithm does not.

However, at least in the parallel case, tilings with redundant computation have the ad-
vantage of requiring only a single round of messages, if the stencil is applied several times.
The latency penalty is thus independent of the number of applications, though the band-
width requirements increase. Furthermore, Strout et al. point out that the sequential fill-in
of boundary regions suggested by Douglas et al. suffers from poor locality [95]. Most im-
portantly, redundant computation to save messages is becoming more and more acceptable,
given the exponential divergence in performance between latency, bandwidth, and floating-
point rate.

Extensions of stencil tiling to more general sparse matrices require runtime analysis of
the sparse matrix structure, often using a graph partitioner. Finding an optimal partition
is an NP-complete problem which must be approximated in practice, at nontrivial cost.
Theoretical algorithms for the out-of-core sequential case already existed (see e.g., [63]), but
Douglas et al. were apparently the first to attempt an implementation of parallel tiling of a
general sparse matrix, in the context of repeated applications of a multigrid smoother [35].
This was extended by Strout et al. [94] into a sequential cache optimization which resembles
our SA1 (discussed in Section 2.5) algorithm.

Our work differs from existing approaches in many ways. First, we developed our meth-
ods in tandem with an algorithmic justification: communication-avoiding or “s-step” Krylov
subspace methods [46]. Toledo had suggested an s-step variant of conjugate gradient itera-
tion, based on a generalization of algorithm PA1 (discussed in Section 2.4), but he did not
supply an implementation for matrices more general than tridiagonal matrices [100]. We
have a full implementation of PA1 for general sparse matrices, and have detailed theoretical
models showing performance increases on a wide variety of platforms.

Douglas et al. and Strout developed their matrix powers kernel for classical iterations like
Gauss-Seidel [35, 95]. However, these iterations’ most common use in modern linear solvers
are as multigrid smoothers. The payoff of applying a smoother k times in a row decreases
rapidly with k; this is, in fact, why multigrid is used, rather than classical iterations such as
Jacobi or Gauss-Seidel. Douglas et al. acknowledge that usually 1 ≤ k ≤ 5 [35]. In contrast,
communication-avoiding Krylov subspace methods are potentially much more scalable in
k. Saad also suggested applying something like a matrix powers kernel to polynomial pre-
conditioning, but here again, increasing the degree of the polynomial preconditioner has a
decreasing payoff, in terms of the number of CG iterations required for convergence [85].

We have also expanded the space of possible algorithms by including algorithms PA2 (see
Section 2.4) and SA2 (see Section 2.5). PA2 avoids some redundant computation, but offers
less opportunity for overlapping communication and computation. SA2 extends SA1 for the
case in which the vectors (as well as the matrix) do not fit entirely in fast memory. As far as
we can tell, PA2 and SA2 are novel. In addition, we compose the parallel algorithms with
sequential algorithms to implement matrix powers on multi-cores (discussed in Section 2.9).

14

2.3 Model Problems

Our techniques work for general sparse matrices, but the case of regular d-dimensional
meshes with (2b+1)d-point stencils illustrates potential performance gains for a representa-
tive class of matrices. By a regular mesh, we mean a simply connected domain in R

d (d = 1,
2, 3, . . .) where the vertices are evenly spaced at the grid points. The connectivity pattern
of a regular mesh is described by the stencil, which shows for each point in the mesh, how
it is connected to its neighbors. For example, on a 2D mesh, a 5-point stencil means that
each point is connected to its east, south, west, and north immediate neighbors. A 9-point
stencil for a 2D mesh means that each point is connected to its 8 immediate neighbors, i.e.,
east, southeast, south, southwest, west, northwest, north, and northeast neighbors. In these
cases, we say that the bandwidth b of the stencil is 1, since each point is only connected
to its immediate neighbors. Generalizing this, we can have (2b + 1)d-point stencils where
each point is connected to neighbors within a radius of b points. Since a sparse matrix can
be thought of as representing a directed graph, we use the terms sparse matrix and graphs
interchangeably. When meshes are being discussed, we may also refer to them simply by
their stencil pattern.

Here, we assume a symmetric pattern (but arbitrary non-symmetric matrix entries) and
describe the pattern in terms of its undirected graph.

We consider the following model problems:

1. 1D mesh with n unknowns and (2b+ 1)-point stencil;5

2. 2D mesh with n2 unknowns and (2b+1)2-point stencil, in nested dissection6 ordering;

3. 3D mesh with n3 unknowns and (2b+ 1)3-point stencil, in nested dissection ordering.

We call the surface of a mesh the number of points on the partition boundary. For an
n × n (2D) mesh partitioned in to p equal sized squares with a 5-point stencil, the surface
is 4 n

p1/2
. For an n × n × n (3D) mesh partitioned in to p equal sized cubes with a 7-point

stencil, the surface is 6 n2

p2/3
. The volume of a mesh is the total number of points in each

processor’s partition, namely n2

p
and n3

p
in the 2D and 3D cases. The surface-to-volume

ratio of a mesh is therefore 4p1/2

n
in the 2D case and 6p1/3

n
in the 3D case. We assume all

the above roots (like p1/3) and fractions (like n
p1/2

) are integers, for simplicity.
The surface-to-volume ratio of a partition of a general sparse matrix is defined analo-

gously. All our algorithms work best when the surface-to-volume ratio is small, as is the
case for meshes with large n and sufficiently smaller p.

In the parallel case, we use the usual mapping where row blocks j of A, x and y = Ax are
all assigned to processor j. As stated above, the latency cost of our version of a KSM will
be independent of k, requiring just 1 message between each processor and its ”neighbors”,

5We consider tridiagonal matrices in order to illustrate our techniques most clearly, not because they are
computationally challenging for computing products.

6Nested dissection is a heuristic for partitioning a sparse matrix [41, 69, 42]—the corresponding graph
is partitioned recursively to minimize the number of vertices connecting different partitions.

15

i.e., those processors owning components of x needed to compute the local components of
y = Ax. The bandwidth and computation costs will be nearly minimal, increasing only by
lower order terms (depending on the surface-to-volume ratio) compared to a conventional
implementation. For example, suppose that the sparsity pattern of our matrix is that of a 27
point stencil operating on an n×n×n mesh, and that we assign n

p1/3
× n

p1/3
× n

p1/3
“cubes” of

mesh points to each of p processors. Then using our approach drops the number of messages
per processor from 26k to 26, while only increasing the number of words communicated per

processor from 6kn2

p2/3
to 6kn2

p2/3
· (1 + 2kp1/3

n
) and arithmetic operations per processor from 53kn3

p

to 53kn3

p
· (1+ 1.5kp1/3

n
). In both cases, the factor p1/3

n
is proportional to the surface-to-volume

ratio, which will be small for problems of interest.
In the sequential case, our algorithm will mimic the parallel algorithm, processing the

matrix block by block. As stated above, all the data (matrix and vectors) will only have to
move from slow to fast memory 1+ o(1) times in order to implement k steps of a KSM, not
move k times. In other words the number of slow memory accesses (the latency cost) and
the bandwidth cost will exceed their minimal values by this 1 + o(1) factor. The o(1) term
will be proportional to the surface-to-volume ratio.

We contrast our approach of avoiding communication with the complementary approach
of overlapping communication and computation. The latter approach can at best halve the
running time, whereas avoiding communication can potentially achieve up to k-fold speedups
when communication is dominant. Furthermore, we can use overlapping to accelerate our
algorithms as well.

We present both detailed performance models and measurements from different imple-
mentations. We model matrices with the sparsity patterns of both a 2D and 3D stencil on
a variety of parallel and sequential computers. The two parallel computers modeled are a
Petaflop machine consisting of 8100 50 GFlop/s processors connected over a fast network,
and a Grid consisting of 125 1 TFlop/s processors connected over the internet. The speedup
over a conventional algorithm depends on whether it is a 2D or 3D problem, the width of
the stencil (e.g., 5 point, 9 point etc.), the problem size, and how much computation and
communication can be overlapped. Table 2.1 summarizes the maximum speedups modeled
below for matrices whose graphs are 9 point 2D stencils and 27 point 3D stencils (but stored
as general sparse matrices). For Peta, the best speedups were for smaller n in the range stud-
ied, because communication was more dominant; maximum speedups fell as n increased and
the problem became computation bound. Also for Peta, non-overlapping computation made
latency more important, and so our approach to avoiding latency yielded larger speedups.
On the Grid, for the lower n in the range modeled, it was fastest to use just one processor
because communication was so expensive. But as n grew, it eventually became effective to
use parallelism, and close to this transition point our approach yielded large speedups.

The two “sequential” machines modeled are:

1. Uniprocessor with DRAM as fast memory and a single disk as slow memory (called
OOC for Out-Of-Core).

2. A multi-core chip with on-chip cache as fast memory and DRAM as slow memory
(called “CacheBlocked”). Although the machine is parallel, we only address how to

16

Machine Matrix Range of n Overlap Max Modeled Speedup

Peta

2D 210 to 222
Yes 6.9

No 15.1

3D 29 to 214
Yes 1.02

No 3.56

Grid

2D 210 to 222
Yes 22.22

No 15.63

3D 29 to 214
Yes 4.41

No 7.79

Table 2.1: Performance modeling summary for parallel machines. “Overlap” indicates
whether communication is overlapped with computation.

Machine Matrix Range of n Modeled Speedup % Peak

OOC
2D 214 to 225 10.2 17%

3D 28 to 217 [7.39,9.51] [14%, 18%]

CacheBlocked
2D 28 to 219 [2.45,2.58] [62%, 65%]

3D 28 to 212 [1.34,1.36] 38%

Table 2.2: Performance modeling summary for sequential machine model.

avoid off-chip latency and bandwidth to DRAM.

We only modeled the non-overlapping case, with modeled speedups as shown in the
table below. In contrast to the last table, Table 2.2 shows the range of speedups attained
over all problem sizes n, since bandwidth is always the bottleneck, so significant speedups
were attained for all problems sizes. Here, “% Peak” is the ratio of the (modeled) running
time of the algorithm on a zero latency / infinite bandwidth machine to the (modeled) true
time. The closer this is to 100%, the more completely the algorithm masks the cost of slow
memory access. On OOC, we see that we get high speedups, though we are not near peak.
On CacheBlocked our speedups are more modest, but still good, and we are closer to peak.

We now describe the organization of the rest of the chapter. Section 2.4 describes
parallel algorithms for distributed memory systems, whereas Section 2.5 covers sequen-
tial algorithms. We discuss the results of asymptotic analysis of our proposed algorithms
in Section 2.6. Section 2.7 covers the results of performance modeling for different ma-
chine models. Section 2.8 describes an actual out-of-core implementation, which achieves a
speedup of 3.2×, and is 16% as fast as it would be if run on a machine with zero disk latency
and infinite disk bandwidth, up from 5%. This is both a good speedup, and shows that
we are within 16% of peak. We also describe our performance model, which uses measured
machine parameters and agree with measured performance closely. Section 2.9 adapts the
parallel and sequential algorithms for shared memory multi-core machines and Section 2.10
describes a multi-core implementation of matrix powers. Section 2.11 describes the integra-
tion of matrix powers in communication-avoiding GMRES (CA-GMRES) and performance
results.

17

2.4 Distributed Memory Parallel Algorithms for Ma-

trix Powers

We consider the conventional parallel algorithm, as well as our two new approaches:

Conventional Parallel Approach (PA0). The algorithm runs in k steps, where step j
computes x(j) = Ajx from x(j−1) = Aj−1x by each processor receiving messages with
the needed remotely stored entries of x(j−1) and computing its local components of
x(j).

Parallel Approach 1 (PA1). We begin the computation of all locally computable compo-
nents of [Ax, ..., Akx], and simultaneously begin sending all the components of x needed
by the neighboring processors to compute the remaining components of [Ax, ..., Akx].
Locally computable entries are ones which can be computed locally without needing
any entry from any other processor. When the locally computable components are
complete, we block until the remote components of x arrive. This maximizes the po-
tential overlap of computation and communication, but does not minimize redundant
work, as we will see in PA2.

Parallel Approach 2 (PA2). We compute the set of local values of [Ax, ..., Akx] needed
by the neighboring processors, so as to minimize redundant computation. Then we
send these values to the neighboring processors, and simultaneously compute the re-
maining locally computable values. When all the locally computable values are com-
plete, we block until the remote components of [Ax, ..., Akx] arrive, and complete the
work. This minimizes redundant work, but permits slightly less overlap of computation
and communication.

The difference between PA1 and PA2 will become clearer when we explain them for the
1D mesh.

We will estimate the cost of our parallel algorithms by measuring five quantities:

1. number of floating point operations per processor

2. number of floating point numbers communicated per processor (the ”bandwidth cost”)

3. number of messages sent per processor (the ”latency cost”),

4. total memory required per processor for the matrix, and

5. total memory required per processor for the vectors.

Now we argue informally why either approach PA1 or PA2 approximately minimizes
communication. We assume that there is no cancellation in any of the powers Aj or Ajx
that would make them sparser than if all their nonzero entries were nonnegative, and that
there are no algebraic relations among entries of A and/or x. Thus the complexity only
depends on the sparsity pattern, and for simplicity of notation we assume all the nonzero

18

entries of A and x are positive. In particular the set D of processors owning entries of x on
which block row i of [Ax,A2x, ..., Akx] depends may be described as the set of processors
owning those xj where block row i of A+A2 + · · ·+Ak has a nonzero j-th column. In both
algorithms PA1 and PA2, the processor owning row block i receives exactly one message from
each processor in D, which minimizes latency. Furthermore, PA1 only sends those entries
of x in each message on which the answer depends, which minimizes the bandwidth cost.
PA2 sends the same amount of data although different values so as to minimize redundant
computation.

The rest of this section is organized as follows:

• Subsection 2.4.1 describes PA1 and PA2 in more detail for 1D meshes (band matrices).

• Subsection 2.4.2 describes PA1 and PA2 in more detail for 2D and 3D meshes.

• Subsection 2.4.3 presents a tabular summary of all the operation counts for meshes,
and discusses how they specialize to stencil matrices, where each row of the matrix
has identical nonzero entries (modulo boundaries).

• Subsection 2.4.4 describes PA1 and PA2 on general sparse matrices.

2.4.1 1D meshes

We begin by considering a tridiagonal matrix (i.e., with bandwidth b = 1). In the
conventional parallel algorithm each processor executes the code in Algorithm 2.1 in order
to compute x(j) = Ajx(0) for j = 1 to k.

Algorithm 2.1 PA0: conventional parallel approach for 1D mesh with b = 1

{processor q owns x
(0)
sq ,...,x

(0)
eq , boundaries q = 1 and q = p ignored}

for j = 1, 2, . . . , k do
start sending x

(j−1)
sq to processor q − 1

start sending x
(j−1)
eq to processor q + 1

start receiving x
(j−1)
sq−1 from processor q − 1

start receiving x
(j−1)
eq+1 from processor q + 1

compute x
(j)
sq+1 = (Ax(j−1))sq+1, . . . , x

(j)
eq−1 = (Ax(j−1))eq−1

wait for messages to arrive
compute x

(j)
sq = (Ax(j−1))sq and x

(j)
eq = (Ax(j−1))eq

The computational cost is clearly 2k messages, 2k words sent, and 5k n
p
flops (3 multiplies

and 2 additions per vector component computed). The memory required per processor is
3n
p
matrix entries and (k+1)n

p
+2 vector entries (for the local components of [x,Ax, .., Akx]

and for the values on neighboring processors).
To explain PA1, consider Figure 2.1. Each row of circles represents the entries of Ajx,

for j = 0 to j = 8. A subset of 30 components of each vector is shown, owned by 2

19

5 10 15 20 25 30
x
(0)

x
(1)

x
(2)

x
(3)

x
(4)

x
(5)

x
(6)

x
(7)

x
(8)

Figure 2.1: Locally Computable components of [Ax, ..., A8x] for tridiagonal matrix

processors, one to the left of the vertical gray line, and one to the right. (There are further
components and processors not shown, to the left and to the right of the ones in the figure).
The diagonal and vertical lines show the dependencies: the three lines below each circle
(component i of Ajx) connect to the circles on which its value depends (components i− 1,
i and i + 1 of Aj−1x). Figure 2.1 shows the local dependencies of the left processor, i.e.,
all the circles (vector components) that can be computed without communicating with the
right processor. The remaining circles without attached lines to the left of the vertical gray
line require information from the right processor to be computed.

Figure 2.2 shows how to compute these remaining circles using PA1. The dependencies
are again shown by diagonal and vertical lines below each circle, but now dependencies
on data formally owned by the right processor are shown in red. All these values in turn
depend on the k = 8 leftmost value of x(0) owned by the right processor, shown as blue
circles in the bottom row. By sending these values from the right processor to the left
processor, the left processor can compute all the circles whose dependencies are shown in
Figure 2.2. The black circles indicate computations ideally done only by the left processor,
and the red circles show redundant computations, i.e., ones also done by the right processor.
Algorithm 2.2 summarizes this discussion.

The memory required by PA1 is (k + 4)n
p
as in PA0 plus 2k more words for vector

entries plus 6(k−1) more words for matrix entries, altogether 8k−6 more than PA0. PA1’s
other costs are 2 messages (versus 2k for the conventional method), 2k words sent (same
as the conventional method), and 5k n

p
+ 5k(k − 1) flops, or roughly 5k2 more flops than

the conventional method. This can also be described as an increase in flops by a factor
1 + k/(n

p
).

Note that we are assuming that k < n
p
, so that only data from neighboring processors

is needed, rather than more distant processors. Indeed, we expect that k ≪ n
p
in practice,

which will mean that the number of extra flops (not to mention extra memory) will be
negligible. We continue to make this assumption later without repeating it, and use it to

20

5 10 15 20 25 30
x
(0)

x
(1)

x
(2)

x
(3)

x
(4)

x
(5)

x
(6)

x
(7)

x
(8)

Figure 2.2: Remote dependencies in PA1 for [Ax, ..., A8x] for tridiagonal matrix

Algorithm 2.2 PA1: Parallel Approach 1 for 1D mesh with b = 1

{processor q owns x
(0)
sq , . . . , x

(0)
eq ; ignore boundaries as in PA0}

start sending x
(0)
sq , . . . , x

(0)
sq+k−1 to processor q − 1

start sending x
(0)
eq−k+1, . . . , x

(0)
eq to processor q + 1

start receiving x
(0)
sq−k, . . . , x

(0)
sq−1 from processor q − 1

start receiving x
(0)
eq+1, . . . , x

(0)
eq+k from processor q + 1

for j = 1, . . . , k do
compute locally dependent components of Ajx(0) as shown in Figure 2.1

wait for receives to finish
for j = 1, . . . , k do
compute remaining red and black components of Ajx(0) as shown in Figure 2.2

simplify some expressions in Table 2.3 in Section 2.4.3.
Now consider PA2, illustrated in Figure 2.3. We note that the blue and black circles

owned by the right processor and attached to blue lines can be computed locally by the
right processor. The 8 solid blue circles can then be sent to the left processor to compute
the remaining circles connected to black and/or red lines. This saves the redundant work
represented by the blue circles, but leaves the redundant work to compute the red circles,
about half the redundant work of PA1. Algorithm 2.3 summarizes this discussion.

The memory required by PA2 is (k+4)n
p
as in PA0 plus 2k more words for vector entries

plus 6⌊k
2
⌋ more words for matrix entries, altogether roughly 5k more words than PA0. The

other costs of PA2 are 2 messages (versus 2k for the conventional method), 2k words sent
(same as the conventional method), and 5k n

p
+10⌊k

2
⌋(⌊k

2
⌋+ odd(k)) flops, where odd(k) = 1

if k is odd and odd(k) = 0 if k is even. In other words, PA2 takes roughly 5
2
k2 more flops

than the conventional method, half as many extra flops as PA1.
We will not always draw the corresponding detailed pictures or algorithms for the other

21

5 10 15 20 25 30
x
(0)

x
(1)

x
(2)

x
(3)

x
(4)

x
(5)

x
(6)

x
(7)

x
(8)

Figure 2.3: Remote dependencies in PA2 for [Ax, ..., A8x] for tridiagonal matrix

Algorithm 2.3 PA2: Parallel approach 2 for 1D mesh with b = 1

{assume processor q owns x
(0)
sq ,...,x

(0)
eq ; ignore boundaries as in PA0}

compute blue circles corresponding to own blue triangles in Figure 2.3
start sending appropriate blue circles to processor q − 1
start sending appropriate blue circles to processor q + 1
start receiving appropriate blue circles from processor q − 1
start receiving appropriate blue circles from processor q + 1
compute locally dependent components of Ajx(0) as shown in Figure 2.1
wait for messages to arrive
compute remaining red and black components of Ajx(0) as shown in Figure 2.3

meshes, but the same kinds of analyses apply. Nor will we compute the exact expressions for
the number of extra flops, but rather approximate the number of mesh points in the black
red and blue regions (pyramids, triangles, tetrahedra, and higher dimensional polyhedra)
that arise by computing the leading terms of the volumes of these geometric objects. The
next sections will sketch these results, and Section 2.4.3 will summarize all the results in a
table.

Now we briefly address 1D meshes with bandwidth b > 1, i.e., band matrices. The
work per mesh point is 2b + 1 multiplications and 2b additions, or 4b + 1 flops in all per
mesh point, or (4b + 1)nk/p flops for the conventional method. A total of 2kb words are
communicated with processors to the left and right, in 2k messages. The memory required
per processor is (k + 1)n

p
+ 2b words for the vectors and (2b + 1)n

p
words for the matrix

entries, or (2b+ k + 2)n
p
+ 2b words in all.

Now consider PA1. To compute the extra flops, we must count the number of mesh
points in the region corresponding to the red triangle in Figure 2.2, namely bk(k− 1)/2. To
get the number of extra flops, this is multiplied by 4b+1. The number of messages is again
2, containing 2kb words in all. The number of words of memory required is (k + 1)n

p
+ 2kb

22

for the vectors and (2b + 1)(n
p
+ 2kb) for the matrix entries, or (2b + k + 2)n

p
+ kb(4b + 4)

words in all.
Now consider PA2. The region corresponding to the blue region in Figure 2.3 has again

about half the number of mesh points as the region corresponding to the red region in
Figure 2.2, roughly bk(k−1)/4. To get the number of extra flops, this is again multiplied by
4b+1, and by 2, for the right and left boundaries. The number of words of memory required
for vectors is the same as PA1, and slightly smaller for matrix entries, (2b+ 1)(n

p
+ kb).

2.4.2 2D and 3D meshes

2D mesh with a 5 point stencil graph

We consider multiplying by a matrix whose graph is the 5-point stencil, i.e., with North,
South, East, West (NSEW) connections on an n-by-n grid of unknowns partitioned on p1/2-
by-p1/2 grid of processors. We assume p1/2|n, so that each processor owns a n

p1/2
-by- n

p1/2

square of grid points (vector components), and their corresponding matrix rows, and that
k < n

p1/2
. We expect that k ≪ n

p1/2
in practice.

Figure 2.4 shows the remote domain of dependence for a single processor (demarcated by
green lines as before) owning a 10-by-10 grid of unknowns (the black circles). When k = 3,
the results of [Ax, .., Akx] will depend on the remote values shown by blue circles (the same
notation as Figure 2.2). Unlike Figure 2.2, Figure 2.4 does not show circles for components
of Ajx for j > 0, but rather a projected view. Figure 2.5 shows a 3D view analogous to
Figure 2.2.

The number of messages decreases from 4k for the conventional algorithm to 8 instead
of to 4 for PA1, because communication is required with the corner neighbors (NW, SW,
NE and SE), as well as side neighbors (N, S, E and W). The volume of communication also
grows slightly to include the triangles of size k − 1 owned by the 4 corner neighbors. The
number of flops grows roughly by the factor 1 + 2k/(n

p1/2
). When k ≪ n

p1/2
, this increase is

quite small. It is a little harder to visualize the regions of redundant computations than in
the 1D mesh case: In the side neighbors, the red circles denoting redundant computations
form a prism with triangular cross section and volume (and number of contained points)
proportional to k n

p1/2
, and in the corner neighbors the red circles form a pyramid with

volume (and number of contained points) proportional to k3. The memory requirement for
the conventional algorithm is (k+1)n

2

p
+4 n

p1/2
vector entries and 5n2

p
matrix entries; for PA1

it increases by an additional 4k n
p1/2

+2k2 vector entries and 5 times as many matrix entries.
Figure 2.6 shows the dependencies for PA2 applies to the 2D mesh with a 5 point stencil

graph. As in Figure 2.3, there are black circles that are the desired (or initial) values,
red circles representing redundant work, blue circles denoting work that was redundant in
PA1 but saved by PA2, and solid blue circles that are to be communicated. In the side
processors, the regions of redundant computations again form prisms with triangular cross
sections, with half the cross sectional area of PA1. Thus, like the 1D case, this means about
half the redundant work is saved. It is somewhat more difficult to see what is happening
in the corner processors. The pyramid of redundant operations from PA1 has a smaller

23

−5 0 5 10 15
−5

0

5

10

15

Figure 2.4: Remote dependencies in PA1 for [Ax, ..., A3x] for 2D mesh with 5 point stencil,
projected view

tetrahedron of locally computable components subtracted from it; geometrical symmetry
considerations indicate that this saves about 1/3 of the redundant operations in the corners.
The number of extra words of memory required for matrix entries decreases by nearly a
factor of 2.

2D mesh with 9 point stencil graph

We consider multiplying by a matrix whose graph is the 9-point stencil, i.e., with N, S,
E, W, NE, SE, SW, and NW connections on an n-by-n grid of unknowns partitioned on
p1/2-by-p1/2 grid of processors. We assume p1/2 divides n evenly.

Figures 2.7, 2.8, and 2.9 are analogous to Figures 2.4, 2.5, and 2.6, respectively. A similar
counting exercise leads to the entries in Table 2.3.

2D mesh with (2b+ 1)2 point stencil graph

We consider multiplying by a matrix A whose graph is a (2b + 1)2 point stencil, i.e.,
where each vertex has connections to other vertices within b to the left, right, up or down.
The 9 point stencil graph of the last section is the special case b = 1. This can be thought
of as a generalization of a band matrix to 2D; when exhibited in natural order the matrix
has 2b+ 1 bands, each of which is 2b+ 1 entries wide.

24

−5

0

5

10

15
−5

0

5

10

15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.5: Remote dependencies in PA1 for [Ax, ..., A3x] for 2D mesh with 5 point stencil,
3D view

The conventional algorithm for multiplying Ax requires 8 messages. The 4 to the side
processors each receive b n

p1/2
vector entries, and the 4 to the corner processors each receive

b2 vector entries. The number of flops is 2(2b + 1)2 − 1 per vector entry for a total of
(8b2 + 8b+ 1)n

2

p
.

Similar counting exercises lead to the other entries in Table 2.3.

3D meshes, with 7 point, 27 point and (2b+ 1)3 point stencils graphs

We first consider multiplying by a matrix whose graph is the 7-point stencil on an n-by-
n-by-n grid of unknowns partitioned on a p1/3-by-p1/3-by-p1/3 grid of processors. We assume
p1/3|n.

Table 2.3 entries are estimated as follows. There are 26 neighbors of a processor, so 26
messages need to be exchanged. The conventional algorithm will exchange n2

p2/3
boundary

values with each of its 6 “face neighbors” at each step, for a total of 6k n2

p2/3
words sent. The

conventional algorithm will also do 13 flops to compute each of the n3

p
components it owns

at each step, for a total of 13k n2

p
flops.

The other entries of Table 2.3 are based on surface-to-volume analogies to the earlier
cases.

25

−5

0

5

10

15
−5

0

5

10

15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.6: Remote dependencies in PA2 for [Ax, ..., A3x] for 2D mesh with 5 point stencil,
3D view

2.4.3 Summary of Parallel Complexity on Meshes

PA1 and PA2 can be extended to higher dimensions and different mesh bandwidths (and
sparse matrices in general). There, the pictures of which regions are communicated and
which are computed redundantly become more complicated, higher-dimensional polyhedra,
but the essential algorithms remain the same. Table 2.3 summarizes all of the resulting
costs for 1D, 2D, and 3D meshes.

In Table 2.3 which shows the summary for Parallel Algorithms, “Mess” is the number
of messages sent per processor, “Words” is the total size of these messages, “Flops” is the
number of floating point operations, “MMem” is the amount of memory needed per processor
for the matrix entries, and “VMem” is the amount of memory needed per processor for the
vector entries. Lower order terms are sometimes omitted for clarity.

26

−5 0 5 10 15
−5

0

5

10

15

Figure 2.7: Remote dependencies in PA1 for [Ax, ..., A3x] for 2D mesh with 9 point stencil,
projected view

Problem Costs Conventional Approach Parallel Approach 1 Parallel Approach 2
Mess 2k 2 2

1D mesh Words 2bk 2bk 2bk

b ≥ 1 Flops (4b+ 1)k n
p

(4b+ 1)(k n
p
+ bk2) (4b+ 1)(k n

p
+ bk2

2
)

MMem (2b+ 1)n
p

(2b+ 1)n
p
+ bk(4b+ 2) (2b+ 1)n

p
+ bk(2b+ 1)

VMem (k + 1)n
p
+ 2b (k + 1)n

p
+ 2bk (k + 1)n

p
+ 2bk

Mess 8k 8 8
2D mesh Words 4bk(n

p1/2
+ b) 4bk(n

p1/2
+ bk) 4bk(n

p1/2
+ 1.5bk)

(2b+ 1)2 Flops (8b2 + 8b+ 1)k n2

p
(8b2 + 8b+ 1)· (8b2 + 8b+ 1)·

pt (k n2

p
+ 2bk2 n

p1/2
+ 4

3
b2k3) (k n2

p
+ bk2 n

p1/2
+ b2k3)

stencil MMem (2b+ 1)2 n
2

p
(2b+ 1)2(n

2

p
+ 4bk n

p1/2
+ 4b2k2) (2b+ 1)2(n

2

p
+ 2bk n

p1/2
+ b2k2)

VMem (k + 1)n
2

p
+ 4b n

p1/2
(k + 1)n

2

p
+ 4bk n

p1/2
(k + 1)n

2

p
+ 4bk n

p1/2

+4b2 +4b2k2 +6b2k2

Mess 26k 26 26

3D mesh Words 6bk n2

p2/3
+ 12b2k n

p1/3
+O(b3k) 6bk n2

p2/3
+ 12b2k2 n

p1/3
+O(b3k3) 6bk n2

p2/3
+ 12b2k2 n

p1/3
+O(b3k3)

(2b+ 1)3 Flops (2(2b+ 1)3 − 1)k n3

p
(2(2b+ 1)3 − 1)· (2(2b+ 1)3 − 1)·

pt (k n3

p
+ 3bk2 n2

p2/3
+O(b2k3 n

p1/3
)) (k n3

p
+ 3

2
bk2 n2

p2/3
+O(b2k3 n

p1/3
))

stencil MMem (2b+ 1)3 n
3

p
(2b+ 1)3· (2b+ 1)3·

(n
3

p
+ 6bk n2

p2/3
+O(b2k2 n

p1/3
)) (n

3

p
+ 3bk n2

p2/3
+O(b2k2 n

p1/3
))

VMem (k + 1)n
3

p
+ 6b n2

p2/3
(k + 1)n

3

p
+ 6bk n2

p2/3
(k + 1)n

3

p
+ 6bk n2

p2/3

+O(b2 n
p1/3

) +O(b2k2 n
p1/3

) +O(b2k2 n
p1/3

)

Table 2.3: Summary for parallel algorithms (some lower order terms omitted)

27

−5

0

5

10

15
−5

0

5

10

15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.8: Remote dependencies in PA1 for [Ax, ..., A3x] for 2D mesh with 9 point stencil,
3D view

28

−5

0

5

10

15
−5

0

5

10

15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.9: Remote dependencies in PA2 for [Ax, ..., A3x] for 2D mesh with 9 point stencil,
3D view

29

2.4.4 General Graphs

Here we show how to extend the approaches PA1 and PA2 to general sparse matrices.
To do so we need some graph theoretic notation. It is natural to associate a directed graph
with a square sparse matrix A, with one vertex for every row/column, and an edge from
vertex i to vertex j if Aij 6= 0, meaning that component i of y = Ax depends on component
j of x. We will build an analogous graph, essentially consisting of k copies of this basic
graph: Let x

(i)
j be the j-th component of x(i) = Ai · x(0). We associate a vertex with each

x
(i)
j for i = 0, ..., k and j = 1, ..., n (and use the same notation to name the vertex), and

an edge from x
(i+1)
j to x

(i)
m when Ajm 6= 0, and call this graph of n(k + 1) vertices G. (We

will not need to construct all of G in practice, but using G makes it easy to describe our
algorithms, in a fashion analogous to Figures 1 through 3.) We say that i is the level of

vertex x
(i)
j . Each vertex will also have an affinity q, corresponding to the processor number

where it is stored; we assume all vertices x
(0)
j , x

(1)
j , ..., x

(k)
j have the same affinity, depending

only on j.
We write Gq to mean the subset of vertices of G with affinity q, G(i) to mean the subset

of vertices of G with level i, and G
(i)
q to mean the subset with affinity q and level i.

Let S be any subset of vertices of G. We let R(S) denote the set of vertices reachable
by directed paths starting at vertices in S (so S ⊂ R(S)). We need R(S) to identify
dependencies of sets of vertices on other vertices. We let R(S,m) denote vertices reachable

by paths of length at most m starting at vertices in S. We write Rq(S), R
(i)(S) and R

(i)
q (S)

as before to mean the subsets of R(S) with affinity q, level i, and both affinity q and level
i, respectively.

Next we need to identify the locally computable components, that processor q can com-
pute given only the values in G

(0)
q . We denote the set of locally computable components by

Lq ≡ {x ∈ Gq : R(x) ⊂ Gq}. As before L
(i)
q will denote the vertices in Lq at level i.

Finally, for PA2 we need to identify the minimal subset Bq,r of vertices (i.e. their values)
that processor r needs to send processor q so that processor q can finish computing all its
vertices Gq (e.g., the 8 solid blue circles in Figure 2.3): We say that x ∈ Bq,r if and only if
x ∈ Lr, and there is a path from some y ∈ Gq to x such that x is the first vertex of the path
in Lr.

Given all this notation, we can finally state versions of PA0 (Algorithm 2.4), PA1 (Al-
gorithm 2.5) and PA2 (Algorithm 2.6) for general graphs and partitions among processors.

We illustrate the algorithm PA1 on the matrix A whose graph is in Figure 2.10. The
vertices represent rows and columns of A and the edges represent nonzeros; for simplicity
we use a symmetric matrix so the edges can be undirected. The dotted gray lines separate
vertices owned by different processors, and we will let q denote the processor owning the
black vertices in the center partition of the figure. In other words the black vertices are
G

(0)
q . For all the neighboring processors r 6= q, the red vertices are R

(0)
r (Gq) for k = 1, the

red and green vertices together are R
(0)
r (Gq) for k = 2, and the red, green and blue vertices

together are R
(0)
r (Gq) for k = 3.

The Phases in PA2 will be referred to in Section 2.7.

