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Abstract

Structured Estimation In High-Dimensions

by

Sahand N. Negahban

Doctor of Philosophy in Engineering-Electrical Engineering & Computer Sciences

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Martin J. Wainwright, Chair

High-dimensional statistical inference deals with models in which the number of parameters
p is comparable to or larger than the sample size n. Since it is usually impossible to obtain
consistent procedures unless p/n→ 0, a line of recent work has studied models with various
types of low-dimensional structure, including sparse vectors, sparse and structured matrices,
low-rank matrices, and combinations thereof. Such structure arises in problems found in
compressed sensing, sparse graphical model estimation, and matrix completion. In such set-
tings, a general approach to estimation is to solve a regularized optimization problem, which
combines a loss function measuring how well the model fits the data with some regularization
function that encourages the assumed structure. We will present a unified framework for
establishing consistency and convergence rates for such regularizedM -estimators under high-
dimensional scaling. We will then show how this framework can be utilized to re-derive a few
existing results and also to obtain a number of new results on consistency and convergence
rates, in both ℓ2-error and related norms.

An equally important consideration is the computational efficiency in performing infer-
ence in the high-dimensional setting. This high-dimensional structure precludes the usual
global assumptions—namely, strong convexity and smoothness conditions—that underlie
much of classical optimization analysis. We will discuss ties between the statistical inference
problem itself and efficient computational methods for performing the estimation. In partic-
ular, we will show that the same underlying statistical structure can be exploited to prove
global geometric convergence of the gradient descent procedure up to statistical accuracy.
This analysis reveals interesting connections between statistical precision and computational
efficiency in high-dimensional estimation.
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Chapter 1

Introduction

“The goals of science and society, which statisticians share, are to draw useful information
from data using everything that we know.” [18] In this dissertation we will aim to understand
how we may exploit the “low-dimensional” underlying structure of a high-dimensional esti-
mation problem in order to obtain similar statistical and computational performance as the
low-dimensional version. We will begin by first reviewing some ideas in statistical inference
followed by a more concrete discussion of high-dimensional statistical estimation. After this
discussion we will introduce some of the computational complexities involved in perform-
ing high-dimensional inference and consider how we might overcome these computational
challenges.

1.1 Statistical Inference

One of the fundamental problems in statistics is that of statistical estimation, i.e. we wish to
recover or extract information given a set of unorganized observations as efficiently as possi-
ble. In this thesis we will be addressing efficiency with respect to the number of observations
required as well as the computational costs. Our goal will be to develop computationally
tractable methods to efficiently exploit the structure underlying our data in order to extract
the information. Statistical inference problems arise in a wide variety of settings includ-
ing: astronomy [128], econometrics, epidemiology (for example John Snow’s famous work),
statistical signal processing [41, 45], medical image processing [85, 144], gene expression ar-
rays [123], hand-written digits (Post-office data), social-network analysis (disease spread),
and neuroscience [37]. For example, a common problem in statistical signal processing is
for a receiver to estimate a transmitted signal corrupted by a noisy wireless channel. In the
trivial case the signal is known by both the transmitter and receiver. In a more interest-
ing setting the transmitter might send a signal from a set of possible signals. The receiver
must then decode the transmission based on the noisy observations. Alternatively, in movie
recommendations, we might be interested in learning the average sentiment for a movie by
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analyzing the average rating. This piece of data is not immediately accessible without asking
every person to rate the movie–a costly and time consuming task. Instead, we simply con-
sider the sample of the population that has watched and rated the movie already in order to
obtain an accurate estimate of the average score. The average movie rating can be useful to
recommend a movie, however the single score does not account for variations in movie goer
preferences. Hence, making accurate predictions for movie preferences can become more
challenging. Instead, authors have shown that making use of all movies that a user has
rated can greatly increase the recommendation accuracy [126]. That is, we wish to recover
estimates for all possible pairs of movie and user ratings based on only a small fraction of
rated films. More abstractly, we can consider the setting that we have n observations and we
wish to estimate d parameters. The above stated example elicits a setting where we simply
wish to understand a given population, and hence, we wish to extract pieces of information
that describe the group. In general, such pieces of information can then be utilized for policy
making, health-care decisions, or advertising.

A common challenge in the aforementioned instances of estimation is that the data can be
non-uniform and exhibit randomness. That is, there is a level of noise or uncertainty in our
observations. For example our estimate of the average rating can vary based on the sample of
the population that we select; the same hand-written digits can appear differently; or signal
measurements can be corrupted by thermal noise in the silicon sensors. Other challenges
also exist when our desired parameters are not directly observable, for example learning
if two individuals are friends based on their interactions on a social network, inferring an
efficient representation of an image, or understanding what economic and political indicators
are related to changes in stock prices.

In order to better assess and analyze these problems, we frequently rely on mathematical
models that help us understand the objects in question. These models allow us to isolate
the crucial components of a problem so that we can formulate a better understanding of the
challenges involved. We refer the reader to the existing literature on methods of modeling
in various statistical and engineering contexts [18, 136].

We may now present a more precise mathematical formulation for discussing the sta-
tistical estimation problem. In general we will suppose that we observe n observations
Zn

1 = {Zi}ni=1 ∈ Zn. When we make statements regarding the probabilistic behavior of our
methods, we will assume that the samples are drawn from a distribution P over the data
space Zn. Furthermore, we assume that P can be well approximated by another distribution
that lies in a family of probability measures P denoted as the model [18]. Each distribution
P ∈ P will be indexed by a set of parameters θ ∈ Ω, that is P ∈ P : = {Pθ | θ ∈ Ω}. In
order to help distinguish parameters, we will equip the space Ω with a metric e : Ω×Ω → R

to compare two parameters and define the loss function L : Ω×Zn → R that will measure
how well our choice of parameter fits the data. We will take θ∗ ∈ argminθ∈Ω L(θ) to be any
minimizer of the population risk L(θ) : = EZn

1
[L(θ;Zn

1 )]. We wish to infer the parameter θ∗

from the observations Zn
1 . Our estimate of θ∗ will be denoted θ̂ = θ̂(Zn

1 ) and is a function of
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Zn
1 .

We will frequently wish to understand how the random object e(θ̂, θ∗) behaves. For
example, in classical asymptotic statistics one problem setting of interest is the case that Ω
is a fixed set of d parameters, that is Ω ⊂ R

d, and we want to understand if e(θ̂, θ∗) converges
to zero in probability, expectation, or almost surely as the number of observations n goes
to ∞. A more delicate analysis can further tell us the rate at which the above quantities
converge to zero. In fact, under suitable regularity conditions, we can frequently show that
the above quantities will converge with the rate 1/

√
n when the data are independently and

identically distributed according to some product distribution Pθ∗ . We will refer to the rate of
convergence of our estimate to the true set of parameters as the statistical performance of our
method. The book by van der Vaart [141] presents a more thorough discussion of classical
asymptotic statistics and its vast applications to analyzing the performance of statistical
estimators.

One question that we may wish to ask is: how useful is a theory that treats d as fixed
whereas the number of observations n is taken to ∞? Put another way, will the asymptotic
behavior be applicable to a specific problem with a fixed d and n when d > n? In the classical
setting, this theory can be quite elucidating as we frequently have more observations than
parameters, for example estimating the average movie rating of a population. However, in
the modern statistical setting, we are pressed to carefully assess the validity of the above
questions. With the advancements of modern data acquisition techniques we are faced with
a plethora of data sources (the Internet), advanced scientific equipment that can produce
massive amounts of data daily (LHC), and a requirement to analyze larger more complex
problems with far fewer example as in gene expression array studies [81]. One of the most
poignant instances of these challenges surfaces in the problem of collaborative filtering or
matrix completion [124].

Consider the collaborative filtering problem of estimating how d1 users will rate d2 movies.
Clearly, we will have d = d1 × d2 parameters to estimate and can take Ω = R

d1×d2 to be the
set of d1× d2 matrices. The classical statistical setting would require that we observe n≫ d
observations in order to make an accurate prediction of the ratings. In essence, we would
require every user to watch and record a rating for every possible movie, which would be
very impractical. In general, there is no way to overcome this. Intuitively, if we only observe
a subset of the entries, then there are an infinite number of matrices that can fit the same
data observations.

This hurdle is not unique to just the collaborative filtering problem. It also arises in linear
regression, graphical model selection, and system identification. The underlying difficulty
is owing to the fact that without sufficient observations, our loss function cannot generally
distinguish between the various parameters, and is hence “flat” in some areas. A theme that
will appear throughout this thesis is overcoming the “flatness” problem. However, unless we
make further structural assumptions this problem is hopeless. This observation leads us to
structured high-dimensional statistical estimation.
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1.2 Structured high-dimensional statistical estimation

We will refer to high-dimensional estimation as instances of statistical estimation in which
the ambient dimension of the data is comparable to (or possibly larger than) the sample size.
From another perspective, we may also consider non-parametric inference problems as high-
dimensional in nature. Such problems also suffer from the “curse of dimensionality” since
even estimating a univariate function can be challenging without additional assumptions on
the function class. Hence, a line of research has focused on exploiting certain sparsity and
smoothness assumptions on the functions in order to efficiently estimate them [110]. We
refer the interested reader to the work by Yu [151], which discusses some of the complexities
and challenges with non-parametric regression. The primary focus of this paper will be on
parametric models, and hence the complexity of our model classes will be related to the
ambient dimensionality of the parameter space as well as the lower-dimensional underlying
structure. This focus is not necessarily a weaker assumption: we may consider approximating
a univariate function as the sum of polynomials up to an arbitrary order. Doing so allows
us to approximate the non-parametric problem as a parametric one. The parameters in this
case will be the coefficients in the polynomial expansion.

Problems with a high-dimensional character arise in a variety of applications in science
and engineering, including analysis of gene array data, medical imaging, remote sensing,
and astronomical data analysis. In settings where the number of parameters may be large
relative to the sample size, the utility of classical (fixed dimension) results is questionable,
and accordingly, a line of on-going statistical research seeks to obtain results that hold under
high-dimensional scaling, meaning that both the problem size and sample size (as well as
other problem parameters) may tend to infinity simultaneously. It is usually impossible
to obtain consistent procedures in such settings without imposing some sort of additional
constraints. Accordingly, there are now various lines of work on high-dimensional inference
based on imposing different types of structural constraints. A substantial body of past
work has focused on models with sparsity constraints, including the problem of sparse linear
regression [131, 39, 44, 94, 20], banded or sparse covariance matrices [19, 16, 69], sparse
inverse covariance matrices [153, 53, 120, 111], sparse eigenstructure [67, 4, 106], and sparse
regression matrices [104, 83, 152, 63]. A theme common to much of this work is the use of
ℓ1-penalty as a surrogate function to enforce the sparsity constraint.

High-dimensional statistics is concerned with models in which the ambient dimension of
the problem d may be of the same order as—or substantially larger than—the sample size
n. Hence, we must consider new methods to model such problem instances. Classical work
considers asymptotic analysis of such problems as n → ∞ and d → ∞. Our focus in this
thesis will be on establishing error bounds with respect to some error metric that will hold
with high probability for a finite number of observations n and demonstrate the dependency
on d as well as other structural parameters.

As alluded to above, the roots of high-dimensional statistics are quite old, dating back to
work on randommatrix theory and high-dimensional testing problems (e.g, [55, 91, 105, 147]).
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However, the past decade has witnessed a tremendous surge of research activity as the
classical asymptotic assumptions prove no longer valid. Rapid development of data collection
technology is a major driving force: it allows for more observations to be collected (larger
n), and also for more variables to be measured (larger d).

In the regime d ≫ n, it is well known that consistent estimators cannot be obtained
unless additional constraints are imposed on the model. Accordingly, there are now several
lines of work within high-dimensional statistics, all of which are based on imposing some
type of low-dimensional constraint on the model space, and then studying the behavior of
different estimators. Examples include linear regression with sparsity constraints, estima-
tion of structured covariance or inverse covariance matrices, graphical model selection, sparse
principal component analysis, low-rank matrix estimation, matrix decomposition problems,
and estimation of sparse additive non-parametric models. The classical technique of regular-
ization has proven fruitful in all of these contexts. Many well-known estimators are based on
solving a convex optimization problem formed by the sum of a loss function (c.f. Section 1.1)
with a weighted regularizer ; we refer to any such method as a regularized M-estimator. The
purpose of the regularizer is to encourage are estimates to satisfy our structural assump-
tions by penalizing deviations away from our assumptions. For instance, in application to
linear models, the Lasso or basis pursuit approach [131, 39] is based on a combination of
the least-squares loss with ℓ1-regularization, and so involves solving a quadratic program.
Similar approaches have been applied to generalized linear models, resulting in more gen-
eral (non-quadratic) convex programs with ℓ1-constraints. Several types of regularization
have been used for estimating matrices, including standard ℓ1-regularization, a wide range
of sparse group-structured regularizers, as well as regularization based on the nuclear norm
(sum of singular values).

Returning to the collaborative filtering example we see that any number of matrices could
potentially fit our observations. The problem with such a model is that it necessarily treats
all movies and users as completely unique. However, such an assumption is overly complex
and does not model reality: various users (and movies) share similar characteristics, hence
potentially reducing the number of effective parameters. Taking this point to the extreme,
suppose that all movies and users are identical. In this case, rather than taking Ω to be the
set of all matrices, we take it to be the set of all matrices M such that Mi,j = c for some
real number c ∈ R. Hence, we have effectively reduced the number of parameters from d1 d2
to one.

We have just presented an example where we have imposed an implicit structural con-
straint on our parameter set, thus reducing the effective size of the parameter space. In
the chapters to follow we will observe various structural constraints that still admit effective
modeling of our data. As will shall see in the sequel, enforcing such constraints can come at
a cost; if the constraints do not model our data well, then we will be forced to pay a penalty
in the statistical performance of our estimator.

Returning to the general model at hand, there are a large number of theoretical re-
sults in place for various types of regularized M -estimators that apply to various structural
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constraints. Sparse linear regression has perhaps been the most active area, and multi-
ple bodies of work can be differentiated by the error metric under consideration. They
include work on exact recovery for noiseless observations (e.g., [46, 44, 31]), prediction er-
ror consistency (e.g., [56, 25, 138, 139, 155]), consistency of the parameter estimates in
ℓ2 or some other norm (e.g., [25, 26, 139, 155, 95, 20, 32]), as well as variable selection
consistency (e.g., [94, 145, 156]). The information-theoretic limits of sparse linear regres-
sion are also well-understood, and ℓ1-based methods are known to be optimal for ℓq-ball
sparsity [109], and near-optimal for model selection [146]. For generalized linear models
(GLMs), estimators based on ℓ1-regularized maximum likelihood have also been studied,
including results on risk consistency [140], consistency in ℓ2 or ℓ1-norm [10, 68, 92], and
model selection consistency [113, 24]. Sparsity has also proven useful in application to
different types of matrix estimation problems, among them banded and sparse covariance
matrices (e.g., [19, 28, 69]). Another line of work has studied the problem of estimating
Gaussian Markov random fields, or equivalently inverse covariance matrices with sparsity
constraints. Here there are a range of results, including convergence rates in Frobenius,
operator and other matrix norms [120, 114, 75, 158], as well as results on model selection
consistency [114, 75, 94]. Motivated by applications in which sparsity arises in a struc-
tured manner, other researchers have proposed different types of block-structured regularizers
(e.g., [135, 149, 137, 157, 152, 8, 11, 64]), among them the group Lasso based on ℓ1/ℓ2 regu-
larization. High-dimensional consistency results have been obtained for exact recovery based
on noiseless observations [129, 11], convergence rates in ℓ2-norm (e.g., [96, 63, 83, 11]) as well
as model selection consistency (e.g., [104, 97, 96]). Problems of low-rank matrix estimation
also arise in numerous applications. Techniques based on nuclear norm regularization have
been studied for different statistical models, including compressed sensing [117, 79], matrix
completion [33, 71, 115, 99], multitask regression [154, 98, 119, 27, 9], and system identifica-
tion [51, 98, 82]. Finally, although we primarily focus on high-dimensional parametric models
in this thesis, regularization methods have also proven effective for a class of high-dimensional
non-parametric models that have a sparse additive decomposition (e.g., [112, 93, 72, 73]),
and shown to achieve minimax-optimal rates [110]. With this, the primary focus of the
first half of the thesis will be in exploring the structural assumptions that arise in statis-
tics and understanding how we may exploit them in order to obtain error-bounds that are
applicable in the high-dimensional setting. However, it is not immediately clear that such
high-dimensional problems lend themselves to computationally efficient solutions. In the
second half of the thesis we will focus on methods for performing computationally efficient
inference and explore the difficulties and solutions that arise.

1.3 Computational Considerations

Understanding the statistical behavior of a method is important in understanding its appli-
cability to a problem domain. However, without acknowledging the computational aspects
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of a problem, our solutions may prove unusable in practice. The regularized M -estimation
techniques noted above are based on optimizing convex objectives. In principle, solutions can
be found up to ǫ-accuracy in polynomial time by using interior point methods and other stan-
dard semi-definite program solvers [21, 15]. However, with the advent of high-dimensional
problems, it has become increasingly clear that standard off-the-shelf or Newton-based ap-
proaches to convex optimization can be prohibitively expensive for the very large-scale prob-
lems that arise from high-dimensional data sets. Consequently, there has been a resurgence
in research activity aimed at developing efficient first-order optimization based methods for
large scale statistics and machine learning applications, e.g. projected gradient descent and
mirror descent.

Several authors (e.g., [14, 66, 13]) have used variants of Nesterov’s accelerated gradient
method [102] to obtain algorithms for high-dimensional statistical problems with a sublinear
rate of convergence. Note that an optimization algorithm, generating a sequence of iterates
{θt}∞t=0, is said to exhibit sublinear convergence to an optimum θ̂ if the optimization error

‖θt − θ̂‖ decays at the rate 1/tκ, for some exponent κ > 0 and norm ‖ · ‖. Although this
type of convergence is quite slow, it is the best possible with gradient descent-type methods
for convex programs under only Lipschitz conditions [101].

It is known that much faster global rates—in particular, a linear or geometric rate—can
be achieved if global regularity conditions like strong convexity and smoothness are im-
posed [101]. An optimization algorithm is said to exhibit linear or geometric convergence if

the optimization error ‖θt− θ̂‖ decays at a rate κt, for some contraction coefficient κ ∈ (0, 1).
Note that such convergence is exponentially faster than sub-linear convergence. For cer-
tain classes of problems involving polyhedral constraints and global smoothness, Tseng and
Luo [84] have established geometric convergence. However, a challenging aspect of statisti-
cal estimation in high dimensions is that the underlying optimization problems can never be
strongly convex in a global sense when d > n (since the d×d Hessian matrix is rank-deficient),
and global smoothness conditions cannot hold when d/n → +∞. Some more recent work
has exploited structure specific to the optimization problems that arise in statistical settings.
For the special case of sparse linear regression with random isotropic designs (also referred to
as compressed sensing), some authors have established fast convergence rates in a local sense,
meaning guarantees that apply once the iterates are close enough to the optimum [22, 58].
The intuition underlying these results is that once an algorithm identifies the support set
of the optimal solution, the problem is then effectively reduced to a lower-dimensional sub-
space, and thus fast convergence can be guaranteed in a local sense. Also in the setting of
compressed sensing, Tropp and Gilbert [134] studied finite convergence of greedy algorithms
based on thresholding techniques, and showed linear convergence up to a certain tolerance.
For the same class of problems, Garg and Khandekar [54] showed that a thresholded gradient
algorithm converges rapidly up to some tolerance. In both of these results, the convergence
tolerance is of the order of the noise variance, and hence substantially larger than the true
statistical precision of the problem.
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In the second half of the thesis, we will focus on the convergence rate of two simple
gradient-based algorithms for solving the convex programs that arise when using regularized
M -estimators. Our goal will be to exploit the statistical structure that we used to obtain
good statistical behavior in order to obtain good computational behavior. For a constrained
problem with a differentiable objective function, the projected gradient method generates a
sequence of iterates {θt}∞t=0 by taking a step in the negative gradient direction, and then pro-
jecting the result onto the constraint set. The composite gradient method of Nesterov [102]
is well-suited to solving regularized problems formed by the sum of a differentiable and (po-
tentially) non-differentiable component. The main contribution of this paper is to establish
a form of global geometric convergence for these algorithms that holds for a broad class
of high-dimensional statistical problems. In order to provide intuition for this guarantee,
Figure 1.1 shows the performance of projected gradient descent for a Lasso problem (ℓ1-
constrained least-squares). In panel (a), we have plotted the logarithm of the optimization

error, measured in terms of the Euclidean norm ‖θt − θ̂‖ between the current iterate θt and

an optimal solution θ̂, versus the iteration number t. The plot includes three different curves,
corresponding to sparse regression problems in dimension d ∈ {5000, 10000, 20000}, and a
fixed sample size n = 2500. Note that all curves are linear (on this logarithmic scale), reveal-
ing the geometric convergence predicted by our theory. Such convergence is not predicted by
classical optimization theory, since the objective function cannot be strongly convex when-
ever n < d. Moreover, the convergence is geometric even at early iterations, and takes place
to a precision far less than the noise level (ν2 = 0.25 in this example). We also note that
the design matrix does not satisfy the restricted isometry property, as assumed in some past
work.

The results in panel (a) exhibit an interesting property: the convergence rate is dimension-
dependent, meaning that for a fixed sample size, projected gradient descent converges more
slowly for a large problem than a smaller problem—compare the squares for d = 20000 to the
diamonds for d = 5000. This phenomenon reflects the natural intuition that larger problems
are, in some sense, “harder” than smaller problems. A notable aspect of our theory is that in
addition to guaranteeing geometric convergence, it makes a quantitative prediction regarding
the extent to which a larger problem is harder than a smaller one. In particular, our conver-
gence rates suggest that if the sample size n is re-scaled in a certain way according to the
dimension d and also other model parameters such as sparsity, then convergence rates should
be roughly similar. Panel (b) provides a confirmation of this prediction: when the sample
size is rescaled according to our theory (in particular, see Corollary 6.2 in Section 6.3.2),
then all three curves lie essentially on top of another.

Although high-dimensional optimization problems are typically neither strongly convex
nor smooth, this paper shows that it is fruitful to consider suitably restricted notions of
strong convexity and smoothness. The notion of restricted strong convexity (RSC) is is re-
lated to but slightly different than that introduced in Chapter 3 for establishing statistical
consistency. As we discuss in the sequel, bounding the optimization error introduces new
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Figure 1.1. Convergence rates of projected gradient descent in application to Lasso
programs (ℓ1-constrained least-squares). Each panel shows the log optimization error

log ‖θt − θ̂‖ versus the iteration number t. Panel (a) shows three curves, corresponding
to dimensions d ∈ {5000, 10000, 20000}, sparsity k = ⌈

√
d⌉, and all with the same sample

size n = 2500. All cases show geometric convergence, but the rate for larger problems be-
comes progressively slower. (b) For an appropriately rescaled sample size (α = n

k log d), all
three convergence rates should be roughly the same, as predicted by the theory.

challenges not present when analyzing the statistical error. We also introduce a related no-
tion of restricted smoothness (RSM), not needed for proving statistical rates but essential
in the setting of optimization. Our analysis consists of two parts. We first show that for
optimization problems underlying many regularized M -estimators, appropriately modified
notions of restricted strong convexity (RSC) and smoothness (RSM) are sufficient to guar-
antee global linear convergence of projected gradient descent. Our second contribution is to
prove that for the iterates generated by our first-order method, these RSC/RSM assump-
tions do indeed hold with high probability for a broad class of statistical models, among
them sparse linear models, models with group sparsity constraints, and various classes of
matrix estimation problems, including matrix completion and matrix decomposition.

An interesting aspect of our results is that the global geometric convergence is not guar-
anteed to an arbitrary numerical precision, but only to an accuracy related to statistical pre-
cision of the problem. For a given error norm ‖·‖, given by the Euclidean or Frobenius norm
for most examples in this paper, the statistical precision is given by the mean-squared error
E[‖θ̂− θ∗‖2] between the true parameter θ∗ and the estimate θ̂ obtained by solving the opti-
mization problem, where the expectation is taken over randomness in the statistical model.
Note that this is very natural from the statistical perspective, since it is the true parameter
θ∗ itself (as opposed to the solution θ̂ of theM -estimator) that is of primary interest, and our
analysis allows us to approach it as close as is statistically possible. Our analysis shows that
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we can geometrically converge to a parameter θ such that ‖θ− θ∗‖ = ‖θ̂− θ∗‖+ o(‖θ̂− θ∗‖),
which is the best we can hope for statistically, ignoring lower order terms. Overall, our
results reveal an interesting connection between the statistical and computational properties
of M -estimators—that is, the properties of the underlying statistical model that make it
favorable for estimation also render it more amenable to optimization procedures.

1.3.1 Organization of the thesis

The remainder of this dissertation is organized as follows. We will begin with an overview of
the general background and present the notation used throughout this thesis in Chapter 2.
We will then go into a discussion of general regularized M -estimators in Chapter 3 and
demonstrate how we may exploit the regularizer to enforce our desired structural assump-
tions. We will then establish a few key properties that allow us to evaluate the statistical
performance of a given estimator. Next, in Chapters 4 and 5 we will use the ideas from
Chapter 3 to show how we may perform efficient low-rank matrix estimation for a variety
of observation models: including those arising in system identification, matrix completion,
and multi-task learning. Finally, in Chapter 6 we will discuss first-order gradient methods
for solving the convex problems presented in Chapter 3.
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Chapter 2

Background

This chapter highlights the mathematical concepts that we will employ throughout the
text. These will include concepts in matrix analysis, probability theory, empirical process
theory, and convex analysis. A number of theorems throughout this thesis make crucial use
of the properties of convex functions and sets. Hence, the discussion presented in Section 2.2
is paramount to the development of the ideas in this thesis. Empirical process theory plays a
second fundamental role in allowing us to make concrete probabilistic statements regarding
the performance of our methods, and these statements will be presented in Section 2.3.
Finally, underlying much of our presentation will be basic concepts in matrix analysis. We
will begin by establishing a few theorems and setting down our notation for the remainder
of our development.

2.1 Matrix analysis

This section presents some standard and fundamental notation from which we may build the
rest of the thesis. We will denote a real d-dimensional vector as β = (β1, β2, . . . , βd) ∈ R

d

where βi is the ith component of the vector. With a slight abuse of notation, we will take
ei ∈ R

d to be the standard basis vector where (ei)i = 1 and (ei)j = 0 for all i 6= j. Given
two vectors β, ζ ∈ R

d we define the inner product between the two vectors as

〈β, ζ〉 : =
d∑

i=1

βiζi. (2.1)

Furthermore, for any q ∈ [1,∞] we define the ℓq norm ‖ · ‖q as

‖β‖q : =





(∑d
i=1 |βi|q

) 1
q

q <∞
max
1≤i≤n

(|βi|) q = ∞.
(2.2)
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We note that in the special case of q = 2 we have that the ‖β‖22 = 〈β, β〉. For a parameter
q ∈ [0, 1] and a radius Rq > 0, we may also define the ℓq “ball”

Bq(Rq) : =
{
β ∈ R

d |
d∑

j=1

|βj|q ≤ Rq

}
.

We note that when q ∈ [0, 1) the above sets are not convex in contrast to the ℓq balls defined
as {β | ‖β‖q ≤ Rq} when q ∈ [1,∞]. For q = 0 the ℓ0-norm counts the total number of
non-zero entries. Hence, any vector β ∈ B0(R0) is supported on a set of cardinality at most
R0 and we will denote the support of a vector β as supp(β). We will denote a vector as
“sparse” when ‖β‖0 ≪ d. For q ∈ (0, 1], membership in the set Bq(Rq) enforces a decay
rate on the ordered coefficients, thereby modelling approximate sparsity. The parameter q
will play a crucial role in our statistical error rates as the difficulty of the inference problem
increases as the set of parameters become “less sparse.”

Given the basic structure of vectors, we may now introduce matrices, which will serve as
another useful parametric representation for a number of our models introduced in Chapters 4
and 5. We denote the set of real-valued d1 × d2-dimensional matrices as R

d1×d2 . Given a
matrix Θ ∈ R

d1×d2 we will denote the jth column vector as Θj. Furthermore, we let the entry
in the ith row and jth column be denoted Θi,j. Such a parameter space can be thought of as a
R
d1d2-dimensional vector space that is equipped with additional structure. In order to make

that analogy concrete, we let the vectorized version of the matrix Θ to be vec(Θ) ∈ R
d1d2 .

More precisely, we take
(vec(Θ))i : = Θa(i),b(i),

where b(i) = ⌊(i− 1)/d1⌋1 +1 and a(i) = i− (b(i)− 1)d1. With this basic structure in hand,
we may now discuss particular operations that we can take on matrices.

The transpose of a matrix is the d2 × d1-dimensional matrix ΘT such that (ΘT )i,j = Θj,i.
We will call a matrix symmetric when ΘT = Θ. A matrix U will be referred to as orthogonal
or orthonormal when UUT = I, where I is the identity matrix. Given a matrix Θ ∈ R

d1×d2 ,
we recall that it admits its singular value decomposition [60] as

Θ = USV T , (2.3)

where U ∈ R
d1×d1 and V ∈ R

d2×d2 are both orthogonal and S ∈ R
d1×d2 is diagonal. The

entries Si,i are called the singular values of the matrix Θ and by definition are positive.
We will frequently denote them as σi(Θ) = Si,i. The column vectors Ui and Vi are the
respective left and right singular vectors corresponding to the ith singular value. If we let
m = min(d1, d2) and r = rank(Θ) ≤ m then the matrix Θ has at most r non-zero singular
values while the remaining m − r singular values are zero. We call a matrix low-rank

1The operator ⌊x⌋ is the largest integer less than or equal to x.
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when r ≪ min(d1, d2). Furthermore, we will assume that the singular values are sorted in
decreasing order so that

σ1(Θ) ≥ σ2(Θ) ≥ · · · ≥ σr(Θ) ≥ 0 = σr+1(Θ) = · · · = σm(Θ).

Given the singular value decomposition we may define the nuclear or trace norm as

|||Θ|||nuc : =
r∑

i=1

σi(Θ). (2.4)

The nuclear norm will appear in Chapters 4 and 5 as the primary regularizer used to en-
courage our parameter estimates to be low-rank. We also introduce the operator norm of a
matrix as

|||Θ|||2 : = max
1≤i≤r

(σi(Θ)) (2.5)

and the Frobenius norm as

|||Θ|||F : = (
r∑

i=1

σ2
i (Θ))1/2. (2.6)

These norms have a natural analog with the ℓp-norms introduced in equation (2.2)–they can
be viewed as ℓp norms taken on the vector of singular values. Such norms are referred to as
Schatten-p norms and the Frobenius norm is the analog of the ℓ2 norm while the operator
norm is the analog of the ℓ∞ norm and the analog of the nuclear norm is the ℓ1 norm. More
generally, we may define the Schatten-p norm as

|||Θ|||p : = (
r∑

i=1

σqi (Θ))1/p.

Analogous to the ℓq “balls” that we defined for q ∈ [0, 1], we may also define

Mq(Rq) : =
{
Θ ∈ R

d1×d2 |
r∑

j=1

σi(Θ)q ≤ Rq

}
. (2.7)

As with the ball B0(Rq) defined for vectors, M0(Rq) denotes the set of all matrices with
rank at most Rq. In general, the above quantity will allow us to discuss approximate low-
rankedness as it will impose a decay rate on the singular values of the matrix Θ ∈ Mq.

Now, consider two matrices X, Y ∈ R
d1×d2 . Recalling that the trace of a square matrix

M ∈ R
d1×d1 is trace(M) =

∑d1
i=1Mi,i we define the inner product between the matrices X

and Y as

〈〈X, Y 〉〉 : = trace(XY T ). (2.8)
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The above inner product is known as the trace inner product and forms the natural analog
to the inner product defined above for vectors. A simple exercise shows that trace(XY T ) =
〈vec(X), vec(Y )〉 and the Euclidean norm induced by the trace inner product is equal to
the Frobenius norm. This fact can be easily verified by noting that the singular value
decomposition of the matrix X = USV T so that

trace(XXT ) = trace(USV TV STUT )

= trace(USSTUT ),

where the second inequality follows from the fact that V TV = I. Finally, an elementary
inequality yields that

trace(USSTUT ) = trace(SSTUTU)

= trace(SST )

=
r∑

i=1

σ2
i (X).

Therefore, 〈〈X, X〉〉 = |||X|||2F , which establishes our desired result.
Given a norm ‖ · ‖, we may define the dual norm ‖ · ‖∗ as

‖v‖∗ : = sup
‖u‖≤1

〈u, v〉. (2.9)

We assume that for matrices, the above inner product is taken as the trace inner product
defined in equation (2.8). For any fixed p ∈ [1,∞], the dual to the ℓp norm is the ℓp′ norm,
where p′ is the Hölder conjugate to p and satisfies 1

p
+ 1

p′ = 1. For example the dual norm to
the ℓ2 norm is again the ℓ2 norm. The dual norm to the ℓ1 norm is the ℓ∞ norm. Additionally,
the dual norm to the Schatten-p norm is the Schatten-p′ norm. For example, the dual norm
to the Frobenius norm is again the Frobenius norm, while the dual norm to the nuclear norm
is the operator norm. Finally, by equation (2.9) we have that

〈u, v〉 ≤ ‖u‖ ‖v‖∗. (2.10)

As a specific instance the above statement we have Hölder’s inequality, which states that

〈u, v〉 ≤ ‖u‖p ‖v‖p′

for p ∈ [1,∞] and its Hölder conjugate p′. When p = 2 and p′ = 2, the above inequality is
known as the Cauchy-Schwarz inequality.

Finally, for v ∈ R
d and 1 ≤ p ≤ q ≤ ∞ we have the following chain of inequalities,

1

d1/p−1/q
‖v‖p ≤ ‖v‖q ≤ ‖v‖p. (2.11)
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The above inequalities are tight. The inequality on the left achieves equality if we take v
to be the all ones vector and the inequality on the right achieves equality when we take
v = ei. However, the above inequalities are not tight when we consider restricted examples
of vectors. For example, if v ∈ R

d is k-sparse, i.e. v has k non-zero entries, then

‖v‖1 ≤
√
k ‖v‖2. (2.12)

Indeed, for k-sparse vectors we may replace d in the above inequalities with k. We also note
that analogous bounds hold for the Schatten-p norms. We will make use of such inequalities
in establishing our error bounds in order to compare two norms.

The first inequality in equation (2.11) follows by an immediate application of Jensen’s
inequality [48]. In order to establish the second inequality we first assume that without loss
of generality that ‖v‖q = 1 and vi ≥ 0. Therefore,

‖v‖q =
d∑

i=1

vqi = 1

so that

(
d∑

i=1

vqi )
1/p = 1.

Now, by the assumption that ‖v‖q = 1 and vi ≥ 0, we immediately have that 0 ≤ vi ≤ 1.
Thus, vqi ≤ vpi since q ≥ p and vxi ≤ vi whenever 0 ≤ vi ≤ 1 and x ≥ 1. Hence,

d∑

i=1

vqi ≤
d∑

i=1

vpi .

Now the function x 7→ x1/p is monotonic so that

(
d∑

i=1

vqi )
1/p ≤ (

d∑

i=1

vpi )
1/p,

thus establishing that ‖v‖p ≥ 1.
Given these fundamental ideas we recall that our inference techniques will be based on

solving regularized M -estimators. We will be restricting our attention to the setting that
such estimators are convex. Hence, in the next section we will present some of the necessary
background in convex analysis that will allow us to analyze the statistical and computational
properties of our M -estimators.
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2.2 Convex Analysis

Throughout our later developments we will take our estimators to be convex. That is, we
will obtain our estimate of θ∗ by solving

θ̂ ∈ argmin
θ

L(θ),

for some loss function L. Convex functions have been used throughout the statistics and
machine learning [12]. Convex functions have a number of favorable properties. For instance,
a convex function has a single global optima and there has been a vast amount of literature
committed to developing efficient algorithms for solving convex optimization problems [101,
15, 21]. Additionally, in Chapter 6 we discuss favorable computationally properties of large-
scale convex optimization procedures used for solvingM -estimators. To that end, this section
will focus on the background in convex analysis that will be applied in later developments.

2.2.1 Convex Regularized M-estimators

The inference algorithms that we discuss throughout this thesis are based on optimizing over
a loss function L(θ) plus a regularizer R(θ) in order to obtain an estimate θ̂ of θ∗. That is,
we will focus on methods such that

θ̂ ∈ argmin
θ

L(θ) +R(θ)

and that the loss function and regularizers are both convex. A function f : Ω 7→ R is convex
if for any v, w ∈ Ω and for any α ∈ [0, 1]

f(αv + (1− α)w) ≤ αf(v) + (1− α)f(w).

For example, given X ∈ R
n×d with rows xi ∈ R

d and y ∈ R
n, the function

L(β) =
n∑

i=1

(〈xi, β〉 − yi)
2

= ‖Xβ − y‖22
is a convex function and the function L(β) is our first example of a loss function. Namely,
given observations of the form (xi, yi) ∈ R

d × R, we wish to find a β ∈ R
d such that 〈xi, β〉

is a good approximate of yi. Hence, for each observation (xi, yi) we penalize the choice of
β by squaring the error. Thus, our M -estimator in this setting will be based on minimizing
the squared error over β ∈ Ω. Our goal will be to understand the statistical properties of an
optimal solution2 θ̂ as well as the computational complexity in obtaining such an estimate.

2We say an optimal solution rather than the optimal solution as we do not assume there is a unique
solution. Instead, our theory will establish desirable statistical properties for all possible solutions to the
inference problem.
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In subsequent developments we will analyze regularized M -estimators L(β) + R(β) for a
suitably chosen regularizer R that will encourage the estimate to satisfy specified structural
assumptions, such as sparsity. We will continue to see more examples of convexM -estimators
Chapter 3. In the later chapters, we will make use of an equivalent definition of convexity
in the setting that f is differentiable at a point w so that the gradient ∇f(w) exists, then a
function f is convex if and only if

f(v)− f(w)− 〈∇f(w), v − w〉 ≥ 0,

for all v, w ∈ Ω [118, 21]. As a consequence of the above inequality we see that if ∇f(w) = 0,
then f(w) ≤ f(v) for all v, thus establishing that w is a global optimum of f . In general, if
f is convex but not differentiable at a point w, we may still find a set of vectors g such that

f(v) ≥ f(w) + 〈g, v − w〉.

Such vectors g are called the subradients of f , and we denote the set of all subgradients at
a point w as ∂f(w). If f is differentiable at the point w, then the set ∂f(w) contains the
single point ∇f(w) [118].

Proposition 2.1 (Theorem 3.1.15 [101]). Suppose that we solve the convex program minv∈Rd f(v).
Then a point w∗ ∈ R

d is an optimal solution to the convex program if and only if 0 ∈ ∂f(w∗).

We now introduce the definition of strong-convexity, which will be a crucial idea through-
out much of the chapters.

Definition 2.1 (Strong convexity). A function f is strongly convex with parameter µ ≥ 0
over the set Ω if

f(v)− f(w)− 〈∇f(w), v − w〉 ≥ µ

2
‖v − w‖22 for all v, w ∈ Ω. (2.13)

Strong-convexity immediately implies standard convexity and imposed a lower-curvature
condition on the function f . Furthermore, we may use strong-convexity in order to establish
error bounds on our parameters. Suppose that we have a loss-function L(β) that we wish to

use in order to estimate some parameter θ∗. If we let θ̂ ∈ argminβ∈Rd L(β) (where we assume
that R, then by strong convexity we know that

L(θ̂)− L(θ∗)− 〈∇L(θ∗), θ̂ − θ∗〉 ≥ µ

2
‖θ̂ − θ∗‖22.

Furthermore, since θ̂ is an optimal solution of the optimization we know that L(θ̂)−L(θ∗) ≤
0, so that

‖θ̂ − θ∗‖22 ≤
2

µ
〈∇L(θ∗), θ̂ − θ∗〉. (2.14)
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Furthermore, by the Hölder’s inequality,

−〈∇L(θ∗), θ̂ − θ∗〉 ≤ ‖∇L(θ∗)‖p′ ‖θ̂ − θ∗‖p
where p ∈ [1,∞] and p′ is its H—older conjugate. Now, for p ∈ [1, 2] we have by equa-
tion (2.11)

‖θ̂ − θ∗‖p ≤ d1/p−1/2‖θ̂ − θ∗‖2.
Therefore, combining the last two equations with equation (2.14)

‖θ̂ − θ∗‖ ≤ 2

µ
d1/p−1/2‖∇L(θ∗)‖p′ .

Hence, we may establish error bounds by analyzing the behavior of ‖∇L(θ∗)‖p′ . This form
of analysis will be generalized in order to help establish error bounds in the high-dimensional
setting since, as alluded to, strong-convexity does not hold for a number of statistical problem
in the high-dimensional setting. Returning to the example presented with L(β) = ‖Xβ−y‖22
then strong convexity requires that

‖Xβ − y‖22 − ‖Xβ′ − y‖22 − 〈XT (Xβ′ − y), β − β′〉 = ‖X(β − β′)‖22
≥ µ

2
‖β − β′‖.

Hence, if n ≤ d the matrix X will have a non-trivial nullspace, so there exists a v such that
Xv = 0. Therefore, we may find a β and β′ such that X(β − β′) = 0, which implies that
strong convexity cannot hold. In the sequel we will see that we may employ regularized
M -estimators in order to guarantee that the error θ̂ − θ∗ will not be in the kernel of X.

Next, we define smoothness, which serves to provide upper-curvature control on a func-
tion.

Definition 2.2 (Smoothness). A function f is smooth with parameter γ ≥ 0 over the set
Ω if

f(v)− f(w)− 〈∇f(w), v − w〉 ≤ γ

2
‖v − w‖22 for all v, w ∈ Ω. (2.15)

Smoothness will come to play an important role in Chapter 6. However, we will see in the
sequel that an altered version of smoothness must be applied in the high-dimensional setting.

The loss functions and regularized M -estimators that we introduce throughout will be
examples of convex functions. We have introduced a few of the topics that will prove useful
throughout our later discussions and our overview of convex analysis has been necessarily
brief. We refer the reader to the existing literature [118] for a more thorough discussion.
Another key idea that we must discuss is that our available data is necessarily random.
Hence, we only have empirical quantities available to us, such as the empirical loss, while in
the ideal setting we would like access to the population versions of these empirical quantities.
Concentration inequalities provide us with a way to concretely discuss the relationships
between empirical quantities and their population counterparts.
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2.3 Concentration Inequalities

Suppose that we are given some function f of a random variableX; we wish to understand the
deviations of f(X) around its expected value Ef(X). More concretely, we aim to categorize
the behavior of

P(|f(X)− Ef(X)| ≥ t)

for all t ≥ 0. For example, if f(x) = x and X is a normal random variable with mean µ and
variance σ2 so that X ∼ N(µ, σ2), then

P(|X − µ| ≥ t) ≤ 2 exp(− t2

2σ2
). (2.16)

We may establish the above bound by recalling Chernoff’s inequality

P(X − µ ≥ t) ≤ inf
λ>0

E exp(λ(X − µ)) exp(−λt).

Furthermore, a simple calculation yields that E exp(λ(X − µ)) = exp((σ2λ2)/2), so that

P(X − µ ≥ t) ≤ inf
λ>0

exp(
σ2λ2

2
) exp(−λt).

Setting λ = t
σ2 minimizes the above bound yielding

P(X − µ ≥ t) ≤ exp(− t2

2σ2
). (2.17)

A similar calculation shows that

P(X − µ ≤ −t) ≤ exp(− t2

2σ2
),

which then implies the inequality (2.16) by an application of the union bound3.
The above derivation simply used the fact that E exp(λ(X−µ)) ≤ exp((σ2λ2)/2). Hence,

we may generalize the above derivation to any random variable that satisfies the latter
inequality. Thus, we have the following definition

Definition 2.3. A random variable X with mean µ is sub-Gaussian with parameter σ2 if

E exp(λ(X − µ)) ≤ exp((σ2λ2)/2)

for all λ ∈ R.

3Recall that the union bound states that for a finite set of events {Ai}ni=1 we have that P(
⋃n

i=1 Ai) ≤
nmaxi P(Ai).
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Therefore, any sub-Gaussian random variable with parameter σ2 satisfies inequality (2.16).
Given the above definition we may now present the next proposition which states that the
sum of independent sub-Gaussian random variables is still sub-Gaussian.

Proposition 2.2. Consider a collection of n independent sub-Gaussian random-variables
{Xi}ni=1 each with sub-Gaussian parameter σ2

i and mean µi. Then for all t ≥ 0

P

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp(− t2

2
∑n

i=1 σ
2
i

).

The proof of the above result follows from the fact that

E[exp(λ
n∑

i=1

(Xi − µi))] =
n∏

i=1

E[exp(λ(Xi − µi))]

≤
n∏

i=1

exp(λ2σ2
i /2)

= exp(λ2
n∑

i=1

σ2
i /2).

The first inequality follows by independence and the second inequality follows from the defi-
nition of sub-Gaussianity. Thus, the sum

∑n
i=1(Xi−µi) is mean zero with sub-Gaussian pa-

rameter
∑n

i=1 σ
2
i . Therefore establishing our desired result after appealing to equation (2.17).

The next proposition is classical [78, 87] and yields sharp concentration of a Lipschitz
function of Gaussian random variables around its mean.

Proposition 2.3. Let X ∈ R
n have i.i.d. N(0, 1) entries, and let and f : Rn → R be

Lipschitz with constant L (i.e., |f(x)− f(y)| ≤ L‖x− y‖2 ∀x, y ∈ R
n). Then for all t > 0,

we have

P(|f(X)− Ef(X)| > t) ≤ 2 exp
(
− t2

2L2

)
. (2.18)

We now present another classical result [77] on the concentration of functions with bounded
differences. This proposition will allow us to establish that a function of a set of random
variables f(X1, X2, . . . , Xn) concentrates around its mean when

|f(X1, X2, . . . , Xi, . . . , Xn)− f(X1, X2, . . . , Yi, . . . , Xn)| ≤ ci. (2.19)

That is, the function can change by at most ci when we vary the ith coordinate in the
function. The above condition is called the bounded differences property.

Proposition 2.4. Suppose the collection of random variables {Xi}ni=1 are independent and
that the function f satisfies equation (2.19) with parameters (c1, . . . , cn). Then

P(|f(X1, X2, . . . , Xn)− Ef(X1, X2, . . . , Xn)| ≥ t) ≤ 2 exp
(
− t2

2
∑n

i=1 c
2
i

)
.
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Chapter 3

Regularized M-estimators

3.1 Introduction

There has been a tremendous amount of work in analyzing various types of regularized M -
estimators, with the choice of loss function, regularizer and statistical assumptions changing
according to the model. This methodological similarity suggests an intriguing possibility: is
there a common set of theoretical principles that underlies analysis of all these estimators?
If so, it could be possible to gain a unified understanding of a large collection of techniques
for high-dimensional estimation, and afford some insight into the literature.

The main contribution of this chapter is to provide an affirmative answer to this question.
In particular, we isolate and highlight two key properties of a regularized M -estimator—
namely, a decomposability property for the regularizer, and a notion of restricted strong
convexity that depends on the interaction between the regularizer and the loss function.
For loss functions and regularizers satisfying these two conditions, we prove a general result
(Theorem 3.1) about consistency and convergence rates for the associated estimators. This
result provides a family of bounds indexed by subspaces, and each bound consists of the
sum of approximation error and estimation error. This general result, when specialized to
different statistical models, yields in a direct manner a large number of corollaries, some of
them known and others novel. This framework can be applied to prove several results on low-
rank matrix estimation using the nuclear norm, that we discuss in more detail in Chapter 4,
as well as minimax-optimal rates for noisy matrix completion, discussed in Chapter 5, and
noisy matrix decomposition [2]. Finally, en route to establishing these corollaries, we also
prove some new technical results that are of independent interest, including guarantees of
restricted strong convexity for group-structured regularization (Proposition 3.1). These ideas
will then be later exploited in Chapter 6 in order to obtain computational gains.

The remainder of this chapter is organized as follows. We begin in Section 3.2 by formu-
lating the class of regularized M -estimators that we consider, and then defining the notions
of decomposability and restricted strong convexity. Section 3.3 is devoted to the statement
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of our main result (Theorem 3.1), and discussion of its consequences. Subsequent sections
are devoted to corollaries of this main result for different statistical models, including sparse
linear regression (Section 3.4) and estimators based on group-structured regularizers (Sec-
tion 3.5).

3.2 Problem formulation and some key properties

In this section, we begin with a precise formulation of the problem, and then develop some
key properties of the regularizer and loss function.

3.2.1 A family of M-estimators

Let Zn
1 : = {Z1, . . . , Zn} denote n observations with marginal distribution P. Recall that we

are interested in estimating some parameter θ of the distribution P. Let L : Ω×Zn → R

be a convex and differentiable loss function that, for a given set of observations Zn
1 , assigns

a cost L(θ;Zn
1 ) to any parameter θ ∈ R

d. Take θ∗ ∈ arg min
θ∈Rd

L(θ) be any minimizer of the

population risk L(θ) : = EZn
1
[L(θ;Zn

1 )]. In order to estimate this quantity based on the data
Zn

1 , we solve the convex optimization problem

θ̂λn ∈ arg min
θ∈Rd

{
L(θ;Zn

1 ) + λnR(θ)
}
, (3.1)

where λn > 0 is a user-defined regularization penalty, and R : Ω → R+ is a norm. Note that
this set-up allows for the possibility of mis-specified models as well.

Our goal is to provide general techniques for deriving bounds on the difference between
any solution θ̂λn to the convex program (3.1) and the unknown vector θ∗. In this chapter, we

derive bounds on the quantity ‖θ̂λn −θ∗‖, where the error norm ‖·‖ is induced by some inner
product 〈·, ·〉 on R

d. Most often, this error norm will either be the Euclidean ℓ2-norm on
vectors, or the analogous Frobenius norm for matrices, but our theory also applies to certain
types of weighted norms. In addition, we provide bounds on the quantity R(θ̂λn − θ∗),
which measures the error in the regularizer norm. In the classical setting, the ambient
dimension d stays fixed while the number of observations n tends to infinity. Under these
conditions, there are standard techniques for proving consistency and asymptotic normality
for the error θ̂λn−θ∗. In contrast, the analysis presented throughout this thesis is all within a
high-dimensional framework, in which the tuple (n, d), as well as other problem parameters,
such as vector sparsity or matrix rank etc., are all allowed to tend to infinity. In contrast
to asymptotic statements, our goal is to obtain explicit finite sample error bounds that hold
with high probability.
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3.2.2 Decomposability of R
The first ingredient in our analysis is a property of the regularizer known as decomposability,
defined in terms of a pair of subspaces M ⊆ M of Rd. The role of the model subspace M
is to capture the constraints specified by the model; for instance, it might be the subspace
of vectors with a particular support (see Example 3.1), or a subspace of low-rank matrices
(see Example 3.3). The orthogonal complement of the space M, namely the set

M⊥
: =
{
v ∈ R

d | 〈u, v〉 = 0 for all u ∈ M
}

(3.2)

is referred to as the perturbation subspace, representing deviations away from the model

subspace M. In the ideal case, we have M⊥
= M⊥, but our definition allows for the

possibility that M is strictly larger than M, so that M⊥
is strictly smaller than M⊥. This

generality is needed for treating the case of low-rank matrices and nuclear norm, as discussed
in Example 3.3 to follow.