30

Algorithm 2.4 PA0: Conventional parallel algorithm (code for processor q)

for i = 1, . . . , k do
for all processors r 6= q do
send all x

(i−1)
j ∈ R

(i−1)
q (G

(i)
r) to processor r

for all processors r 6= q do
receive all x

(i−1)
j ∈ R

(i−1)
r (G

(i)
q) from processor r

compute all x
(i)
j ∈ L

(i)
q

wait for receives to finish
compute remaining x

(i)
j ∈ G

(i)
q − L

(i)
q

Algorithm 2.5 PA1 for general graph (for processor q)

for all processors r 6= q do
send all x

(0)
j ∈ R

(0)
q (Gr) to processor r

for all processors r 6= q do
receive all x

(0)
j ∈ R

(0)
r (Gq) from processor r

for i = 1, . . . , k do
compute all x

(i)
j ∈ Lq

wait for receives to finish
for i = 1, . . . , k do
compute x

(i)
j ∈ (R(Gq)− Lq)

Figure 2.10: Example general graph.

31

Algorithm 2.6 PA2 for general graph (code for processor q)

{Phase I}
for i = 1, . . . , k do
compute x

(i)
j ∈ ∪r 6=q(R(Gr) ∩ Lq) {blue circled vertices in Figure}

for all processors r 6= q do
send x

(i)
j ∈ Br,q to processor r

for all processors r 6= q do
receive x

(i)
j ∈ Bq,r from processor r

{Phase II}
for i = 1, . . . , k do
compute x

(i)
j ∈ Lq − ∪r 6=q(R(Gr) ∩ Lq)

wait for receives to finish
{Phase III}
for i = 1, . . . , k do
compute remaining x

(i)
j ∈ (R(Gq)− Lq − ∪r 6=q(R(Gq) ∩ Lr))

Figure 2.11 shows the entries (colored red) needed to be fetched from neighboring pro-
cessors for k = 3. Figure 2.11(a) shows the entries needed from x(0) (level 0) for PA1. For
PA2, however, red entries from x(0) (Figure 2.11(b)) and x(1) (Figure 2.11(c)) are needed.
Figure 2.12 shows a side-by-side illustration of the entries computed in PA1 and PA2. Note
that both the black and the blue entries are computed at a given level—the black entries
are redundant computation.

32

(a) PA1: entries to fetch from x(0)

(b) PA2: entries to fetch from x(0) (c) PA2: entries to fetch from x(1)

Figure 2.11: PA1 vs PA2: entries fetched

33

(a) PA1: computed entries of x(1). (b) PA2: computed entries of x(1).

(c) PA1: computed entries of x(2). (d) PA2: computed entries of x(2).

(e) PA1: computed entries of x(3). (f) PA2: computed entries of x(3).

Figure 2.12: PA1 vs. PA2 for a general graph for k = 3. Since the total number of blue
circles is less for PA2, it performs fewer redundant computations.

34

2.5 Sequential Algorithms

Now consider the sequential algorithm with fast and slow memories. Let us motivate the
two situations we are trying to optimize. It is typical for a large N -by-N sparse matrix to
take many times as much memory as vector of length N . For example, a typical density of
.1% means that an N -by-N matrix takes roughly .001N2 8-byte floats and 4-byte indices to
store (assuming CSR7 format), so roughly .012N2 bytes, whereas a vector takes 8N bytes,
which is smaller for N > 666, and typically many times smaller. So the two cases of most
interest are:

1. the matrix does not fit in fast memory but the k + 1 vectors [x,Ax, . . . , Akx] do, and

2. neither the matrix nor the vectors fit in fast memory.

We note that for our model problems, the relative sizes of the vectors and matrix depends
on k and the bandwidth b, and our algorithms are of most interest when the matrix is larger
than the vectors. While this is not the case for tridiagonal matrices and k > 2, we will still
use this simple case to illustrate how the algorithms work.

Conventional Sequential Approach (SA0). We assume the matrix does not fit in fast
memory but the vectors do. This algorithm will keep all the components of [x, Ax,
. . ., Akx] in fast memory, and read all the entries of A from slow to fast memory to
compute each vector Ajx, thereby reading A k times in all.

New Sequential Approach 1 (SA1). We again assume that the matrix does not fit in
fast memory but the vectors do. SA1 will emulate PA1 by partitioning the matrix
into p block rows, and looping from i = 1 to i = p, reading from slow memory those
parts of the matrix needed to perform the same computations performed by processor
i in PA1, and updating the appropriate components of [Ax, . . . , Akx] in fast memory.
Since all components of [Ax, . . . , Akx] are in fast memory, no redundant computation
is necessary. We choose p as small as possible, to minimize the number of slow memory
accesses, as described below.

New Sequential Approach 2 (SA2). Now we assume that neither the matrix nor the
vectors fit in memory. SA2 will still emulate PA1 by looping from i = 1 to i = p, but
read from slow memory not just parts of the matrix but also those parts x needed to
perform the same computations performed by processor i in PA1, and finally writing
back to slow memory the corresponding components of [Ax, ..., Akx]. Depending on
the structure of A, redundant computation may or may not be necessary. We again
choose p as small as possible.

For SA1, the total number of slow memory accesses is roughly the minimum number
needed to read in the whole matrix once from slow memory, while also keeping [x,Ax, ..., Akx]

7Compressed Sparse Row (CSR) format stores the nonzeros of the matrix as a row-oriented adjacency
list.

35

in fast memory. For a sparse matrix with nnz nonzeros and a fast memory of size M bytes,
the number of slow memory accesses is therefore roughly (12nnz)/(M −8(k+1)n). As long
as M ≫ n and nnz ≫ n, this number grows very slowly with k, justifying our claims of the
latency cost being independent of k.

For SA2, we also need to read and write k + 1 vectors to and from slow memory, so the

number of slow memory accesses is roughly (8(k+1)n+12nnz)/M . As long as 8(k+1)n
<≈

12nnz, or

k
<≈ 3

2
· nnz

n
=

3

2
· the average number of nonzeros per row,

the number of slow memory accesses will again be roughly independent of k as claimed.
Our sequential approach is broadly similar to that of Strout [95] and Vuduc [104] but

differs in that we assume a cost of “latency + n/bandwidth” to read or write any contiguous
set of n bytes from slow memory, where latency may be dominant. Therefore it is critical
for us to organize our data structures so that data to be read from slow memory is entirely
contiguous. We will see that this leads to new data layouts where, for example, we interleave
matrix and vector entries. (In Section 2.5.5 we show that finding the optimal way to
reorganize the data may be formulated via the Traveling Salesman Problem (TSP), but
we only need to solve it approximately to get a reasonable solution.) This reorganization
is not necessary in the parallel case, because the sending and receiving processors can pack
and unpack data structures into contiguous memory segments, something a disk or memory
prefetch unit cannot do (yet). This packing/unpacking has the effect of decreasing the
effective bandwidth, but not the number of messages.

The rest of this section is organized as follows:

• Subsection 2.5.1 describes SA1 and SA2 in more detail for 1D meshes (band matrices).

• Subsection 2.5.2 describes SA1 and SA2 in more details for 2D and 3D meshes.

• Subsection 2.5.3 presents a tabular summary of all the operation counts for meshes.

• Subsection 2.5.4 describes SA1 and SA2 on general sparse matrices.

• Subsection 2.5.5 describes how to find the optimal ordering of unknowns, as well as
good approximations to this ordering.

2.5.1 1D Meshes

We will explain both SA1 and SA2 for tridiagonal matrices, even though (as stated
above) only SA2 makes sense in practice for such matrices, since SA1 uses too much fast
memory. Algorithm 2.7 presents the conventional algorithm, for contrast.

The cost of this algorithm is 5kn flops, 3kn words read from slow memory, and kp
accesses to slow memory. The memory required is (k + 1)n + 3n

p
. Since the tridiagonal

matrix has so few nonzeros, this conventional approach has no memory advantages over
computing (and using and then overwriting!) the powers Ajx one at a time.

36

Algorithm 2.7 SA0: Conventional sequential approach with fast/slow memory for 1D
mesh with b = 1
{assume matrix stored in slow memory in p equal sized chunks, where chunk q consists
of row sq through eq, assume k + 1 vectors [x,Ax, ..., Akx] all fit in fast memory}
{let x(0) = x}
for j = 1, . . . , k do
for q = 1, . . . , p do
read rows sq through eq of matrix from slow memory
{this assumes that the matrix is stored by rows, so that rows sq through eq are located
contiguously}
compute x

(j)
sq = (Ax(j−1))sq , ... , x

(j)
eq = (Ax(j−1))eq

5 10 15 20 25 30
x
(0)

x
(1)

x
(2)

x
(3)

x
(4)

Figure 2.13: Local dependencies in SA1 for [Ax, ..., A4x] for tridiagonal matrix

As stated in the introduction, the presence of all components of [Ax, ..., Akx] in the same
memory makes it unnecessary to perform any redundant computation in the new approach
(Algorithm 2.8).

Algorithm 2.8 SA1 with fast/slow memory for 1D mesh with b = 1.

Require: matrix stored in slow memory in p equal sized chunks where chunk q consists of
rows sq, sq + 1, . . . , eq
{assume k + 1 vectors [x,Ax, ..., Akx] all fit in fast memory}
{ignore boundaries q = 1 and q = p}
for q = 1 to p do
read rows sq through eq of A from slow memory
{note: for q > 1, rows sq − k through sq − 1 were already read last time}
{and must be kept in memory}
{this also assumes that the matrix is stored by rows, so that rows sq through eq are
located contiguously}
compute locally dependent components of Ajx as shown in Figure 2.13

The cost of this algorithm is 5kn flops (no more than the conventional algorithm), 3n
words read from slow memory (the matrix is read just once), and p accesses to slow memory

37

(in contrast to kp for the conventional algorithm). The memory required is (k + 1)n + 3n
p

as for SA0, plus 3k more for keeping rows sq − k through sq − 1 of A in fast memory.
By unrolling the loop in SA1 (but at the cost of more fast memory), the latency of the

read from slow memory could be overlapped with computation.

Algorithm 2.9 SA2 (1D mesh with b = 1)

Require: matrix A and vectors [x,Ax, ..., Akx] stored in slow memory in p equal sized
chunks, where chunk q consists of rows sq, sq + 1, . . . , eq
{ignore boundaries q = 1 and q = p}
for q = 1 to p do
read rows sq, sq + 1, . . . , eq of A and of [x,Ax, ..., Akx] from slow memory
{for q > 1, rows sq − k through sq − 1 of A and of [x,Ax, ..., Akx] were already read
last time, and must be kept in memory}
compute locally dependent components of Ajx as shown in Figure 2.13
write rows sq − k, sq − k + 1, . . . , eq − k of [Ax, ..., Akx] back to slow memory

In order to perform the read in SA2 (Algorithm 2.9) in exactly one slow memory access,
we would need to interleave the data structures of A and of [x,Ax, ..., Akx] so that the first
n/p consecutive rows of A and of [x,Ax, ..., Akx] were stored contiguously together, then
the second n/p rows of both, and so on. In order to also perform the write in SA2 in
exactly one slow memory access, the n/p rows of x would have to come at the end of the
corresponding rows of A and of [Ax, ..., Akx]. We can simplify these data structures at the
cost of increasing the number of slow memory accesses from 2 to at most 5, by storing A, x
and [Ax, ..., Akx] separately (but still by rows).

The cost of this algorithm is 5kn flops (no more than the conventional algorithm),
3n + (k + 1)n words read from slow memory (the matrix and all the vectors are read just
once), and p accesses to slow memory, assuming the best possible interleaved layout of A
and [x,Ax, ..., Akx] just described (in contrast to kp for the conventional algorithm).

The memory required is 3n
p
+ 3k for the matrix and (k + 1)n

p
+ k(k + 1) for the vectors,

roughly a factor of p less than the conventional algorithm. If the main memory size is M
words, we get the inequality (k+4)(n

p
+ k) ≤M , or p ≥ n(k+4)

M−k(k+4)
≈ n(k+4)

M
as the minimum

number of slow memory accesses.
We can avoid all redundant flops since we can “leave behind” the components of [x, Ax,

. . ., Akx] in memory. This phenomenon is unfortunately limited to a 1D mesh, and higher
dimensional meshes will again have some redundant work, as they did in the parallel case.

By unrolling the loop in SA2 (but at the cost of more fast memory), the latency of the
read from slow memory can again be overlapped with computation.

Now we consider matrices with bandwidth b > 1, i.e., band matrices. The conventional
algorithm for b > 1 differs very little from the b = 1 base described above. The costs are
(4b+1)kn flops, (2b+1)kn words read from slow memory, and kp accesses to slow memory.
The fast memory required is (k + 1)n+ (2b+ 1)n

p
.

SA1 for bandwidth b > 1 differs from b = 1 as follows: Instead of leaving rows sq − k
through sq − 1 of A in memory, we must leave rows sq − kb through sq − 1. Altogether, the

38

costs are (4b+ 1)kn flops as before, (2b+ 1)n words read from slow memory (the matrix is
read once), and p accesses to slow memory. The fast memory required is (k+1)n words for
the vector entries plus (2b+ 1)(n

p
+ kb) words for the matrix entries.

SA2 for bandwidth b > 1 also differs from b = 1 by needing to keep rows sq−kb through
sq − 1 of A and [x,Ax, ..., Akx] in memory. The number of flops and slow memory accesses
are the same as for SA1. The fast memory required goes down to (2b+1)(n

p
+ kb) words for

the matrix entries and (k + 1)(n
p
+ kb) for the vector entries, or (2b+ k + 2)(n

p
+ kb) in all.

The number of words read from slow memory increases to (k + 1)n + (2b + 1)n, since the
vectors and the matrix need to be read in once.

2.5.2 2D and 3D Meshes

With the 1D mesh, the natural ordering of the unknowns had several attractive prop-
erties: the matrix and vector entries were ordered to minimize the number of accesses to
slow memory (i.e., the “boundary vertices” were always contiguous to each partition), and
all redundant flops could be avoided because the required data was already in memory,
without requiring extra fast memory. Neither of these is possible for 2D or 3D meshes (or
for a general graph), but we will nevertheless minimize the amount of redundant work and
number of slow memory accesses, as we did in the parallel case. This is more difficult in
the sequential than the parallel case, because in the parallel case we could have the sending
processor pack up all the desired vectors entries (matrix entries were not communicated)
into a single contiguous message to be sent. This could be modeled by using a slightly lower
communication bandwidth to account for the copying (which may be done anyway by the
communication layer). In contrast, in the sequential case, there is generally no opportunity
to reorder data in the slow memory: If data is not contiguous, either more accesses are
needed (and so more latency costs are incurred), or else more data than needed is fetched
(and so more bandwidth costs are incurred).

To illustrate, consider the grid points associated with a single partition, as shown in left
of Figure 2.14. The unknowns within each numbered region are ordered contiguously, and
the regions are ordered as shown. Thus, when the North region requires data, it can read
regions 1 through 5 in one access. Similarly, the NE region can read region 5, the E region
can read regions 4 through 8, the SE region can read region 8, the S region can read regions
7 through 11, and the SW region can read region 11. However, the W region needs 10, 11,
12, 1 and 2, and so requires 2 slow memory accesses (or else fetching regions 1 through 12 in
one access and throwing away the unneeded data). Since the adjacency graph of the regions
1 through 12 has a cycle, one can easily see that no linear order exists requiring only 1 slow
memory access for all the required data.

Unlike the 1D case, we will store x and the other vectors [Ax, ..., Akx] separately, using
the order shown in Figure 2.14(a). Figure 2.14(b) shows a similar, simpler ordering with
the same number of slow memory accesses, and with simpler indexing, but which accesses
slightly more words than necessary from slow memory (the triangles 2, 4, 7 and 10 are
unnecessarily sent to the corner processors). The simpler indexing could result in a faster
algorithm.

39

0 10 20 30
0

5

10

15

20

25

30

1
2 3

4
5

6

7
8

910
11

12 13

(a) Ordering for 2D 5-pt stencil mesh

0 10 20 30
0

5

10

15

20

25

30

1 2 3

4

567

8 9

(b) Ordering for 2D 9-pt stencil mesh

Figure 2.14: Ordering the unknowns in a 2D Mesh for contiguity

Figuring out orderings of grid points analogous to these, but for general graphs, that min-
imize the number of slow memory accesses, may be reduced to an instance of the Traveling
Salesman Problem (see Section 2.5.5).

Since the matrix entries are read-only, we can minimize the number of slow memory
accesses to the matrix by using extra slow memory (which is cheap) to store some rows of
A redundantly, so that the needed rows of A for any region are always stored contiguously.
We will henceforth assume this has been done as a preprocessing step, and not count its
costs in the summary table. This extra slow memory, like other extra costs, is proportional
to the size of the boundary, and so is asymptotically small.

Using the above assumptions and data layouts, the conventional sequential algorithm
works analogously to SA0 in Section 2.5.1: The cost is 9kn2 flops, 5kn2 words read from
slow memory in kp slow memory accesses, and (k+1)n2 fast memory words for the vectors
and 5n2

p
fast memory words for the matrix.

The costs for SA2 are 12p slow memory accesses, (6 + k)n2 + 24knp1/2 + 12pk2 words
read from or written to slow memory, and 9kn2 + 18k2np1/2 + 6k3p flops, p times as many
as PA1.

A similar counting exercise leads to the other entries in the summary table in the next
section.

2.5.3 Summary of Sequential Complexity on Meshes

In the summary table for sequential algorithms (Table 2.4), “Acc” is the number of
accesses of slow memory (reads or writes), “MWords” is the total number of matrix entries
accessed, “VWords” is the total number of vector entries accessed, “Flops” is the number
of floating point operations, “MMem” is the fast memory required for matrix entries, and

40

Algorithm 2.10 SA1: New sequential approach 1 with fast/slow memory for 2D mesh
with 5-point stencil. It costs 9kn2 flops, accesses slow memory p times, and reads 5n2 +
20kn1/2 + 10pk2 words from slow memory.

{assume matrix stored in slow memory in p equal sized chunks, where chunk q consists
of rows sq through eq along with, B “boundary rows” needed for redundant computation
of border regions, assume k + 1 vectors [x,Ax, ..., Akx] all fit in fast memory;}
{ignore boundaries q = 1 and q = p}
for q = 1, . . . , p do
read rows sq through eq +B of A from slow memory
{rows eq + 1 through eq +B are redundant copies of “boundary rows”}
compute locally dependent components of Ajx as shown in Figure 2.5 reusing previously
computed red circles

Algorithm 2.11 SA2: New sequential approach 2 with fast/slow memory for 2D mesh with
5 point stencil

{assume matrix stored in slow memory in p equal sized chunks, where chunk q consists of
rows sq through eq along with B “boundary rows” needed for redundant computation of
border regions, assume x stored in slow memory in corresponding p chunks, where each
chunk internally ordered as in the left of Figure 2.14; assume k vectors [Ax, ..., Akx] stored
analogously to x}
{ignore boundaries q = 1 and q = p}
for q = 1, . . . , p do
read rows sq, . . . , eq +B of A from slow memory {rows eq +1, . . . , eq +B are redundant
copies of “boundary rows”}
read rows sq, . . . , eq of x from slow memory {this costs one slow memory access}
read needed rows of x from N, NE, E, SE, S, SW, W and NW regions {costs 9 slow
memory accesses}
compute locally dependent components of Ajx as shown in Figure 2.5
write rows sq, . . . , eq of [Ax, ..., A

kx] to slow memory

“VMem” is the fast memory required for vector entries. Lower order terms are sometimes
omitted for clarity.

We consider the special case of stencil matrices, where in addition to the graph being
a stencil, each row of the matrix has the same nonzero entries (modulo boundaries). In
this case no matrix entries need to be fetched from slow memory (MWords=0) and at most
MMem ≤ (2b+ 1)d words are needed to store the matrix entries for a d-dimensional mesh,

not (2b+ 1)d nd

p
. Otherwise the table entries do not change.

2.5.4 General Graphs

We use notation defined in section 2.4.4. In the pseudocode “read” means from slow to
fast memory, and “write” means from fast to slow. Algorithms 2.12, 2.13 and 2.14 describe

41

Problem Costs Conventional Approach Sequential Approach 1 Sequential Approach 2
Acc kp p p

1D mesh MWords (2b+ 1)kn (2b+ 1)n (2b+ 1)n
b ≥ 1 VWords 0 0 (k + 1)n

Flops (4b+ 1)kn (4b+ 1)kn (4b+ 1)kn
MMem (2b+ 1)n

p
(2b+ 1)(n

p
+ bk) (2b+ 1)(n

p
+ bk)

VMem (k + 1)n (k + 1)n (k + 1)(n
p
+ bk)

Acc kp p 12p
2D mesh MWords (2b+ 1)2kn2 (2b+ 1)2(n2 + 4bknp1/2 + 4pb2k2) (2b+ 1)2(n2 + 4bknp1/2 + 4pb2k2)
(2b+ 1)2 VWords 0 0 (k + 1)n2 + 4bknp1/2 + 4pb2k2

pt Flops (8b2 + 8b+ 1)kn2 (8b2 + 8b+ 1)kn2 (8b2 + 8b+ 1)·
stencil (kn2 + 2bk2np1/2 + 4

3
b2k3p)

MMem (2b+ 1)2 n
2

p
(2b+ 1)2(n

2

p
+ 4bk n

p1/2
+ 4b2k2) (2b+ 1)2(n

2

p
+ 4bk n

p1/2
+ 4b2k2)

VMem (k + 1)n2 (k + 1)n2 (k + 1)n
2

p
+ 4bk n

p1/2
+ 4b2k2

Acc kp p O(p)
3D mesh MWords (2b+ 1)3kn3 (2b+ 1)3· (2b+ 1)3·
(2b+ 1)3 (n3 + 6bkn2p1/3 +O(b2k2np2/3)) (n3 + 6bkn2p1/3 +O(b2k2np2/3))

pt VWords 0 0 (k + 1)n3 + 6bkn2p1/3 +O(b2k2np2/3)
stencil Flops (2(2b+ 1)3 − 1)kn3 (2(2b+ 1)3 − 1)kn3 (2(2b+ 1)3 − 1)·

(kn3 + 3bk2n2p1/3 +O(b2k3np2/3))

MMem (2b+ 1)3 n
3

p
(2b+ 1)3· (2b+ 1)3·

(n
3

p
+ 6bk n2

p2/3
+O(b2k2 n

p1/3
)) (n

3

p
+ 6bk n2

p2/3
+O(b2k2 n

p1/3
))

VMem (k + 1)n3 (k + 1)n3 (k + 1)n
3

p
+ 6bk n2

p2/3
+O(b2k2 n

p1/3
)

Table 2.4: Summary for sequential algorithms (lower order terms omitted).

SA0, SA1 and SA2 respectively for general sparse matrices.

Algorithm 2.12 SA0: conventional sequential algorithm for a general graph

{vectors fit in fast memory but the matrix doesn’t}
for i = 1 to k do
for q = 1 to p do
read all rows j of A such that some x

(i)
j ∈ G

(i)
q

compute all x
(i)
j in G

(i)
q

2.5.5 The Ordering Problem in Sequential Algorithms

As illustrated in Figure 2.14, the order in which vector components are stored within
each block influences the number of slow memory accesses needed to read the data needed
from neighboring blocks, namely the data R

(0)
r (Gq) that block q needs from block r, for all

r 6= q. The left part of Figure 2.14 shows the best order for a 2D mesh with a 5 point stencil.
(The components within each block can be numbered in any order, but all the components
in block i must be numbered before those in block i+1, and so on.) In this case, where each
block has 8 neighboring blocks, 8 (simultaneous) accesses is clearly a lower bound. If we
insist on reading only the needed data, then the best we can do is 9 accesses, as discussed
in Section 2.5.2.

Alternatively, when regions 1, 2, 10, 11 and 12 are needed, all regions 1 through 12 could
be fetched and regions 3 through 9 discarded. But in this section we consider solutions that

42

Algorithm 2.13 SA1 for general graph

{emulate PA1, assuming the vectors fit in fast memory but the matrix does not}
{no redundant arithmetic required}
S ← φ {S is set of x

(i)
j computed so far}

for q = 1 to p do
S ′ ← {x(i)

j : R(0)(x
(i)
j) ⊂ G

(0)
q ∪ S(0)} − S

{S ′ = set of x
(i)
j that depend only on current and previous x

(0)
m }

read all rows j of A such that some x
(i)
j ∈ S ′

{may store some rows of A redundantly to reduce # reads to 1}
compute all x

(i)
j in S ′ (in order of increasing i)

S ← S ∪ S ′

Algorithm 2.14 SA2 for general graph

{emulate PA, assuming neither vectors nor matrix fits in fast memory}
{will perform redundant arithmetic as in PA1}
S ← φ {S is set of x

(i)
j computed so far}

for q = 1 to p do
read G

(0)
q

read all rows j of A such that some x
(i)
j ∈ R(Gq)

{may store some rows of A redundantly to reduce # reads to 1}
compute all x

(j)
i in Lq

for all r 6= q do
read R

(0)
r (Gq)

{possible to optimize order in which x
(0)
j stored to minimize # slow memory accesses}

compute remaining x
(i)
j in R(Gq)− Lq

write G
(1:k)
q

fetch only the required data, and so always minimize the bandwidth costs.
Furthermore, the order in which we access blocks is important. For example, for the 2D

mesh, if we access blocks from left to right in each processor row, then the needed data from
the previous block is still in fast memory and does not need to be accessed. So we also need
to choose the order in which to access blocks. We call this block ordering, as opposed to the
component ordering within an individual block, as discussed in the first paragraph.

In this section we ask how to determine the optimal block ordering and component
ordering for SA2 for a general graph, by reducing the question to an instance of the Traveling
Salesman Problem (TSP).

For the rest of this subsection, we let n denote the dimension of the matrix A. We
will start by assuming a block ordering is given, so that the blocks of the vector x are
B1, . . . , Bp, where each Bi is a disjoint subset of {1, ..., n}, and show how to choose the
optimal component ordering within each block. Later we will show how to choose the
optimal block ordering. Let |Bi| denote the number of elements in block Bi. Let Ni,j denote

43

the set of elements of block Bi needed when computing block Bj. Let Ei,j denote the set
of elements of block Bi needed to be fetched from slow memory when computing for block
Bj. The set Ei,j is fixed by the ordering of the blocks—if block Bj comes immediately after
block Bl, then Ei,j = Ni,j − Ni,l, i.e., we only fetch elements which are not already in fast
memory. So, there will always be an implicit ordering of the blocks when we talk about
Ei,j. We call block Bi a neighbor of block Bj if Ei,j 6= ∅.

Component ordering

Let A(Ei,j) denote the number of accesses required to fetch the set of elements Ei,j

from slow memory, assuming blocks are processed in increasing order from B1 to Bp.
Therefore, total number of slow memory accesses required is A =

∑p
j=1(

∑p
i=1 A(Ei,j)) =

∑p
i=1(
∑p

j=1 A(Ei,j)). Since the ordering of elements inside block Bi only affects the sum
Ai =

∑p
j=1 A(Ei,j), we simply need to optimize Ai independently for block Bi. Given this

observation, we now formalize the block level ordering problem for an individual block.
Let Bi be the block under consideration. Without loss of generality, let 1, 2, . . . ,m be

the elements of block Bi. Also, assume that none of Ei,j (j 6= i) are empty (if there is an
empty Ei,j, then we simply remove it from consideration resulting in a smaller p). Similarly,
assume that all the elements of Bi are in some Ei,j (if not, such element(s) can be placed in a
contiguous segment at the end without affecting the optimality of an ordering; for example
these would be the components in region 13 on the left of Figure 2.14). Let Ii,j be the
indicator function for whether a ∈ Ei,j (Ii,j(a) = 1 iff a ∈ Ei,j). We now have the following
theorem:

Theorem 1 Let 1, 2, . . . ,m be the elements of block Bi. Add a dummy element m + 1 to
the block. Let m+ 1 6∈ Ei,j (1 ≤ j ≤ p). Given an ordering ρ of these m+ 1 elements such
that ρ(m+ 1) = m+ 1, we have A(Ei,j) =

∑m
k=1 Ii,j(ρ(k)) · (1− Ii,j(ρ(k + 1))).

Proof: A(Ei,j) is the same as the number of contiguous segments of the set Ei,j under the
ordering ρ. One way of counting this is to look at the elements of Bi in the order specified
by ρ and add 1 to the count whenever we encounter a boundary, i.e., when ρ(k) ∈ Ei,j

and ρ(k + 1) 6∈ Ei,j. Equivalently, for the k-th element in the ordering, we add Ii,j(ρ(k)) ·
(1 − Ii,j(ρ(k + 1))) to the count. The reason we added a dummy element is to account
for the case when the last contiguous segment ends at element m. So, we get A(Ei,j) =
∑m

k=1 Ii,j(ρ(k)) · (1− Ii,j(ρ(k + 1))). �
Using Theorem 1, we get

Ai =

p
∑

j=1

m
∑

k=1

Ii,j(ρ(k)) · (1− Ii,j(ρ(k + 1)))

=
m
∑

k=1

(

p
∑

j=1

Ii,j(ρ(k)) · (1− Ii,j(ρ(k + 1)))

)

.

Now, consider the weighted directed complete graph Gi = (Vi, Ei), Vi = {v1, . . . , vm+1} (one
node for each element of block Bi, vm+1 for the dummy element in Theorem 1). Let wt(va, vb)

44

(weight of edge from node va to node vb) be
∑p

j=1 Ii,j(a)·(1−Ii,j(b))—the contribution to the
total count of the number of disk accesses if element b is placed immediately after element
a. Consider an ordering ρi of the elements of block Bi (such that ρi(m+ 1) = m+ 1). The
total number of disk accesses due to this ordering is

Ai =
m
∑

k=1

(

p
∑

j=1

Ii,j(ρi(k)) · (1− Ii,j(ρi(k + 1)))

)

.

The total weight of the path vρi(1), vρi(2), . . . , vρi(m+1) is also Ai. Equivalently, we can say
that the Hamiltonian path ending at node vm+1 has the same weight as the number of disk
accesses for the corresponding ordering. Thus, an optimal ordering (with the constraint of
m+1 being the last element) corresponds to the lowest weight Hamiltonian path (with the
constraint of vm+1 being the last node). By setting wt(vm+1, va) (1 ≤ a ≤ m) large enough,
vm+1 will be the last node in any lowest weight Hamiltonian path. In fact, wt(vm+1, va) = 1+
maxmk=1

∑p
j=1 Ii,j(a) does the trick. Since wt(vm+1, va) is independent of a (for 1 ≤ a ≤ m),

the lowest weight Hamiltonian path corresponds to the lowest weight Traveling Salesman
tour by using the edge between vm+1 (since it lies at the end in any optimal Hamiltonian
path) and the first node in the Hamiltonian path. So, the problem can also be formulated
as a Traveling Salesman problem.

In summary, to find the optimal ordering of the components of the block Bi, construct the
graph Gi (discussed in the previous paragraph) and find the lowest weight Hamiltonian path.
The ordering defined by the Hamiltonian path is the optimal ordering for the components
of the block.

Reducing the problem size for component ordering

It appears that the size of the component ordering problem is O(m2), where m is the
number of components of each block needed by other blocks. In general m will grow with
problem dimension n and be quite large. Here we show how to reduce the TSP problem size
for each block to at most its number of neighboring blocks, which is usually quite small, for
example 3d − 1 in the case of a d-dimensional mesh, independent of the number of mesh
points. The intuition, again from Figure 2.14, is that the components can be put into
equivalence classes (numbered there on the left from 1 through 12) each of which is needed
by the same set of neighboring blocks, and then the equivalence classes ordered. So here
we will formally construct the equivalence relation on components, and show that in any
optimal ordering, equivalent components are numbered consecutively.

For the above graph Gi, we say that node va is related to node vb (vaRivb) iff wt(va, vb) =
wt(vb, va) = 0. Clearly, the relation Ri is an equivalence relation. The next 3 theorems
make several observations about the relation Ri.

Theorem 2 If vaRivb then, a ∈ Ei,j iff b ∈ Ei,j and vice versa. In other words, the
equivalence relation Ri is also defined as being contained in the same set of sets Ei,j.

Proof: First of all, we note that vm+1 is not related to any other node, since wt(vm+1, va) 6= 0
for any 1 ≤ a ≤ m. Also, there is no 1 ≤ a ≤ m such that a ∈ Ei,j iffm+1 ∈ Ei,j since each a

45

is in some Ei,j butm+1 is not in any Ei,j. So, we only need to consider other elements/nodes.
wt(va, vb) =

∑p
j=1 Ii,j(a)·(1−Ii,j(b)) = 0 implies that for all 1 ≤ j ≤ p, Ii,j(a)·(1−Ii,j(b)) = 0

(all these terms are non-negative). Similarly, wt(vb, va) =
∑p

j=1 Ii,j(b) · (1 − Ii,j(a)) = 0
implies that for all 1 ≤ j ≤ p, Ii,j(b) · (1− Ii,j(a)) = 0. This implies that, for all 1 ≤ j ≤ p,
Ii,j(a) = Ii,j(b) which means that a ∈ Ei,j iff b ∈ Ei,j. Similarly, if a ∈ Ei,j iff b ∈ Ei,j, then
for all 1 ≤ j ≤ p, Ii,j(a) = Ii,j(b) which implies that Ii,j(b) = Ii,j(b) · Ii,j(a) = Ii,j(a) for all
1 ≤ j ≤ p, which implies that wt(va, vb) = wt(vb, va) = 0. This completes the proof. �

From Theorem 2, we get the following—if vaRivb, then for any vc, wt(va, vc) = wt(vb, vc)
and wt(vc, va) = wt(vc, vb). Now, consider an optimal ordering ρi of the elements of Bi. The-
orem 2 implies that there are optimal orderings in which all elements which are equivalent
are placed contiguously.

Theorem 3 For any 3 distinct nodes va, vb and vc, wt(va, vb) + wt(vb, vc) ≥ wt(va, vc).

Proof: We consider 4 possible cases:

1. a = m + 1: wt(vm+1, vb) + wt(vb, vc) − wt(vm+1, vc) = wt(vb, vc) ≥ 0 (wt(vm+1, vb) is
the same for all b 6= m+ 1).

2. b = m + 1: wt(va, vm+1) + wt(vm+1, vc) − wt(va, vc) ≥ wt(va, vm+1) − wt(va, vc). But,
Ii,j(a) − Ii,j(a) · (1 − Ii,j(c)) ≥ 0 for all a, c. Since wt(va, vm+1) =

∑p
j=1 Ii,j(a) and

wt(va, vc) =
∑p

j=1 Ii,j(a) · (1− Ii,j(b)), the inequality holds true.

3. c = m+ 1: Consider

wt(va, vb) + wt(vb, vm+1)− wt(va, vm+1) =

p
∑

j=1

(Ii,j(a) · (1− Ii,j(b)) + Ii,j(b)− Ii,j(a)) .

Since Ii,j(a) · (1 − Ii,j(b)) + Ii,j(b) − Ii,j(a) ≥ 0 for all a, b, the inequality holds true
here too.

4. a, b, c 6= m+ 1: Consider

Ii,j(a)(1− Ii,j(b)) + Ii,j(b)(1− Ii,j(c))− Ii,j(a)(1− Ii,j(c)) =

Ii,j(b)(1− Ii,j(a)− Ii,j(c)) + Ii,j(a)Ii,j(c) ≥
1− Ii,j(a)− Ii,j(c) + Ii,j(a)Ii,j(c) ≥ 0.