Definition 3.1. Given a pair of subspaces M ⊆ M, a norm-based regularizer R is decom-

posable with respect to (M,M⊥
) if

R(θ + γ) = R(θ) +R(γ) for all θ ∈ M and γ ∈ M⊥
. (3.3)

In order to build some intuition, let us consider the ideal case M = M for the time being, so
that the decomposition (3.3) holds for all pairs (θ, γ) ∈ M×M⊥. For any given pair (θ, γ) of
this form, the vector θ+γ can be interpreted as perturbation of the model vector θ away from
the subspace M, and it is desirable that the regularizer penalize such deviations as much as
possible. By the triangle inequality for a norm, we always have R(θ+ γ) ≤ R(θ) +R(γ), so
that the decomposability condition (3.3) holds if and only if the triangle inequality is tight

for all pairs (θ, γ) ∈ (M,M⊥
). It is exactly in this setting that the regularizer penalizes

deviations away from the model subspace M as much as possible.
In general, it is not difficult to find subspace pairs that satisfy the decomposability

property. As a trivial example, any regularizer is decomposable with respect to M = R
d

and its orthogonal complement M⊥ = {0}. As will be clear in our main theorem, it is of
more interest to find subspace pairs in which the model subspace M is “small”, so that
the orthogonal complement M⊥ is “large”. To formalize this intuition, let us define the
projection operator

ΠM(u) : = arg min
v∈M

‖u− v‖, (3.4)

with the projection ΠM⊥ defined in an analogous manner. To simplify notation, we frequently
use the shorthand uM = ΠM(u) and uM⊥ = ΠM⊥(u).

Of interest to us are the action of these projection operators on the unknown parameter
θ∗ ∈ R

d. In the most desirable setting, the model subspace M can be chosen such that
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θ∗M ≈ θ∗, or equivalently, such that θ∗M⊥ ≈ 0. If this can be achieved with the model
subspace M remaining relatively small, then our main theorem guarantees that it is possible
to estimate θ∗ at a relatively fast rate. The following examples illustrate suitable choices of
the spaces M and M in three concrete settings, beginning with the case of sparse vectors.

Example 3.1. Sparse vectors and ℓ1-norm regularization. Suppose the error norm ‖ · ‖ is
the usual ℓ2-norm, and that the model class of interest is the set of k-sparse vectors in d
dimensions. For any particular subset S ⊆ {1, 2, . . . , d} with cardinality k, we define the
model subspace

M(S) : =
{
θ ∈ R

d | θj = 0 for all j /∈ S}. (3.5)

Here our notation reflects the fact that M depends explicitly on the chosen subset S. By
construction, we have ΠM(S)(θ

∗) = θ∗ for any vector θ∗ that is supported on S.
In this case, we may define M(S) = M(S), and note that the orthogonal complement

with respect to the Euclidean inner product is given by

M⊥
(S) = M⊥(S) =

{
γ ∈ R

d | γj = 0 for all j ∈ S
}
. (3.6)

This set corresponds to the perturbation subspace, capturing deviations away from the set
of vectors with support S. We claim that for any subset S, the ℓ1-norm R(θ) = ‖θ‖1
is decomposable with respect to the pair (M(S),M⊥(S)). Indeed, by construction of the
subspaces, any θ ∈ M(S) can be written in the partitioned form θ = (θS, 0Sc), where θS ∈ R

k

and 0Sc ∈ R
d−k is a vector of zeros. Similarly, any vector γ ∈ M⊥(S) has the partitioned

representation (0S, γSc). Putting together the pieces, we obtain

‖θ + γ‖1 = ‖(θS, 0) + (0, γSc)‖1 = ‖θ‖1 + ‖γ‖1,

showing that the ℓ1-norm is decomposable as claimed. ♦

As a follow-up to the previous example, it is also worth noting that the same argument
shows that for a strictly positive weight vector ω, the weighted ℓ1-norm ‖θ‖ω : =

∑d
j=1 ωj|θj|

is also decomposable with respect to the pair (M(S),M(S)). For another natural extension,
we now turn to the case of sparsity models with more structure.

Example 3.2. Group-structured norms. In many applications, sparsity arises in a more
structured fashion, with groups of coefficients likely to be zero (or non-zero) simultaneously.
In order to model this behavior, suppose that the index set {1, 2, . . . , d} can be partitioned
into a set of NG disjoint groups, say G = {G1, G2, . . . , GNG}. With this set-up, for a given
vector ~α = (α1, . . . , αNG) ∈ [1,∞]NG , the associated (1, ~α)-group norm takes the form

‖θ‖G,~α : =

NG∑

t=1

‖θGt‖αt . (3.7)
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For instance, with the choice ~α = (2, 2, . . . , 2), we obtain the group ℓ1/ℓ2-norm, corresponding
to the regularizer that underlies the group Lasso [152]. On the other hand, the choice
~α = (∞, . . . ,∞), corresponding to a form of block ℓ1/ℓ∞ regularization, has also been
studied in past work [137, 97, 157]. Note that for ~α = (1, 1, . . . , 1), we obtain the standard
ℓ1 penalty. Interestingly, our analysis shows that setting ~α ∈ [2,∞]NG can often lead to
superior statistical performance.

We now show that the norm ‖ · ‖G,~α is again decomposable with respect to appropriately
defined subspaces. Indeed, given any subset SG ⊆ {1, . . . , NG} of group indices, say with
cardinality kG = |SG|, we can define the subspace

M(SG) : =
{
θ ∈ R

d | θGt = 0 for all t /∈ SG
}
, (3.8)

as well as its orthogonal complement with respect to the usual Euclidean inner product

M⊥(SG) = M⊥
(SG) : =

{
θ ∈ R

d | θGt = 0 for all t ∈ SG
}
. (3.9)

With these definitions, for any pair of vectors θ ∈ M(SG) and γ ∈ M⊥
(SG), we have

‖θ + γ‖G,~α =
∑

t∈SG

‖θGt + 0Gt‖αt +
∑

t/∈SG

‖0Gt + γGt‖αt = ‖θ‖G,~α + ‖γ‖G,~α, (3.10)

thus verifying the decomposability condition. ♦

In the preceding example, we exploited the fact that the groups were non-overlapping
in order to establish the decomposability property. Therefore, some modifications would be
required in order to choose the subspaces appropriately for overlapping group regularizers
proposed in past work [64, 65].

Example 3.3. Low-rank matrices and nuclear norm. Now suppose that each parameter
Θ ∈ R

d1×d2 is a matrix; this corresponds to an instance of our general set-up with d = d1d2,
as long as we identify the space R

d1×d2 with R
d1d2 in the usual way. We equip this space

with the inner product 〈〈Θ, Γ〉〉 : = trace(ΘΓT ), a choice which yields (as the induced norm)
the Frobenius norm

|||Θ|||F : =
√
〈〈Θ, Θ〉〉 =

√√√√
d1∑

j=1

d2∑

k=1

Θ2
jk. (3.11)

In many settings, it is natural to consider estimating matrices that are low-rank; examples
include principal component analysis, spectral clustering, collaborative filtering, and matrix
completion. With certain exceptions, it is computationally expensive to enforce a rank-
constraint in a direct manner, so that a variety of researchers have studied the nuclear
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norm, also known as the trace norm, as a surrogate for a rank constraint. More precisely,
the nuclear norm is given by

|||Θ|||nuc : =
min{d1,d2}∑

j=1

σj(Θ), (3.12)

where {σj(Θ)} are the singular values of the matrix Θ.
The nuclear norm is decomposable with respect to appropriately chosen subspaces. Let

us consider the class of matrices Θ ∈ R
d1×d2 that have rank r ≤ min{d1, d2}. For any given

matrix Θ, we let row(Θ) ⊆ R
d2 and col(Θ) ⊆ R

d1 denote its row space and column space
respectively. Let U and V be a given pair of r-dimensional subspaces U ⊆ R

d1 and V ⊆ R
d2 ;

these subspaces will represent left and right singular vectors of the target matrix Θ∗ to be

estimated. For a given pair (U, V ), we can define the subspaces M(U, V ) and M⊥
(U, V ) of

R
d1×d2 given by

M(U, V ) : =
{
Θ ∈ R

d1×d2 | row(Θ) ⊆ V, col(Θ) ⊆ U
}
, and (3.13a)

M⊥
(U, V ) : =

{
Θ ∈ R

d1×d2 | row(Θ) ⊆ V ⊥, col(Θ) ⊆ U⊥}. (3.13b)

So as to simplify notation, we omit the indices (U, V ) when they are clear from context.
Unlike the preceding examples, in this case the set M is not1 equal to M.

Finally, we claim that the nuclear norm is decomposable with respect to the pair (M,M⊥
).

By construction, any pair of matrices Θ ∈ M and Γ ∈ M⊥
have orthogonal row and col-

umn spaces, which implies the required decomposability condition—namely |||Θ + Γ|||nuc =
|||Θ|||nuc + |||Γ|||nuc. Please see Appendix B.1 for a more detailed discussion of the decompos-
ability of the nuclear norm. ♦

A line of recent work (e.g., [38, 148, 35, 2, 62, 90]) has studied matrix problems involving
the sum of a low-rank matrix with a sparse matrix, along with the regularizer formed by
a weighted sum of the nuclear norm and the elementwise ℓ1-norm. By a combination of
Examples 3.1 and Example 3.3, this regularizer also satisfies the decomposability property
with respect to appropriately defined subspaces.

3.2.3 A key consequence of decomposability

Thus far, we have specified a class (3.1) of M -estimators based on regularization, defined
the notion of decomposability for the regularizer and worked through several illustrative
examples. We now turn to the statistical consequences of decomposability—more specifically,

1However, as is required by our theory, we do have the inclusion M ⊆ M. Indeed, given any Θ ∈ M and

Γ ∈ M⊥
, we have ΘTΓ = 0 by definition, which implies that 〈〈Θ, Γ〉〉 = trace(ΘTΓ) = 0. Since Γ ∈ M⊥

was

arbitrary, we have shown that Θ is orthogonal to the space M⊥
, meaning that it must belong to M.
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its implications for the error vector ∆̂λn = θ̂λn − θ∗, where θ̂ ∈ R
d is any solution of the

regularized M -estimation procedure (3.1). For a given inner product 〈·, ·〉, the dual norm of
R is given by

R∗(v) : = sup
u∈Rd\{0}

〈u, v〉
R(u)

= sup
R(u)≤1

〈u, v〉. (3.14)

This notion is best understood by working through some examples.

Dual of ℓ1-norm: For the ℓ1-norm R(u) = ‖u‖1 previously discussed in Example 3.1, let
us compute its dual norm with respect to the Euclidean inner product on R

d. For any vector
v ∈ R

d, we have

sup
‖u‖1≤1

〈u, v〉 ≤ sup
‖u‖1≤1

d∑

k=1

|uk||vk| ≤ sup
‖u‖1≤1

( d∑

k=1

|uk|
)

max
k=1,...,d

|vk| = ‖v‖∞.

We claim that this upper bound actually holds with equality. In particular, letting j be any
index for which |vj| achieves the maximum ‖v‖∞ = maxk=1,...,d |vk|, suppose that we form
a vector u ∈ R

d with uj = sign(vj), and uk = 0 for all k 6= j. With this choice, we have

‖u‖1 ≤ 1, and hence sup‖u‖1≤1〈u, v〉 ≥
∑d

k=1 ukvk = ‖v‖∞, showing that the dual of the
ℓ1-norm is the ℓ∞-norm.

Dual of group norm: Now recall the group norm from Example 3.2, specified in terms
of a vector ~α ∈ [2,∞]NG . A similar calculation shows that its dual norm, again with respect
to the Euclidean norm on R

d, is given by

‖v‖G,~α∗ = max
t=1,...,NG

‖v‖α∗
t

where 1
αt

+ 1
α∗
t
= 1 are dual exponents. (3.15)

As special cases of this general duality relation, the block (1, 2) norm that underlies the usual
group Lasso leads to a block (∞, 2) norm as the dual, whereas the the block (1,∞) norm
leads to a block (∞, 1) norm as the dual.

Dual of nuclear norm: For the nuclear norm, the dual is defined with respect to the
trace inner product on the space of matrices. For any matrix N ∈ R

d1×d2 , it can be shown
that

R∗(N) = sup
|||M |||nuc≤1

〈〈M, N〉〉 = |||N |||2 = max
j=1,...,min{d1,d2}

σj(N),

corresponding to the ℓ∞-norm applied to the vector σ(N) of singular values. In the special
case of diagonal matrices, this fact reduces to the dual relationship between the vector ℓ1
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and ℓ∞ norms.

The dual norm plays a key role in our general theory, in particular by specifying a suitable
choice of the regularization weight λn. We summarize in the following:

Lemma 3.1. Suppose that L is a convex and differentiable function, and consider any op-
timal solution θ̂ to the optimization problem (3.1) with a strictly positive regularization pa-
rameter satisfying

λn ≥ 2R∗(∇L(θ∗;Zn
1 )). (3.16)

Then for any pair (M,M⊥
) over which R is decomposable, the error ∆̂ = θ̂λn − θ∗ belongs

to the set

C(M,M⊥
; θ∗) : =

{
∆ ∈ R

d | R(∆M̄⊥) ≤ 3R(∆M̄) + 4R(θ∗M⊥)
}
. (3.17)

We prove this result in Appendix A.1.1. It has the following important consequence: for
any decomposable regularizer and an appropriate choice (3.16) of regularization parameter,

we are guaranteed that the error vector ∆̂ belongs to a very specific set, depending on the
unknown vector θ∗. As illustrated in Figure 3.1, the geometry of the set C depends on the
relation between θ∗ and the model subspace M. When θ∗ ∈ M, then we are guaranteed
that R(θ∗M⊥) = 0. In this case, the constraint (3.17) reduces to R(∆M̄⊥) ≤ 3R(∆M̄), so
that C is a cone, as illustrated in panel (a). In the more general case when θ∗ /∈ M so that
R(θ∗M⊥) 6= 0, the set C is not a cone, but rather a star-shaped set (panel (b)). As will be
clarified in the sequel, the case θ∗ /∈ M requires a more delicate treatment.

3.2.4 Restricted strong convexity

We now turn to an important requirement of the loss function, and its interaction with the
statistical model. Recall that ∆̂ = θ̂λn − θ∗ is the difference between an optimal solution θ̂λn
and the true parameter, and consider the loss difference2 L(θ̂λn) − L(θ∗). In the classical
setting, under fairly mild conditions, one expects that that the loss difference should converge
to zero as the sample size n increases. It is important to note, however, that such convergence
on its own is not sufficient to guarantee that θ̂λn and θ∗ are close, or equivalently that ∆̂
is small. Rather, the closeness depends on the curvature of the loss function, as illustrated
in Figure 3.2. In a desirable setting (panel (a)), the loss function is sharply curved around

its optimum θ̂λn , so that having a small loss difference |L(θ∗)−L(θ̂λn)| translates to a small

error ∆̂ = θ̂λn − θ∗. Panel (b) illustrates a less desirable setting, in which the loss function

is relatively flat, so that the loss difference can be small while the error ∆̂ is relatively large.

2To simplify notation, we frequently write L(θ) as shorthand for L(θ;Zn
1 ) when the underlying data Zn

1

is clear from context.
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R(∆M⊥)

R(∆M)

R(∆M⊥)

R(∆M)

(a) (b)

Figure 3.1. Illustration of the set C(M,M⊥; θ∗) in the special case ∆ = (∆1,∆2,∆3) ∈ R
3

and regularizer R(∆) = ‖∆‖1, relevant for sparse vectors (Example 3.1). This picture shows
the case S = {3}, so that the model subspace is M(S) = {∆ ∈ R

3 | ∆1 = ∆2 = 0}, and its
orthogonal complement is given by M⊥(S) = {∆ ∈ R

3 | ∆3 = 0}. (a) In the special case
when θ∗1 = θ∗2 = 0, so that θ∗ ∈ M, the set C(M,M⊥; θ∗) is a cone. (b) When θ∗ does
not belong to M, the set C(M,M⊥; θ∗) is enlarged in the co-ordinates (∆1,∆2) that span
M⊥. It is no longer a cone, but is still a star-shaped set.

The standard way to ensure that a function is “not too flat” is via the notion of strong
convexity. Since L is differentiable by assumption, we may perform a first-order Taylor series
expansion at θ∗, and in some direction ∆; the error in this Taylor series is given by

δL(∆, θ∗) : = L(θ∗ +∆)− L(θ∗)− 〈∇L(θ∗), ∆〉. (3.18)

One way in which to enforce that L is strongly convex is to require the existence of some
positive constant κ > 0 such that δL(∆, θ∗) ≥ κ‖∆‖2 for all ∆ ∈ R

d in a neighborhood of
θ∗. When the loss function is twice differentiable, strong convexity amounts to lower bound
on the eigenvalues of the Hessian ∇2L(θ), holding uniformly for all θ in a neighborhood of
θ∗.

Under classical “fixed d, large n” scaling, the loss function will be strongly convex under
mild conditions. For instance, suppose that population risk L is strongly convex, or equiv-
alently, that the Hessian ∇2L(θ) is strictly positive definite in a neighborhood of θ∗. As a
concrete example, when the loss function L is defined based on negative log likelihood of a
statistical model, then the Hessian ∇2L(θ) corresponds to the Fisher information matrix,
a quantity which arises naturally in asymptotic statistics. If the dimension d is fixed while
the sample size n goes to infinity, standard arguments can be used to show that (under mild
regularity conditions) the random Hessian ∇2L(θ) converges to ∇2L(θ) uniformly for all θ in
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θ∗ θ̂λn

dL

∆̂

θ∗ θ̂λn

dL

∆̂

(a) (b)

Figure 3.2. Role of curvature in distinguishing parameters. (a) Loss function has high

curvature around ∆̂. A small excess loss dL = |L(θ̂λn)−L(θ∗)| guarantees that the param-

eter error ∆̂ = θ̂λn − θ∗ is also small. (b) A less desirable setting, in which the loss function
has relatively low curvature around the optimum.

an open neighborhood of θ∗. In contrast, whenever the pair (n, d) both increase in such a way
that d > n, the situation is drastically different: the Hessian matrix ∇2L(θ) is often singular.
As a concrete example, consider linear regression based on samples Zi = (yi, xi) ∈ R× R

d,
for i = 1, 2, . . . , n. Using the least-squares loss L(θ) = 1

2n
‖y−Xθ‖22, the d×d Hessian matrix

∇2L(θ) = 1
n
XTX has rank at most n, meaning that the loss cannot be strongly convex when

d > n. Consequently, it impossible to guarantee global strong convexity, so that we need to
restrict the set of directions ∆ in which we require a curvature condition.

Ultimately, the only direction of interest is given by the error vector ∆̂ = θ̂λn −θ∗. Recall
that Lemma 3.1 guarantees that, for suitable choices of the regularization parameter λn,

this error vector must belong to the set C(M,M⊥
; θ∗), as previously defined (3.17). Conse-

quently, it suffices to ensure that the function is strongly convex over this set, as formalized
in the following:

Definition 3.2. The loss function satisfies a restricted strong convexity (RSC) condition
with curvature κL > 0 and tolerance function τL if

δL(∆, θ∗) ≥ κL ‖∆‖2 − τ 2L(θ
∗) for all ∆ ∈ C(M,M⊥

; θ∗). (3.19)

In the simplest of cases—in particular, when θ∗ ∈ M—there are many statistical models for
which this RSC condition holds with tolerance τL(θ

∗) = 0. In the more general setting, it
can hold only with a non-zero tolerance term, as illustrated in Figure 3.3(b). As our proofs
will clarify, we in fact require only the lower bound (3.19) to hold for the intersection of C
with a local ball {‖∆‖ ≤ R} of some radius centered at zero. As will be clarified later, this
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Figure 3.3. (a) Illustration of a generic loss function in the high-dimensional d > n setting:
it is curved in certain directions, but completely flat in others. (b) When θ∗ /∈ M, the set

C(M,M⊥
; θ∗) contains a ball centered at the origin, which necessitates a tolerance term

τL(θ∗) > 0 in the definition of restricted strong convexity.

restriction is not necessary for the least-squares loss, but is essential for more general loss
functions, such as those that arise in generalized linear models.

We will see in the sequel that for many loss functions, it is possible to prove that with
high probability the first-order Taylor series error satisfies a lower bound of the form

δL(∆, θ∗) ≥ κ1 ‖∆‖2 − κ2 g(n, d)R2(∆) for all ‖∆‖ ≤ 1, (3.20)

where κ1, κ2 are positive constants, and g(n, d) is a function of the sample size n and ambient
dimension d, decreasing in the sample size. For instance, in the case of ℓ1-regularization, for
covariates with suitably controlled tails, this type of bound holds for the least squares loss
with the function g(n, d) = log d

n
; see equation (3.31) to follow. For generalized linear models

and the ℓ1-norm, a similar type of bound is given in equation (3.43). We also provide a
bound of this form for the least-squares loss group-structured norms in equation (3.46), with
a different choice of the function g depending on the group structure.

A bound of the form (3.20) implies a form of restricted strong convexity as long as R(∆)
is not “too large” relative to ‖∆‖. In order to formalize this notion, we define a quantity
that relates the error norm and the regularizer:

Definition 3.3 (Subspace compatibility constant). For any subspaceM of Rd, the subspace
compatibility constant with respect to the pair (R, ‖ · ‖) is given by

Ψ(M) : = sup
u∈M\{0}

R(u)

‖u‖ . (3.21)
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This quantity reflects the degree of compatibility between the regularizer and the error norm
over the subspace M. In alternative terms, it is the Lipschitz constant of the regularizer
with respect to the error norm, restricted to the subspace M. As a simple example, if
M is a k-dimensional co-ordinate subspace, with regularizer R(u) = ‖u‖1 and error norm
‖u‖ = ‖u‖2, then we have Ψ(M) =

√
k.

This compatibility constant appears explicitly in the bounds of our main theorem, and
also arises in establishing restricted strong convexity. Let us now illustrate how it can be
used to show that the condition (3.20) implies a form of restricted strong convexity. To
be concrete, let us suppose that θ∗ belongs to a subspace M; in this case, membership of

∆ in the set C(M,M⊥
; θ∗) implies that R(∆M̄⊥) ≤ 3R(∆M̄). Consequently, by triangle

inequality and the definition (3.21), we have

R(∆) ≤ R(∆M̄⊥) +R(∆M̄) ≤ 4R(∆M̄) ≤ 4Ψ(M)‖∆‖.

Therefore, whenever a bound of the form (3.20) holds and θ∗ ∈ M, we are guaranteed that

δL(∆, θ∗) ≥
{
κ1 − 16κ2 Ψ

2(M)g(n, d)
}
‖∆‖2 for all ‖∆‖ ≤ 1.

Consequently, as long as the sample size is large enough that 16κ2 Ψ
2(M)g(n, d) < κ1

2
, the

restricted strong convexity condition will hold with κL = κ1
2

and τL(θ
∗) = 0. We make use

of arguments of this flavor throughout this thesis.

3.3 Bounds for general M-estimators

We are now ready to state a general result that provides bounds and hence convergence
rates for the error ‖θ̂λn − θ∗‖, where θ̂λn is any optimal solution of the convex program (3.1).
Although it may appear somewhat abstract at first sight, this result has a number of con-
crete and useful consequences for specific models. In particular, we recover as an immediate
corollary the best known results about estimation in sparse linear models with general de-
signs [20, 95], as well as a number of new results, including minimax-optimal rates for esti-
mation under ℓq-sparsity constraints and estimation of block-structured sparse matrices. We
also apply these theorems to establishing results for sparse generalized linear models [100],
matrix decomposition problems [2], and sparse non-parametric regression models [110]. Re-
sults for the estimation of low-rank matrices are presented in more detail in Chapters 4 and 5.

Let us recall our running assumptions on the structure of the convex program (3.1).

(G1) The regularizer R is a norm, and is decomposable with respect to the subspace pair

(M,M⊥
), where M ⊆ M.
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(G2) The loss function L is convex and differentiable, and satisfies restricted strong con-
vexity with curvature κL and tolerance τL.

The reader should also recall the definition (3.21) of the subspace compatibility constant.
With this notation, we can now state the main result of this chapter:

Theorem 3.1 (Bounds for general models). Under conditions (G1) and (G2), consider the
problem (3.1) based on a strictly positive regularization constant λn ≥ 2R∗(∇L(θ∗)). Then

any optimal solution θ̂λn to the convex program (3.1) satisfies the bound

‖θ̂λn − θ∗‖2 ≤ 9
λ2n
κ2L

Ψ2(M) +
λn
κL

{
2τ 2L(θ

∗) + 4R(θ∗M⊥)
}
, (3.22)

Remarks: Let us consider in more detail some different features of this result.

(a) It should be noted that Theorem 3.1 is actually a deterministic statement about the set
of optimizers of the convex program (3.1) for a fixed choice of λn. Although the program
is convex, it need not be strictly convex, so that the global optimum might be attained at
more than one point θ̂λn . The stated bound holds for any of these optima. Probabilistic
analysis is required when Theorem 3.1 is applied to particular statistical models, and we
need to verify that the regularizer satisfies the condition

λn ≥ 2R∗(∇L(θ∗)), (3.23)

and that the loss satisfies the RSC condition. A challenge here is that since θ∗ is un-
known, it is usually impossible to compute the right-hand side of the condition (3.23).
Instead, when we derive consequences of Theorem 3.1 for different statistical models, we
use concentration inequalities in order to provide bounds that hold with high probability
over the data.
(b) Second, note that Theorem 3.1 actually provides a family of bounds, one for each

pair (M,M⊥
) of subspaces for which the regularizer is decomposable. Ignoring the term

involving τL for the moment, for any given pair, the error bound is the sum of two
terms, corresponding to estimation error Eerr and approximation error Eapp, given by
(respectively)

Eerr : = 9
λ2n
κ2L

Ψ2(M), and Eapp : = 4
λn
κL

R(θ∗M⊥). (3.24)

As the dimension of the subspace M increases (so that the dimension of M⊥ decreases),
the approximation error tends to zero. But since M ⊆ M, the estimation error is
increasing at the same time. Thus, in the usual way, optimal rates are obtained by
choosing M and M so as to balance these two contributions to the error. We illustrate
such choices for various specific models to follow.
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(c) As will be clarified in the sequel, many high-dimensional statistical models have an
unidentifiable component, and the tolerance term τL reflects the degree of this non-
identifiability.

A large body of past work on sparse linear regression has focused on the case of exactly
sparse regression models for which the unknown regression vector θ∗ is k-sparse. For this
special case, recall from Example 3.1 in Section 3.2.2 that we can define an k-dimensional
subspace M that contains θ∗. Consequently, the associated set C(M,M⊥; θ∗) is a cone (see
Figure 3.1(a)), and it is thus possible to establish that restricted strong convexity (RSC)
holds with tolerance parameter τL(θ

∗) = 0. This same reasoning applies to other statistical
models, among them group-sparse regression, in which a small subset of groups are active, as
well as low-rank matrix estimation. The following corollary provides a simply stated bound
that covers all of these models:

Corollary 3.1. Suppose that, in addition to the conditions of Theorem 3.1, the unknown θ∗

belongs to M and the RSC condition holds over C(M,M, θ∗) with τL(θ
∗) = 0. Then any

optimal solution θ̂λn to the convex program (3.1) satisfies the bounds

‖θ̂λn − θ∗‖ ≤ 9
λ2n
κL

Ψ2(M), and (3.25a)

R(θ̂λn − θ∗) ≤ 12
λn
κL

Ψ2(M). (3.25b)

Focusing first on the bound (3.25a), it consists of three terms, each of which has a natural
interpretation. First, it is inversely proportional to the RSC constant κL, so that higher
curvature guarantees lower error, as is to be expected. The error bound grows proportionally
with the subspace compatibility constant Ψ(M), which measures the compatibility between
the regularizer R and error norm ‖ · ‖ over the subspace M (see Definition 3.3). This
term increases with the size of subspace M, which contains the model subspace M. Third,
the bound also scales linearly with the regularization parameter λn, which must be strictly
positive and satisfy the lower bound (3.23). The bound (3.25b) on the error measured in the
regularizer norm is similar, except that it scales quadratically with the subspace compatibility
constant. As the proof clarifies, this additional dependence arises since the regularizer over
the subspace M is larger than the norm ‖·‖ by a factor of at most Ψ(M) (see Definition 3.3).

Obtaining concrete rates using Corollary 3.1 requires some work in order to verify the con-
ditions of Theorem 3.1, and to provide control on the three quantities in the bounds (3.25a)
and (3.25b), as illustrated in the examples to follow.

3.4 Convergence rates for sparse regression

As an illustration, we begin with one of the simplest statistical models, namely the standard
linear model. It is based on n observations Zi = (xi, yi) ∈ R

d×R of covariate-response pairs.
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Let y ∈ R
n denote a vector of the responses, and let X ∈ R

n×d be the design matrix, where
xi ∈ R

d is the ith row. This pair is linked via the linear model

y = Xθ∗ + w, (3.26)

where θ∗ ∈ R
d is the unknown regression vector, and w ∈ R

n is a noise vector. To begin,
we focus on this simple linear set-up, and describe extensions to generalized models in
Section 3.4.4.

Given the data set Zn
1 = (y,X) ∈ R

n × R
n×d, our goal is to obtain a “good” estimate

θ̂ of the regression vector θ∗, assessed either in terms of its ℓ2-error ‖θ̂ − θ∗‖2 or its ℓ1-error

‖θ̂ − θ∗‖1. It is worth noting that whenever d > n, the standard linear model (3.26) is
unidentifiable in a certain sense, since the rectangular matrix X ∈ R

n×d has a nullspace
of dimension at least d − n. Consequently, in order to obtain an identifiable model—or at
the very least, to bound the degree of non-identifiability—it is essential to impose additional
constraints on the regression vector θ∗. One natural constraint is some type of sparsity in the
regression vector; for instance, one might assume that θ∗ has at most k non-zero coefficients,
as discussed at more length in Section 3.4.2. More generally, one might assume that although
θ∗ is not exactly sparse, it can be well-approximated by a sparse vector, in which case one
might say that θ∗ is “weakly sparse”, “sparsifiable” or “compressible”. Section 3.4.3 is
devoted to a more detailed discussion of this weakly sparse case.

A natural M -estimator for this problem is the Lasso [39, 131], obtained by solving the
ℓ1-penalized quadratic program

θ̂λn ∈ arg min
θ∈Rd

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
, (3.27)

for some choice λn > 0 of regularization parameter. Note that this Lasso estimator is a
particular case of the generalM -estimator (3.1), based on the loss function and regularization
pair L(θ;Zn

1 ) =
1
2n
‖y −Xθ‖22 andR(θ) =

∑d
j=1 |θj| = ‖θ‖1. We now show how Theorem 3.1

can be specialized to obtain bounds on the error θ̂λn − θ∗ for the Lasso estimate.

3.4.1 Restricted eigenvalues for sparse linear regression

For the least-squares loss function that underlies the Lasso, the first-order Taylor series
expansion from Definition 3.2 is exact, so that

δL(∆, θ∗) = 〈∆, 1
n
XTX∆〉 =

1

n
‖X∆‖22.

Thus, in this special case, the Taylor series error is independent of θ∗, a fact which allows for
substantial theoretical simplification. More precisely, in order to establish restricted strong
convexity, it suffices to establish a lower bound on ‖X∆‖22/n that holds uniformly for an
appropriately restricted subset of d-dimensional vectors ∆.
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As previously discussed in Example 3.1, for any subset S ⊆ {1, 2, . . . , d}, the ℓ1-norm is
decomposable with respect to the subspace M(S) = {θ ∈ R

d | θSc = 0} and its orthogonal
complement. When the unknown regression vector θ∗ ∈ R

d is exactly sparse, it is natural to
choose S equal to the support set of θ∗. By appropriately specializing the definition (3.17)
of C, we are led to consider the cone

C(S) : =
{
∆ ∈ R

d | ‖∆Sc‖1 ≤ 3‖∆S‖1
}
. (3.28)

See Figure 3.1(a) for an illustration of this set in three dimensions. With this choice, re-
stricted strong convexity with respect to the ℓ2-norm is equivalent to requiring that the
design matrix X satisfy the condition

‖Xθ‖22
n

≥ κL ‖θ‖22 for all θ ∈ C(S). (3.29)

This lower bound is a type of restricted eigenvalue (RE) condition, and has been studied in
past work on basis pursuit and the Lasso (e.g., [20, 95, 109, 139]). One could also require
that a related condition hold with respect to the ℓ1-norm—viz.

‖Xθ‖22
n

≥ κ′L
‖θ‖21
|S| for all θ ∈ C(S). (3.30)

This type of ℓ1-based RE condition is less restrictive than the corresponding ℓ2-version (3.29).
We refer the reader to the paper by van de Geer and Bühlmann [139] for an extensive
discussion of different types of restricted eigenvalue or compatibility conditions.

It is natural to ask whether there are many matrices that satisfy these types of RE
conditions. If X has i.i.d. entries following a sub-Gaussian distribution (including Gaussian
and Bernoulli variables as special cases), then known results in random matrix theory imply
that the restricted isometry property [32] holds with high probability, which in turn implies
that the RE condition holds [20, 139]. Since statistical applications involve design matrices
with substantial dependency, it is natural to ask whether an RE condition also holds for
more general random designs. This question was addressed by Raskutti et al. [109, 108],
who showed that if the design matrix X ∈ R

n×d is formed by independently sampling each
row Xi ∼ N(0,Σ), referred to as the Σ-Gaussian ensemble, then there are strictly positive
constants (κ1, κ2), depending only on the positive definite matrix Σ, such that

‖Xθ‖22
n

≥ κ1 ‖θ‖22 − κ2
log d

n
‖θ‖21 for all θ ∈ R

d (3.31)

with probability greater than 1 − c1 exp(−c2n). The bound (3.31) has an important con-
sequence: it guarantees that the RE property (3.29) holds3 with κL = κ1

2
> 0 as long as

3To see this fact, note that for any θ ∈ C(S), we have ‖θ‖1 ≤ 4‖θS‖1 ≤ 4
√
k‖θS‖2. Given the lower

bound (3.31), for any θ ∈ C(S), we have the lower bound ‖Xθ‖2√
n

≥
{
κ1 − 4κ2

√
k log d

n

}
‖θ‖2 ≥ κ1

2
‖θ‖2,

where final inequality follows as long as n > 64(κ2/κ1)
2 k log d.
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n > 64(κ2/κ1) k log d. Therefore, not only do there exist matrices satisfying the RE prop-
erty (3.29), but any matrix sampled from a Σ-Gaussian ensemble will satisfy it with high
probability. Related analysis by Rudelson and Zhou [121] extends these types of guarantees
to the case of sub-Gaussian designs, also allowing for substantial dependencies among the
covariates. We refer the reader to a more detailed discussion in Appendix D.4, which presents
a discussion for general Gaussian observation operators with an arbitrary regularizer R.

3.4.2 Lasso estimates with exact sparsity

We now show how Corollary 3.1 can be used to derive convergence rates for the error of the
Lasso estimate when the unknown regression vector θ∗ is k-sparse. In order to state these
results, we require some additional notation. Using Xj ∈ R

n to denote the jth column of X,
we say that X is column-normalized if

‖Xj‖2√
n

≤ 1 for all j = 1, 2, . . . , d. (3.32)

Here we have set the upper bound to one in order to simplify notation. This particular
choice entails no loss of generality, since we can always rescale the linear model appropriately
(including the observation noise variance) so that it holds.

In addition, we assume that the noise vector w ∈ R
n is zero-mean and has sub-Gaussian

tails, meaning that there is a constant σ > 0 such that for any fixed ‖v‖2 = 1,

P
[
|〈v, w〉| ≥ t

]
≤ 2 exp

(
− δ2

2σ2

)
for all δ > 0. (3.33)

For instance, this condition holds when the noise vector w has i.i.d. N(0, 1) entries, or
consists of independent bounded random variables. Under these conditions, we recover as a
corollary of Theorem 3.1 the following result:

Corollary 3.2. Consider an k-sparse instance of the linear regression model (3.26) such that
X satisfies the RE condition (3.29), and the column normalization condition (3.32). Given

the Lasso program (3.27) with regularization parameter λn = 4σ
√

log d
n

, then with probability

at least 1− c1 exp(−c2nλ2n), any optimal solution θ̂λn satisfies the bounds

‖θ̂λn − θ∗‖22 ≤ 64σ2

κ2L

k log d

n
, and ‖θ̂λn − θ∗‖1 ≤ 24σ

κL
k

√
log d

n
. (3.34)

Although error bounds of this form are known from past work (e.g., [20, 32, 95]), our proof
illuminates the underlying structure that leads to the different terms in the bound—in par-
ticular, see equations (3.25a) and (3.25b) in the statement of Corollary 3.1.
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Proof. We first note that the RE condition (3.30) implies that RSC holds with respect to the
subspace M(S). As discussed in Example 3.1, the ℓ1-norm is decomposable with respect to
M(S) and its orthogonal complement, so that we may set M(S) = M(S). Since any vector
θ ∈ M(S) has at most k non-zero entries, the subspace compatibility constant is given by

Ψ(M(S)) = sup
θ∈M(S)\{0}

‖θ‖1
‖θ‖2 =

√
k.

The final step is to compute an appropriate choice of the regularization parameter. The
gradient of the quadratic loss evaluated at θ∗ is given by ∇L(θ; (y,X)) = 1

n
XTw, whereas

the dual norm of the ℓ1-norm is the ℓ∞-norm. Consequently, we need to specify a choice of
λn > 0 such that

λn ≥ 2R∗(∇L(θ∗)) = 2
∥∥ 1
n
XTw

∥∥
∞

with high probability. Using the column normalization (3.32) and sub-Gaussian (3.33) condi-
tions, for each j = 1, . . . , d, we have the tail bound P

[
|〈Xj, w〉/n| ≥ t

]
≤ 2 exp

(
− nt2

2σ2

)
. Con-

sequently, by union bound, we conclude that P
[
‖XTw/n‖∞ ≥ t

]
≤ 2 exp

(
− nt2

2σ2 +log d
)
. Set-

ting t2 = 4σ2 log d
n

, we see that the choice of λn given in the statement is valid with probability
at least 1− c1 exp(−c2nλ2n). Consequently, the claims (3.34) follow from the bounds (3.25a)
and (3.25b) in Corollary 3.1.

3.4.3 Lasso estimates with weakly sparse models

We now consider regression models for which θ∗ is not exactly sparse, but rather can be
approximated well by a sparse vector. One way in which to formalize this notion is by
considering the ℓq “ball” of radius Rq, given by

Bq(Rq) : = {θ ∈ R
d |

d∑

i=1

|θi|q ≤ Rq}, where q ∈ [0, 1] is fixed.

In the special case q = 0, this set corresponds to an exact sparsity constraint—that is,
θ∗ ∈ B0(R0) if and only if θ∗ has at most R0 non-zero entries. More generally, for q ∈ (0, 1],
the set Bq(Rq) enforces a certain decay rate on the ordered absolute values of θ∗.

In the case of weakly sparse vectors, the constraint set C takes the form

C(M,M; θ∗) = {∆ ∈ R
d | ‖∆Sc‖1 ≤ 3‖∆S‖1 + 4‖θ∗Sc‖1

}
. (3.35)

In contrast to the case of exact sparsity, the set C is no longer a cone, but rather contains a
ball centered at the origin— compare panels (a) and (b) of Figure 3.1. As a consequence, it
is never possible to ensure that ‖Xθ‖2/

√
n is uniformly bounded from below for all vectors

θ in the set (3.35), and so a strictly positive tolerance term τL(θ
∗) > 0 is required. The

random matrix result (3.31), stated in the previous section, allows us to establish a form of
RSC that is appropriate for the setting of ℓq-ball sparsity. We summarize our conclusions in
the following:
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Corollary 3.3. Suppose that X satisfies the RE condition (3.31) as well as the column
normalization condition (3.32), the noise w is sub-Gaussian (3.33), and θ∗ belongs to Bq(Rq)

for a radius Rq such that
√
Rq

(
log d
n

) 1
2
− q

4 ≤ 1. Then if we solve the Lasso with regularization

parameter λn = 4σ
√

log d
n

, there are universal positive constants (c0, c1, c2) such that any

optimal solution θ̂λn satisfies

‖θ̂λn − θ∗‖22 ≤ c0 Rq

(
σ2

κ21

log d

n

)1− q
2

(3.36)

with probability at least 1− c1 exp(−c2nλ2n).

Remarks: Note that this corollary is a strict generalization of Corollary 3.2, to which it
reduces when q = 0. More generally, the parameter q ∈ [0, 1] controls the relative “sparsi-
fiability” of θ∗, with larger values corresponding to lesser sparsity. Naturally then, the rate
slows down as q increases from 0 towards 1. In fact, Raskutti et al. [109] show that the
rates (3.36) are minimax-optimal over the ℓq-balls—implying that not only are the conse-
quences of Theorem 3.1 sharp for the Lasso, but more generally, no algorithm can achieve
faster rates.

Proof. Since the loss function L is quadratic, the proof of Corollary 3.2 shows that the stated

choice λn = 4
√

σ2 log d
n

is valid with probability at least 1− c exp(−c′nλ2n). Let us now show

that the RSC condition holds. We do so via condition (3.31) applied to equation (3.35). For
a threshold µ > 0 to be chosen, define the thresholded subset

Sµ : =
{
j ∈ {1, 2, . . . , d} | |θ∗j | > µ

}
. (3.37)

Now recall the subspaces M(Sµ) and M⊥(Sµ) previously defined in equations (3.5) and (3.6)
of Example 3.1, where we set S = Sµ. The following lemma, proved in Appendix A.2,
provides sufficient conditions for restricted strong convexity with respect to these subspace
pairs:

Lemma 3.2. Suppose that the conditions of Corollary 3.3 hold, and n > 9κ2|Sµ| log d. Then
with the choice µ = λn

κ1
, the RSC condition holds over C(M(Sµ),M⊥(Sµ), θ

∗) with κL = κ1/4

and τ 2L = 8κ2
log d
n

‖θ∗Sc
µ
‖21.

Consequently, we may apply Theorem 3.1 with κL = κ1/4 and τ 2L(θ
∗) = 8κ2

log d
n

‖θ∗Sc
µ
‖21 to

conclude that

‖θ̂λn − θ∗‖22 ≤ 144
λ2n
κ21

|Sµ|+
4λn
κ1

{
16κ2

log d

n
‖θ∗Sc

µ
‖21 + 4‖θ∗Sc

µ
‖1
}
, (3.38)
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where we have used the fact that Ψ2(Sµ) = |Sµ|, as noted in the proof of Corollary 3.2.
It remains to upper bound the cardinality of Sµ in terms of the threshold µ and ℓq-ball

radius Rq. Note that we have

Rq ≥
d∑

j=1

|θ∗j |q ≥
∑

j∈Sµ

|θ∗i |q ≥ µq|Sµ|, (3.39)

whence |Sµ| ≤ µ−q Rq for any µ > 0. Next we upper bound the approximation error ‖θ∗Sc
µ
‖1,

using the fact that θ∗ ∈ Bq(Rq). Letting S
c
µ denote the complementary set Sµ\{1, 2, . . . , d},

we have

‖θ∗Sc
µ
‖1 =

∑

j∈Sc
µ

|θ∗j | =
∑

j∈Sc
µ

|θ∗j |q|θ∗j |1−q ≤ Rq µ
1−q. (3.40)

Setting µ = λn/κ1 and then substituting the bounds (3.39) and (3.40) into the bound (3.38)
yields

‖θ̂λn − θ∗‖22 ≤ 160
(λ2n
κ21

)1− q
2 Rq + 64κ2

{(λ2n
κ21

)1− q
2Rq

}2 (log d)/n

λn/κ1
.

For any fixed noise variance, our choice of regularization parameter ensures that the ratio
(log d)/n
λn/κ1

is of order one, so that the claim follows.

3.4.4 Extensions to generalized linear models

In this section, we briefly outline extensions of the preceding results to the family of gener-
alized linear models (GLM). Suppose that conditioned on a vector x ∈ R

d of covariates, a
response variable y ∈ Y has the distribution

Pθ∗(y | x) ∝ exp
{y 〈θ∗, x〉 − Φ(〈θ∗, x〉)

c(σ)

}
. (3.41)

Here the quantity c(σ) is a fixed and known scale parameter, and the function Φ : R → R

is the link function, also known. The family (3.41) includes many well-known classes of re-
gression models as special cases, including ordinary linear regression (obtained with Y = R,
Φ(t) = t2/2 and c(σ) = σ2), and logistic regression (obtained with Y = {0, 1}, c(σ) = 1 and
Φ(t) = log(1 + exp(t))).

Given samples Zi = (xi, yi) ∈ R
d × Y , the goal is to estimate the unknown vector

θ∗ ∈ R
d. Under a sparsity assumption on θ∗, a natural estimator is based on minimizing the
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(negative) log likelihood, combined with an ℓ1-regularization term. This combination leads
to the convex program

θ̂λn ∈ arg min
θ∈Rd

{ 1

n

n∑

i=1

{
− yi〈θ, xi〉+ Φ(〈θ, xi〉)

}

︸ ︷︷ ︸
L(θ;Zn

1 )

+λn‖θ‖1
}
. (3.42)

In order to extend the error bounds from the previous section, a key ingredient is to establish
that this GLM-based loss function satisfies a form of restricted strong convexity. Along these
lines, Negahban et al. [100] proved the following result: suppose that the covariate vectors
xi are zero-mean with covariance matrix Σ ≻ 0, and are drawn i.i.d. from a distribution
with sub-Gaussian tails (see equation (3.33)). Then there are constants κ1, κ2 such that the
first-order Taylor series error for the GLM-based loss (3.42) satisfies the lower bound

δL(∆, θ∗) ≥ κ1‖∆‖22 − κ2
log d

n
‖∆‖21 for all ‖∆‖2 ≤ 1. (3.43)

As discussed following Definition 3.2, this type of lower bound implies that L satisfies a form
of RSC, as long as the sample size scales as n = Ω(k log d), where k is the target sparsity.
Consequently, this lower bound (3.43) allows us to recover analogous bounds on the error

‖θ̂λn − θ∗‖2 of the GLM-based estimator (3.42).

3.5 Convergence rates for group-structured norms

The preceding two sections addressed M -estimators based on ℓ1-regularization, the sim-
plest type of decomposable regularizer. We now turn to some extensions of our results to
more complex regularizers that are also decomposable. Various researchers have proposed
extensions of the Lasso based on regularizers that have more structure than the ℓ1 norm
(e.g., [137, 152, 157, 92, 11]). Such regularizers allow one to impose different types of block-
sparsity constraints, in which groups of parameters are assumed to be active (or inactive)
simultaneously. These norms arise in the context of multivariate regression, where the goal
is to predict a multivariate output in R

m on the basis of a set of d covariates. Here it is ap-
propriate to assume that groups of covariates are useful for predicting the different elements
of the m-dimensional output vector. We refer the reader to the papers [137, 152, 157, 92, 11]
for further discussion of and motivation for the use of block-structured norms.

Given a collection G = {G1, . . . , GNG} of groups, recall from Example 3.2 in Section 3.2.2
the definition of the group norm ‖ · ‖G,~α. In full generality, this group norm is based on
a weight vector ~α = (α1, . . . , αNG) ∈ [2,∞]NG , one for each group. For simplicity, here we
consider the case when αt = α for all t = 1, 2, . . . , NG, and we use ‖ · ‖G,α to denote the
associated group norm. As a natural extension of the Lasso, we consider the block Lasso
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estimator

θ̂ ∈ arg min
θ∈Rd

{ 1
n
‖y −Xθ‖22 + λn‖θ‖G,α

}
, (3.44)

where λn > 0 is a user-defined regularization parameter. Different choices of the parameter
α yield different estimators, and in this section, we consider the range α ∈ [2,∞]. This range
covers the two most commonly applied choices, α = 2, often referred to as the group Lasso,
as well as the choice α = +∞.

3.5.1 Restricted strong convexity for group sparsity

As a parallel to our analysis of ordinary sparse regression, our first step is to provide a
condition sufficient to guarantee restricted strong convexity for the group-sparse setting.
More specifically, we state the natural extension of condition (3.31) to the block-sparse
setting, and prove that it holds with high probability for the class of Σ-Gaussian random
designs. Recall from Theorem 3.1 that the dual norm of the regularizer plays a central
role. As discussed previously, for the block-(1, α)-regularizer, the associated dual norm is a
block-(∞, α∗) norm, where (α, α∗) are conjugate exponents satisfying 1

α
+ 1

α∗ = 1.
Letting ε ∼ N(0, Id×d) be a standard normal vector, we consider the following condition.

Suppose that there are strictly positive constants (κ1, κ2) such that, for all ∆ ∈ R
d, we have

‖X∆‖22
n

≥ κ1‖∆‖22 − κ2 ρ
2
G(α

∗) ‖∆‖21,α where ρG(α
∗) : = E

[
max

t=1,2,...,NG

‖εGt‖α∗√
n

]
. (3.45)

To understand this condition, first consider the special case of NG = d groups, each of size
one, so that the group-sparse norm reduces to the ordinary ℓ1-norm, and its dual is the

ℓ∞-norm. Using α = 2 for concreteness, we have ρG(2) = E[‖ε‖∞]/
√
n ≤

√
3 log d
n

, using

standard bounds on Gaussian maxima. Therefore, condition (3.45) reduces to the earlier
condition (3.31) in this special case.

Let us consider a more general setting, say with α = 2 and NG groups each of size m, so

that d = NGm. For this choice of groups and norm, we have ρG(2) = E
[

max
t=1,...,NG

‖εGt‖2√
n

]
where

each sub-vector wGt is a standard Gaussian vector with m elements. Since E[‖εGt‖2] ≤
√
m,

tail bounds for χ2-variates yield ρG(2) ≤
√

m
n
+
√

3 logNG
n

, so that the condition (3.45) is

equivalent to

‖X∆‖22
n

≥ κ1‖∆‖22 − κ2

[√
m

n
+

√
3 logNG

n

]2
‖∆‖2G,2 for all ∆ ∈ R

d. (3.46)

Thus far, we have seen the form that condition (3.45) takes for different choices of the
groups and parameter α. It is natural to ask whether there are any matrices that satisfy the
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condition (3.45). As shown in the following result, the answer is affirmative—more strongly,
almost every matrix satisfied from the Σ-Gaussian ensemble will satisfy this condition with
high probability. (Here we recall that for a non-degenerate covariance matrix, a random
design matrix X ∈ R

n×d is drawn from the Σ-Gaussian ensemble if each row xi ∼ N(0,Σ),
i.i.d. for i = 1, 2, . . . , n.)

Proposition 3.1. For a design matrix X ∈ R
n×d from the Σ-ensemble, there are con-

stants (κ1, κ2) depending only Σ such that condition (3.45) holds with probability greater
than 1− c1 exp(−c2n).
We provide the proof of this result in Appendix A.3.1. This condition can be used to show
that appropriate forms of RSC hold, for both the cases of exactly group-sparse and weakly
sparse vectors. As with ℓ1-regularization, these RSC conditions are milder than analogous
group-based RIP conditions (e.g., [63, 129, 11]), which require that all sub-matrices up to a
certain size are close to isometries.

3.5.2 Convergence rates

Apart from RSC, we impose one additional condition on the design matrix. For a given
group G of size m, let us view the matrix XG ∈ R

n×m as an operator from ℓmα → ℓn2 , and
define the associated operator norm |||XG|||α→2 : = max

‖θ‖α=1
‖XG θ‖2. We then require that

|||XGt |||α→2√
n

≤ 1 for all t = 1, 2, . . . , NG . (3.47)

Note that this is a natural generalization of the column normalization condition (3.32), to
which it reduces when we have NG = d groups, each of size one. As before, we may assume
without loss of generality, rescaling X and the noise as necessary, that condition (3.47) holds
with constant one. Finally, we define the maximum group size m = max

t=1,...,NG
|Gt|. With this

notation, we have the following novel result:

Corollary 3.4. Suppose that the noise w is sub-Gaussian (3.33), and the design matrix X
satisfies condition (3.45) and the block normalization condition (3.47). If we solve the group
Lasso with

λn ≥ 2σ

{
m1−1/α

√
n

+

√
logNG
n

}
, (3.48)

then with probability at least 1 − 2/NG
2, for any group subset SG ⊆ {1, 2, . . . , NG} with

cardinality |SG| = kG, any optimal solution θ̂λn satisfies

‖θ̂λn − θ∗‖22 ≤
4λ2n
κ2L

kG +
4λn
κL

∑

t/∈SG

‖θ∗Gt
‖α. (3.49)
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Remarks: Since the result applies to any α ∈ [2,∞], we can observe how the choices of
different group-sparse norms affect the convergence rates. So as to simplify this discussion,
let us assume that the groups are all of equal size m, so that d = mNG is the ambient
dimension of the problem.

Case α = 2: The case α = 2 corresponds to the block (1, 2) norm, and the resulting estimator
is frequently referred to as the group Lasso. For this case, we can set the regularization

parameter as λn = 2σ
{√

m
n
+
√

logNG
n

}
. If we assume moreover that θ∗ is exactly group-

sparse, say supported on a group subset SG ⊆ {1, 2, . . . , NG} of cardinality kG , then the
bound (3.49) takes the form

‖θ̂ − θ∗‖22 -
kG m

n
+
kG logNG

n
. (3.50)

Similar bounds were derived in independent work by Lounici et al. [83] and Huang and
Zhang [63] for this special case of exact block sparsity. The analysis here shows how the
different terms arise, in particular via the noise magnitude measured in the dual norm of the
block regularizer.

In the more general setting of weak block sparsity, Corollary 3.4 yields a number of novel
results. For instance, for a given set of groups G, we can consider the block sparse analog of
the ℓq-“ball”—namely the set

Bq(Rq;G, 2) : =
{
θ ∈ R

d |
NG∑

t=1

‖θGt‖q2 ≤ Rq

}
.

In this case, if we optimize the choice of S in the bound (3.49) so as to trade off the estimation
and approximation errors, then we obtain

‖θ̂ − θ∗‖22 - Rq

(
m

n
+

logNG
n

)1− q
2

,

which is a novel result. This result is a generalization of our earlier Corollary 3.3, to which
it reduces when we have NG = d groups each of size m = 1.

Case α = +∞: Now consider the case of ℓ1/ℓ∞ regularization, as suggested in past

work [137]. In this case, Corollary 3.4 implies that ‖θ̂ − θ∗‖22 - km2

n
+ k logNG

n
. Similar

to the case α = 2, this bound consists of an estimation term, and a search term. The estima-
tion term km2

n
is larger by a factor of m, which corresponds to amount by which an ℓ∞-ball

in m dimensions is larger than the corresponding ℓ2-ball.

We provide the proof of Corollary 3.4 in Appendix A.3.2. It is based on verifying the
conditions of Theorem 3.1: more precisely, we use Proposition 3.1 in order to establish RSC,
and we provide a lemma that shows that the regularization choice (3.48) is valid in the
context of Theorem 3.1.
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3.6 Discussion

In this chapter, we have presented a unified framework for deriving error bounds and con-
vergence rates for a class of regularized M -estimators. The theory is high-dimensional and
non-asymptotic in nature, meaning that it yields explicit bounds that hold with high prob-
ability for finite sample sizes, and reveals the dependence on dimension and other structural
parameters of the model. Two properties of the M -estimator play a central role in our
framework. We isolated the notion of a regularizer being decomposable with respect to a
pair of subspaces, and showed how it constrains the error vector—meaning the difference
between any solution and the nominal parameter—to lie within a very specific set. This
fact is significant, because it allows for a fruitful notion of restricted strong convexity to be
developed for the loss function. Since the usual form of strong convexity cannot hold under
high-dimensional scaling, this interaction between the decomposable regularizer and the loss
function is essential.

Our main result (Theorem 3.1) provides a deterministic bound on the error for a broad
class of regularized M -estimators. By specializing this result to different statistical models,
we derived various explicit convergence rates for different estimators, including some known
results and a range of novel results. We derived convergence rates for sparse linear models,
both under exact and approximate sparsity assumptions, and these results have been shown
to be minimax optimal [109]. In the case of sparse group regularization, we established a
novel upper bound of the oracle type, with a separation between the approximation and
estimation error terms. This framework has also been applied to obtain minimax-optimal
rates for noisy matrix decomposition, which involves using a combination of the nuclear norm
and elementwise ℓ1-norm. Finally, in a result that we report elsewhere, we have also applied
these results to deriving convergence rates on generalized linear models. Doing so requires
leveraging that restricted strong convexity can also be shown to hold for these models, as
stated in the bound (3.43).

There are a variety of interesting open questions associated with our work. In this chapter,
for simplicity of exposition, we have specified the regularization parameter in terms of the
dual norm R∗ of the regularizer. In many cases, this choice leads to optimal convergence
rates, including linear regression over ℓq-balls (Corollary 3.3) for sufficiently small radii, and
various instances of low-rank matrix regression. In other cases, some refinements of our
convergence rates are possible; for instance, in the special case of linear sparsity regression
(i.e., an exactly sparse vector, with a constant fraction of non-zero elements), our rates can
be sharpened by a more careful analysis of the noise term, which allows for a slightly smaller
choice of the regularization parameter. Similarly, there are other non-parametric settings
in which a more delicate choice of the regularization parameter is required [73, 110]. Last,
we suspect that there are many other statistical models, not discussed in this chapter, for
which this framework can yield useful results. Some examples include different types of
hierarchical regularizers and/or overlapping group regularizers [64, 65], as well as methods
using combinations of decomposable regularizers, such as the fused Lasso [132].
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Chapter 4

Low-rank matrix estimation

4.1 Introduction

In this chapter, we focus on the problem of high-dimensional inference in the setting of
matrix estimation. As mentioned in the previous chapter, there is already a substantial
body of work on the problem of sparse matrix recovery. In contrast, our interest in this
chapter is the problem of estimating a matrix Θ∗ ∈ R

d1×d2 that is either exactly low rank,
meaning that it has at most r ≪ min{d1, d2} non-zero singular values, or more generally
is near low-rank, meaning that it can be well-approximated by a matrix of low rank. As
we discuss at more length in the sequel, such exact or approximate low-rank conditions are
appropriate for many applications, including multivariate or multi-task forms of regression,
system identification for autoregressive processes, collaborative filtering, and matrix recovery
from random projections. Analogous to the use of an ℓ1-regularizer for enforcing sparsity,
we consider the use of the nuclear norm (also known as the trace norm) for enforcing a rank
constraint in the matrix setting. By definition, the nuclear norm is the sum of the singular
values of a matrix, and so encourages sparsity in the vector of singular values, or equivalently
for the matrix to be low-rank. The problem of low-rank matrix approximation and the use
of nuclear norm regularization have been studied by various researchers. In her Ph.D. thesis,
Fazel [51] discusses the use of nuclear norm as a heuristic for restricting the rank of a matrix,
showing that in practice it is often able to yield low-rank solutions. Other researchers have
provided theoretical guarantees on the performance of nuclear norm and related methods for
low-rank matrix approximation. Srebro et al. [127] proposed nuclear norm regularization for
the collaborative filtering problem, and established risk consistency under certain settings.
Recht et al. [117] provided sufficient conditions for exact recovery using the nuclear norm
heuristic when observing random projections of a low-rank matrix, a set-up analogous to
the compressed sensing model in sparse linear regression [44, 31]. Other researchers have
studied a version of matrix completion in which a subset of entries are revealed, and the
goal is to obtain perfect reconstruction either via the nuclear norm heuristic [33] or by other
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SVD-based methods [71]. We will elaborate on these added complexities in Chapter 5.
For general observation models, Bach [9] has provided results on the consistency of nuclear
norm minimization in noisy settings, but applicable to the classical “fixed p” setting. In
addition, Yuan et al. [154] provide non-asymptotic bounds on the operator norm error of
the estimate in the multi-task setting, provided that the design matrices are orthogonal.
Under the assumption of RIP, Lee and Bresler [79] prove stability properties of least-squares
under nuclear norm constraint when a form of restricted isometry property is imposed on
the sampling operator. Liu and Vandenberghe [82] develop an efficient interior-point method
for solving nuclear-norm constrained problems, and illustrate its usefulness for problems of
system identification, an application also considered in this chapter. Finally, in related work,
Rohde and Tsybakov [119] and Candes and Plan [30] have studied certain aspects of nuclear
norm minimization under high-dimensional scaling. We discuss connections to this work at
more length in Section 4.3.2 following the statement of our main results.

The goal of this chapter is to analyze the nuclear norm relaxation for a general class
of noisy observation models, and obtain non-asymptotic error bounds on the Frobenius
norm that hold under high-dimensional scaling, and are applicable to both exactly and
approximately low-rank matrices. We begin by presenting a generic observation model,
and illustrating how it can be specialized to the several cases of interest, including low-
rank multivariate regression, estimation of autoregressive processes, and random projection
(compressed sensing) observations. In particular, this model is specified in terms of an
operator X, which may be deterministic or random depending on the setting, that maps any
matrix Θ∗ ∈ R

d1×d2 to a vector of N noisy observations. We then present a single main
theorem (Theorem 4.1) followed by two corollaries that cover the cases of exact low-rank
constraints (Corollary 4.1) and near low-rank constraints (Corollary 4.2) respectively. These
results demonstrate that high-dimensional error rates are controlled by two key quantities.
First, the (random) observation operator X is required to satisfy restricted strong convexity
(RSC), introduced in Chapter 3, which ensures that the loss function has sufficient curvature
to guarantee consistent recovery of the unknown matrix Θ∗. As we show via various examples,
this RSC condition is weaker than the RIP property, which requires that the sampling
operator behave very much like an isometry on low-rank matrices. Second, our theory
provides insight into the choice of regularization parameter that weights the nuclear norm,
showing that an appropriate choice is to set it proportional to the spectral norm of a random
matrix defined by the adjoint of the observation operator X, and the observation noise in
the problem.

This initial set of results, though appealing in terms of their simple statements and
generality, are somewhat abstractly formulated. Our next contribution is to show that by
specializing our main result (Theorem 4.1) to three classes of models, we can obtain some
concrete results based on readily interpretable conditions. In particular, Corollary 4.3 deals
with the case of low-rank multivariate regression, relevant for applications in multitask learn-
ing. We show that the random operator X satisfies the RSC property for a broad class of
observation models, and we use random matrix theory to provide an appropriate choice of
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the regularization parameter. Our next result, Corollary 4.4, deals with the case of estimat-
ing the matrix of parameters specifying a vector autoregressive (VAR) process [6, 86]. The
usefulness of the nuclear norm in this context has been demonstrated by Liu and Vanden-
berghe [82]. Here we also establish that a suitable RSC property holds with high probability
for the random operator X, and also specify a suitable choice of the regularization parameter.
We note that the technical details here are considerably more subtle than the case of low-
rank multivariate regression, due to dependencies introduced by the autoregressive sampling
scheme. Accordingly, in addition to terms that involve the size, the matrix dimensions and
rank, our bounds also depend on the mixing rate of the VAR process. Finally, we turn to
the compressed sensing observation model for low-rank matrix recovery, as introduced by
Recht and colleagues [117, 116]. In this setting, we again establish that the RSC property
holds with high probability, specify a suitable choice of the regularization parameter, and
thereby obtain a Frobenius error bound for noisy observations (Corollary 4.5). A technical
result that we prove en route—namely, Proposition 4.1—is of possible independent interest,
since it provides a bound on the constrained norm of a random Gaussian operator. In par-
ticular, this proposition allows us to obtain a sharp result (Corollary 4.6) for the problem of
recovering a low-rank matrix from perfectly observed random Gaussian projections with a
general dependency structure.

The remainder of this chapter is organized as follows. Section 4.2 is devoted to back-
ground material, and the set-up of the problem. We present a generic observation model
for low-rank matrices, and then illustrate how it captures various cases of interest. We then
define the convex program based on nuclear norm regularization that we analyze in this
chapter. In Section 4.3, we state our main theoretical results and discuss their consequences
for different model classes. Section 4.4 is devoted to the proofs of our results; in each case,
we break down the key steps in a series of lemmas, with more technical details deferred to
the appendices. In Section 4.5, we present the results of various simulations that illustrate
excellent agreement between the theoretical bounds and empirical behavior.
Notation: For the convenience of the reader, we collect standard pieces of notation here.
For a pair of matrices Θ and Γ with commensurate dimensions, we let 〈〈Θ, Γ〉〉 = trace(ΘTΓ)
denote the trace inner product on matrix space. For a matrix Θ ∈ R

d1×d2 , we define m =
min{d1, d2}, and denote its (ordered) singular values by σ1(Θ) ≥ σ2(Θ) ≥ . . . ≥ σm(Θ) ≥ 0.
We also use the notation σmax(Θ) = σ1(Θ) and σmin(Θ) = σm(Θ) to refer to the maximal and
minimal singular values respectively. We use the notation ||| · ||| for various types of matrix
norms based on these singular values, including the nuclear norm |||Θ|||nuc =

∑m
j=1 σj(Θ), the

spectral or operator norm |||Θ|||2 = σ1(Θ), and the Frobenius norm |||Θ|||F =
√

trace(ΘTΘ) =√∑m
j=1 σ

2
j (Θ). We refer the reader to Horn and Johnson [60, 61] for more background on

these matrix norms and their properties.
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4.2 Background and problem set-up

We begin with some background on problems and applications in which rank constraints
arise, before describing a generic observation model. We then introduce the concrete convex
program based on nuclear norm regularization that we study in this chapter.

4.2.1 Models with rank constraints

Imposing a rank r constraint on a matrix Θ∗ ∈ R
d1×d2 is equivalent to requiring the rows

(or columns) of Θ∗ lie in some r-dimensional subspace of Rd2 (or R
d1 respectively). Such

types of rank constraints (or approximate forms thereof) arise in a variety of applications, as
we discuss here. In some sense, rank constraints are a generalization of sparsity constraints;
rather than assuming that the data is sparse in a known basis, a rank constraint implicitly
imposes sparsity but without assuming the basis.

We first consider the problem of multivariate regression, also referred to as multi-task
learning in statistical machine learning. The goal of multivariate regression is to estimate a
prediction function that maps covariates Zj ∈ R

m to multi-dimensional output vectors Yj ∈
R
d1 . More specifically, let us consider the linear model, specified by a matrix Θ∗ ∈ R

d1×d2 ,
of the form

Ya = Θ∗Za +Wa, for a = 1, . . . , n, (4.1)

where {Wa}na=1 is an i.i.d. sequence of d1-dimensional zero-mean noise vectors. Given a
collection of observations {Za, Ya}na=1 of covariate-output pairs, our goal is to estimate the
unknown matrix Θ∗. This type of model has been used in many applications, including
analysis of fMRI image data [59], analysis of EEG data decoding [5], neural response mod-
eling [23] and analysis of financial data. This model and closely related ones also arise in
the problem of collaborative filtering [127], in which the goal is to predict users’ preferences
for items (such as movies or music) based on their and other users’ ratings of related items.
The papers [1, 7] discuss additional instances of low-rank decompositions. In all of these
settings, the low-rank condition translates into the existence of a smaller set of “features”
that are actually controlling the prediction.

As a second (not unrelated) example, we now consider the problem of system identifica-
tion in vector autoregressive processes (see the book [86] for detailed background). A vector
autoregressive (VAR) process in m-dimensions is a stochastic process {Zt}∞t=1 specified by
an initialization Z1 ∈ R

m, followed by the recursion

Zt+1 = Θ∗Zt +Wt, for t = 1, 2, 3, . . .. (4.2)

In this recursion, the sequence {Wt}∞t=1 consists of i.i.d. samples of innovations noise. We
assume that each vector Wt ∈ R

m is zero-mean with covariance matrix C ≻ 0, so that the
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process {Zt}∞t=1 is zero-mean, and has a covariance matrix Σ given by the solution of the
discrete-time Ricatti equation

Σ = Θ∗Σ(Θ∗)T + C. (4.3)

The goal of system identification in a VAR process is to estimate the unknown matrix
Θ∗ ∈ R

m×m on the basis of a sequence of samples {Zt}nt=1. In many application domains,
it is natural to expect that the system is controlled primarily by a low-dimensional subset
of variables. For instance, models of financial data might have an ambient dimension m of
thousands (including stocks, bonds, and other financial instruments), but the behavior of
the market might be governed by a much smaller set of macro-variables (combinations of
these financial instruments). Similar statements apply to other types of time series data,
including neural data [23, 52], subspace tracking models in signal processing, and motion
models models in computer vision. While the form of system identification formulated here
assumes direct observation of the state variables {Zt}nt=1, it is also possible to tackle the more
general problem when only noisy versions are observed (e.g., see Liu and Vandenberghe [82]).
An interesting feature of the system identification problem is that the matrix Θ∗, in addition
to having low rank, might also be required to satisfy some type of structural constraint (e.g.,
having a Hankel-type structure), and the estimator that we consider here allows for this
possibility.

A third example that we consider in this chapter is a compressed sensing observation
model, in which one observes random projections of the unknown matrix Θ∗. This observa-
tion model has been studied extensively in the context of estimating sparse vectors [44, 31],
and Recht and colleagues [117] suggested and studied its extension to low-rank matrices. In
their set-up, one observes trace inner products of the form 〈〈Xi, Θ

∗〉〉 = trace(XT
i Θ

∗), where
Xi ∈ R

d1×d2 is a random matrix (for instance, filled with standard normal N(0, 1) entries), so
that 〈〈Xi, Θ

∗〉〉 is a standard random projection. In the sequel, we consider this model with a
more general family of random projections involving matrices with dependent entries. Like
compressed sensing for sparse vectors, applications of this model include computationally
efficient updating in large databases (where the matrix Θ∗ measures the difference between
the data base at two different time instants), and matrix denoising.

4.2.2 A generic observation model

We now introduce a generic observation model that will allow us to deal with these differ-
ent observation models in an unified manner. For pairs of matrices A,B ∈ R

d1×d2 , recall
the Frobenius or trace inner product 〈〈A, B〉〉 : = trace(BAT ). We then consider a linear
observation model of the form

yi = 〈〈Xi, Θ
∗〉〉+ εi, for i = 1, 2, . . . , N , (4.4)
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which is specified by the sequence of observation matrices {Xi}Ni=1 and observation noise
{εi}Ni=1. This observation model can be written in a more compact manner using operator-
theoretic notation. In particular, let us define the observation vector

~y =
[
y1 . . . yN

]T ∈ R
N ,

with a similar definition for ~ε ∈ R
N in terms of {εi}Ni=1. We then use the observation matrices

{Xi}Ni=1 to define an operator X : Rd1×d2 → R
N via

[
X(Θ)

]
i
= 〈〈Xi, Θ〉〉. With this notation,

the observation model (4.4) can be re-written as

~y = X(Θ∗) + ~ε. (4.5)

Let us illustrate the form of the observation model (4.5) for some of the applications that
we considered earlier.

Example 4.1 (Multivariate regression). Recall the observation model (4.1) for multivari-
ate regression. In this case, we make n observations of vector pairs (Ya, Za) ∈ R

d1 × R
d2 .

Accounting for the d1-dimensional nature of the output, after the model is scalarized, we
receive a total of N = d1n observations. Let us introduce the quantity b = 1, . . . , d1 to index
the different elements of the output, so that we can write

Yab = 〈〈ebZT
a , Θ

∗〉〉+Wab, for b = 1, 2, . . . , d1. (4.6)

By re-indexing this collection of N = nd1 observations via the mapping

(a, b) 7→ i = a+ (b− 1) d1,

we recognize multivariate regression as an instance of the observation model (4.4) with
observation matrix Xi = ebZ

T
a and scalar observation yi = Yab.

Example 4.2 (Vector autoregressive processes). Recall that a vector autoregressive (VAR)
process is defined by the recursion (4.2), and suppose that we observe an n-sequence {Zt}nt=1

produced by this recursion. Since each Zt =
[
Zt1 . . . Ztm

]T
is m-variate, the scalarized

sample size is N = nm. Letting b = 1, 2, . . . ,m index the dimension, we have

Z(t+1) b = 〈〈ebZT
t , Θ

∗〉〉+Wtb. (4.7)

In this case, we re-index the collection of N = nm observations via the mapping

(t, b) 7→ i = t+ (b− 1)m.

After doing so, we see that the autoregressive problem can be written in the form (4.4) with
yi = Z(t+1) b and observation matrix Xi = ebZ

T
t .
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Example 4.3 (Compressed sensing). As mentioned earlier, this is a natural extension of the
compressed sensing observation model for sparse vectors to the case of low-rank matrices [117,
116]. In a typical form of compressed sensing, the observation matrix Xi ∈ R

d1×d2 has i.i.d.
standard normal N(0, 1) entries, so that one makes observations of the form

yi = 〈〈Xi, Θ
∗〉〉+ εi, for i = 1, 2, . . . , N . (4.8)

By construction, these observations are an instance of the model (4.4). In the sequel, we
study a more general observation model, in which the entries of Xi are allowed to have
general Gaussian dependencies. For this problem, the more compact form (4.5) involves a
random Gaussian operator mapping R

d1×d2 to R
N , and we study some of its properties in

the sequel.

4.2.3 Regression with nuclear norm regularization

We now consider an estimator that is naturally suited to the problems described in the
previous section. Recall that the nuclear or trace norm of a matrix Θ ∈ R

d1×d2 is given by
|||Θ|||nuc =

∑m
j=1 σj(Θ), corresponding to the sum of its singular values. Given a collection

of observations (yi, Xi) ∈ R× R
d1×d2 , for i = 1, . . . , N from the observation model (4.4), we

consider estimating the unknown Θ∗ ∈ Ω by solving the following optimization problem

Θ̂ ∈ argmin
Θ∈Ω

{ 1

2N
‖~y − X(Θ)‖22 + λN |||Θ|||nuc

}
, (4.9)

where Ω is a convex subset of Rd1×d2 , and λN > 0 is a regularization parameter. When
Ω = R

d1×d2 , the optimization problem (4.9) can be viewed as the analog of the Lasso es-
timator [131], tailored to low-rank matrices as opposed to sparse vectors. We include the
possibility of a more general convex set Ω since they arise naturally in certain applica-
tions (e.g., Hankel-type constraints in system identification [82]). When Ω is a polytope
(with Ω = R

d1×d2 as a special case), then the optimization problem (4.9) can be solved
in time polynomial in the sample size N and the matrix dimensions d1 and d2. Indeed,
the optimization problem (4.9) is an instance of a semidefinite program [142], a class of
convex optimization problems that can be solved efficiently by various polynomial-time al-
gorithms [21]. For instance, Liu and Vandenberghe [82] develop an efficient interior point
method for solving constrained versions of nuclear norm programs. Moreover, as we discuss
in Section 4.5, there are a variety of first-order methods for solving the semidefinite pro-
gram (SDP) defining our M -estimator [102, 66]. These first-order methods are well-suited
to the high-dimensional problems arising in statistical settings, and we make use of one in
performing our simulations.

Like in any typical M -estimator for statistical inference, the regularization parameter
λN is specified by the statistician. As part of the theoretical results in the next section, we
provide suitable choices of this parameter so that the estimate Θ̂ is close in Frobenius norm
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to the unknown matrix Θ∗. The setting of the regularizer depends on the knowledge of the
noise variance. While in general one might need to estimate this parameter through cross
validation [50, 17], we assume knowledge of the noise variance in order to most succinctly
demonstrate the empirical behavior of our results through the experiments.

4.3 Main results and some consequences

In this section, we state our main results and discuss some of their consequences. Sec-
tion 4.3.1 is devoted to results that apply to generic instances of low-rank problems, whereas
Section 4.3.3 is devoted to the consequences of these results for more specific problem classes,
including low-rank multivariate regression, estimation of vector autoregressive processes, and
recovery of low-rank matrices from random projections.

4.3.1 Results for general model classes

We begin recalling the definition of restricted strong convexity (RSC) presented in equa-
tion (3.19). Recall that RSC is the key technical condition that allows us to control the error

Θ̂−Θ∗ between an optimal solution Θ̂ and the unknown matrix Θ∗. Restricted strong con-
vexity amounts to guaranteeing that the quadratic loss function in the convex program (4.9)
is strictly convex over a restricted set of directions. Letting C ⊆ R

d1×d2 denote the restricted
set of directions, we say that the operator X satisfies RSC over the set C if there exists some
κ(X) > 0 such that

1

2N
‖X(∆)‖22 ≥ κ(X) |||∆|||2F for all ∆ ∈ C. (4.10)

We note that analogous conditions have been used to establish error bounds in the context
of sparse linear regression [20, 40], in which case the set C corresponded to certain subsets
of sparse vectors. These types of conditions are weaker than restricted isometry properties,
since they involve only lower bounds on the operator X, and the constant κ(X) can be
arbitrarily small.

Of course, the definition (4.10) hinges on the choice of the restricted set C. In order
to specify some appropriate sets for the case of (near) low-rank matrices, we require some
additional notation. Any matrix Θ∗ ∈ R

d1×d2 has a singular value decomposition of the form
Θ∗ = UDV T , where U ∈ R

d1×d1 and V ∈ R
d2×d2 are orthonormal matrices. For each integer

r ∈ {1, 2, . . . ,m}, we let U r ∈ R
d1×r and V r ∈ R

d2×r be the sub-matrices of singular vectors
associated with the top r singular values of Θ∗. We recall the following two subspaces of
R
d1×d2 from equation (3.13)

M(U r, V r) : =
{
∆ ∈ R

d1×d2 | row(∆) ⊆ V r and col(∆) ⊆ U r
}
, and (4.11a)

M⊥
(U r, V r) : =

{
∆ ∈ R

d1×d2 | row(∆) ⊥ V r and col(∆) ⊥ U r
}
, (4.11b)
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where row(∆) ⊆ R
d2 and col(∆) ⊆ R

d1 denote the row space and column space, respectively,
of the matrix ∆. When (U r, V r) are clear from the context, we adopt the shorthand notation

M and M⊥
.

We can now define the subsets of interest. Let Π
M

⊥ denote the projection operator onto

the subspace M⊥
, and define ∆′′ = Π

M
⊥(∆) and ∆′ = ∆ − ∆′′. For a positive integer

r ≤ m = min{d1, d2} and a tolerance parameter δ ≥ 0, consider the following subset of
matrices

C(r; δ) : =

{
∆ ∈ R

d1×d2 | |||∆|||F ≥ δ, |||∆′′|||nuc ≤ 3|||∆′|||nuc + 4
m∑

j=r+1

σj(Θ
∗)

}
. (4.12)

Note that this set corresponds to matrices ∆ for which the quantity |||∆′′|||nuc is relatively
small compared to ∆−∆′′ and the remaining m− r singular values of Θ∗.

The next ingredient is the choice of the regularization parameter λN used in solving the
SDP (4.9). Our theory specifies a choice for this quantity in terms of the adjoint of the
operator X—namely, the operator X∗ : RN → R

d1×d2 defined by

X
∗(~ε) : =

N∑

i=1

εiXi. (4.13)

With this notation, we come to the first result of the chapter. The statement is a special-
ization of Theorem 3.1 to the low-rank matrix inference setting. The result is deterministic,
which specifies two conditions—namely, an RSC condition and a choice of the regularizer—
that suffice to guarantee that any solution of the convex program (4.9) falls within a certain
radius.

Theorem 4.1. Suppose Θ∗ ∈ Ω and that the operator X satisfies restricted strong convexity
with parameter κ(X) > 0 over the set C(r; δ), and that the regularization parameter λN is

chosen such that λN ≥ 2|||X∗(~ε)|||2/N . Then any solution Θ̂ to the semidefinite program (4.9)
satisfies

|||Θ̂−Θ∗|||F ≤ max

{
δ,

32λN
√
r

κ(X)
,

[
16 λN

∑m
j=r+1 σj(Θ

∗)

κ(X)

]1/2}
. (4.14)

Apart from the tolerance parameter δ, the two main terms in the bound (4.14) have
a natural interpretation. The first term (involving

√
r) corresponds to estimation error,

capturing the difficulty of estimating a rank r matrix. The second is an approximation error
that describes the gap between the true matrix Θ∗ and the best rank r approximation.
Understanding the magnitude of the tolerance parameter δ is a bit more subtle, and it
depends on the geometry of the set C(r; δ), and more specifically, the inequality

|||∆′′|||nuc ≤ 3|||∆′|||nuc + 4
m∑

j=r+1

σj(Θ
∗). (4.15)
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In the simplest case, when Θ∗ is at most rank r, then we have
∑m

j=r+1 σj(Θ
∗) = 0, so the

constraint (4.15) defines a cone. This cone completely excludes certain directions, and thus
it is possible that the operator X, while failing RSC in a global sense, can satisfy it over the
cone. Therefore, there is no need for a non-zero tolerance parameter δ in the exact low-rank
case. In contrast, when Θ∗ is only approximately low-rank, then the constraint (4.15) no
longer defines a cone; rather, it includes an open ball around the origin. Thus, if X fails
RSC in a global sense, then it will also fail it under the constraint (4.15). The purpose of
the additional constraint |||∆|||F ≥ δ is to eliminate the open ball centered at the origin, so
that it is possible that X satisfies RSC over C(r, δ).

Let us now illustrate the consequences of Theorem 4.1 when the true matrix Θ∗ has
exactly rank r, in which case the approximation error term is zero. For the technical reasons
mentioned above, it suffices to set δ = 0 in the case of exact rank constraints, and we thus
obtain the following result:

Corollary 4.1 (Exact low-rank recovery). Suppose that Θ∗ ∈ Ω has rank r, and X satisfies

RSC with respect to C(r; 0). Then as long as λN ≥ 2|||X∗(~ε)|||2/N , any optimal solution Θ̂ to
the SDP (4.9) satisfies the bound

|||Θ̂−Θ∗|||F ≤ 32
√
r λN

κ(X)
. (4.16)

Like Theorem 4.1, Corollary 4.1 is a deterministic statement on the SDP error. It takes a
much simpler form since when Θ∗ is exactly low rank, then neither tolerance parameter δ
nor the approximation term are required.

As a more delicate example, suppose instead that Θ∗ is nearly low-rank, an assumption
that we can formalize by requiring that its singular value sequence {σi(Θ∗)}mi=1 decays quickly
enough. In particular, for a parameter q ∈ [0, 1] and a positive radius Rq, we define the set

Bq(Rq) : =
{
Θ ∈ R

d1×d2 |
m∑

i=1

|σi(Θ)|q ≤ Rq

}
, (4.17)

where m = min{d1, d2}. Note that when q = 0, the set B0(R0) corresponds to the set of
matrices with rank at most R0.

Corollary 4.2 (Near low-rank recovery). Suppose that Θ∗ ∈ Bq(Rq) ∩ Ω, the regularization
parameter is lower bounded as λN ≥ 2|||X∗(~ε)|||2/N , and the operator X satisfies RSC with

parameter κ(X) ∈ (0, 1] over the set C(Rqλ
−q
N ; δ). Then any solution Θ̂ to the SDP (4.9)

satisfies

|||Θ̂−Θ∗|||F ≤ max
{
δ, 32

√
Rq

(
λN
κ(X)

)1−q/2}
. (4.18)
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Note that the error bound (4.18) reduces to the exact low rank case (4.16) when q = 0,
and δ = 0. The quantity λ−qN Rq acts as the “effective rank” in this setting; as clarified by
our proof in Section 4.4.2. This particular choice is designed to provide an optimal trade-off
between the approximation and estimation error terms in Theorem 4.1. Since λN is chosen
to decay to zero as the sample size N increases, this effective rank will increase, reflecting the
fact that as we obtain more samples, we can afford to estimate more of the smaller singular
values of the matrix Θ∗.

4.3.2 Comparison to related work

Past work by Lee and Bresler [79] provides stability results on minimizing the nuclear norm
with a quadratic constraint, or equivalently, performing least-squares with nuclear norm
constraints. Their results are based on the restricted isometry property (RIP), which is
more restrictive than than the RSC condition given here; see Example 4.4 and Example 4.5
for concrete examples of operators X that satisfy RSC but fail RIP. In our notation, their
stability results guarantee that the error |||Θ̂−Θ∗|||F is bounded by a quantity proportional
t : = ‖y − X(Θ∗)‖2/

√
N . Given the observation model (4.5) with a noise vector ~ε in which

each entry is i.i.d., zero mean with variance ν2, note that we have t ≈ ν with high probability.
Thus, although such a result guarantees stability, it does not guarantee consistency, since
for any fixed noise variance ν2 > 0, the error bound does not tend to zero as the sample
size N increases. In contrast, our bounds all depend on the noise and sample size via the
regularization parameter, whose optimal choice is λ∗N = 2|||X∗(~ε)|||2/N . As will be clarified
in Corollaries 4.3 through 4.5 to follow, for noise ~ε with variance ν and various choices

of X, this regularization parameter satisfies the scaling λ∗N ≍ ν
√

d1+d2
N

. Thus, our results

guarantee consistency of the estimator, meaning that the error tends to zero as the sample
size increases.

As previously noted, some concurrent work [30, 119] has also provided results on esti-
mation of high-dimensional matrices in the noisy and statistical setting. Rohde and Tsy-
bakov [119] derive results for estimating low-rank matrices based on a quadratic loss term
regularized by the Schatten-q norm for 0 < q ≤ 1. Note that the the nuclear norm (q = 1)
is a convex program, whereas the values q ∈ (0, 1) provide analogs on concave regularized
least squares [50] in the linear regression setting. They provide results on both multivariate
regression and matrix completion; most closely related to our work are the results on mul-
tivariate regression, which we discuss at more length following Corollary 4.3 below. On the
other hand, Candes and Plan [30] present error rates in the Frobenius norm for estimating
approximately low-rank matrices under the compressed sensing model, and we discuss below
the connection to our Corollary 4.5 for this particular observation model. A major difference
between our work and this body of work lies in the assumptions imposed on the observation
operator X. All of the papers [79, 30, 119] impose the restricted isometry property (RIP),
which requires that all restricted singular values of X very close to 1 (so that it is a near-
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isometry). In contrast, we require only the restricted strong convexity (RSC) condition,
which imposes only an arbitrarily small but positive lower bound on the operator. It is
straightforward to construct operators X that satisfy RSC while failing RIP, as we discuss
in Examples 4.4 and Example 4.5 to follow.

4.3.3 Results for specific model classes

As stated, Corollaries 4.1 and 4.2 are fairly abstract in nature. More importantly, it is not
immediately clear how the key underlying assumption—namely, the RSC condition—can be
verified, since it is specified via subspaces that depend on Θ∗, which is itself the unknown
quantity that we are trying to estimate. Nonetheless, we now show how, when specialized to
more concrete models, these results yield concrete and readily interpretable results. As will
be clear in the proofs of these results, each corollary requires overcoming two main technical
obstacles: establishing that the appropriate form of the RSC property holds in a uniform
sense (so that a priori knowledge of Θ∗ is not required), and specifying an appropriate choice
of the regularization parameter λN . Each of these two steps is non-trivial, requiring some
random matrix theory, but the end results are simply stated upper bounds that hold with
high probability.

We begin with the case of rank-constrained multivariate regression. As discussed earlier
in Example 4.1, recall that we observe pairs (Yi, Zi) ∈ R

d1 × R
d2 linked by the linear model

Yi = Θ∗Zi +Wi, where Wi ∼ N(0, ν2Id1×d1) is observation noise. Here we treat the case of
random design regression, meaning that the covariates Zi are modeled as random. In par-
ticular, in the following result, we assume that Zi ∼ N(0,Σ), i.i.d. for some d2-dimensional
covariance matrix Σ ≻ 0. Recalling that σmax(Σ) and σmin(Σ) denote the maximum and
minimum eigenvalues respectively, we have:

Corollary 4.3 (Low-rank multivariate regression). Consider the random design multivariate
regression model where Θ∗ ∈ Bq(Rq)∩Ω. There are universal constants {ci, i = 1, 2, 3} such

that if we solve the SDP (4.9) with regularization parameter λN = 10 ν
d1

√
σmax(Σ)

√
(d1+d2)

n
,

we have

|||Θ̂−Θ∗|||2F ≤ c1

(
ν2σmax(Σ)

σ2
min(Σ)

)1−q/2
Rq

(
d1 + d2
n

)1−q/2
(4.19)

with probability greater than 1− c2 exp(−c3(d1 + d2)).

Remarks: Corollary 4.3 takes a particularly simple form when Σ = Id2×d2 : then there

exists a constant c′1 such that |||Θ̂−Θ∗|||2F ≤ c′1ν
2−q Rq

(
d1+d2
n

)1−q/2
. When Θ∗ is exactly low

rank—that is, q = 0, and Θ∗ has rank r = R0—this simplifies even further to

|||Θ̂−Θ∗|||2F ≤ c′1
ν2 r (d1 + d2)

n
.
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The scaling in this error bound is easily interpretable: naturally, the squared error is
proportional to the noise variance ν2, and the quantity r(d1 + d2) counts the number of
degrees of freedom of a d1 × d2 matrix with rank r. Note that if we did not impose any
constraints on Θ∗, then since a d1 × d2 matrix has a total of d1d2 free parameters, we would
expect at best1 to obtain rates of the order |||Θ̂ − Θ∗|||2F = Ω(ν

2 d1 d2
n

). Note that when Θ∗ is
low rank—in particular, when r ≪ min{d1, d2}—then the nuclear norm estimator achieves
substantially faster rates.2

It is worth comparing this corollary to a result on multivariate regression due to Rohde
and Tsybakov [119]. Their result applies to exactly low-rank matrices (say with rank r), but
provides bounds on general Schatten norms (including the Frobenius norm). In this case, it
provides a comparable rate when we make the setting q = 0 and R0 = r in the bound (4.19),
namely showing that we require roughly n ≈ r (d1+d2) samples, corresponding to the number
of degrees of freedom. A significant difference lies in the conditions imposed on the design
matrices: whereas their result is derived under RIP conditions on the design matrices, we
require only the milder RSC condition. The following example illustrates the distinction for
this model.

Example 4.4 (Failure of RIP for multivariate regression). Under the random design model
for multivariate regression, we have

F (Θ) :=
E[‖X(Θ)‖22]
n|||Θ|||2F

=

d2∑
j=1

‖
√
ΣΘj‖22

|||Θ|||2F
, (4.20)

where Θj is the j
th row of Θ. In order for RIP to hold, it is necessary that quantity F (Θ) is

extremely close to 1—certainly less than two—for all low-rank matrices. We now show that
this cannot hold unless Σ has a small condition number. Let v ∈ R

d2 and v′ ∈ R
d2 denote

the minimum and maximum eigenvectors of Σ. By setting Θ = e1v
T , we obtain a rank one

matrix for which F (Θ) = σmin(Σ), and similarly, setting Θ′ = e1(v
′)T yields another rank

one matrix for which F (Θ′) = σmax(Σ). The preceding discussion applies to the average
E[‖X(Θ)‖22]/n, but since the individual matrices matrices Xi are i.i.d. and Gaussian, we
have

‖X(Θ)‖22
n

=
1

n

n∑

i=1

〈〈Xi, Θ〉〉2 ≤ 2F (Θ) = 2σmin(Σ)

1To clarify our use of sample size, we can either view the multivariate regression model as consisting of n
samples with a constant SNR, or as N samples with SNR of order 1/d1. We adopt the former interpretation
here.

2We also note that as stated, the result requires that (d1 + d2) tend to infinity in order for the claim
to hold with high probability. Although such high-dimensional scaling is the primary focus of this chapter,
we note that for application to the classical setting of fixed (d1, d2), the same statement (with different
constants) holds with d1 + d2 replaced by log n.
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with high probability, using χ2-tail bounds. Similarly, ‖X(Θ′)‖22/n ≥ (1/2)σmax(Σ) with high
probability. Thus, we have exhibited a pair of rank one matrices with |||Θ|||F = |||Θ′|||F = 1
for which

‖X(Θ′)‖22
‖X(Θ)‖22

≥ 1

4

σmax(Σ)

σmin(Σ)
.

Consequently, unless σmax(Σ)/σmin(Σ) ≤ 64, it is not possible for RIP to hold with
constant δ ≤ 1/2. In contrast, as our results show, the RSC will hold w.h.p. whenever
σmin(Σ) > 0, and the error is allowed to scale with the ratio σmax(Σ)/σmin(Σ).

Next we turn to the case of estimating the system matrix Θ∗ of an autoregressive (AR)
model, as discussed in Example 4.2.

Corollary 4.4 (Autoregressive models). Suppose that we are given n samples {Zt}nt=1 from
a m-dimensional autoregressive process (4.2) that is stationary, based on a system matrix
that is stable (|||Θ∗|||2 ≤ γ < 1), and approximately low-rank (Θ∗ ∈ Bq(Rq) ∩ Ω). Then there
are universal constants {ci, i = 1, 2, 3} such that if we solve the SDP (4.9) with regularization

parameter λN = 2c0 |||Σ|||2
m (1−γ)

√
m
n
, then any solution Θ̂ satisfies

|||Θ̂−Θ∗|||2F ≤ c1

[
σ2
max(Σ)

σ2
min(Σ) (1− γ)2

]1−q/2
Rq

(m
n

)1−q/2
(4.21)

with probability greater than 1− c2 exp(−c3m).

Remarks: Like Corollary 4.3, the result as stated requires that the matrix dimension m
tends to infinity, but the same bounds hold with m replaced by log n, yielding results suit-
able for classical (fixed dimension) scaling. Second, the factor (m/n)1−q/2, like the analogous
term3 in Corollary 4.3, shows that faster rates are obtained if Θ∗ can be well-approximated
by a low rank matrix, namely for choices of the parameter q ∈ [0, 1] that are closer to zero.
Indeed, in the limit q = 0, we again reduce to the case of an exact rank constraint r = R0,
and the corresponding squared error scales as rm/n. In contrast to the case of multivariate
regression, the error bound (4.21) also depends on the upper bound |||Θ∗|||2 = γ < 1 on the
operator norm of the system matrix Θ∗. Such dependence is to be expected since the quan-
tity γ controls the (in)stability and mixing rate of the autoregressive process. As clarified
in the proof, the dependence of the sampling in the AR model also presents some technical
challenges not present in the setting of multivariate regression.

Finally, we turn to the analysis of the compressed sensing model for matrix recovery,
as initially described in Example 4.3. Although standard compressed sensing is based on

3The term in Corollary 4.3 has a factor d1 + d2, since the matrix in that case could be non-square in
general.
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observation matrices Xi with i.i.d. elements, here we consider a more general model that
allows for dependence between the entries of Xi. First defining the quantity M = d1 d2, we
use vec(Xi) ∈ R

M to denote the vectorized form of the d1×d2 matrix Xi. Given a symmetric
positive definite matrix Σ ∈ R

M×M , we say that the observation matrix Xi is sampled from
the Σ-ensemble if vec(Xi) ∼ N(0,Σ). Finally, we define the quantity

ζmat(Σ) := sup
‖u‖2=1,‖v‖2=1

var(uTXv), (4.22)

where the random matrix X ∈ R
d1×d2 is sampled from the Σ-ensemble. In the special case

Σ = I, corresponding to the usual compressed sensing model, we have ζmat(I) = 1.
The following result applies to any observation model in which the noise vector ~ε ∈ R

N

satisfies the bound ‖~ε‖2 ≤ 2ν
√
N for some constant ν. This assumption that holds for

any bounded noise, and also holds with high probability for any random noise vector with
sub-Gaussian entries with parameter ν. (The simplest example is that of Gaussian noise
N(0, ν2).)

Corollary 4.5 (Compressed sensing with dependent sampling). Suppose that the matri-
ces {Xi}Ni=1 are drawn i.i.d. from the Σ-Gaussian ensemble, and that the unknown matrix
Θ∗ ∈ Bq(Rq) ∩ Ω for some q ∈ (0, 1]. Then there are universal constants ci such that for a

sample size N > c1ζmat(Σ) R
1−q/2
q (d1 + d2), any solution Θ̂ to the SDP (4.9) with regular-

ization parameter λN = c0
√
ζmat(Σ)ν

√
d1+d2
N

satisfies the bound

|||Θ̂−Θ∗|||2F ≤ c2Rq

((ν2 ∨ 1) ζmat(Σ)

σ2
min(Σ)

(d1 + d2)

N

)1− q
2

(4.23)

with probability greater than 1 − c3 exp(−c4(d1 + d2)). In the special case q = 0 and Θ∗ of
rank r, we have

|||Θ̂−Θ∗|||2F ≤ c2
ζmat(Σ)ν

2

σ2
min(Σ)

r (d1 + d2)

N
. (4.24)

The central challenge in proving this result is in proving an appropriate form of the RSC
property. The following result on the random operator X may be of independent interest
here:

Proposition 4.1. Consider the random operator X : Rd1×d2 → R
N formed by sampling from

the Σ-ensemble. Then it satisfies

‖X(Θ)‖2√
N

≥ c1‖
√
Σvec(Θ)‖2 − c2

√
ζmat(Σ)

(√
d1
N

+

√
d2
N

)
|||Θ|||nuc for all Θ ∈ R

d1×d2

(4.25)

with probability at least 1− 2 exp(−N/32).
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The proof of this result, provided in Appendix B.5, makes use of the Gordon-Slepian inequal-
ities for Gaussian processes, and concentration of measure. As we show in Section 4.4.5, it
implies the form of the RSC property needed to establish Corollary 4.5.

In concurrent work, Candes and Plan [30] derived a result similar to Corollary 4.5 for the
compressed sensing observation model. Their result applies to matrices with i.i.d. elements
with sub-Gaussian tail behavior. While the analysis given here is specific to Gaussian random
matrices, it allows for general dependence among the entries. Their result applies only under
certain restrictions on the sample size relative to matrix dimension and rank, whereas our
result holds more generally without these extra conditions. Moreover, their proof relies on
an application of RIP, which is in general more restrictive than the RSC condition used in
our analysis. The following example provides a concrete illustration of a matrix family where
the restricted isometry constants are unbounded as the rank r grows, but RSC still holds.

Example 4.5 (RSC holds when RIP violated). Here we consider a family of random oper-
ators X for which RSC holds with high probability, while RIP fails. Consider generating an
i.i.d. collection of design matrices Xi ∈ R

m×m, each of the form

Xi = ziIm×m + Gi, for i = 1, 2, . . . , N, (4.26)

where zi ∼ N(0, 1) and Gi ∈ R
m×m is a standard Gaussian random matrix, independent of

zi. Note that we have vec(Xi) ∼ N(0,Σ), where the m2×m2 covariance matrix has the form

Σ = vec(Im×m) vec(Im×m)
T + Im2×m2 . (4.27)

Let us compute the quantity ζmat(Σ) = sup‖u‖2=1
‖v‖2=1

var(uTXv). By the independence of z and

G in the model (4.26), we have

ζmat(Σ) ≤ var(z) sup
u∈Sd1−1,v∈Sd2−1

uTv + sup
u∈Sd1−1,v∈Sd2−1

var(uTGv) ≤ 2.

Letting X be the associated random operator, we observe that for any Θ ∈ R
m×m, the

independence of zi and Gi implies that

E

[‖X(Θ)‖22
N

]
= ‖

√
Σvec(Θ)‖22 = trace(Θ)2 + |||Θ|||2F ≥ |||Θ|||2F .

Consequently, Proposition 4.1 implies that

‖X(Θ)‖2√
N

≥ 1

4
|||Θ|||F − 48

√
m

N
|||Θ|||nuc for all Θ ∈ R

m×m, (4.28)

with high probability. As mentioned previously, we show in Section 4.4.5 how this type of
lower bound implies the RSC condition needed for our results.
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On the other hand, the random operator can never satisfy RIP (with the rank r increas-
ing), as the following calculation shows. In this context, RIP requires that bounds of the
form

‖X(Θ)‖22
N |||Θ|||2F

∈ [1− δ, 1 + δ] for all Θ with rank at most r,

where δ ∈ (0, 1) is a constant independent of r. Note that the bound (4.28) implies that a
lower bound of this form holds as long as N = Ω(rm). Moreover, this lower bound cannot be
substantially sharpened, since the trace term plays no role for matrices with zero diagonals.

We now show that no such upper bound can ever hold. For a rank 1 ≤ r < m, consider
the m×m matrix of the form

Γ :=

[
Ir×r/

√
r 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)

]
.

By construction, we have |||Γ|||F = 1 and trace(Γ) =
√
r. Consequently, we have

E
[‖X(Γ)‖22

N

]
= trace(Γ)2 + |||Γ|||2F = r + 1.

The independence of the matrices Xi implies that
‖X(Γ)‖22

N
is sharply concentrated around this

expected value, so that we conclude that

‖X(Γ)‖22
N |||Γ|||2F

≥ 1

2

[
1 + r

]
,

with high probability, showing that RIP cannot hold with upper and lower bounds of the
same order.

Finally, we note that Proposition 4.1 also implies an interesting property of the null
space of the operator X, one which can be used to establish a corollary about recovery of
low-rank matrices when the observations are noiseless. In particular, suppose that we are
given the noiseless observations yi = 〈〈Xi, Θ

∗〉〉 for i = 1, . . . , N , and that we try to recover
the unknown matrix Θ∗ by solving the SDP

min
Θ∈Rd1⋉d2

|||Θ|||nuc such that 〈〈Xi, Θ〉〉 = yi for all i = 1, . . . , N . (4.29)

This recovery procedure was studied by Recht and colleagues [117, 116] in the special case
that Xi is formed of i.i.d. N(0, 1) entries. Proposition 4.1 allows us to obtain a sharp result
on recovery using this method for Gaussian matrices with general dependencies.
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Corollary 4.6 (Exact recovery with dependent sampling). Suppose that the matrices {Xi}Ni=1

are drawn i.i.d. from the Σ-Gaussian ensemble, and that Θ∗ ∈ Ω has rank r. Given
N > c0ζmat(Σ)r(d1 + d2) noiseless samples, then with probability at least 1 − 2 exp(−N/32),
the SDP (4.29) recovers the matrix Θ∗ exactly.

This result removes some extra logarithmic factors that were included in initial work [117]
and provides the appropriate analog to compressed sensing results for sparse vectors [44, 31].
Note that (like in most of our results) we have made little effort to obtain good constants in
this result: the important property is that the sample size N scales linearly in both r and
d1 + d2. We refer the reader to Recht et al. [116], who study the standard Gaussian model
under the scaling r = Θ(m) and obtain sharp results on the constants.