Since

wt(va, vb) + wt(vb, vc)− wt(va, vc) =

p
∑

j=1

(Ii,j(a)(1− Ii,j(b)) + Ii,j(b)(1− Ii,j(c))−

Ii,j(a)(1− Ii,j(c))),

the inequality holds.

�

46

Theorem 4 There exists an optimal Hamiltonian path such that if vaRivb, and va comes
before vb in the path, then there is no vc between va and vb in the path such that ¬vaRivc.

Proof: Consider an optimal Hamiltonian path such that the condition in the theorem does
not hold true. By our choice of weights, vm+1 would be the last node in the path. Let
va and vb be nodes such that the following holds: va comes before vb in the path, vaRivb
and ¬vaRivc for any vc which lies between va and vb in the path. This must be possible
simply because we assumed the condition in the theorem to be false. Let vdbe the node
immediately after va, ve be the node immediately after vb and vf be the node immediately
before vb. If we move node vb to between va and vd, then the change in the weight of the
path is

wt(va, vb) + wt(vb, vd) + wt(vf , ve)− wt(va, vd)− wt(vf , vb)− wt(vb, ve) =

0 + wt(va, vd) + wt(vf , ve)− wt(va, vd)− wt(vf , vb)− wt(vb, ve) = (Theorem 2)

wt(vf , ve)− wt(vf , vb)− wt(vb, ve) ≤ 0 (Theorem 3)

Since the original path was optimal, the cost must not decrease, hence the change must
be 0. Applying this procedure of putting together related nodes eventually terminates in a
Hamiltonian path such that the condition in the theorem is true. Furthermore, after each
application of this procedure the cost did not change, which implies that the final path is
also optimal. �

Theorem 4 tells us that we can indeed reduce the problem size to ordering only equiv-
alence classes of components, where two components are equivalent if and only if they are
needed to compute the same set of blocks.

Block ordering

We now construct a weighted directed graph where there is one vertex per block Bi and
one edge from every vertex to every other vertex. The weight of the edge e pointing from
Bi to Bj will be the memory cost of processing Bj immediately after Bi. Clearly, given
this graph, the goal is to find the lowest weight Hamiltonian path. As before, we can add a
“dummy node” and appropriately weighted edges to convert to an instance of TSP.

Now we discuss the edge weights. If e points from Bi to Bj, so that Bj is processed
immediately after Bi, the discussion in previous subsections tells us how to compute the
minimum number of slow memory accesses needed to process Bj. This could be used as a
weight by itself, if latency were dominant. But we can easily take the full cost into account,
including bandwidth and latency, by setting the edge weight to the sum of α· (# slow
memory accesses) and β· (# words fetched from slow memory), where α is latency and β is
reciprocal bandwidth. The number of words fetched from slow memory does not depend on
the ordering, and is a by-product of the graph traversals needed to compute all the regions
R

(0)
r (Gq) needed by SA2.

Other problem formulations

In the previous section, we only considered exact solutions, i.e., we fetch only those
elements which are required. However, if we sometimes fetch more elements than needed

47

when working on a block, we might be able to further lower the latency cost, at the price of
higher bandwidth cost. For example, suppose we merged Ei,j and Ei,j+1 (Ei,j 6= Ei,j+1), so
that while computing block Bj we fetched the components in Ei,j ∪Ei,j+1, and similarly for
block Bj+1. However, by merging the sets, we have reduced the number of equivalence classes
in the component ordering problem, which might allow for fewer slow memory accesses.

If latency is the dominant cost we can go further and discuss solutions limited to a
single slow memory access per Eij, and choose the component ordering to minimize the
bandwidth cost. In this case, the cost of accessing Eij given a component ordering will be
h− l+1, where xh is the highest numbered component in Eij and xl is the lowest numbered
component (because all of {xl, xl+1, ..., xh} will needed to be fetched).

The best formulation may depend on other details of the performance model. Here we
have been assuming a simple latency + bandwidth model, but depending on opportunities
for overlap, parallelism, prefetching, etc. a different model may be appropriate. There are
also many options for approximate solutions to the resulting combinatorial optimization
problems, like TSP.

2.6 Asymptotic Performance Models

We consider how to asymptotically minimize the time to compute [Ax, ..., Ak̄x] for ma-
trices with stencil graphs. In other words, the graph of the matrix is assumed to be a
d-dimensional mesh with a (2b + 1)d point stencil. We will treat all dimensions d simulta-
neously by using the notation γ = n

p1/d
. We can think of γ as a measure of problem size per

processor, since it is the d-th root of the number of components per vector per processor.
We also note that 2d/γ is the surface-to-volume ratio of a d-dimensional cube of side length
γ.

We will compare the conventional parallel method (run k = k̄ times) with the new
method, where k̄/k groups of k matrix-vector-products are computed using O(k̄/k) mes-
sages. We will choose k to minimize the time of the new algorithm. We also compare the new
method with the conventional method using overlap of communication and computation,
and ask when this is sufficient to hide communication costs.

We let α be the message latency, β be the reciprocal bandwidth (so it takes α + nβ
seconds to send a message of length n), and f be the time per flop. Sample values are f = 1
ns, α = 190 µs and β = 10−4 µs/byte (for 10 Gigabit Ethernet running 802.3ae), and α =
5700 µs and β = .016 µs/byte (for a 15000 RPM Seagate ST373307 disk). In both cases α
exceeds β by at least five orders of magnitude, and f is much smaller again. Patterson [78]
suggests that this gap between latency and bandwidth will continue to increase exponentially
for a variety of technologies (memory, network and disk).

2.6.1 Parallel Algorithms

Combining this notation with the analysis leading to Table 2.3, we get that the running
time for the conventional algorithm to compute [Ax, ..., Akx] is

TPA0(k) = O(αk + βbkγd−1 + fbdkγd) (2.1)

48

and that the running time for either new algorithm is

TPA1,2(k) = O(α + βbk(γd−1 + δdbkγ
d−2) + fbdk(γd + bkγd−1)) (2.2)

where δd = 0 if d = 1 and δd = 1 if d > 1. We use this notation in order to analyze all
values of d at once.

The ultimate goal is to compute [Ax, ..., Ak̄x]. The conventional algorithm will take time
TPA0(k̄). We will use the new algorithm k̄

k
times on chunks of size k, taking time k̄

k
TPA1,2(k).

The optimization problem is to choose k to minimize this quantity:

k̄

k
TPA1,2(k) = O(α

k̄

k
+ βbk̄(γd−1 + δdbkγ

d−2) + fbdk̄(γd + bkγd−1)) (2.3)

When α is sufficiently large (suppose we are doing message passing by the post office),
and so latency dominates all the bandwidth and flop terms, it is clearly best to minimize
the number of messages in the new algorithm, i.e., to set k = k̄, leading to a speedup of
O(k̄). In other words, [Ax, ..., Ak̄x] can be computed in approximately the same time as Ax
(or within a constant factor of this time, since constants are hidden by our use of O()).

If α is not this large, then choosing the best k is more interesting. The dominant
bandwidth and flop terms in (2.3) (i.e., those proportional to β and f and with the highest
powers of γ) are identical to those in TPA0(k̄), and dependent only on k̄. The latency term
in (2.3) decreases proportionally to k, and the smaller bandwidth and flop terms increase
proportionally to k. The minimizing value of k is easily found to be

kmin = min

(

k,max

(

1,

(

f

α
bd+1γd−1 + δd

β

α
b2γd−2

)−1/2
))

(2.4)

Notice that kmin increases with increasing latency α, and decreases with increasing problem
size per processor γ. For kmin to exceed 1 requires both that α > fbd+1γd−1, roughly that α
exceeds the floating point work on the boundary, and that α > δdβb

2γd−2, which is likely.
The minimum running time with the new algorithm (assuming 1 < kmin < k) is therefore

TPA1,2,min(k̄) ≡
k̄

kmin

TPA1,2(kmin)

= O(k̄[(α(fbd+1γd−1 + δdβb
2γd−2))1/2 + fbdγd + βbγd−1]) (2.5)

When kmin = 1, the new algorithm and conventional algorithm are equivalent; when kmin =
k, the time is given by (2.2).

When α is very large, the speedup is close to k as expected. When α is not that large,
The best that we could hope for is for the new running time to be fast independent of
the latency α. More precisely, we ask whether TPA1,2,min(k̄) is within a constant factor of
the time it would take the conventional algorithm with α = 0. In fact, when α = 0 both
TPA0(k̄) and TPA1,2,min(k̄) are O(k̄(fbdγd + βbγd−1)), so we need to ask whether the first
term in TPA1,2,min(k̄) is smaller than this:

when is (α(fbd+1γd−1 + δdβb
2γd−2))1/2 ≤ fbdγd + βbγd−1 ?

49

We consider the bandwidth and flop terms separately.
For bandwidth (which is only relevant when d > 1), the question is when (αβb2γd−2)1/2 ≤

βbγd−1, or when α ≤ βγd. This is easy to interpret: it holds when the time is takes to send
the entire local content of a processor γd = nd

p
is dominated by the bandwidth β nd

p
, not the

latency. Once problem sizes are reasonably large, this is sure to be the case.
For the flop time, the question is when (αfbd+1γd−1)1/2 ≤ fbdγd, or when α ≤ fbd−1γd+1 =

fbd−1
(

nd

p

)1+ 1

d
. This is also easy to interpret: it holds when the time it takes to run an

O(N1+ 1

d) algorithm on the entire local content of a processor (i.e., N = nd

p
) exceeds the

latency of one message. When d = 1, this means an O(N2) algorithm, and is very likely to
hold for large problem sizes.

In summary, the new algorithm can be used to make the cost of computing any number
of matrix-vector products run at a speed that is roughly independent of the communication

latency, provided α
<≈ min(βγd−1, fbd−1γd+1) when d > 1, or α

<≈ fγ2 when d = 1. The
limiting factor in achieving this will be the need for enough memory to store kmin vectors
locally, since kmin grows as latency increases.

It is worth asking when just overlapping communication and computation in the con-
ventional algorithm is good enough to hide all the latency, making our techniques unneces-
sary. This happens roughly when α < fbdγd, which is more restrictive than our condition
α < fbd−1γd+1.

2.6.2 Sequential Algorithms

The corresponding asymptotic performance models for sequential algorithms are

TSA0(k) = O(αkp+ βbdknd + fbdknd)

TSA1(k) = O(αp+ β(bdnd + bd+1knd−1p1/d) + fbdknd)

TSA2(k) = O(αp+ β((bd + k)nd + bd+1knd−1p1/d) + f(bdknd + bd+1k2nd−1p1/d))

Since SA0 and SA1 use roughly the same amount of memory, we can compare their running
times directly, and see that SA1 sends k-times fewer messages, sends roughly k-times fewer
words, and does only slightly more floating point operations than SA0. So we expect SA1
to be uniformly superior to SA0.

SA2 is designed to use much less memory than either SA0 or SA1, and so a fair com-
parison is between SA2 and the conventional algorithm consisting of applying SA2(1) k
times, where SA2(1) just computes Ax. The running time for this algorithm is easily seen
to be O(kαp + kβ(bdnd + bd+1nd−1p1/d) + kf(bdnd + bd+1nd−1p1/d)), which has a k times
larger latency term, up to k times larger bandwidth term (when bd ≫ k), and almost the
same floating point term. Clearly overlapping communication and computation will benefit
SA2(k) at least as much as SA2(1).

Another natural question is to ask under what circumstances SA2 is about as fast as
a conventional algorithm with an infinite amount of fast memory available, but where the

50

matrix and x(0) initially reside in slow memory, and the result is eventually supposed to
reside in slow memory, an algorithm we call SA3:

TSA3(k) = O(α + β(bd + k)nd + fbdknd)

Comparing TSA2(k) to TSA3(k) we see that the bandwidth and floating point costs of SA2
are only slightly larger than for SA3, so the only issue is latency, which is p-times lower for
SA3. So a natural question is when SA2’s latency cost is less than or equal to its bandwidth
and floating point cost. This will be true when the cost of filling up all of fast memory with
one fast memory access, and then performing the algorithm on the subset of matrix and
vectors filling all of fast memory, is dominated by bandwidth and floating point, which is
very likely to be true.

We now turn to the question of optimal speedup for SA2. It can be seen that the
optimal speedup for SA2 for general sparse matrices (when β/tf = ∞) is upper bounded
by 2 + 1.5(nnz/n) (nnz/n denotes then number of nonzeros per row of the matrix A). The
1.5 term is due to the 1.5 words per entry of the A. A simple argument for this is that the
speedup is roughly

Time to read/write vector and matrix k times

Time to read 1 vector / write k vectors and read matrix once
=

2k + 1.5(nnz/n)k

k + 1 + 1.5(nnz/n)

< 2 + 1.5(nnz/n)

A similar argument gives us the following upper bound for optimal speedup in the case
when β/tf is finite:

(2(nnz/n)− 1) k + (2k + 1.5(nnz/n)k) β
tf

(2(nnz/n)− 1) k + (k + 1 + 1.5(nnz/n)) β
tf

<
2(nnz/n)− 1 + (2 + 1.5(nnz/n)) β

tf

2(nnz/n)− 1 + β
tf
.

Note that 2(nnz/n) − 1 is the number of flops performed per entry of the vector x. These
upper bounds are tight for large memory size. However, they might not be close to the
optimal speedup for small memory size. To analyze this, we now state some bounds for
the optimal speedup of SA2 for d-dimensional stencils with bandwidth b. The following are
some scenarios for a d-dimensional stencil with bandwidth b.

1. m = ∞, β
tf

= ∞: In this case, the optimal speedup is the same as the upper bound,

i.e., 2 + 1.5(2b+ 1)d.

2. m =∞, β
tf

finite: The optimal speedup again equals its upper bound

2(2b+ 1)d − 1 +
(

2 + 1.5(2b+ 1)d
)

β
tf

2(2b+ 1)d − 1 + β
tf

3. m finite, β
tf

=∞: In this case, the optimal speedup is lower bounded by

max

(

(

2 + 1.5(2b+ 1)d
)

(

1 +
A

m
1

d+1

)−(1+ 1

d)
, 1

)

,

51

where A is a constant8 which depends on b and d. As can be seen, the lower bound
approaches the upper bound as m is increased. For this case, the optimal speedup is
obtained by choosing k such that 2bkd = n.

4. m finite, β
tf

finite: The optimal speedup is lower bounded by

max

2(2b+ 1)d − 1 +
(

2 + 1.5(2b+ 1)d
)

β
tf

(2(2b+ 1)d − 1)B +
(

1 + A

m
1

d+1

)(1+ 1

d) β
tf

, 1

,

where A is the same constant as in the previous case and B is another constant9

dependent on d. Figures 2.15 and 2.16 show the optimal speedup (obtained from the
analytical model) and the lower bounds for the speedup as function of the memory
size. Figures 2.15(a) and 2.15(b) show the speedups if the β/tf ratio is 64 (the OOC
machine model in Section 2.7.2). Figures 2.15(a) and 2.15(b) show the speedups if the
β/tf ratio is 3.2 (the CacheBlocked machine model in Section 2.7.2). As can be seen in
these figures, if the memory is not sufficiently large, the optimal speedup drops as the
bandwidth b is increased. However, for large enough memory, we observe the speedup
increase as the bandwidth b is increased. Another observation is that the lower bound
is within a factor of 2 of the optimal speedup for the β/tf ratios and the memory sizes
considered. Furthermore, for the optimal speedup, the k is such that 2bkd ≤ n (the
computational cost of SA2 always increases with k, so it can only decrease the optimal
k predicted by the previous case).

The above model makes some approximations which are good if the optimal k and n are
large enough. Given this, the optimal speedup predicted is still close to (but lower than)
the speedup in the more detailed performance model discussed in Section 2.7.2. Except for
the CacheBlocked model (β/tf = 3.2, mem = 106, has an optimal k = 3 which is small) in
Section 2.7.2, the optimal speedups in the analytical model (the plots in Figure 2.15) match
the speedups in the detailed model very well. As for the measured speedup in Section 6,
the analytical performance model overestimates the optimal speedup. The main reason for
this is that the read and write bandwidths differ significantly, which is not handled by the
analytical model.

2.7 Detailed Performance Modeling

In this section we present detailed performance models of matrices with 2D and 2D stencil
graphs for PA2 and SA2 using realistic machine parameters, in order to identify situations
where significant speedups are likely. The two parallel machines for which we model PA2
are called Peta (which is a model of a nominal 8100 processor petascale machine) and Grid

8A = 1.5(d+1)d(2b)d/(d+1)(1+(2b+1)d)

d
d2
d+1

.

9B = (d+1)d

dd − d
d+1 .

52

(a) Optimal speedups and lower bounds for 2D stencil

(b) Optimal speedups and lower bounds for 3D stencil

Figure 2.15: Optimal speedup vs. DRAM size for the OOC model (β/tf = 64). The vertical
green lines indicate the memory size for the architectures modeled in Section 2.7.2.

53

(a) Optimal speedups and lower bounds for 2D stencil.

(b) Optimal speedups and lower bounds for 3D stencil.

Figure 2.16: Optimal speedup vs. cache size for the CacheBlocked model (β/tf = 3.2). The
vertical green lines indicate the memory size for the architectures modeled in Section 2.7.2.

54

(which is a model of 125 terascale machines connected over the internet). We consider both
overlapping (non-blocking) and non-overlapping (blocking) communication models; only the
former can overlap communication and computation. The two sequential machines for which
we model SA2 are OOC (which models an out-of-core implementation, where fast memory is
DRAM and slow memory is disk) and CacheBlocked, the Intel multi-core processor (where
fast memory is cache and slow memory is DRAM). This variety of models of course suggests
that our techniques can be applied more than once, if there are several levels of memory
hierarchy and possibly also parallelism.

Specifically, we consider matrices whose graphs are 2D (2b+ 1)2 point and 3D (2b+ 1)3

point stencils. As before, we assume that quantities like p1/2 and n
p1/3

are integers.

2.7.1 Performance Modeling of PA2

We consider parallel machines with the following parameters:

pmax: The maximum number of processors available. The actual number of processors used
is p ≤ pmax. We may choose p < pmax if that is faster, or if p

1/2
max is not an integer, etc.

tf : The time per floating-point operation (in units of seconds), modeled as 10% of machine
peak value, a typical value attainable for SpMV.

mem: The memory available per processor (in units of 8-byte words).

α: The network processor latency (in units of seconds).

β: The inverse network bandwidth (in units of seconds/8-byte word).

Thus the time to send m words between any pair of processors is modeled as α + βm
seconds.

We modeled machines with the following parameter values:

Peta: pmax = 8100, tf = 2 · 10−11 secs (1/tf = 50 GFlops/s), mem = 62.5 · 109 words,
α = 10−5 secs, β = 2 · 10−9 secs (1/β = 500 MWords/s = 4 GByte/s)

Grid: pmax = 125, tf = 10−12 secs (1/tf = 1TF lop/s), mem = 1.2 · 1012 words, α = 10−1

secs, β = 25 · 10−9 secs (1/β = 40 MWords/s = .32 GBytes/s) (estimated by dividing
the Teragrid backbone bandwidth of 40 GBytes/s by pmax)

Note that each processor in Peta and Grid is assumed to be a significant parallel computer
itself, but we are only modeling the parallelism between these processors, not within them.
Again, one could potentially apply our techniques for each level of parallelism, but we have
not modeled this here.

In section 2.4.4 we described the three computational phases of PA2: Phase I must
be done before any communication can be initiated, Phase II can be fully overlapped with
communication, and Phase III can only begin after communication is complete. This justifies
the performance model for the case of overlapping communication below.

55

Let NI , NII , and NIII respectively denote the flop counts for Phases I, II, and III of
PA2. Let Nw denote the total number of words sent by a processor. Let T overlap

n,k,p denote
the time taken for PA2 when overlapping communication is used; in this case we assume
all messages can be in-flight simultaneously while computation is occurring. Let T nonoverlap

n,k,p

denote the time taken for PA2 when non-overlapping communication is used; in this case we
assume only one message can be in flight at a time and not overlapped with computation.
Our latency-avoiding algorithm may have more opportunity to demonstrate speedups in
the non-overlapping case. In an actual machine the degree of overlap may lie somewhere
between these two extremes. Let Mn,k,p denote the memory required per processor when
p processors are used. We let Tn,k,p denote the time taken for the algorithm. So, if non-

overlapping communication is used, then Tn,k,p = T nonoverlap
n,k,p , else Tn,k,p = T overlap

n,k,p .
We use the following formulas for these quantities (which are slightly more detailed than

the entries in Table 2.3):

NI = (8b2 + 8b+ 1) ·
(

n

p1/2
− bk

)

· (bk2 − 2bk)

NII = (8b2 + 8b+ 1) ·
(

3n2

p
− 9bkn

p1/2
+ 7b2k2 + 2b2

)

· k/3

NIII = (8b2 + 8b+ 1) · bk ·
(

9nk

p1/2
+

6n

p1/2
− bk2 − 6bk − 8b

)

/3

Nw = 2bk ·
(

2n

p1/2
+ 3kb− 2b

)

T overlap
n,k,p = (NI +NIII) · tf +max (NII · tf , α + β ·Nw)

T nonoverlap
n,k,p = (NI +NII +NIII) · tf + 8 · α + β ·Nw

Mn,k,p = (k + 1)
n2

p
+ 1.5(2b+ 1)2

(

n

p1/2
+ bk

)2

+ 1.5Nw

Note that the coefficient for the α term is 8 in T nonoverlap
n,k,p because each processor needs to

communicate with 8 other processors. However, the coefficient for the α term is 1 in T overlap
n,k,p

because all 8 sends to other processors can be overlapped.

56

Similarly, for the 3D stencils, we have the following formulas:

NI = (2(2b+ 1)3 − 1) · (bk
2 − 2bk)

4
·
(

6n2

p2/3
− 12bkn

p1/3
+ 7b2k2 − 2b2k

)

NII = (2(2b+ 1)3 − 1) · k
4
·
(

4n3

p
− 18bkn2

p2/3
+

(28b2k2 + 8b2)n

p1/3
+O(b3k3)

)

NIII = (2(2b+ 1)3 − 1) · bk
4
·
(

n2

p2/3
(18k + 12)− nb

p1/3
(4k2 + 24k + 32) +O(b2k3)

)

Nw = 2bk ·
(

3n2

p2/3
+

9bkn

p1/3
− 6bn

p1/3
+O(b2k2)

)

T overlap
n,k,p = (NI +NIII) · tf +max (NII · tf , α + β ·Nw)

T nonoverlap
n,k,p = (NI +NII +NIII) · tf + 26 · α + β ·Nw

Mn,k,p = (k + 1)
n3

p
+ 1.5(2b+ 1)3

(

n

p1/3
+ bk

)3

+ 1.5Nw

For performance modeling, we also vary the parameter p within the range allowed to find
the optimal value of p for specific n, k, b values. This range is limited by two parameters—
pmax and mem. If p is made small, then the memory required per processor Mn,k,p might
exceed the memory available per processor mem. Furthermore, p can be at most pmax.
Another limit we impose on p is the number of entries per dimension of the stencil should
be be at least 2bk since our operation counts assume this condition. We may also round p
down to the nearest perfect square or cube. The optimal p is strongly problem dependent,
e.g., for small problem sizes, p = 1 might be sufficient and better since it avoids the overhead
of communication. Therefore, a good measure of how well PA2 performs with respect to the
conventional algorithm is the speedup with respect to the conventional algorithm assuming
optimal p values were used for each algorithm:

speedup =
min1≤p≤pmax Tn,1,p · k
min1≤p≤pmax Tn,k,p

Note that we used Tn,1,p · k for the time taken for the conventional algorithm as the conven-
tional algorithm turns out to be k invocations of PA2 with k = 1.

Another interesting metric for evaluating the algorithm is how well it can hide the
communication cost. Specifically, we compare the time due to PA2 on a machine with
the time if the same machine had zero communication overhead. If both the times are
close, then our algorithm is latency and bandwidth insensitive, i.e., it can make the cost of
communication disappear. So, we also plot this ratio in our plots. In addition, we also look
at the additional floating-point operations performed by PA2 to hide latency.

We now discuss the performance modeling results for each combination of machine (Peta
or Grid), communication style (overlapping or non-overlapping) and stencil (2D or 3D).
There are 8 plots shown for each of these 8 combinations:

The first 4 plots of each group of 8 assume a bandwidth of b = 1, and respectively
show for each combination of n and k (a) the best speedup attainable over all choices of

57

p ≤ pmax, (b) the corresponding optimal choice of p, (c) the corresponding fraction of time
spent in computation, and (d) the ratio of floating point operations done by the optimized
algorithm to the number done by the conventional algorithm. The conventional algorithm
corresponds to k = 1, the bottom row of each plot. Plots (c) and (d) show how successful
our new algorithm is at reducing the fraction of time spent communicating, and the price
paid in extra computation.

Now we describe the next 4 plots of each group of 8. For each combination of n and k,
and for bandwidth b = 1, we show (a) the ratio of time taken by the new algorithm to the
time that would be taken on the same machine but with zero latency, and (b) the ratio of
time taken by the new algorithm to the time that would be taken on the same machine but
with zero latency and infinite bandwidth. We also show (c) for a fixed value of n, and each
combination of k and bandwidth b, the best speedup attainable over all choices of p ≤ pmax,
and (d) the corresponding optimal choice of p. In plot (a) (or (b)) the time that would be
taken with zero latency (or zero latency and infinite bandwidth, resp.) is measured for the
same k but a possibly different optimal value of p. Plots (a) and (b) provide another metric
of how well our algorithm does at reducing the cost of communication (the closer the ratios
are to 1, the better).

2D Stencil on Peta Using Overlapping Communication

As can be seen in Figure 2.17(a), for smaller n and k (the bottom left corner), the
speedup is close to linear in k, which is the best possible speedup. This is explained by
Figure 2.17(c) which shows that almost all the time is spent in communication for these
values of n and k.

The best speedup is 6.9×, which occurs when n = 211, k = 12, with an optimal p =
7225 = 852, a bit less than pmax = 8100 = 902; for these values of n, k and p the fraction
of time spent in computation is 23% (versus 2% for the conventional k = 1 algorithm) and
the number of floating point computations is 1.74× larger than the conventional algorithm
(Figure 2.17(d)).

Indeed, for any problem size n, we can choose k to make the fraction of time spent doing
arithmetic exceed 20% (up from under 1% for k = 1). And this never increases the number
of floating point operations by more than 1.74×.

On the other hand, the algorithm has no benefit for large values of n, because computa-
tion totally dominates communication, as again shown by the bottom row of Figure 2.17(c);
in this case no optimization is necessary either. We also note that for smaller n the speedup
decreases as k is increased beyond a certain point, because the overhead of extra floating
point operations exceeds the gains from reducing latency. The optimal p also decreases as k
increases for some values of n because of the constraint n/

√
p ≥ 2bk we impose to guarantee

that boundary regions only extend into the nearest neighboring processor.
As can be seen in Figure 2.18(a), the latency has an enormous effect for small n and k,

with the conventional algorithm (k = 1) running up to 89.39× slower than the 0-latency
machine. But the algorithm can lower the latency to equal the floating point time even with
small values of k (e.g., for n = 211, k = 1 we see that the conventional algorithm is 46.53×
slower than the case if latency were 0, but raising k to 12 makes PA2 only 6.78× slower

58

than the 0 latency case). For large n reducing latency to zero yields no speedups because
computation dominates. Figure 2.18(b) tells a similar story as Figure 2.18(a), except that
additionally increasing bandwidth to infinity would speed up the conventional code even
more. In Figure 2.18(c) we see that for n = 212 the speedup due to PA2 decreases as b
increases: this is because computation scales as b2 which rapidly dominates communication.

2D Stencil on Peta Using Non-Overlapping Communication

As can be seen in Figure 2.19(a), the algorithm is expected to obtain high speedups of up
to 15.1× for smaller matrices. In fact, we get good speedups even for n = 214 in contrast to
the case when overlapping communication was used. This is because non-overlapping com-
munication has 8× higher latency than overlapping communication, making our latency-
avoiding algorithm even more valuable. As in the overlapping case, for sufficiently large n
computation dominates communication and there is no benefit from our algorithm. Fig-
ure 2.19(c) shows lower values when compared to Figure 2.17(c) because of the 8× larger
latency. Figure 2.19(d) shows the same ratios of extra arithmetic as for the overlapping
communication case, because the same optimal values of p are chosen (Figure 2.19(b)).

The comparisons to zero latency (Figure 2.20(a)) and zero latency/infinite bandwidth
(Figure 2.20(b)) machines are even more extreme than in the overlapping case, because of
the 8× higher latency assumed here. This also causes our algorithm to yield at least some
speedup (1.28×) all the up to bandwidth b = 10 (Figure 2.20(c)).

2D Stencil on Grid Using Overlapping Communication

The white region in all the figures for n = 221 and n = 222 indicates that the problem
needed too much memory to be solved by the machine.

As can be seen in Figure 2.21(a), the algorithm is expected to obtain an impressive
speedup of up to 22.22× for large matrices (n = 217). Indeed, speedup is still increasing for
the maximum value of k shown (k = 30), and larger k might show further improvements.
The algorithm does not show any speedups for small values of n because the problem can be
solved using only 1 processor and latency is too high to benefit from using more processors
for k ≤ 30. As before we can see that for very large problem sizes (n ≥ 220), we also see no
gains from our algorithm because computation dominates communication. In Figure 2.21(b)
the optimal p takes on two values—either 1 or pmax = 121. Figure 2.21(c) shows the fraction
of time in computation increasing from 2% at k = 1 to 53% at k = 30 for the value of n = 217

where speedup is best, but for smaller n and k = 30 the fraction of computation is still quite
small; larger k might help. Figure 2.21(d) shows that in no case does the algorithm do more
than 1.02× as many flops as the conventional algorithm.

As can be seen in Figure 2.22(a), the ratio of time taken compared to the zero latency
machine roughly doubles for each value of log2 n from 10 to 16. The reason is that in this
range, the optimal p for the Grid is 1, so all time is spent in computation, and for the 0
latency machine the optimal p is 121 and the largest part of the time is the bandwidth
term. Thus doubling n quadruples the time on the Grid, but only doubles the time on the
0 latency machine, causing the ratio of these times to double. For larger n, computation

59

begins to dominate both machines. It is at n = 216 and n = 217 that increasing k yields
the largest speedup. We note that many of the ratios in Figure 2.22(b) equal 121, because
they correspond to cases where the optimal p = 121 for the 0 latency / infinite bandwidth
machine, and p = 1 with nonzero latency and finite bandwidth.

Figure 2.22(c) shows that there is at least some speedup for n = 217 and all values of
bandwidth b up to 10, although speedup decreases as b increases.

2D Stencil on Grid Using Non-overlapping Communication

As can be seen in Figure 2.23(a), the algorithm is expected to obtain speedups of up
to 15.63× for large matrices, with speedup still increasing at the largest k shown. The
speedups are sometimes larger and sometimes smaller than the overlapping case, depending
on dimension. The extra expense of non-overlapping communication means that p = 1 is
optimal for larger values of n than in the overlapping case (Figure 2.23(b)). The number of
extra floating point operations never reaches 1% (Figure 2.23(d)).

In Figure 2.24(b), many of the runtime ratios equal 121, because they correspond to
cases where the optimal p was 1 for the actual Grid, whereas the optimal p = 121 for the 0
latency / infinite bandwidth Grid.

Figure 2.24(c) shows that there is speedup for all values of bandwidth b, but it is not a
monotonic decreasing function of b, rather peaking (at least for n = 217) at 16.67× for b = 3
and k = 30.

3D Stencil on Peta Using Overlapping Communication

In contrast to the 2D case, in the 3D case no speedup is possible using our new algorithm
(with the exception of a 2% speedup for n = 29 and k = 2). The reason is that the conven-
tional k = 1 algorithm is already completely dominated by computation (Figure 2.25(c)),
and indeed running nearly as fast as a zero latency machine (Figure 2.26(a)) or even a zero
latency / infinite bandwidth machine (Figure 2.26(b)). Increasing the bandwidth b (Fig-
ure 2.26(c)) only makes it more computation dominated. We also note that the for larger
b, the problem quickly becomes too large to be solved by the machine—this is evident by
the large “whitespaces” in Figures 2.26(c) and 2.26(d).

3D Stencil on Peta Using Non-overlapping Communication

In contrast to the last case with overlapping communication, PA2 achieves a speedup of
up to 3.58×, for n = 29 and k = 8, running only 3.04× slower than a zero latency machine
(down from 10.89×) and only 4.50× slower than a zero latency / infinite bandwidth machine
(down from 16.10×).

3D Stencil on Grid Using Overlapping Communication

In this case we get speedups of up to 4.41× for n = 210 and k = 30, doing only 1.29×
as much arithmetic as the conventional algorithm, and running only 2.03× slower than a
zero latency machine (down from 8.94×). However, it is 28.35× slower than a zero latency

60

/ infinite bandwidth machine, showing that bandwidth is the bottleneck. Some speedups
are possible up to bandwidth b = 5.

3D Stencil on Grid Using Non-overlapping Communication

Not overlapping communication on the Grid yields a higher speedup of 7.79× for n = 212

and k = 30, running only 1.76× slower than a 0 latency machine (down from 13.73×), and
only 7.87× slower than a 0 latency / infinite bandwidth machine (down from 61.26×).
Speedups up to 7.04× are possible for higher bandwidth b.

61

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 2.17: Plots for 2D stencil on Peta using overlapping communication. Best speedup
of 6.9× attained at p = 7225 = 852, k = 12, n = 211 For each n, the best k makes the
fraction of time in computation ≥ 20%, up from < 1%, and increases the number of flops
by ≤ 1.74×.

62

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth
machine

(c) Speedup as a function of matrix bandwidth (n =
212)

(d) Optimal p for (c)

Figure 2.18: Plots for 2D stencil on Peta using overlapping communication. For each n, the
best k makes the runtime ratio w.r.t. 0 latency ≤ 13.16, down from 89.39 and, makes the
runtime ratio w.r.t. 0 latency/∞ BW ≤ 33.82, down from 229.77.

63

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 2.19: Plots for 2D stencil on Peta using non-overlapping communication. Best
speedup of 15.09× attained at p = 7921 = 892, k = 23, n = 212 For each n, the best k
makes the fraction of time in computation ≥ 23%, up from < 1%, and increases the number
of flops by ≤ 1.75×

64

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth
machine

(c) Speedup as a function of matrix bandwidth (n =
212)

(d) Optimal p for (c)

Figure 2.20: Plots for 2D stencil on Peta using non-overlapping communication. For each n,
the best k makes the runtime ratio w.r.t. 0 latency ≤ 37.71, down from 560.30 and, makes
the runtime ratio w.r.t. 0 latency/∞ BW ≤ 122.65, down from 1829.84.

65

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 2.21: Plots for 2D stencil on Grid using overlapping communication. Best speedup
of 22.22× attained at p = 121, k = 30, n = 217. For each n, the best k makes the fraction of
time in computation ≥ 1% and increases the number of flops by ≤ 1.02×

66

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth
machine

(c) Speedup as a function of matrix bandwidth (n =
217)

(d) Optimal p for (c)

Figure 2.22: Plots for 2D stencil on Grid using overlapping communication. For each n,
the best k makes the runtime ratio w.r.t. 0 latency ≤ 23.4, down from 121, and makes the
runtime ratio w.r.t. 0 latency/∞ BW ≤ 92.5, down from 121.