4.4 Proofs

We now turn to the proofs of Theorem 4.1, and Corollaries 4.1 through 4.6. In each case,
we provide the primary steps in the main text, with more technical details stated as lemmas
and proved in the Appendix.

4.4.1 Proof of Theorem 4.1

By the optimality of Θ̂ and feasibility of Θ∗ for the SDP (4.9), we have

1

2N
‖~y − X(Θ̂)‖22 + λN |||Θ̂|||nuc ≤

1

2N
‖~y − X(Θ∗)‖22 + λN |||Θ∗|||nuc.

Defining the error matrix ∆ = Θ∗ − Θ̂ and performing some algebra yields the inequality

1

2N
‖X(∆)‖22 ≤

1

N
〈~ε, X(∆)〉+ λN

{
|||Θ̂ + ∆|||nuc − |||Θ̂|||nuc

}
. (4.30)

By definition of the adjoint and Hölder’s inequality, we have

1

N

∣∣〈~ε, X(∆)〉
∣∣ = 1

N

∣∣〈X∗(~ε), ∆〉
∣∣ ≤ 1

N
|||X∗(~ε)|||2 |||∆|||nuc. (4.31)

By the triangle inequality, we have |||Θ̂ + ∆|||nuc − |||Θ̂|||nuc ≤ |||∆|||nuc. Substituting this in-
equality and the bound (4.31) into the inequality (4.30) yields

1

2N
‖X(∆)‖22 ≤

1

N
|||X∗(~ε)|||2|||∆|||nuc + λN |||∆|||nuc ≤ 2λN |||∆|||nuc,

where the second inequality makes use of our choice λN ≥ 2
N
|||X∗(~ε)|||2.

It remains to lower bound the term on the left-hand side, while upper bounding the
quantity |||∆|||nuc on the right-hand side. The following technical result allows us to do so.

Recall our earlier definition (4.11) of the sets M and M⊥
associated with a given subspace

pair.
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Lemma 4.1. Let U r ∈ R
d1×r and V r ∈ R

d2×r be matrices consisting of the top r left and right
(respectively) singular vectors of Θ∗. Then there exists a matrix decomposition ∆ = ∆′ +∆′′

of the error ∆ such that

(a) The matrix ∆′ satisfies the constraint rank(∆′) ≤ 2r, and

(b) If λN ≥ 2|||X∗(~ε)|||2/N , then the nuclear norm of ∆′′ is bounded as

|||∆′′|||nuc ≤ 3|||∆′|||nuc + 4
m∑

j=r+1

σj(Θ
∗) (4.32)

Compare the above result to Lemma 3.1. In order to establish the above lemma we
exploit the decomposability of the nuclear norm (see Example 3.3) and apply the results from
Lemma 3.1. See Appendix B.1 for the detailed proof of the above claim. Using Lemma 4.1,
we can complete the proof of the theorem. In particular, from the bound (4.32) and the
RSC assumption, we find that for |||∆|||F ≥ δ, we have

1

2N
‖X(∆)‖22 ≥ κ(X) |||∆|||2F .

Using the triangle inequality together with inequality (4.32), we obtain

|||∆|||nuc ≤ |||∆′|||nuc + |||∆′′|||nuc ≤ 4|||∆′|||nuc + 4
m∑

j=r+1

σj(Θ
∗).

From the rank constraint in Lemma 4.1(a), we have |||∆′|||nuc ≤
√
2r|||∆′|||F . Putting together

the pieces, we find that either |||∆|||F ≤ δ, or

κ(X) |||∆|||2F ≤ max
{
32λN

√
r |||∆|||F , 16 λN

m∑

j=r+1

σj(Θ
∗)
}
,

which implies that

|||∆|||F ≤ max

{
δ,

32λN
√
r

κ(X)
,
(16 λN

∑m
j=r+1 σj(Θ

∗)

κ(X)

)1/2}
,

as claimed.

4.4.2 Proof of Corollary 4.2

Let d = min{d1, d2}. In this case, we consider the singular value decomposition Θ∗ = UDV T ,
where U ∈ R

d1×d and V ∈ R
d2×d are orthogonal, and we assume that D is diagonal with the
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singular values in non-increasing order σ1(Θ
∗) ≥ σ2(Θ

∗) ≥ . . . σd(Θ
∗) ≥ 0. For a parameter

τ > 0 to be chosen, we define

K : =
{
i ∈ {1, 2, . . . , d} | σi(Θ∗) > τ

}
,

and we let UK (respectively V K) denote the d1 × |K| (respectively the d2 × |K|) orthogonal
matrix consisting of the first |K| columns of U (respectively V ). With this choice, the matrix
Θ∗
Kc : = Π

M
⊥(Θ∗) has rank at most d−|K|, with singular values {σi(Θ∗), i ∈ Kc}. Moreover,

since σi(Θ
∗) ≤ τ for all i ∈ Kc, we have

|||Θ∗
Kc|||nuc = τ

d∑

i=|K|+1

σi(Θ
∗)

τ
≤ τ

d∑

i=|K|+1

(σi(Θ∗)

τ

)q
≤ τ 1−qRq.

On the other hand, we also have Rq ≥ ∑d
i=1 |σi(Θ∗)|q ≥ |K| τ q, which implies that

|K| ≤ τ−q Rq. From the general error bound with r = |K|, we obtain

|||Θ̂−Θ∗|||F ≤ max

{
δ,

32λN
√
Rq τ

−q/2

κ(X)
,

[
16 λN τ

1−qRq

κ(X)

]1/2}
,

Setting τ = λN/κ yields that

|||Θ̂−Θ∗|||F ≤ max

{
δ,

32λ
1−q/2
N

√
Rq

κ1−q/2
,

[
16 λ2−qN Rq

κ2−q

]1/2}

= max

{
δ, 32

√
Rq

(
λN
κ(X)

)1−q/2}
,

as claimed.

4.4.3 Proof of Corollary 4.3

For the proof of this corollary, we adopt the following notation. We first define the three
matrices

X =




ZT
1

ZT
2

· · ·
ZT
n


 ∈ R

n×d2 , Y =




Y T
1

Y T
2

· · ·
Y T
n


 ∈ R

n×d1 , and W =




W T
1

W T
2

· · ·
W T
n


 ∈ R

n×d1 . (4.33)

With this notation and using the relation N = nd1, the SDP objective function (4.9) can be
written as 1

d1

{
1
2n
|||Y −XΘT |||2F + λn|||Θ|||nuc

}
, where we have defined λn = λN d1.
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In order to establish the RSC property for this model, some algebra shows that we need
to establish a lower bound on the quantity

1

2n
|||X∆|||2F =

1

2n

m∑

j=1

‖(X∆)j‖22 ≥ σmin(X
TX)

2n
|||∆|||2F ,

where σmin denotes the minimum eigenvalue. The following lemma follows by adapting
known concentration results for random matrices (see the paper [145] for details):

Lemma 4.2. Let X ∈ R
n×m be a random matrix with i.i.d. rows sampled from a m-variate

N(0,Σ) distribution. Then for n ≥ 2m, we have

P

[
σmin

( 1
n
XTX

)
≥ σmin(Σ)

9
, σmax

( 1
n
XTX

)
≤ 9σmax(Σ)

]
≥ 1− 4 exp(−n/2).

As a consequence, we have σmin(X
TX)

2n
≥ σmin(Σ)

18
with probability at least 1− 4 exp(−n) for all

n ≥ 2m, which establishes that the RSC property holds with κ(X) = 1
20d1

σmin(Σ).
Next we need to upper bound the quantity |||X∗(~ε)|||2 for this model, so as to verify that

the stated choice for λN is valid. Following some algebra, we find that

1

n
|||X∗(~ε)|||2 =

1

n
|||XTW |||2.

The following lemma is proved in Appendix B.3:

Lemma 4.3. There are constants ci > 0 such that

P

[∣∣ 1
n
|||XTW |||2

∣∣ ≥ 5ν
√
σmax(Σ)

√
d1 + d2
n

]
≤ c1 exp(−c2(d1 + d2)). (4.34)

Using these two lemmas, we can complete the proof of Corollary 4.3. First, recalling the

scaling N = d1n, we see that Lemma 4.3 implies that the choice λn = 10ν
√
σmax(Σ)

√
d1+d2
n

satisfies the conditions of Corollary 4.2 with high probability. Lemma 4.2 shows that the
RSC property holds with κ(X) = σmin(Σ)/(20d1), again with high probability. Consequently,
Corollary 4.2 implies that

|||Θ̂−Θ∗|||2F ≤ 322Rq

(
10ν
√
σmax(Σ)

√
d1 + d2
n

20

σmin(Σ)

)2−q

= c1

(
ν2σmax(Σ)

σ2
min(Σ)

)1−q/2
Rq

(
d1 + d2
n

)1−q/2

with probability greater than 1− c2 exp(−c3(d1 + d2)), as claimed.



CHAPTER 4. LOW-RANK MATRIX ESTIMATION 67

4.4.4 Proof of Corollary 4.4

For the proof of this corollary, we adopt the notation

X =




ZT
1

ZT
2

· · ·
ZT
n


 ∈ R

n×m, and Y =




ZT
2

ZT
2

· · ·
ZT
n+1


 ∈ R

n×m.

Finally, we let W ∈ R
n×m be a matrix where each row is sampled i.i.d. from the N(0, C)

distribution corresponding to the innovations noise driving the VAR process. With this
notation and using the relation N = nm, the SDP objective function (4.9) can be written
as 1

m

{
1
2n
|||Y − XΘT |||2F + λn|||Θ|||nuc

}
, where we have defined λn = λN m. At a high level,

the proof of this corollary is similar to that of Corollary 4.3, in that we use random matrix
theory to establish the required RSC property, and to justify the choice of λn, or equivalently
λN . However, it is considerably more challenging, due to the dependence in the rows of the
random matrices, and the cross-dependence between the two matrices X andW (which were
independent in the setting of multivariate regression).

The following lemma provides the lower bound needed to establish RSC for the autore-
gressive model:

Lemma 4.4. The eigenspectrum of the matrix XTX/n is well-controlled in terms of the
stationary covariance matrix: in particular, as long as n > c3m, we have

σmax

(( 1
n
XTX

)) (a)

≤ 24σmax(Σ)

1− γ
, and σmin

(( 1
n
XTX

)) (b)

≥ σmin(Σ)

4
, (4.35)

both with probability greater than 1− 2c1 exp(−c2m).

Thus, from the bound (4.35)(b), we see with the high probability, the RSC property holds
with κ(X) = σmin(Σ)/(4d2) as long as n > c3m.

As before, in order to verify the choice of λn, we need to control the quantity 1
n
|||XTW |||2.

The following inequality, proved in Appendix B.4.2, yields a suitable upper bound:

Lemma 4.5. There exist constants ci > 0, independent of n,m,Σ etc. such that

P
[ 1
n
|||XTW |||2 ≥

c0 |||Σ|||2
1− γ

√
m

n

]
≤ c2 exp(−c3m). (4.36)

From Lemma 4.5, we see that it suffices to choose λn = 2c0 |||Σ|||2
1−γ

√
m
n
. With this choice,

Corollary 4.2 of Theorem 4.1 yields that

|||Θ−Θ∗|||2F ≤ c1 Rq

[
σmax(Σ)

σmin(Σ) (1− γ)

]2−q (m
n

)1−q/2

with probability greater than 1− c2 exp(−c3m), as claimed.
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4.4.5 Proof of Corollary 4.5

Recall that for this model, the observations are of the form yi = 〈〈Xi, Θ∗〉〉 + εi, where
Θ∗ ∈ R

d1×d2 is the unknown matrix, and {εi}Ni=1 is an associated noise sequence.
We now show how Proposition 4.1 implies the RSC property with an appropriate tolerance

parameter δ > 0 to be defined. Observe that the bound (4.25) implies that for any ∆ ∈ C,
we have

‖X(∆)‖2√
N

≥
√
σmin(Σ)

4
|||∆|||F − c2

√
ζmat(Σ)

(√
d1
N

+

√
d2
N

)
|||∆|||nuc

=

√
σmin(Σ)

4

{
|||∆|||F − 48

√
ζmat(Σ)√
σmin(Σ)

(√
d1
N

+

√
d2
N

)

︸ ︷︷ ︸
τ

|||∆|||nuc
}
, (4.37)

where we have defined the quantity τ > 0. Following the arguments used in the proofs of
Theorem 4.1 and Corollary 4.2, we find that

|||∆|||nuc ≤ 4|||∆′|||nuc + 4
m∑

j=r+1

σj(Θ
∗) ≤ 4

√
2Rqτ−q |||∆′|||F + 4Rqτ

1−q. (4.38)

Note that this corresponds to truncating the matrices at effective rank r = 2Rqτ
−q. Com-

bining this bound with the definition of τ , we obtain

τ |||∆|||nuc ≤ 4
√

2Rqτ
1−q/2 |||∆′|||F + 4Rqτ

2−q ≤ 4
√

2Rqτ
1−q/2 |||∆|||F + 4Rqτ

2−q.

Substituting this bound into equation (4.37) yields

‖X(∆)‖2√
N

≥
√
σmin(Σ)

4

{
|||∆|||F − 4

√
2Rqτ

1−q/2 |||∆′|||F − 4Rqτ
2−q
}
.

As long N > c0R
2/(2−q)
q

ζmat(Σ)
σmin(Σ)

(d1+d2) for a sufficiently large constant c0, we can ensure that

4
√

2Rqτ
1−q/2 < 1/2, and hence that

‖X(∆)‖2√
N

≥
√
σmin(Σ)

4

{
1

2
|||∆|||F − 4Rqτ

2−q
}
.

Consequently, if we define δ : = 16Rqτ
2−q, then we are guaranteed that for all |||∆|||F ≥ δ, we

have 4Rqτ
2−q ≤ |||∆|||F/4, and hence

‖X(∆)‖2√
N

≥
√
σmin(Σ)

16
|||∆|||F

for all |||∆|||F ≥ δ. We have thus shown that C(2Rqτ
−q; δ) with parameter κ(X) = σmin(Σ)

256
.

The next step is to control the quantity |||X∗(~ε)|||2/N , required for specifying a suitable
choice of λN .
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Lemma 4.6. If ‖~ε‖2 ≤ 2ν
√
N , then there are universal constants ci such that

P

[ |||X∗(~ε)|||2
N

≥ c0
√
ζmat(Σ)ν

(√
d1
N

+

√
d2
N

)]
≤ c1 exp(−c2(d1 + d2)). (4.39)

Proof. By the definition of the adjoint operator, we have Z = 1
N
X

∗(~ε) = 1
N

∑N
i=1 εiXi. Since

the observation matrices {Xi}Ni=1 are i.i.d. Gaussian, if the sequence {εi}Ni=1 is viewed as fixed
(by conditioning as needed), then the random matrix Z is a sample from the Γ-ensemble

with covariance matrix Γ = ‖~ε‖2
N2 Σ � 2ν2

N
Σ. Therefore, letting Z̃ ∈ R

d1×d2 be a random matrix
drawn from the 2ν2Σ/N -ensemble, we have

P
[
|||Z|||2 ≥ t

]
≤ P

[
|||Z̃|||2 ≥ t].

Using Lemma B.1 from Appendix B.5, we have

E[|||Z̃|||2] ≤
12
√
2ν
√
ζmat(Σ)√
N

(√
d1 +

√
d2
)

and

P
[
|||Z̃|||2 ≥ E[|||Z̃|||2] + t

]
≤ exp

(
− c1

Nt2

ν2ζmat(Σ)

)

for a universal constant c1. Setting t
2 = Ω(ν

2ζmat(Σ)(
√
d1+

√
d2)2

N
yields the claim.

4.4.6 Proof of Corollary 4.6

This corollary follows from a combination of Proposition 4.1 and Lemma 4.1. Let Θ̂ be an
optimal solution to the SDP (4.29), and let ∆ = Θ̂ − Θ∗ be the error. Since Θ̂ is optimal

and Θ∗ is feasible for the SDP, we have |||Θ̂|||nuc = |||Θ∗ + ∆|||nuc ≤ |||Θ∗|||nuc. Using the
decomposition ∆ = ∆′ +∆′′ from Lemma 4.1 and applying triangle inequality, we have

|||Θ∗ +∆′ +∆′′|||nuc ≥ |||Θ∗ +∆′′|||nuc − |||∆′|||nuc.

From the properties of the decomposition in Lemma 4.1 (see Appendix B.1), we find that

|||Θ̂|||nuc = |||Θ∗ +∆′ +∆′′|||nuc ≥ |||Θ∗|||nuc + |||∆′′|||nuc − |||∆′|||nuc.

Combining the pieces yields that |||∆′′|||nuc ≤ |||∆′|||nuc, and hence |||∆|||nuc ≤ 2|||∆′|||nuc. By
Lemma 4.1(a), the rank of ∆′ is at most 2r, so that we obtain |||∆|||nuc ≤ 2

√
2r|||∆|||F ≤

4
√
r|||∆|||F .
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Note that X(∆) = 0, since both Θ̂ and Θ∗ agree with the observations. Consequently,
from Proposition 4.1, we have that

0 =
‖X(∆)‖2√

N
≥ c1|||∆|||F − c2

√
ζmat(Σ)

(√
d1
N

+

√
d2
N

)
|||∆|||nuc

≥ |||∆|||F
(
c1 − 12

√
ζmat(Σ)

√
rd1
N

+ 12
√
ζmat(Σ)

√
rd2
N

)

≥ 1

20
|||∆|||F

where the final inequality as long as N > c0ζmat(Σ)r(d1 + d2) for a sufficiently large constant

c0. We have thus shown that ∆ = 0, which implies that Θ̂ = Θ∗ as claimed.

4.5 Experimental results

In this section, we report the results of various simulations that demonstrate the close agree-
ment between the scaling predicted by our theory, and the actual behavior of the SDP-based
M -estimator (4.9) in practice. In all cases, we solved the convex program (4.9) by using our
own implementation in MATLAB of an accelerated gradient descent method which adapts
a non-smooth convex optimization procedure [102] to the nuclear-norm [66]. We chose the
regularization parameter λN in the manner suggested by our theoretical results; in doing so,
we assumed knowledge of the noise variance ν2. In practice, one would have to estimate such
quantities from the data using methods such as cross-validation, as has been studied in the
context of the Lasso, and we leave this as an interesting direction for future research.

We report simulation results for three of the running examples discussed in this chapter:
low-rank multivariate regression, estimation in vector autoregressive processes, and matrix
recovery from random projections (compressed sensing). In each case, we solved instances of
the SDP for a square matrix Θ∗ ∈ R

m×m, where m ∈ {40, 80, 160} for the first two examples,
andm ∈ {20, 40, 80} for the compressed sensing example. In all cases, we considered the case
of exact low rank constraints, with rank(Θ∗) = r = 10, and we generated Θ∗ by choosing
the subspaces of its left and right singular vectors uniformly at random from the Grassman
manifold.4 The observation noise had variance ν2 = 1, and we chose C = ν2I for the VAR
process. The VAR process was generated by first solving for the covariance matrix Σ using
the MATLAB function dylap and then generating a sample path. For each setting of (r,m),
we solved the SDP for a range of sample sizes N .

Figure 4.1 shows results for a multivariate regression model with the covariates chosen
randomly from a N(0, I) distribution. Panel (a) plots the Frobenius error |||Θ̂ − Θ∗|||F on a
logarithmic scale versus the sample size N for three different matrix sizes, m ∈ {40, 80, 160}.

4More specifically, we let Θ∗ = XY T , where X,Y ∈ R
m×r have i.i.d. N(0, 1) elements.
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Figure 4.1. Results of applying the SDP (4.9) with nuclear norm regularization to the

problem of low-rank multivariate regression. (a) Plots of the Frobenius error |||Θ̂ − Θ∗|||F
on a logarithmic scale versus the sample size N for three different matrix sizes m2 ∈
{1600, 6400, 25600}, all with rank r = 10. (b) Plots of the same Frobenius error versus
the rescaled sample size N/(rm). Consistent with theory, all three plots are now extremely
well-aligned.

Naturally, in each case, the error decays to zero as N increases, but larger matrices require
larger sample sizes, as reflected by the rightward shift of the curves as m is increased. Panel
(b) of Figure 4.1 shows the exact same set of simulation results, but now with the Frobenius

error plotted versus the rescaled sample size Ñ : = N/(rm). As predicted by Corollary 4.3,
the error plots now are all aligned with one another; the degree of alignment in this particular
case is so close that the three plots are now indistinguishable. (The blue curve is the only
one visible since it was plotted last by our routine.) Consequently, Figure 4.1 shows that
N/(rm) acts as the effective sample size in this high-dimensional setting.

Figure 4.2 shows similar results for the autoregressive model discussed in Example 4.2.
As shown in panel (a), the Frobenius error again decays as the sample size is increased,
although problems involving larger matrices are shifted to the right. Panel (b) shows the
same Frobenius error plotted versus the rescaled sample size N/(rm); as predicted by Corol-
lary 4.4, the errors for different matrix sizes m are again quite well-aligned. In this case, we
find (both in our theoretical analysis and experimental results) that the dependence in the
autoregressive process slows down the rate at which the concentration occurs, so that the
results are not as crisp as the low-rank multivariate setting in Figure 4.1.

Finally, Figure 4.3 presents the same set of results for the compressed sensing observation
model discussed in Example 4.3. Even though the observation matrices Xi here are qualita-
tively different (in comparison to the multivariate regression and autoregressive examples),
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Figure 4.2. Results of applying the SDP (4.9) with nuclear norm regularization to esti-
mating the system matrix of a vector autoregressive process. (a) Plots of the Frobenius

error |||Θ̂−Θ∗|||F on a logarithmic scale versus the sample size N for three different matrix
sizes m2 ∈ {1600, 6400, 25600}, all with rank r = 10. (b) Plots of the same Frobenius error
versus the rescaled sample size N/(rm). Consistent with theory, all three plots are now
reasonably well-aligned.

we again see the “stacking” phenomenon of the curves when plotted versus the rescaled
sample size N/(rm), as predicted by Corollary 4.5.

4.6 Discussion

In this chapter, we have analyzed the nuclear norm relaxation for a general class of noisy
observation models, and obtained non-asymptotic error bounds on the Frobenius norm that
hold under high-dimensional scaling. In contrast to most past work, our results are applica-
ble to both exactly and approximately low-rank matrices. We stated a main theorem that
provides high-dimensional rates in a fairly general setting, and then showed how by special-
izing this result to some specific model classes—namely, low-rank multivariate regression,
estimation of autoregressive processes, and matrix recovery from random projections—it
yields concrete and readily interpretable rates. Lastly, we provided some simulation results
that showed excellent agreement with the predictions from our theory.

This chapter has focused on achievable results for low-rank matrix estimation using a
particular polynomial-time method. It would be interesting to establish matching lower
bounds, showing that the rates obtained by this estimator are minimax-optimal. We suspect
that this should be possible, for instance by using the techniques exploited in Raskutti et
al. [109] in analyzing minimax rates for regression over ℓq-balls.
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Figure 4.3. Results of applying the SDP (4.9) with nuclear norm regularization to recov-
ering a low-rank matrix on the basis of random projections (compressed sensing model) (a)

Plots of the Frobenius error |||Θ̂−Θ∗|||F on a logarithmic scale versus the sample size N for
three different matrix sizes m2 ∈ {400, 1600, 6400}, all with rank r = 10. (b) Plots of the
same Frobenius error versus the rescaled sample size N/(rm). Consistent with theory, all
three plots are now reasonably well-aligned.
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Chapter 5

Matrix Completion

5.1 Introduction

Matrix completion problems correspond to reconstructing matrices, either exactly or approx-
imately, based on observing a subset of their entries [76, 43]. In the simplest formulation of
matrix completion, the observations are assumed to be uncorrupted, whereas a more gen-
eral formulation (as considered in this chapter) allows for noisiness in these observations.
As noted in Chapter 1, matrix recovery based on only partial information is an ill-posed
problem, and accurate estimates are possible only if the matrix satisfies additional struc-
tural constraints, with examples including bandedness, positive semidefiniteness, Euclidean
distance measurements, Toeplitz, and low-rank structure (see the survey paper [76] and
references therein for more background).

The focus of this chapter is low-rank matrix completion based on noisy observations. This
problem is motivated by a variety of applications where an underlying matrix is likely to
have low-rank, or near low-rank structure. The archetypal example is the Netflix challenge,
a version of the collaborative filtering problem, in which the unknown matrix is indexed by
individuals and movies, and each observed entry of the matrix corresponds to the rating
assigned to the associated movie by the given individual. Since the typical person only
watches a tiny number of movies (compared to the total Netflix database), it is only a sparse
subset of matrix entries that are observed. In this context, one goal of collaborative filtering
is to use the observed entries to make recommendations to a person regarding movies that
they have not yet seen. We refer the reader to Srebro’s thesis [124] (and references therein)
for further discussion and motivation for collaborative filtering and related problems.

In this chapter, we analyze a method for approximate low-rank matrix recovery using
an M -estimator that is a combination of a data term, and a weighted nuclear norm as a
regularizer, as discussed in the previous chapter. Recall that the nuclear norm is the sum
of the singular values of a matrix [60], and has been studied in a body of past work, both
on matrix completion and more general problems of low-rank matrix estimation (e.g., Chap-
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ter 4 and [51, 124, 126, 125, 117, 9, 34, 115, 70, 71, 119]). A parallel line of work has
studied computationally efficient algorithms for solving problems with nuclear norm con-
straints (e.g, [89, 102, 80]). Here we limit our detailed discussion to those papers that study
various aspects of the matrix completion problem. Motivated by various problems in col-
laborative filtering, Srebro and colleagues [124, 126, 125] studied various aspects nuclear
norm regularization; among various other contributions, Srebro et al. [126] established gen-
eralization error bounds under certain conditions. Candes and Recht [33] studied the exact
reconstruction of a low-rank matrix given perfect (noiseless) observations of a subset of en-
tries, and provided sufficient conditions for exact recovery via nuclear norm relaxation, with
later refinements [34, 115]. Gross [57] recognized the utility of the Ahlswede-Winter matrix
concentration bounds, and the simplest argument to date is provided by Recht [115]. In a
parallel line of work, Keshavan et al. [70, 71] have studied a method based on thresholding
and singular value decomposition, and established various results on its behavior, both for
noiseless and noisy matrix completion. Among other results, Rohde and Tsybakov [119]
establish prediction error bounds for matrix completion, a different metric than the matrix
recovery problem of interest here. In recent work, Salakhutdinov and Srebro [122] provided
various motivations for the use of weighted nuclear norms, in particular showing that the
standard nuclear norm relaxation can behave very poorly when the sampling is non-uniform.
The analysis presented in this chapter applies to both uniform and non-uniform sampling, as
well as a form of reweighted nuclear norm as suggested by these authors, one which includes
the ordinary nuclear norm as a special case. We provide a more detailed comparison between
our results and some aspects of past work in Section 5.3.4.

As has been noted before [29], a significant theoretical challenge is that conditions that
have proven very useful for sparse linear regression—among them the restricted isometry
property—are not satisfied for the matrix completion problem. For this reason, it is natural
to seek an alternative and less restrictive property that might be satisfied in the matrix
completion setting. In Chapter 3 we isolate a weaker condition known as restricted strong
convexity (RSC). In both Chapters 3 and 4 we prove that certain statistical models sat-
isfy RSC with high probability when the associated regularizer satisfies the decomposability
condition 3.1. When an M -estimator satisfies the RSC condition, it is relatively straightfor-
ward to derive non-asymptotic error bounds on parameter estimates as shown in Chapter 3.
The class of decomposable regularizers includes the nuclear norm as particular case, and
the RSC/decomposability approach has been exploited in Chapter 4 to derive bounds for
various matrix estimation problems, among them multi-task learning, autoregressive system
identification, and compressed sensing.

To date, however, an open question is whether or not an appropriate form of RSC holds
for the matrix completion problem. If it did hold, then it would be possible to derive
non-asymptotic error bounds (in Frobenius norm) for matrix completion based on noisy
observations. Within this context, the main contribution of presented in this chapter is to
prove that with high probability, a form of the RSC condition holds for the matrix completion
problem, in particular over an interesting set of matrices D, as defined in equation (5.8) to
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follow, that have both low nuclear/Frobenius norm ratio and low “spikiness”. Exploiting
this RSC condition then allows us to derive non-asymptotic error bounds on matrix recovery
in weighted Frobenius norms, both for exactly and approximately low-rank matrices. The
theoretical core of this chapter consists of three main results. Our first result (Theorem 5.1)
proves that the matrix completion loss function satisfies restricted strong convexity with
high probability over the set D. Our second result (Theorem 5.2) exploits this fact to derive
a non-asymptotic error bound for matrix recovery in the weighted Frobenius norm, one
applicable to general matrices. We then specialize this result to the problem of estimating
exactly low-rank matrices (with a small number of non-zero singular values), as well as near
low-rank matrices characterized by relatively swift decay of their singular values. To the
best of our knowledge, our results on near low-rank matrices are the first for approximate
matrix recovery in the noisy setting, and as we discuss at more length in Section 5.3.4, our
results on the exactly low-rank case are sharper than past work on the problem. Indeed,
our final result (Theorem 5.3) uses information-theoretic techniques to establish that up to
logarithmic factors, no algorithm can obtain faster rates than our method over the ℓq-balls
of matrices with bounded spikiness treated in this chapter.

The remainder of this chapter is organized as follows. We begin in Section 5.2 with
background and a precise formulation of the problem. Section 5.3 is devoted to a statement
of our main results, and discussion of some of their consequences. In Sections 5.4 and
Section 5.5, we prove our main results, with more technical aspects of the arguments deferred
to appendices. We conclude with a discussion in Section 5.6.

5.2 Background and problem formulation

In this section, we introduce background on low-rank matrix completion problem, and also
provide a precise statement of the problem studied in this chapter.

5.2.1 Uniform and weighted sampling models

Let Θ∗ ∈ R
mr×mc be an unknown matrix, and consider an observation model in which we

make n i.i.d. observations of the form

ỹi = Θ∗
j(i)k(i) +

ν√
mrmc

ξ̃i, (5.1)

Here the quantities ν√
mrmc

ξ̃i correspond to additive observation noises with variance appro-

priately scaled according to the matrix dimensions. In defining the observation model, one
can either allow the Frobenius norm of Θ∗ to grow with the dimension, as in done in other
work [29, 71], or rescale the noise as we have done here. This choice is consistent with
our assumption that Θ∗ has constant Frobenius norm regardless of its rank or dimensions.
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With this scaling, each observation in the model (5.1) has a constant signal-to-noise ratio
regardless of matrix dimensions.

In the simplest model, the row j(i) and column k(i) indices are chosen uniformly at
random from the sets {1, 2, . . . ,mr} and {1, 2, . . . ,mc} respectively. In this chapter, we
consider a somewhat more general weighted sampling model. In particular, let R ∈ R

mr×mr

and C ∈ R
mc×mc be diagonal matrices, with rescaled diagonals {Rj/mr, j = 1, 2, . . . ,mr} and

{Ck/mc, k = 1, 2, . . . ,mc} representing probability distributions over the rows and columns
of an mr × mc matrix. We consider the weighted sampling model in which we make a
noisy observation of entry (j, k) with probability RjCk/(mrmc), meaning that the row index
j(i) (respectively column index k(i)) is chosen according to the probability distribution
R/mr (respectively C/mc). Note that in the special case that R = 1mr and C = 1mc , the
observation model (5.1) reduces to the usual model of uniform sampling.

We assume that each row and column is sampled with positive probability, in particular
that there is some constant 1 ≤ L < ∞ such that Ra ≥ 1/L and Cb ≥ 1/L for all rows and
columns. However, apart from the constraints

∑mr

a=1Raa = mr and
∑mc

b=1Cbb = mc, we do
not require that the row and column weights remain bounded as mr and mc tend to infinity.

5.2.2 The observation operator and restricted strong convexity

We now describe an alternative formulation of the observation model (5.1) that, while sta-
tistically equivalent to the original, turns out to be more natural for analysis. For each
i = 1, 2, . . . , n, define the matrix

Xi =
√
mrmc εi ea(i)e

T
b(i), (5.2)

where εi ∈ {−1,+1} is a random sign, and consider the observation model

yi = 〈〈Xi, Θ
∗〉〉+ ν ξi, for i = 1, . . . , n, (5.3)

where 〈〈A, B〉〉 : =
∑

j,k AjkBjk is the trace inner product, and ξi is an additive noise from
the same distribution as the original model. The model (5.3) is can be obtained from the
original model (5.1) by rescaling all terms by the factor

√
mrmc, and introducing the random

signs εi. The rescaling has no statistical effect, and nor do the random signs, since the noise
is symmetric (so that ξi = εiξ̃i has the same distribution as ξ̃i). Thus, the observation
model (5.3) is statistically equivalent to the original one (5.1).

In order to specify a vector form of the observation model, let us define an operator
X : Rmr×mc → R

n via

[X(Θ)]i : = 〈〈Xi, Θ〉〉, for i = 1, 2, . . . n.

We refer to X as the observation operator, since it maps any matrix Θ ∈ R
mr×mc to an

n-vector of samples. With this notation, we can write the observations (5.3) in a vectorized
form as y = X(Θ∗) + νξ.
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The reformulation (5.3) is convenient for various reasons. For any matrix Θ ∈ R
mr×mc ,

we have E[〈〈Xi, Θ〉〉] = 0 and

E
[
〈〈Xi, Θ〉〉2

]
=

mr∑

j=1

mc∑

k=1

RjΘ
2
jkCk = |||

√
RΘ

√
C|||2F︸ ︷︷ ︸

|||Θ|||2
ω(F )

, (5.4)

where we have defined the weighted Frobenius norm |||·|||ω(F ) in terms of the row R and column
C weights. As a consequence, the signal-to-noise ratio in the observation model (5.3) is given

by the ratio SNR =
|||Θ∗|||2

ω(F )

ν2
.

As shown in Chapter 3 a key ingredient in establishing error bounds for the observation
model (5.3) is obtaining lower bounds on the restricted curvature of the sampling operator—
in particular, to establish the existence of a constant c > 0, which may be arbitrarily small
as long as it is positive, such that

‖X(Θ)‖2√
n

≥ c |||Θ|||ω(F ). (5.5)

For sample sizes of interest for matrix completion (n ≪ mrmc) , one cannot expect such
a bound to hold uniformly over all matrices Θ ∈ R

mr×mc , even when rank constraints are
imposed. Indeed, as noted by Candes and Plan [29], the condition (5.5) is violated with high
probability by the rank one matrix Θ∗ such that Θ∗

11 = 1 with all other entries zero. Indeed,
for a sample size n≪ mrmc, we have a vanishing probability of observing the entry Θ∗

11, so
that X(Θ∗) = 0 with high probability.

5.2.3 Controlling the spikiness and rank

Intuitively, one must exclude matrices that are overly “spiky” in order to avoid the phe-
nomenon just described. Past work has relied on fairly restrictive matrix incoherence condi-
tions (see Section 5.3.4 for more discussion), based on specific conditions on singular vectors
of the unknown matrix Θ∗. In this chapter, we formalize the notion of “spikiness” in a
natural and less restrictive way—namely by comparing a weighted form of ℓ∞-norm to the
weighted Frobenius norm. In particular, for any non-zero matrix Θ, let us define (for any
non-zero matrix) the weighted spikiness ratio

αsp(Θ) :=
√
mrmc

|||Θ|||ω(∞)

|||Θ|||ω(F )

, (5.6)

where |||Θ|||ω(∞) : = ‖
√
RΘ

√
C‖∞ is the weighted elementwise ℓ∞-norm. Note that this ratio

is invariant to the scaling of Θ, and satisfies the inequalities 1 ≤ αsp(Θ) ≤ √
mrmc. We have

αsp(Θ) = 1 for any non-zero matrix whose entries are all equal, whereas the opposite extreme
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αsp(Θ) =
√
mrmc is achieved by the “maximally spiky” matrix that is zero everywhere except

for a single position.
In order to provide a tractable measure of how close Θ is to a low-rank matrix, we define

(for any non-zero matrix) the ratio

βra(Θ) :=
|||Θ|||ω(1)
|||Θ|||ω(F )

(5.7)

which satisfies the inequalities 1 ≤ βra(Θ) ≤
√
min{mr,mc}. By definition of the (weighted)

nuclear and Frobenius norms, note that βra(Θ) is simply the ratio of the ℓ1 to ℓ2 norms of the
singular values of the weighted matrix

√
RΘ

√
C. This measure can also be upper bounded

by the rank of Θ: indeed, since R and C are full-rank, we always have

β2
ra(Θ) ≤ rank(

√
RΘ

√
C) = rank(Θ),

with equality holding if all the non-zero singular values of
√
RΘ

√
C are identical.

5.3 Main results and their consequences

We now turn to the statement of our main results, and discussion of their consequences.
Section 5.3.1 is devoted to a result showing that a suitable form of restricted strong convexity
holds for the random sampling operator X, as long as we restrict it to matrices ∆ for which
βra(∆) and αsp(∆) are not “overly large”. In Section 5.3.2, we develop the consequences
of the RSC condition for noisy matrix completion, and in Section 5.3.3, we prove that our
error bounds are minimax-optimal up to logarithmic factors. In Section 5.3.4, we provide a
detailed comparison of our results with past work.

5.3.1 Restricted strong convexity for matrix sampling

Introducing the convenient shorthand m = 1
2
(mr +mc), let us define the constraint set

D(n; c0) : =

{
∆ ∈ R

mr×mc , ∆ 6= 0 | αsp(∆) βra(∆) ≤ 1

c0 L

√
n

m logm

}
, (5.8)

where c0 is a universal constant. Note that as the sample size n increases, this set allows
for matrices with larger values of the spikiness and/or rank measures, αsp(∆) and βra(∆)
respectively.

Theorem 5.1. There are universal constants (c0, c1, c2, c3) such that as long as n > c3m logm,
we have

‖X(∆)‖2√
n

≥ 1

8
|||∆|||ω(F )

{
1− 128αsp(∆)L√

n

}
for all ∆ ∈ D(n; c0) (5.9)

with probability greater than 1− c1 exp(−c2m logm).
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Roughly speaking, this bound guarantees that the observation operator captures a sub-
stantial component of any matrix ∆ ∈ D(n; c0) that is not overly spiky. More precisely, as

long as 128Lαsp(∆)√
n

≤ 1
2
, the bound (5.9) implies that

‖X(∆)‖22
n

≥ 1

256
|||∆|||2ω(F ) for any ∆ ∈ D(n; c0). (5.10)

This bound can be interpreted in terms of restricted strong convexity 3.2.4. In particular,
given a vector y ∈ R

n of noisy observations, consider the quadratic loss function

L(Θ; y) =
1

2n
‖y − X(Θ)‖22.

Since the Hessian matrix of this function is given by X
∗
X/n, the bound (5.10) implies that

the quadratic loss is strongly convex in a restricted set of directions ∆.
As discussed previously, the worst-case value of the “spikiness” measure is αsp(∆) =

√
mrmc,

achieved for a matrix that is zero everywhere except a single position. In this most degen-
erate of cases, the combination of the constraints αsp(∆)√

n
< 1 and the membership condition

∆ ∈ D(n; c0) imply that even for a rank one matrix (so that βra(∆) = 1), we need sample
size n≫ m2 for Theorem 5.1 to provide a non-trivial result, as is to be expected.

5.3.2 Consequences for noisy matrix completion

We now turn to some consequences of Theorem 5.1 for matrix completion in the noisy
setting. In particular, assume that we are given n i.i.d. samples from the model (5.3), and

let Θ̂ be some estimate of the unknown matrix Θ∗. Our strategy is to exploit the lower
bound (5.9) in application to the error matrix Θ̂ − Θ∗, and accordingly, we need to ensure
that it has relatively low-rank and spikiness. Based on this intuition, it is natural to consider
the estimator

Θ̂ ∈ arg min
|||Θ|||ω(∞)≤ α∗

√
mrmc

{ 1

2n
‖y − X(Θ)‖22 + λn|||Θ|||ω(1)

}
, (5.11)

where α∗ ≥ 1 is a measure of spikiness, and the regularization parameter λn > 0 serves
to control the nuclear norm of the solution. In the special case when both R and C are
identity matrices (of the appropriate dimensions), this estimator is closely related to the
standard one considered in past work on the problem, with the only difference between
the additional ℓ∞-norm constraint. In the more general weighted case, an M -estimator of
the form (5.11) using the weighted nuclear norm (but without the elementwise constraint)
was recently suggested by Salakhutdinov and Srebro [122], who provided empirical results
to show superiority of the weighted nuclear norm over the standard choice for the Netflix
problem.
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Past work on matrix completion has focused on the case of exactly low-rank matrices.
Here we consider the more general setting of approximately low-rank matrices, including the
exact setting as a particular case. We begin by stating a general upper bound that applies
to any matrix Θ∗, and involves a natural decomposition into estimation and approximation
error terms. The only relevant quantity is the signal-to-noise ratio, as measured by the ratio
of the Frobenius norm of Θ∗ to the noise variance, so that we allow the noise variance to be
free, while assuming that |||∆̃|||ω(F ) remains bounded.

Theorem 5.2. Suppose that n ≥ Lm logm, and consider any solution Θ̂ to the weighted
SDP (5.11) using regularization parameter

λn ≥ 2ν ||| 1
n

n∑

i=1

ξiR
− 1

2XiC
− 1

2 |||2, (5.12)

and define λ∗n = max{λn, L
√

m logm
n

}. Then with probability greater than 1−c2 exp(−c2 logm),

for each r = 1, . . . ,mr, the error ∆̃ = Θ̂−Θ∗ satisfies

|||∆̃|||2ω(F ) ≤ c1 α
∗ λ∗n

[√
r|||∆̃|||ω(F ) +

mr∑

j=r+1

σj(
√
RΘ∗√C)

]
+
c1(α

∗L)2

n
. (5.13)

Apart from the trailing O(n−1) the term, the bound (5.13) shows a natural splitting into
two terms. The first can be interpreted as the estimation error associated with a rank r
matrix, whereas the second term corresponds to approximation error, measuring how far√
RΘ∗√C is from a rank r matrix. Of course, the bound holds for any choice of r, and in

the corollaries to follow, we choose r optimally so as to balance the estimation and approxi-
mation error terms.

In order to provide concrete rates using Theorem 5.2, it remains to address two issues.
First, we need to specify an explicit choice of λn by bounding the operator norm of the matrix
1
n

∑n
i=1 ξi

√
RXi

√
C, and secondly, we need to understand how to choose the parameter

r so as to achieve the tightest possible bound. When Θ∗ is exactly low-rank, then it is
obvious that we should choose r = rank(Θ∗), so that the approximation error vanishes—viz.∑mr

j=r+1 σj(
√
RΘ∗√C)j = 0. Doing so yields the following result:

Corollary 5.1 (Exactly low-rank matrices). Suppose that the noise sequence {ξi} is i.i.d.,
zero-mean and sub-exponential, and Θ∗ has rank at most r, Frobenius norm at most 1, and

spikiness at most αsp(Θ
∗) ≤ α∗. If we solve the SDP (5.11) with λn = 4ν

√
m logm

n
then there

is a numerical constant c′1 such that

|||Θ̂−Θ∗|||2ω(F ) ≤ c′1 (ν
2 ∨ L2) (α∗)2

rm logm

n
(5.14)

with probability greater than 1− c2 exp(−c3 logm).
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Note that this rate has a natural interpretation: since a rank r matrix of dimension mr×mc

has roughly r(mr + mc) free parameters, we require a sample size of this order (up to
logarithmic factors) so as to obtain a controlled error bound. An interesting feature of the
bound (5.14) is the term ν2 ∨ 1 = max{ν2, 1}, which implies that we do not obtain exact
recovery as ν → 0. As we discuss at more length in Section 5.3.4, under the mild spikiness
condition that we have imposed, this behavior is unavoidable due to lack of identifiability
within a certain radius, as specified in the set D. For instance, consider the matrix Θ∗ and
the perturbed version Θ̃ = Θ∗ + 1√

mrmc
e1e

T
1 . With high probability, we have X(Θ∗) = X(Θ̃),

so that the observations—even if they were noiseless—fail to distinguish between these two
models. These types of examples, leading to non-identifiability, cannot be overcome without
imposing fairly restrictive matrix incoherence conditions, as we discuss at more length in
Section 5.3.4.

As with past work [29, 71], Corollary 5.1 applies to the case of matrices that have exactly
rank r. In practical settings, it is more realistic to assume that the unknown matrix is not
exactly low-rank, but rather can be well approximated by a matrix with low rank. One way
in which to formalize this notion is via the ℓq-“ball” of matrices

Bq(Rq) : =

{
Θ ∈ R

mr×mc |
min{mr ,mc}∑

j=1

|σj(
√
RΘ

√
C)|q ≤ Rq

}
. (5.15)

For q = 0, this set corresponds to the set of matrices with rank at most r = ρ0, whereas for
values q ∈ (0, 1], it consists of matrices whose (weighted) singular values decay at a relatively
fast rate. By applying Theorem 5.2 to this matrix family, we obtain the following corollary:

Corollary 5.2 (Estimation of near low-rank matrices). Suppose that the noise {ξi} is zero-
mean and sub-exponential, Consider a matrix Θ∗ ∈ Bq(Rq) with spikiness at most αsp(Θ

∗) ≤
α∗, and Frobenius norm at most one. With the same choice of λn as Corollary 5.1, there is
a universal constant c′1 such that

|||Θ̂−Θ∗|||2ω(F ) ≤ c1Rq

(
(ν2 ∨ L2)(α∗)2

m logm

n

)1− q
2
+
c1(α

∗L)2

n
(5.16)

with probability greater than 1− c2 exp(−c3 logm).

Note that this result is a strict generalization of Corollary 5.1, to which it reduces in the
case q = 0. (When q = 0, we have ρ0 = r so that the bound has the same form.) Note that
the price that we pay for approximately low rank is a smaller exponent—namely, 1 − q/2
as opposed to 1 in the case q = 0. The proof of Corollary 5.2 is based on a more sub-
tle application of Theorem 5.2, one which chooses the effective rank r in the bound (5.13)
so as to trade off between the estimation and approximation errors. In particular, the
choice r ≍ Rq (

n
m logm

)q/2 turns out to yield the optimal trade-off, and hence the given error
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bound (5.16).

Although we have stated our results in terms of bounds on the weighted squared Frobenius
norm |||Θ|||2ω(F ) = |||

√
RΘ

√
C|||2F , our assumed lower bound on the entries R and C implies that

|||Θ|||2ω(F ) ≥
|||Θ|||2F
L2 . Consequently, as long as each row and column is sampled a constant fraction

of the time, our results also yield bounds on the Frobenius norm. In some applications,
certain rows and columns might be heavily sampled, meaning that some entries of R and/or
C could be relatively large. Since we require only a lower bound on the row/column sampling
frequencies, our Frobenius norm bounds would not degrade if some rows and/or columns were
heavily sampled. In contrast, a RIP-type analysis would not be valid in this setting, since
heavy sampling means that the Frobenius norm could not be uniformly bounded from above.

In order to illustrate the sharpness of our theory, let us compare the predictions of our two
corollaries to the empirical behavior of theM -estimator. In particular, we applied the nuclear
norm SDP to simulated data, using Gaussian observation noise with variance ν2 = 0.25
and the uniform sampling model. In all cases, we solved the nuclear norm SDP using a
non-smooth optimization procedure due to Nesterov [102], via our own implementation in
MATLAB. For a given problem size m, we ran T = 25 trials and computed the squared
Frobenius norm error |||Θ̂−Θ∗|||2F averaged over the trials.

Figure 5.1 shows the results in the case of exactly low-rank matrices (q = 0), with the
matrix rank given by r = ⌈log2(m)⌉. Panel (a) shows plots of the mean-squared Frobe-
nius error versus the raw sample size, for three different problem sizes with the number of
matrix elements sizes m2 ∈ {402, 602, 802, 1002}. These plots show that the M -estimator is
consistent, since each of the curves decreases to zero as the sample size n increases. Note
that the curves shift to the right as the matrix dimension m increases, reflecting the natu-
ral intuition that larger matrices require more samples. Based on the scaling predicted by
Corollary 5.1, we expect that the mean-squared Frobenius error should exhibit the scaling
|||Θ̂ − Θ∗|||2F ≍ rm logm

n
. Equivalently, if we plot the MSE versus the rescaled sample size

N : = n
rm logm

, then all the curves should be relatively well aligned, and decay at the rate

1/N . Panel (b) of Figure 5.1 shows the same simulation results re-plotted versus this rescaled
sample size. Consistent with the prediction of Corollary 5.1, all four plots are now relatively
well-aligned. Figure 5.2 shows the same plots for the case of approximately low-rank ma-
trices (q = 0.5). Again, consistent with the prediction of Corollary 5.2, we see qualitatively
similar behavior in the plots of the MSE versus sample size (panel (a)), and the rescaled
sample size (panel (b)).

5.3.3 Information-theoretic lower bounds

The results of the previous section are achievable results, based on a particular polynomial-
time estimator. It is natural to ask how these bounds compare to the fundamental limits of
the problem, meaning the best performance achievable by any algorithm. As various authors
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Figure 5.1. Plots of the mean-squared error in Frobenius norm for q = 0. Each curve
corresponds to a different problem size m2 ∈ {402, 602, 802, 1002}. (a) MSE versus the raw
sample size n. As expected, the curves shift to the right as m increases, since more samples
should be required to achieve a given MSE for larger problems. (b) The same MSE plotted
versus the rescaled sample size n/(rm logm). Consistent with Corollary 5.1, all the plots
are now fairly well-aligned.

have noted [29, 71], a parameter counting argument indicates that roughly n ≈ r (mr +mc)
samples are required to estimate anmr×mc matrix with rank r. This calculation can be made
more formal by metric entropy calculations for the Grassman manifold (e.g., [130]); see also
Rohde and Tsybakov [119] for results on approximation numbers for the more general ℓq-balls
of matrices. Such calculations, while accounting for the low-rank conditions, do not address
the additional “spikiness” constraints that are essential to the setting of matrix completion.
It is conceivable that these additional constraints could lead to a substantial volume reduction
in the allowable class of matrices, so that the scalings suggested by parameter counting or
metric entropy calculation for Grassman manifolds would be overly conservative.

Accordingly, in this section, we provide a direct and constructive argument to lower bound
the minimax rates of Frobenius norm over classes of matrices that are near low-rank and not
overly spiky. This argument establishes that the bounds established in Corollaries 5.1 and 5.2
are sharp up to logarithmic factors, meaning that no estimator performs substantially better
than the one considered here. More precisely, consider the matrix classes

B̃(Rq) =

{
Θ ∈ R

m×m |
m∑

j=1

σj(Θ)q ≤ Rq, αsp(Θ) ≤
√
32 logm

}
, (5.17)

corresponding to square m × m matrices that are near low-rank (belonging to the ℓq-balls
previously defined (5.15)), and have a logarithmic spikiness ratio. The following result applies
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Figure 5.2. Plots of the mean-squared error in Frobenius norm for q = 0.5. Each curve
corresponds to a different problem size m2 ∈ {402, 602, 802, 1002}. (a) MSE versus the raw
sample size n. As expected, the curves shift to the right as m increases, since more samples
should be required to achieve a given MSE for larger problems. (b) The same MSE plotted

versus the rescaled sample size n/(R
1

1−q/2
q m logm). Consistent with Corollary 5.2, all the

plots are now fairly well-aligned.

to the minimax risk in Frobenius norm, namely the quantity

Mn(B̃(Rq)) : = inf
Θ̃

sup
Θ∗∈B̃(Rq)

E
[
|||Θ̃−Θ∗|||2F

]
, (5.18)

where the infimum is taken over all estimators Θ̃ that are measurable functions of n samples.

Theorem 5.3. There is a universal numerical constant c5 > 0 such that

Mn(B̃(Rq)) ≥ c5 min

{
Rq

(
ν2m

n

)1− q
2

,
ν2m2

n

}
. (5.19)

The term of primary interest in this bound is the first one—namely, Rq

(
ν2m
n

)1− q
2 . It is

the dominant term in the bound whenever the ℓq-radius satisfies the bound

Rq ≤
(
ν2m

n

) q
2

m. (5.20)

In the special case q = 0, corresponding the exactly low-rank case, the bound (5.20) always
holds, since it reduces to requiring that the rank r = ρ0 is less than or equal to m. In these
regimes, Theorem 5.3 establishes that the upper bounds obtained in Corollaries 5.1 and 5.2
are minimax-optimal up to factors logarithmic in matrix dimension m.
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5.3.4 Comparison to other work

We now turn to a detailed comparison of our bounds to those obtained in past work on
noisy matrix completion, in particular the papers by Candes and Plan [29] (hereafter CP)
and Keshavan et al. [71] (hereafter KMO). Both papers considered only the case of exactly
low-rank matrices, corresponding to the special case of q = 0 in our notation. Since neither
paper provided results for the general case of near-low rank matrices, nor the general result
(with estimation and approximation errors) stated in Theorem 5.2, our discussion is mainly
limited to comparing Corollary 5.1 to their results. So as to simplify discussion, we restate
all results under the scalings used in this chapter1 (i.e., with |||Θ∗|||F = 1).

Comparison of rates

Under the strong incoherence conditions required for exact matrix recovery (see below for

discussion), Theorem 7 in CP give an bound on |||Θ̂− Θ∗|||F that depends on the Frobenius
norm of the potentially adversarial error matrix Ξ ∈ R

d1×d2 , as defined by the noise variables
[Ξ]j(i) k(i) = ξ̃i in our case. In the special case of stochastic noise, under the observation
model (5.1) and the scalings of our chapter, as long as n > m, where m = d1 + d2—a
condition certainly required for Frobenius norm consistency—we have |||Ξ|||F = Θ(ν

√
n/m)

with high probability. Given this scaling, the CP upper bound takes the form

|||Θ̂−Θ∗|||F . ν

{√
m+

√
n

m

}
. (5.21)

Note that if the noise standard deviation ν tends to zero while the sample size n, matrix size
d and rank r all remain fixed, then this bound guarantees that the Frobenius error tends to
zero. This behavior as ν → 0 is intuitively reasonable, given that their proof technique is an
extrapolation from the case of exact recovery for noiseless observations (ν = 0). However,
note that for any fixed noise deviation ν > 0, the first term increases to infinity as the
matrix dimension m increases, whereas the second term actually grows as the sample size n
increases. Consequently, the CP results do not guarantee statistical consistency, unlike the
bounds proved here.

Turning to a setting with adversarial noise, suppose that the error vector has Frobenius
norm at most δ. A modification of our analysis yields error bounds of the form |||Θ̂−Θ∗|||F .
{
m2√
n
δ +

√
rm logm

n

}
. In the setting of square matrices with δ ≥

√
r logm
m

, our result yields

an upper bound tighter by a factor of order
√
m better than those presented in CP. Last,

as pointed out by a reviewer, the CP analysis does yield bounds for approximately low-
rank matrices, in particular by writing Θ∗ = Πr(Θ

∗) + ∆, where Πr is the Frobenius norm
projection onto the space of rank r matrices, and ∆ = Θ∗ − Πr(Θ

∗) is the approximation

1The paper CP and KMO use two different sets of scaling, one with |||Θ∗|||F = Θ(m) and the other with
|||Θ∗|||F =

√
r, so that some care is required in converting between results.
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error. With this notation, their analysis guarantees error bounds of the form
√
m|||∆|||F with

high probability, which is a weaker guarantee than our bound whenever |||∆|||F ≥ c
√

r logm
n

and n = Ω(m logm).
Keshavan et al. [71] analyzed alternative methods based on trimming and applying the

SVD. For Gaussian noise, their methods guarantee bounds (with high probability) of the
form

|||Θ̂−Θ∗|||F . νmin
{
α

√
d2
d1
, κ2(Θ∗)

}
√
rd2
n
, (5.22)

where d2/d1 is the aspect ratio of Θ∗, and κ(Θ∗) = σmax(Θ∗)
σmin(Θ∗) is the condition number of

Θ∗. This result is more directly comparable to our Corollary 5.1; apart from the additional
factor involving either the aspect ratio or the condition number, it is sharper since it does
not involve the factor logm present in our bound. For a fixed noise standard deviation ν,
the bound (5.22) guarantees statistical consistency as long as rd2

n
tends to zero. The most

significant differences are the presence of the aspect ratio d2/d1 or the condition number
κ(Θ∗) in the upper bound (5.22). The aspect ratio is a quantity that can be as small as
one, or as large as d2, so that the pre-factor in the bound (5.22) can scale in a dimension-
dependent way. Similarly, for any matrix with rank larger than one, the condition number
can be made arbitrarily large. For instance, in the rank two case, define a matrix with
σmax(Θ

∗) =
√
1− δ2 and σmin(Θ

∗) = δ, and consider the behavior as δ → 0. In contrast, our
bounds are invariant to both the aspect ratio and the condition number of Θ∗.

Comparison of matrix conditions

We now turn to a comparison of the various matrix incoherence assumptions invoked in
the analysis of CP and KMO, and comparison to our spikiness condition. As before, for
clarity, we specialize our discussion to the square case (mr = mc = m), since the rectangular
case is not essentially different. The matrix incoherence conditions are stated in terms
of the singular value decomposition Θ∗ = UΣV T of the target matrix. Here U ∈ R

m×r

and V ∈ R
m×r are matrices of the left and right singular vectors respectively, satisfying

UTU = V TV = Ir×r, whereas Σ ∈ R
r×r is a diagonal matrix of the singular values. The

purpose of matrix incoherence is to enforce that the left and right singular vectors should
not be aligned with the standard basis. Among other assumptions, the CP analysis imposes
the incoherence conditions

‖UUT − r

m
Im×m‖∞ ≤ µ

√
r

m
, ‖V V T − r

m
Im×m‖∞ ≤ µ

√
r

m
, and ‖UV T‖∞ ≤ µ

√
r

m
,

(5.23)

for some constant µ > 0. Parts of the KMO analysis impose the related incoherence condition

max
j=1,...,m

|UUT |jj ≤ µ0
r

m
, and max

j=1,...,m
|V V T |jj ≤ µ0

r

m
. (5.24)
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Both of these conditions ensure that the singular vectors are sufficiently “spread-out”, so as
not to be aligned with the standard basis.

A remarkable property of conditions (5.23) and (5.24) is that they exhibit no dependence
on the singular values of Θ∗. If one is interested only in exact recovery in the noiseless setting,
then this lack of dependence is reasonable. However, if approximate recovery is the goal—as
is necessarily the case in the more realistic setting of noisy observations—then it is clear that
a minimal set of sufficient conditions should also involve the singular values, as is the case
for our spikiness measure αsp(Θ

∗). The following example gives a concrete demonstration
of an instance where our conditions are satisfied, so that approximate recovery is possible,
whereas the incoherence conditions are violated.

Example. Let Γ ∈ R
m×m be a positive semidefinite symmetric matrix with rank r − 1,

Frobenius norm |||Γ|||F = 1 and ‖Γ‖∞ ≤ c0/m. For a scalar parameter t > 0, consider the
matrix

Θ∗ : = Γ + te1e
T
1 (5.25)

where e1 ∈ R
m is the canonical basis vector with one in its first entry, and zero elsewhere.

By construction, the matrix Θ∗ has rank at most r. Moreover, as long as t = O(1/m), we
are guaranteed that our spikiness measure satisfies the bound αsp(Θ

∗) = O(1). Indeed, we
have |||Θ∗|||F ≥ |||Γ|||F − t = 1− t, and hence

αsp(Θ
∗) =

m‖Θ∗‖∞
|||Θ∗|||F

≤ m
(
‖Γ‖∞ + t

)

1− t
≤ c0 +mt

1− t
= O(1).

Consequently, for any choice of Γ as specified above, Corollary 5.1 implies that the SDP will

recover the matrix Θ∗ up to a tolerance O(
√

rm logm
n

). This captures the natural intuition

that “poisoning” the matrix Γ with the term teT1 e1 should have essentially no effect, as long
as t is not too large.

On the other hand, suppose that we choose the matrix Γ such that its r− 1 eigenvectors
are orthogonal to e1. In this case, we have Θ∗e1 = te1, so that e1 is also an eigenvector of
Θ∗. Letting U ∈ R

m×r be the matrix of eigenvectors, we have eT1UU
T e1 = 1. Consequently,

for any fixed µ (or µ0) and rank r ≪ m, conditions (5.23) and (5.24) are violated.
♦

5.4 Proofs for noisy matrix completion

We now turn to the proofs of our results. This section is devoted to the results that apply
directly to noisy matrix completion, in particular the achievable result given in Theorem 5.2,
its associated Corollaries 5.1 and 5.2, and the information-theoretic lower bound given in
Theorem 5.3. The proof of Theorem 5.1 is provided in Section 5.5 to follow.
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5.4.1 A useful transformation

We begin by describing a transformation that is useful both in these proofs, and the later
proof of Theorem 5.1. In particular, we consider the mapping Θ 7→ Γ :=

√
RΘ

√
C, as well

as the modified observation operator X′ : Rm×m → R
n with elements

[X′(Γ)]i = 〈〈X̃(i), Γ〉〉, for i = 1, 2, . . . , n,

where X̃(i) : = R−1/2XiC
−1/2. Note that X′(Γ) = X(Θ) by construction, and moreover

|||Γ|||F = |||Θ|||ω(F ), |||Γ|||nuc = |||Θ|||ω(1), and |||Γ|||∞ = |||Θ|||ω(∞),

which implies that

βra(Θ) =
|||Γ|||nuc
|||Γ|||F︸ ︷︷ ︸
β′
ra(Γ)

, and αsp(Θ) =
m ‖Γ‖∞
|||Γ|||F︸ ︷︷ ︸
α′
sp(Γ)

. (5.26)

Based on this change of variables, let us define a modified version of the constraint set (5.8)
as follows

C
′(n; c0) =

{
0 6= Γ ∈ R

m×m | α′
sp(Γ) β

′
ra(Γ) ≤

1

c0 L

√
n

m logm

}
. (5.27)

In this new notation, the lower bound (5.9) from Theorem 5.1 can be re-stated as

‖X′(Γ)‖2√
n

≥ 1

8
|||Γ|||F

{
1−

128Lα′
sp(Γ)√
n

}
for all Γ ∈ C

′(n; c0). (5.28)

5.4.2 Proof of Theorem 5.2

We now turn to the proof of Theorem 5.2. Defining the estimate Γ̂ : =
√
RΘ̂

√
C, we have

Γ̂ ∈ arg min
‖Γ‖∞≤ α∗

√
mrmc

{ 1

2n
‖y − X

′(Γ)‖22 + λn|||Γ|||nuc
}
, (5.29)

and our goal is to upper bound the ordinary Frobenius norm |||Γ̂− Γ∗|||F .
We now recall Lemma 4.1 from Chapter 4 and note that we adopt the shorthand ∆ = Γ̂−

Γ∗ throughout the analysis. Lemma 4.1 establishes that there exists a matrix decomposition
∆ = ∆′ +∆′′ of the error ∆ such that

(a) The matrix ∆′ satisfies the constraint rank(∆′) ≤ 2r, and
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(b) Given the choice (5.12), the nuclear norm of ∆′′ is bounded as

|||∆′′|||nuc ≤ 3|||∆′|||nuc + 4
mr∑

j=r+1

σj(Γ
∗).

The above bound combined with triangle inequality, implies that

|||∆̂|||nuc ≤ |||∆′|||nuc + |||∆′′|||nuc ≤ 4|||∆′|||nuc + 4
mr∑

j=r+1

σj(Γ
∗)

≤ 8
√
r|||∆̂|||F + 4

mr∑

j=r+1

σj(Γ
∗) (5.30)

where the second inequality uses the fact that rank(∆′) ≤ 2r.

We now split into two cases, depending on whether or not the error ∆̂ belongs to the set
C
′(n; c0).

Case 1: First suppose that ∆̂ /∈ C
′(n; c0). In this case, by the definition (5.27), we have

|||∆̂|||2F ≤ c0L
(√

mrmc‖∆̂‖∞
)
|||∆̂|||nuc

√
m logm

n

≤ 2c0Lα
∗|||∆̂|||nuc

√
m logm

n
,

since ‖∆̂‖∞ ≤ ‖Γ∗‖∞ + ‖Γ̂‖∞ ≤ 2α∗
√
mrmc

. Now applying the bound (5.30), we obtain

|||∆̂|||2F ≤ 2c0 Lα
∗
√
m logm

n

{
8
√
r|||∆̂|||F + 4

mr∑

j=r+1

σj(Γ
∗)
}
. (5.31)

Case 2: Otherwise, we must have ∆̂ ∈ C
′(n; c0). Recall the reformulated lower bound (5.28).

On one hand, if
128Lα′

sp(∆̂)√
n

> 1/2, then we have

|||∆̂|||F ≤ 256L
√
mrmc‖∆̂‖∞√
n

≤ 512Lα∗
√
n

. (5.32)

On the other hand, if
128Lα′

sp(∆̂)√
n

≤ 1/2, then from the bound (5.28), we have

‖X′(∆̂)‖2√
n

≥ |||∆̂|||F
16

(5.33)
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with high probability. Note that Γ̂ is optimal and Γ∗ is feasible for the convex program (5.29),
so that we have the basic inequality

1

2n
‖y − X

′(Γ̂)‖22 + λn|||Γ̂|||nuc ≤
1

2n
‖y − X

′(Γ∗)‖22 + λn|||Γ∗|||nuc.

Some algebra then yields the inequality

1

2n
‖X′(∆̂)‖22 ≤ ν 〈〈∆̂, 1

n

n∑

i=1

ξiX̃
(i)〉〉+ λn|||Γ∗|||nuc − λn|||Γ∗ + ∆̂|||nuc,

Substituting the lower bound (5.33) into this inequality yields

‖∆̂‖2F
512

≤ ν 〈〈∆̂, 1

n

n∑

i=1

ξiX̃
(i)〉〉+ λn|||Γ∗|||nuc − λn|||Γ∗ + ∆̂|||nuc.

From this point onwards, the proof is identical (apart from constants) to Theorem 4.1, and
we obtain that there is a numerical constant c1 such that

|||∆|||2F ≤ c1 α
∗ λn

{√
r|||∆|||F +

mr∑

j=r+1

σj(Γ
∗)

}
. (5.34)

Putting together the pieces: Summarizing our results, we have shown that with high
probability, one of the three bounds (5.31), (5.32) or (5.34) must hold. These claims can be
summarized in the form

|||∆|||2F ≤ c1 α
∗ max

{
λn,

√
m logm

n

} [√
r|||∆|||F +

mr∑

j=r+1

σj(Γ
∗)
]
.

for a universal positive constant c1. Translating this result back to the original co-ordinate
system (Γ∗ =

√
RΘ∗√C) yields the claim (5.13).

5.4.3 Proof of Corollary 5.1

When Θ∗ (and hence
√
RΘ∗√C) has rank r < mr, then we have

∑mr

j=r+1 σj(
√
RΘ∗√C) = 0.

Consequently, the bound (5.13) reduces to |||∆̃|||ω(F ) ≤ c1 α
∗ λ∗n

√
r. To complete the proof, it

suffices to show that

P
[
||| 1
n

n∑

i=1

ξiR
−1/2XiC

−1/2|||2 ≥ c1 ν

√
m logm

n

]
≤ c2 exp(−c2m logm).

We do so via the Ahlswede-Winter matrix bound, as stated in Appendix C.6. Defining
the random matrix Y (i) : = ξiR

−1/2XiC
−1/2, we first note that ξi is sub-exponential with
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parameter 1, and |R−1/2XiC
−1/2| has a single entry with magnitude at most L

√
mrmc,

which implies that

‖Y (i)‖ψ1 ≤ Lν
√
mrmc ≤ 2ν Lm

(Here ‖ · ‖ψ1 denotes the Orlicz norm [78] of a random variable, as defined by the function
ψ1(x) = exp(x)− 1; see Appendix C.6). Moreover, we have

E[(Y (i))TY (i)] = ν2 E
[ mrmc

Rj(i)Ck(i)
ek(i)e

T
j(i)ej(i)e

T
k(i)

]

= ν2 E
[ mrmc

Rj(i)Ck(i)
ek(i)e

T
k(i)

]

= ν2mrImc×mc .

so that |||E[(Y (i))TY (i)]|||2 ≤ 2ν2m, recalling that 2m = mr + mc ≥ mr. The same bound
applies to |||E[Y (i)(Y (i))T ]|||2, so that applying Lemma C.2 with t = nδ, we conclude that

P
[
||| 1
n

n∑

i=1

ξiR
−1/2XiC

−1/2|||2 ≥ δ
]
≤ (mr ×mc) max

{
exp(−nδ2/(16ν2m), exp(− nδ

4ν Lm
)
}

Since
√
mrmc ≤ mr + mc = 2m, if we set δ2 = c21ν

2m logm
n

for a sufficiently large constant
c1, the result follows. (Here we also use the assumption that n = Ω(Lm logm), so that the

term
√

m logm
n

is dominant.)

5.4.4 Proof of Corollary 5.2

For this corollary, we need to determine an appropriate choice of r so as to optimize the
bound (5.13). To ease notation, let us make use of the shorthand notation Γ∗ =

√
RΘ∗√C.

With the singular values of Γ∗ ordered in non-increasing order, fix some threshold τ > 0 to
be determined, and set r = max{j | σj(Γ∗) > τ}. This choice ensures that

mr∑

j=r+1

σj(Γ
∗) = τ

mr∑

j=r+1

σj(Γ
∗)

τ
≤ τ

mr∑

j=r+1

(σj(Γ∗)

τ

)q ≤ τ 1−qRq.

Moreover, we have r τ q ≤ ∑r
j=1

{
σj(Γ

∗)
}q ≤ Rq, which implies that

√
r ≤

√
Rqτ

−q/2.
Substituting these relations into the upper bound (5.13) leads to

|||∆̃|||2ω(F ) ≤ c1 α
∗ λ∗n

[√
Rqτ

−q/2|||∆̃|||ω(F ) + τ 1−qRq

}

In order to obtain the sharpest possible upper bound, we set τ = α∗λ∗n. Following some
algebra, we find that there is a universal constant c1 such that

|||∆̃|||2ω(F ) ≤ c1Rq

(
(α∗)2(λ∗n)

2
)1− q

2 .

As in the proof of Corollary 5.1, it suffices to choose λn = Ω(ν
√

m logm
n

), so that λ∗n = O
√
(ν2 + L)m logm

n
),

from which the claim follows.
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5.4.5 Proof of Theorem 5.3

Our proof of this lower bound based on a combination of information-theoretic methods [151, 150],
which allow us to reduce to a multiway hypothesis test, and an application of the probabilis-
tic method so as to construct a suitably large packing set. By Markov’s inequality, it suffices
to prove that

sup
Θ∗∈B̃(Rq)

P

[
|||Θ̂−Θ∗|||2F ≥ δ2

4

]
≥ 1

2
.

In order to do so, we proceed in a standard way—namely, by reducing the estimation problem
to a testing problem over a suitably constructed packing set contained within B̃(Rq). In

particular, consider a set {Θ1, . . . ,ΘM(δ)} of matrices, contained within B̃(Rq), such that
|||Θk − Θℓ|||F ≥ δ for all ℓ 6= k. To ease notation, we use M as shorthand for M(δ) through
much of the argument. Suppose that we choose an index V ∈ {1, 2, . . . ,M} uniformly at
random (u.a.r.), and we are given observations y ∈ R

n from the observation model (5.3) with
Θ∗ = ΘV . Then triangle inequality yields the lower bound

sup
Θ∗∈B̃(Rq)

P

[
|||Θ̂−Θ∗|||F ≥ δ

2

]
≥ P[V̂ 6= V ].

If we condition on X, a variant of Fano’s inequality yields

P[V̂ 6= V | X] ≥ 1−
(
(
M
2

)
)−1
∑

ℓ6=kD(Θk ‖ Θℓ) + log 2

logM
, (5.35)

where D(Θk ‖ Θℓ) denotes the Kullback-Leibler divergence between the distributions of
(y|X,Θk) and (y|X,Θℓ). In particular, for additive Gaussian noise with variance ν2, we have

D(Θk ‖ Θℓ) =
1

2ν2
‖X(Θk)− X(Θℓ)‖22,

and moreover,

EX

[
D(Θk ‖ Θℓ)

]
=

1

2ν2
|||Θk −Θℓ|||2F .

Combined with the bound (5.35), we obtain the bound

P[V̂ 6= V ] = EX

{
P[V̂ 6= V | X]

}

≥ 1−
(
(
M
2

)
)−1
∑

ℓ6=k
n
2ν2

|||Θk −Θℓ|||2F + log 2

logM
, (5.36)

The remainder of the proof hinges on the following technical lemma, which we prove in
Appendix C.1.
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Lemma 5.1. Let m ≥ 10 be a positive integer, and let δ > 0. Then for each r = 1, 2, . . . ,m,
there exists a set ofm-dimensional matrices {Θ1, . . . ,ΘM} with cardinalityM = ⌊1

4
exp

(
rm
128

)
⌋

such that each matrix has rank r, and moreover

|||Θℓ|||F = δ for all ℓ = 1, 2, . . . ,M , (5.37a)

|||Θℓ −Θk|||F ≥ δ for all ℓ 6= k, (5.37b)

αsp(Θ
ℓ) ≤

√
32 logm for all ℓ = 1, 2, . . . ,M , and (5.37c)

|||Θℓ|||2 ≤
4δ√
r

for all ℓ = 1, 2, . . . ,M . (5.37d)

We now show how to use this packing set in our Fano bound. To avoid technical compli-
cations, we assume throughout that rm > 1024 log 2. Note that packing set from Lemma 5.1
satisfies |||Θk −Θℓ|||F ≤ 2δ for all k 6= ℓ, and hence from Fano bound (5.36), we obtain

P[V̂ 6= V ] ≥ 1− 2nδ
2

ν2
+ log 2

rm
128

− log 4

≥ 1− 2nδ
2

ν2
+ log 2
rm
256

≥ 1− 512nδ
2

ν2
+ 256 log 2

rm
.

If we now choose δ2 = ν2

2048
rm
n
, then

P[V̂ 6= V ] ≥ 1−
rm
4
+ 256 log 2

rm
≥ 1

2
,

where the final inequality again uses the bound rm ≥ 1024 log 2.
In the special case q = 0, the proof is complete, since the elements Θℓ all have rank

r = R0, and satisfy the bound αsp(Θ
ℓ) ≤

√
32 logm. For q ∈ (0, 1], consider the matrix class

B̃(Rq), and let us set r = min{m, ⌈Rq

(
m
n

)− q
2 ⌉} in Lemma 5.1. With this choice, since each

matrix Θℓ has rank r, we have

d∑

j=1

σi(Θ
ℓ)q ≤ r

(
δ√
r

)q
= r

(
1

2048

√
m

n

)q
≤ Rq,

so that we are guaranteed that Θℓ ∈ B̃(Rq). Finally, we note that

rm

n
≥ min

{
Rq

(
m

n

)1− q
2

,
m2

n

}
,
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so that we conclude that the minimax error is lower bounded by

1

4096
min

{
Rq

(
ν2m

n

)1− q
2

,
ν2m2

n

}

for mr sufficiently large. (At the expense of a worse pre-factor, the same bound holds for all
m ≥ 10.)

5.5 Proof of Theorem 5.1

We now turn to the proof that the sampling operator in weighted matrix completion sat-
isfies restricted strong convexity over the set D, as stated in Theorem 5.1. In order to
lighten notation, we prove the theorem in the case mr = mc. In terms of rates, this is a
worst-case assumption, effectively amounting to replacing both mr and mc by the worst-case
max{mr,mc}. However, since our rates are driven by m = 1

2
(mr + mc) and we have the

inequalities
1

2
max{mr,mc} ≤ 1

2
(mr +mc) ≤ max{mr,mc},

this change has only an effect on the constant factors. The proof can be extended to the
general settingmr 6= mc by appropriate modifications if these constant factors are of interest.

5.5.1 Reduction to simpler events

In order to prove Theorem 5.1, it is equivalent to show that, with high probability, we have

‖X′(Γ)‖2√
n

≥ 1

8
|||Γ|||F − 48L m ‖Γ‖∞√

n
for all Γ ∈ C

′(n; c0). (5.38)

The remainder of the proof is devoted to studying the “bad” event

E(X′) : =

{
∃ Γ ∈ C

′(n; c0) |
∣∣∣‖X

′(Γ)‖2√
n

− |||Γ|||F
∣∣∣ > 7

8
|||Γ|||F +

48L m ‖Γ‖∞√
n

}
. (5.39)

Suppose that E(X′) does not hold: then we have

∣∣∣‖X
′(Γ)‖2√
n

− |||Γ|||F
∣∣∣ ≤ 7

8
|||Γ|||F +

48L m ‖Γ‖∞√
n

for all Γ ∈ C
′(n; c0),

which implies that the bound (5.38) holds. Consequently, in terms of the “bad” event, the
claim of Theorem 5.1 is implied by the tail bound P[E(X′)] ≤ 16 exp(−c′m logm).

We now show that in order to establish a tail bound on E(X′), it suffices to bound the
probability of some simpler events E(X′;RP), defined below. Since the definition of the
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set C
′(n; c0) and event E(X′) is invariant to rescaling of Γ, we may assume without loss of

generality that ‖Γ‖∞ = 1
m
. The remaining degrees of freedom in the set C

′(n; c0) can be
parameterized in terms of the quantities RP = |||Γ|||F and Υ = |||Γ|||nuc. For any Γ ∈ C

′(n; c0)
with ‖Γ‖∞ = 1

m
and |||Γ|||F ≤ RP, we have |||Γ|||nuc ≤ Υ(RP), where

Υ(RP) : =
R2

P

c0 L
√

m logm
n

.

For each radius RP > 0, consider the set

R(RP) : =
{
Γ ∈ C

′(n; c0) | ‖Γ‖∞ =
1

m
, |||Γ|||F ≤ RP, |||Γ|||nuc ≤ Υ(RP)

}
, (5.40)

and the associated event

E(X′;RP) : =

{
∃ Γ ∈ R(RP) |

∣∣‖X
′(Γ)‖2√
n

− |||Γ|||F
∣∣ ≥ 3

4
RP +

48L√
n

}
. (5.41)

The following lemma shows that it suffices to upper bound the probability of the event
E(X′;RP) for each fixed RP > 0.

Lemma 5.2. Suppose that are universal constants (c1, c2) such that

P[E(X′;RP)] ≤ c1 exp(−c2nR2
P) (5.42)

for each fixed RP > 0. Then there is a universal constant c′2 such that

P[E(X′)] ≤ c1
exp(−c′2m logm)

1− exp(−c′2m logm)
. (5.43)

The proof of this claim, provided in Appendix C.2, follows by a peeling argument.

5.5.2 Bounding the probability of E(X′;RP)

Based on Lemma 5.2, it suffices to prove the tail bound (5.42) on the event E(X′;RP) for
each fixed RP > 0. Let us define

Zn(RP) : = sup
Γ∈R(RP)

∣∣∣∣∣
‖X′(Γ)‖2√

n
− |||Γ|||F

∣∣∣∣∣, (5.44)

where

R(RP) : =
{
Γ ∈ C

′(n; c0) | ‖Γ‖∞ ≤ 1

m
, |||Γ|||F ≤ RP, |||Γ|||nuc ≤ Υ(RP)

}
. (5.45)
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(The only difference from R(RP) is that we have relaxed to the inequality ‖Γ‖∞ ≤ 1
m
.) In

the remainder of this section, we prove that there are universal constants (c1, c2) such that

P
[
Zn(RP) ≥

3

4
RP +

48L√
n

]
≤ c1 exp(−c2

nR2
P

L2
) for each fixed RP > 0. (5.46)

This tail bound means that the condition of Lemma 5.2 is satisfied, and so completes the
proof of Theorem 5.1.

In order to prove (5.46), we begin with a discretization argument. Let Γ1, . . . ,ΓN(δ) be
a δ-covering of R(RP) in the Frobenius norm. By definition, given an arbitrary Γ ∈ R(RP),
there exists some index k ∈ {1, . . . , N(δ)} and a matrix ∆ ∈ R

m×m with |||∆|||F ≤ δ such
that Γ = Γk +∆. Therefore, we have

‖X′(Γ)‖2√
n

− |||Γ|||F =
‖X′(Γk +∆)‖2√

n
− |||Γk +∆|||F

≤ ‖X′(Γk)‖2√
n

+
‖X′(∆)‖2√

n
− |||Γk|||F + |||∆|||F

≤
∣∣∣‖X

′(Γk)‖2√
n

− |||Γk|||F
∣∣∣+ ‖X′(∆)‖2√

n
+ δ,

where we have used the triangle inequality. Following the same steps establishes that this
inequality holds for the absolute value of the difference.

Moreover, since ∆ = Γk − Γ with both Γk and Γ belonging to R(RP), we have |||∆|||nuc ≤
2Υ(RP) and ‖∆‖∞ ≤ 2

m
, where we have used the definition (5.40). Putting together the

pieces, we conclude that

Zn(RP) ≤ δ + max
k=1,...,N(δ)

∣∣∣‖X
′(Γk)‖2√
n

− |||Γk|||F
∣∣∣ + sup

∆∈D(δ,R)

∣∣‖X
′(∆)‖2√
n

∣∣, (5.47)

where

D(δ, R) : =
{
∆ ∈ R

m×m | |||∆|||F ≤ δ, |||∆|||nuc ≤ 2Υ(RP), ‖∆‖∞ ≤ 2

m

}
. (5.48)

Note that the bound (5.47) holds for any choice of δ > 0. We establish the tail
bound (5.46) with the choice δ = RP/8, and using the following two lemmas. The first
lemma provides control of the maximum over the covering set:

Lemma 5.3. As long m ≥ 10, we have

max
k=1,...,N(RP/8)

∣∣∣‖X
′(Γk)‖2√
n

− |||Γk|||F
∣∣∣ ≤ RP

8
+

48L√
n

(5.49)

with probability greater than 1− c exp
(
− nR2

P

2048L2

)
.
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See Appendix C.3 for the proof of this claim.

Our second lemma, proved in Appendix C.4, provides control over the final term in the
upper bound (5.47).

Lemma 5.4.

sup
∆∈D(

RP
8
,R)

∣∣‖X
′(∆)‖2√
n

∣∣ ≤ RP

2

with probability at least 1− 2 exp
(
− nR2

P

8192L2

)
.

Combining these two lemmas with the upper bound (5.47) with δ = RP/8, we obtain

Zn(RP) ≤
RP

8
+
RP

8
+

48L√
n

+
RP

2

≤ 3RP

4
+

48L√
n

with probability at least 1 − 4 exp
(
− nR2

P

8192

)
, thereby establishing the tail bound (5.46) and

completing the proof of Theorem 5.1.

5.6 Discussion

In this chapter, we have established error bounds for the problem of weighted matrix com-
pletion based on partial and noisy observations. We proved both a general result, one which
applies to any matrix, and showed how it yields corollaries for both the cases of exactly low-
rank and approximately low-rank matrices. A key technical result is establishing that the
matrix sampling operator satisfies a suitable form of restricted strong convexity 3.2.4 over
a set of matrices with controlled rank and spikiness. Since more restrictive properties such
as RIP do not hold for matrix completion, this RSC ingredient is essential to our analysis.
Our proof of the RSC condition relied on a number of techniques from empirical process and
random matrix theory, including concentration of measure, contraction inequalities and the
Ahlswede-Winter bound. Using information-theoretic methods, we also proved that up to
logarithmic factors, our error bounds cannot be improved upon by any algorithm, showing
that our method is essentially minimax-optimal.

There are various open questions that remain to be studied. Although our analysis applies
to both uniform and non-uniform sampling models, it is limited to the case where each row (or
column) is sampled with a certain probability. It would be interesting to consider extensions
to settings in which the sampling probability differed from entry to entry, as investigated
empirically by Salakhutdinov and Srebro [122]. Although we have focused on least-squares



CHAPTER 5. MATRIX COMPLETION 99

losses in this chapter, the notion of restricted strong convexity applies to more general loss
functions. Indeed, it should be possible to combine the results of this paper with Proposition
2 in Negahban et al. [100] so as to obtain bounds for matrix completion with general losses.
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Chapter 6

Structured Optimization

6.1 Introduction

We now present the results that allow us to exploit the same statistical structures utilized
above for computational efficiency rather than statistical improvements. The crux of our
argument is leveraging the statistical structure to allow us to relate ill-behaved empirical
quantities with their well-conditioned population counterparts. In the remainder of this
chapter we begin in Section 6.2 with a precise formulation of the class of convex programs
analyzed. We will then recall certain desired properties of the loss function. Section 6.3 is
devoted to the statement of our main convergence result, as well as to the development and
discussion of its various corollaries for specific statistical models. In Section 6.4, we provide a
number of empirical results that confirm the sharpness of our theoretical predictions. Finally,
Section 6.5 contains the proofs, with more technical aspects of the arguments deferred to
the Appendix D.

6.2 Background and problem formulation

In this section, we begin by describing the class of regularized M -estimators to which our
analysis applies, as well as the optimization algorithms that we analyze. Finally, we introduce
some important notions that underlie our analysis, including the notions of a decomposable
regularization, and the properties of restricted strong convexity and smoothness.

6.2.1 Loss functions, regularization and gradient-based methods

We recall that given a random variable Z ∼ P taking values in some set Z, let Zn
1 = {Z1, . . . , Zn}

be a collection of n observations. Here the integer n is the sample size of the problem. As-
suming that P lies within some indexed family {Pθ | θ ∈ Ω}, the goal is to recover an
estimate of the unknown true parameter θ∗ ∈ Ω generating the data. Here Ω is some subset
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of Rd, and the integer d is known as the ambient dimension of the problem. In order to
measure the “fit” of any given parameter θ ∈ Ω to a given data set Zn

1 , we introduce a loss
function Ln : Ω×Zn → R+. By construction, for any given n-sample data set Zn

1 ∈ Zn, the
loss function assigns a cost Ln(θ;Zn

1 ) ≥ 0 to the parameter θ ∈ Ω. In many (but not all)
applications, the loss function has a separable structure across the data set, meaning that
Ln(θ;Zn

1 ) = 1
n

∑n
i=1 ℓ(θ;Zi) where ℓ : Ω × Z :→ R+ is the loss function associated with a

single data point.

Of primary interest in this chapter are estimation problems that are under-determined,
meaning that the number of observations n is smaller than the ambient dimension d. In such
settings, without further restrictions on the parameter space Ω, there are various impossi-
bility theorems, asserting that consistent estimates of the unknown parameter θ∗ cannot be
obtained. For this reason, it is necessary to assume that the unknown parameter θ∗ either
lies within a smaller subset of Ω, or is well-approximated by some member of such a sub-
set. In order to incorporate these types of structural constraints, we introduce a regularizer
R : Ω → R+ over the parameter space. With these ingredients, the analysis of this chapter
applies to the constrained M-estimator

θ̂ρ ∈ arg min
R(θ)≤ρ

{
Ln(θ;Zn

1 )}, (6.1)

where ρ > 0 is a user-defined radius, as well as to the regularized M-estimator

θ̂λn ∈ arg min
R(θ)≤ρ̄

{
Ln(θ;Zn

1 ) + λnR(θ)︸ ︷︷ ︸
φn(θ)

}
(6.2)

where the regularization weight λn > 0 is user-defined. Note that the radii ρ and ρ̄ may be
different in general. Throughout this chapter, we impose the following two conditions:

(a) for any data set Zn
1 , the function Ln(·;Zn

1 ) is convex and differentiable over Ω, and

(b) the regularizer R is a norm.

These conditions ensure that the overall problem is convex, so that by Lagrangian duality,
the optimization problems (6.1) and (6.2) are equivalent. However, as our analysis will
show, solving one or the other can be computationally more preferable depending upon the
assumptions made. Some remarks on notation: when the radius ρ or the regularization
parameter λn is clear from the context, we will drop the subscript on θ̂ to ease the notation.
Similarly, we frequently adopt the shorthand Ln(θ), with the dependence of the loss function
on the data being implicitly understood. Procedures based on optimization problems of
either form are known as M -estimators in the statistics literature.

The focus of this chapter is on two simple algorithms for solving the above optimization
problems. The method of projected gradient descent applies naturally to the constrained
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problem (6.1), whereas the composite gradient descent method due to Nesterov [102] is
suitable for solving the regularized problem (6.2). Each routine generates a sequence {θt}∞t=0

of iterates by first initializing to some parameter θ0 ∈ Ω, and then applying the recursive
update

θt+1 = arg min
θ∈BR(ρ)

{
Ln(θt) + 〈∇Ln(θt), θ − θt〉+ γu

2
‖θ − θt‖2

}
, for t = 0, 1, 2, . . ., (6.3)

in the case of projected gradient descent, or the update

θt+1 = arg min
θ∈BR(ρ̄)

{
Ln(θt) + 〈∇Ln(θt), θ − θt〉+ γu

2
‖θ − θt‖2 + λnR(θ)

}
, for t = 0, 1, 2, . . .,

(6.4)

for the composite gradient method. Note that the only difference between the two updates
is the addition of the regularization term in the objective. These updates have a natural
intuition: the next iterate θt+1 is obtained by constrained minimization of a first-order
approximation to the loss function, combined with a smoothing term that controls how far
one moves from the current iterate in terms of Euclidean norm. Moreover, it is easily seen
that the update (6.3) is equivalent to

θt+1 = Π

(
θt − 1

γu
∇Ln(θt)

)
, (6.5)

where Π ≡ ΠBR(ρ) denotes Euclidean projection onto the ball BR(ρ) = {θ ∈ Ω | R(θ) ≤ ρ}
of radius ρ. In this formulation, we see that the algorithm takes a step in the gradient
direction, using the quantity 1/γu as stepsize parameter, and then projects the resulting
vector onto the constraint set. The update (6.4) takes an analogous form, however, the
projection will depend on both λn and γu. As will be illustrated in the examples to follow,
for many problems, the updates (6.3) and (6.4), or equivalently (6.5), have a very simple
solution. For instance, in the case of ℓ1-regularization, it can be obtained by an appropriate
form of the soft-thresholding operator.

6.2.2 Restricted strong convexity and smoothness

In this section, we define the conditions on the loss function and regularizer that underlie our
analysis. Global smoothness and strong convexity assumptions play an important role in the
classical analysis of optimization algorithms [15, 21, 101]. In application to a differentiable
loss function Ln, both of these properties are defined in terms of a first-order Taylor series
expansion around a vector θ′ in the direction of θ—namely, the quantity

TL(θ; θ
′) : = Ln(θ)− Ln(θ′)− 〈∇Ln(θ′), θ − θ′〉. (6.6)
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By the assumed convexity of Ln, this error is always non-negative, and global strong convex-
ity is equivalent to imposing a stronger condition, namely that for some parameter γℓ > 0,
the first-order Taylor error TL(θ; θ

′) is lower bounded by a quadratic term γℓ
2
‖θ − θ′‖2 for

all θ, θ′ ∈ Ω. Global smoothness is defined in a similar way, by imposing a quadratic upper
bound on the Taylor error. It is known that under global smoothness and strong convex-
ity assumptions, the method of projected gradient descent (6.3) enjoys a globally geometric
convergence rate, meaning that there is some κ ∈ (0, 1) such that1

‖θt − θ̂‖2 . κt ‖θ0 − θ̂‖2 for all iterations t = 0, 1, 2, . . .. (6.7)

We refer the reader to Bertsekas [15, Prop. 1.2.3, p. 145], or Nesterov [101, Thm. 2.2.8,
p. 88] for such results on projected gradient descent, and to Nesterov [102] for composite
gradient descent.

Unfortunately, in the high-dimensional setting (d > n), it is usually impossible to guar-
antee strong convexity of the problem (6.1) in a global sense. For instance, when the data is
drawn i.i.d., the loss function consists of a sum of n terms. If the loss is twice differentiable,
the resulting d × d Hessian matrix ∇2L(θ;Zn

1 ) is often a sum of n matrices each with rank
one, so that the Hessian is rank-degenerate when n < d. However, as we show in this chapter,
in order to obtain fast convergence rates for the optimization method (6.3), it is sufficient
that (a) the objective is strongly convex and smooth in a restricted set of directions, and (b)

the algorithm approaches the optimum θ̂ only along these directions. Let us now formalize
these ideas.

Definition 6.1 (Restricted strong convexity (RSC)). The loss function Ln satisfies
restricted strong convexity with respect to R and with parameters (γℓ, τℓ(Ln)) over the set
Ω′ if

TL(θ; θ
′) ≥ γℓ

2
‖θ − θ′‖2 − τℓ(Ln) R2(θ − θ′) for all θ, θ′ ∈ Ω′. (6.8)

We refer to the quantity γℓ as the (lower) curvature parameter, and to the quantity τℓ as the
tolerance parameter. The set Ω′ corresponds to a suitably chosen subset of the space Ω of
all possible parameters.

In order to gain intuition for this definition, first suppose that the condition (6.8) holds
with tolerance parameter τℓ = 0. In this case, the regularizer plays no role in the definition,
and condition (6.8) is equivalent to the usual definition of strong convexity on the optimiza-
tion set Ω. As discussed previously, this type of global strong convexity typically fails to
hold for high-dimensional inference problems. In contrast, when tolerance parameter τℓ is

1In this statement (and throughout the chapter), we use . to mean an inequality that holds with some
universal constant c, independent of the problem parameters.



CHAPTER 6. STRUCTURED OPTIMIZATION 104

strictly positive, the condition (6.8) is much milder, in that it only applies to a limited set
of vectors. For a given pair θ 6= θ′, consider the inequality

R2(θ − θ′)

‖θ − θ′‖2 <
γℓ

2 τℓ(Ln)
. (6.9)

If this inequality is violated, then the right-hand side of the bound (6.8) is non-positive, in
which case the RSC constraint (6.8) is vacuous. Thus, restricted strong convexity imposes a
non-trivial constraint only on pairs θ 6= θ′ for which the inequality (6.8) holds, and a central
part of our analysis will be to prove that, for the sequence of iterates generated by projected
gradient descent, the optimization error ∆̂t : = θt− θ̂ satisfies a constraint of the form (6.9).
We note that since the regularizer R is convex, strong convexity of the loss function Ln also
implies the strong convexity of the regularized loss φn as well.

For the least-squares loss, the RSC definition depends purely on the direction (and not
the magnitude) of the difference vector θ−θ′. For other types of loss functions—such as those
arising in generalized linear models—it is essential to localize the RSC definition, requiring
that it holds only for pairs for which the norm ‖θ− θ′‖2 is not too large. We refer the reader
to Section 6.2.4 for further discussion of this issue.

Finally, as pointed out by a reviewer, our restricted version of strong convexity can be
seen as an instance of the general theory of paraconvexity (e.g., [103]); however, we are not
aware of convergence rates for minimizing general paraconvex functions.

We also specify an analogous notion of restricted smoothness:

Definition 6.2 (Restricted smoothness (RSM)). We say the loss function Ln satisfies
restricted smoothness with respect to R and with parameters (γu, τu(Ln)) over the set Ω′ if

TL(θ; θ
′) ≤ γu

2
‖θ − θ′‖2 + τu(Ln) R2(θ − θ′) for all θ, θ′ ∈ Ω′. (6.10)

As with our definition of restricted strong convexity, the additional tolerance τu(Ln) is not
present in analogous smoothness conditions in the optimization literature, but it is essential
in our set-up.

6.2.3 Decomposable regularizers

We saw in Chapter 3, that the notion of a decomposable regularizer can be quite useful.
Although the focus of this chapter is a rather different set of questions—namely, optimization
as opposed to statistics—decomposability also plays an important role here. In particular, for
any M -estimator involving a decomposable regularizer, the optimization error ∆̂t : = θt − θ̂
belongs to exactly the limited set of directions for which the RSC and RSM conditions apply.
(For a precise statement of this connection, see Lemma 6.1 in Section 6.5).
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Recall that decomposability is defined given a pair of subspaces defined with respect to

the parameter space Ω ⊆ R
d: the model subspace M and the perturbation subspace M⊥

.

Furthermore, for any vector α ∈ M and β ∈ M⊥
the regularizer R satisfies R(α + β) =

R(α)+R(β). Additionally, recall that for a given error norm ‖·‖, the subspace compatibility
constant Ψ(M) defined in equation (3.21) acts as the Lipschitz constant of the regularizer
against the norm ‖ · ‖. Namely that for any vector α ∈ M, R(α) ≤ Ψ(M)‖α‖. For a more
detailed discussion, see Definition 3.3.

6.2.4 Some illustrative examples

We now describe some particular examples ofM -estimators with decomposable regularizers,
and discuss the form of the projected gradient updates as well as RSC/RSM conditions.
We cover two main families of examples: log-linear models with sparsity constraints and
ℓ1-regularization (Section 6.2.4), and matrix regression problems with nuclear norm regular-
ization (Section 6.2.4).

Sparse log-linear models and ℓ1-regularization

Suppose that each sample Zi consists of a scalar-vector pair (yi, xi) ∈ R×R
d, corresponding

to the scalar response yi ∈ Y associated with a vector of predictors xi ∈ R
d. A log-linear

model with canonical link function assumes that the response yi is linked to the covariate

vector xi via a conditional distribution of the form P(yi | xi; θ∗, σ) ∝ exp

{
yi 〈θ∗, xi〉−Φ(〈θ∗, xi〉)

c(σ)

}
,

where c(σ) is a known quantity, Φ(·) is the log-partition function to normalize the density,
and θ∗ ∈ R

d is an unknown regression vector. In many applications, the regression vector θ∗

is relatively sparse, so that it is natural to impose an ℓ1-constraint. Computing the maximum
likelihood estimate subject to such a constraint involves solving the convex program2

θ̂ ∈ argmin
θ∈Ω

{ 1

n

n∑

i=1

{
yi 〈θ, xi〉 − Φ(〈θ, xi〉)

}}

︸ ︷︷ ︸
Ln(θ;Zn

1 )

such that ‖θ‖1 ≤ ρ, (6.11)

with xi ∈ R
d as its ith row. We refer to this estimator as the log-linear Lasso; it is a

special case of theM -estimator (6.1), with the loss function Ln(θ;Zn
1 ) =

1
n

∑n
i=1

{
yi 〈θ, xi〉−

Φ(〈θ, xi〉)
}
and the regularizer R(θ) = ‖θ‖1 =

∑d
j=1 |θj|.

Ordinary linear regression is the special case of the log-linear setting with Φ(t) = t2/2
and Ω = R

d, and in this case, the estimator (6.11) corresponds to ordinary least-squares
version of Lasso [39, 131]. Other forms of log-linear Lasso that are of interest include logistic
regression, Poisson regression, and multinomial regression.

2The link function Φ is convex since it is the log-partition function of a canonical exponential family.
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Projected gradient updates: Computing the gradient of the log-linear loss from equa-
tion (6.11) is straightforward: we have ∇Ln(θ) = 1

n

∑n
i=1 xi

{
yi − Φ′(〈θ, xi〉)

}
, and the up-

date (6.5) corresponds to the Euclidean projection of the vector θt − 1
γu
∇Ln(θt) onto the

ℓ1-ball of radius ρ. It is well-known that this projection can be characterized in terms of
soft-thresholding, and that the projected update (6.5) can be computed easily. We refer the
reader to Duchi et al. [47] for an efficient implementation requiring O(d) operations.

Composite gradient updates: The composite gradient update for this problem amounts
to solving

θt+1 = arg min
‖θ‖1≤ρ̄

{
〈θ, ∇Ln(θ)〉+

γu
2
‖θ − θt‖22 + λn‖θ‖1

}
.

The update can be computed by two soft-thresholding operations. The first step is soft
thresolding the vector θt − 1

γu
∇Ln(θt) at a level λn/γu. If the resulting vector has ℓ1-norm

greater than ρ̄, then we project on to the ℓ1-ball just like before. Overall, the complexity of
the update is still O(d) as before.

RSC/RSM conditions: A calculation using the mean-value theorem shows that for the
loss function (6.11), the error in the first-order Taylor series, as previously defined in equa-
tion (6.6), can be written as

TL(θ; θ
′) =

1

n

n∑

i=1

Φ′′(〈θt, xi〉
) (

〈xi, θ − θ′〉
)2

where θt = tθ + (1 − t)θ′ for some t ∈ [0, 1]. When n < d, then we can always find pairs
θ 6= θ′ such that 〈xi, θ − θ′〉 = 0 for all i = 1, 2, . . . , n, showing that the objective function
can never be strongly convex. On the other hand, restricted strong convexity for log-linear
models requires only that there exist positive numbers (γℓ, τℓ(Ln)) such that

1

n

n∑

i=1

Φ′′(〈θt, xi〉
) (

〈xi, θ − θ′〉
)2 ≥ γℓ

2
‖θ − θ′‖2 − τℓ(Ln) R2(θ − θ′) for all θ, θ′ ∈ Ω′,

(6.12)

where Ω′ : = Ω ∩ B2(R) is the intersection of the parameter space Ω with a Euclidean
ball of some fixed radius R around zero. This restriction is essential because for many
generalized linear models, the Hessian function Φ′′ approaches zero as its argument diverges.
For instance, for the logistic function Φ(t) = log(1 + exp(t)), we have Φ′′(t) = exp(t)/[1 +
exp(t)]2, which tends to zero as t → +∞. Restricted smoothness imposes an analogous
upper bound on the Taylor error. For a broad class of log-linear models, such bounds hold

with with tolerance τℓ(Ln) and τu(Ln) of the order
√

log d
n

. Further details on such results
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are provided in the corollaries to follow our main theorem. A brief discussion of RSC for
exponential families in statistical problems can be found in Chapter 3.

In order to ensure RSC/RSM conditions on the iterates θt of the updates (6.3) or (6.4), we
also need to ensure that θt ∈ Ω′. This can be done by defining L′

n = Ln+IΩ′(θ), where IΩ′(θ)
is zero when θ ∈ Ω′ and ∞ otherwise. This is equivalent to projection on the intersection
of ℓ1-ball with Ω′ in the updates (6.3) and (6.4) and can be done efficiently with Dykstra’s
algorithm [49], for instance, as long as the individual projections are efficient.