67

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 2.23: Plots for 2D stencil on Grid using non-overlapping communication. Best
speedup of 15.63× attained at p = 121, k = 30, n = 218. For each n, the best k makes the
fraction of time in computation ≥ 2%, and increases the number of flops by ≤ 1.01×

68

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth
machine

(c) Speedup as a function of matrix bandwidth (n =
217)

(d) Optimal p for (c)

Figure 2.24: Plots for 2D stencil on Grid using non-overlapping communication. For each
n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 36.1, down from 81.0.

69

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 2.25: Plots for 3D stencil on Peta using overlapping communication. Best speedup
of 1.02× attained at p = 8000, k = 2, n = 29. For each n, k = 1 makes the fraction of time
in computation ≥ 80%

70

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth
machine

(c) Speedup as a function of matrix bandwidth (n =
210)

(d) Optimal p for (c)

Figure 2.26: Plots for 3D stencil on Peta using overlapping communication. For each n,
k = 1 makes the runtime ratio w.r.t. 0 latency ≤ 1.26. For each n, k = 1 makes the runtime
ratio w.r.t. 0 latency/∞ BW ≤ 1.26.

71

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 2.27: Plots for 3D stencil on Peta using non-overlapping communication. Best
speedup of 3.56× attained at p = 8000, k = 8, n = 29. For each n, the best k makes
the fraction of time in computation ≥ 40%, up from 6%, and increases the number of flops
by ≤ 1.79×

72

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth
machine

(c) Speedup as a function of matrix bandwidth (n =
210)

(d) Optimal p for (c)

Figure 2.28: Plots for 3D stencil on Peta using non-overlapping communication. For each
n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 3.04, down from 10.89. For each
n, the best k makes the runtime ratio w.r.t. 0 latency/∞ BW ≤ 4.50, down from 16.10.

73

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 2.29: Plots for 3D stencil on Grid using overlapping communication. Best speedup
of 4.41× attained at p = 125, k = 30, n = 210. For each n, the best k makes the fraction of
time in computation ≥ 1% and, increases the number of flops by ≤ 1.73×

74

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth
machine

(c) Speedup as a function of matrix bandwidth (n =
211)

(d) Optimal p for (c)

Figure 2.30: Plots for 3D stencil on Grid using overlapping communication. For each n, the
best k makes the runtime ratio w.r.t. 0 latency ≤ 4.08, down from 8.94. For each n, the
best k makes the runtime ratio w.r.t. 0 latency/∞ BW ≤ 115.23, down from 125.

75

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

Figure 2.31: Plots for 3D stencil on Grid using non-overlapping communication. Best
speedup of 7.79× attained at p = 125, k = 30, n = 212. For each n, the best k makes the
fraction of time in computation ≥ 3%, and increases the number of flops by ≤ 1.13×

76

(a) Ratio of time w.r.t. 0 latency machine (b) Ratio of time w.r.t. 0 latency, ∞ bandwidth
machine

(c) Speedup as a function of matrix bandwidth (n =
211)

(d) Optimal p for (c)

Figure 2.32: Plots for 3D stencil on Grid using non-overlapping communication. For each
n, the best k makes the runtime ratio w.r.t. 0 latency ≤ 8.36, down from 15.74.

77

2.7.2 Performance Modeling of SA2

We consider uniprocessor machines with the following parameters:

pmax: The maximum number of number of blocks to be used. The actual number of blocks
used is p ≤ pmax. We may choose p < pmax if that is faster, or if p

1/2
max is not an integer,

etc. In our simulations we choose pmax extremely large, so that the optimal p is sure
to satisfy p < pmax.

tf : The time per floating-point operation (in units of seconds), modeled either as 10% of
machine peak value (a typical value attainable for SpMV), or a median of measured
values.

mem: The size of fast memory (in units of 8-byte words).

α: The slow memory latency (in units of seconds).

β: The inverse bandwidth available between slow and fast memory (in units of seconds/8-
byte word).

Specifically, we model two machines with the following parameters:

OOC: This out-of-core implementation models a 500 MFlop/s uniprocessor with DRAM
as fast memory and a 15000 RPM Seagate ST373307 disk as slow memory, with
pmax = 107, tf = 2 · 10−9 secs (500 MFlops/s), mem = 5 · 108 words, α = 5.7 · 10−3

secs, β = 1.28 · 10−7 secs (1/β = 7.8 MWords/s = 62.5 MB/s).

CacheBlocked: This multi-core implementation models a quad-core Intel Clovertown chip
with on-chip cache as fast memory and DRAM as slow memory, with pmax = 107,
tf = 5 · 10−10 secs (2 GFlops/s) (based on measurements in [113]), mem = 106 words,
α = 2 · 10−7 secs, β = 1.6 · 10−9 secs (1/β = 625 MWords/s = 5 GB/s).

In our performance models below, we assume the entire matrix and vector x are initially
stored in slow memory, and that [Ax,A2x, ..., Akx] is eventually stored in slow memory
at the end of the computation. Also, we only model non-overlapping communication and
computation.

Let N denote the number of floating-point operations performed by SA2 (we sometimes
write Nb,n,k,p to indicate functional dependencies). Let Na denote the number of slow mem-
ory accesses. Let Nw denote the number of words transferred between fast and slow memory.
Let Tb,n,k,p,α,β denote the time taken by SA2. Let Mb,n,k,p denote the main memory required.
Formulas for these are given below.

78

Given the machine and problem parameters for 2D stencil matrices, we state the following
formulas (which are slightly more detailed than the formulas in Table 2.4):

Nb,n,k,p = (8b2 + 8b+ 1) · k
3
·

(

3n2 + 6b(k − 1)(p1/2 − 1)n+ 2b2(2k − 1)(k − 1)(p1/2 − 1)2
)

Na = 11p

Nw = (k + 1)n2 + 1.5(2b+ 1)2
(

n+ 2b(k − 1)(p1/2 − 1)
)2

+

6bk(p1/2 − 1)(n+ bk(p1/2 − 1))

Mb,n,k,p = 1.5

(

(

n

p1/2
+ 2bk

)2

− n2

p

)

+ (k + 1)
n2

p
+ 1.5(2b+ 1)2

(

n

p1/2
+ 2b(k − 1)

)2

Tb,n,k,p,α,β = N · tf +Na · α + β ·Nw

Similarly, we state the following formulas for 3D stencil (which are also slightly more
detailed than in Table 2.4):

Nb,n,k,p = (2(2b+ 1)3 − 1) · k
(

n3 + 3b(k − 1)(p1/3 − 1)n2 +O(b2k2np2/3)
)

Na = 44p

Nw = (k + 1)n3 + 1.5(2b+ 1)3
(

n+ 2b(k − 1)(p1/3 − 1)
)3

+

1.5
(

(

n+ 2bk(p1/3 − 1)
)3 − n3

)

Mb,n,k,p = 1.5

(

(

n

p1/3
+ 2bk

)3

− n3

p

)

+ (k + 1)
n3

p
+ 1.5(2b+ 1)3

(

n

p1/3
+ 2b(k − 1)

)3

Tb,n,k,p,α,β = N · tf +Na · α + β ·Nw

Given b, n, k, α and β, we want to choose p to minimize the run time Tb,n,k,p,α,β, subject
to the memory constraint Mb,n,k,p < mem; write this optimal runtime as

T SA2,opt
b,n,k,α,β,mem = min

p:Mb,n,k,p<mem
Tb,n,k,p,α,β

with the p achieving the minimum written poptb,n,k,α,β,mem, and the corresponding number of

arithmetic operations written NSA2,opt
b,n,k,α,β,mem = Nb,n,k,poptb,n,k,α,β,mem

.

We present performance modeling data of SA2 for each combination of machine (OOC
and CacheBlocked) and matrix (2D and 3D). We present 6 plots for each of these 4 com-
binations. These plots are slightly different from the ones shown for PA2, since we want
to evaluate the savings in both latency and bandwidth costs. The first 5 plots are all for
stencil bandwidth b = 1, and the last plot is for other bandwidths b > 1. Note that along
vertical axis in each plot data may only be shown for odd values of k.

1. The speedup k ·T SA2,opt
1,n,1,α,β,mem/T

SA2,opt
1,n,k,α,β,mem of the new algorithm versus the conventional

algorithm run k times (with b = 1). The conventional algorithm corresponds to k = 1,
and so reads the matrix and a vector from slow to fast memory (at least) k times, and
writes a vector from fast to slow memory (at least) k times.

79

2. The minimizing popt1,n,k,α,β,mem for the new algorithm (with b = 1), in the denominator
in the fraction in the bullet (1).

3. The fraction of time spent by the new algorithm in arithmetic (with b = 1); when this
ratio is close to 1, it tells us that we are running close to the peak floating point speed.

4. The ratio of floating point operations done by the new algorithm to the number done

by the conventional algorithm (with b = 1):
NSA2,opt

1,n,k,α,β,mem

k·NSA2,opt
1,n,1,α,β,mem

. Note that the optimizing

p is chosen independently for new algorithm and the conventional algorithm; this is
true in later formulas as well. This ratio tells us how much redundant work is done
by the new algorithm in order to achieve the best possible speedup.

5. The ratio k · T SA2,opt
1,n,1,0,0,mem/T

SA2,opt
1,n,k,α,β,mem of the time of the conventional algorithm run

on a machine with zero latency and infinite bandwidth (to “slow” memory) to the
time of the new algorithm. The time on a zero latency / infinite bandwidth machine
is a lower bound on what the new algorithm can achieve, so this ratio tells us well
our new algorithm has succeeded in avoiding most cost of accessing slow memory (the
ratio is less than 1, and the closer it is to 1, the better). It can also be interpreted as
the fraction of peak performance attained by the new algorithm.

6. The speedup k · T SA2,opt
b,n,1,α,β,mem/T

SA2,opt
b,n,k,α,β,mem of the new versus conventional algorithm

for a fixed n and varying k and stencil size b.

We now present the performance modeling results for SA2.

2D Stencil on OOC

Figure 2.33(a) shows that for every value of n modeled, a maximum speedup of 10.2
is attained by choosing k = 59. Indeed, the speedup is still increasing slowly at k = 59,
the largest value of k modeled, and so further speedups may be possible. Figure 2.33(c)
shows that for each n, increasing k from 1 to 59 raised the fraction of time spent in com-
putation from 2% to 18%. Since Figure 2.33(d) shows that this is accomplished without
ever increasing the number of flops by more than 1.05×, we know further speedup would be
limited to 1.05/.18 ≈ 5.8×. This same potential further speedup (actually the reciprocal,
.17) is also expressed in Figure 2.33(e), which shows the time of the conventional algorithm
running on a 0 latency / infinite bandwidth machine divided by the new algorithm’s running
time. Finally, Figure 2.33(f) shows that even higher speedups are possible for larger matrix
bandwidths b, up to 13.8× speedup for b = 3.

We note that our new sequential algorithm provides speedups that are more uniform
across values of n and b than our new parallel algorithm. The reason is that both the
number of arithmetic operations and the number of words transferred grow proportionally
to b2n2, making it always advantageous to avoid bandwidth costs.

80

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

(e) Slowdown vs conventional alg. with α = β = 0
(fraction of peak)

(f) Speedup as a function of matrix bandwidth (n =
220)

Figure 2.33: Plots for 2D stencil on OOC. Only odd k shown. For all n, choosing k = 59
yields a speedup of 10.2× and yields a fraction of peak of 17%, up from 2%

81

3D Stencil on OOC

The 3D case is broadly similar to the 2D case. Figure 2.34(a) shows that for every
value of n modeled, a maximum speedup in the range [7.39, 9.51] is attainable, where the
best k depends on n and varies in the range [23,43]. Figure 2.34(c) shows that for each n,
choosing the best k raised the fraction of time spent in computation from 2% to at least
21%. Figure 2.34(d) shows that this is accomplished without ever increasing the number
of flops by more than 1.57×. This potential fraction of peak is shown in Figure 2.34(e),
which lies in the range [14%,18%], up from 2%. Figure 2.33(f) shows that good speedups
are possible for larger matrix bandwidths b, but not as high as in the 2D case.

2D Stencil on CacheBlocked

Figure 2.35(a) shows that for every value of n modeled, a maximum speedup in the range
[2.45, 2.58] is attainable. Figure 2.35(c) shows that for each n, choosing the best k raised
the fraction of time spent in computation from 25% up to at least 71%. Figure 2.35(d)
shows that this is accomplished without ever increasing the number of flops by more than
1.14×. The fraction of peak is expressed in Figure 2.35(e), and is in the range [.62,.65] when
choosing the best value of k. Finally, Figure 2.35(f) shows that some speedups are possible
for larger matrix bandwidths b.

3D Stencil on CacheBlocked

Figure 2.36(a) shows that for every value of n modeled, a maximum speedup of 1.34×
to 1.36× is attainable, by choosing k = 3, Figure 2.36(c) shows that for each n, choosing
k = 3 raised the fraction of time spent in computation from 28% to 48%. Figure 2.36(d)
shows that this is accomplished by increasing the number of flops by 1.27×. This potential
fraction of peak is shown in Figure 2.36(e), and is 38%, up from 28%. Figure 2.36(f) shows
that speedups are not possible for larger matrix bandwidths b. The speedups in this case
are not as impressive as other cases because of the fast memory being too small (this is also
confirmed by the analytical model in Figure 2.16(b)). Figure 2.16(b) also tells us that even
doubling the fast memory size is not expected to give good gains.

82

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

(e) Slowdown vs conventional alg. with α = β = 0 (f) Speedup as a function of matrix bandwidth (n =
213)

Figure 2.34: Plots for 3D stencil on OOC. Only odd k shown. For all n the best k yields a
speedup in the range [7.39,9.51] and a fraction of peak in the range [14%,18%]

83

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

(e) Slowdown vs conventional alg. with α = β = 0 (f) Speedup as a function of matrix bandwidth (n =
216)

Figure 2.35: Plots for 2D stencil on CacheBlocked. For all n the best k yields a speedup in
the range [2.45,2.58] For all n the best k yields a fraction of peak in the range [.62,.65]

84

(a) Speedup (b) Optimal p

(c) Fraction of time in computation (d) Ratio of additional flops

(e) Slowdown vs conventional alg. with α = β = 0 (f) Speedup as a function of matrix bandwidth (n =
210)

Figure 2.36: Plots for 3D stencil on CacheBlocked. For all n the best k yields a speedup in
the range [1.34,1.36] For all n the best k yields a fraction of peak of .38.

85

2.8 Implementation of PA1, P2 and Out-Of-Core SA2

We implemented PA1 and PA2 for general sparse matrices in UPC [37]. We tested
our implementation on the UC Berkeley CITRIS cluster (Intel Itanium 2-based) and the
NERSC Jacquard cluster (AMD Opteron-based). However, since the network for these ma-
chines has low latency, there were no speedups from our parallel algorithms. Our sequential
implementation, however, shows good speedups. So, we report the performance results for
our implementation of SA2.

For the implementation of SA2, we needed to solve an ordering problem for the rows of
x and A in order to minimize the communication cost (Section 2.5.5). This minimization
problem corresponds to minimizing the number of words fetched from disk during the course
of the algorithm. We used a simple random sampling strategy to choose the best ordering
from a sequence of random orderings. This worked out well as the actual number of words
transferred between disk and main memory was close to the lower bound for SA2 (within
2%). Another level of reordering was done on a per-block basis in our implementation. This
allowed the computations in SA2 to be done as a sequence of k calls to separate, tuned
sparse matrix multiplication (SpMV) routines. In our implementation we used the OSKI
library [105].

We tested our implementation on the UC Berkeley CITRIS cluster—a cluster of Itanium
2 nodes each with a theoretical peak performance of 5.2 GFlops/s. Each node has 2 Itanium
processors with 4 gigabytes of memory per processor.

Our test problem was a matrix with a 27-point stencil on a 3D mesh (stored as a general
sparse matrix) with n = 368 and p = 64 (the choice of n was limited by the available disk
space). Thus the matrix had dimension 3683 = 49, 836, 032 with 27 nonzeros in most rows,
broken into 43 = 64 blocks of (368

4
)3 = 923 = 778, 688 rows each. The value of p was chosen

to optimize performance.
For accurate performance modeling, we used measured values for all important machine

parameters: time per floating point operation and disk bandwidth. The disk bandwidth
differs significantly for reads and writes, so we augmented our model to distinguish reads
and writes. Disk latency turned out to play a negligible role.

• tf = 3.12 ns (1/tf = 321 Mflops/s): This is the measured inverse flop rate for SA2.
This was taken as the median of the flop rates observed for the computational phases
in SA2.

• βr = 56 ns (1/βr = 143 MBytes/s): This is the measured inverse read bandwidth.

• βw = 240 ns (1/βw = 33 MBytes/s): This is the measured inverse write bandwidth.

Figures 2.37 and 2.38 show the results, both modeled and measured, which closely match.
Figure 2.37 breaks the total runtime down into computation and communication, and Fig-
ure 2.38 shows the speedup, which reaches 3.2× at k = 15, and is at least 3× for k ≥ 8.

We also compare the results to those on a hypothetical machine with infinite DRAM,
so that the entire computation can proceed in main memory. Such an algorithm obviously
provides an upper bound on our speed. We go from running 20× slower than this algorithm
at k = 1 to just 6× slower at k = 15 (these are measured values).

86

Figure 2.37: Measured vs. modeled performance for SA2 on an Itanium2 machine.

Figure 2.38: Measured vs. modeled speedup for SA2 on an Itanium2 machine.

87

1 8 10 13 18 20 23 28 30 33 404 5 6
x

(0)

x
(1)

x
(2)

x
(3)

(a) Parallel algorithm/explicit sequential algorithm for a tridiagonal matrix with n = 40, k = 3, p = 4. The
purple arrows indicate the dependence pattern for the tridiagonal matrix for some of the entries. The vertices
are colored by their affinities. The overlapping regions (the three triangles) indicate redundant computation.
Note that each trapezoid can be computed independently of each other, which means they can be computed
in any order sequentially or in parallel.

1 10 13 20 23 30 33 40
x

(0)

x
(1)

x
(2)

x
(3)

(b) Implicit sequential algorithm for a tridiagonal matrix with n = 40, k = 3, p = 4. The vertices are colored
by their affinities. The blocks have to be computed in a specific order—in this case, red first, followed by
magenta, green and then blue.

Figure 2.39: Our shared-memory algorithms illustrated on a tridiagonal matrix.

2.9 Shared Memory Algorithms for Multi-Cores

We now describe algorithms for matrix powers on multi-core platforms. This implemen-
tation was part of an effort to implement a communication-avoiding version of the GM-
RES [86], a widely used iterative solver for sparse systems of equations Ax = b. In contrast
to previous sections, we consider the Newton basis version of matrix powers. Nonetheless,
we still use the monomial basis version for the purpose of examples.

To motivate our shared-memory algorithms, we reconsider the simple case when the
matrix A is tridiagonal (the dependency graph of the vectors is shown in Figure 2.39).

Let x
(i)
j be the j-th component of x(i) = (A − λiI) · · · (A − λ1I)x

(0). Although not shown
throughout the figure, each entry depends on the one below it and its two neighbors, e.g.,
x
(1)
5 depends on x

(0)
4 , x

(0)
5 and x

(0)
6 as shown by purple arrows in Figure 2.39. The vectors

and the rows of the matrix are partitioned into p = 4 blocks. In the parallel algorithm,
each block resides on a different processor and in case of a sequential algorithm, the blocks
are computed one at a time. Consider the green colored block in Figure 2.39(a). For the
parallel algorithm, if one processor has the entries of x(0) numbered from 18 to 33 (the base
of the third trapezoid), then we can compute all the green entries—the non-green entries
will need to be explicitly fetched from other blocks. Thus, instead of fetching non-green
entries for every x(i), we fetch them only once, which improves performance by reducing the
number of inter-processor messages. However, we will be computing extra entries, which
do not reside on the green partition, e.g., entries 19, 20, 31, 32 of x(1)—this constitutes
redundant computation. The explicit sequential algorithm emulates the parallel algorithm
by iterating over blocks (each block fits in fast memory) and computing on a block in the

88

Parallel Algorithm Explicit Sequential Implicit Sequential
(code for proc. q) Algorithm Algorithm

copy entries in R(Vq, k)
(0) −

V
(0)
q from shared memory to

ghost zone
for i = 1 to k do

compute all x
(i)
j ∈

R(Vq, k)
(i)

for q = 1 to p do
copy entries in R(Vq, k)

(0) −
V

(0)
q from slow memory to

ghost zone
for i = 1 to k do

compute all

x
(i)
j ∈ R(Vq, k)

(i)

C = ∅ {C = set of computed
entries}
for q = 1 to p do

for i = 1 to k do
compute all

x
(i)
j ∈ R(Vq, k)

(i) − C

C ← C ∪R(Vq, k)
(i)

Figure 2.40: Shared memory algorithms for the matrix powers kernel.

same manner as the parallel algorithm. In the explicit sequential algorithm, the benefits are
even more significant, because we are reading the matrix A from slow memory just a little
more than once. However, because we perform redundant flops, some of the entries of A
are fetched more than once from slow memory. If the number of redundant flops is small,
we are effectively reading the matrix only once, whereas the näıve strategy would have read
the matrix k times, which translates to a potential speedup of k if the näıve algorithm is
memory bound.

Next we consider the implicit sequential algorithm (illustrated in Figure 2.39(b)), which
has no redundant flops. We improve upon the explicit sequential algorithm by only com-
puting entries which have yet not been computed. In contrast to the explicit sequential
algorithm, which used explicit copies of the entries on other blocks, the implicit algo-
rithm maintains no such copies, which is why we do not see overlapping trapezoids in
Figure 2.39(b).

2.9.1 Parallel Algorithm

Our parallel algorithm (Figure 2.40) for shared-memory multicore machines is a sim-
plification of PA1 discussed in Section 2.4. Due to the shared memory model, processors
do not need to use explicit sends; the required data can be simply pulled from the shared
memory. Each block is assumed to reside on a different processor. We illustrate the parallel
algorithm on the symmetric matrix A whose graph is described in Figure 2.41(a). Letting q
denote the central block, the red and black vertices constitute R(Vq, 1)

(0), whereas the blue,
green, red and black constitute R(Vq, 3)

(0). These vertices, which are not local to the block,
constitute the ghost vertices for the block.

Figure 2.41(b) shows that ordering the local and ghost entries in increasing order of
distance from the local vertices enables the use of highly optimized SpMV routines. Local
vertices (colored black) go first, followed by the ghost entries within distance 1 (colored red),
followed by ghost entries within distance 2 (colored green), and so on. Given this ordering,
one can use SpMV to compute the entries at level i. Computation of a higher level i + 1
requires SpMV involving a smaller set of contiguous block of rows of a matrix and a vector.
This is aptly shown by the set of equations in Figure 2.41(b).

89

(a) Example general graph. For
computing the central block the
red vertices from x(0) are needed
when k = 1, red and green, when
k = 2 and red, green and blue
when k = 3.

B1

B2

B3

R(Vq, 3)
(1) =

B1 0 0
B2 0
B3

·R(Vq, 3)
(0)

R(Vq, 3)
(2) =

B1 0
B2

·R(Vq, 3)

(1)

R(Vq, 3)
(3) = B1 ·R(Vq, 3)

(2)

(b) Ordering the vertices for the parallel and explicit sequential algo-
rithm when k = 3. At any level, the vertices are ordered in increasing
order of distance from the local vertices (colored black). B1, B2 and
B3 are sparse matrices derived from the original matrix A by restrict-
ing it to the corresponding set of local and ghost rows, e.g., B2 says
how to compute the red vertices of x(i) given the black, red and green
vertices of x(i−1). When the matrix A is symmetric, the columns of
B3 corresponding to the black nodes would be all zeros.

Figure 2.41: An example sparse matrix and an illustration of how its rows may be ordered
for the parallel and the explicit sequential algorithms.

2.9.2 Sequential Algorithms

Figure 2.40 shows both sequential algorithms: explicit and implicitly cache-blocked.
One contrast to the explicit sequential algorithm SA2 in Section 2.5 is that we do not need
to explicitly fetch or store the entries in the current cache block. Since we are targeting
cache-based architectures, this is done implicitly by the hardware. Furthermore, this also
implies that we only need to keep two vectors in cache (and the matrix rows) instead of all
k + 1 of them: once a vector has been used to compute the entries at the next level, it is
no longer needed. Thus, when R(Vq, k)

(i−1) has been used to compute R(Vq, k)
(i), it is no

longer needed for computations in block q for higher levels. Thus, not only can the cache
block partitions be larger, the amount of redundant computation is also reduced, since fewer
blocks means less redundant computation. The example in Figure 2.39(a) illustrates the
explicit sequential algorithm the same way as the parallel algorithm.

As evident in Figure 2.40, the implicitly cache-blocked algorithm performs no extra flops.
This has the potential advantage when k is large enough to result in significantly fewer flops
than the explicit sequential algorithm, and can provide speedups over the näıve algorithm
even when the explicit sequential algorithm does not. However, this improvement comes at
the cost of bookkeeping to keep track of which entries need to be computed when looking
at a given level of block q, i.e., the computation schedule. The computation schedule also
includes the order in which the blocks are traversed, thus making the implicit algorithm
more sensitive to the block ordering when compared to the explicit sequential algorithm.
Finally, we note that a good ordering of entries within each block as well as an ordering of
the blocks are useful in improving locality of accesses when looking at entries in other blocks
as well as improving reuse of already computed entries. Both these ordering problems can

90

Explicit Cache-Blocked Parallel Implicit Cache-Blocked Parallel
Algorithm (Code for proc. q) Algorithm (Code for proc. q)

for m = 1 to bq do

fetch entries in R(Vq,m, k)(0)−V (0)
q,m to ghost

zone
for i = 1 to k do

compute all x
(i)
j ∈ R(Vq,m, k)(i)

C = ∅ {C = set of computed entries}
fetch entries in R(V

(0)
q , k)−V

(0)
q to ghost zone

for m = 1 to bq do
for i = 1 to k do

compute all x
(i)
j ∈ R(Vq,m, k)(i) − C

C ← C ∪R(Vq,m, k)(i)

Figure 2.42: Implemented hybrid algorithms.

be formulated as instances of the Traveling Salesman problem [31]. However, we leave the
incorporation of solutions of these Traveling Salesman problems as future work.

2.10 Multi-Core Implementation

In Section 2.8, we focused on a sequential out-of-core implementation, where the gap
between bandwidth and computational capability is especially large. This section demon-
strates that significant improvements are possible even for a multi-core out-of-cache imple-
mentation. Performance data on an 8-core 2.33 GHz Intel Clovertown shows speedups for
computing W of up to 2.7× over k calls to the best optimized algorithm just for a single
sparse matrix-vector multiplication (SpMV, or A · x).

Because of the hierarchical memory structure of multi-cores, our matrix powers imple-
mentation is hierarchical: it uses the parallel algorithm on the outer level, i.e., for multiple
cores, and a sequential algorithm at the inner level, i.e., for off-chip data movement. Thus,
the matrix is thread-blocked first for the parallel algorithm and then cache-blocked within
each thread. To this end, it is useful to introduce additional notation. We now define the
affinity of a vertex as a pair (q, b), in which q is the thread number and b is the cache block
number on thread q. Given this definition, Vq means the set of vertices on thread q and Vq,b

would be the set of vertices in cache block b on thread q. For thread q, we let bq denote the
number of cache blocks for that thread.

Figure 2.42 describes both cases of whether the inner sequential algorithm is explicit or
implicit. We distribute the cache blocks to different threads in a balanced manner. For the
implicit implementation, we note that it performs redundant flops when compared to the
implicit sequential algorithm in Figure 2.40—these extra flops are due to parallelization at
the outer level. Therefore, the computation schedule for the implicit algorithm must also
account for computing the ghost entries.

One reason we describe both the explicit and implicit algorithms is because there is no
clear winner between the two—the choice depends on the nonzero pattern of the matrix. The
explicit algorithm has a memory access pattern which does not go beyond the current block
after the data has been fetched in to the ghost zones and also admits the use of the cache
bypass optimization. Because of the explicit copy of the entries on neighboring cache blocks,
contiguous blocks of data are computed at each level. However, the number of redundant

91

Explicit Parallel Algorithm Using Cache Bypass (Code for proc. q)

{Vectors z0, z1 have size
bq

max
m=1
|R(Vq,m, k)(1)| to store any R(Vq,m, k)(i) (1 ≤ i ≤ k)}

for m = 1 to bq do

fetch entries in R(Vq,m, k)(0) − V
(0)
q,m to ghost zone

compute all rows in R(Vq,m, k)(1) using R(Vq,m, k)(0) and store in z0

copy from z0 (in cache) to x
(1)
q,m (in slow memory) using cache bypass

for i = 2 to k do
compute all rows in R(Vq,m, k)(1) using zi mod 2 and store in z(i+1)mod 2

copy z(i+1)mod 2 (in cache) to x
(i)
q,m (in slow memory) using cache bypass

Figure 2.43: Explicit implementation with cache bypass optimization.

flops for the explicit algorithm can increase dramatically for matrices A whose powers Ai

grow quickly in density, resulting in no performance gains. The implicit algorithm, on the
other hand, only has redundant flops due to parallelization at the outer level. Since the
number of threads is typically small, the number of redundant flops is expected to grow
slowly for the implicit algorithm. However, the memory accesses for the implicit algorithm
can span multiple cache blocks, making it more sensitive to the ordering in which the cache
blocks are computed/stored. Furthermore, the implicit algorithm has a higher overhead
resulting in performance degradation if the kernel is memory bound. In general, if the
matrix density grows slowly with the power, then the explicit algorithm is better, otherwise
the implicit algorithm is expected to win.

2.10.1 Optimizations

In addition to the algorithmic optimizations discussed earlier in Section 2.9, we also
implement additional low-level optimizations to get good performance. Some of these op-
timizations are borrowed from a highly optimized SpMV implementation [113], which also
serves as the baseline for our performance comparisons. We implement the usual optimiza-
tions for sparse matrix computations and storage [113]: branch elimination, SIMD intrinsics,
register tiling, and shorter integer types for the indices, as well as additional optimizations.
Since hand-coding the computational kernels can be tedious and time consuming, we use
code generators in the same manner as in [113]. Given the difficulty of deciding the right
optimizations and parameters, our implementation has an auto-tuning phase where it bench-
marks the input matrix to figure out the right data structures and optimization parameters.
These are described below:

Partitioning strategy: We use a recursive algorithm which first creates partitions the
vectors among the threads, and then recursively creates cache blocks for each thread. The
recursion stops when the current cache block is small enough to fit in the thread cache. For
creating the partitions at each recursion level, we either use METIS [58] or sub-partition
the current partition into contiguous blocks, with equal work in each sub-partition. When
METIS is used, the matrix and the vectors need to be permuted to make each thread block
and cache block contiguous. Using METIS can result in lower inter-block communication
and lower flops/block. However, this benefit due to METIS can be offset by a more irregular

92

1d 3-pt 1d 5-pt 2d 9-pt marcat

Tridiagonal matrix Pentadiagonal matrix 9-pt operator on 2D mesh Impatient customers

on telephone exchange

(1M, 3M, 3) (1M, 5M, 5) (1M, 9M, 9) (547K, 2.7M, 5)

bmw cant cfd mc2depi

Stiffness matrix FEM cantilever Pressure matrix 2D Markov model

of epidemic

(141K, 7.3M, 51) (62K, 4M, 65) (123K, 3.1M, 25) (525K, 2.1M, 4)

gearbox pwtk shipsec xenon

Aircraft flap actuator Pressurized wind tunnel FEM ship section/detail Complex zeolite,

stiffness matrix sodalite crystals

(153K, 9.1M, 59) (218K, 12M, 55) (141K, 7.8M, 55) (157K, 3.9M, 25)

Table 2.5: Each matrix is described by its spyplot, name, description and the triple showing
(#rows, #nonzeros, #nonzeros/#rows).

memory access pattern due to the permutation, particularly for the implicit algorithm, where
memory accesses can be spread over multiple cache blocks. Thus, the decision of whether to
use METIS or not is made during the auto-tuning phase by actually timing both partitioning
strategies.

Inner sequential algorithm: Since the choice of whether to use the explicit or the implicit
implementation depends on the matrix nonzero pattern, we make the decision by timing
during the auto-tuning phase.

Register tile size: Register tiling a sparse matrix can reduce the required slow memory
bandwidth [113] or improve instruction throughput [104]. Since SpMV is typically memory
bound on modern multi-core platforms, heuristics which try to minimize memory footprint
of the matrix are sufficient [113]. However, the arithmetic intensity (i.e., the flops to DRAM
byte ratio) of the matrix powers kernel can increase with k, making it computation bound.
Since use of a larger register tile can mean extra flops, performance can degrade when the
kernel is computation bound. Therefore, we auto-tune to decide whether a larger register
tile should be used or not. Note that for the implicit implementation, the register tiles must

93

be square because we need to track the dependencies between same-sized groups of vertices.
Cache bypass optimization: For the case of the explicit implementation, we note that

although we compute extra entries in the ghost zones, they do not need to be written back
to slow memory. Furthermore, we do not need to keep all the k+1 vectors in a given cache
block in cache; only the vectors at the current level being computed and the level below
need to be in cache. Thus, we compute by cycling over two buffers, which are always in
cache: one buffer is used to compute the current level, and the other holds the previous
level. Once the current level has been computed, we copy the buffer to the vector in slow
memory by bypassing the cache (using SIMD intrinsics, e.g., the mm stream pd intrinsic
on Intel machines). This optimization is particularly useful in reducing memory traffic
on write-allocate architectures, like the one in this work. Without cache bypass, due to
write-allocate behavior, each output vector will contribute twice the bandwidth: once for
allocating cache lines when being written, and again when it is evicted from cache while
computing the next cache block. Furthermore, since all the rows in V

(i)
q,m for level i on cache

block m of thread q are stored contiguously, this copy to slow memory is cheap. Figure 2.43
shows the explicit cache-blocked parallel algorithm with cache bypass optimization. Note
that this optimization cannot be applied to the implicit algorithm because memory accesses
can span multiple blocks.

Stanza encoding: This is a memory optimization to minimize the bookkeeping overhead
for the implicit implementation. Note that we need to iterate through the computation
sequence for each level on each block. We encode the computation sequence as a sequence
of contiguous blocks (stanzas)—each contiguous block is encoded by its starting and ending
entries. Since we stream through the computation sequence, this optimization can improve
performance by reducing the memory bandwidth. We also try to use fewer bits for encoding
these stanzas when possible to further reduce the overhead.

Software prefetching: Software prefetching can be particularly useful for a memory-
bound kernel like SpMV. However, the prefetch distance and strategy depends both on the
algorithm (implicit and explicit algorithms have different data structures implying different
software prefetch strategies) and the matrix. Thus, the right software prefetch distances are
chosen during the auto-tuning phase. Since software-prefetching is a streaming optimization,
it was found to be useful only for k = 1, where there is no reuse of the matrix entries.

2.10.2 Auto-tuning Matrix Powers

Algorithm 2.15 shows the auto-tuner at a high-level. Since we perform an exhaustive
exploration of the search space, the auto-tuner loop is deeply nested. One simple pruning
strategy which is implemented in the auto-tuner is that we avoid benchmarking a matrix
powers configuration if it performs too many flops or has a large memory footprint—we do
this by counting the flops and the minimum memory footprint before actually benchmarking
a configuration. Not only does this pruning strategy avoid benchmarking poorly performing
configurations, it also avoids crashing the machine when the memory footprint is too large—
this can happen if k is large for a poorly partitioned matrix.

94

Algorithm 2.15 Auto-tuner for the matrix powers kernel.

for k = 1, 2, . . . do
for all partitioner in possible partitioners do
for all possible values of nthreads, cachesize do
generate the partition data (map from rows to partition id)

for all partition in generated partitions do
for sequential algorithm = implicit, explicit do
count flops, bytes
if flops or bytes large then
continue

else
for each cache block (if explicit) / thread block (if implicit) do
choose best register tile using SpMV heuristic
for cyclic buf. opt. (exp.)/stanza enc. (imp.) enabled = 0,1 do
encode computation schedule accordingly
for all possible software prefetch strategies do
benchmark matrix powers with the right parameters

use the best performing parameter values for the input matrix

2.10.3 Results

We now describe the performance results of our matrix powers kernel on our target
platform—an Intel Clovertown. We consider two cases—one in which all the λi’s are zero and
the other in which all of them are non-zero. As baselines, we shall consider the performance
of the matrix powers kernel for k = 1, which constitutes the näıve algorithm. We emphasize
that the ‘näıve ’ algorithm uses a highly optimized SpMV implementation [113] for the λ = 0
case (and appropriately modified when λ 6= 0). For speedup calculation, the time taken for
the matrix powers kernel is normalized by dividing by k and compared with the time taken
for a single SpMV, i.e., the näıve algorithm. Thus, the speedup is defined as

time(matrix powers kernel for [p1(A)x, . . . , pk(A)x])/k

time(SpMV)
.

Platform Summary

Our target machine for this work was an 8-core 2.33 GHz Intel Clovertown. It has
a total of 16 MB of on-chip L2 caches, with a 4 MB L2 cache shared by every 2 cores.
Each core is capable of executing 4 double-precision flops every cycle, which implies a peak
performance of 75 double-precision GFlop/s. However, because of the overheads associated
with sparse matrix storage, performance of an in-cache SpMV computation (for a dense
matrix in CSR format) is small: 10 GFlop/s. Note that this in-cache performance number
incurs no DRAM (which is the slow memory) bandwidth cost, since all the data fits in
cache. Thus, 10 GFlop/s is an upper bound on the raw flop rate achievable (i.e., including
redundant computation) when the register tile size is 1×1. However, this upper bound only

95

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

0

2

4

6

8

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

4.6×

4.5×

33

33

E

E

5.7×

5.7×

31

31

E

E

3.2×3.2×
9 10

E I

1.7×

1.8×
3

4
I

I

1.8×1.8×
4 4
I I

1.2×

1.2×
3

4
I

I

1.7×1.7×
3 3
I I

2.1×2.1×
5 5
I I

1.3×1.4×
3 3
I I

2.6×

2.7×

12

13

E

I
2.3×

2.3×

14

14

E

E

1.3×
1.3×

3
3

I
I

1d 3-pt 1d 5-pt 2d 9-pt bmw cant cfd gearbox pwtk shipsec marcat mc2depi xenon

Upper bound
Our implementation
SpMV

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

λ
=

0

λ
6=

0

0%

20%

40%

60%

80%

F
ra

c
ti
o
n

o
f
in

-c
a
c
h
e

1
×

1
C

S
R

p
e
rf

.

Figure 2.44: Performance of the matrix powers kernel on Intel Clovertown. The yellow bars
indicate the best performance over all possible k. Each bar is annotated with some of the
parameters for the best performance: whether implicit/explicit (indicated by ‘I’ or ‘E’ at the
top), the corresponding value of k (just below the ‘I’ or ‘E’) and the speedup with respect to
the näıve implementation (just below this), which is the highly optimized SpMV code. The
label ‘λ = 0’ indicates the case when all λis are 0, whereas the label ‘λ 6= 0’ indicates the
case when all λis are nonzero. The label ‘upperbound’ indicates the performance predicted
by scaling the näıve performance by the change in arithmetic intensity (Equation 2.6).
Note that the runtimes for λ = 0 and λ 6= 0 cases are the same since they transfer the
same number of bytes. We can see a big variation in performance as well as speedups over
different matrices.

applies to the λ = 0 case. For λ 6= 0, we must scale the upper bound on a per-matrix basis
in proportion to the increase in arithmetic intensity, i.e., the upper bound for a matrix with

m rows and nnz nonzeros is 10 ·
(

1 +
m

nnz

)

GFlop/s.

Matrices

In addition to matrices whose graphs are meshes, which are expected to perform well [31],
we selected sparse matrices from a variety of real applications [48] (see Table 2.5). Since
cache-blocking is only going to benefit when the matrix or vectors do not fit in cache, we
deliberately chose matrices with enough nonzeros. Since METIS only works on symmetric
matrices, we use METIS to partition A+AT when the matrix A has an asymmetric nonzero
pattern (matrices marcat, mc2depi and xenon).

Performance Results

Figure 2.44 shows the performance of the matrix powers kernel for different matrices.
As expected, the speedups for the mesh matrices 1d 3-pt, 1d 5-pt and 2d 9-pt are quite
good due to the regularity of memory accesses, even though their näıve performances are

96

among the lowest. We note that the performance of the λ 6= 0 kernel was better than that
for λ = 0 kernel simply because it performed additional flops at no extra bandwidth, i.e.,
it had a higher arithmetic intensity. This difference is marginal when the average number
of nonzeros per row of the matrix is large, e.g., the pwtk matrix, but is significant when it
is small, e.g., the 1d 3-pt matrix. Since the matrix powers kernel was bandwidth-limited
even for the best performance, both the λ = 0 kernel and λ 6= 0 kernel had almost the same
runtime because they had the same bandwidth.

Note that SpMV performance and the best matrix powers kernel performance across the
different matrices is quite different. Therefore, even though 1d 5-pt had the second lowest
SpMV performance, it was able to achieve the best matrix powers kernel performance. In
fact, cfd, which had the best SpMV performance, gains the least from our implementation.
We also note that although we get more than 2× speedups for some of the matrices, we
are still far below the upper bound of 10 GFlop/s. As a special case, we note that the
optimal performance of 1d 5-pt required 2×2 register tiling, which has an upper bound of
16 GFlops/s on raw performance. Figure 2.44 also shows another per-matrix upper bound
on performance corresponding to the optimal k, which was calculated as

arithmetic intensity(matrix powers)

arithmetic intensity(SpMV)
· performance(SpMV), (2.6)

i.e., by scaling the näıve performance by the factor of increase in arithmetic intensity. Note
that the other upper bound of 10 GFlop/s on raw flop rate did not kick in for any of
the matrices, i.e., the upper bound by scaling with arithmetic intensity was lower than 10
GFlop/s. We observe that the performance is within 75% of this bound for nicely structured
matrices like 1d 3-pt, 1d 5-pt and 2d 9-pt. However, for the rest of the matrices the gap
between the upper bound and the measured performance can be quite large—sometimes
as much as 60%. For some of the matrices like marcat and mc2depi part of this difference
comes from the reduced instruction throughput due to the explicit copy for the cache bypass
optimization. Since the ratio nonzeros/row for these matrices is small, the cost of copying
is significant. It is also interesting to note that the implicit algorithm provided the best
speedups for most of the matrices. In fact, the explicit algorithm failed to obtain any
speedups at all for matrices like bmw and xenon because the increase in redundant flops was
significant.

As we stated earlier, our implementation has an auto-tuning phase where it figures out
the right inner algorithms and other parameters. Figure 2.45 serves to illustrate why we
need to auto-tune. We show performance for three of the matrices—cant, mc2depi and
pwtk. We can see that the use of METIS to partition, which resulted in the rows of the
matrix and the vectors being reordered, did not always improve performance. For example,
for mc2depi reordering improved performance for the explicit algorithm whereas it decreased
performance for the implicit algorithm. In fact, for cant, reordering degrades performance
significantly. We also note that the implicit algorithm provided good speedups for cant and
pwtk, whereas the explicit algorithm was actually worse off for k > 1. The fact that the
density of cant and pwtk grew quickly with k is also demonstrated by their relatively small
optimal k = 4. In contrast, performance of mc2depi improved for a larger range of k.

97

Figures 2.46-2.55 show the performance for different matrices. For each figure, the (a)
subplot shows performance and the (b) subplot shows the computed arithmetic intensity as
k and other parameters are varied. Note that the computed arithmetic intensity is an upper
bound on the achieved arithmetic intensity as the achieved memory traffic may be more
than the computed minimum memory traffic. We see that different matrices show different
trends in performance as k is varied. This reaffirms the need for run-time tuning for matrix
powers.

98

1 2 3 4 5
k

0

0.5

1

1.5

2

2.5

3

3.5

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

cant: 62K rows, 4M nnz (65 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) Performance vs. k for the matrix cant

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

0.5

1

1.5

2

2.5

3

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

mc2depi: 525K rows, 2.1M nnz (4 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) Performance vs. k for the matrix mc2depi

1 2 3 4 5 6 7
k

0

0.5

1

1.5

2

2.5

3

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

pwtk: 218K rows, 12M nnz (55 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(c) Performance vs. k for the matrix pwtk

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

0.5

1

1.5

2

2.5

3

3.5

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

2d 9-pt: 2D 9-pt stencil (1M rows, 9M nnz)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(d) Performance vs. k for the matrix 2d

9-pt

Figure 2.45: Variation of performance with k and tuning parameters for some matrices.
‘Explicit’ and ‘Implicit’ indicate whether the cache-blocking was explicit or implicit respec-
tively. ‘Reordered’ indicates that METIS was used to partition the rows of the matrix and
the vectors, resulting in them being reordered. The missing points for some of the k values
correspond to when the number of redundant flops was so large that no performance gains
were possible, so those cases were not timed at all.

99

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

0.5

1

1.5

2

2.5

3

3.5

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)
2d 9-pt: 2D 9-pt stencil (1M rows, 9M nnz)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) 2D 9-pt: performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
lo

p
:B

y
te

R
a
ti
o

2d 9-pt: 2D 9-pt stencil (1M rows, 9M nnz)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) 2D 9-pt: arithmetic intensity

Figure 2.46: Matrix powers performance and achieved arithmetic intensity for 2D 9-pt.
Since 2D mesh partitions well, we see performance improvements even for k as large as
10. Also, since the surface-to-volume ratio is small even for large k, explicit cache blocking
performs better than implicit cache blocking due to lower instruction and memory overheads.

1 2 3 4 5
k

0

0.5

1

1.5

2

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

bmw: 141K rows, 7.3M nnz (51 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) bmw: performance

1 2 3 4 5
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
lo

p
:B

y
te

R
a
ti
o

bmw: 141K rows, 7.3M nnz (51 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) bmw: arithmetic intensity

Figure 2.47: Matrix powers performance and achieved arithmetic intensity for bmw. Since
the matrix doesn’t partition well and its powers grow rapidly with k, implicit cache blocking
was required to get performance improvements. Note that METIS was required to get a
good partitioning—the plots labeled “reordered” had better performance.

100

1 2 3 4 5
k

0

0.5

1

1.5

2

2.5

3

3.5

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

cant: 62K rows, 4M nnz (65 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) cant: performance

1 2 3 4 5
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
lo

p
:B

y
te

R
a
ti
o

cant: 62K rows, 4M nnz (65 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) cant: arithmetic intensity

Figure 2.48: Matrix powers performance and achieved arithmetic intensity for cant. In-
terestingly, METIS found a worse partition as compared to the simple strategy of scanning
row and row and creating partitions.

1 2 3 4 5
k

0

0.5

1

1.5

2

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

cfd: 123K rows, 3.1M nnz (25 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) cfd: performance

1 2 3 4 5
k

0

0.1

0.2

0.3

0.4

0.5

F
lo

p
:B

y
te

R
a
ti
o

cfd: 123K rows, 3.1M nnz (25 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) cfd: arithmetic intensity

Figure 2.49: Matrix powers performance and achieved arithmetic intensity for cfd. The
performance here degrades for all k > 1 and METIS along with implicit algorithm was
needed to get the benefit of matrix powers.

101

1 2 3 4 5
k

0

0.5

1

1.5

2

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

gearbox: 153K rows, 9.1M nnz (59 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) gearbox: performance

1 2 3 4 5
k

0

0.1

0.2

0.3

0.4

0.5

0.6

F
lo

p
:B

y
te

R
a
ti
o

gearbox: 153K rows, 9.1M nnz (59 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) gearbox: arithmetic intensity

Figure 2.50: Matrix powers performance and achieved arithmetic intensity for gearbox.
Due to the high surface-to-volume ratio for smaller partitions, the explicit algorithm per-
forms poorly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

0.5

1

1.5

2

2.5

3

3.5

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

marcat: 548K rows, 2.7M nnz (5 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) marcat: performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
lo

p
:B

y
te

R
a
ti
o

marcat: 548K rows, 2.7M nnz (5 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) marcat: arithmetic intensity

Figure 2.51: Matrix powers performance and achieved arithmetic intensity for marcat. This
matrix partitioned well which is why the performance kept on increasing for relatively large
k and the explicit algorithm worked well.

102

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

0.5

1

1.5

2

2.5

3

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

mc2depi: 525K rows, 2.1M nnz (4 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) mc2depi: performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k

0

0.1

0.2

0.3

0.4

0.5

F
lo

p
:B

y
te

R
a
ti
o

mc2depi: 525K rows, 2.1M nnz (4 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) mc2depi: arithmetic intensity

Figure 2.52: Matrix powers performance and achieved arithmetic intensity for mc2depi.
This matrix also partitioned well with METIS which is why the performance kept on increas-
ing until k = 15. The sudden drop in arithmetic intensity for k = 10 is due to significant
increase in the number of cache blocks.

1 2 3 4 5 6 7
k

0

0.5

1

1.5

2

2.5

3

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

pwtk: 218K rows, 12M nnz (55 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) pwtk: performance

1 2 3 4 5 6 7
k

0

0.2

0.4

0.6

0.8

1

F
lo

p
:B

y
te

R
a
ti
o

pwtk: 218K rows, 12M nnz (55 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) pwtk: arithmetic intensity

Figure 2.53: Matrix powers performance and achieved arithmetic intensity for pwtk. This
matrix has a high surface-to-volume ratio which is why the explicit algorithm performs
poorly.

103

1 2 3 4 5
k

0

0.5

1

1.5

2

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

shipsec: 140K rows, 7.8M nnz (55 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) shipsec: performance

1 2 3 4 5
k

0

0.1

0.2

0.3

0.4

0.5

0.6

F
lo

p
:B

y
te

R
a
ti
o

shipsec: 140K rows, 7.8M nnz (55 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) shipsec: arithmetic intensity

Figure 2.54: Matrix powers performance and achieved arithmetic intensity for shipsec.
Interestingly, METIS computed a poorer partition for SpMV (k = 1) which resulted in
decrease in performance. However, for k > 1, the use of METIS provided a good partitioning
which improved the performance for the implicit algorithm.

1 2 3 4 5
k

0

0.5

1

1.5

2

P
e
rf

o
rm

a
n
c
e

(G
F

lo
p
/s

)

xenon: 157K rows, 3.9M nnz (25 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(a) xenon: performance

1 2 3 4 5
k

0

0.1

0.2

0.3

0.4

0.5

F
lo

p
:B

y
te

R
a
ti
o

xenon: 157K rows, 3.9M nnz (25 nnz/row)

Explicit
Explicit, Reordered
Implicit
Implicit, Reordered

(b) xenon: arithmetic intensity

Figure 2.55: Matrix powers performance and achieved arithmetic intensity for xenon. Just
like shipsec, METIS reordering decreased the partition quality for k = 1 but provided
performance improvements for k > 1.

104

2.11 Integration of Matrix Powers in GMRES

This section briefly describes our Communication-Avoiding GMRES (CA-GMRES) al-
gorithm for iterative solution of a nonsymmetric system of linear equations Ax = b. It
produces results that are mathematically equivalent to GMRES described in [86], but com-
putes them differently. Nevertheless, it was designed with numerical stability in mind and
converges in the same number of iterations as standard GMRES for a large suite of test
problems.

As Section 2.10.3 showed, the sparse matrix structure often limits the best choice of
k. Some numerically challenging problems also limit k for stability reasons. Restarting
GMRES with a small k can slow or even stagnate convergence. Our CA-GMRES solves this
problem by being able to continue the iteration without restarting, for multiple groups of
k steps. If we perform t groups of k steps each, the resulting “CA-GMRES(k,t)” algorithm
is mathematically equivalent to standard GMRES with a restart length of m = k · t. In
general, the algorithm does not require that the restart length m be a multiple of k, but we
chose it this way for simplicity of explanation and implementation.

Before we describe CA-GMRES, we briefly describe the other key kernels mentioned in
Section 2.1.

2.11.1 Orthogonalization

GMRES often takes as long or longer to orthogonalize the basis vectors as it does to
perform the sparse matrix-vector products. Common implementations of standard GMRES
orthogonalize using Modified Gram-Schmidt (MGS). However, MGS communicates (reads
and writes the vectors, and passes messages between processors) a factor of k times more
than the lower bound, over k iterations of GMRES [33]. Furthermore, the data dependencies
in MGS GMRES force it to use the least optimal BLAS 1 version of MGS. Walker’s version
of GMRES orthogonalizes using Householder QR10 [108], but this communicates about as
much as MGS does. Optimization matters because for the matrices in our test suite, the
runtime of LAPACK’s QR factorization for matrices with as many rows as the sparse matrix
and ≈ k columns was comparable to the runtime of our matrix powers kernel. One expects
this for most sparse matrices being solved by GMRES.

Communication-Avoiding GMRES replaces traditional orthogonalization procedures with
two kernels. The first is called Block Gram-Schmidt (BGS), and it orthogonalizes the k+ 1
basis vectors generated by the matrix powers kernel, against all previous basis vectors. The
second kernel, called Tall Skinny QR (TSQR), makes those k + 1 basis vectors orthogonal
with respect to each other. Combined, these two kernels do the work of updating a QR
factorization with new columns.

When using TSQR and BGS in CA-GMRES with a restart length of 60, TSQR and
BGS treated together as an orthogonalization kernel achieved a speedup of nearly 4× over

10Householder QR is an algorithm for computing the QR factorization of a matrix. It involves processing
the matrix column by column, computing an orthogonal transform called a Householder reflector for each
column.

105

the MGS orthogonalization used by standard GMRES. TSQR is also faster than LAPACK’s
QR factorization and better able to exploit parallelism. Both TSQR and BGS move asymp-
totically less data between levels of the memory hierarchy than MGS. Also, BGS consists
almost entirely of DGEMM operations, unlike MGS. A further advantage is that TSQR and
BGS can work with the cache-blocked format of the basis vectors in CA-GMRES without
needing to copy the blocks into contiguous vectors, as would be required if using LAPACK
or ScaLAPACK QR. In this regime, copying has a significant overhead.

Tall Skinny QR (TSQR) Factorization

The TSQR factorization described in this work is a hybrid of the sequential and parallel
TSQR algorithms described in Demmel et al. [33]. It begins with an m × n matrix with
m≫ n, divided into blocks of rows. In our case, each block consists of those components of
a cache block from the matrix powers kernel that do not overlap with another cache block.
TSQR distributes the blocks so the P processors get disjoint sets of blocks. (If running on
a NUMA11 system, this distribution can be arranged to respect memory locality.) Then,
each processor performs sequential TSQR on its set of blocks in a sequence of steps, one per
block. Each intermediate step requires combining a small n× n R factor from the previous
step with the current block, by factoring the two matrices “stacked” on top of each other.
We improve the performance of this factorization by a factor of about two by performing it
in place, rather than copying the R factor and the current cache block into a working block
and running LAPACK’s standard QR factorization on it. The sequential TSQR algorithms
running on the P processors require no synchronization, because the cores operate on disjoint
sets of data. Once all P processors are done with their sets of blocks, P small R factors
are left. The processors first synchronize, and then one processor stacks these into a single
nP × n matrix and invokes LAPACK’s QR factorization on it. As this matrix is small for
P and n of interest, parallelizing this step is not worth the synchronization overhead. The
result of this whole process is a single n × n R factor, and a Q factor which is implicitly
represented as a collection of orthogonal operators. Assembling the Q factor in explicit form
uses almost the same algorithm, but in reverse order.

Our implementation of TSQR spends most of its time in a custom Householder QR
factorization that exploits the structure of matrices in intermediate steps. However, it does
call LAPACK’s QR factorization at least once per processor. We implemented TSQR us-
ing the POSIX Threads (Pthreads) API with a SPMD-style algorithm. We used Pthreads
rather than OpenMP in order to avoid harmful interactions between our parallelism and
the OpenMP parallelism found in many BLAS implementations (such as Intel’s MKL and
Goto’s BLAS). The computational routines were written in Fortran 2003, and drivers were
written in C. The TSQR factorization and applying TSQR’s Q factor to a matrix each
only require two barriers, and for the problem sizes of interest, the barrier overhead did not
contribute significantly to the runtime. Therefore, we used the Pthread barriers implemen-
tation, although it is known to be slow [77].

11Non-Uniform Memory Access

106

Block Gram-Schmidt

Unlike usual Gram-Schmidt implementations, our Block Gram-Schmidt (BGS) kernel
orthogonalizes the current group of k+1 basis vectors V j against all the previously orthog-
onalized basis vectors Q at one time. It does so by computing

V j := (I −QQT)V j = V j −Q(QTV j)

Here, both V j andQ have the same cache block layout that TSQR uses. The above operation
requires two matrix-matrix multiplications: Cj := QTV j involves a parallel reduction over
the cache blocks, and V j − QCj happens in parallel with no communication. The use
of BLAS 3 operations (matrix-matrix multiply) and the block structure means that BGS
communicates asymptotically less than either Householder QR or Modified Gram-Schmidt.
Furthermore, TSQR ensures that previous basis vectors are locally and unconditionally
orthogonal to machine precision [33] within consecutive groups of k+1 vectors (that overlap
by one vector). Even though BGS in general is numerically equivalent to the less stable
Classical Gram-Schmidt orthogonalization method, using it in combination with TSQR,
and using it for only a small number of outer iterations, ameliorate the potential loss of
orthogonality in finite-precision arithmetic.

In this work, we only show the performance of BGS as part of the CA-GMRES solver.
For the performance results, see Figure 2.56 and Table 2.6.

2.11.2 CA-GMRES

CA-GMRES replaces the sparse matrix-vector products and BLAS 1 - based Modified
Gram-Schmidt orthogonalization of standard GMRES with the matrix powers kernel, and
a combination of a QR factorization (either TSQR (see Section 2.11.1) or LAPACK QR)
and dense matrix products (see Section 2.11.1), respectively. This means that CA-GMRES
moves asymptotically less data and synchronizes asymptotically fewer times than standard
GMRES; in fact, it nearly minimizes the amount of data movement. On the practical
matrices we tested, CA-GMRES achieved speedups of up to 4.3× over standard GMRES.

Algorithm 2.16 shows the complete CA-GMRES algorithm. For details, many other
algorithms, and a mathematical analysis, see [46]. In order to make the algorithm numeri-
cally stable for larger k, one must choose the basis carefully. The obvious monomial basis
v1, Av1, A

2v1, . . . , A
kv1 used by Walker [108] becomes numerically rank deficient once k

exceeds a certain threshold (see e.g., [21]). For many problems, this threshold may be small
enough that it prevents us from choosing the optimal k for performance. This is because the
monomial basis corresponds to the so-called “power method”: the basis vectors converge
to the principal eigenvector, so they get closer and closer together as k increases. Other
authors suggested using a different basis to reduce the rate of increase of the basis’ condi-
tion number as k increases [28, 53, 4]. When the matrix is symmetric positive definite12,
picking a good basis requires only some information about the distribution of eigenvalues.
That information comes “for free,” as the Krylov method itself computes estimates of the

12A matrix A is positive definite if xTAx > 0 for all vectors x 6= 0

107

Algorithm 2.16 CA-GMRES algorithm
1: Begin with an n× n linear system Ax = b and n× 1 initial residual r0 = b−Ax0
2: β := ‖r0‖2, v1 := r0/β, q1 := v
3: for j = 1 to t do
4: Use matrix powers kernel on A and vk(j−1)+1 to compute k more basis vectors vk(j−1)+2, . . . ,

vjk+1

5: Let Vj =
[

vk(j−1)+1, . . . , vjk
]

and V j = [Vj , vjk+1]
6: Let Bj be the k + 1 by k basis conversion matrix Bj such that AVj = V jBj

7: if j = 1 then
8: Bj := Bj

9: else

10: Bj :=

(

Hj−1 0 · e1eTk
hj−1e1e

T
k(j−1) Bj

)

{hj−1 is lower right entry of Hj−1, and Hj−1 is upper jk

by jk submatrix of Hj−1}
11: Compute R1:j−1,j := [Q1, . . . , Qj−1]

∗V j using a matrix-matrix multiplication
12: Compute V j := V j − [Q1, . . . , Qj−1]R1:j−1,j using a matrix-matrix multiplication
13: Compute the QR factorization Q

j
Rj = V j using TSQR. Let Qj be the first k columns of

Q
j
, and let qjk+1 be the last column of Q

j
.

14: if j = 1 then
15: R1 := R1, and H1 := R1B1R

−1
1

16: else

17: Rj :=

(

Rj−1 R1:j−1,j

0k(j−1),k+1 Rj

)

{The new R factor of all the basis vectors}

18: Hj := RjBjR
−1
j {The jk+1 by jk upper Hessenberg matrix from jk iterations of standard

GMRES. Here, we can exploit structure to compute this for about the same amount of
work as if all the matrices were upper triangular.}

19: Solve the least squares problem yj = argminy ‖Hjy−βe1‖2. The residual error ‖Hjyj−βe1‖2
is the residual error of the current GMRES approximate solution.

20: Optionally, use y (of length jk) to compute the current approximate solution xj = x0 +
[Q1, . . . , Qj]yj

eigenvalues that improve with the number of iterations. For nonsymmetric and particularly
for nonnormal13 matrices, the eigenvalues may not give all the information needed to pick a
good basis, but in practice one can use adaptive methods that gradually increase the basis
length. Furthermore, we found that the best k for performance is often much smaller than
the threshold for poor numerical behavior of the basis.

2.11.3 Performance Results

Figure 2.56 shows performance results for both standard GMRES and CA-GMRES on 8
cores of the Intel Clovertown test machine. We see speedups of up to 4.3× on a 1-D, three-
point mesh, and of up to 2.2× on more general sparse matrices from real-life problems.
Table 2.6 gives the performance of each kernel in Gflop/s. For the matrix powers kernel,

13A square matrix A is normal if A∗A = AA∗, where A∗ is the conjugate transpose of A

108

Matrix SpMV Matrix powers MGS TSQR BGS
Useful Actual k

pwtk 0.66 1.35 1.58 5 1.48 6.96 6.61
bmw 0.57 1.02 1.20 5 1.44 7.74 6.52

xenon 1.15 1.59 1.87 5 2.10 7.63 6.84
cant 1.26 2.64 3.10 5 2.11 8.13 7.26
1d3pt 0.68 3.13 3.68 15 1.32 12.38 13.42
cfd 0.62 0.94 1.10 5 2.14 7.80 6.72

shipsec 0.69 1.01 1.19 4 2.07 7.38 5.86

Table 2.6: Performance in Gflop/s per kernel, for all test matrices, using 8 threads and
restart length 60. Kernels SpMV and MGS belong to standard GMRES, and the ma-
trix powers kernel as well as the TSQR and BGS kernels belong to CA-GMRES. CA-
GMRES performance shown is for the best (k, t) allowed by the matrix structure such that
⌊restart length/k⌋ = t. Also shown is the corresponding k value.

we show this Gflop/s rate both for the actual floating-point operations done (including
redundant computations) and for the useful operations (minus redundant computations).
Thus, the ratio of “Actual” to “Useful” gives the ratio of redundant floating-point arithmetic
in the matrix powers kernel.

Figure 2.57 shows performance results similar to that in Figure 2.56 but on the 8 core
2.66 GHz Intel Nehalem test machine, which has 2 hardware threads per core (16 threads
in total), has NUMA, higher bandwidth than Intel Clovertown. Since Nehalem has NUMA,
memory allocation was pinned to threads in order to avoid allocating to the wrong socket.
Since Nehalem has a higher bandwidth, speedups are expected to be low—this effect is more
pronounced on matrix powers. Overall, the speedups are less impressive, ranging from 1.3×
to 4.1×.

2.12 Summary

In this chapter, we covered in detail communication-avoiding algorithms, performance
models, asymptotic results, highly tuned implementations targeting distributed memory
machines, out-of-core uniprocessor and shared memory multi-cores for the matrix powers
kernel. In addition, the kernel was integrated in a communication-avoiding sparse solver
called CA-GMRES which achieved significant performance improvement (up to 2.2× as
shown in Table 2.6) over the state-of-the-art in iterative solvers for sparse linear systems.

109

pwtk bmw xenon cant 1d3pt cfd shipsec
Sparse matrix name

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
e
la

ti
v
e
 r

u
n
ti

m
e
,

fo
r

b
e
st

 (
k,

t)
w

it
h
 f

lo
o
r(

re
st

a
rt

 l
e
n
g
th

 /
 k

)
=

=
 t

k=5
2.3x

k=5
2.1x

k=5
1.7x

k=5
2.1x

k=15
4.3x

k=5
1.7x

k=4
1.6x

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60

Matrix powers
kernel
TSQR
Block Gram-
Schmidt
Small dense
operations
Sparse matrix-
vector product
Modified
Gram-Schmidt

Figure 2.56: Runtime of standard GMRES and CA-GMRES on 8 cores of the Intel Clover-
town test machine, on a large subset of the test problems, using the monomial basis. Both
CA-GMRES and standard GMRES here use restart length 60 (so CA-GMRES uses values
of k and t with k · t = 60). Each pair of bars shows for a particular matrix, the runtime
scaled by CA-GMRES runtime for that matrix: so the top of the left, CA-GMRES, bar is
always one, and the top of the right, standard GMRES, bar is equal to the speedup of CA-
GMRES over standard GMRES. The CA-GMRES runtime shown is for the best choice of k.
The colors show runtime for the individual kernels: the “matrix powers kernel”, “TSQR,”
“Block Gram-Schmidt” (BGS), and “small dense operations” are the parts of CA-GMRES,
and “sparse matrix-vector product” (SpMV) and “Modified Gram-Schmidt” (MGS) are part
of standard GMRES. TSQR runtime includes both factorization and computing the explicit
representation of the Q factor. The k = 5 or like notation atop each CA-GMRES bar gives
the choice of k achieving that runtime, and the 2.1× notation below it gives the speedup of
CA-GMRES over standard GMRES on that matrix.

110

1d3pt pwtk bmw cant xenon cfd shipsec

Sparse matrix

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
u
n
ti
m

e
/
ru

n
ti
m

e
(C

A
-G

M
R

E
S

)

4.1× 1.7× 1.6× 1.6× 1.5× 1.4× 1.3×

Matrix powers

TSQR

Block Gram-Schmidt

Small Dense Ops

SpMV

MGS

Figure 2.57: Relative runtime of standard GMRES and CA-GMRES on 16 threads of the
Intel Nehalem test machine. Restart length is 60 as in Figure 2.56.

111

Chapter 3

Hardware/Software Co-Tuning

3.1 Introduction

Energy efficiency is rapidly becoming the primary concern of all large-scale scientific com-
puting facilities. According to power consumption data collected by the Top500 list [101],
high-performance computing (HPC) systems draw on the order of 2–5 Megawatts of power
to reach a petaflop of peak performance. Furthermore, current projections suggest that
emerging multi-petaflop systems are expected to draw as much as 15 MW of power includ-
ing cooling. Extrapolating the current trends, the Department of Energy (DOE) E3 [91]
report predicts an exascale system would require 130 MW. At these levels, the cost of elec-
tricity will dwarf the procurement cost of the hardware systems; unless the energy efficiency
of future large-scale systems increases dramatically, HPC will face a crisis in which the cost
of running large scale systems is impractically high. In another study on exascale feasibil-
ity study by Kogge et al. [59], the authors conclude that radical approaches for improving
energy efficiency are needed to avert a power crisis or a stagnation in computing perfor-
mance. Thus, an energy-efficiency crisis is already upon us. According to an August 6,
2006 article in the Baltimore Sun, the NSA has an HPC center at an undisclosed location
near Baltimore that is consuming 75 Megawatts of power and growing at a substantial rate
per year—causing concerns that there would not be sufficient power available for the city of
Baltimore. More recently (July 6, 2009), NSA was forced to build a new facility in Utah to
avert an overload of the Baltimore metro area energy grid.

Recently, the nature of silicon technology trends has changed. Device dimensions are
decreasing at historical rates, but dynamic and static power dissipation have flat-lined [14,
40]. To increase circuit density, designers must also reduce clock frequency and circuit
activity, or the power density of integrated circuits (ICs) will exceed practical limits. Due
to power limitations, sequential performance of the last several generations of high-end
processors has improved very little, and clock frequencies have remained the same, if not
decreased. Moreover, commodity processors remain grossly inefficient for many scientific
codes, achieving only a small fraction of their advertised peak performance [113].

Despite egregious inefficiency, commodity processors are usually the most cost-effective
alternative for HPC system design. Economies of scale have enabled enormous investment

112

into optimization for the binary-compatible sequential codes driving the market for server
and desktop processors. It is rare that a software vendor can afford to tune their software for
individual microarchitectures. Viability of server and desktop software products depends
primarily on on feature availability, and software development frequently takes the form
of feature accretion enabled by sequential performance improvements. Thus, the reigning
methodology for HPC system design begins with processor cores optimized for desktop
and server applications, rather than the scientific codes which need large-scale compute
resources.

Our approach in this work is inspired by embedded system design methodologies, which
routinely employ specialized processors to meet demanding cost and power efficiency re-
quirements. Leveraging design tools from embedded systems can dramatically reduce time-
to-solution as well as non-recurring engineering (NRE) design and implementation cost of
architecturally specialized systems.

Building a System-on-Chip (SoC) from pre-verified parameterized core designs in the
embedded space, such as the Tensilica approach, enables fully programmable solutions that
offer more tractable design and verification costs compared to a full-custom logic design.
For this reason, we use the Stanford Smart Memories [70], which is based on Tensilica cores,
as the target architecture in this work.

Given that the cost of powering HPC systems will soon dwarf design and procurement
costs, energy efficiency will justify a larger investment in the original system design—thus
necessitating approaches that can significantly decrease energy consumption.

General-purpose commodity microprocessors, which form the building blocks of most
massively parallel systems, are grossly energy inefficient because they have been optimized
for serial performance. This energy inefficiency has not been a concern for small-scale
systems where the power budget is typically sufficient. However, energy efficiency becomes
a concern for large-scale HPC systems, where even a few megawatts of power savings can
make a dramatic difference in operating costs or even feasibility. From the perspective of
an application, energy efficiency is obtained by tailoring the code to the target machine,
whereas from the perspective of a machine, energy efficiency comes by tailoring the machine
to the target applications. Naturally, tailoring both the hardware and software to each other
is expected to achieve better energy efficiency—this is the approach taken in this work.