In the special case of linear regression, we have Φ′′(t) = 1 for all t ∈ R, so that the lower
bound (6.12) involves only the Gram matrix XTX/n. (Here X ∈ R

n×d is the usual design
matrix, with xi ∈ R

d as its ith row.) For linear regression and ℓ1-regularization, the RSC
condition is equivalent to the lower bound

‖X(θ − θ′)‖22
n

≥ γℓ
2
‖θ − θ′‖22 − τℓ(Ln) ‖θ − θ′‖21 for all θ, θ′ ∈ Ω. (6.13)

Such a condition corresponds to a variant of the restricted eigenvalue (RE) conditions that
have been studied in the literature [20, 139]. Such RE conditions are significantly milder than
the restricted isometry property; we refer the reader to van de Geer and Buhlmann [139] for
an in-depth comparison of different RE conditions. From past work, the condition (6.13) is
satisfied with high probability for a broad classes of anisotropic random design matrices [108,
121], and parts of our analysis make use of this fact.

Matrices and nuclear norm regularization

We now discuss a general class of matrix regression problems that falls within our framework.
Consider the space of d1 × d2 matrices endowed with the trace inner product 〈〈A, B〉〉 : =
trace(ATB). In order to ease notation, we define d : = min{d1, d2}. Let Θ∗ ∈ R

d1×d2 be
an unknown matrix and suppose that for i = 1, 2, . . . , n, we observe a scalar-matrix pair
Zi = (yi, Xi) ∈ R× R

d1×d2 linked to Θ∗ via the linear model

yi = 〈〈Xi, Θ
∗〉〉+ wi, for i = 1, 2, . . . , n, (6.14)

where wi is an additive observation noise. In many contexts, it is natural to assume that Θ∗

is exactly low-rank, or approximately so, meaning that it is well-approximated by a matrix of
low rank. In such settings, a number of authors (e.g., [51, 119]) have studied theM -estimator

Θ̂ ∈ arg min
Θ∈Rd1×d2

{ 1

2n

n∑

i=1

(
yi − 〈〈Xi, Θ〉〉

)2}
such that |||Θ|||nuc ≤ ρ, (6.15)

or the corresponding regularized version (see Chapter 4). Here the nuclear or trace norm

is given by |||Θ|||nuc : =
d∑
j=1

σj(Θ), corresponding to the sum of the singular values. This

optimization problem is an instance of a semidefinite program. As discussed in more detail
in Chapter 4, there are various applications in which this estimator and variants thereof have
proven useful.
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Form of projected gradient descent: For the M-estimator (6.15), the projected gradient
updates take a very simple form—namely

Θt+1 = Π
(
Θt − 1

γu

∑n
i=1

(
yi − 〈〈Xi, Θ

t〉〉
)
Xi

n

)
, (6.16)

where Π denotes Euclidean projection onto the nuclear norm ball

B1(ρ) = {Θ ∈ R
d1×d2 | |||Θ|||nuc ≤ ρ}.

This nuclear norm projection can be obtained by first computing the singular value decom-
position (SVD), and then projecting the vector of singular values onto the ℓ1-ball. The latter
step can be achieved by the fast projection algorithms discussed earlier, and there are various
methods for fast computation of SVDs. The composite gradient update also has a simple
form, requiring at most two singular value thresholding operations as was the case for linear
regression.

In some special cases such as matrix completion or matrix decomposition that we describe
in the sequel, Ω′ will involve an additional bound on the entries of Θ∗ as well as the iterates Θt

to establish RSC/RSM conditions. This can be done by augmenting the loss with an indicator
of the constraint and using cyclic projections for computing the updates as mentioned earlier
in Example 6.2.4.

6.3 Main results and some consequences

We are now equipped to state the two main results of this chapter, and discuss some of
their consequences. We illustrate its application to several statistical models, including
sparse regression (Section 6.3.2), matrix estimation with rank constraints (Section 6.3.3),
and matrix decomposition problems (Section 6.3.4).

6.3.1 Geometric convergence

Recall that the projected gradient algorithm (6.3) is well-suited to solving an M -estimation
problem in its constrained form, whereas the composite gradient algorithm (6.4) is appropri-

ate for a regularized problem. Accordingly, let θ̂ be any optimal solution to the constrained
problem (6.1), or the regularized problem (6.2), and let {θt}∞t=0 be a sequence of iterates
generated by generated by the projected gradient updates (6.3), or the the composite gradi-
ent updates (6.4), respectively. Of primary interest to us in this chapter are bounds on the

optimization error, which can be measured either in terms of the error vector ∆̂t : = θt − θ̂,
or the difference between the cost of θt and the optimal cost defined by θ̂. In this section,
we state two main results —-Theorems 6.1 and 6.2—corresponding to the constrained and
regularized cases respectively. In addition to the optimization error previously discussed,
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both of these results involve the statistical error ∆∗ : = θ̂ − θ∗ between the optimum θ̂ and
the nominal parameter θ∗. At a high level, these results guarantee that under the RSC/RSM
conditions, the optimization error shrinks geometrically, with a contraction coefficient that
depends on the the loss function Ln via the parameters (γℓ, τℓ(Ln)) and (γu, τu(Ln)). An
interesting feature is that the contraction occurs only up to a certain tolerance parameter ǫ2

depending on these same parameters, and the statistical error. However, as we discuss, for
many statistical problems of interest, we can show that this tolerance parameter is of lower
order than the intrinsic statistical error, and hence can be neglected from the statistical point
of view. Consequently, our theory gives an explicit upper bound on the number of iterations
required to solve an M -estimation problem up to statistical precision.

Convergence rates for projected gradient: We now provide the notation necessary
for a precise statement of this claim. Our main result actually involves a family of upper

bounds on the optimization error, one for each pair (M,M⊥
) of R-decomposable subspaces

(see Definition 3.1). As will be clarified in the sequel, this subspace choice can be optimized

for different models so as to obtain the tightest possible bounds. For a given pair (M,M⊥
)

such that 16Ψ2(M)τu(Ln) < γu, let us define the contraction coefficient

κ(Ln;M) : =
{
1− γℓ

γu
+

16Ψ2(M)
(
τu(Ln) + τℓ(Ln)

)

γu

} {
1− 16Ψ2(M)τu(Ln)

γu

}−1

. (6.17)

In addition, we define the tolerance parameter

ǫ2(∆∗;M,M) : =
32
(
τu(Ln) + τℓ(Ln)

) (
2R(ΠM⊥(θ∗)) + Ψ(M)‖∆∗‖+ 2R(∆∗)

)2

γu
, (6.18)

where ∆∗ = θ̂− θ∗ is the statistical error, and ΠM⊥(θ∗) denotes the Euclidean projection of
θ∗ onto the subspace M⊥.

In terms of these two ingredients, we now state our first main result:

Theorem 6.1. Suppose that the loss function Ln satisfies the RSC/RSM condition with
parameters (γℓ, τℓ(Ln)) and (γu, τu(Ln)) respectively. Let (M,M) be any R-decomposable

pair of subspaces such that M ⊆ M and 0 < κ ≡ κ(Ln,M) < 1. Then for any optimum θ̂
of the problem (6.1) for which the constraint is active, we have

‖θt+1 − θ̂‖2 ≤ κt ‖θ0 − θ̂‖2 + ǫ2(∆∗;M,M)

1− κ
for all iterations t = 0, 1, 2, . . .. (6.19)

Remarks: Theorem 6.1 actually provides a family of upper bounds, one for each R-
decomposable pair (M,M) such that 0 < κ ≡ κ(Ln,M) < 1. This condition is always
satisfied by setting M equal to the trivial subspace {0}: indeed, by definition (3.21) of the
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subspace compatibility, we have Ψ(M) = 0, and hence κ(Ln; {0}) =
(
1− γℓ

γu

)
< 1. Although

this choice of M minimizes the contraction coefficient, it will lead3 to a very large tolerance
parameter ǫ2(∆∗;M,M). A more typical application of Theorem 6.1 involves non-trivial
choices of the subspace M.

The bound (6.19) guarantees that the optimization error decreases geometrically, with
contraction factor κ ∈ (0, 1), up to a certain tolerance proportional to ǫ2(∆∗;M,M), as il-
lustrated in Figure 6.1(a). The contraction factor κ approaches the 1− γℓ/γu as the number
of samples grows. The appearance of the ratio γℓ/γu is natural since it measures the con-
ditioning of the objective function; more specifically, it is essentially a restricted condition
number of the Hessian matrix. On the other hand, the tolerance parameter ǫ depends on
the choice of decomposable subspaces, the parameters of the RSC/RSM conditions, and the

statistical error ∆∗ = θ̂−θ∗ (see equation (6.18)). In the corollaries of Theorem 6.1 to follow,

we show that the subspaces can often be chosen such that ǫ2(∆∗;M,M) = o(‖θ̂ − θ∗‖2).
Consequently, the bound (6.19) guarantees geometric convergence up to a tolerance smaller
than statistical precision, as illustrated in Figure 6.1(b). This is sensible, since in statistical
settings, there is no point to optimizing beyond the statistical precision.

∆̂0

∆̂1

∆̂t

0

ǫ

∆̂0

∆̂1

∆̂t

0

ǫ

‖∆∗‖

∆∗

(a) (b)

Figure 6.1. (a) Generic illustration of Theorem 6.1. The optimization error ∆̂t = θt − θ̂
is guaranteed to decrease geometrically with coefficient κ ∈ (0, 1), up to the tolerance ǫ2 =
ǫ2(∆∗;M,M), represented by the circle. (b) Relation between the optimization tolerance

ǫ2(∆∗;M,M) (solid circle) and the statistical precision ‖∆∗‖ = ‖θ∗− θ̂‖ (dotted circle). In
many settings, we have ǫ2(∆∗;M,M) ≪ ‖∆∗‖2, so that convergence is guaranteed up to a
tolerance lower than statistical precision.

The result of Theorem 6.1 takes a simpler form when there is a subspace M that includes

3Indeed, the setting M⊥ = R
d means that the term R(ΠM⊥(θ∗)) = R(θ∗) appears in the tolerance; this

quantity is far larger than statistical precision.
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θ∗, and the R-ball radius is chosen such that ρ ≤ R(θ∗). In this case, by appropriately
controlling the error term, we can establish that it is of lower order than the statistical
precision —namely, the squared difference ‖θ̂ − θ∗‖2 between an optimal solution θ̂ to the
convex program (6.1), and the unknown parameter θ∗.

Corollary 6.1. In addition to the conditions of Theorem 6.1, suppose that θ∗ ∈ M and
ρ ≤ R(θ∗). Then as long as Ψ2(M)

(
τu(Ln) + τℓ(Ln)

)
= o(1), we have

‖θt+1 − θ̂‖2 ≤ κt ‖θ0 − θ̂‖2 + o
(
‖θ̂ − θ∗‖2

)
for all iterations t = 0, 1, 2, . . .. (6.20)

Thus, Corollary 6.1 guarantees that the optimization error decreases geometrically, with
contraction factor κ, up to a tolerance that is of strictly lower order than the statisti-
cal precision ‖θ̂ − θ∗‖2. As will be clarified in several examples to follow, the condition
Ψ2(M)

(
τu(Ln) + τℓ(Ln)

)
= o(1) is satisfied for many statistical models, including sparse

linear regression and low-rank matrix regression. This result is illustrated in Figure 6.1(b),
where the solid circle represents the optimization tolerance, and the dotted circle represents
the statistical precision. In the results to follow, we will quantify the term o

(
‖θ̂− θ∗‖2

)
in a

more precise manner for different statistical models.

Convergence rates for composite gradient: We now present our main result for the
composite gradient iterates (6.4) that are suitable for the Lagrangian-based estimator (6.2).

As before, our analysis yields a range of bounds indexed by subspace pairs (M,M⊥
) that are

R-decomposable. For any subspace M such that 64τℓ(Ln)Ψ2(M) < γℓ, we define effective
RSC coefficient as

γℓ : = γℓ − 64τℓ(Ln)Ψ2(M). (6.21)

This coefficient accounts for the residual amount of strong convexity after accounting for the
lower tolerance terms. In addition, we define the compound contraction coefficient as

κ(Ln;M) : =

{
1− γℓ

4γu
+

64Ψ2(M)τu(Ln)
γℓ

}
ξ(M) (6.22)

where ξ(M) : =
(
1 − 64τu(Ln)Ψ2(M̄)

γℓ

)−1
, and ∆∗ = θ̂λn − θ∗ is the statistical error vector4

for a specific choice of ρ̄ and λn. As before, the coefficient κ measures the geometric rate of
convergence for the algorithm. Finally, we define the compound tolerance parameter

ǫ2(∆∗;M,M) : = 8 ξ(M) β(M)
(
6Ψ(M)‖∆∗‖+ 8R(ΠM⊥(θ∗))

)2
, (6.23)

4When the context is clear, we remind the reader that we drop the subscript λn on the parameter θ̂.
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where β(M) : = 2
(

γℓ
4γu

+ 128τu(Ln)Ψ2(M̄)

γℓ

)
τℓ(Ln) + 8τu(Ln) + 2τℓ(Ln). As with our previous

result, the tolerance parameter determines the radius up to which geometric convergence can
be attained.

Recall that the regularized problem (6.2) involves both a regularization weight λn, and
a constraint radius ρ̄. Our theory requires that the constraint radius is chosen such that
ρ̄ ≥ R(θ∗), which ensures that θ∗ is feasible. In addition, the regularization parameter
should be chosen to satisfy the constraint

λn ≥ 2R∗(∇Ln(θ∗)), (6.24)

where R∗ is the dual norm of the regularizer. This constraint is known to play an important
role in proving bounds on the statistical error of regularizedM -estimators (see Chapter 3 and
references therein for further details). Recalling the definition (6.2) of the overall objective

function φn(θ), the following result provides bounds on the excess loss φn(θ
t)− φn(θ̂λn).

Theorem 6.2. Consider the optimization problem (6.2) for a radius ρ̄ such that θ∗ is feasible,
and a regularization parameter λn satisfying the bound (6.24), and suppose that the loss
function Ln satisfies the RSC/RSM condition with parameters (γℓ, τℓ(Ln)) and (γu, τu(Ln))
respectively. Let (M,M⊥

) be any R-decomposable pair such that

κ ≡ κ(Ln,M) ∈ [0, 1), and
32 ρ̄

1− κ(Ln;M)
ξ(M)β(M) ≤ λn. (6.25)

Then for any tolerance parameter δ2 ≥ ǫ2(∆∗;M,M)
(1−κ) , we have

φn(θ
t)− φn(θ̂λn) ≤ δ2 for all t ≥ 2 log

φn(θ0)−φn(θ̂λn )
δ2

log(1/κ)
+ log2 log2

(
ρ̄λn
δ2

)(
1 +

log 2

log(1/κ)

)
.

(6.26)

Remarks: Note that the bound (6.26) guarantees the excess loss φn(θ
t)− φn(θ̂) decays ge-

ometrically up to any squared error δ2 larger than the compound tolerance (6.23). Moreover,
the RSC condition also allows us to translate this bound on objective values to a bound on
the optimization error θt− θ̂. In particular, for any iterate θt such that φn(θ

t)− φn(θ̂) ≤ δ2,
we are guaranteed that

‖θt − θ̂λn‖2 ≤
2δ2

γℓ
+

16δ2τℓ(Ln)
γℓλ2n

+
4τℓ(Ln)(6Ψ(M) + 8R(ΠM⊥(θ∗)))2

γℓ
. (6.27)

In conjunction with Theorem 6.2, we see that it suffices to take a number of steps that is
logarithmic in the inverse tolerance (1/δ), again showing a geometric rate of convergence.

Whereas Theorem 6.1 requires setting the radius so that the constraint is active, Theo-
rem 6.2 has only a very mild constraint on the radius ρ̄, namely that it be large enough such
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that ρ̄ ≥ R(θ∗). The reason for this much milder requirement is that the additive regular-
ization with weight λn suffices to constrain the solution, whereas the extra side constraint is
only needed to ensure good behavior of the optimization algorithm in the first few iterations.
The regularization parameter λn must satisfy the so-called dual norm condition (6.24), which
was required in establishing the statistical bounds presented throughout this thesis.

Step-size setting: It seems that the updates (6.3) and (6.4) need to know the smoothness
bound γu in order to set the step-size for gradient updates. However, we can use the same
doubling trick as described in Algorithm (3.1) of Nesterov [102]. At each step, we check if
the smoothness upper bound holds at the current iterate relative to the previous one. If
the condition does not hold, we double our estimate of γu and resume. This guarantees a
geometric convergence with a contraction factor worse at most by a factor of 2, compared
to the knowledge of γu. We refer the reader to Nesterov [102] for details.

The following subsections are devoted to the development of some consequences of The-
orems 6.1 and 6.2 and Corollary 6.1 for some specific statistical models, among them sparse
linear regression with ℓ1-regularization, and matrix regression with nuclear norm regular-
ization. In contrast to the entirely deterministic arguments that underlie the Theorems 6.1
and 6.2, these corollaries involve probabilistic arguments, more specifically in order to estab-
lish that the RSC and RSM properties hold with high probability.

6.3.2 Sparse vector regression

Recall from Section 6.2.4 the observation model for sparse linear regression. In a variety of
applications, it is natural to assume that θ∗ is sparse. For a parameter q ∈ [0, 1] and radius
Rq > 0, let us define the ℓq “ball”

Bq(Rq) : =
{
θ ∈ R

d |
d∑

j=1

|βj|q ≤ Rq

}
. (6.28)

Note that q = 0 corresponds to the case of “hard sparsity”, for which any vector β ∈ B0(R0)
is supported on a set of cardinality at most R0. For q ∈ (0, 1], membership in the set
Bq(Rq) enforces a decay rate on the ordered coefficients, thereby modelling approximate
sparsity. In order to estimate the unknown regression vector θ∗ ∈ Bq(Rq), we consider
the least-squares Lasso estimator from Section 6.2.4, based on the quadratic loss function
L(θ;Zn

1 ) : = 1
2n
‖y − Xθ‖22, where X ∈ R

n×d is the design matrix. In order to state a
concrete result, we consider a random design matrix X, in which each row xi ∈ R

d is drawn
i.i.d. from a N(0,Σ) distribution, where Σ is a positive definite covariance matrix. We
refer to this as the Σ-ensemble of random design matrices, and use σmax(Σ) and σmin(Σ) to
refer the maximum and minimum eigenvalues of Σ respectively, and ζ(Σ) := max

j=1,2,...,d
Σjj
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for the maximum variance. We also assume that the observation noise is zero-mean and
sub-Gaussian with parameter ν2.

Guarantees for constrained Lasso: Our convergence rate on the optimization error
θt − θ̂ is stated in terms of the contraction coefficient

κ : =
{
1− σmin(Σ)

4σmax(Σ)
+ χn(Σ)

} {
1− χn(Σ)

}−1

, (6.29)

where we have adopted the shorthand

χn(Σ) :=

{
c0ζ(Σ)
σmax(Σ)

Rq

(
log d
n

)1−q/2
for q > 0

c0ζ(Σ)
σmax(Σ)

k
(
log d
n

)
for q = 0

, for a numerical constant c0, (6.30)

We assume that χn(Σ) is small enough to ensure that κ ∈ (0, 1); in terms of the sample size,

this amounts to a condition of the form n = Ω(R
1/(1−q/2)
q log d). Such a scaling is sensible,

since it is known from minimax theory on sparse linear regression [109] to be necessary for
any method to be statistically consistent over the ℓq-ball.

With this set-up, we have the following consequence of Theorem 6.1:

Corollary 6.2 (Sparse vector recovery). Under conditions of Theorem 6.1, suppose that we
solve the constrained Lasso with ρ ≤ ‖θ∗‖1.

(a) Exact sparsity: If θ∗ is supported on a subset of cardinality k, then with probability at
least 1− exp(−c1 log d), the iterates (6.3) with γu = 2σmax(Σ) satisfy

‖θt − θ̂‖22 ≤ κt‖θ0 − θ̂‖22 + c2 χn(Σ) ‖θ̂ − θ∗‖22 for all t = 0, 1, 2, . . .. (6.31)

(b) Weak sparsity: Suppose that θ∗ ∈ Bq(Rq) for some q ∈ (0, 1]. Then with probability at
least 1− exp(−c1 log d), the iterates (6.3) with γu = 2σmax(Σ) satisfy

‖θt − θ̂‖22 ≤ κt ‖θ0 − θ̂‖22 + c2 χn(Σ)

{
Rq

( log d
n

)1−q/2
+ ‖θ̂ − θ∗‖22

}
. (6.32)

We provide the proof of Corollary 6.2 in Section 6.5.4. Here we compare part (a), which
deals with the special case of exactly sparse vectors, to some past work that has established
convergence guarantees for optimization algorithms for sparse linear regression. Certain
methods are known to converge at sublinear rates (e.g., [14]), more specifically at the rate
O(1/t2). The geometric rate of convergence guaranteed by Corollary 6.2 is exponentially
faster. Other work on sparse regression has provided geometric rates of convergence that
hold once the iterates are close to the optimum [22, 58], or geometric convergence up to
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the noise level ν2 using various methods, including greedy methods [134] and thresholded
gradient methods [54]. In contrast, Corollary 6.2 guarantees geometric convergence for all
iterates up to a precision below that of statistical error. For these problems, the statistical
error ν2k log d

n
is typically much smaller than the noise variance ν2, and decreases as the sample

size is increased.
In addition, Corollary 6.2 also applies to the case of approximately sparse vectors, lying

within the set Bq(Rq) for q ∈ (0, 1]. There are some important differences between the case
of exact sparsity (Corollary 6.2(a)) and that of approximate sparsity (Corollary 6.2(b)). Part
(a) guarantees geometric convergence to a tolerance depending only on the statistical error

‖θ̂ − θ∗‖2. In contrast, the second result also has the additional term Rq

(
log d
n

)1−q/2
. This

second term arises due to the statistical non-identifiability of linear regression over the ℓq-ball,

and it is no larger than ‖θ̂ − θ∗‖22 with high probability. This assertion follows from known
results [109] about minimax rates for linear regression over ℓq-balls; these unimprovable rates
include a term of this order.

Guarantees for regularized Lasso: Using similar methods, we can also use Theorem 6.2
to obtain an analogous guarantee for the regularized Lasso estimator. Here focus only
on the case of exact sparsity, although the result extends to approximate sparsity in a
similar fashion. Letting ci, i = 0, 1, 2, 3, 4 be universal positive constants, we define the
modified curvature constant γℓ : = γℓ − c0

k log d
n

ζ(Σ). Our results assume that n = Ω(k log d),
a condition known to be necessary for statistical consistency, so that γℓ > 0. The contraction
factor then takes the form

κ : =
{
1− σmin(Σ)

16σmax(Σ)
+ c1χn(Σ)

} {
1− c2χn(Σ)

}−1
, where χn(Σ) =

ζ(Σ)

γℓ

k log d

n
.

The tolerance factor in the optimization is given by

ǫ2tol : =
5 + c2χn(Σ)

1− c3χn(Σ)

ζ(Σ) k log d

n
‖θ∗ − θ̂‖22, (6.33)

where θ∗ ∈ R
d is the unknown regression vector, and θ̂ is any optimal solution. With this

notation, we have the following corollary.

Corollary 6.3 (Regularized Lasso). Under conditions of Theorem 6.2, suppose that we solve

the regularized Lasso with λn = 6
√

ν log d
n

, and that θ∗ is supported on a subset of cardinality at

most k. Then with probability at least 1− exp(−c4 log d), for any δ2 ≥ ǫ2
tol
, for any optimum

θ̂λn, we have

‖θt − θ̂λn‖22 ≤ δ2 for all iterations t ≥
(
log

φn(θ0)−φn(θ̂λn )
δ2

)
/
(
log 1

κ

)
.
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As with Corollary 6.2(a), this result guarantees that O(log(1/ǫ2tol)) iterations are sufficient to

obtain an iterate θt that is within squared error O(ǫ2tol) of any optimum θ̂λn . Moreover, when-
ever k log d

n
= o(1)—a condition that is required for statistical consistency of any method—the

optimization tolerance ǫ2tol is of lower order than the statistical error ‖θ∗ − θ‖22.

6.3.3 Matrix regression with rank constraints

We now turn estimation of matrices under various types of “soft” rank constraints. Recall
the model of matrix regression from Section 6.2.4, and the M -estimator based on least-
squares regularized with the nuclear norm (6.15). So as to reduce notational overhead, here
we specialize to square matrices Θ∗ ∈ R

m×m, so that our observations are of the form

yi = 〈〈Xi, Θ
∗〉〉+ wi, for i = 1, 2, . . . , n, (6.34)

where Xi ∈ R
m×m is a matrix of covariates, and wi ∼ N(0, ν2) is Gaussian noise. As

discussed in Section 6.2.4, the nuclear norm R(Θ) = |||Θ|||nuc =
∑m

j=1 σj(Θ) is decomposable
with respect to appropriately chosen matrix subspaces, and we exploit this fact heavily in
our analysis.

We model the behavior of both exactly and approximately low-rank matrices by enforcing
a sparsity condition on the vector σ(Θ) =

[
σ1(Θ) σ2(Θ) · · · σd(Θ)

]
of singular values.

In particular, for a parameter q ∈ [0, 1], we define the ℓq-“ball” of matrices

Bq(Rq) : =
{
Θ ∈ R

m×m |
m∑

j=1

|σj(Θ)|q ≤ Rq

}
. (6.35)

Note that if q = 0, then B0(R0) consists of the set of all matrices with rank at most r = R0.
On the other hand, for q ∈ (0, 1], the set Bq(Rq) contains matrices of all ranks, but enforces
a relatively fast rate of decay on the singular values.

Bounds for matrix compressed sensing

We begin by considering the compressed sensing version of matrix regression discussed in
Chapter 4, a model first introduced by Recht et al. [117], and later studied by other authors
(e.g., [79]). In this model, the observation matrices Xi ∈ R

m×m are dense and drawn from
some random ensemble. The simplest example is the standard Gaussian ensemble, in which
each entry of Xi is drawn i.i.d. as standard normal N(0, 1). Note that Xi is a dense matrix
in general; this in an important contrast with the matrix completion setting to follow shortly.

Here we consider a more general ensemble of random matrices Xi, in which each matrix
Xi ∈ R

m×m is drawn i.i.d. from a zero-mean normal distribution in R
m2

with covariance ma-
trix Σ ∈ R

m2×m2
. The setting Σ = Im2×m2 recovers the standard Gaussian ensemble studied

in past work. As usual, we let σmax(Σ) and σmin(Σ) define the maximum and minimum
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eigenvalues of Σ, and we define ζmat(Σ) = sup‖u‖2=1 sup‖v‖2=1 var
(
〈〈X, uvT 〉〉

)
, corresponding

to the maximal variance of X when projected onto rank one matrices. For the identity
ensemble, we have ζmat(I) = 1.

We now state a result on the convergence of the updates (6.16) when applied to a sta-
tistical problem involving a matrix Θ∗ ∈ Bq(Rq). The convergence rate depends on the
contraction coefficient

κ : =
{
1− σmin(Σ)

4σmax(Σ)
+ χn(Σ)

} {
1− χn(Σ)

}−1

,

where χn(Σ) :=
c1ζmat(Σ)
σmax(Σ)

Rq

(
m
n

)1−q/2
for some universal constant c1. In the case q = 0, cor-

responding to matrices with rank at most r, note that we have R0 = r. With this notation,
we have the following convergence guarantee:

Corollary 6.4 (Low-rank matrix recovery). Under conditions of Theorem 6.1, consider
the semidefinite program (6.15) with ρ ≤ |||Θ∗|||nuc, and suppose that we apply the projected
gradient updates (6.16) with γu = 2σmax(Σ).

(a) Exactly low-rank: In the case q = 0, if Θ∗ has rank r < d, then with probability at
least 1− exp(−c0m), the iterates (6.16) satisfy the bound

|||Θt − Θ̂|||2F ≤ κt|||Θ0 − Θ̂|||2F + c2 χn(Σ) |||Θ̂−Θ∗|||2F for all t = 0, 1, 2, . . .. (6.36)

(b) Approximately low-rank: If Θ∗ ∈ Bq(Rq) for some q ∈ (0, 1], then with probability at
least 1− exp(−c0m), the iterates (6.16) satisfy

|||Θt − Θ̂|||2F ≤ κt |||Θ0 − Θ̂|||2F + c2χn(Σ)

{
Rq

(
m

n

)1−q/2
+ |||Θ̂−Θ∗|||2F

}
, (6.37)

Although quantitative aspects of the rates are different, Corollary 6.4 is analogous to
Corollary 6.2. For the case of exactly low rank matrices (part (a)), geometric convergence

is guaranteed up to a tolerance involving the statistical error |||Θ̂ − Θ∗|||2F . For the case of
approximately low rank matrices (part (b)), the tolerance term involves an additional factor

of Rq

(
m
n

)1−q/2
. Again, from known results on minimax rates for matrix estimation [119], this

term is known to be of comparable or lower order than the quantity |||Θ̂−Θ∗|||2F . As before,
it is also possible to derive an analogous corollary of Theorem 6.2 for estimating low-rank
matrices; in the interests of space, we leave such a development to the reader.
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Bounds for matrix completion

In this model, observation yi is a noisy version of a randomly selected entry Θ∗
a(i),b(i) of the

unknown matrix Θ∗. Applications of this matrix completion problem include collaborative
filtering [126], where the rows of the matrix Θ∗ correspond to users, and the columns cor-
respond to items (e.g., movies in the Netflix database), and the entry Θ∗

ab corresponds to
user’s a rating of item b. Given observations of only a subset of the entries of Θ∗, the goal is
to fill in, or complete the matrix, thereby making recommendations of movies that a given
user has not yet seen.

Matrix completion can be viewed as a particular case of the matrix regression model (6.14),
in particular by setting Xi = Ea(i)b(i), corresponding to the matrix with a single one in po-
sition (a(i), b(i)), and zeroes in all other positions. Note that these observation matrices
are extremely sparse, in contrast to the compressed sensing model. As shown in Chapter 5,
nuclear-norm based estimators for matrix completion are known to have good statistical
properties (see also the papers [33, 115, 126]). Here we consider the M -estimator

Θ̂ ∈ argmin
Θ∈Ω

1

2n

n∑

i=1

(
yi −Θa(i)b(i)

)2
such that |||Θ|||nuc ≤ ρ, (6.38)

where Ω = {Θ ∈ R
m×m | ‖Θ‖∞ ≤ α

m
} is the set of matrices with bounded elementwise

ℓ∞ norm. This constraint eliminates matrices that are overly “spiky” (i.e., concentrate too
much of their mass in a single position); as discussed in Chapter 5, such spikiness control is
necessary in order to bound the non-identifiable component of the matrix completion model.

Corollary 6.5 (Matrix completion). Under the conditions of Theorem 6.1, suppose that
Θ∗ ∈ Bq(Rq), and that we solve the program (6.38) with ρ ≤ |||Θ∗|||nuc. As long as n >

c0R
1/(1−q/2)
q m logm for a sufficiently large constant c0, then with probability at least 1 −

exp(−c1m logm), there is a contraction coefficient κt ∈ (0, 1) that decreases with t such that
for all iterations t = 0, 1, 2, . . .,

|||Θt+1 − Θ̂|||2F ≤ κtt |||Θ0 − Θ̂|||2F + c2

{
Rq

( α2m logm

n

)1−q/2
+ |||Θ̂−Θ∗|||2F

}
. (6.39)

In some cases, the bound on Θ‖∞ in the algorithm (6.38) might be unknown, or undesir-
able. While this constraint is necessary in general 5.3.2, it can be avoided if more information
such as the sampling distribution (that is, the distribution of Xi) is known and used to con-
struct the estimator. In this case, Koltchinskii et al. [74] show error bounds on a nuclear

norm penalized estimator without requiring ℓ∞ bound on Θ̂.
Again a similar corollary of Theorem 6.2 can be derived by combining the proof of

Corollary 6.5 with that of Theorem 6.2. An interesting aspect of this problem is that the

condition 6.24(b) takes the form λn >
cα
√
m logm/n

1−κ , where α is a bound on ‖Θ‖∞. This
condition is independent of ρ̄, and hence, given a sample size as stated in the corollary, the
algorithm always converges geometrically for any radius ρ̄ ≥ |||Θ∗|||nuc.
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6.3.4 Matrix decomposition problems

In recent years, various researchers have studied methods for solving the problem of matrix
decomposition (e.g., [38, 36, 148, 2, 62]). The basic problem has the following form: given a
pair of unknown matrices Θ∗ and Γ∗, both lying in R

d1×d2 , suppose that we observe a third
matrix specified by the model Y = Θ∗ + Γ∗ +W , where W ∈ R

d1×d2 represents observation
noise. Typically the matrix Θ∗ is assumed to be low-rank, and some low-dimensional struc-
tural constraint is assumed on the matrix Γ∗. For example, the papers [38, 36, 62] consider
the setting in which Γ∗ is sparse, while Xu et al. [148] consider a column-sparse model, in
which only a few of the columns of Γ∗ have non-zero entries. In order to illustrate the appli-
cation of our general result to this setting, here we consider the low-rank plus column-sparse
framework [148]. (We note that since the ℓ1-norm is decomposable, similar results can easily
be derived for the low-rank plus entrywise-sparse setting as well.)

Since Θ∗ is assumed to be low-rank, as before we use the nuclear norm |||Θ|||nuc as a
regularizer (see Section 6.2.4). We assume that the unknown matrix Γ∗ ∈ R

d1×d2 is column-
sparse, say with at most k < d2 non-zero columns. A suitable convex regularizer for this
matrix structure is based on the columnwise (1, 2)-norm, given by

‖Γ‖1,2 : =
d2∑

j=1

‖Γj‖2, (6.40)

where Γj ∈ R
d1 denotes the jth column of Γ. Note also that the dual norm is given by

the elementwise (∞, 2)-norm ‖Γ‖∞,2 = maxj=1,...,d2 ‖Γj‖2, corresponding to the maximum
ℓ2-norm over columns.

In order to estimate the unknown pair (Θ∗,Γ∗), we consider the M -estimator

(Θ̂, Γ̂) : = argmin
Θ,Γ

|||Y −Θ− Γ|||2F such that |||Θ|||nuc ≤ ρΘ, ‖Γ‖1,2 ≤ ρΓ and ‖Θ‖∞,2 ≤
α√
d2

(6.41)

The first two constraints restrict Θ and Γ to a nuclear norm ball of radius ρΘ and a
(1, 2)-norm ball of radius ρΓ, respectively. The final constraint controls the “spikiness” of
the low-rank component Θ, as measured in the (∞, 2)-norm, corresponding to the maxi-
mum ℓ2-norm over the columns. As with the elementwise ℓ∞-bound for matrix completion,
this additional constraint is required in order to limit the non-identifiability in matrix de-
composition. (See the paper [2] for more discussion of non-identifiability issues in matrix
decomposition.)

With this set-up, consider the projected gradient algorithm when applied to the matrix
decomposition problem: it generates a sequence of matrix pairs (Θt,Γt) for t = 0, 1, 2, . . .,

and the optimization error is characterized in terms of the matrices ∆̂t
Θ : = Θt − Θ̂ and

∆̂t
Γ : = Γt − Γ̂. Finally, we measure the optimization error at time t in terms of the squared
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Frobenius error e2(∆̂t
Θ, ∆̂

t
Γ) : = |||∆̂t

Θ|||2F + |||∆̂t
Γ|||2F , summed across both the low-rank and column-

sparse components.

Corollary 6.6 (Matrix decomposition). Under the conditions of Theorem 6.1, suppose that
‖Θ∗‖∞,2 ≤ α√

d2
and Γ∗ has at most k non-zero columns. If we solve the convex program (6.41)

with ρΘ ≤ |||Θ∗|||nuc and ρΓ ≤ ‖Γ∗‖1,2, then for all iterations t = 0, 1, 2, . . .,

e2(∆̂t
Θ, ∆̂

t
Γ) ≤

(
3

4

)t
e2(∆̂0

Θ, ∆̂
0
Γ) + c

(
|||Γ̂− Γ∗|||2F + α2 k

d2

)
.

This corollary has some unusual aspects, relative to the previous corollaries. First of all,
in contrast to the previous results, the guarantee is a deterministic one (as opposed to holding
with high probability). More specifically, the RSC/RSM conditions hold deterministic sense,
which should be contrasted with the high probability statements given in Corollaries 6.2-6.5.
Consequently, the effective conditioning of the problem does not depend on sample size and
we are guaranteed geometric convergence at a fixed rate, independent of sample size. The
additional tolerance term is completely independent of the rank of Θ∗ and only depends on
the column-sparsity of Γ∗.

6.4 Simulation results

In this section, we provide some experimental results that confirm the accuracy of our the-
oretical results, in particular showing excellent agreement with the linear rates predicted by
our theory. In addition, the rates of convergence slow down for smaller sample sizes, which
lead to problems with relatively poor conditioning. In all the simulations reported below,
we plot the log error ‖θt − θ̂‖ between the iterate θt at time t versus the final solution θ̂.
Each curve provides the results averaged over five random trials, according to the ensembles
which we now describe.

6.4.1 Sparse regression

We begin by considering the linear regression model y = Xθ∗ + w where θ∗ is the unknown
regression vector belonging to the set Bq(Rq), and i.i.d. observation noise wi ∼ N(0, 0.25).
We consider a family of ensembles for the random design matrix X ∈ R

n×d. In particular, we
construct X by generating each row xi ∈ R

d independently according to following procedure.
Let z1, . . . , zn be an i.i.d. sequence of N(0, 1) variables, and fix some correlation parameter
ω ∈ [0, 1). We first initialize by setting xi,1 = z1/

√
1− ω2, and then generate the remaining

entries by applying the recursive update xi,t+1 = ωxi,t + zt for t = 1, 2, . . . , d − 1, so that
xi ∈ R

d is a zero-mean Gaussian random vector. It can be verified that all the eigenvalues
of Σ = cov(xi) lie within the interval [ 1

(1+ω)2
, 2
(1−ω)2(1+ω) ], so that Σ has a a finite condition

number for all ω ∈ [0, 1). At one extreme, for ω = 0, the matrix Σ is the identity, and so
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has condition number equal to 1. As ω → 1, the matrix Σ becomes progressively more ill-
conditioned, with a condition number that is very large for ω close to one. As a consequence,
although incoherence conditions like the restricted isometry property can be satisfied when
ω = 0, they will fail to be satisfied (w.h.p.) once ω is large enough.

For this random ensemble of problems, we have investigated convergence rates for a
wide range of dimensions d and radii Rq. Since the results are relatively uniform across the
choice of these parameters, here we report results for dimension d = 20, 000, and radius
Rq = ⌈(log d)2⌉. In the case q = 0, the radius R0 = k corresponds to the sparsity level. The
per iteration cost in this case is O(nd). In order to reveal dependence of convergence rates
on sample size, we study a range of the form n = ⌈α k log d⌉, where the order parameter
α > 0 is varied.

Our first experiment is based on taking the correlation parameter ω = 0, and the ℓq-ball
parameter q = 0, corresponding to exact sparsity. We then measure convergence rates for
sample sizes specified by α ∈ {1, 1.25, 5, 25}. As shown by the results plotted in panel (a) of
Figure 6.2, projected gradient descent fails to converge for α = 1 or α = 1.25; in both these
cases, the sample size n is too small for the RSC and RSM conditions to hold, so that a
constant step size leads to oscillatory behavior in the algorithm. In contrast, once the order
parameter α becomes large enough to ensure that the RSC/RSM conditions hold (w.h.p.),

we observe a geometric convergence of the error ‖θt − θ̂‖2. Moreover the convergence rate
is faster for α = 25 compared to α = 5, since the RSC/RSM constants are better with
larger sample size. Such behavior is in agreement with the conclusions of Corollary 6.2,
which predicts that the the convergence rate should improve as the number of samples n is
increased.
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Figure 6.2. Plot of the log of the optimization error log(‖θt − θ̂‖2) in the sparse linear
regression problem, rescaled so the plots start at 0. In this problem, d = 20000, k = ⌈log d⌉,
n = αk log d. Plot (a) shows convergence for the exact sparse case with q = 0 and Σ = I
(i.e. ω = 0). In panel (b), we observe how convergence rates change as the correlation
parameter ω is varied for q = 0 and α = 25. Plot (c) shows the convergence rates when
ω = 0, α = 25 and q is varied.
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On the other hand, Corollary 6.2 also predicts that convergence rates should be slower
when the condition number of Σ is worse. In order to test this prediction, we again studied
an exactly sparse problem (q = 0), this time with the fixed sample size n = ⌈25k log d⌉, and
we varied the correlation parameter ω ∈ {0, 0.5, 0.8}. As shown in panel (b) of Figure 6.2,
the convergence rates slow down as the correlation parameter is increased and for the case
of extremely high correlation of ω = 0.8, the optimization error curve is almost flat—the
method makes very slow progress in this case.

A third prediction of Corollary 6.2 is that the convergence of projected gradient descent
should become slower as the sparsity parameter q is varied between exact sparsity (q = 0),
and the least sparse case (q = 1). (In particular, note for n > log d, the quantity χn from
equation (6.30) is monotonically increasing with q.) Panel (c) of Figure 6.2 shows convergence
rates for the fixed sample size n = 25k log d and correlation parameter ω = 0, and with the
sparsity parameter q ∈ {0, 0.5, 1.0}. As expected, the convergence rate slows down as q
increases from 0 to 1. Corollary 6.2 further captures how the contraction factor changes
as the problem parameters (k, d, n) are varied. In particular, it predicts that as we change
the triplet simultaneously, while holding the ratio α = k log d/n constant, the convergence
rate should stay the same. We recall that this phenomenon was indeed demonstrated in
Figure 1.1 in Section 1.3.

6.4.2 Low-rank matrix estimation

We also performed experiments with two different versions of low-rank matrix regression.
Our simulations applied to instances of the observation model yi = 〈〈Xi, Θ∗〉〉 + wi, for
i = 1, 2, . . . , n, where Θ∗ ∈ R

200×200 is a fixed unknown matrix, Xi ∈ R
200×200 is a matrix of

covariates, and wi ∼ N(0, 0.25) is observation noise. In analogy to the sparse vector problem,
we performed simulations with the matrix Θ∗ belonging to the set Bq(Rq) of approximately
low-rank matrices, as previously defined in equation (6.35) for q ∈ [0, 1]. The case q = 0
corresponds to the set of matrices with rank at most r = R0, whereas the case q = 1
corresponds to the ball of matrices with nuclear norm at most R1.

In our first set of matrix experiments, we considered the matrix version of compressed
sensing [116], in which each matrix Xi ∈ R

200×200 is randomly formed with i.i.d. N(0, 1)
entries, as described in Section 6.3.3. In the case q = 0, we formed a matrix Θ∗ ∈ R

200×200

with rank R0 = 5, and performed simulations over the sample sizes n = αR0m, with the
parameter α ∈ {1, 1.25, 5, 25}. The per iteration cost in this case is O(nm2). As seen in
panel (a) of Figure 6.3, the projected gradient descent method exhibits behavior that is
qualitatively similar to that for the sparse linear regression problem. More specifically, it
fails to converge when the sample size (as reflected by the order parameter α) is too small,
and converges geometrically with a progressively faster rate as α is increased. We have also
observed similar types of scaling as the matrix sparsity parameter is increased from q = 0 to
q = 1.

In our second set of matrix experiments, we studied the behavior of projected gradient
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Figure 6.3. (a) Plot of log Frobenius error log(|||Θt − Θ̂|||F ) versus number of iterations
in matrix compressed sensing for a matrix size m = 200 with rank R0 = 5, and sample
sizes n = αR0m. For α ∈ {1, 1.25}, the algorithm oscillates, whereas geometric convergence
is obtained for α ∈ {5, 25}, consistent with the theoretical prediction. (b) Plot of log

Frobenius error log(|||Θt − Θ̂|||F ) versus number of iterations in matrix completion with
m = 200, R0 = 5, and n = αRom log(m) with α ∈ {1, 2, 5, 25}. For α ∈ {2, 5, 25} the
algorithm enjoys geometric convergence.

descent for the problem of matrix completion, as described in Section 6.3.3. For this problem,
we again studied matrices of dimension m = 200 and rank R0 = 5, and we varied the sample
size as n = α R0 m logm for α ∈ {1, 2, 5, 25}. As shown in panel (b) of Figure 6.3, projected
gradient descent for matrix completion also enjoys geometric convergence for α large enough.

6.5 Proofs

In this section, we provide the proofs of our results. Recall that we use ∆̂t : = θt − θ̂ to
denote the optimization error, and ∆∗ = θ̂ − θ∗ to denote the statistical error. For future
reference, we point out a slight weakening of restricted strong convexity (RSC), useful for
obtaining parts of our results. As the to follow reveals, it is only necessary to enforce an
RSC condition of the form

TL(θ
t; θ̂) ≥ γℓ

2
‖θt − θ̂‖2 − τℓ(Ln) R2(θt − θ̂)− δ2, (6.42)

which is milder than the original RSC condition (6.8), in that it applies only to differences

of the form θt − θ̂, and allows for additional slack δ. We make use of this refined notion in
the proofs of various results to follow.
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With this relaxed RSC condition and the same RSM condition as before, our proof shows
that

‖θt+1 − θ̂‖2 ≤ κt ‖θ0 − θ̂‖2 + ǫ2(∆∗;M,M) + 2δ2/γu
1− κ

for all iterations t = 0, 1, 2, . . ..

(6.43)

Note that this result reduces to the previous statement when δ = 0. This extension of
Theorem 6.1 is used in the proofs of Corollaries 6.5 and 6.6.

We will assume without loss of generality that all the iterates lie in the subset Ω′ of
Ω. This can be ensured by augmenting the loss with the indicator of Ω′ or equivalently
performing projections on the set Ω′ ∩ BR(ρ) as mentioned earlier.

6.5.1 Proof of Theorem 6.1

Recall that Theorem 6.1 concerns the constrained problem (6.1). The proof is based on
two technical lemmas. The first lemma guarantees that at each iteration t = 0, 1, 2, . . .,
the optimization error ∆̂t = θt − θ̂ belongs to an interesting constraint set defined by the
regularizer.

Lemma 6.1. Let θ̂ be any optimum of the constrained problem (6.1) for which R(θ̂) = ρ.

Then for any iteration t = 1, 2, . . . and for any R-decomposable subspace pair (M,M⊥
), the

optimization error ∆̂t : = θt − θ̂ belongs to the set

S(M;M; θ∗) : =

{
∆ ∈ Ω | R(∆) ≤ 2Ψ(M) ‖∆‖+ 2R(ΠM⊥(θ∗)) + 2R(∆∗) + Ψ(M)‖∆∗‖

}
.

(6.44)

The proof of this lemma, provided in Appendix D.1.1, exploits the decomposability of the
regularizer in an essential way.

The structure of the set (6.44) takes a simpler form in the special case when M is
chosen to contain θ∗ and M = M. In this case, we have R(ΠM⊥(θ∗)) = 0, and hence the

optimization error ∆̂t satisfies the inequality

R(∆̂t) ≤ 2Ψ(M)
{
‖∆̂t‖+ ‖∆∗‖

}
+ 2R(∆∗). (6.45)

An inequality of this type, when combined with the definitions of RSC/RSM, allows us to
establish the curvature conditions required to prove globally geometric rates of convergence.

We now state a second lemma under the more general RSC condition (6.42):
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Lemma 6.2. Under the RSC condition (6.42) and RSM condition (6.10), for all t =
0, 1, 2, . . ., we have

γu 〈θt − θt+1, θt − θ̂〉
≥
{γu

2
‖θt − θt+1‖2 − τu(Ln)R2(θt+1 − θt)

}
+
{γℓ
2
‖θt − θ̂‖2 − τℓ(Ln)R2(θt − θ̂)− δ2

}
.

(6.46)

The proof of this lemma, provided in Appendix D.1.2, follows along the lines of the
intermediate result within Theorem 2.2.8 of Nesterov [101], but with some care required
to handle the additional terms that arise in our weakened forms of strong convexity and
smoothness.

Using these auxiliary results, let us now complete the the proof of Theorem 6.1. We first
note the elementary relation

‖θt+1 − θ̂‖2 = ‖θt − θ̂ − θt + θt+1‖2 = ‖θt − θ̂‖2 + ‖θt − θt+1‖2 − 2〈θt − θ̂, θt − θt+1〉.
(6.47)

We now use Lemma 6.2 and the more general form of RSC (6.42) to control the cross-term,
thereby obtaining the upper bound

‖θt+1 − θ̂‖2 ≤ ‖θt − θ̂‖2 − γℓ
γu

‖θt − θ̂‖2 + 2τu(Ln)
γu

R2(θt+1 − θt) +
2τℓ(Ln)
γu

R2(θt − θ̂) +
2δ2

γu

=
(
1− γℓ

γu

)
‖θt − θ̂‖2 + 2τu(Ln)

γu
R2(θt+1 − θt) +

2τℓ(Ln)
γu

R2(θt − θ̂) +
2δ2

γu
.

We now observe that by triangle inequality and the Cauchy-Schwarz inequality,

R2(θt+1 − θt) ≤
(
R(θt+1 − θ̂) +R(θ̂ − θt)

)2 ≤ 2R2(θt+1 − θ̂) + 2R2(θt − θ̂).

Recall the definition of the optimization error ∆̂t : = θt − θ̂, we have the upper bound

‖∆̂t+1‖2 ≤
(
1− γℓ

γu

)
‖∆̂t‖2 + 4τu(Ln)

γu
R2(∆̂t+1) +

4τu(Ln) + 2τℓ(Ln)
γu

R2(∆̂t) +
2δ2

γu
. (6.48)

We now apply Lemma 6.1 to control the terms involving R2. In terms of squared quan-
tities, the inequality (6.44) implies that

R2(∆̂t) ≤ 4Ψ2(M⊥
) ‖∆̂t‖2 + 2ν2(∆∗;M,M) for all t = 0, 1, 2, . . .,
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where we recall that Ψ2(M⊥
) is the subspace compatibility (3.21) and ν2(∆∗;M,M) accu-

mulates all the residual terms. Applying this bound twice—once for t and once for t+1—and

substituting into equation (6.48) yields that
{
1− 16Ψ2(M

⊥
)τu(Ln)

γu

}
‖∆t+1‖2 is upper bounded

by

{
1− γℓ

γu
+

16Ψ2(M⊥
)
(
τu(Ln) + τℓ(Ln)

)

γu

}
‖∆t‖2 + 16

(
τu(Ln) + τℓ(Ln)

)
ν2(∆∗;M,M)

γu
+

2δ2

γu
.

Under the assumptions of Theorem 6.1, we are guaranteed that 16Ψ2(M
⊥
)τu(Ln)

γu
< 1/2, and

so we can re-arrange this inequality into the form

‖∆t+1‖2 ≤ κ ‖∆t‖2 + ǫ2(∆∗;M,M) +
2δ2

γu
(6.49)

where κ and ǫ2(∆∗;M,M) were previously defined in equations (6.17) and (6.18) respec-
tively. Iterating this recursion yields

‖∆t+1‖2 ≤ κt ‖∆0‖2+
(
ǫ2(∆∗;M,M) +

2δ2

γu

)( t∑

j=0

κj
)
.

The assumptions of Theorem 6.1 guarantee that κ ∈ (0, 1), so that summing the geometric
series yields the claim (6.19).