The novelty of our proposed methodology, illustrated in Figure 3.1, is to incorporate
extensive software tuning into an iterative process for system design. Due to the in-
creasing diversity of target architectures, software auto-tuning is becoming the de-facto
optimization technique to tailor applications to target machines. As discussed in Sec-
tion 1.1.3, hardware design space exploration is routinely performed to determine the
right hardware design parameters for the target applications and perform sensitivity stud-
ies [75, 66, 64, 76, 60, 89, 90, 27, 49, 36, 3, 62, 52]. However, hardware DSE studies almost
always use untuned benchmark codes [23, 6, 117]. In contrast, our co-tuning strategy inte-
grates the two paradigms of hardware and software design exploration; we employ automat-
ically tuned software to maximize the performance of each potential architectural design
point. The auto-tuning methodology (discussed in Section 1.1.2) achieves performance by
searching over a large space of software implementations of an algorithm to find the best

113

Figure 3.1: Our proposed approach for hardware/software co-tuning. In essence we have
embedded a conventional auto-tuning framework within our novel-cotuning framework. As
efficiency rather than peak performance is our metric of interest, we use models in conjunc-
tion with performance counters to to estimate area and power efficiency. The result is both
a hardware configuration and a software implementation.

mapping to a microarchitecture [29]. Though our proposed approach may seem intuitive,
this work is the first to quantify the potential benefits of co-tuning.

In this work, we demonstrate the effectiveness of our co-tuning methodology by exploring
the design space of the Stanford Smart Memories [70] architecture using three of the most
heavily used kernels in scientific computing: sparse matrix vector multiplication (SpMV),
stencil-based computation, and general matrix-matrix multiplication (SGEMM). Our exper-
iments examine co-tuning advantages on isolated kernels, as well as multi-kernel application
experiments.

3.1.1 Motivating Examples

As a simple example, we show the effect of co-tuning the SpMV kernel1 on a set of
Smart Memories configurations. Figure 3.2 shows how performance varies with the number
of cores for a specific sparse matrix. As we can see, performance scales very well for untuned
SpMV but almost saturates at 2 cores for tuned SpMV since tuning makes an effective use
of the available system bandwidth. Thus, if performance is the metric under consideration,
it makes sense to choose the 2-core configuration rather than the 4-core configuration which
would have been chosen if the untuned code was used for performance evaluation.

As another example, we consider the buoyancy loop code from a global climate modeling
application [111]. The buoyancy loop code is a stencil computation2 and, therefore, has a
low computational intensity. Figures 3.3 and 3.4 show the result of co-tuning a single
processor design involving one Tensilica XTensa core and the auto-tuned buoyancy loop
code. We considered different hardware configurations by varying the total cache size, the
associativity of the cache and the cache line size. For each hardware configuration, we
auto-tuned the buoyancy loop and report the best performance. We report the impact
of the cache parameters on performance and energy consumption of the buoyancy loop

1Our auto-tuner for SpMV was an adaptation of the multi-core-based auto-tuner in [113].
2A stencil computation operates on a regular grid and each computation on a grid point is a weighted

sum of the neighboring grid points

114

Best config

Figure 3.2: Motivating example for co-tuning. SpMV refers to the sparse matrix vector
multiplication kernel from sparse linear algebra. The DRAM bandwidth is 1.6 GBytes/s
and the cache sizes are 32 KBytes. The performance is normalized to flops/cycle.

computation. Figure 3.3 shows that auto-tuning can significantly improve performance for
small cache sizes. The impact of tuning is small for large cache sizes as the problem can
completely fit in the cache. Furthermore, Figure 3.4 shows that although larger caches have
the best performance, they have a higher energy consumption as each cache access consumes
more energy.

As illustrated in Figure 3.1 our co-tuning methodology is fairly simple: jointly explore the
hardware and software design space by incorporating auto-tuned codes instead of benchmark
codes, which perform little code adaptation. Note that, by jointly exploring the design
spaces, we only increase the size of the search space, thus making the idea appear somewhat
impractical due to the sheer size of the search space involved. Investigating approaches to
efficiently perform these joint DSE studies is, however, beyond the scope of this work. We
only demonstrate the effective of our co-tuning methodology by proof of concept studies.
We also note that the joint search space exploration can be accelerated by accelerating the
hardware simulation either using FPGAs (Field Programmable Gate Arrays) or using a
large computing facility. We discuss FPGA-based acceleration of hardware simulation in
Section 3.6.

Having stated our co-tuning methodology, the rest of the chapter discusses applications of
this methodology using different examples. We describe the hardware and software setup for
our co-tuning studies in Section 3.2. Section 3.3 describes the models we used for modeling
the performance and energy for the different hardware components of our target system.
Section 3.4 covers the metrics of importance in our co-tuning experiments. Section 3.5

115

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
40

100

200

300

400

500

600

C
y
c
le

s
(m

ill
io

n
s

o
f
c
y
c
le

s
)

1 way 2 way 4 way 1 way 2 way 4 way 1 way 2 way 4 way

1k 4k 32k

Untuned loop

Tuned loop

Figure 3.3: Effect of auto-tuning the buoyancy loop on performance as a function of the
cache parameters. The cache line size was varied as 16, 32, 64 bytes, associativity was varied
as 1, 2, 4 and total size was varied as 1K, 4K, 32K. The impact of tuning is dramatic on
small caches but performance saturates when the cache is large enough.

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
4

1
6

3
2

6
40

0.2

0.4

0.6

0.8

1

1.2

1.4

E
n
e
rg

y
(m

ill
ijo

u
le

s
)

1 way 2 way 4 way 1 way 2 way 4 way 1 way 2 way 4 way

1k 4k 32k

Untuned loop

Tuned loop

Figure 3.4: Impact of auto-tuning the buoyancy loop on energy consumed for the processor
and cache. Because performance saturates when the cache is large, energy consumption
increases for larger cache because they consume more energy per access.

116

Compulsory Arithmetic Requisite
Kernel FLOPS Intensity Cache/LS

(Flop:Byte) (Bytes)

SpMV 2 · NNZ < 0.5 < 4 ·N
8 ·XY (CC)

7pt-Stencil 8 ·N3 < 1.0
24 ·XY (LS)
12 · B2 (CC)

SGEMM 2 ·N3 < B
6 20 · B2 (LS)

Table 3.1: Numerical kernel arithmetic intensity and required cache/local-store size to attain
that intensity: N is the matrix/grid dimension, B is the cache-block dimension, NNZ is the
number of non-zeros, and XY is the cache-blocked plane size.

covers the results of co-tuning using the software-based simulation of the Smart Memories
architecture. Section 3.6 covers the setup for FPGA-based hardware simulation, while
Section 3.7 discusses the results of FPGA-based simulation.

3.2 Experimental Setup

In this section, we describe the software and the hardware setup for demonstrating our
co-tuning methodology.

3.2.1 Software Setup

We describe the three numerical kernels evaluated in our study—SpMV, stencil, and
GEMM—as well as the auto-tuning methodologies used to optimize their performance.
These methods are at the heart of numerous important algorithms both within the scientific-
and commercial-computing arena. Table 3.1 presents an overview of the kernels’ arithmetic
intensities (AI)—the ratio of compulsory floating point operations to compulsory DRAM
traffic—and the requisite cache/local-store size required to attain that intensity. Observe
that GEMM has the highest AI and is almost exclusively computationally-bound, while
SpMV has the lowest AI and is primarily memory-bound. Stencil is characterized by an
intermediate AI, although it is generally displays memory-bound characteristics on modern
architectures [24]. Overall, these three kernels have substantially different computational
requirements and memory access patterns, and would thus be best served by vastly different
micro-architectural designs—making them particularly interesting for this study. Finally,
note that all reported computations are in single-precision due to the constraints of the
Tensilica’s Xtensa processor [98] (described in Section 3.2.2).

117

Dense Matrix Matrix Multiplication

GEMM (General Matrix-Matrix Multiplication) is a critical dense linear algebra kernel.
As a fundamental BLAS 3 routine, an efficient GEMM implementation is crucial for efficient
implementation of many linear algebra codes. GEMM has a high computational intensity,
and highly-tuned implementations usually achieve close to peak machine performance. Note
that extensive optimization is necessary, as a näıve version is incapable of exploiting cache
and register resources. Given dense matrices A, B, C and scalars α, β, the GEMM operation
is C ← α · op(A) · op(B) + β ·C, where op(A) is either A or AT (the transpose of the matrix
A). Since all of these can be restructured as C ← α · A · B + C with little overhead, we
examine only C ← A · B + C in this work.

The GEMM optimizations [112, 13, 44] we have implemented are blocking for cache
and register file utilization, and reducing loop overhead via unrolling of the innermost loop.
Register blocking operates on an in-register block of C, and streams though panels of A, and
B. Cache blocking tiles all three loop nests to exploit locality. For cache-based architectures,
we store matrices A and B in block-major format, and transpose A to enable unit-stride
access.

Our auto-tuner operates in two phases, first determining the register blocking and loop
unrolling to optimize single-core performance and then determining the cache-blocking pa-
rameters for best multi-core performance. To maximize performance we utilize the well-
known ATLAS [112] code generator for the innermost kernel codes. Due to the time con-
straints of the software-based simulation framework, we limit our optimizations to matrices
of dimension 512× 512.

7-point Stencil from the Heat Equation PDE

A frequent approach to solving partial differential equations (PDE) is the iterative,
explicit finite-difference method. Typically, it sweeps through the discretized space, usually
out-of-cache, performing a linear combination of each point’s nearest-neighbors—a stencil.
Stencils can be used to implement a variety of PDE solvers, ranging from simple Jacobi
iterations, to complex multi-grid and adaptive mesh refinement methods [10]. In this work,
we examine performance of Jacobi’s method to the single-precision 7-point 3D heat equation
on a N3 grid, näıvely expressed as triply nested loops ijk over:

B[i, j, k] = C0 ·A[i, j, k]+C1 ·(A[i+1, j, k]+A[i−1, j, k]+A[i, j+1, k]+A[i, j−1, k]+A[i, j, k+

1] +A[i, j, k − 1]).

The auto-tuner used in this work implements a subset of those described in previous
investigations [24], which had proven to be extremely effective over a wide range of multi-
core architectures. The work here focuses exclusively on optimizations that are relevant to
the architectures within our design space: register blocking, array padding, and cache/local
store blocking, including an implementation of the circular queue DMA blocking algorithm.
We now briefly describe the implemented optimizations. Interested readers should refer to
the prior work for more details [24].

Stencil register blocking consists of an unroll-and-jam in the X (unit-stride) and Y di-
mensions. This enables re-use of data in the register file, and decreases loop overheads. The

118

Stream out planes to

target grid

Stream in planes

from source grid

Figure 3.5: Visualization of stencil circular queue optimization for local store systems [24].

best unrolling factors balance an increase in register-pressure against decreased L1 data
cache bandwidth. Array padding consists of adding a small number of dummy cells at the
end of each pencil (1D row of the 3D stencil arrays), and perturbs the aliasing pattern of
the arrays in set-associative caches to decrease cache conflict misses. Such an optimization
avoids the need for designs with highly associative caches. The cache-blocking optimization
is an implementation of the Rivera-Tseng blocking algorithm [83]. We tile in the X (unit
stride) and Y dimensions, and perform a loop-interchange to bring the Z-dimension (least
unit stride) loop inside of the tiled loop nests, exploiting re-use between vertically adjacent
planes. For cacheless, local store-based targets with software-managed DMA, the circular-
queue technique of local store management [24] is used to implement the Rivera Tiling and
schedule the DMAs to overlap memory accesses with computation (see Figure 3.5).

Our approach to auto-tuning the stencil code is designed to balance coverage of the
search space against the amount of simulation time required. To that end, we implement a
greedy algorithm that starts with the “innermost” optimizations and works its way outward.
Thus, it begins by tuning the register-block size, then tunes for the optimal array padding,
and tunes for the optimal cache-block size last.

Sparse Matrix Vector Multiplication

SpMV dominates the performance of diverse applications in scientific and engineering
computing, economic modeling, information retrieval, among others; yet, conventional im-
plementations of SpMV have historically been relatively poor, running at 10% or less of
machine peak on single-core cache-based microprocessor-based systems [104]. Compared
to dense linear algebra kernels, sparse kernels suffer from higher instruction and storage

119

Dense 2K x 2K

Name Dimensions Descriptionspyplot

FEM /

Spheres

FEM /

Cantilever

Wind

Tunnel

QCD

FEM/Ship

Epidemiology

Circuit

Nonzeros

(nnz/row)

4.0M

(2K)

83K x 83K
6.0M

(72)

62K x 62K
4.0M

(65)

218K x 218K
11.6M

(53)

49K x 49K
1.90M

(39)

141K x 141K
3.98M

(28)

526K x 526K
2.1M

(4)

171K x 171K
959K

(6)

Dense matrix in

sparse format

FEM concentric

spheres

FEM cantilever

Pressurized

wind tunnel

Quark propagators

(QCD/LGT)

FEM Ship

section/detail

2D Markov model

of epidemic

Motorola circuit

simulation

Figure 3.6: Overview of matrices used for SpMV evaluation, representing a variety of
computational structures.

overheads per flop, as well as indirect and irregular memory access. Achieving higher per-
formance on these platforms requires choosing a compact data structure and code trans-
formations that best exploit properties of both the sparse matrix—which may be known
only at run-time—and the underlying machine architecture. This need for optimization
and tuning at run-time is a major distinction from the dense case.

Given the SpMV operation y ← Ax, where A is a sparse matrix, and x, y are dense
vectors, we refer to x as the source vector and y as the destination vector. In a sparse
matrix-vector multiplication (y ← Ax) the zeros of the matrix do not contribute to the
result. As such there is no value in either storing or computing on the zeros. Thus, one may
remove all the zeros from a matrix. The resulting sparse matrix consists of only non-zeros.

The typical storage format associated with SpMV is compressed sparse row (CSR) (il-
lustrated in Figure 3.7). In this format, the non-zeros of a matrix are sorted by rows, and

120

0 1 3 6 7 9

col idx

row start

val 10 -1 3 4 1 6 2 2 73

A in compressed sparse row format

y xA

10

-1 3

4 1 6

732

2

1 0 3 1 2 4 4 0 3

Figure 3.7: Sparse matrix data structure for CSR format

then within each row, by columns. Thus, it is likely that adjacent non-zeros are on the
same or adjacent rows. A matrix stored in CSR is represented by three arrays: the non-zero
values, the non-zero column indices, and a row start pointer array. The latter marks the
beginning of each row within the non-zero arrays. For our purposes, we examine large single
precision matrices. Thus the value array is composed of 32-bit floats, and the indices are
32-bit integers.

SpMV has a low arithmetic intensity, as the ratio of compulsory floating point operations
to compulsory DRAM traffic. Since Ai,j is touched exactly once per SpMV to perform a
multiply-accumulate operation, and assuming the elements of x and y see good cache reuse,
one expects SpMV to have an arithmetic intensity of about 0.5 flops/byte.

Our SpMV optimization approach utilizes previously established techniques [113, 104],
which we describe only briefly; interested readers should refer to prior work for detailed
descriptions. SpMV performance suffers primarily from large instruction and storage over-
heads for sparse matrix data structures and from irregular memory access patterns. Op-
timizations focus on selecting a compact data structure to represent the matrix and code
transformations that exploit both the structure of the sparse matrix and the underlying
machine architecture.

This work considers thread, cache, and register blocking, and software prefetching. On
local-store based architectures, cache blocking is called local-store blocking, and prefetching
becomes DMA (Direct Memory Access3). Thread blocking is slightly distinguished from
parallelization in that the matrix is partitioned into equal-sized sub-matrices that can be
individually allocated, padded, and optimized. Cache blocking exploits re-use of the source
vector by tiling accesses to columns of the matrix. The tiling transformation is equivalent
on local-store architectures with software-managed DMA, but a necessity rather than an op-

3DMA is a feature in modern processors which allows memory transfers to happen independently of CPU
intervention. DMA enables computation to be overlapped with computation, thus improving performance.

121

timization. Register blocking hierarchically restructures the matrix into small dense matri-
ces. This data-structure transformation inserts explicit zeroes into the matrix, regularizing
memory access patterns, decreasing data-structure overhead, and improving computational
intensity at the expense of explicit zero-entries in the matrix and potentially higher memory
traffic. Our software prefetching and DMA optimizations load only the non-zero values and
column index arrays. For local-store based architectures, we must explicitly load all the
referenced source-vector elements, as well as the matrix data structure.

3.2.2 Hardware Setup

Our study is heavily geared towards producing area- and power-efficient designs. As such,
we embrace SiCortex’s and IBM’s decision to utilize embedded processors for HPC systems.
In this work, we used the Tensilica XTensa core primarily due to its flexibility, ease of
system integration, configurability of micro-architectural resources, and of course, XTensa’s
target market is energy-efficient embedded systems. Secondarily, the sparing nature of an
embedded processor’s architecture is a much more power-efficient point of departure than
other processor designs. It is clear that embedded processors are significantly more power
efficient than high-performance processors. Processors like the Tensilica XTensa draw several
milliwatts, and SoCs based on them typically draw at most a few Watts. Each node of a
massively parallel machine based on AMD Opteron processors consumes several hundred
watts. This disparity in efficiency is a part of the motivation for IBM Blue Gene’s utilization
of the embedded PowerPC 440 processor [107], which was originally designed for embedded
use.

As a testbed for the evaluation of the myriad of different hardware configurations, our
work utilizes the Smart Memories [70] (SM) reconfigurable simulator developed at Stanford
for general-purpose multi-core research.

The Smart Memories Architecture

The SM architecture employs a three-level hierarchy for the on-chip network and the
processor cores (illustrated in Figure 3.8(a)). The configurability of the system arises from
parameters specified at each level of the hierarchy. The lowest level, referred to as a “tile”,
consists of processor cores connected via a crossbar to a set of SRAM blocks as well as to a
“quad interface”. The SRAM blocks are either caches or software-managed local stores.

The next level of the SM hierarchy groups multiple tiles into a “quad”. Tiles within
a quad share the logic which handles cache miss, eviction and coherence traffic, as well as
DMA channels. This level of sharing reduces the number of connections to the chip-wide
global network, simplifying the task of global routing in an actual VLSI implementation
of an SM processor. In a cache-coherent system, the quad controller tries to satisfy a
coherence request from the local tiles’ caches before creating additional chip-level network
traffic. Similarly, for any other intra-quad inter-tile data movement operation; for our work,
this primarily means local-store DMA operations.

The highest level of the SM hierarchy is the chip-wide network. Each node in this
network is either a quad, as described above, a memory controller for interfacing with off-

122

(a) Smart Memories global architecture

(b) Smart Memories tile architecture

Figure 3.8: Smart Memories hierarchical architecture (figures taken from [70]). A chip is
composed of ‘quads’ in a mesh network. A quad is composed of ‘tiles’ sharing a ‘quad
interface’. A tile is composed of processors cores connected to SRAM blocks and the quad
interface through a crossbar network. The SRAM blocks can be configured as local memories
or caches.

chip DRAMs, or a block of configurable memory. Memory controllers each provide an
independent DRAM channel. The blocks of configurable memory can either be used as L2
caches or as L2 software-managed memories. The SM architecture does not prescribe any
architectural details beyond the single-chip network. In particular, it does not attempt to
deal with multi-socket architectures, or system-level architectural issues.

The SM simulator was designed to simulate a wide variety of on-chip memory hierar-
chies for multi-core processor, and utilizes cycle-accurate simulator of the Tensilica XTensa
processor for performance modeling of the individual cores. The goal of SM is functional
emulation and accurate performance estimation, subject to the throughput and latency

123

Low Power, External DDR DRAM

crossbar / coherency

D$
or

LS

XTensa
Core

D$
or

LS

XTensa
Core

D$
or

LS

XTensa
Core

D$
or

LS

XTensa
Core

memory controller

Configurable Multicore Processor

16K
I$

16K
I$

16K
I$

16K
I$

Figure 3.9: Restricted SM architecture for some number of cores. Each core has a private
instruction cache and either a private data cache or a private local store.

specifications of the system configuration. Our power and area estimation methodology
is presented in Section 3.4. In this work, we use the configurability of the simulator to
explore an enumerated design space. Since the experiments are conducted in a software
simulation environment, we have pruned this design space to reduce the amount of compute
time needed. Section 3.6 discusses exploring the design space faster by using FPGA-based
hardware emulation [110].

Previous studies of numerical algorithms have shown that cache hierarchy, memory sys-
tem, and on-chip computational resources are crucial system design parameters for HPC
architectures. Table 3.2 enumerates our hardware design space. The core architecture is a
fixed 500MHz single-issue, in-order Tensilica XTensa core with a private 16KB instruction
cache. The 500MHz rate is useful, as it allows the Tensilica toolchain to provide us with
accurate power and area projections. We only explored 1, 4, and 16-core designs. The mem-
ory hierarchy is divided into two parts: on-chip memories, and off-chip memory. On-chip
memories are either a private coherent caches (CC) per core or a private disjoint local stores
(LS) per core. We fixed cache associativity as 4-way and line size is 64 bytes. For caches and
local stores we explore four different capacities. All cores use the same design—there is no
heterogeneity. Off-chip memory is abstracted as a uniform memory access DRAM running
at one of three different possible bandwidths. Figure 3.9 shows a simpler restricted view
SM architecture from the viewpoint of our co-tuning study. We limit the SM designs to one
quad per chip.

124

Component Parameters Explored Configs

Issue width single-issue
in-order

Frequency 500 MHz
cores XTensa

Number of Cores 1, 4, 16
core

Inst. Cache (per core) 16 KB

Coherent Capacity (per core) 16, 32, 64, 128 KB
Data Associativity 4 way

Memory Caches Line size 64 Bytes
Hierarchy Local Store Capacity (per core) 16, 32, 64, 128 KB

External Bandwidth 0.8, 1.6, 3.2 GB/s
DRAM Latency 100 core cycles

Table 3.2: Hardware parameters explored in co-tuning architectural-space exploration. The
parameters corresponding to baseline (untuned) hardware configuration are in boldface.
Note that data cache and local store designs are mutually exclusive.

3.3 Modeling Performance and Energy

We now describe the power and performance models for the different hardware compo-
nents.

3.3.1 Modeling Chip Power

The power estimation is based on the model used in [64] by weighting a number of
key architectural events counted by the software simulator with appropriately modeled or
derived energies weighted by the total execution time. Energy for events originating in
the cores are derived using the energy estimates from the Tensilica tools. The effect of
clock gating is taken into account by a reduced power consumption when the core is stalled
(assumed to be 10% of peak power). The dynamic energy for the caches and local stores is
modeled on a per transaction basis using a CACTI 5 [99] model. On-chip network energy is
calculated based on the total on-chip network traffic and using the scaled energy numbers
from [64]. Finally, leakage power is assumed to be 15% of peak power for any configuration.
Although, every software implementation for a given hardware design will yield different
power estimates, this model allows us to explore variations in the constants without having
to resimulate the design.

3.3.2 Modeling Chip Area

The area of a given processor configuration is an important metric due to its effect on
the end cost of fabricating and packaging the circuit. To this end, we model the hardware
configuration area within the design space, assuming 65nm node technology for the core
chip. Core area estimates are provided by the Tensilica toolchain, while CACTI 5 [99] was
used to model cache or local store area. To mitigate the effect of area on yield, we assume

125

sparing is used for increasing yield—one spare core is assumed for chips with up to eight
cores, and two spare cores are assumed for chips with 16 cores. Each Tensilica cores is
extremely small when compared with modern high-performance microprocessors—less than
0.5 mm2. As such, we expect such a sparing strategy to have very high die yields and a
yield percentage that is effectively independent of the chip area. In essence, the resultant
yield-adjusted chip costs should be roughly linear with core chip area. We assume that the
on-chip network and clocking add another 20% to the core chip area.

3.3.3 Modeling DRAM

We modeled DRAM energy using the current profiles from the Micron datasheets [72]
for a 256-MB-DDR2-400 memory module. Given the low power nature of the Tensilica
cores, DRAM power is a substantial component of total power. For modeling DRAM area,
we assume that DRAM area is 3× more cost efficient than chip area. For this reason we
assume that the memory interface and DIMMs contribute a constant 35 mm2 to the total
area. Since this is substantial compared to the area of a Tensilica core, which is less than
0.5 mm2, and caches (each 128 KB cache is less than 1 mm2), we include this area in our
calculations. As such, there is a clear economy of scale by incorporating many cores.

We note that vector systems, such as the Cray X2 and NEC SX-9 are able to achieve sub-
stantially better computing efficiency by organizing DRAM to support word-granularity data
accesses. However, because of the internal page-oriented organization of internal DRAM ar-
chitecture, support for such access patterns requires over-provisioning of DRAM bandwidth,
with commensurate increase in power loads. So although we find massively bank-switched
memories of these systems enable much higher computational efficiency, the power con-
sumed by DRAM makes this approach uncompetitive in energy efficiency when we tried to
include this approach in our study. Therefore, we have focused on primarily conventional
DRAM organization that supports cache-line granularity accesses and did not include word-
granularity access in this study.

Table 3.3 lists the formulas for computing the area and energy numbers for the different
hardware components.

3.4 Evaluation Metrics

Our area of focus is parallelized scientific applications running on large-scale, energy-
efficient, throughput-oriented high-performance systems consisting of tens of thousands, if
not millions, of individual processing elements. Obtaining enough power for such systems
can obviously be an impediment to their adoption. Thus, achieving high performance when
designing such machines is less dependent on maximizing each node’s performance, but
rather on maximizing each node’s power efficiency. Moreover, large silicon surface area can
be expensive both from a fabrication cost, and also in its impact on mean time between
failures (MTBF). Thus, our design methodology focuses on two key optimization metrics:
power efficiency—the ratio of attained MFlop/s per chip to chip power, and area efficiency—
the ratio of attained MFlop/s per chip to chip area. In essence, power efficiency is a measure

126

Formula

Core energy (Ecore)
Ncores
∑

i=1

(

P exec
core · Cycexec core i + P stall

core · Cycstall core i + P leak
core · Cyctotal

)

FPU energy (Efpu)
Nfpus
∑

i=1

(

P exec
fpu · Cycfpu i busy + P leak

fpu · Cyctotal
)

Cache energy (Ecc)
Ncaches
∑

i=1

(

Eread
cc ·Nreads cache i + Ewrite

cc ·Nwrites cache i + P leak
cc · Cyctotal

)

Local store energy (Els)
Ncaches
∑

i=1

(

Eread
ls ·Nreads ls i + Ewrite

ls ·Nwrites ls i + P leak
ls · Cyctotal

)

Network energy (Enw) Ebyte ·Nbytes transferred

DRAM energy (Edram) Eread ·Nread accesses + Ewrite ·Nwrite accesses + P leak
dram · Cyctotal

Total energy (E) Ecore + Efpu + Ecc + Els + Enw + Edram

Total power (P) E · frequency/Cyctotal

Total chip area (A) (Acore+fpu +AD$ +AI$ +ALS) · (Ncores +Nspares) · (1 + ovrhd) +Adram

Power efficiency (PE) flops/s/P

Area efficiency (AE) flops/s/A

Table 3.3: Expressions for power efficiency and area efficiency calculations. Cache/local

store energy numbers like E
read/write
cc/ls and P leak

cc/ls depend on the cache/local store parame-

ters like size, linesize, etc., and are computed using CACTI [99]. We scale the DRAM
energy components when bandwidth is scaled—this is assumed to be achieved through a
combination of frequency scaling and bank interleaving.

of number of tasks completed per unit of energy be it Joules or kWh.
Given these metrics, one can impose either a per-node or per-supercomputer chip power

(or area) budget and estimate the resultant attainable performance: minimum of area effi-
ciency × chip area budget and power efficiency × chip power budget. Systems with limited
power budgets should be selected based on power efficiency, whereas systems with limited
silicon budgets should be selected based on area efficiency. Identifying the trade-off between
the two allows a designer to balance the system acquisition costs, system power require-
ments, and system up time. It is important to note that further gains in power efficiency
can be realized by optimizing all the system components (in addition to chip power)—this
will be focus of future investigations.

We anticipate most of the growth in parallelism for future systems will be primarily
within a computational “node”. For a fixed aggregate MPI performance level, the range of
practical core counts differs by only one order of magnitude whereas the number of nodes
in a given system is likely to differ by a far smaller amount. The challenge of our decade is
to make more efficient use of explicit parallelism within the node to extract a strong scaling
speed-up in lieu of continued clock-frequency scaling. This will require better abstractions
for fine grained parallelism within the node as well as more efficient computational elements
within the node. As such, we may focus only on single node performance.

127

3.5 Software-Based Simulation Results

This section describes the results of co-tuning using the Smart Memories multiprocessor.
A software-based simulator for the Smart Memories multiprocessor was used. Before delv-
ing into the experimental results, we briefly reiterate our novel co-tuning approach shown
in Figure 3.1: for each of the three kernels, and for each processor configuration in our
search space, the kernel is auto-tuned on that hardware configuration to find the software
implementation that maximizes performance. Therefore, given a hardware configuration,
we always report data corresponding to the best performance achieved by the auto-tuner
on it. Note that while our auto-tuners heuristically prune their own search spaces of tuned
software implementations, we explore the hardware configuration space exhaustively by run-
ning the auto-tuners on all the configurations within our design space. An application of
co-tuning for a real system, however, would use a more efficient search strategy to explore a
much larger hardware design space. For the purpose of this work, though, exhaustive search
suffices as the hardware design space is small and serves well to illustrate the effectiveness
of co-tuning.

We now quantify the effectiveness of our co-tuning methodology for a variety of hardware
and software optimization strategies on each of the three numerical kernels. We commence
with a study of the relationship between architectural configuration and attained perfor-
mance. Next, we measure the potential improvements in kernel power and area efficiency
using our co-tuned design space exploration. Finally, we analyze the benefit of co-tuning
for applications dominated by a varying mix of these three kernels.

3.5.1 Performance of Design Parameters

We now explore the per kernel performance response to changes in both software opti-
mization and processor configuration. Doing so provides insights into the inherent hardware
requirements and attainable efficiencies for each kernel as well as quantifying the importance
of the instantiation of the auto-tuning component within the co-tuner. Not only do these
simulation results, shown in Figure 3.10, follow our intuitions regarding the expected per-
formance of our kernels under varying architectural conditions, they also serve to validate
the underlying simulation environment.

Auto-tuning Figures 3.10(a–c) show the performance benefit of auto-tuning for SpMV,
Stencil, and SGEMM using a fixed memory bandwidth of 1.6 GB/s and either a 64 KB data
cache or a 64 KB local store for 1, 4, or 16 cores. The stacked bars indicate the improvement
of our software optimizations.

Observe that due to SpMV’s constant and low arithmetic intensity, with enough cores,
SpMV performance plateaus for both the tuned and untuned code versions using either
caches or local stores. In effect, the changes in processor configuration transitioned its
behavior from compute-bound to memory-bound. Note that for smaller concurrencies, the
untuned DMA-based implementations outperform the cache coherent versions by a factor of
2×. Such a situation arises because the DMA version utilizes block transfers, which represent

128

(a) SpMV, effect of auto-
tuning

(b) Stencil, effect of auto-
tuning

(c) SGEMM, effect of auto-
tuning

(d) SpMV, effect of
cache/localstore size

(e) Stencil, effect of
cache/localstore size

(f) SGEMM, effect of
cache/localstore size

(g) SpMV, effect of memory
bandwidth

(h) Stencil, effect of memory
bandwidth

(i) SGEMM, effect of memory
bandwidth

Figure 3.10: The interplay between processor configuration and auto-tuning for the SpMV,
Stencil, and SGEMM kernels. Note: ‘LS’ indicates DMA-managed local store architectures,
and ‘CC’ indicates coherent-cache systems.

a means of more easily satisfying Little’s Law [5] and mandates a reuse-friendly blocked
implementation for correctness. Nevertheless, the SpMV auto-tuner provides significant
benefit even on bandwidth-limited configurations. This class of SpMV auto-tuner attempts
to both minimize memory traffic and express more instruction-level-parallelism. The results
reaffirm the significant impact of auto-tuning shown previously shown on numerous multi-
core architectures [113, 29, 24].

The stencil code is both moderately more arithmetically intense than SpMV, and also
contains more regularity in its memory access pattern. Figure 3.10(b) demonstrates that,
relative to SpMV, the higher arithmetic intensity forestalls the advent of a memory-bound

129

processor configuration. Thus, as applications shift their focus from SpMV to stencil-like
kernels, they may readily exploit more cores. Most interesting, the quad-core local store
version attains the performance comparable to the 16-core cache-based implementation. In
effect, DMA transfers eliminate superfluous write allocate traffic and express more memory-
level parallelism. The incorporation of effective prefetching into the cache-based stencil auto-
tuner might mitigate the latter. Finally, the tuned local store stencil code can utilize a large
portion (∼75%) of memory system with four cores; hence the performance improvement is
limited to about 30% when quadrupling the number of cores to 16. With 16-cores, even the
untuned DMA-based code is nearly able to saturate the memory system.

SGEMM has a high arithmetic intensity arithmetic hierarchically limited by the reg-
ister and cache capacities. Thus, it alone among our kernels is capable of exploiting in-
creasing numbers of cores (and cache capacities). Figure 3.10(c) shows the performance of
SGEMM scales linearly with the number of cores, for any processor configuration both
with and without auto-tuning. This does not imply all configurations delivered the same
performance or benefits. To the contrary, auto-tuning was essential on cache-based archi-
tectures; improving performance by 64×, but only provided a moderate speedup on the
already well-blocked local store implementations. Moreover, the local store configuration
consistently outperformed the cache configurations. The näıve code incurs significant cache
conflict misses for large matrices, especially when the matrix dimensions are powers of 2—
the common case in our experiments. Furthermore, the latency penalty of a cache miss is
high due to the absence of an L2 cache in our configurations. Due to SGEMM’s hierarchal
arithmetic intensity, the effects of inner-loop code generation and blocking for data reuse
are extremely important. In contrast to the stencil and SpMV codes, even our most highly
optimized SGEMM implementations are not significantly limited by memory bandwidth.

On-chip Memory Capacity Figures 3.10(d–f) quantify performance response to changes
in core count and per-core memory capacity for the auto-tuned codes. We show both the
cache-based and DMA-based codes for each of 1, 4, and 16 cores. Although the cache-based
configurations can be more sensitive to cache size compared with the local store versions—
since it is harder to control blocking and data movement via scalar loads and stores—
performance is relatively insensitive to cache and local-memory sizes. SpMV performance
hardly changes at all, as the smallest cache size is enough to exploit re-use of the two
vectors. The cache-based stencil code sees about 60% performance improvement as the cache
size increase from 16 KB to 64 KB. However, the explicitly-blocked, DMA-based stencil
code can exploit nearly all temporal locality using the smallest local memory. SGEMM
on 16-core systems benefits from increased cache and local memory sizes due to memory
bandwidth contention; the larger caches enable larger block sizes and reduce pressure on
memory bandwidth—i.e. higher arithmetic intensity.

Memory Bandwidth Figures 3.10(g–i) show performance as the processors’ memory
bandwidth is changed. Clearly, for SpMV and stencil, increasing the number of cores is only
viable when the memory bandwidth is similarly increased since they are ultimately memory
limited. This effect is less pronounced for Stencil due to its higher arithmetic intensity.

130

SGEMM, on the other hand, only begins to show the limitations of memory bandwidth
with 16 cores.

3.5.2 Tuning for Power and Area Efficiency

Having established raw performance characteristics, we now examine the power and
area efficiency of our methodology. Figure 3.11 plots these efficiency metrics (as defined in
Section 3.4) for our three test kernels. Each point in the scatter plot represents a unique
processor configuration, with yellow circles, green triangles, and red triangles corresponding
to auto-tuned cache, untuned cache, and (either auto-tuned or untuned) local store versions
respectively. Additionally, a circle is drawn to highlight the configurations with the best
power or area efficiencies.

These figures serve to demonstrate the extreme variation in both efficiency metrics
spanned by the design points within our configuration search space. Figure 3.11(a) shows
that a poor choice of hardware can result in as much as a 3× degradation in power efficiency
for SpMV (MFlops/s per Watt), whether software tuning is employed or not. Figure 3.11(b)
shows that for stencil, the difference is nearly 8×. For SGEMM in Figure 3.11(c), this differ-
ence is nearly two orders of magnitude! Since the operational cost and performance ceiling
of future HPC facilities are limited by the power consumption of compute resources, these
results quantify the potential impact of an energy-efficient design and hold the promise of
reducing petascale system power by several megawatts.

We now measure the potential effectiveness of our combined hardware/software tun-
ing methodology. Performance is explored in the context of four configurations: untuned
software on the fastest processor configuration, auto-tuned software on the fastest proces-
sor configuration, tuned hardware running untuned (fixed) software, and co-tuned hard-
ware/software. This serves to differentiate the efficiency gains from tuning software and
hardware individually from the efficiency gains of co-tuning.

Out-of-the box: Untuned Software on the Fastest Processor Configuration Our
lowest baseline comparison is the conventional wisdom strategy of choosing a system design
by using the most powerful hardware configuration. We do not tune the software running
on these processors. The most powerful hardware configuration within our search space is
a coherent-cache chip multi-processor with 16 cores, 128 KB of L1 data cache per core, and
3.2 GB/s of main memory bandwidth. While local store architectures generally provide
better performance, it is impossible to produce untuned codes to utilize them. As this com-
parison represents putting essentially no effort into the system design, it is highly unlikely to
be a viable power- or area-efficient solution. Rather, we present it as a point of comparison
to illustrate how much efficiency our coupled hardware/software design space exploration
provides. Table 3.4 presents an overview of the optimal power and area efficiency data
for each optimization strategy (including the improvement impact of co-tuning), starting
with this baseline configuration, shown in the fourth column. Observe that our co-tuning
methodology would deliver 3.2–80× better power and area efficiencies for our evaluated
kernels.

131

(a) SpMV area vs. power efficiency (b) Stencil area vs. power efficiency

(c) SGEMM area vs. power efficiency

Figure 3.11: Area efficiency vs. power efficiency for each of the three Kernels. ‘AE’ and
‘PE’ denote the most area- and power-efficient configurations respectively.

Auto-Tuned Software on the Fastest Processor Configuration In order to differ-
entiate the efficiency that the current state-of-the-art provides, we present the result of
auto-tuned software on the fastest hardware. This combination is analogous to building
a system from high-performance commodity cores and utilizing auto-tuning for software
optimization—an increasingly common solution. The hardware provides as much of each
architectural resource as our design space allows, but without having been specifically tai-
lored to any specific kernel. The auto-tuned kernels exploit those resource to maximize
performance. The fifth column (auto-tuned SW, fastest HW) of Table 3.4 shows the opti-
mal power and area efficiency produced by this approach.

Since the hardware configuration is the same as the untuned SW on fastest HW, the
efficiency gains correspond roughly to improvements in attained floating-point performance
through auto-tuning. These ratios are different for power and area efficiency, since power
depends on the activities of the various architectural resources, while area depends only on
their physical quantity. Comparing the fourth and fifth columns of Table 3.4 shows that
SGEMM’s auto-tuning achieves an impressive 54× and 53× improvement in power and

132

area efficiency (respectively), due to the enormous performance impact of auto-tuning on
this kernel. For Stencil and SpMV, the improvement is not as spectacular, but nonetheless
substantial: Auto-tuning improves Stencil’s power efficiency by 1.5× and its area efficiency
by 1.2×, while SpMV benefits by 1.8× in power efficiency, and 2.2× in area efficiency.
These results reiterate the conclusions of prior works [113, 29, 24] that auto-tuned codes
can outperform compiler-only optimizations by a wide margin.

Design Co-Tuned Untuned SWAuto-Tuned SWUntuned SWCo-Tuned

Objective Kernel
Metric

Fastest HW Fastest HW Tuned HW∗ SW/HW

MFlop/s 397 895 127 229

Power (W) 4.8 6.0 0.9 0.9
SpMV

Power Eff. 82.4 150.2 141.6 267.5

Co-Tuning Adv. 3.2x 1.7x 1.9x —

MFlop/s 906 1139 262 686

Power Power (W) 4.5 3.5 0.8 0.9

Eff.
Stencil

Power Eff. 203.2 321.9 344.5 756.9

Co-Tuning Adv. 3.7x 2.4x 2.2x —

MFlop/s 132 7079 122 5823

Power (W) 1.9 1.9 1.0 1.3
SGEMM

Power Eff. 68.7 3750.5 124.7 4431.4

Co-Tuning Adv. 65x 1.2x 36x —

Design Co-Tuned Untuned SWAuto-Tuned SWUntuned SWCo-Tuned

Objective Kernel
Metric

Fastest HW Fastest HW Tuned HW∗ SW/HW

MFlop/s 397 895 390 897

Area (mm2) 70.3 70.3 52.0 45.3
SpMV

Area Eff. 5.8 12.7 7.5 19.8

Co-Tuning Adv. 3.5x 1.6x 2.6x —

MFlop/s 906 1139 923 2502

Area Area (mm2) 70.3 70.3 52.0 52.0

Eff.
Stencil

Area Eff. 12.9 16.2 17.9 48.1

Co-Tuning Adv. 3.7x 3x 2.7x —

MFlop/s 132 7079 110 8173

Area (mm2) 70.3 70.3 52.0 55.0
SGEMM

Area Eff. 1.9 100.7 2.1 149.9

Co-Tuning Adv. 80x 1.5x 70x —

Table 3.4: Summary of optimal power-efficiency (in MFlops/s/Watt) and area-efficiency
(in MFlops/s/mm2) data (and relative improvement of co-tuning) for each optimization
configuration.∗The hardware configuration space for ‘Untuned SW, Tuned HW’ only includes
coherent-cache based configurations.

133

Untuned software, Tuned Hardware We now examine the effect of hardware design
space exploration alone, without the benefit of software auto-tuning. Note that we omit local
store-based configurations in the hardware tuning design space for this case. This is because
our so-called “untuned” kernels on local store-based configurations are cognizant of both
the local store capacity, as well as the locality inherent in the algorithms. A truly untuned
(architecturally and algorithmically agnostic) local store code would doubtlessly achieve
significantly lower performance. The green triangles in the scatter plots in Figure 3.11
represent the range of efficiencies that hardware-only tuning achieves, while the sixth column
(untuned SW, tuned HW) in Table 3.4 shows the efficiencies of the Pareto-optimal hardware
configurations.

Looking at the sixth column of Table 3.4 shows that simply tuning over the hard-
ware space improves both power and area efficiency for all our kernels. SpMV, stencil
and SGEMM achieve power efficiency improvements of approximately 1.7×, and area effi-
ciency gains of 1.3×, 1.4×, and 1.1× (respectively), when compared the untuned SW/HW.
Note that since we are optimizing for power and area efficiency, the attained floating-point
performance is lower compared with the untuned SW/HW case. Examining the fifth and
sixth columns of Table 3.4 shows that even after searching over the hardware design space,
we can still under-perform even on the most powerful hardware configuration, if auto-tuning
software is not employed. This difference is quite dramatic for SGEMM (30× and 47× lower
power and area efficiency) because it benefits tremendously from tuning, especially for the
specific matrix dimensions used in our experiments.

Hardware/Software Co-Tuning Our hardware/software co-tuning methodology per-
forms software auto-tuning for each potential point in the hardware design space, and thus
represents a more complete coverage of the overall system design space than the other ex-
amined approaches. Each hardware design point is evaluated with a more complete picture
of its potential for performance and efficiency. Please note, for each kernel, the software
auto-tuning loop is embedded within the hardware loop, and thus optimizes performance for
each individual hardware configuration. We then record the power and area efficiencies for
the fastest auto-tuned software configuration for each individual hardware configuration.
The last column in Table 3.4 shows the power and area efficiency of the overall Pareto-
optimal configurations using the co-tuning methodology. Results show that this approach
yields significant improvements in power and area efficiency when compared to the three
previously discussed configurations (as shown in the parenthesized values of each column).

It is interesting to compare co-tuning (seventh column) with only software-based (fifth
column) or hardware-based (sixth column) tuning. Given the tremendous benefits of soft-
ware tuning, it is not surprising to see that co-tuning outperforms the hardware-only tuning
approach. This difference is particularly dramatic for SGEMM—36× and 70× in power and
area efficiency respectively—where the untuned code performs quite poorly. Additionally,
co-tuning gains for stencil and SpMV range from 1.9×–2.7×. Comparison of the co-tuning
versus the software-only tuning approach shows that even after fully optimizing the code
on the fastest hardware, there is still significant room for efficiency improvements. Notably,
the power efficiency gains of co-tuning for SpMV, SGEMM, and stencil are 1.7×, 2.4×,

134

(a) Co-tuned weighted power efficiency showing
optimal configuration: CC/LS, core count, CC/LS
size (KB), memory BW (GB/s).

(b) Weighted improvements in power efficiency of
co-tuning versus untuned-hardware with tuned-
software approach.

Figure 3.12: Co-tuning for multiple kernels, using a 3D graph with the fractional contribu-
tion of SPMV on the x-axis, stencil on the y-axis, and SGEMM on the implicit z-axis. Each
square in (a) depicts the HW parameters of the corresponding square in (b). The sum of
the three kernels’ flops contributions (x-,y-, and z-axis) always adds up to one.

and 1.2× respectively, whereas, the area efficiency improvements are 1.6×, 3×, and 1.5×
respectively. These are the first results to quantify the intuitive notion that ignoring either
hardware or software optimization while performing system design will naturally lead to
suboptimal solutions. Finally, we also note that each individual kernel can have different
optimal hardware configurations which is evident by the different areas for the best area
efficiency configurations.

3.5.3 Co-Tuning for Multi-Kernel Applications

No one individual kernel can give a complete picture of an entire application’s perfor-
mance on a given system. Realistic large-scale scientific applications consist of multiple
subsystems that solve different parts of the overall problem. We therefore approximate the
effect of co-tuning on a multi-kernel application by combining the results from Section 3.5.2.

We thus construct co-tuning results for the set of kernels by taking a weighted mean of
their tuned performance data on each hardware configuration. Given that each individual
kernel contributes some fraction of the floating-point operations for an entire application, we
sum these kernel contributions via a weighted harmonic mean—the weights are the relative
fractions of the individual kernels. This basic strategy assumes that interaction between
kernels does not have significant impact on whole-application performance. Although this is
clearly a simplifying assumption, it is nonetheless an important first step toward quantifying
the potential impact of the co-tuning methodology to full-scale applications. Expanding this
approach will be the focus of future work.

Figure 3.12(a) plots the power efficiency of the best co-tuned hardware configuration
relative to the fractions of floating-point operations contributed by the three kernels, where

135

the individual contributions always sum to one. We present these data by defining the x-axis
and y-axis of Figure 3.12(a) as the fractional contribution of Stencil and SpMV to an ap-
plication’s computation, while the remaining fractional portion represents the contribution
of SGEMM (on the implicit z-axis). Therefore, the lower-left corner of the plot represents
optimized hardware configurations for applications consisting entirely of SGEMM-like dense
linear algebra algorithms. Similarly, the lower-right corner represents applications consisting
entirely of SpMV-like sparse linear algebra, while and the upper left corner is stencil-based
grid computations. As the most power efficient configuration differs for each mix of kernels,
we annotate Figure 3.12(a) with the parameters of the best configuration: CC/LS, core-
count (1-16), CC/LS size (16K-128K), and memory bandwidth (0.8-3.2 GB/s). Results
show the variety of co-tuning architectural solutions and corresponding power efficiencies
based on a given application’s underlying characteristics.

Figure 3.12(b) plots the power efficiency improvements of the co-tuned systems for each
kernel mix compared with the untuned-software tuned-hardware approach (described in Sec-
tion 3.5.2). This approach most closely resembles prior work in automated system design,
which have hitherto not included extensive software optimization. Recall, that we only con-
sider coherent-cache based configurations for untuned-software base case (see Section 3.5.2).
Results show that co-tuning results in power efficiency gains ranging between 1.2×–2.4×
depending on each kernels contributions. A similar analysis for area efficiency (not shown),
demonstrates improvements varying from 1.6× to 3× (as seen in Table 3.4). Overall this
approach points to the potential of applying our co-tuning methodology to more complex,
multi-algorithmic applications.

136

3.6 FPGA-Based Simulation

We note that, although our study with the Smart Memories architecture produced
promising results, the searched space was small—only 72 hardware configurations were ex-
plored. Due to the small hardware design space, all hardware configurations were explored.
Despite the small hardware design space, our co-tuning experiments in Section 3.5 took
almost a week on a cluster of 6 quad core machines. To mitigate the slowness of software-
based simulation of hardware, we use FPGAs (Field Programmable Gate Arrays) to ac-
celerate the simulation. FPGAs have been traditionally used for prototyping of hardware
designs [45, 120] but have also found use as accelerators for various kinds of applications;
examples include bioinformatics [122, 65], machine learning [68, 8], finance [118], molecular
dynamics [2], and cryptanalysis [18]. In this work, we use FPGAs to accelerate the simula-
tion of hardware. This FPGA-based simulation will also be referred to as “emulation”.

3.6.1 Approaches for Emulation

A straightforward way of emulation would be to directly implement the hardware design
on the target FPGA. Since our objective is to investigate a space of hardware configurations,
this necessitates the hardware design to be parameterized—every time a new hardware con-
figuration is to be explored, we rebuild the design for the FPGA with the current hardware
parameters. However, this simple approach suffers from some major drawbacks:

• The design may be too big to fit on the FPGA. Although modern FPGAs have gotten
large enough to fit multiple embedded cores, they use chip area inefficiently due to
reconfigurability. In fact, the on-chip memory (most of it available as Block RAMs)
may be too small to even fit the large on-chip caches found in modern processor designs.
Schelle et al. [87] implemented a modified version of the Intel Nehalem processor using
multiple Xilinx Virtex-5 FPGAs. Furthermore, due to the need for partitioning the
design over multiple FPGAs, the emulated design ran at 500 KHz. In contrast, Intel’s
embedded processor Atom could fit in a single Virtex-5 LX330 FPGA and ran at 50
MHz [109].

• FPGA synthesis times may dominate. When a new hardware configuration needs to be
explored, the corresponding hardware design must be synthesized for the FPGA. Given
that a reasonable design may use the FPGA resources heavily, the synthesis, place
and route times can easily be a couple of hours. Therefore, unless the performance
benchmarking on the emulated design dominates the time to build the design for the
FPGA, it is a significant overhead in simulation.

Another way of emulation would be to implement the simulator rather than the target
design. Since our objective is to simulate a hardware design, this approach employs FPGAs
to accelerate the hardware simulator. Note that FPGAs may be used to accelerate both
functional simulation as well as cycle-accurate simulation of hardware. Software-based cycle-
accurate simulation can be particularly slow even on modern multiprocessors—the Smart
Memories simulator achieved an aggregate throughput of 100 KHz!

137

The RAMP (Research Accelerator for Multiprocessors) project [110] aims to develop
systems for FPGA-based simulation of hardware. One of the key ideas in the RAMP project
is that although the emulator may run at 100 MHz (which is slow compared to the gigahertz
clocks on modern processors), it still represents a speedup of 1000× over a software-based
simulator which may run in the 100,000 cycles/second regime. Furthermore, when compared
to the single-threaded software-simulator of the Smart Memories architecture, the aggregate
emulation throughput can potentially scale with the number of cores instead of being roughly
constant which is the case with software-based simulation.

More recently, Tan et al. [97] built RAMP Gold which is a cycle-accurate emulator for
multiprocessors. Due to the overheads involved in emulation, multithreading in the FPGA
is used to improve the aggregate emulation throughput. RAMP Gold can model up to
64 SPARC V8 cores with a shared memory hierarchy on an Xilinx XUP FPGA board.
The memory subsystem parameters as well the number of cores were runtime configurable,
i.e., the emulated system parameters could be changed without the need to synthesize the
emulated design on the FPGA. Emulation was able to speed up the simulation of a 64-core
system by around 250×.

Chung et al. [22] developed ProtoFlex to accelerate functional simulation of hardware.
Only the performance critical components (e.g., the ALU) of the hardware simulator were
ported to FPGAs. The authors report a speedup of 38× over software-based simulation.

Pellauer et al. [80] describe HAsim, which is performs a detailed simulation of multi-core
based on the 64-bit Alpha ISA. The authors used a Xilinx Virtex-5 LX330T FPGA for
accelerating hardware simulation. Although the techniques employed were similar to the
ones in [97], the authors extended them to also model on-chip interconnects. A single core
pipeline was time-multiplexed to simulate up to 16 core designs.

3.6.2 Emulation Details

In this work, we use a combination of direct implementation and emulation to build a
simulator for a Tensilica XTensa-based multiprocessor. Our target design is a distributed
memory multiprocessor and can be viewed a simplification of the Smart Memories multipro-
cessor. We now describe how the different components of the target design were emulated.
For the FPGA platform, we use the BEE3 FPGA board [26].

Core Emulation

We use a direct implementation of Tensilica’s XTensa cores for FPGAs. Since we only
had access to the netlist, clock gating was required to pause the cores when multiple FPGA
clock cycles were needed to simulate a single target machine cycle. Specifically, this scenario
would only occur when we needed to emulate an L2 hit—since only the tags were stored
on-chip, if the “hit penalty” to L2 was small, we would end up having more host cycles than
the “hit penalty”. We also note that the L1 cache was included in the core—so it would also
be paused when clock-gated. The L1 cache is also a direct implementation so no emulation
techniques are needed there.

138

The core communicates to the memory subsystem through a PIF interface which is a
point-to-point connection protocol from Tensilica and supports both burst and block modes
of data transfer. It also provides a atomic conditional write primitive for inter-processor
synchronization.

Note that in contrast to multiprocessors, the gap between core performance and the
DRAM performance is almost non-existent since the core clocks are of the order of 25 MHz.
Thus, when emulating long DRAM latencies, it is possible that the whole physical system is
doing nothing except wait for the clock cycles to elapse because a certain DRAM latency is to
be emulated—the memory request has already been served by the memory controller on the
FPGA! In this specific case, we can advance the global clock by the required number of cycles,
i.e., one clock cycle on the FPGA emulates multiple clock cycles on the target design—we
call this clock skipping. This idea can improve the emulation throughput significantly when
the emulated system is almost always stalled due to being DRAM latency bound. When
emulating a multi-core over multiple FPGAs, however, detecting when to globally skip clock
cycles is more complicated and its impact on emulation performance is expected to be lower
as the instants when clock skipping can be done would be lesser.

Cache Emulation

We use L2 caches in our design, which can be too large to fit on modern FPGAs if
implemented directly. So, the L2 caches are emulated by only storing the cache tags on chip
and the timing of the system is controlled to mimic a real cache. The idea of only storing
cache tags on-chip has also been implemented in other FPGA-based emulators [97, 80]. The
hit/miss information from cache tag access is used to drive the timing of the response from
the cache.

We make the following cache parameters configurable: line size, associativity, set size,
and replacement policy. Given that we make it runtime configurable, we just need to
synthesize the largest possible instance and then turn off portions depending on the current
parameters. Let L denote the line size, A denote the associativity, S the set size. Note that
we only store the tags on chip and the data is actually fetched from DRAM. Let T denote the
tag data width. Let Amax denote the maximum associativity, Smax denote the maximum
set size, Lmin, Lmax denote the minimum and maximum line sizes in bytes respectively.
Assuming 32-bit addressing, Tmin = 32− log2(Smax), Tmax = 32− log2(Smin). Thus, the size
of on-chip memory needed would be Tmax · Amax · Smax/Lmin.

The latency and bandwidth of the cache are also configurable but instead of using arbi-
trary latencies and bandwidths, these numbers are determined by the cache modeling tool
CACTI once other cache parameters are fixed.

Interconnection Emulation

We simulate a ring network. The simulated ring network is directly mapped onto the
physical ring network on the BEE3 board [26]. The building blocks for the FPGA implemen-
tation are the interconnect switches, which route packets based on destination id. Although

139

E
th

2
D
R
A
M

2

FPGA2

E
th

3
D
R
A
M

3

FPGA3

E
th

0
D
R
A
M

0

FPGA0

E
th

1
D
R
A
M

1

FPGA1

Figure 3.13: Physical ring network on the BEE3 board

we directly implement the NoC switches, the links between the switches can be configured
to have different latencies and bandwidths.

Figure 3.13 shows the physical ring network on the BEE3 FPGA board. We use the
Ethernet ports for setting the configuration (including resetting), reading the performance
counters, and loading the DRAMs with code and data. All the memories (DRAM0, DRAM1,
DRAM2, DRAM3) can be accessed through the control software on the host machine serving
up the FPGA board.

DRAM Emulation

Similar to the Smart Memories simulator, we model DRAM as a flat memory, with each
memory access having fixed access time and response time. This is the same model we had
in the Smart Memories simulator. DRAM is modeled by the following parameters, which
are runtime configurable:

• Latency: The response from the DRAM controller is delayed by an appropriate number
of cycles to emulate the latency.

• Bandwidth: This is emulated by adding delays between consecutive words being re-
turned by the memory.

Emulating Latency and Bandwidth

We defined building blocks to emulate latency and bandwidth parameters which can be
a part of different system components, e.g., DRAM, interconnect, caches. For emulating
latency, we defined a “configurable delay” block and for emulating bandwidth we defined a
“configurable bandwidth” block:

• Configurable delay: We use this block to emulate multi-cycle delay wires, i.e., to
emulate latency. The latency is a runtime configurable parameter to the block—the

140

1 82 3 4 5 6 7

D
e
la
y
se
le
ct

Figure 3.14: Latency emulation pipeline. For emulating L max-latency, we only allow
log2(L) possible delays: 1, 2, 4, . . ., L to reduce the multiplexor size.

latency parameter is used to select from the different stages of the delay pipeline.
Since the cost of the select circuit can be expensive if the latency is large, we only
emulate some fixed number of latencies, i.e., select from only a certain small number
of stages of the delay pipeline. All the stages of the pipeline have the same pipeline
interface to ensure flow control along the pipeline. Figure 3.14 illustrates this block.

• Configurable bandwidth: We use this block to emulate bandwidth for certain wires.
This has a single pipeline stage and the pipeline progresses every given number of
cycles determined by the inverse of the bandwidth.

3.6.3 Physical Implementation on a Single FPGA

Figure 3.15 shows the implemented design for a single FPGA. The Xtensa cores from
Tensilica are supplemented with L2 caches (only the tags are stored) and are interconnected
to other “devices” in the system through an interconnect. These “devices” could be other
cores, memory, (DRAM, configuration registers, performance counters), serial port (for I/O),
Ethernet port (for I/O, control). Since two Xtensa cores can be accommodated on a BEE3
FPGA, that makes it 6 devices in total per FPGA and 24 for a BEE3 board. Each “device”
is assign a unique id so that the switch is able to route the NoC packets properly. The core
clock frequency of the synthesized design was 25 MHz.

We also note that the Xtensa core uses the PIF protocol for memory requests, so the
PIF requests and responses are packed into the NoC packet format before sending them over
the NoC. On the other end of the switch, the NoC packets are unpacked into PIF requests
for the PIF slaves to handle them. The serial port device packets are routed through the
Ethernet port along with the packets destined for the Ethernet device. The Ethernet device
is used to access the memories, the configuration registers and the performance counters.

3.6.4 Performance Counters and Configuration Registers

For computing energy, we need to get event counts in order to use the formulas in
Table 3.3. For this reason, we supplanted our design to have performance counters for

141

Memory-mapped devices arbiter

DRAM

Config
regs cntrs

Perf.Serial

Arbiter

Ethernet

E
th

e
rn

e
t PIF to

DRAM

NoC Switch

L2 Cache 1 L2 Cache 0

X
te
n
saL1 I$

co
re

1

L1 D$ X
te
n
saL1 I$

co
re

0

L1 D$

Up

Down

Figure 3.15: Block diagram of single FPGA design. The “Up” and “Down” links refer to the
two bi-directional links to the “next” and the “previous” FPGA in the FPGA ring network
on the BEE3 board.

counting cache access events (hits, and accesses), interconnect events (bytes transferred)
and DRAM events (bytes transferred and number of accesses). Furthermore, the emulated
target is specified by the values in the configuration registers—the bits in the configuration
registers define the different system parameters for the current design being emulated. Note
that our FPGA-based emulator allows the hardware configuration to be changed on the fly.

Both the performance counters and the configuration registers are memory-mapped and
can be accessed using the PIF protocol. Since accesses to these special devices need not
be fast, we avoid using a register-file and instead use a ring-network of registers for them.
Since a ring network is employed, the cost of access to a register can vary from 1 to 10s
of cycles depending on the register being accessed. As long as the code being timed is
large enough, this overhead is small enough to be ignored. We also provide a mechanism to
turn on/off all performance counters at once in order to turn the profiling on/off. To keep
the interface simple, performance counters are read-only devices and configuration registers
are write-only devices. Therefore, the software has to maintain state to remember the last
read/written data to these devices.

Although dynamic reconfiguration of hardware parameters is as easy as modifying a

142

configuration register, care needs to be taken to make sure the effect of the parameter change
propagates to the right hardware modules properly. For example, when reconfiguring the L2
cache, we need to make sure that there are no pending requests and also need to clear out
all the cache tags. Similarly, for the DRAM, the request delay pipeline needs to be emptied
before the new configuration can be considered valid. We finally note that we only one
physical design to emulate our entire hardware design space—all the hardware parameters
in the experiments are run-time configurable.

3.6.5 Software Infrastructure

Our initial design required the use of a USB wiggler to be able to load/debug/perform
IO for the software on the hardware for the Xilinx XUP board. However, the lack of drivers
for the BEE3 board meant that we had to write our own custom program loader for the
BEE3 board. The loader program is very limited in its abilities—it can only initialize the
board DRAMs with data/code, reset the design and perform I/O through Ethernet.

3.7 FPGA-based Simulation Results

We now report the performance results for FPGA emulation. We only report single core
emulation due to being unable to complete the multi-core emulation—the physical multi-
core worked but the emulated multi-core (which is the result of adding timing details to the
physical multi-core) did not.

3.7.1 Single Core Emulation

This section describes the results of emulating a single-core system. We explore similar
parameters as described in Table 3.2, except that the number of cores is set to one. The
following describes the hardware parameters which are new here or had a different explored
space in Table 3.2:

• Separate instruction and data caches of 16 KB each.

• L2 cache: The cache size is configurable from 32 KB to 1 MB (in powers of 2),
associativity can be varied from 1 to 4, linesize could be 32, 64 or 128 bytes, line
replacement policy could be LRU (Least Recently Used) or round-robin, and the
latency was determined based on the CACTI model for caches as usual.

• DRAM: employed a flat-memory model with configurable latency and bandwidth. As
with the Smart Memories study, we vary the bandwidth as .8/1.6/3.2 GBytes/s.

The synthesized design ran at 25 MHz, which is a speedup of 250× when compared to the
throughput of the software simulator for single-core. Since this is a single-core system, clock
skipping was enabled to speed up emulation time when emulating large DRAM latencies.
Clock skipping improved emulation throughput when running untuned codes as the target

143

system would be stalled for memory most of the time. For estimating energy, we used the
same scripts and numbers we used for Smart Memories experiments.

We now describe co-tuning results for GEMM and SpMV kernels.

SGEMM

As with the Smart Memories experiments, we implement the optimizations as mentioned
in Section 3.2.1 and use the GEMM code generator from ATLAS [112]. As earlier, we
performed the auto-tuning in two phases:

1. A larger software design space was explored to determine the code variant parameters
which only depend on the hardware configuration of the processor core and excludes
the remaining memory subsystem. This phase was used to determine the register
tiling strategy, loop unroll factor, and other code generation parameters. Since the
instruction throughput was being optimized here, a small dense matrix (small enough
to fit in the L1 cache) was used, which enabled a much larger software design to be
searched quickly.

2. The optimal code generation parameters were fixed and larger matrices of size 512×512
were benchmarked to explore other optimal software parameters like cache blocking,
transposing, etc.

Figure 3.16 shows the performance results for GEMM on single-core. Figure 3.16(a)
shows how performance improvement due to tuning varies as a function of chip area. As
expected, tuning always improves performance but the improvement is dramatic (more than
100× for small chip area (which correspond to small cache configurations). Because of the
dramatic improvements in performance for small area configurations (Figure 3.16(b), the
small area configurations become much more competitive with the large area configurations
due to tuning. In fact, performance improvements due to increased chip area are not nearly
as impressive once tuning is taken into consideration. Figure 3.16(c) plots area and power
efficiencies in a manner similar to Figure 3.11. While area efficiency improves by 51×, power
efficiency improvement is less dramatic at 5×.

Figure 3.16(d) plots the normalized simulation throughput, i.e., the number of cycles sim-
ulated per FPGA core clock cycle—a direct implementation of hardware on the FPGA would
have a normalized simulation throughput of 1. If the normalized simulation throughput is
more than one then clock skipping was effective in speeding up the hardware simulation.
Since the small area configurations perform extremely poorly, they benefit a lot (up to 6×)
from clock skipping as the core is stalled most of the time.

SpMV

The SpMV optimizations implemented here are the same as discussed in Section 3.2.1.
Since the cores on the FPGA run 100× slower than modern cores, SpMV benchmarking was
done in two phases: the data structure optimization, which tries to minimize the memory
footprint of the sparse matrix, was done offline and the required memory image was dumped

144

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

F
lo

p
s
/c

y
c
le

Untuned cache

Tuned cache

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

20

40

60

80

100

120

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

(b) Improvement in performance vs. area

0 500 1000 1500 2000 2500 3000 3500

Power efficiency (mflops/sec/watt)

0

50

100

150

200

250

300

350

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

Untuned cache

Tuned cache

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

1

2

3

4

5

6

7

E
m

u
la

te
d

c
y
c
le

s
/
F

P
G

A
c
y
c
le

s

Untuned cache

Tuned cache

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.16: SGEMM performance

on to the board memory when benchmarking. Since the date structure optimization is an
expensive operation depending on the search space, it is done offline, just as in Section 3.2.1.
FPGA emulation is only used for performance measurement—although it is much faster than
software simulation, it is still 2 orders of magnitude slower than real machines.

Figures 3.17–3.28 show the (a) performance, (b) performance improvements, (c) effi-
ciencies and (d) simulation throughput for different matrices—in all, 216 hardware con-
figurations were considered. When compared to SGEMM, the performance and energy
improvements are less dramatic, as expected, from our experience with the Smart Mem-
ories simulator, since it is more difficult to tune SpMV and the performance is strongly
dependent on the sparsity pattern of the matrix. We note that the performance, speedups
due to tuning and efficiencies are strongly dependent on the matrix. The matrices econ,
marcatcomm, mc2depi, scircuit and webbase do not benefit much from tuning, and as a
result, co-tuning doesn’t add more value to the traditional approach of using untuned codes.
In contrast, other matrices get significant improvements in performance (up to 2×) and ef-

145

ficiencies and as such demonstrate the effectiveness of co-tuning. It can also be seen that,
in general, small area configurations benefited more from tuning due to poor data reuse for
small caches.

Interestingly, we note that some of the poorly performing matrices, viz., marcatcomm
and mc2depi were some of the good matrices for the matrix powers kernel (Section 2.10.3).
The poor performance of these matrices can be attributed to the lack of structure as well
small number of nonzeros per row. We also note that the simulation throughput doesn’t
show much variation across the different matrices. In contrast to SGEMM, where the
normalized simulation throughput was up to 6, it is at most 2 for SpMV—this is due to the
extremely poor performance of the näıve SGEMM code and the tremendous improvements
in its performance due to tuning.

The results for FPGA-based simulation reaffirm the software-based simulation results.
However, while it took several days on a small cluster for software-based simulation, it took
less then 6 hours to collect results for a 3× larger hardware design space using a single
FPGA board. Moreover, techniques like clock skipping provided further improvements in
the simulation throughput.

Figure 3.29 shows the performance of the “median” matrix—for each hardware config-
uration, the matrix with the median tuned performance on that configuration was chosen
to compute the representative energy and performance numbers. The “median” matrix is
used to summarize the different performance and energy trends for different matrices using
a single “matrix”. Although the performance and energy improvements are near nil for the
worst performing matrices like scircuit and webbase, the “median” matrix fares much
better as tuning gives modest improvements in performance for most of the matrices–1.7×
improvement in area efficiency and 1.4× improvement in power efficiency.