6.5.2 Proof of Theorem 6.2

The Lagrangian version of the optimization program is based on solving the convex pro-
gram (6.2), with the objective function φ(θ) = Ln(θ) + λnR(θ). Our proof is based on

analyzing the error φ(θt)− φ(θ̂) as measured in terms of this objective function. It requires
two technical lemmas, both of which are stated in terms of a given tolerance η > 0, and an
integer T > 0 such that

φ(θt)− φ(θ̂) ≤ η for all t ≥ T . (6.50)

Our first technical lemma is analogous to Lemma 6.1, and restricts the optimization error
∆̂t = θt − θ̂ to a cone-like set.

Lemma 6.3 (Iterated Cone Bound (ICB)). Let θ̂ be any optimum of the regularized M-
estimator (6.2). Under condition (6.50) with parameters (T, η), for any iteration t ≥ T

and for any R-decomposable subspace pair (M,M⊥
), the optimization error ∆̂t : = θt − θ̂

satisfies

R(∆̂t) ≤ 4Ψ(M)‖∆̂t‖+ 8Ψ(M)‖∆∗‖+ 8R(ΠM⊥(θ∗)) + 2min

(
η

λn
, ρ̄

)
(6.51)
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Our next lemma guarantees sufficient decrease of the objective value difference φ(θt) −
φ(θ̂). Lemma 6.3 plays a crucial role in its proof. Recall the definition (6.22) of the compound
contraction coefficient κ(Ln;M), defined in terms of the related quantities ξ(M) and β(M).
Throughout the proof, we drop the arguments of κ, ξ and β so as to ease notation.

Lemma 6.4. Under the RSC (6.42) and RSM conditions (6.10), as well as assumption (6.50)
with parameters (η, T ), for all t ≥ T , we have

φ(θt)− φ(θ̂) ≤ κt−T (φ(θT )− φ(θ̂)) +
2

1− κ
ξ(M) β(M)(ε2 + ǭ2

stat
),

where ε : = 2min(η/λn, ρ̄) and ǭstat : = 8Ψ(M)‖∆∗‖+ 8R(ΠM⊥(θ∗)).

We are now in a position to prove our main theorem, in particular via a recursive appli-
cation of Lemma 6.4. At a high level, we divide the iterations t = 0, 1, 2, . . . into a series of
disjoint epochs [Tk, Tk+1) with 0 = T0 ≤ T1 ≤ T2 ≤ · · · . Moreover, we define an associated
sequence of tolerances η0 > η1 > · · · such that at the end of epoch [Tk−1, Tk), the optimiza-

tion error has been reduced to ηk. Our analysis guarantees that φ(θt) − φ(θ̂) ≤ ηk for all
t ≥ Tk, allowing us to apply Lemma 6.4 with smaller and smaller values of η until it reduces
to the statistical error ǭstat.

At the first iteration, we have no a priori bound on the error η0 = φ(θ0)−φ(θ̂). However,
since Lemma 6.4 involves the quantity ε = min(η/λn, ρ̄), we may still apply it5 at the first
epoch with ε0 = ρ̄ and T0 = 0. In this way, we conclude that for all t ≥ 0,

φ(θt)− φ(θ̂) ≤ κt(φ(θ0)− φ(θ̂)) +
2

1− κ
ξβ(ρ̄2 + ǭ2stat).

Now since the contraction coefficient κ ∈ (0, 1), for all iterations t ≥ T1 : = (⌈log(2 η0/η1)/ log(1/κ)⌉)+,
we are guaranteed that

φ(θt)− φ(θ̂) ≤ 4 ξβ

1− κ
(ρ̄2 + ǭ2stat)

︸ ︷︷ ︸
η1

≤ 8ξβ

1− κ
max(ρ̄2, ǭ2stat).

This same argument can now be applied in a recursive manner. Suppose that for some
k ≥ 1, we are given a pair (ηk, Tk) such that condition (6.50) holds. An application of
Lemma 6.4 yields the bound

φ(θt)− φ(θ̂) ≤ κt−Tk(φ(θTk)− φ(θ̂)) +
2 ξβ

1− κ
(ε2k + ǭ2stat) for all t ≥ Tk.

5It is for precisely this reason that our regularized M -estimator includes the additional side-constraint
defined in terms of ρ̄.
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We now define ηk+1 : =
4 ξβ
1−κ(ε

2
k+ ǭ

2
stat). Once again, since κ < 1 by assumption, we can choose

Tk+1 : = ⌈log(2ηk/ηk+1)/ log(1/κ)⌉+ Tk, thereby ensuring that for all t ≥ Tk+1, we have

φ(θt)− φ(θ̂) ≤ 8ξβ

1− κ
max(ε2k, ǭ

2
stat).

In this way, we arrive at recursive inequalities involving the tolerances {ηk}∞k=0 and time
steps {Tk}∞k=0—namely

ηk+1 ≤
8 ξβ

1− κ
max(ε2k, ǭ

2
stat), where εk = 2 min{ηk/λn, ρ̄}, and (6.52a)

Tk ≤ k +
log(2kη0/ηk)

log(1/κ)
. (6.52b)

Now we claim that the recursion (6.52a) can be unwrapped so as to show that

ηk+1 ≤
ηk

42k−1 and
ηk+1

λn
≤ ρ̄

42k
for all k = 1, 2, . . .. (6.53)

Taking these statements as given for the moment, let us now show how they can be used to
upper bound the smallest k such that ηk ≤ δ2. If we are in the first epoch, the claim of the
theorem is straightforward from equation (6.52a). If not, we first use the recursion (6.53)
to upper bound the number of epochs needed and then use the inequality (6.52b) to obtain
the stated result on the total number of iterations needed. Using the second inequality in
the recursion (6.53), we see that it is sufficient to ensure that ρ̄λn

42
k−1 ≤ δ2. Rearranging this

inequality, we find that the error drops below δ2 after at most

kδ ≥ log

(
log

(
ρ̄λn
δ2

)
/ log(4)

)
/ log(2) + 1 = log2 log2

(
ρ̄λn
δ2

)

epochs. Combining the above bound on kδ with the recursion 6.52b, we conclude that the
inequality φ(θt)− φ(θ̂) ≤ δ2 is guaranteed to hold for all iterations

t ≥ kδ

(
1 +

log 2

log(1/κ)

)
+

log η0
δ2

log(1/κ)
,

which is the desired result.

It remains to prove the recursion (6.53), which we do via induction on the index k. We begin
with base case k = 1. Recalling the setting of η1 and our assumption on λn in the theorem
statement (6.25), we are guaranteed that η1/λn ≤ ρ̄/4, so that ε1 ≤ ε0 = ρ̄. By applying
equation (6.52a) with ε1 = 2η1/λn and assuming ε1 ≥ ǭstat, we obtain

η2 ≤ 32ξβη21
(1− κ)λ2n

(i)

≤ 32ξβρ̄η1
(1− κ)4λn

(ii)

≤ η1
4
, (6.54)
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where step (i) uses the fact that η1
λn

≤ ρ̄
4
, and step (ii) uses the condition (6.25) on λn. We

have thus verified the first inequality (6.53) for k = 1. Turning to the second inequality in
the statement (6.53), using equation 6.54, we have

η2
λn

≤ η1
4λn

(iii)

≤ ρ̄

16
,

where step (iii) follows from the assumption (6.25) on λn. Turning to the inductive step, we
again assume that 2ηk/λn ≥ ǭstat and obtain from inequality (6.52a)

ηk+1 ≤
32ξβη2k

(1− κ)λ2n

(iv)

≤ 32ξβηkρ̄

(1− κ)λn42
k−1

(v)

≤ ηk
42k−1 .

Here step (iv) uses the second inequality of the inductive hypothesis (6.53) and step (v) is a
consequence of the condition on λn as before. The second part of the induction is similarly
established, completing the proof.

6.5.3 Proof of Corollary 6.1

In order to prove this claim, we must show that ǫ2(∆∗;M,M), as defined in equation (6.18),

is of order lower than E[‖θ̂− θ∗‖2] = E[‖∆∗‖2]. We make use of the following lemma, proved
in Appendix D.3:

Lemma 6.5. If ρ ≤ R(θ∗), then for any solution θ̂ of the constrained problem (6.1) and

any R-decomposable subspace pair (M,M⊥
), the statistical error ∆∗ = θ̂ − θ∗ satisfies the

inequality

R(∆∗) ≤ 2Ψ(M⊥
)‖∆∗‖+R(ΠM⊥(θ∗)). (6.55)

Using this lemma, we can complete the proof of Corollary 6.1. Recalling the form (6.18),
under the condition θ∗ ∈ M, we have

ǫ2(∆∗;M,M) : =
32
(
τu(Ln) + τℓ(Ln)

) (
2R(∆∗) + Ψ(M⊥

)‖∆∗‖
)2

γu
.

Using the assumption (τu(Ln)+τℓ(Ln))Ψ2(M
⊥
)

γu
= o(1), it suffices to show thatR(∆∗) ≤ 2Ψ(M⊥

)‖∆∗‖.
Since Corollary 6.1 assumes that θ∗ ∈ M and hence that ΠM⊥(θ∗) = 0, Lemma 6.5 implies

that R(∆∗) ≤ 2Ψ(M⊥
)‖∆∗‖, as required.
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6.5.4 Proofs of Corollaries 6.2 and 6.3

The central challenge in proving this result is verifying that suitable forms of the RSC and
RSM conditions hold with sufficiently small parameters τℓ(Ln) and τu(Ln).

Lemma 6.6. Define the maximum variance ζ(Σ) := max
j=1,2,...,d

Σjj. Under the conditions of

Corollary 6.2, there are universal positive constants (c0, c1) such that for all ∆ ∈ R
d, we

have

‖X∆‖22
n

≥ 1

2
‖Σ1/2∆‖22 − c1ζ(Σ)

log d

n
‖∆‖21, and (6.56a)

‖X∆‖22
n

≤ 2‖Σ1/2∆‖22 + c1ζ(Σ)
log d

n
‖∆‖21, (6.56b)

with probability at least 1− exp(−c0 n).

Note that this lemma implies that the RSC and RSM conditions both hold with high prob-
ability, in particular with parameters

γℓ =
1

2
σmin(Σ), and τℓ(Ln) = c1ζ(Σ)

log d

n
, for RSC, and

γu = 2σmax(Σ) and τu(Ln) = c1ζ(Σ)
log d

n
for RSM.

This lemma has been proved by Raskutti et al. [108] for obtaining minimax rates in sparse
linear regression.

Let us first prove Corollary 6.2 in the special case of hard sparsity (q = 0), in which θ∗ is
supported on a subset S of cardinality k. Let us define the model subspaceM : =

{
θ ∈ R

d | θj = 0 for all j
so that θ∗ ∈ M. Recall from Section 6.2.4 that the ℓ1-norm is decomposable with respect

to M and M⊥; as a consequence, we may also set M⊥
= M in the definitions (6.17)

and (6.18). By definition (3.21) of the subspace compatibility between with ℓ1-norm as
the regularizer, and ℓ2-norm as the error norm, we have Ψ2(M) = k. Using the settings
of τℓ(Ln) and τu(Ln) guaranteed by Lemma 6.6 and substituting into equation (6.17), we
obtain a contraction coefficient

κ(Σ) :=
{
1− σmin(Σ)

4σmax(Σ)
+ χn(Σ)

} {
1− χn(Σ)

}−1

, (6.57)

where χn(Σ) := c2ζ(Σ)
σmax(Σ)

k log d
n

for some universal constant c2. A similar calculation shows
that the tolerance term takes the form

ǫ2(∆∗;M,M) ≤ c3 φ(Σ; k, d, n)
{‖∆∗‖21

k
+ ‖∆∗‖22

}
for some constant c3.
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Since ρ ≤ ‖θ∗‖1, then Lemma 6.5 (as exploited in the proof of Corollary 6.1) shows that
‖∆∗‖21 ≤ 4k‖∆∗‖22, and hence that ǫ2(∆∗;M,M) ≤ c3 χn(Σ) ‖∆∗‖22. This completes the
proof of the claim (6.31) for q = 0.

We now turn to the case q ∈ (0, 1], for which we bound the term ǫ2(∆∗;M,M) using a

slightly different choice of the subspace pair M and M⊥
. For a truncation level µ > 0 to be

chosen, define the set Sµ : =
{
j ∈ {1, 2, . . . , d} | |θ∗j | > µ

}
, and define the associated sub-

spacesM = M(Sµ) andM⊥
= M⊥(Sµ). By combining Lemma 6.5 and the definition (6.18)

of ǫ2(∆∗;M,M), for any pair (M(Sµ),M⊥(Sµ)), we have

ǫ2(∆∗;M,M⊥) ≤ c ζ(Σ)

σmax(Σ)

log d

n

(
‖ΠM⊥(θ∗)‖1 +

√
|Sµ| ‖∆∗‖2

)2
,

where to simplify notation, we have omitted the dependence of M and M⊥ on Sµ. We now
choose the threshold µ optimally, so as to trade-off the term ‖ΠM⊥(θ∗)‖1, which decreases
as µ increases, with the term

√
Sµ‖∆∗‖2, which increases as µ increases.

By definition of M⊥(Sµ), we have

‖ΠM⊥(θ∗)‖1 =
∑

j /∈Sµ

|θ∗j | = µ
∑

j /∈Sµ

|θ∗j |
µ

≤ µ
∑

j /∈Sµ

( |θ∗j |
µ

)q
,

where the inequality holds since |θ∗j | ≤ µ for all j /∈ Sµ. Now since θ∗ ∈ Bq(Rq), we conclude
that

‖ΠM⊥(θ∗)‖1 ≤ µ1−q
∑

j /∈Sµ

|θ∗j |q ≤ µ1−qRq. (6.58)

On the other hand, again using the inclusion θ∗ ∈ Bq(Rq), we have Rq ≥
∑

j∈Sµ
|θ∗j |q ≥

|Sµ|µq which implies that |Sµ| ≤ µ−qRq. By combining this bound with inequality (6.58),
we obtain the upper bound

ǫ2(∆∗;M,M⊥) ≤ c ζ(Σ)

σmax(Σ)

log d

n

(
µ2−2qR2

q + µ−qRq‖∆∗‖22
)

=
c ζ(Σ)

σmax(Σ)

log d

n
µ−qRq

(
µ2−qRq + ‖∆∗‖22

)
.

Setting µ2 = log d
n

then yields

ǫ2(∆∗;M,M⊥) ≤ ϕn(Σ)

{
Rq

( log d
n

)1−q/2
+ ‖∆∗‖22

}
, where ϕn(Σ) :=

cζ(Σ)
σmax(Σ)

Rq

(
log d
n

)1−q/2
.

Finally, let us verify the stated form of the contraction coefficient. For the given subspace

M⊥
= M(Sµ) and choice of µ, we have Ψ2(M⊥

) = |Sµ| ≤ µ−qRq. From Lemma 6.6, we
have

16Ψ2(M⊥
)
τℓ(Ln) + τu(Ln)

γu
≤ ϕn(Σ),
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and hence, by definition (6.17) of the contraction coefficient,

κ ≤
{
1− γℓ

2γu
+ ϕn(Σ)

} {
1− ϕn(Σ)

}−1

.

For proving Corollary 6.3, we observe that the stated settings γℓ, χn(Σ) and κ follow
directly from Lemma 6.6. The bound for condition 6.2(a) follows from a standard argument
about the suprema of d independent Gaussians with variance ν.

6.5.5 Proof of Corollary 6.4

This proof is analogous to that of Corollary 6.2, but appropriately adapted to the matrix
setting. We first state a lemma that allows us to establish appropriate forms of the RSC/RSM
conditions. Recall that we are studying an instance of matrix regression with random design,
where the vectorized form vec(X) of each matrix is drawn from a N(0,Σ) distribution, where
Σ ∈ R

m2×m2
is some covariance matrix. In order to state this result, let us define the quantity

ζmat(Σ) := sup
‖u‖2=1, ‖v‖2=1

var(uTXv), where vec(X) ∼ N(0,Σ). (6.59)

Lemma 6.7. Under the conditions of Corollary 6.4, there are universal positive constants
(c0, c1) such that

‖Xn(∆)‖22
n

≥ 1

2
σmin(Σ) |||∆|||2F − c1ζmat(Σ)

m

n
|||∆|||2nuc, and (6.60a)

‖Xn(∆)‖22
n

≤ 2σmax(Σ) |||∆|||2F − c1 ζmat(Σ)
m

n
|||∆|||2nuc, for all ∆ ∈ R

m×m. (6.60b)

with probability at least 1− exp(−c0 n).

Given the quadratic nature of the least-squares loss, the bound (6.60a) implies that the RSC
condition holds with γℓ = 1

2
σmin(Σ) and τℓ(Ln) = c1ζmat(Σ)

m
n
, whereas the bound (6.60b)

implies that the RSM condition holds with γu = 2σmax(Σ) and τu(Ln) = c1ζmat(Σ)
m
n
.

We now prove Corollary 6.4 in the special case of exactly low rank matrices (q = 0), in
which Θ∗ has some rank r ≤ m. Given the singular value decomposition Θ∗ = UDV T , let
U r and V r be the m×r matrices whose columns correspond to the r non-zero (left and right,
respectively) singular vectors of Θ∗. As in Section 6.2.4, define the subspace of matrices

M(U r, V r) : =
{
Θ ∈ R

m×m | col(Θ) ⊆ U r and row(Θ) ⊆ V r
}
, (6.61)

as well as the associated set M⊥
(U r, V r). Note that Θ∗ ∈ M by construction, and moreover

(as discussed in Section 6.2.4, the nuclear norm is decomposable with respect to the pair

(M,M⊥
).
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By definition (3.21) of the subspace compatibility with nuclear norm as the regularizer
and Frobenius norm as the error norm, we have Ψ2(M) = r. Using the settings of τℓ(Ln)
and τu(Ln) guaranteed by Lemma 6.7 and substituting into equation (6.17), we obtain a
contraction coefficient

κ(Σ) :=
{
1− σmin(Σ)

4σmax(Σ)
+ χn(Σ)

} {
1− χn(Σ)

}−1

, (6.62)

where χn(Σ) :=
c2ζmat(Σ)
σmax(Σ)

rm
n

for some universal constant c2. A similar calculation shows that
the tolerance term takes the form

ǫ2(∆∗;M,M) ≤ c3 φ(Σ; r,m, n)
{ |||∆∗|||2nuc

r
+ |||∆∗|||2F

}
for some constant c3.

Since ρ ≤ |||Θ∗|||nuc by assumption, Lemma 6.5 (as exploited in the proof of Corollary 6.1)
shows that |||∆∗|||2nuc ≤ 4r|||∆∗|||2F , and hence that

ǫ2(∆∗;M,M) ≤ c3 χn(Σ) |||∆∗|||2F ,
which show the claim (6.36) for q = 0.

We now turn to the case q ∈ (0, 1]; as in the proof of this case for Corollary 6.2, we
bound ǫ2(∆∗;M,M) using a slightly different choice of the subspace pair. Recall our no-
tation σ1(Θ

∗) ≥ σ2(Θ
∗) ≥ · · · ≥ σm(Θ

∗) ≥ 0 for the ordered singular values of Θ∗. For a
threshold µ to be chosen, define Sµ =

{
j ∈ {1, 2, . . . , d} | σj(Θ∗) > µ

}
, and U(Sµ) ∈ R

m×|Sµ|

be the matrix of left singular vectors indexed by Sµ, with the matrix V (Sµ) defined simi-
larly. We then define the subspace M(Sµ) : = M(U(Sµ), V (Sµ)) in an analogous fashion to

equation (6.61), as well as the subspace M⊥
(Sµ).

Now by a combination of Lemma 6.5 and the definition (6.18) of ǫ2(∆∗;M,M), for any

pair (M(Sµ),M⊥
(Sµ)), we have

ǫ2(∆∗;M,M⊥
) ≤ c ζmat(Σ)

σmax(Σ)

m

n

(∑

j /∈Sµ

σj(Θ
∗) +

√
|Sµ| |||∆∗|||F

)2
,

where to simplify notation, we have omitted the dependence of M and M⊥ on Sµ. As in
the proof of Corollary 6.2, we now choose the threshold µ optimally, so as to trade-off the
term

∑
j /∈Sµ

σj(Θ
∗) with its competitor

√
|Sµ| |||∆∗|||F . Exploiting the fact that Θ∗ ∈ Bq(Rq)

and following the same steps as the proof of Corollary 6.2 yields the bound

ǫ2(∆∗;M,M⊥
) ≤ c ζmat(Σ)

σmax(Σ)

m

n

(
µ2−2qR2

q + µ−qRq|||∆∗|||2F
)
.

Setting µ2 = m
n
then yields

ǫ2(∆∗;M,M⊥
) ≤ ϕn(Σ)

{
Rq

(m
n

)1−q/2
+ |||∆∗|||2F

}
,

as claimed. The stated form of the contraction coefficient can be verified by a calculation
analogous to the proof of Corollary 6.2.
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6.5.6 Proof of Corollary 6.5

In this case, we let Xn : Rm×m → R
n be the operator defined by the model of random signed

matrix sampling 5.3. As previously argued, establishing the RSM/RSC property amounts

to obtaining a form of uniform control over
‖Xn(Θ)‖22

n
. More specifically, from the proof of

Theorem 6.1, we see that it suffices to have a form of RSC for the difference ∆̂t = Θt − Θ̂,
and a form of RSM for the difference Θt+1−Θt. The following two lemmas summarize these
claims:

Lemma 6.8. There is a constant c such that for all iterations t = 0, 1, 2, . . . and integers
r = 1, 2, . . . ,m− 1, with probability at least 1− exp(−m logm),

‖Xn(∆̂
t)‖22

n
≥ 1

2
|||∆̂t|||2F − cα

√
rm logm

n

{∑m
j=r+1 σj(Θ

∗)
√
r

+ α

√
rm logm

n
+ |||∆∗|||F

}

︸ ︷︷ ︸
δℓ(r)

.

(6.63)

Lemma 6.9. There is a constant c such that for all iterations t = 0, 1, 2, . . . and integers
r = 1, 2, . . . ,m− 1, with probability at least 1−exp(−m logm), the difference Γt : = Θt+1−Θt

satisfies the inequality
‖Xn(Γt)‖22

n
≤ 2|||Γt|||2F + δu(r), where

δu(r) : = cα

√
rm logm

n

{∑m
j=r+1 σj(Θ

∗)
√
r

+ α

√
rm logm

n
+ |||∆∗|||F + |||∆̂t|||F + |||∆̂t+1|||F

}
.

We can now complete the proof of Corollary 6.5 by a minor modification of the proof of
Theorem 6.1. Recalling the elementary relation (6.47), we have

|||Θt+1 − Θ̂|||2F = |||Θt − Θ̂|||2F + |||Θt −Θt+1|||2F − 2〈〈Θt − Θ̂, Θt −Θt+1〉〉.
From the proof of Lemma 6.2, we see that the combination of Lemma 6.8 and 6.9 (with
γℓ =

1
2
and γu = 2) imply that

2〈〈Θt −Θt+1, Θt − Θ̂〉〉 ≥ |||Θt −Θt+1|||2F +
1

4
|||Θt − Θ̂|||2F − δu(r)− δℓ(r)

and hence that

|||∆̂t+1|||2F ≤ 3

4
|||∆̂t|||2F + δℓ(r) + δu(r).

We substitute the forms of δℓ(r) and δu(r) given in Lemmas 6.8 and 6.9 respectively; per-
forming some algebra then yields

{
1−

c α
√

rm logm
n

|||∆̂t+1|||F

}
|||∆̂t+1|||2F ≤

{3
4
+
cα
√

rm logm
n

|||∆̂t|||F

}
|||∆̂t|||2F + c′ δℓ(r).
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Consequently, as long as min{|||∆̂t|||2F , |||∆̂t+1|||2F} ≥ c3α
rm logm

n
for a sufficiently large constant

c3, we are guaranteed the existence of some κ ∈ (0, 1) such that

|||∆̂t+1|||2F ≤ κ|||∆̂t|||2F + c′δℓ(r). (6.64)

Since δℓ(r) = Ω( rm logm
n

), this inequality (6.64) is valid for all t = 0, 1, 2, . . . as long as c′ is
sufficiently large. As in the proof of Theorem 6.1, iterating the inequality (6.64) yields

|||∆̂t+1|||2F ≤ κt|||∆̂0|||2F +
c′

1− κ
δℓ(r). (6.65)

It remains to choose the cut-off r ∈ {1, 2, . . . ,m − 1} so as to minimize the term δℓ(r).
In particular, when Θ∗ ∈ Bq(Rq), then as shown in Chapter 4, the optimal choice is r ≍
α−qRq

(
n

m logm

)q/2
. Substituting into the inequality (6.65) and performing some algebra yields

that there is a universal constant c4 such that the bound

|||∆̂t+1|||2F ≤ κt|||∆̂0|||2F +
c4

1− κ

{
Rq

(αm logm

n

)1−q/2
+

√
Rq

(αm logm

n

)1−q/2 |||∆∗|||F
}
.

holds. Now by the Cauchy-Schwarz inequality we have

√
Rq

(αm logm

n

)1−q/2 |||∆∗|||F ≤ 1

2
Rq

(αm logm

n

)1−q/2
+

1

2
|||∆∗|||2F ,

and the claimed inequality (6.39) follows.

6.5.7 Proof of Corollary 6.6

Again the main argument in the proof would be to establish the RSM and RSC properties
for the decomposition problem. We define ∆̂t

Θ = Θt − Θ̂ and ∆̂t
Γ = Γt − Γ̂. We start with

giving a lemma that establishes RSC for the differences (∆̂t
Θ, ∆̂

t
Γ). We recall that just like

noted in the previous section, it suffices to show RSC only for these differences. Showing
RSC/RSM in this example amounts to analyzing |||∆̂t

Θ + ∆̂t
Γ|||2F . We recall that this section

assumes that Γ∗ has only k non-zero columns.

Lemma 6.10. There is a constant c such that for all iterations t = 0, 1, 2, . . . ,

|||∆̂t
Θ + ∆̂t

Γ|||2F ≥ 1

2

(
|||∆̂t

Θ|||2F + |||∆̂t
Γ|||2F
)
− cα

√
k

d2

(
|||Γ̂− Γ∗|||F + α

√
k

d2

)
(6.66)

This proof of this lemma follows by a straightforward modification of analogous results in
the paper [2].
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Matrix decomposition has the interesting property that the RSC condition holds in a
deterministic sense (as opposed to with high probability). The same deterministic guarantee
holds for the RSM condition; indeed, we have

|||∆̂t
∆ + ∆̂t

Γ|||2F ≤ 2
(
|||∆̂t

Θ|||2F + |||∆̂t
Γ|||2F
)
, (6.67)

by Cauchy-Schwartz inequality. Now we appeal to the more general form of Theorem 6.1 as
stated in Equation 6.43, which gives

|||∆̂t+1
Θ |||2F + |||∆̂t+1

Γ |||2F ≤
(
3

4

)t (
|||∆̂0

Θ|||2F + |||∆̂0
Γ|||2F
)
+ c

√
αk

d2

(
|||Γ̂− Γ∗|||F +

αk

d2

)
.

The stated form of the corollary follows by an application of Cauchy-Schwarz inequality.

6.6 Discussion

In this chapter, we have shown that even though high-dimensional M -estimators in statis-
tics are neither strongly convex nor smooth, simple first-order methods can still enjoy global
guarantees of geometric convergence. The key insight is that strong convexity and smooth-
ness need only hold in restricted senses, and moreover, these conditions are satisfied with
high probability for many statistical models and decomposable regularizers used in practice.
Examples include sparse linear regression and ℓ1-regularization, various statistical models
with group-sparse regularization, matrix regression with nuclear norm constraints (including
matrix completion and multi-task learning), and matrix decomposition problems. Overall,
our results highlight some important connections between computation and statistics: the
properties of M -estimators favorable for fast rates in a statistical sense can also be used to
establish fast rates for optimization algorithms.
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Appendix A

Proofs for Chapter 3

A.1 Proofs related to Theorem 3.1

In this section, we collect the proofs of Lemma 3.1 and our main result. All our arguments
in this section are deterministic, and both proofs make use of the function F : Rd → R

given by F(∆) := L(θ∗ +∆)−L(θ∗) + λn
{
R(θ∗ +∆)−R(θ∗)

}
. In addition, we exploit the

following fact: since F(0) = 0, the optimal error ∆̂ = θ̂ − θ∗ must satisfy F(∆̂) ≤ 0.

A.1.1 Proof of Lemma 3.1

Note that the function F consists of two parts: a difference of loss functions, and a difference
of regularizers. In order to control F , we require bounds on these two quantities:

Lemma A.1 (Deviation inequalities). For any decomposable regularizer and d-dimensional
vectors θ∗ and ∆, we have

R(θ∗ +∆)−R(θ∗) ≥ R(∆M̄⊥)−R(∆M̄)− 2R(θ∗M⊥). (A.1)

Moreover, as long as λn ≥ 2R∗(∇L(θ∗)) and L is convex, we have

L(θ∗ +∆)− L(θ∗) ≥ −λn
2

[
R
(
∆M̄

)
+R

(
∆M̄⊥

)]
. (A.2)

Proof. Since R
(
θ∗ +∆

)
= R

(
θ∗M + θ∗M⊥ +∆M̄ +∆M̄⊥

)
, triangle inequality implies that

R
(
θ∗ +∆

)
≥ R

(
θ∗M +∆M̄⊥

)
−R

(
θ∗M⊥ +∆M̄

)
≥ R

(
θ∗M +∆M̄⊥

)
−R

(
θ∗M⊥

)
−R

(
∆M̄

)
.

By decomposability applied to θ∗M and ∆M̄⊥ , we have R
(
θ∗M+∆M̄⊥

)
= R

(
θ∗M
)
+R

(
∆M̄⊥

)
,

so that

R
(
θ∗ +∆

)
≥ R

(
θ∗M
)
+R

(
∆M̄⊥

)
−R

(
θ∗M⊥

)
−R

(
∆M̄

)
. (A.3)
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Similarly, by triangle inequality, we have R(θ∗) ≤ R
(
θ∗M
)
+ R

(
θ∗M⊥

)
. Combining this

inequality with the bound (A.3), we obtain

R
(
θ∗ +∆

)
−R(θ∗) ≥ R

(
θ∗M
)
+R

(
∆M̄⊥

)
−R

(
θ∗M⊥

)
−R

(
∆M̄

)
−
{
R
(
θ∗M
)
+R

(
θ∗M⊥

)}

= R
(
∆M̄⊥

)
−R

(
∆M̄

)
− 2R

(
θ∗M⊥

)
,

which yields the claim (A.1).
Turning to the loss difference, using the convexity of the loss function L, we have

L(θ∗ +∆)− L(θ∗) ≥ 〈∇L(θ∗), ∆〉 ≥ −|〈∇L(θ∗), ∆〉|.

Applying the (generalized) Cauchy-Schwarz inequality with the regularizer and its dual, we
obtain

|〈∇L(θ∗), ∆〉| ≤ R∗(∇L(θ∗)) R(∆) ≤ λn
2

[
R
(
∆M̄

)
+R

(
∆M̄⊥

)]
,

where the final equality uses triangle inequality, and the assumed bound λn ≥ 2R∗(∇L(θ∗)).
Consequently, we conclude that L(θ∗+∆)−L(θ∗) ≥ −λn

2

[
R
(
∆M̄

)
+R

(
∆M̄⊥

)]
, as claimed.

We can now complete the proof of Lemma 3.1. Combining the two lower bounds (A.1)
and (A.2), we obtain

0 ≥ F(∆̂) ≥ λn
{
R(∆M̄⊥)−R(∆M̄)− 2R(θ∗M⊥)

}
− λn

2

[
R
(
∆M̄

)
+R

(
∆M̄⊥

)]

=
λn
2

{
R(∆M̄⊥)− 3R(∆M̄)− 4R(θ∗M⊥)

}
,

from which the claim follows.

A.1.2 Proof of Theorem 3.1

Recall the set C(M,M⊥
; θ∗) from equation (3.17). Since the subspace pair (M,M⊥

) and
true parameter θ∗ remain fixed throughout this proof, we adopt the shorthand notation C.
Letting ǫ > 0 be a given error radius, the following lemma shows that it suffices to control
the sign of the function F over the set S(ǫ) : = C ∩ {‖∆‖ = ǫ}.

Lemma A.2. If F(∆) > 0 for all vectors ∆ ∈ S(ǫ), then ‖∆̂‖ ≤ ǫ.

Proof. We first claim that C is star-shaped, meaning that if ∆̂ ∈ C, then the entire line
{t∆̂ | t ∈ (0, 1)} connecting ∆̂ with the all-zeroes vector is contained with C. This property
is immediate whenever θ∗ ∈ M, since C is then a cone, as illustrated in Figure 3.1(a). Now
consider the general case, when θ∗ /∈ M. We first observe that for any t ∈ (0, 1),

ΠM̄(t∆) = arg min
γ∈M̄

‖t∆− γ‖ = t arg min
γ∈M̄

‖∆− γ

t
‖ = tΠM̄(∆),
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using the fact that γ/t also belongs to the subspace M. The equality ΠM̄⊥(t∆) = tΠM̄⊥(∆)
follows similarly. Consequently, for all ∆ ∈ C, we have

R(ΠM̄⊥(t∆)) = R(tΠM̄⊥(∆))
(i)
= tR(ΠM̄⊥(∆))

(ii)

≤ t
{
3R(ΠM̄(∆)) + 4R(ΠM⊥(θ∗))

}

where step (i) uses the fact that any norm is positive homogeneous,1 and step (ii) uses the
inclusion ∆ ∈ C. We now observe that 3 tR(ΠM̄(∆)) = 3R(ΠM̄(t∆)), and moreover, since
t ∈ (0, 1), we have 4t R(ΠM⊥(θ∗)) ≤ 4R(ΠM⊥(θ∗)). Putting together the pieces, we find
that

R(ΠM̄⊥(t∆)) ≤ 3R(ΠM̄(t∆)) + t 4ΠM⊥(θ∗) ≤ 3R(ΠM̄(t∆)) + 4R(ΠM⊥(θ∗)),

showing that t∆ ∈ C for all t ∈ (0, 1), and hence that C is star-shaped.
Turning to the lemma itself, we prove the contrapositive statement: in particular, we

show that if for some optimal solution θ̂, the associated error vector ∆̂ = θ̂ − θ∗ satisfies
the inequality ‖∆̂‖ > ǫ, then there must be some vector ∆̃ ∈ S(ǫ) such that F(∆̃) ≤ 0.

If ‖∆̂‖ > ǫ, then the line joining ∆̂ to 0 must intersect the set S(ǫ) at some intermediate

point t∗∆̂, for some t∗ ∈ (0, 1). Since the loss function L and regularizer R are convex, the
function F is also convex for any choice of the regularization parameter, so that by Jensen’s
inequality,

F
(
t∗∆
)

= F
(
t∗∆+ (1− t∗) 0

)
≤ t∗F(∆̂) + (1− t∗)F(0)

(i)
= t∗F(∆̂),

where equality (i) uses the fact that F(0) = 0 by construction. But since ∆̂ is optimal, we

must have F(∆̂) ≤ 0, and hence F(t∗∆) ≤ 0 as well. Thus, we have constructed a vector

∆̃ = t∗∆ with the claimed properties, thereby establishing Lemma A.2.

On the basis of Lemma A.2, the proof of Theorem 3.1 will be complete if we can establish
a lower bound on F(∆) over S(ǫ) for an appropriately chosen radius ǫ > 0. For an arbitrary
∆ ∈ S(ǫ), we have

F(∆) = L(θ∗ +∆)− L(θ∗) + λn
{
R(θ∗ +∆)−R(θ∗)

}

(i)

≥ 〈∇L(θ∗), ∆〉+ κL‖∆‖2 − τ 2L(θ
∗) + λn

{
R(θ∗ +∆)−R(θ∗)

}

(ii)

≥ 〈∇L(θ∗), ∆〉+ κL‖∆‖2 − τ 2L(θ
∗) + λn

{
R(∆M̄⊥)−R(∆M̄)− 2R(θ∗M⊥)

}
,

where inequality (i) follows from the RSC condition, and inequality (ii) follows from the
bound (A.1).

1Explicitly, for any norm and non-negative scalar t, we have ‖tx‖ = t‖x‖.
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By the Cauchy-Schwarz inequality applied to the regularizer R and its dual R∗, we have
|〈∇L(θ∗), ∆〉| ≤ R∗(∇L(θ∗)) R(∆). Since λn ≥ 2R∗(∇L(θ∗)) by assumption, we conclude
that |〈∇L(θ∗), ∆〉| ≤ λn

2
R(∆), and hence that

F(∆) ≥ κL‖∆‖2 − τ 2L(θ
∗) + λn

{
R(∆M̄⊥)−R(∆M̄)− 2R(θ∗M⊥)

}
− λn

2
R(∆)

By triangle inequality, we have R(∆) = R(∆M̄⊥ +∆M̄) ≤ R(∆M̄⊥)+R(∆M̄), and hence,
following some algebra

F(∆) ≥ κL‖∆‖2 − τ 2L(θ
∗) + λn

{1
2
R(∆M̄⊥)− 3

2
R(∆M̄)− 2R(θ∗M⊥)

}

≥ κL‖∆‖2 − τ 2L(θ
∗)− λn

2

{
3R(∆M̄) + 4R(θ∗M⊥)

}
. (A.4)

Now by definition (3.21) of the subspace compatibility, we have the inequality R(∆M̄) ≤
Ψ(M)‖∆M̄‖. Since the projection ∆M̄ = ΠM̄(∆) is defined in terms of the norm ‖ · ‖, it is
non-expansive. Since 0 ∈ M, we have

‖∆M̄‖ = ‖ΠM̄(∆)− ΠM̄(0)‖
(i)

≤ ‖∆− 0‖ = ‖∆‖,
where inequality (i) uses non-expansivity of the projection. Combining with the earlier
bound, we conclude that R(∆M̄) ≤ Ψ(M)‖∆‖. Substituting into the lower bound (A.4),
we obtain F(∆) ≥ κL‖∆‖2 − τ 2L(θ

∗)− λn
2

{
3Ψ(M) ‖∆‖+ 4R(θ∗M⊥)

}
. The right-hand side of

this inequality is a strictly positive definite quadratic form in ‖∆‖, and so will be positive
for ‖∆‖ sufficiently large. In particular, some algebra shows that this is the case as long as

‖∆‖2 ≥ ǫ2 : = 9
λ2n
κ2L

Ψ2(M) +
λn
κL

{
2τ 2L(θ

∗) + 4R(θ∗M⊥)
}
,

thereby completing the proof of Theorem 3.1.

A.2 Proof of Lemma 3.2

For any ∆ in the set C(Sµ), we have

‖∆‖1 ≤ 4‖∆Sµ‖1 + 4‖θ∗Sc
µ
‖1 ≤

√
|Sµ|‖∆‖2 + 4Rq µ

1−q ≤ 4
√
Rq µ

−q/2 ‖∆‖2 + 4Rq µ
1−q,

where we have used the bounds (3.39) and (3.40). Therefore, for any vector ∆ ∈ C(Sµ), the
condition (3.31) implies that

‖X∆‖2√
n

≥ κ1 ‖∆‖2 − κ2

√
log d

n

{√
Rq µ

−q/2 ‖∆‖2 +Rq µ
1−q}

= ‖∆‖2
{
κ1 − κ2

√
Rq log d

n
µ−q/2

}
− κ2

√
log d

n
Rq µ

1−q.
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By our choices µ = λn
κ1

and λn = 4σ
√

log d
n

, we have κ2

√
Rq log d

n
µ−q/2 = κ2

(8σ)q/2

√
Rq

(
log d
n

)1− q
2 ,

which is less than κ1/2 under the stated assumptions. Thus, we obtain the lower bound
‖X∆‖2√

n
≥ κ1

2
‖∆‖2 − 2κ2

√
log d
n
Rq µ

1−q, as claimed.

A.3 Proofs for group-sparse norms

In this section, we collect the proofs of results related to the group-sparse norms in Sec-
tion 3.5.

A.3.1 Proof of Proposition 3.1

The proof of this result follows similar lines to the proof of condition (3.31) given by Raskutti
et al. [108], hereafter RWY, who established this result in the special case of the ℓ1-norm.
Furthermore, the result can be viewed as a specific instance of the general Gaussian operator
result presented in Appendix D.4 based on the particular choice of regularizer. Here we
describe only those portions of the proof that require modification. For a radius t > 0,
define the set

V (t) : =
{
θ ∈ R

d | ‖Σ1/2θ‖2 = 1, ‖θ‖G,α ≤ t
}
,

as well as the random variable M(t;X) : = 1− infθ∈V (t)
‖Xθ‖2√

n
. The argument in Section 4.2

of RWY makes use of the Gordon-Slepian comparison inequality in order to upper bound
this quantity. Following the same steps, we obtain the modified upper bound

E[M(t;X)] ≤ 1

4
+

1√
n
E
[

max
j=1,...,NG

‖w
Gj
‖α∗
]
t,

where w ∼ N(0,Σ). The argument in Section 4.3 uses concentration of measure to show
that this same bound will hold with high probability for M(t;X) itself; the same reasoning
applies here. Finally, the argument in Section 4.4 of RWY uses a peeling argument to make
the bound suitably uniform over choices of the radius t. This argument allows us to conclude
that

inf
θ∈Rd

‖Xθ‖2√
n

≥ 1

4
‖Σ1/2θ‖2 − 9 E

[
max

j=1,...,NG
‖w

Gj
‖α∗
]
‖θ‖G,α for all θ ∈ R

d

with probability greater than 1−c1 exp(−c2n). Recalling the definition of ρG(α
∗), we see that

in the case Σ = Id×d, the claim holds with constants (κ1, κ2) = (1
4
, 9). Turning to the case of

general Σ, let us define the matrix norm |||A|||α∗ : = max
‖β‖α∗=1

‖Aβ‖α∗ . With this notation, some

algebra shows that the claim holds with κ1 =
1
4
σmin(Σ

1/2) and κ2 = 9 max
t=1,...,NG

|||(Σ1/2)Gt |||α∗ .
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A.3.2 Proof of Corollary 3.4

In order to prove this claim, we need to verify that Theorem 3.1 may be applied. Doing so
requires defining the appropriate model and perturbation subspaces, computing the compat-
ibility constant, and checking that the specified choice (3.48) of regularization parameter λn
is valid. For a given subset SG ⊆ {1, 2, . . . , NG}, define the subspaces

M(SG) : =
{
θ ∈ R

d | θGt = 0 for all t /∈ SG
}
, and M⊥(SG) : =

{
θ ∈ R

d | θGt = 0 for all t ∈ SG
}
.

As discussed in Example 3.2, the block norm ‖ · ‖G,α is decomposable with respect to these
subspaces. Let us compute the regularizer-error compatibility function, as defined in equa-
tion (3.21), that relates the regularizer (‖ · ‖G,α in this case) to the error norm (here the
ℓ2-norm). For any ∆ ∈ M(SG), we have

‖∆‖G,α =
∑

t∈SG

‖∆Gt‖α
(a)

≤
∑

t∈SG

‖∆Gt‖2 ≤
√
k ‖∆‖2,

where inequality (a) uses the fact that α ≥ 2.
Finally, let us check that the specified choice of λn satisfies the condition (3.23). As in

the proof of Corollary 3.2, we have ∇L(θ∗;Zn
1 ) =

1
n
XTw, so that the final step is to compute

an upper bound on the quantity R∗( 1
n
XTw) = 1

n
maxt=1,...,NG ‖(XTw)Gt‖α∗ that holds with

high probability.

Lemma A.3. Suppose that X satisfies the block column normalization condition (3.47), and
the observation noise is sub-Gaussian (3.33). Then we have

P

[
max

t=1,...,NG
‖X

T
Gt
w

n
‖α∗ ≥ 2σ

{m1−1/α

√
n

+

√
logNG
n

}]
≤ 2 exp

(
− 2 logNG

)
. (A.5)

Proof. Throughout the proof, we assume without loss of generality that σ = 1, since the
general result can be obtained by rescaling. For a fixed group G of size m, consider the sub-

matrix XG ∈ R
n×m. We begin by establishing a tail bound for the random variable ‖X

T
Gw

n
‖α∗ .

Deviations above the mean: For any pair w,w′ ∈ R
n, we have

∣∣∣∣‖
XT
Gw

n
‖α∗ − ‖X

T
Gw

′

n
‖α∗

∣∣∣∣ ≤
1

n
‖XT

G(w − w′)‖α∗ =
1

n
max
‖θ‖α=1

〈XG θ, (w − w′)〉.

By definition of the (α → 2) operator norm, we have

1

n
‖XT

G(w − w′)‖α∗ ≤ 1

n
|||XG|||α→2 ‖w − w′‖2

(i)

≤ 1√
n
‖w − w′‖2,
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where inequality (i) uses the block normalization condition (3.47). We conclude that the

function w 7→ ‖X
T
Gw

n
‖α∗ is a Lipschitz with constant 1/

√
n, so that by Gaussian concentration

of measure for Lipschitz functions (2.18), we have

P

[
‖X

T
Gw

n
‖α∗ ≥ E

[
‖X

T
Gw

n
‖α∗

]
+ δ

]
≤ 2 exp

(
− nδ2

2

)
for all δ > 0. (A.6)

Upper bounding the mean: For any vector β ∈ R
m, define the zero-mean Gaussian random

variable Zβ = 1
n
〈β, XT

Gw〉, and note the relation ‖X
T
Gw

n
‖α∗ = max

‖β‖α=1
Zβ. Thus, the quantity of

interest is the supremum of a Gaussian process, and can be upper bounded using Gaussian
comparison principles. For any two vectors ‖β‖α ≤ 1 and ‖β′‖α ≤ 1, we have

E

[
(Zβ − Zβ′)2

]
=

1

n2
‖XG(β − β′)‖22

(a)

≤ 2

n

|||XG|||2α→2

n
‖β − β′‖22

(b)

≤ 2

n
‖β − β′‖22,

where inequality (a) uses the fact that ‖β − β′‖α ≤
√
2, and inequality (b) uses the block

normalization condition (3.47).

Now define a second Gaussian process Yβ =
√

2
n
〈β, ε〉, where ε ∼ N(0, Im×m) is standard

Gaussian. By construction, for any pair β, β′ ∈ R
m, we have E

[
(Yβ − Yβ′)2

]
= 2

n
‖β − β′‖22 ≥ E[(Zβ − Zβ′)2],

so that the Sudakov-Fernique comparison principle [78] implies that

E

[
‖X

T
Gw

n
‖α∗

]
= E

[
max

‖β‖α=1
Zβ

]
≤ E

[
max

‖β‖α=1
Yβ

]
.

By definition of Yβ, we have

E

[
max
‖β‖α=1

Yβ

]
=

√
2

n
E
[
‖ε‖α∗

]
=

√
2

n
E

[( m∑

j=1

|εj|α
∗)1/α∗

]
≤
√

2

n
m1/α∗(

E[|ε1|α
∗
]
)1/α∗

,

using Jensen’s inequality, and the concavity of the function f(t) = t1/α
∗
for α∗ ∈ [1, 2].

Finally, we have
(
E[|ε1|α∗

]
)1/α∗

≤
√
E[ε21] = 1 and 1/α∗ = 1−1/α, so that we have shown that

E

[
max‖β‖α=1 Yβ

]
≤ 2m

1−1/α√
n

. Combining this bound with the concentration statement (A.6),

we obtain P

[
‖X

T
Gw

n
‖α∗ ≥ 2 m1−1/α√

n
+ δ

]
≤ 2 exp

(
− nδ2

2

)
. We now apply the union bound over

all groups, and set δ2 = 4 logNG
n

to conclude that

P

[
max

t=1,...,NG
‖X

T
Gt
w

n
‖α∗ ≥ 2

{m1−1/α

√
n

+

√
logNG
n

}]
≤ 2 exp

(
− 2 logNG

)
,

as claimed.
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Appendix B

Proofs for Chapter 4

B.1 Proof of Lemma 4.1

Part (a) of the claim was proved in Recht et al. [117]; we simply provide a proof here for
completeness. We write the SVD as Θ∗ = UDV T , where U ∈ R

d1×d1 and V ∈ R
d2×d2 are

orthogonal matrices, and D is the matrix formed by the singular values of Θ∗. Note that
the matrices U r and V r are given by the first r columns of U and V respectively. We then
define the matrix Γ = UT∆V ∈ R

d1×d2 , and write it in block form as

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
, where Γ11 ∈ R

r×r, and Γ22 ∈ R
(d1−r)×(d2−r).

We now define the matrices

∆′′ = U

[
0 0
0 Γ22

]
V T , and ∆′ = ∆−∆′′.

Note that we have

rank(∆′) = rank

[
Γ11 Γ12

Γ21 0

]
≤ rank

[
Γ11 Γ12

0 0

]
+ rank

[
Γ11 0
Γ21 0

]
≤ 2r,

which establishes Lemma 4.1(a). Moreover, we note for future reference that by construction
of ∆′′, the nuclear norm satisfies the decomposition

|||ΠM(Θ∗) + ∆′′|||nuc = |||ΠM(Θ∗)|||nuc + |||∆′′|||nuc. (B.1)

We now turn to the proof of Lemma 4.1(b). Recall that the error ∆ = Θ̂−Θ∗ associated
with any optimal solution must satisfy the inequality (4.30), which implies that

0 ≤ 1

N
〈~ε, X(∆)〉+ λN

{
|||Θ∗|||nuc − |||Θ̂|||nuc

}
≤ ||| 1

N
X

∗(~ε)|||2 |||∆|||nuc + λN
{
|||Θ∗|||nuc − |||Θ̂|||nuc

}
,

(B.2)
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where we have used the bound (4.31).
Note that we have the decomposition Θ∗ = ΠM(Θ∗) + Π

M
⊥(Θ∗). Using this decomposi-

tion, the triangle inequality and the relation (B.1), we have

|||Θ̂|||nuc = |||(ΠM(Θ∗) + ∆′′) + (Π
M

⊥(Θ∗) + ∆′)|||nuc
≥ |||(ΠM(Θ∗) + ∆′′)|||nuc − |||(Π

M
⊥(Θ∗) + ∆′)|||nuc

≥ |||ΠM(Θ∗)|||nuc + |||∆′′|||nuc −
{
|||(Π

M
⊥(Θ∗)|||nuc + |||∆′|||nuc

}
.

Consequently, we have

|||Θ∗|||nuc − |||Θ̂|||nuc ≤ |||Θ∗|||nuc −
{
|||ΠM(Θ∗)|||nuc + |||∆′′|||nuc

}
+
{
|||(Π

M
⊥(Θ∗)|||nuc + |||∆′|||nuc

}

= 2|||Π
M

⊥(Θ∗)|||nuc + |||∆′|||nuc − |||∆′′|||nuc.

Substituting this inequality into the bound (B.2), we obtain

0 ≤ ||| 1
N
X

∗(~ε)|||2 |||∆|||nuc + λN
{
2|||Π

M
⊥(Θ∗)|||nuc + |||∆′|||nuc − |||∆′′|||nuc

}
.