146

0 5 10 15 20 25 30 35

area (mm2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fl
o
p
s
/c

y
c
le

SpMV (cant: 4007383 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (cant: 4007383 nnz)

(b) Improvement in performance vs. area

0 50 100 150 200

Power efficiency (mflops/sec/watt)

0

20

40

60

80

100

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (cant: 4007383 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (cant: 4007383 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.17: SpMV: cant matrix performance

147

0 5 10 15 20 25 30 35

area (mm2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fl
o
p
s
/c

y
c
le

SpMV (consph: 6010480 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (consph: 6010480 nnz)

(b) Improvement in performance vs. area

0 50 100 150 200

Power efficiency (mflops/sec/watt)

0

20

40

60

80

100

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (consph: 6010480 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (consph: 6010480 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.18: SpMV: consph matrix performance

148

0 5 10 15 20 25 30 35

area (mm2)

0

0.05

0.1

0.15

fl
o
p
s
/c

y
c
le

SpMV (cop20k: 2624331 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (cop20k: 2624331 nnz)

(b) Improvement in performance vs. area

0 20 40 60 80 100 120 140 160

Power efficiency (mflops/sec/watt)

0

10

20

30

40

50

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (cop20k: 2624331 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (cop20k: 2624331 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.19: SpMV: cop20k matrix performance

149

0 5 10 15 20 25 30 35

area (mm2)

0

0.02

0.04

0.06

0.08

0.1

0.12

fl
o
p
s
/c

y
c
le

SpMV (econ: 1273389 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (econ: 1273389 nnz)

(b) Improvement in performance vs. area

0 20 40 60 80 100 120

Power efficiency (mflops/sec/watt)

0

5

10

15

20

25

30

35

40

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (econ: 1273389 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (econ: 1273389 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.20: SpMV: econ matrix performance

150

0 5 10 15 20 25 30 35

area (mm2)

0

0.02

0.04

0.06

0.08

0.1

0.12

fl
o
p
s
/c

y
c
le

SpMV (marcatcomm: 2733595 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (marcatcomm: 2733595 nnz)

(b) Improvement in performance vs. area

0 20 40 60 80 100

Power efficiency (mflops/sec/watt)

0

5

10

15

20

25

30

35

40

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (marcatcomm: 2733595 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (marcatcomm: 2733595 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.21: SpMV: marcatcomm matrix performance

151

0 5 10 15 20 25 30 35

area (mm2)

0

0.02

0.04

0.06

0.08

0.1

fl
o
p
s
/c

y
c
le

SpMV (mc2depi: 2100225 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (mc2depi: 2100225 nnz)

(b) Improvement in performance vs. area

0 20 40 60 80 100

Power efficiency (mflops/sec/watt)

0

5

10

15

20

25

30

35

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (mc2depi: 2100225 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (mc2depi: 2100225 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.22: SpMV: mc2depi matrix performance

152

0 5 10 15 20 25 30 35

area (mm2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

fl
o
p
s
/c

y
c
le

SpMV (pdb: 4344765 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (pdb: 4344765 nnz)

(b) Improvement in performance vs. area

0 50 100 150 200

Power efficiency (mflops/sec/watt)

0

20

40

60

80

100

120

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (pdb: 4344765 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (pdb: 4344765 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.23: SpMV: pdb matrix performance

153

0 5 10 15 20 25 30 35

area (mm2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fl
o
p
s
/c

y
c
le

SpMV (pwtk: 11634424 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (pwtk: 11634424 nnz)

(b) Improvement in performance vs. area

0 50 100 150

Power efficiency (mflops/sec/watt)

0

20

40

60

80

100

120

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (pwtk: 11634424 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (pwtk: 11634424 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.24: SpMV: pwtk matrix performance

154

0 5 10 15 20 25 30 35

area (mm2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fl
o
p
s
/c

y
c
le

SpMV (qcd: 1916928 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

2.5

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (qcd: 1916928 nnz)

(b) Improvement in performance vs. area

0 50 100 150 200 250

Power efficiency (mflops/sec/watt)

0

10

20

30

40

50

60

70

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (qcd: 1916928 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

2.5

3

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (qcd: 1916928 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.25: SpMV: qcd matrix performance

155

0 5 10 15 20 25 30 35

area (mm2)

0

0.02

0.04

0.06

0.08

0.1

fl
o
p
s
/c

y
c
le

SpMV (scircuit: 958936 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (scircuit: 958936 nnz)

(b) Improvement in performance vs. area

0 10 20 30 40 50 60 70 80 90

Power efficiency (mflops/sec/watt)

0

5

10

15

20

25

30

35

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (scircuit: 958936 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (scircuit: 958936 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.26: SpMV: scircuit matrix performance

156

0 5 10 15 20 25 30 35

area (mm2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

fl
o
p
s
/c

y
c
le

SpMV (shipsec: 7813404 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (shipsec: 7813404 nnz)

(b) Improvement in performance vs. area

0 50 100 150 200

Power efficiency (mflops/sec/watt)

0

20

40

60

80

100

120

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (shipsec: 7813404 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (shipsec: 7813404 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.27: SpMV: shipsec matrix performance

157

0 5 10 15 20 25 30 35

area (mm2)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

fl
o
p
s
/c

y
c
le

SpMV (webbase: 3105536 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (webbase: 3105536 nnz)

(b) Improvement in performance vs. area

0 10 20 30 40 50 60 70

Power efficiency (mflops/sec/watt)

0

5

10

15

20

25

30

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (webbase: 3105536 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (webbase: 3105536 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.28: SpMV: webbase matrix performance

158

0 5 10 15 20 25 30 35

area (mm2)

0

0.05

0.1

0.15

0.2

0.25

fl
o
p
s
/c

y
c
le

SpMV (median: 0 nnz)

Untuned

Tuned

(a) Performance vs. area.

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

S
p
e
e
d
u
p

d
u
e

to
tu

n
in

g

SpMV (median: 0 nnz)

(b) Improvement in performance vs. area

0 50 100 150 200

Power efficiency (mflops/sec/watt)

0

10

20

30

40

50

60

70

A
re

a
e
ffi

c
ie

n
c
y

(m
fl
o
p
s
/s

e
c
/m

m
2
)

SpMV (median: 0 nnz)

Untuned

Tuned

(c) Area efficiency vs. power efficiency

0 5 10 15 20 25 30 35

Area (mm2)

0

0.5

1

1.5

2

T
a
rg

e
t
c
y
c
le

s
p
e
r

h
o
s
t
c
y
c
le

SpMV (median: 0 nnz)

Untuned

Tuned

(d) Simulated cycles/FPGA cycles vs. area.

Figure 3.29: SpMV: median matrix performance

159

3.8 Summary

In this chapter, we proposed hardware/software co-tuning as a novel approach to hard-
ware design. We demonstrated co-tuning on the Smart Memories multiprocessor and three
important scientific computing kernels. In addition to the results from a software-based
hardware simulator, we also demonstrated co-tuning using an FPGA-based hardware sim-
ulator which ran orders of magnitude (nearly 250×) faster than the software-based sim-
ulator. Results showed that significant improvements in area and power efficiencies are
possible due to co-tuning when compared to traditional design space exploration which ig-
nores software tuning. These improvements range from 50×-100× for SGEMM to nearly
2× for bandwidth-limited kernels like stencil and SpMV. Significant improvements in area
and power efficiencies translate to lower procurement and running costs for a given target
performance, thus demonstrating the effectiveness of co-tuning.

160

Chapter 4

Conclusions and Future Work

4.1 Conclusions

To address both current and future gaps between computational speed and communica-
tion speed, we are developing a set of communication avoiding algorithms to minimize data
movement within local memory hierarchies and between processors. Our work on the matrix
powers kernel falls under the broad umbrella of communication-avoiding algorithms. In this
work we presented both serial and parallel algorithms for the matrix powers kernel, which
can be used in place of individual sparse matrix vector multiplication in Krylov Subspace
Methods and elsewhere. The powers kernel amortizes the bandwidth cost of reading the
sparse matrix A by breaking A into blocks that fit in a single processor or a fast memory
system and taking multiple steps on those blocks. We present algorithms with minimal
communication costs, which send a single message (or slow matrix read) for k matrix-vector
products computed in the matrix powers kernel, compared to k such operations in the con-
ventional approach. We also show variations of the algorithms that trade off communication
cost for redundant work.

Our algorithms are of practical as well as theoretical interest. We developed detailed
performance models for both serial and parallel algorithms, instantiating the parallel model
with parameters that are expected to be typical for a Petascale machine and for computing
across the Grid. The serial model is instantiated with numbers from a current processor
memory hierarchy and for an out-of-core setting. Our detailed performance model predicts
more than 4× speedups for high latency parallel machines (Grid) for moderate sized sten-
cils. In the sequential case, our proposed algorithm avoids both latency and bandwidth (in
contrast to the parallel machine, where only latency is avoided), which gives speedups for all
problem sizes. The performance of our sequential out-of-core implementation is promising
indeed, with speedups of 3× over the conventional algorithm. Our auto-tuned multi-core
implementation integrated the parallel and sequential algorithms for matrix powers to get
significant improvements of up to 2.6× over the näıve implementation, which happens to
be based on a highly optimized implementation of sparse matrix vector multiplication. Our
multi-core implementation of matrix powers was integrated into a communication-avoiding
iterative solver with significant speedups over the state of the art. In addition to the specific

161

coresPower Sustained MFlop/s Sustained PFlop/s

per per per chip with 10MW of chip power

Architecture chip chip DGEMMStencilSpMVDGEMMStencil SpMV

Opteron 4 95W 32000 3580 1980 3.37 0.38 0.21

Blue Gene/P 4 16W 10200 520 590 6.38 0.33 0.37

Table 4.1: Performance of the double-precision implementations of our three key kernels
on petascale computers. Note, power requirements are for the chip only assuming perfect
scaling.

results in this work, we believe this work reflects a shift in algorithm design that will be
necessary for future systems; this approach carefully counts communication costs and may
favor algorithms with higher computational cost if they avoid communication.

We noted that power efficiency is rapidly becoming the primary concern for HPC system
design. Conventionally designed ultra-scale platforms constructed with the conventional-
wisdom approach based on using commodity server-oriented processors, will draw tens to
hundreds of Megawatts—making the cost of powering these machines impractically high.
Therefore, it is critical to develop design tools and technologies that improve the power
efficiencies of future high-end systems.

We have proposed a novel co-tuning methodology—traditional architecture space explo-
ration is tightly coupled with software auto-tuning—for high-performance system design,
and demonstrated that it provides substantial efficiency benefits by customizing the sys-
tem’s architecture to software and software to the system’s architecture. Our study applies
this approach to a multi-core processor design with three heavily used kernels from scien-
tific applications spanning a wide variety of computational characteristics. Based on the
optimization results for the individual kernels, we demonstrate power and area efficiency
gains of 1.2–2.4× and 1.5–3× respectively, due to co-tuning—when compared to using auto-
tuned software on the fastest, embedded processor configuration. Additionally, we show that
these improvements can also be attained in multi-kernel application environments. As high-
lighted in Table 4.1, this increased efficiency can translate into hundreds of Teraflops, if not
Petaflops, of additional performance for next-generation power-constrained HPC systems.

Building platforms from pre-verified parameterized core designs in the embedded space
enables programmability and accelerated system design compared to a full-custom logic
design, while providing higher efficiencies than general purpose processors tailored for se-
rial performance. Furthermore, our hardware/software co-tuning methodology is a tool for
assisting and automating the optimization of programmable HPC systems for energy effi-
ciency. Tools for automatic design space exploration in the context of ad-hoc architectures
do not exist, and the design space is intractably large. However, basing architectures on
programmable multi-core processors constrains the design space, making the search space
tractable and verification costs reasonable—as the same core can be replicated millions of
times.

162

4.2 Future Work

4.2.1 Matrix Powers

There are several opportunities for further work on the matrix powers kernel—we list
some of them:

• Better algorithms for multi-cores: In our hybrid algorithms for multi-cores each thread
tries to minimize the traffic to DRAM independently of other threads. While we were
able to get significant speedups, we believe further performance improvements are pos-
sible if the hybrid algorithms are better matched to the underlying hardware where
multiple threads may share cores, caches and sockets. Although communication is
costly, on-chip communication is still significantly cheaper than off-chip communica-
tion. Thus, we envision hybrid algorithms where more sophisticated composition of
parallel and sequential algorithms is done, e.g., multiple threads which share an on-
chip cache, work on the same cache block instead of working independently (which
is the case with the hybrid algorithms in this work). Sharing cache blocks also has
the benefit of fewer and larger cache blocks (since more cache memory is available
per block) which amounts to a decrease in redundant computation. Thus, instead of
the two-level composition (sequential algorithms running in parallel), a more hierar-
chical composition may be implemented (parallel algorithms running under sequential
algorithms running in parallel!) to better match the underlying hardware.

• Better partitioner: A good partition of the matrix is the key to getting a good per-
formance. Current graph/matrix partitioners target SpMV, so we built our own par-
titioner for matrix powers on top of METIS, which can be very inefficient as well
as generate poor quality partitions. Recently, there has been work in developing
a better partitioner for matrix powers using hypergraphs which better capture the
communication-minimizing constraint of matrix powers. Part of the problem in de-
veloping an efficient partitioner for matrix powers is that the exact formulation of the
partitioning problem would require actual computation of the powers of the matrix—
if the matrix is bad, the partitioner itself may run out of memory. In fact, in our
work, the choice of whether to use the powers of the matrix to setup the partitioning
problem, was a parameter but we decided not to use it as it was expensive and would
have failed for some matrices.

• Better ordering for the matrix and the vector entries and blocks: While we studied the
theoretical aspects of the ordering problem (see the Traveling Salesman formulation
in Section 2.5.5), it would be interesting to see how much of a benefit can be gotten
from it in an actual implementation.

• Better auto-tuning: Currently, we exhaustively search the parameter space for matrix
powers. Not only is this expensive, but a more sophisticated search may be able to
cut down the search space. We envision using additional performance counter data,
e.g., measured bandwidth, cache hit/miss rates, to guide the search space exploration.

163

In addition, a larger parameter space may be searched during auto-tuning using tools
from machine learning. We note that the problem of designing better auto-tuners is
more general and not just limited to matrix powers.

Our work on the matrix powers kernel was a comprehensive effort involving the design
of algorithms, detailed performance modeling, implementation on a variety of platforms and
finally integrating into an actual solver to demonstrate the effectiveness of communication-
avoiding algorithms at the theoretical as well as the practical level. Nonetheless, there is
still significant work to be done in the future as can be gauged from the list above.

4.2.2 Co-Tuning

Our c-otuning studies in this work were very limited and more of a proof of concept than
developing a framework for such a methodology. There a lot of avenues for future work,
some of them being:

• Co-tuning studies targeting FPGA-based simulation of multi-cores: While we set out
to demonstrate such a study, we were unsuccessful due to problems debugging our
FPGA-based implementation. Since frameworks for FPGA-based multi-core simula-
tion already exist, it would be interesting to see co-tuning demonstrated on some of
them.

• Explore a larger hardware/software design space: Our hardware design space was lim-
ited in the sense of exploring high-level parameters like the number of cores, the cache
sizes and memory bandwidth. Future work could examine more complex architectural
designs that can potentially improve power efficiency such as VLIW, SIMD, vector,
streaming and hardware multi-threading. While Tensilica’s XTensa processors can be
customized heavily by defining new instructions, we used fixed cores. It would be in-
teresting to see how such low-level customizations can affect auto-tuned applications.
In addition, more auto-tuned kernels should be included for a more complete study.

• Multi-kernel/application co-tuning: Our multi-kernel co-tuning discussion in Sec-
tion 3.5.3 was very simplistic as it ignored the interactions that may occur between
different kernels. A successful co-tuning framework would attempt to solve the prob-
lem of co-tuning for a set of interacting kernels (and even applications) to make better
hardware design decisions.

• Intelligent design space exploration for co-tuning: Current hardware DSE studies al-
ready explore very large design spaces using machine learning tools. Given that the
co-tuning design space is orders of magnitude bigger due to the incorporation of the
software design space, such tools are a necessity in order for co-tuning to be practically
viable—this is despite the two orders of magnitude speedups in simulation offered by
FPGA-acceleration. Thus, statistical models may be used to jointly model the hard-
ware/software parameter space, in order to better predict the performance metrics
as a function of the hardware/software parameter values. It would be interesting

164

to determine which modeling techniques would work for the joint hardware/software
parameter space.

Our proposed co-tuning strategy offers a promising trade-off between the additional
design cost of architectural customization and the portability and programmability of off-
the-shelf microprocessors. Moreover, existing toolchains of companies like Tensilica enable a
large space of hardware configurations, and the evolving maturity of auto-tuners for scientific
kernels provides the ability to extract near-peak performance from these designs. Overall,
this approach can provide a quantum leap in hardware utilization and energy efficiency, the
primary metrics driving the design of the next-generation HPC systems.

165

Bibliography

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures: The
plasma and magma projects. Journal of Physics: Conference Series, 180(1):012037,
2009.

[2] N. Azizi, I. Kuon, and A. Egier. Reconfigurable Molecular Dynamics Simulator. In
IEEE Symposium on Field-Programmable Custom Computing Machines, April 2004.

[3] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz. Energy-performance
tradeoffs in processor architecture and circuit design: a marginal cost analysis. In
Proceedings of the 37th annual international symposium on Computer architecture,
ISCA ’10, pages 26–36, New York, NY, USA, 2010. ACM.

[4] Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation. IMA Journal
of Numerical Analysis, 14:563–581, 1994.

[5] D. Bailey. Little’s Law and High-Performance Computing, 1997.

[6] D. Bailey, E. Barszcz, J. Barton, et al. The NAS Parallel Benchmarks. Technical
Report RNR-94-007, NASA, 1994.

[7] D. H. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J. K. Hollingsworth, P. Hov-
land, S. Moore, K. Seymour, J. Shin, A. Tiwari, S. Williams, and H. You. Peri
auto-tuning. Journal of Physics: Conference Series, 125(1):012089, 2008.

[8] Z. K. Baker and V. K. Prasanna. Efficient Hardware Data Mining with the Apriori Al-
gorithm on FPGAs. In IEEE Symposium on Field-Programmable Custom Computing
Machines, April 2005.

[9] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing Communication
in Numerical Linear Algebra. SIAM Journal of Matrix Analysis and Applications,
32(3):866–901, 2011.

[10] M. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations. Journal of Computational Physics, 53:484–512, 1984.

166

[11] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply
using phipac: a portable, high-performance, ansi c coding methodology. Technical
report, 1996.

[12] J. Bilmes, K. Asanovic, C. W. Chin, and J. Demmel. Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology. In ICS
’97: Proceedings of the 11th International Conference on Supercomputing, pages 340–
347, New York, NY, USA, 1997. ACM Press.

[13] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply using
phipac: a portable, high-performance, ansi c coding methodology. In Proceedings of
the 11th international conference on Supercomputing, ICS ’97, pages 340–347, New
York, NY, USA, 1997. ACM.

[14] S. Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4):23–29, 1999.

[15] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid on distributed
memory machines. SIAM J. Sci. Comput., 21:1823–1834, December 1999.

[16] A. Buluc, S. Williams, L. Oliker, and J. Demmel. Reduced-bandwidth multithreaded
algorithms for sparse matrix-vector multiplication. In Proceedings of the 2011 IEEE
International Parallel & Distributed Processing Symposium, IPDPS ’11, pages 721–
733, Washington, DC, USA, 2011. IEEE Computer Society.

[17] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. A.
Yelick, and A. Fox. SEJITS: Getting Productivity and Performance With Selective
Embedded JIT Specialization. Technical Report UCB/EECS-2010-23, EECS Depart-
ment, University of California, Berkeley, March 2010.

[18] W. Chelton and M. Benaissa. Fast Elliptic Curve Cryptography on FPGA. IEEE
Transactions on VLSI Systems, 16:198–205, February 2008.

[19] C. Chen, J. Chame, and M. Hall. CHiLL: A framework for composing high-level loop
transformations. Technical report, University of Southern California, 2008.

[20] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven autotuning of sparse matrix-
vector multiply on gpus. In Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’10, pages 115–126, New
York, NY, USA, 2010. ACM.

[21] A. T. Chronopoulos and C. W. Gear. s-step iterative methods for symmetric linear
systems. J. Comput. Appl. Math., 25(2):153–168, 1989.

[22] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai, and B. Falsafi.
ProtoFlex: Towards Scalable, Full-System Multiprocessor Simulations Using FPGAs.
ACM Trans. Reconfigurable Technol. Syst., 2:15:1–15:32, June 2009.

167

[23] S. P. E. Corporation. SPEC Benchmarks, 2009. http://www.spec.org/benchmarks.
html.

[24] K. Datta, M. Murphy, V. Volkov, et al. Stencil Computation Optimization and Auto-
Tuning on State-of-the-art Multicore Architectures. In SC ’08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, 2008.

[25] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,
J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, SC ’08, pages 4:1–4:12, Piscataway, NJ, USA, 2008. IEEE Press.

[26] J. Davis, C. Thacker, and C. Chang. BEE3: Revitalizing Computer Architecture
Research. Technical Report MSR-TR-2009-45, Microsoft Research, 2009.

[27] J. D. Davis, J. Laudon, and K. Olukotun. Maximizing cmp throughput with mediocre
cores. In Proceedings of the 14th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’05, pages 51–62, Washington, DC, USA, 2005.
IEEE Computer Society.

[28] E. de Sturler. A parallel variant of GMRES(m). In J. J. H. Miller and R. Vichnevetsky,
editors, Proceedings of the 13th IMACS World Congress on Computation and Applied
Mathematics, Dublin, Ireland, 1991. Criterion Press.

[29] J. Demmel, J. Dongarra, V. Eijkhout, et al. Self Adapting Linear Algebra Algo-
rithms and Software. In Proc. of the IEEE: Special Issue on Program Generation,
Optimization, and Adaptation, February 2005.

[30] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, C. Whaley,
and K. Yelick. Self-adapting linear algebra algorithms and software. Proceedings of
the IEEE, 93(2):293–312, February 2005.

[31] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication
in computing Krylov subspaces. Technical Report UCB/EECS-2007-123, University
of California Berkeley EECS, October 2007.

[32] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding Communication
in Sparse Matrix Computations. In Proceedings of IPDPS, April 2008.

[33] J. Demmel, J. Langou, L. Grigori, and M. Hoemmen. Communication-Optimal Paral-
lel and Sequential QR and LU Factorizations. SIAM Journal of Scientific Computing,
34(1), February 2012.

[34] C. Ding and Y. He. A ghost cell expansion method for reducing communications in
solving PDE problems. In Proceedings. of SC2001, Nov. 2001.

168

[35] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss. Cache optimization
for structured and unstructured grid multigrid. Electronic Transaction on Numerical
Analysis, 10:21–40, Feb. 2000.

[36] C. Dubach, T. Jones, and M. O’Boyle. Microarchitectural design space exploration
using an architecture-centric approach. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 40, pages 262–271, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[37] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick. UPC: Distributed Shared-
Memory Programming. Wiley-Interscience, May 2005.

[38] J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Transac-
tions on Numerical Analysis, 3:160–176, 1995.

[39] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. In Proc. of
the IEEE, 2004.

[40] P. Gelsinger. Microprocessor for the New Millennium - Challenges, Opportunities and
New Frontiers. In ISSCC Digest of Technical Papers, 2001.

[41] A. George. Nested dissection of a regular finite element mesh. SIAM J. Num. Anal.,
10:345–363, 1973.

[42] J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algorithm. Nu-
merische Mathematik, 50:377–404, 1986. 10.1007/BF01396660.

[43] K. Goto and R. Van De Geijn. High-performance implementation of the level-3 blas.
ACM Trans. Math. Softw., 35:4:1–4:14, July 2008.

[44] K. Goto and R. A. van de Geijn. Anatomy of high-performance matrix multiplication.
Transactions on Mathematical Software, 34(3), 2008.

[45] M. Gschwind, V. Salapura, and D. Maurer. Fpga prototyping of a risc processor core
for embedded applications. IEEE Transactions on VLSI Systems, 9:241–250, April
2001.

[46] M. Hoemmen. Communication-Avoiding Krylov Subspace Methods. PhD thesis, EECS
Department, University of California, Berkeley, 2010.

[47] J.-W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proc.
13th Ann. ACM Symp. on Theory of Computing (May 11-13, 1981), pages 326–333,
1981.

[48] E.-J. Im, K. Yelick, and R. Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels. Int. J. HPCA, February 2004.

169

[49] E. Ipek, S. A. McKee, K. Singh, R. Caruana, B. R. d. Supinski, and M. Schulz.
Efficient architectural design space exploration via predictive modeling. ACM Trans.
Archit. Code Optim., 4:1:1–1:34, January 2008.

[50] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 319–
329. ACM Press, 1988.

[51] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-
memory matrix multiplication. Journal of Parallel and Distributed Computing,
64(9):1017 – 1026, 2004.

[52] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. A predictive performance model
for superscalar processors. In Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 39, pages 161–170, Washington, DC,
USA, 2006. IEEE Computer Society.

[53] W. D. Joubert and G. F. Carey. Parallelizable restarted iterative methods for nonsym-
metric linear systems, Part I: Theory. International Journal of Computer Mathematics,
44:243–267, 1992.

[54] C. Kamath, R. Ho, and D. P. Manley. DXML: A High-performance Scientific Subrou-
tine Library, 1994.

[55] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework for
parallel multicore stencil computations. In Proceedings of the International Symposium
on Parallel and Distributed Processing, IPDPS ’10, pages 1–12, 2010.

[56] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and
explicit optimizations for stencil computations. In Memory Systems Performance and
Correctness, San Jose, CA, Oct. 2006.

[57] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of modern memory
subsystems on cache optimizations for stencil computations. In 3rd Annual ACM
SIGPLAN Workshop on Memory Systems Performance, Chicago, IL, 2005.

[58] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. In International Conference on Parallel Processing, 1995.

[59] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. D. M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S.
Williams, and K. Yelick. ExaScale Computing Study: Technology Challenges in
Achieving Exascale Systems, 2008. http://users.ece.gatech.edu/~mrichard/

ExascaleComputingStudyReports/exascale_final_report_100208.pdf.

170

[60] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-core Archi-
tectures: Understanding Mechanisms, Overheads and Scaling. In Proceedings of the
International Symposium on Computer Architecture, pages 408–419, June 2005.

[61] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Softw., 5:308–323, September 1979.

[62] B. C. Lee and D. M. Brooks. Accurate and efficient regression modeling for microar-
chitectural performance and power prediction. SIGARCH Comput. Archit. News,
34:185–194, October 2006.

[63] C. E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for linear relax-
ation using blocking covers (extended abstract). In IEEE Symposium on Foundations
of Computer Science, pages 704–713, 1993.

[64] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz, and
C. Kozyrakis. Comparing Memory Systems for Chip Multiprocessors. In Proceed-
ings of the International Symposium on Computer Architecture, 2007.

[65] I. T. Li, W. Shum, and K. Truong. 160-fold acceleration of the Smith-Waterman algo-
rithm using a field programmable gate array (FPGA). BMC Bioinformatics, 8(185),
2007.

[66] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP design space exploration
subject to physical constraints. In High-Performance Computer Architecture, 2006,
pages 17–28, Feb. 2006.

[67] C. Liao, D. Quinlan, R. Vuduc, and T. Panas. Effective source-to-source outlining to
support whole program empirical optimization. In G. Gao, L. Pollock, J. Cavazos,
and X. Li, editors, Languages and Compilers for Parallel Computing, volume 5898
of Lecture Notes in Computer Science, pages 308–322. Springer Berlin / Heidelberg,
2010. 10.1007/978-3-642-13374-9.

[68] M. Lin, I. Lebedev, and J. Wawrzynek. High-throughput bayesian computing ma-
chine with reconfigurable hardware. In Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate arrays, FPGA ’10, pages 73–82,
New York, NY, USA, 2010. ACM.

[69] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16(2):346–358, 1979.

[70] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz. Smart Memories:
A Modular Reconfigurable Architecture. In Proc. of the International Symposium on
Computer Architecture, pages 161–171, 2000.

[71] J. McCalpin and D. Wonnacott. Time skewing: A value-based approach to optimizing
for memory locality. Technical Report DCS-TR-379, Department of Computer Science,
Rutgers University, 1999.

171

[72] Micron Inc. Calculating Memory System Power for DDR2, June 2006. http://

download.micron.com/pdf/technotes/ddr2/TN4704.pdf.

[73] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication
in sparse matrix solvers. In Proceedings of Supercomputing, November 2009.

[74] M. Mohiyuddin, M. Murphy, J. Shalf, L. Oliker, J. Wawrzynek, and S. Williams. A
Methodology for Domain-Optimized Power-Efficient Supercomputers. In Proceedings
of Supercomputing, November 2009.

[75] M. Monchiero, R. Canal, and A. González. Design space exploration for multicore
architectures: a power/performance/thermal view. In ICS ’06: Proceedings of the
International Conference on Supercomputing, pages 177–186, New York, NY, USA,
2006. ACM.

[76] E. Musoll and M. Nemirovsky. Design Space Exploration of High-Performance Parallel
Architectures. In Journal of Integrated Circuits and Systems, 2008.

[77] R. Nishtala and K. Yelick. Optimizing collective communication on multicores. In
First USENIX Workshop on Hot Topics in Parallelism, 2009.

[78] D. Patterson. Latency lags bandwidth. CACM, 47(10):71–75, Oct 2004.

[79] J.-K. Peir. Program partitioning and synchronization on multiprocessor systems. PhD
thesis, Department of Computer Science, University of Illinois at Urbana-Champaign,
Mar. 1986.

[80] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer. HAsim: FPGA-Based
High-Detail Multicore Simulation Using Time-Division Multiplexing. In Proceedings
of the International Symposium on High Performance Computer Architecture, pages
406–417, February 2011.

[81] C. J. Pfeifer. Data flow and storage allocation for the PDQ-5 program on the Philco-
2000. Communications of the ACM, 6(7):365–366, 1963.

[82] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua, M. Veloso,
and R. W. Johnson. SPIRAL: A Generator for Platform-Adapted Libraries of Signal
Processing Algorithms. In Journal of High Performance Computing Applications,
2004.

[83] G. Rivera and C. Tseng. Tiling Optimizations for 3D Scientific Computations. In
Proceedings of SC’00, Dallas, TX, November 2000.

[84] E. J. Rosser. Fine-grained analysis of array computations. PhD thesis, Dept. of
Computer Science, University of Maryland, Sept. 1998.

[85] Y. Saad. Practical use of polynomial preconditionings for the conjugate gradient
method. SIAM J. Sci. Stat. Comput., 6(4), Oct. 1985.

172

[86] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3), 1986.

[87] G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou, G. Chinya, R. Plate, T. Mat-
tner, F. Olbrich, P. Hammarlund, R. Singhal, J. Brayton, S. Steibl, and H. Wang.
Intel Nehalem Processor Core Made FPGA Synthesizable. In Proceedings of the 18th
annual ACM/SIGDA international symposium on Field programmable gate arrays,
FPGA ’10, pages 3–12, New York, NY, USA, 2010. ACM.

[88] M. Schordan and D. Quinlan. A source-to-source architecture for user-defined opti-
mizations. In JMLC’03: Joint Modular Languages Conference, volume 2789 of Lecture
Notes in Computer Science, pages 214–223. Springer Verlag, Aug. 2003.

[89] S. Seo, J. Lee, and Z. Sura. Design and Implementation of Software-Managed Caches
for Multicores with Local Memory. In Proceedings of the International Symposium on
High Performance Computer Architecture, pages 55–66, February 2009.

[90] A. Shrivastava, I. Issenin, and N. Dutt. A Compiler-in-the-Loop Framework to Explore
Horizontally Partitioned Cache Architectures. In Proceedings of ASPDAC 2008, pages
328–333, March 2008.

[91] H. Simon, R. Stevens, T. Zacharia, et al. Modeling and Simulation at the Exascale for
Energy and the Environment (E3). Technical report, DOE ASCR Program Technical
Report, 2008.

[92] M. Snir and S. Graham, editors. Getting up to speed: The Future of Supercomputing.
National Research Council, 2004. 227 pages.

[93] Y. Song and Z. Li. New tiling techniques to improve cache temporal locality. In Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementation,
Atlanta, GA, 1999.

[94] M. M. Strout. Communiation avoidance for sparse applications using full sparse tiling.
Minisymposium talk at the SIAM Parallel Processing 2008 conference, 2008.

[95] M. M. Strout, L. Carter, and J. Ferrante. Rescheduling for locality in sparse matrix
computations. In V. N. Alexandrov and J. J. Dongarra, editors, Lecture Notes in
Computer Science. Springer, 2001.

[96] D. Takahashi. A Blocking Algorithm for FFT on Cache-Based Processors. In
B. Hertzberger, A. Hoekstra, and R. Williams, editors, High-Performance Computing
and Networking, volume 2110 of Lecture Notes in Computer Science, pages 551–554.
Springer Berlin / Heidelberg, 2001.

[97] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, and K. Asanovic.
RAMP Gold: An FPGA-based Architecture Simulator for Multiprocessors. In Pro-
ceedings of the ACM/IEEE Design Automation Conference, DAC’10, pages 463–468,
2010.

173

[98] Tensilica Inc. Xtensa Architecture and Performance. Whitepaper, October 2005.
http://www.tensilica.com/pdf/xtensa_arch_white_paper.pdf.

[99] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1. Technical
Report HPL-2008-20, HP Labs, 2008.

[100] S. Toledo. Quantitative performance modeling of scientific computations and creating
locality in numerical algorithms. PhD thesis, Massachusetts Institute of Technology,
June 1995.

[101] Top500.org. TOP500 List, June 2008. http://www.top500.org.

[102] J. van Rosendale. Minimizing inner product data dependence in conjugate gradient
iteration. In Proc. IEEE Internat. Confer. Parallel Processing, 1983.

[103] V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear algebra. In
Proceedings of Supercomputing, SC ’08, pages 1–11, 2008.

[104] R. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis,
University of California Berkeley, December 2003.

[105] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned sparse
matrix kernels. In Proc. of SciDAC 2005, J. of Physics: Conference Series. Institute
of Physics Publishing, June 2005.

[106] R. Vuduc, J. Demmel, and K. A. Yelick. OSKI: A library of automatically tuned sparse
matrix kernels. In Proceedings of SciDAC, Journal of Physics: Conference Series, San
Francisco, CA, June 2005.

[107] C. D. Wait. IBM PowerPC 440 FPU with Complex-Arithmetic Extensions. IBM
Journal of Research and Development, 49(2-3):249–254, 2005.

[108] H. F. Walker. Implementation of the GMRES method using Householder transforma-
tions. SIAM J. Sci. Stat. Comput., 9(1):152–163, 1988.

[109] P. H. Wang, J. D. Collins, C. T. Weaver, B. Kuttanna, S. Salamian, G. N. Chinya,
E. Schuchman, O. Schilling, T. Doil, S. Steibl, and H. Wang. Intel Atom Processor
Core Made FPGA-Synthesizable. In Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays, FPGA ’09, pages 209–218, New York,
NY, USA, 2009. ACM.

[110] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. C. Hoe, D. Chiou,
and K. Asanovic. RAMP: A Research Accelerator for Multiple Processors. IEEE
Micro, 27(2), 2007.

[111] M. Wehner, L. Oliker, J. Shalf, D. Donofrio, L. Drummond, R. Heikes, S. Kamil,
C. Konor, N. Miller, H. Miura, M. Mohiyuddin, D. Randall, and W.-S. Yang. Hard-
ware/Software Co-design of Global Cloud System Resolving. Journal of Advances in
Modeling Earth Systems, 3(12), 2011.

174

[112] R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimizations of
Software and the ATLAS Project. Parallel Computing, 27(1):3–25, 2001.

[113] S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization of Sparse Matrix-Vector
Multiplication on Emerging Multicore Platforms. In Proceedings of Supercomputing,
2007.

[114] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimiza-
tion of sparse matrixvector multiplication on emerging multicore platforms. Parallel
Computing, 35(3):178 – 194, 2009.

[115] M. E. Wolf. Improving locality and parallelism in nested loops. PhD thesis, Stanford
University, 1992.

[116] D. Wonnacott. Using time skewing to eliminate idle time due to memory bandwidth
and network limitations. In Proceedings of the Fourteenth International Parallel and
Distributed Processing Symposium (IPDPS), pages 171–180, 2000.

[117] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations. In Proceedings of ISCA, 1995.

[118] N. A. Woods and T. VanCourt. FPGA acceleration of quasi-Monte Carlo in finance.
In Proceedings of International Conference on Field Programmable Logic and Appli-
cations, September 2008.

[119] P. R. Woodward and S. E. Anderson. Scaling the Teragrid by latency tolerant appli-
cation design. In Proc. of NSF / Department of Energy Scaling Workshop, Pittsburg,
CA, May 2002.

[120] R. Wunderlich and J. Hoe. In-system FPGA prototyping of an Itanium microarchi-
tecture. In IEEE International Conference on Computer Design, October 2004.

[121] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. POET: Parameterized Op-
timizations for Empirical Tuning. In Workshop on Performance Optimization for
High-Performance Languages and Libraries, 2007.

[122] S. Zierke and J. D. Bakos. FPGA acceleration of the phylogenetic likelihood function
for Bayesian MCMC inference methods. BMC Bioinformatics, 11(184), 2010.