Finally, since ||| 1
N
X

∗(~ε)|||2 ≤ λN/2 by assumption, we conclude that

0 ≤ λN
{
2|||Π

M
⊥(Θ∗)|||nuc +

3

2
|||∆′|||nuc −

1

2
|||∆′′|||nuc

}
.

Since |||Π
M

⊥(Θ∗)|||nuc =
∑m

j=r+1 σj(Θ
∗), the bound (4.32) follows.

B.2 Consistency in operator norm

In this appendix, we derive a bound on the operator norm error for both the low-rank
multivariate regression and auto-regressive model estimation problems. In this statement,
it is convenient to specify these models in the form Y = XΘ∗ +W , where Y ∈ R

n×d2 is a
matrix of observations.

Proposition B.1 (Operator norm consistency). Consider the multivariate regression prob-

lem and the SDP under the conditions of Corollary 4.3. Then any solution Θ̂ to the SDP
satisfies the bound

|||Θ̂− θ∗|||2 ≤ c′
ν
√
σmax(Σ)

σmin(Σ)

√
d1 + d2
n

. (B.3)

We note that a similar bound applies to the auto-regressive model treated in Corollary 4.4.
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Proof. For any subgradient matrix Z ∈ ∂|||Θ̂|||nuc, we are guaranteed |||Z|||2 ≤ 1. Furthermore,

by the KKT conditions [21] for the nuclear norm SDP, any solution Θ̂ must satisfy the
condition

1

n
XTXΘ̂− XTY

n
+ λnZ = 0.

Hence, simple algebra and the triangle inequality yield that

|||Θ̂|||2 ≤ |||
( 1
n
XTX

)−1|||2
[
|||XTW/n|||2 + λn

]
.

Lemma 4.2 yields that |||
(
1
n
XTX

)−1|||2 ≤ 9
σmin(Σ)

with high probability. Combining these
inequalities yields

|||Θ̂|||2 ≤ c1
λn

σmin(Σ)
.

We require that λn ≥ 2|||XTW |||2/n. From Lemma 4.3, it suffices to set λn ≥ c0
√
σmax(Σ)ν

√
d1+d2
n

.

Combining the pieces yields the claim.

B.3 Proof of Lemma 4.3

Let Sm−1 = {u ∈ R
m | ‖u‖2 = 1} denote the Euclidean sphere in m-dimensions. The

operator norm of interest has the variational representation

1

n
|||XTW |||2 =

1

n
sup

u∈Sd1−1

sup
v∈Sd2−1

vTXTWu

For positive scalars a and b, define the (random) quantity

Ψ(a, b) : = sup
u∈aSd1−1

sup
v∈b Sd2−1

〈Xv, Wu〉.

and note that our goal is to upper bound Ψ(1, 1). Note moreover that Ψ(a, b) = a bΨ(1, 1),
a relation which will be useful in the analysis.

Let A = {u1, . . . , uA} and B = {v1, . . . , vB} denote 1/4 coverings of Sd1−1 and Sd2−1,
respectively. We now claim that we have the upper bound

Ψ(1, 1) ≤ 4 max
ua∈A,vb∈B

〈Xvb, Wua〉 (B.4)

To establish this claim, we note that since the sets A and B are 1/4-covers, for any pair
(u, v) ∈ Sm−1 × Sm−1, there exists a pair (ua, vb) ∈ A × B such that u = ua + ∆u and
v = vb +∆v, with max{‖∆u‖2, ‖∆v‖2} ≤ 1/4. Consequently, we can write

〈Xv, Wu〉 = 〈Xvb, Wua〉+ 〈Xvb, W∆u〉+ 〈X∆v, Wua〉+ 〈X∆v, W∆u〉. (B.5)
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By construction, we have the bound |〈Xvb, W∆u〉| ≤ Ψ(1, 1/4) = 1
4
Ψ(1, 1), and similarly

|〈X∆v, Wua〉| ≤ 1
4
Ψ(1, 1) as well as |〈X∆v, W∆u〉| ≤ 1

16
Ψ(1, 1). Substituting these bounds

into the decomposition (B.5) and taking suprema over the left and right-hand sides, we
conclude that

Ψ(1, 1) ≤ max
ua∈A,vb∈B

〈Xvb, Wua〉+ 9

16
Ψ(1, 1),

from which the bound (B.4) follows.
We now apply the union bound to control the discrete maximum. It is known (e.g., [78,

88]) that there exists a 1/4 covering of Sd1−1 and Sd2−1 with at most A ≤ 8d1 and B ≤ 8d2

elements respectively. Consequently, we have

P
[
|Ψ(1, 1)| ≥ 4δ n

]
≤ 8d1+d2 max

ua,vb
P

[ |〈Xvb, Wua〉|
n

≥ δ

]
. (B.6)

It remains to obtain a good bound on the quantity 1
n
〈Xv, Wu〉 = 1

n

∑n
i=1〈v, Xi〉〈u, Wi〉,

where (u, v) ∈ Sd1−1 × Sd2−1 are arbitrary but fixed. Since Wi ∈ R
d1 has i.i.d. N(0, ν2)

elements and u is fixed, we have Zi : = 〈u, Wi〉 ∼ N(0, ν2) for each i = 1, . . . , n. These vari-
ables are independent of one another, and of the random matrix X. Therefore, conditioned
on X, the sum Z : = 1

n

∑n
i=1〈v, Xi〉〈u, Wi〉 is zero-mean Gaussian with variance

α2 : =
ν2

n

(
1

n
‖Xv‖22

)
≤ ν2

n
|||XTX/n|||2.

Define the event T = {α2 ≤ 9ν2|||Σ|||2
n

}. Using Lemma 4.2, we have |||XTX/n|||2 ≤ 9σmax(Σ)
with probability at least 1− 2 exp(−n/2), which implies that P[T c] ≤ 2 exp(−n/2). There-
fore, conditioning on the event T and its complement T c, we obtain

P[|Z| ≥ t] ≤ P
[
|Z| ≥ t | T

]
+ P[T c]

≤ exp

(
−n t2

2ν2 (4 + |||Σ|||2)

)
+ 2 exp(−n/2).

Combining this tail bound with the upper bound (B.6), we have

P
[
|ψ(1, 1)| ≥ 4δ n

]
≤ 8d1+d2

{
exp

(
−n t2

18ν2|||Σ|||2

)
+ 2 exp(−n/2)

}
.

Setting t2 = 20ν2|||Σ|||2 d1+d2n
, this probability vanishes as long as n > 16(d1 + d2).

B.4 Technical details for Corollary 4.4

In this appendix, we collect the proofs of Lemmas 4.4 and 4.5.
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B.4.1 Proof of Lemma 4.4

Recalling that Sm−1 denotes the unit-norm Euclidean sphere in m-dimensions, we first ob-
serve that |||X|||2 = supu∈Sm−1 ‖Xu‖2. Our next step is to reduce the supremum to a maxi-
mization over a finite set, using a standard covering argument. Let A = {u1, . . . , uA} denote
a 1/2-cover of it. By definition, for any u ∈ Sm−1, there is some ua ∈ A such that u = ua+∆u,
where ‖∆u‖2 ≤ 1/2. Consequently, for any u ∈ Sm−1, the triangle inequality implies that

‖Xu‖2 ≤ ‖Xua‖2 + ‖X∆u‖2,

and hence that |||X|||2 ≤ maxua∈A ‖Xua‖2+ 1
2
|||X|||2. Re-arranging yields the useful inequality

|||X|||2 ≤ 2max
ua∈A

‖Xua‖2. (B.7)

Using inequality (B.7), we have

P

[
1

n
|||XTX|||2 > t

]
≤ P

[
max
ua∈A

1

n

n∑

i=1

(〈ua, Xi〉)2 >
t

2

]

≤ 4m max
ua∈A

P

[
1

n

n∑

i=1

(〈ua, Xi〉)2 >
t

2

]
. (B.8)

where the last inequality follows from the union bound, and the fact [78, 88] that there exists
a 1/2-covering of Sm−1 with at most 4m elements.

In order to complete the proof, we need to obtain a sharp upper bound on the quantity
P
[
1
n

∑n
i=1(〈u, Xi〉)2 > t

2

]
, valid for any fixed u ∈ Sm−1. Define the random vector Y ∈ R

n

with elements Yi =
〈
u, Xi

〉
. Note that Y is zero mean, and its covariance matrix R has

elements Rij = E[YiYj] = uTΣ(Θ∗)|j−i| u. In order to bound the spectral norm of R, we note
that since it is symmetric, we have |||R|||2 ≤ max

i=1,...,m

∑m
j=1 |Rij|, and moreover

|Rij| = |uTΣ(Θ∗)|j−i| u| ≤ (|||Θ∗|||2)|j−i| Σ ≤ γ|j−i| |||Σ|||2.

Combining the pieces, we obtain

|||R|||2 ≤ max
i

m∑

j=1

|γ||i−j||||Σ|||2 ≤ 2|||Σ|||2
∞∑

j=0

|γ|j ≤ 2|||Σ|||2
1− γ

. (B.9)

Moreover, we have trace(R)/n = uTΣu ≤ |||Σ|||2. Applying Lemma B.2 with t = 5
√

m
n
, we

conclude that

P

[
1

n
‖Y ‖22 > |||Σ|||2 + 5

√
m

n
|||R|||2

]
≤ 2 exp

(
− 5m

)
+ 2 exp−n/2)..
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Combined with the bound (B.8), we obtain

||| 1
n
XTX|||2 ≤ |||Σ|||2

{
2 +

20

(1− γ)

√
m

n

}
≤ 24|||Σ|||2

(1− γ)
, (B.10)

with probability at least 1− c1 exp(−c2m), which establishes the upper bound (4.35)(a).

Turning to the lower bound (4.35)(b), we let B = {v1, . . . , vB} be an ǫ-cover of Sm−1 for
some ǫ ∈ (0, 1) to be chosen. Thus, for any v ∈ R

m, there exists some vb such that v = vb+∆v,

and ‖∆v‖2 ≤ ǫ. Define the function Ψ : Rm × R
m → R via Ψ(u, v) = uT

(
1
n
XTX

)
v, and

note that Ψ(u, v) = Ψ(v, u). With this notation, we have

vT
( 1
n
XTX

)
v = Ψ(v, v) = Ψ(vk, vk) + 2Ψ(∆v, v) + Ψ(∆v,∆v)

≥ Ψ(vk, vk) + 2Ψ(∆v, v),

since Ψ(∆v,∆v) ≥ 0. Since |Ψ(∆v, v)| ≤ ǫ |||
(

1
n
XTX

)
|||2, we obtain the lower bound

σmin

(( 1
n
XTX

))
= inf

v∈Sm−1
vT
( 1
n
XTX

)
v ≥ min

vb∈B
Ψ(vb, vb)− 2ǫ||| 1

n
XTX|||2.

By the previously established upper bound(4.35)(a), have ||| 1
n
XTX|||2 ≤ 24|||Σ|||2

(1−γ) with high

probability. Hence, choosing ǫ = (1−γ)σmin(Σ)
200|||Σ|||2 ensures that 2ǫ||| 1

n
XTX|||2 ≤ σmin(Σ)/4.

Consequently, it suffices to lower bound the minimum over the covering set. We first
establish a concentration result for the function Ψ(v, v) that holds for any fixed v ∈ Sm−1.
Note that we can write

Ψ(v, v) =
1

n

n∑

i=1

(〈v, Xi〉)2,

As before, if we define the random vector Y ∈ R
n with elements Yi = 〈v, Xi〉, then

Y ∼ N(0, R) with |||R|||2 ≤ 2|||Σ|||2
1−γ . Moreover, we have trace(R)/n = vTΣv ≥ σmin(Σ).

Consequently, applying Lemma B.2 yields

P

[
1

n
‖Y ‖22 < σmin(Σ)−

8t|||Σ|||2
1− γ

]
≤ 2 exp

(
− n(t− 2/

√
n)2/2

)
+ 2 exp(−n

2
),

Note that this bound holds for any fixed v ∈ Sm−1. Setting t∗ = (1−γ)σmin(Σ)
16|||Σ|||2 and applying

the union bound yields that

P
[
min
vb∈B

Ψ(vb, vb) < σmin(Σ)/2
]
≤
(4
ǫ

)m
{
2 exp

(
− n(t∗ − 2/

√
n)2/2

)
+ 2 exp(−n

2
)

}
,

which vanishes as long as n > 4 log(4/ǫ)
(t∗)2 m.
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B.4.2 Proof of Lemma 4.5

Let Sm−1 = {u ∈ R
m | ‖u‖2 = 1} denote the Euclidean sphere in m-dimensions, and for

positive scalars a and b, define the random variable

Ψ(a, b) : = sup
u∈aSm−1

sup
v∈b Sm−1

〈Xv, Wu〉.

Note that our goal is to upper bound Ψ(1, 1). Let A = {u1, . . . , uA} and B = {v1, . . . , vB}
denote 1/4 coverings of Sm−1 and Sm−1, respectively. Following the same argument as in
the proof of Lemma 4.3, we obtain the upper bound

Ψ(1, 1) ≤ 4 max
ua∈A,vb∈B

〈Xvb, Wua〉 (B.11)

We now apply the union bound to control the discrete maximum. It is known (e.g., [78, 88])
that there exists a 1/4 covering of Sm−1 with at most 8m elements. Consequently, we have

P
[
|ψ(1, 1)| ≥ 4δ n

]
≤ 82mmax

ua,vb
P
[ |〈Xvb, Wua〉|

n
≥ δ
]
. (B.12)

It remains to obtain a tail bound on the quantity P
[ |〈Xv,Wu〉|

n
≥ δ

]
, for any fixed pair

(u, v) ∈ A× B.
For each i = 1, . . . , n, let Xi and Wi denote the ith row of X and W . Following some

simple algebra, we have the decomposition 〈Xv,Wu〉
n

= T1 − T2 − T3, where

T1 =
1

2n

n∑

i=1

(〈
u, Wi

〉
+
〈
v, Xi

〉)2 − 1

2
(uTCu+ vTΣv)

T2 =
1

2n

n∑

i=1

(〈
u, Wi

〉)2 − 1

2
uTCu

T3 =
1

2n

n∑

i=1

(〈
v, Xi

〉)2 − 1

2
vTΣv

We may now bound each Tj for j = 1, 2, 3 in turn; in doing so, we make repeated use of
Lemma B.2, which provides concentration bounds for a random variable of the form ‖Y ‖22,
where Y ∼ N(0, Q) for some matrix Q � 0.

Bound on T3: We can write the term T3 as a deviation of ‖Y ‖22/n from its mean, where in
this case the covariance matrix Q is no longer the identity. In concrete terms, let us define a
random vector Y ∈ R

n with elements Yi : = 〈v, Xi〉. As seen in the proof of Lemma 4.4 from
Appendix B.4.1, the vector Y is zero-mean Gaussian with covariance matrix R such that
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|||R|||2 ≤ 2|||Σ|||2
1−γ (see equation (B.9)). Since we have trace(R)/n = vTRv, applying Lemma B.2

yields that

P
[
|T3| ≥

8|||Σ|||2
1− γ

t
]
≤ 2 exp

(
− n (t − 2/

√
n)2

2

)
+ 2 exp(−n/2). (B.13)

Bound on T2: We control the term T2 in a similar way. Define the random vector Y ′ ∈ R
n

with elements Y ′
i : = 〈u, Wi〉. Then Y is a sample from the distribution N

(
0, (uTCu)In×n

)
,

so that 2
uTCu

T2 is the difference between a rescaled χ2 variable and its mean. Applying
Lemma B.2 with Q = (uTCu)I, we obtain

P
[
|T2| > 4(uTCu) t

]
≤ 2 exp

(
− n (t− 2/

√
n)2

2

)
+ 2 exp(−n/2). (B.14)

Bound on T1: To control this quantity, let us define a zero-mean Gaussian random vector
Z ∈ R

n with elements Zi = 〈v, Xi〉 + 〈u, Wi〉. This random vector has covariance matrix
S with elements

Sij = E[ZiZj] = (uTCu)δij + (1− δij)(u
TCu)vT (θ∗)|i−j|−1u+ vT (θ∗)|i−j|Σv,

where δij is the Kronecker delta for the event {i = j}. As before, by symmetry of S, we
have |||S|||2 ≤ maxi=1,...,n

∑n
j=1 |Sij|, and hence

|||S|||2 ≤ (uTCu) + |||Σ|||2 +
i−1∑

j=1

|(uTCu) vT (θ∗)|i−j|−1u+ vT (θ∗)|i−j|Σv|

+
n∑

j=i+1

|(uTCu) vT (θ∗)|i−j|−1u+ vT (θ∗)|i−j|Σv|.

Since |||θ∗|||2 ≤ γ < 1, and (uTCu) ≤ |||C|||2 ≤ |||Σ|||2, we have

|||S|||2 ≤ |||C|||2 + |||Σ|||2 + 2
∞∑

j=1

|||C|||2γj−1 + 2
∞∑

j=1

|||Σ|||2γj

≤ 4 |||Σ|||2
(
1 +

1

1− γ

)

Moreover, we have trace(S)
n

= (uTCu) + vTΣv ≤ 2|||Σ|||2, so that by applying Lemma B.2, we
conclude that

P

[
|T1| >

(24|||Σ|||2
1− γ

)
t

]
≤ 2 exp

(
− n (t − 2/

√
n)2

2

)
+ 2 exp(−n/2), (B.15)
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which completes the analysis of this term.
Combining the bounds (B.13), (B.14) and (B.15), we conclude that for all t > 0,

P
[ |〈Xv, Wu〉|

n
≥ 40(|||Σ|||2 t)

1− γ

]
≤ 6 exp

(
− n (t − 2/

√
n)2

2

)
+ 6 exp(−n/2). (B.16)

Setting t = 10
√
m/n and combining with the bound (B.12), we conclude that

P
[
|ψ(1, 1)| ≥ 1600|||Σ|||2

1− γ

√
m

n

]
≤ 82m

{
6 exp(−16m) + 6 exp(−n/2)

}
≤ 12 exp(−m)

as long as n > ((4 log 8) + 1)m.

B.5 Proof of Proposition 4.1

We begin by stating and proving a useful lemma and invite the reader to compare the
following result to the discussion on general Gaussian operators presented in Appendix D.4.
Recall the definition (4.22) of ζmat(Σ).

Lemma B.1. Let X ∈ R
d1×d2 be a random sample from the Σ-ensemble. Then we have

E[|||X|||2] ≤ 12
√
ζmat(Σ)

[√
d1 +

√
d2
]

(B.17)

and moreover

P
[
|||X|||2 ≥ E[|||X|||2] + t] ≤ exp

(
− t2

2ρ2(Σ)

)
. (B.18)

Proof. We begin by making note of the variational representation

|||X|||2 = sup
(u,v)∈Sd1−1×Sd2−1

uTXv.

Since each variable uTXv is zero-mean Gaussian, we thus recognize |||X|||2 as the supremum
of a Gaussian process. The bound (B.18) thus follows from Theorem 7.1 in Ledoux [77].

We now use a simple covering argument establish the upper bound (B.17). Let {v1, . . . , vM2}
be a 1/4 covering of the sphere Sd2−1. For an arbitrary v ∈ Sd2−1, there exists some vj in
the cover such that ‖v − vj‖2 ≤ 1/4, whence

‖Xv‖2 ≤ ‖Xvj‖2 + ‖X(v − vj)‖2.

Taking suprema over both sides, we obtain that |||X|||2 ≤ maxj=1,...,M2 ‖Xvj‖2 + 1
4
|||X|||2. A

similar argument using a 1/4-covering {u1, . . . , uM1} of Sd1−1 yields that

‖Xvj‖2 ≤ max
i=1,...,M1

〈ui, Xvj〉+ 1

4
|||X|||2.
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Combining the pieces, we conclude that

|||X|||2 ≤ 2 max
i=1,...,M1
j=1,...,M2

〈ui, Xvj〉.

By construction, each variable 〈ui, Xvj〉 is zero-mean Gaussian with variance at most ρ(Σ),
so that by standard bounds on Gaussian maxima, we obtain

E[|||X|||2] ≤ 4
√
ζmat(Σ)

√
log(M1M2) ≤ 4

√
ζmat(Σ)

[√
logM1 +

√
logM2

]
.

There exist 1/4-coverings of Sd1−1 and Sd2−1 with logM1 ≤ d1 log 8 and logM2 ≤ d2 log 8,
from which the bound (B.17) follows.

We now return to the proof of Proposition 4.1. To simplify the proof, let us define an
operator TΣ : Rd1×d2 → R

d1×d2 such that vec(TΣ(Θ)) =
√
Σvec(Θ). Let X′ : Rd1×d2 → R

N

be a random Gaussian operator formed with X ′
i sampled with i.i.d. N(0, 1) entries. By

construction, we then have X(Θ) = X
′(TΣ(Θ)) for all Θ ∈ R

d1×d2 . Now by the variational
characterization of the ℓ2-norm, we have

‖X′(TΣ(Θ))‖2 = sup
u∈SN−1

〈u, X′(TΣ(Θ))〉.

Since the original claim (4.25) is invariant to rescaling, it suffices to prove it for matrices
such that |||TΣ(Θ)|||F = 1. Letting t ≥ 1 be a given radius, we seek lower bounds on the
quantity

Z∗(t) : = inf
Θ∈R(t)

sup
u∈SN−1

〈u, X′(TΣ(Θ)))〉, where R(t) = {Θ ∈ R
d1×d2 | |||TΣ(Θ)|||F = 1, |||Θ|||nuc ≤ t}.

In particular, our goal is to prove that for any t ≥ 1, the lower bound

Z∗(t)√
N

≥ c1 − c2
√
ζmat(Σ)

[d1 + d2
N

]1/2
t (B.19)

holds with probability at least 1 − c1 exp(−c2N). By a standard peeling argument (see
Raskutti et al. [109] for details), this lower bound implies the claim (4.25).

We establish the lower bound (B.19) using Gaussian comparison inequalities [78] and
concentration of measure (see Lemma 2.3). For each pair (u,Θ) ∈ SN−1×R(t), consider the
random variable Zu,Θ = 〈u, X′(TΣ(Θ))〉, and note that it is Gaussian with zero mean. For
any two pairs (u,Θ) and (u′,Θ′), some calculation yields

E
[
(Zu,Θ − Zu′,Θ′)2] = |||u⊗ TΣ(Θ)− u′ ⊗ TΣ(Θ

′)|||2F . (B.20)
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We now define a second Gaussian process {Yu,Θ | (u,Θ) ∈ SN−1 ×R(t)} via

Yu,Θ : = 〈g, u〉+ 〈〈G, TΣ(Θ)〉〉,

where g ∈ R
N and G ∈ R

d1×d2 are independent with i.i.d. N(0, 1) entries. By construction,
Yu,Θ is zero-mean, and moreover, for any two pairs (u,Θ) and (u′,Θ′), we have

E
[
(Yu,Θ − Yu′,Θ′)2] = ‖u− u′‖22 + |||TΣ(Θ)− TΣ(Θ

′)|||2F . (B.21)

For all pairs (u,Θ), (u′,Θ′) ∈ SN−1 × R(t), we have ‖u‖2 = ‖u′‖2 = 1, and moreover
|||TΣ(Θ)|||F = |||TΣ(Θ′)|||F = 1. Using this fact, some algebra yields that

|||u⊗ TΣ(Θ)− u′ ⊗ TΣ(Θ
′)|||2F ≤ ‖u− u′‖22 + |||TΣ(Θ)− TΣ(Θ

′)|||2F . (B.22)

Moreover, equality holds whenever Θ = Θ′. The conditions of the Gordon-Slepian inequal-
ity [78] are satisfied, so that we are guaranteed that

E[ inf
Θ∈R(t)

‖X′(TΣ(Θ))‖2] = E

[
inf

Θ∈R(t)
sup

u∈SN−1

Zu,Θ

]
≥ E

[
inf

Θ∈R(t)
sup

u∈SN−1

Yu,Θ

]
(B.23)

We compute

E

[
inf

Θ∈R(t)
sup

u∈SN−1

Yu,Θ

]
= E

[
sup

u∈SN−1

〈g, u〉
]
+ E

[
inf

Θ∈R(t)
〈〈G, TΣ(Θ)〉〉

]

= E[‖g‖2]− E[ sup
Θ∈R(t)

〈〈G, TΣ(Θ)〉〉]

≥ 1

2

√
N − tE[|||TΣ(G)|||2],

where we have used the fact that TΣ is self-adjoint, and Hölder’s inequality (involving the op-
erator and nuclear norms). Since TΣ(G) is a random matrix from the Σ-ensemble, Lemma B.1
yields the upper bound E[|||TΣ(G)|||2] ≤ 12

√
ζmat(Σ) (

√
d1+

√
d2). Putting together the pieces,

we conclude that

E

[
inf

Θ∈R(t)

‖X′(TΣ(Θ))‖2√
N

]
≥ 1

2
− 12

√
ζmat(Σ)

(√d1 +
√
d2√

N

)
t.

Finally, we need to establish sharp concentration around the mean. Since |||TΣ(Θ)|||F = 1
for all Θ ∈ R(t), the function f(X) : = infΘ∈R(t) ‖X′(TΣ(Θ))‖2/

√
N is Lipschitz with constant

1/
√
N , so that Proposition 2.3 implies that

P

[
inf

Θ∈R(t)

‖X(Θ)‖2√
N

≤ 1

2
− 12

√
ζmat(Σ)

(√d1 +
√
d2√

N

)
t− δ

]
≤ 2 exp(−Nδ2/2) for all δ > 0.

Setting δ = 1/4 yields the claim.
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B.6 Some useful concentration results

We recall Proposition 2.3, which states that a Lipschitz function of Gaussian random vari-
ables concentrates around its mean. By exploiting this proposition, we can prove the follow-
ing result, which yields concentration of the squared ℓ2-norm of an arbitrary Gaussian vector:

Lemma B.2. Given a Gaussian random vector Y ∼ N(0, Q), for all t > 2/
√
n, we have

P

[
1

n

∣∣‖Y ‖22 − traceQ
∣∣ > 4 t |||Q|||2

]
≤ 2 exp

(
−
n(t− 2√

n
)2

2

)
+ 2 exp (−n/2). (B.24)

Proof. Let
√
Q be the symmetric matrix square root, and consider the function f(x) = ‖√Qx‖2/

√
n.

Since it is Lipschitz with constant |||√Q|||2/
√
n, Lemma 2.3 implies that

P
[∣∣ ‖
√
QX‖2 − E‖

√
QX‖2

∣∣ >
√
nδ
]
≤ 2 exp

(
− nδ2

2|||Q|||2

)
for all δ > 0. (B.25)

By integrating this tail bound, we find that the variable Z = ‖√QX‖2/
√
n satisfies the

bound var(Z) ≤ 4|||Q|||2/n, and hence conclude that

∣∣√E[Z2]− |E[Z]|
∣∣ =

∣∣√trace(Q)/n− E[‖
√
QX‖2/

√
n]
∣∣ ≤ 2

√
|||Q|||2√
n

. (B.26)

Combining this bound with the tail bound (B.25), we conclude that

P

[ 1√
n

∣∣‖
√
QX‖2 −

√
trace(Q)

∣∣ > δ + 2

√
|||Q|||2
n

]
≤ 2 exp

(
− nδ2

2|||Q|||2

)
for all δ > 0.

(B.27)
Setting δ = (t− 2/

√
n)
√
|||Q|||2 in the bound (B.27) yields that

P

[ 1√
n

∣∣‖
√
QX‖2 −

√
trace(Q)

∣∣ > t
√
|||Q|||2

]
≤ 2 exp

(
−n(t− 2/

√
n)2

2

)
. (B.28)

Similarly, setting δ =
√
|||Q|||2 in the tail bound (B.27) yields that with probability greater

than 1− 2 exp(−n/2), we have
∣∣∣∣
‖Y ‖2√
n

+

√
trace(Q)

n

∣∣∣∣ ≤
√

trace(Q)

n
+ 3
√
|||Q|||2 ≤ 4

√
|||Q|||2. (B.29)

Using these two bounds, we obtain
∣∣∣∣
‖Y ‖22
n

− trace(Q)

n

∣∣∣∣ =
∣∣∣∣
‖Y ‖2√
n

−
√

trace(Q)

n

∣∣∣∣
∣∣∣∣
‖Y ‖2√
n

+

√
trace(Q)

n

∣∣∣∣ ≤ 4 t |||Q|||2

with the claimed probability.
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Appendix C

Proofs for Chapter 5

C.1 Proof of Lemma 5.1

We proceed via the probabilistic method, in particular by showing that a random procedure
succeeds in generating such a set with probability at least 1/2. Let M ′ = exp

(
rm
128

)
, and

for each ℓ = 1, . . . ,M ′, we draw a random matrix Θ̃ℓ ∈ R
m×m according to the following

procedure:

(a) For rows i = 1, . . . , r and for each column j = 1, . . . ,m, choose each Θ̃ℓ
ij ∈ {−1,+1}

uniformly at random, independently across (i, j).

(b) For rows i = r + 1, . . . ,m, set Θ̃ℓ
ij = 0.

We then let Q ∈ R
m×m be a random unitary matrix, and define Θℓ = δ√

rm
QΘ̃ℓ for all

ℓ = 1, . . . ,M ′. The remainder of the proof analyzes the random set {Θ1, . . . ,ΘM ′}, and shows
that it contains a subset of size at least M =M ′/4 that has properties (a) through (d) with
probability at least 1/2.

By construction, each matrix Θ̃ℓ has rank at most r, and Frobenius norm |||Θ̃ℓ|||F =
√
rm.

Since Q is unitary, the rescaled matrices Θℓ have Frobenius norm |||Θℓ|||F = δ. We now prove
that

|||Θℓ −Θk|||F ≥ δ for all ℓ 6= k

with probability at least 7/8. Again, sinceQ is unitary, it suffices to show that |||Θ̃ℓ − Θ̃k|||F ≥ √
rm

for any pair ℓ 6= k. We have

1

rm
|||Θ̃k − Θ̃ℓ|||2F =

1

rm

r∑

i=1

m∑

j=1

(
Θ̃ℓ
ij − Θ̃k

ij

)2
.
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This is a sum of rm i.i.d. variables, each bounded by 4. The mean of the sum is 2, so that
the Hoeffding bound implies that

P
[ 1

rm
|||Θ̃k − Θ̃ℓ|||2F ≤ 2− t

]
≤ 2 exp

(
− rm t2/32

)
.

Since there are less than (M ′)2 pairs of matrices in total, setting t = 1 yields

P
[

min
ℓ,k=1,...,M ′

|||Θ̃ℓ − Θ̃k|||2F
rm

≥ 1
]
≥ 1− 2 exp

(
− rm

32
+ 2 logM ′) ≥ 7

8
,

where we have used the facts logM ′ = rm
128

and m ≥ 10. Recalling the definition of Θℓ, we
conclude that

P
[

min
ℓ,k=1,...,M ′

|||Θℓ −Θk|||2F ≥ δ2
]
≥ 7

8
. (C.1)

We now establish bounds on αsp(Θ
ℓ) and |||Θℓ|||2. We first prove that for any fixed index

ℓ ∈ {1, 2, . . . ,M ′}, our construction satisfies

P

[
αsp(Θ

ℓ) ≤
√

32 logm
]
≥ 3

4
. (C.2)

Indeed, for any pair of indices (i, j), we have |Θℓ
ij| = |〈qi, vj〉|, where qi ∈ R

m is drawn from

the uniform distribution over the m-dimensional sphere, and ‖vj‖2 =
√
r δ√

rm
= |||Θℓ|||F√

m
. By

Levy’s theorem for concentration on the sphere [77], we have

P
[
|〈qi, vj〉| ≥ t

]
≤ 2 exp

(
− m2

8 |||Θℓ|||2F
t2
)
.

Setting t = s/m and taking the union bound over all m2 indices, we obtain

P
[
m ‖Θℓ‖∞ ≥ s

]
≤ 2 exp

(
− 1

8 |||Θℓ|||2F
s2 + 2 logm

)
.

This probability is less than 1/2 for s = |||Θℓ|||F
√
32 logm and m ≥ 2, which establishes the

intermediate claim (C.2).
Finally, we turn to property (d). For each fixed ℓ, by definition of Θℓ and the unitary

nature of Q, we have |||Θℓ|||2 = δ√
rm

|||U |||2, where U ∈ {−1,+1}r×m is a random matrix

with i.i.d. Rademacher (and hence sub-Gaussian) entries. Known results on sub-Gaussian
matrices [42] yield

P

[ δ√
rm

|||U |||2 ≤
2δ√
rm

(√
r +

√
m
)]

≥ 1− 2 exp
(
− 1

4
(
√
r +

√
m)2

)
≥ 3

4
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for m ≥ 10. Since r ≤ m, we conclude that

P

[
|||Θℓ|||2 ≤

4δ√
r

]
≥ 3

4
. (C.3)

By combining the bounds (C.2) and (C.3), we find that for each fixed ℓ = 1, . . . ,M ′, we
have

P

[
|||Θℓ|||2 ≤

4δ√
r
,
αsp(Θ

ℓ)

|||Θ|||F
≤
√

32 logm

]
≥ 1

2
(C.4)

Consider the event E that there exists a subset S ⊂ {1, . . . ,M ′} of cardinality M = 1
4
M ′

such that

|||Θℓ|||2 ≤ 4
δ√
n
, and

αsp(Θ
ℓ)

|||Θ|||F
≤
√
32 logm for all ℓ ∈ S.

By the bound (C.4), we have

P[E ] ≥
M ′∑

k=M

(
M ′

k

)
(1/2)k.

Since we have chosen M < M ′/2, we are guaranteed that P[E ] ≥ 1/2, thereby completing
the proof.

C.2 Proof of Lemma 5.2

We first observe that for any Γ ∈ C
′(n; c0) with ‖Γ‖∞ = 1

m
, we have

|||Γ|||2F ≥ c0 |||Γ|||nuc
√
m logm

n
≥ c0|||Γ|||F

√
m logm

n
,

whence |||Γ|||F ≥ c0

√
m logm

n
. Accordingly, recalling the definition (5.40), it suffices to restrict

our attention to sets R(RP) with RP ≥ µ : = c0

√
m logm

n
. For ℓ = 1, 2, . . . and α = 7

6
, define

the sets

Sℓ : =
{
Γ ∈ C

′(n; c0) | ‖Γ‖∞ =
1

m
, αℓ−1µ ≤ |||Γ|||F ≤ αℓµ, and |||Γ|||nuc ≤ ρ(αℓµ)

}
. (C.5)

From the definition (5.40), note that by construction, we have Sℓ ⊂ R(αℓµ).
Now if the event E(X′) holds for some matrix Γ, then this matrix Γ must belong to some

set Sℓ. When Γ ∈ Sℓ, then we are guaranteed the existence of a matrix Γ ∈ R(αℓµ) such
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that
∣∣‖X

′(Γ)‖2√
n

− |||Γ|||F
∣∣ > 7

8
|||Γ|||F +

48L√
n

≥ 7

8
αℓ−1µ+

48L√
n

=
3

4
αℓµ+

48L√
n
,

where the final equality follows since α = 7/6. Thus, we have shown that when the violating
matrix Γ ∈ Sℓ, then event E(X′;αℓµ) must hold. Since any violating matrix must fall into
some set Sℓ, the union bound implies that

P[E(X′)] ≤
∞∑

ℓ=1

P[E(X′;αℓµ)]

≤ c1

∞∑

ℓ=1

exp
(
− c2nα

2ℓµ2
)

≤ c1

∞∑

ℓ=1

exp
(
− 2c2 log(α) ℓ nµ

2
)

≤ c1
exp(−c′2nµ2)

1− exp(−c′2nµ2)

Since nµ2 = Ω(m logm), the claim follows.

C.3 Proof of Lemma 5.3

For a fixed matrix Γ, define the function FΓ(X
′) = 1√

n
‖X′(Γ)‖2. We prove the lemma in two

parts: first, we establish that for any fixed Γ, the function FΓ satisfies the tail bound

P
[
|FΓ(X

′)− |||Γ|||F | ≥ δ +
48L√
n

]
≤ 4 exp

(
− nδ2

4L2

)
. (C.6)

We then show that there exists a δ-covering of R(RP) such that

logN(δ) ≤ 36
(
Υ(RP)/δ

)2
m. (C.7)

Combining the tail bound (C.6) with the union bound, we obtain

P
[

max
k=1,...,N(δ)

|FΓ(X
′)− |||Γk|||F | ≥ δ +

16L√
n

]
≤ 4 exp

(
− nδ2

4L2
+ logN(δ)

)

≤ 4 exp

{
− nδ2

4L2
+ 36

(
Υ(RP)/δ

)2
m

}
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where the final inequality follows uses the bound (C.7). Since Lemma 5.3 is based on the
choice δ = RP/8, it suffices to show that

nR2
P

512L2
≥ 36

(
Υ(RP)/(RP/8)

)2
m

= 36

(
8RP

c0 L

√
n

m logm

)2

m

=
2304R2

P

c20 L
2

n

logm
.

Noting that the terms involving R2
P, L

2, and n both cancel out, we see that for any fixed c0,
this inequality holds once logm is sufficiently large. By choosing c0 sufficiently large, we can
ensure that it holds for all m ≥ 2.

It remains to establish the two intermediate claims (C.6) and (C.7).

Upper bounding the covering number (C.7): We start by proving the upper bound (C.7)

on the covering number. To begin, let Ñ(δ) denote the δ-covering number (in Frobenius
norm) of the nuclear norm ball B1(Υ(RP)) =

{
∆ ∈ R

m×m | |||∆|||nuc ≤ Υ(RP)
}
, and let

N(δ) be the covering number of the set R(RP). We first claim that N(δ) ≤ Ñ(δ). Let

{Γ1, . . . ,ΓÑ(δ)} be a δ-cover of B1(Υ(RP)), From equation (5.45), note that the set R(RP) is
contained within B1(Υ(RP)); in particular, it is obtained by intersecting the latter set with
the set

S : =
{
∆ ∈ R

m×m | ‖∆‖∞ ≤ 1

m
, |||∆|||F ≤ RP

}
.

Letting ΠS denote the projection operator under Frobenius norm onto this set, we claim
that {ΠS(Γ

j), j = 1, . . . , Ñ(δ)} is a δ-cover of R(RP). Indeed, since S is non-empty, closed
and convex, the projection operator is non-expansive [15], and thus for any Γ ∈ R(RP) ⊂ S,
we have

|||ΠS(Γ
j)− Γ|||F = |||ΠS(Γ

j)− ΠS(Γ)|||F ≤ |||Γj − Γ|||F ,

which establishes the claim.
We now upper bound Ñ(δ). Let G ∈ R

m×m be a random matrix with i.i.d. N(0, 1)
entries. By Sudakov minoration (cf. Theorem 5.6 in Pisier [107]), we have

√
log Ñ(δ) ≤ 3

δ
E
[

sup
|||∆|||nuc≤Υ(RP)

〈〈G, ∆〉〉
]

≤ 3Υ(RP)

δ
E
[
|||G|||2

]
,
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where the second inequality follows from the duality between the nuclear and operator norms.
From known results on the operator norms Gaussian random matrices [42], we have the upper
bound E[|||G|||2] ≤ 2

√
m, so that

√
log Ñ(δ) ≤ 6Υ(RP)

δ

√
m,

thereby establishing the bound (C.7).

Establishing the tail bound (C.6): Recalling the definition of the operator X′, we have

FΓ(X
′) =

1√
n

{ n∑

i=1

〈〈X̃(i), Γ〉〉2
}1/2

=
1√
n

sup
‖u‖2=1

n∑

i=1

ui〈〈X̃(i), Γ〉〉

=
1√
n

sup
‖u‖2=1

n∑

i=1

uiYi

where we have defined the random variables Yi : = 〈〈X̃(i), Γ〉〉. Note that each Yi is zero-mean,
and bounded by 2L since

|Yi| = |〈〈X̃(i), Γ〉〉|
≤
(∑

a,b

|X̃(i)|ab
)
‖Γ‖∞ ≤ 2L.

where we have used the facts that ‖Γ‖∞ ≤ 2/m, and
∑

a,b |X̃(i)|ab ≤ L m, by definition of

the matrices X̃(i).
Therefore, applying Corollary 4.8 from Ledoux [77], we conclude that

P
[
|FΓ(X

′)− E[FΓ(X
′)]| ≥ δ +

32L√
n

]
≤ 4 exp

(
− nδ2

4L2

)
.

The same corollary implies that

∣∣
√
E[F 2

Γ(X
′)]− E[FΓ(X

′)]
∣∣ ≤ 16L√

n
.

Since E[F 2
Γ(X

′)] = |||Γ|||2F , the tail bound (C.6) follows.
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C.4 Proof of Lemma 5.4

From the proof of Lemma 5.3, recall the definition FΓ(X
′) = 1√

n
‖X′(Γ)‖2 where X

′ is the

random sampling operator defined by the n matrices (X̃(1), . . . , X̃(n)). Using this notation,
our goal is to bound the function

G(X′) : = sup
∆∈D(δ,R)

F∆(X
′),

where we recall that D(δ, R) : =
{
∆ ∈ R

mr×mc | |||∆|||F ≤ δ, |||∆|||nuc ≤ 2Υ(RP), ‖∆‖∞ ≤ 2
m

}
.

Ultimately, we will set δ = RP

8
, but we use δ until the end of the proof for compactness in

notation.
Our approach is a standard one: first show concentration of G around its expectation

E[G(X′)], and then upper bound the expectation. We show concentration via a bounded
difference inequality; since G is a symmetric function of its arguments, it suffices to establish
the bounded difference property with respect to the first co-ordinate. In order to do so,
consider a second operator X̃′ defined by the matrices (Z(1), X̃(2), . . . , X̃(n)), differing from

X
′ only in the first matrix. Given the pair (X′, X̃′), we have

G(X′)−G(X̃′) = sup
∆∈D(δ,R)

F∆(X
′)− sup

Θ∈D(δ,R)

FΘ(X̃′)

≤ sup
∆∈D(δ,R)

[
F∆(X

′)− F∆(X̃′)
]

≤ sup
∆∈D(δ,R)

1√
n
‖X′(∆)− X̃′(∆)‖2

= sup
∆∈D(δ,R)

1√
n

∣∣〈〈X̃(1) − Z(1), ∆〉〉
∣∣.

For any fixed ∆ ∈ D(δ, R), we have

∣∣〈〈X̃(1) − Z(1), ∆〉〉
∣∣ ≤ 2Lm ‖∆‖∞ ≤ 4L,

where we have used the fact that the matrix X̃(1) − Z(1) is non-zero in at most two entries
with values upper bounded by 2Lm. Combining the pieces yields G(X′)−G(X̃′) ≤ 4L√

n
. Since

the same argument can be applied with the roles of X′ and X̃′ interchanged, we conclude that
|G(X′)−G(X̃′)| ≤ 4L√

n
. Therefore, by the bounded differences variant of the Azuma-Hoeffding

inequality [77], we have

P
[
|G(X′)− E[G(X′)]| ≥ t

]
≤ 2 exp

(
− nt2

32L2

)
. (C.8)
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Next we bound the expectation. First applying Jensen’s inequality, we have

(E[G(X′)])2 ≤ E[G2(X′)]

= E
[

sup
∆∈D(δ,R)

1

n

n∑

i=1

〈〈X̃(i), ∆〉〉2
]

= E

[
sup

∆∈D(δ,R)

{
1

n

n∑

i=1

[
〈〈X̃(i), ∆〉〉2 − E[〈〈X̃(i), ∆〉〉2]

]
+ |||∆|||2F

}]

≤ E

[
sup

∆∈D(δ,R)

{
1

n

n∑

i=1

[
〈〈X̃(i), ∆〉〉2 − E[〈〈X̃(i), ∆〉〉2]

]}]
+ δ2,

where we have used the fact that E[〈〈X̃(i), ∆〉〉2 = |||∆|||2F ≤ δ2. Now a standard symmetriza-
tion argument [78] yields

EX′ [G2(X′)] ≤ 2EX′,ε

[
sup

∆∈D(δ,R)

1

n

n∑

i=1

εi〈〈X̃(i), ∆〉〉2
]
+ δ2,

where {εi}ni=1 is an i.i.d. Rademacher sequence. Since |〈〈X̃(i), ∆〉〉| ≤ 2L for all i, the
Ledoux-Talagrand contraction inequality (p. 112, Ledoux and Talagrand [78]) implies that

E[G2(X′)] ≤ 16L E
[

sup
∆∈D(δ,R)

{ 1
n

n∑

i=1

εi〈〈X̃(i), ∆〉〉
}]

+ δ2.

By the duality between operator and nuclear norms, we have

∣∣ 1
n

n∑

i=1

εi〈〈X̃(i), ∆〉〉
∣∣ ≤ ||| 1

n

n∑

i=1

εiX̃
(i)|||2 |||∆|||nuc,

and hence, since |||∆|||nuc ≤ ρ(RP) for all ∆ ∈ D(δ, R), we have

E[G2(X′)] ≤ 16Lρ(RP) E
[
||| 1
n

n∑

i=1

εiX̃
(i)|||2

]
+ δ2. (C.9)

It remains to bound the operator norm E
[
||| 1
n

∑n
i=1 εiX̃

(i)|||2
]
. The following lemma,

proved in Appendix C.5, provides a suitable upper bound:

Lemma C.1. We have the upper bound

E
[
||| 1
n

n∑

i=1

εiX̃
(i)|||2

]
≤ 10 max

{
√
m logm

n
,
Lm logm

n

}
. (C.10)
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Thus, as long as n = Ω(Lm logm), combined with the earlier bound (C.9), we conclude that

E[G(X′)] ≤
√

E[G2(X′)] ≤
[
160LΥ(RP)

√
m logm

n
+ δ2

]1/2
,

where we have used the fact that L ≥ 1. By definition of Υ(RP), we have

160LΥ(RP)

√
m logm

n
=

160

c0
R2

P ≤
(5RP

16

)2
,

where the final inequality can be guaranteed by choosing c0 sufficiently large.
Consequently, recalling our choice δ = RP/8 and using the inequality

√
a2 + b2 ≤ |a|+ |b|,

we obtain

E[G(X′)] ≤ 5

16
RP +

RP

8
=

7

16
RP.

Finally, setting t = RP

16
in the concentration bound (C.8) yields

G(X′) ≤ RP

16
+

7

16
RP =

RP

2

with probability at least 1− 2 exp
(
− c′

nR2
P

L2

)
as claimed.

C.5 Proof of Lemma C.1

We prove this lemma by applying a form of Ahlswede-Winter matrix bound [3], as stated

in Appendix C.6, to the matrix Y (i) : = εiX̃
(i). We first compute the quantities involved in

Lemma C.2. Note that Y (i) is a zero-mean random matrix, and satisfies the bound

|||Y (i)|||2 = m
1√

Rj(i)

√
Ck(i)

|||εi ej(i) eTk(i)|||2 ≤ Lm.

Let us now compute the quantities σi in Lemma C.2. We have

E
[
(Y (i)T )Y (i)

]
= E

[
m2

Rj(i)Ck(i)
ek(i)e

T
k(i)

]
= mIm×m

and similarly, E
[
Y (i) (Y (i))T

]
= mIm×m, so that

σ2
i = max

{
|||E
[
Y (i) (Y (i))T

]
|||2, |||E

[
(Y (i))T Y (i)

]
|||2
}

= m.



APPENDIX C. PROOFS FOR CHAPTER 5 165

Thus, applying Lemma C.2 yields the tail bound

P
[
|||

n∑

i=1

εiX̃
(i)|||2 ≥ t

]
≤ 2m max

{
exp(− t2

4nm
), exp(− t

2Lm
)
}
.

Setting t = nδ, we obtain

P
[
||| 1
n

n∑

i=1

εiX̃
(i)|||2 ≥ δ

]
≤ 2m max

{
exp(−nδ

2

4m
), exp(− nδ

2Lm
)
}
.

Recall that for any non-negative random variable T , we have E[T ] =
∫∞
0

P[T ≥ s]ds.

Applying this fact to T : = ||| 1
n

∑n
i=1 εiX̃

(i)|||2 and integrating the tail bound, we obtain

E
[
||| 1
n

n∑

i=1

εiX̃
(i)|||2

]
≤ 10 max

{
√
m logm

n
,
Lm logm

n

}
.

C.6 Ahlswede-Winter matrix bound

Here we state a Bernstein version of the Ahlswede-Winter tail bound [3] for the operator
norm of a sum of random matrices. The version here is a slight weakening (but sufficient
for our purposes) of a result due to Recht [115]; we also refer the reader to the notes of
Vershynin [143], and the strengthened results provided by Tropp [133].

Let Y (i) be independent mr × mc zero-mean random matrices such that |||Y (i)|||2 ≤ M ,
and define σ2

i : = max
{
|||E[(Y (i))TY (i)]|||2, |||E[Y (i)(Y (i))T ]|||2} as well as σ2 : =

∑n
i=1 σ

2
i .

Lemma C.2. We have

P
[
|||

n∑

i=1

Y (i)|||2 ≥ t
]
≤ (mr ×mc) max

{
exp(−t2/(4σ2), exp(− t

2M
)
}

(C.11)

As noted by Vershynin [143], the same bound also holds under the assumption that each
Y (i) is sub-exponential with parameter M = ‖Y (i)‖ψ1 . Here we are using the Orlicz norm

‖Z‖ψ1 : = inf{t > 0 | E[ψ(|Z|/t)] <∞},

defined by the function ψ1(x) = exp(x) − 1, as is appropriate for sub-exponential variables
(e.g., see the book [78]).
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Appendix D

Proofs for Chapter 6

D.1 Auxiliary results for Theorem 6.1

In this appendix, we provide the proofs of various auxiliary lemmas required in the proof of
Theorem 6.1.

D.1.1 Proof of Lemma 6.1

Since θt and θ̂ are both feasible and θ̂ lies on the constraint boundary, we have R(θt) ≤ R(θ̂).

Since R(θ̂) ≤ R(θ∗) +R(θ̂ − θ∗) by triangle inequality, we conclude that

R(θt) ≤ R(θ∗) +R(∆∗).

Since θ∗ = ΠM(θ∗) + ΠM⊥(θ∗), a second application of triangle inequality yields

R(θt) ≤ R(ΠM(θ∗)) +R(ΠM⊥(θ∗)) +R(∆∗). (D.1)

Now define the difference ∆t : = θt − θ∗. (Note that this is slightly different from ∆̂t, which

is measured relative to the optimum θ̂.) With this notation, we have

R(θt) = R
(
ΠM(θ∗) + ΠM⊥(θ∗) + ΠM̄(∆t) + ΠM̄⊥(∆t)

)

(i)

≥ R
(
ΠM(θ∗) + ΠM̄⊥(∆t)

)
−R

(
ΠM⊥(θ∗) + ΠM̄(∆t)

)

(ii)

≥ R
(
ΠM(θ∗) + ΠM̄⊥(∆t)

)
−R(ΠM⊥(θ∗))−R(ΠM̄(∆t)),

where steps (i) and (ii) each use the triangle inequality. Now by the decomposability condi-
tion, we have R

(
ΠM(θ∗) +ΠM̄⊥(∆t)

)
= R(ΠM(θ∗)) +R(ΠM̄⊥(∆t)), so that we have shown

that

R(ΠM(θ∗)) +R(ΠM̄⊥(∆t))−R(ΠM⊥(θ∗))−R(ΠM̄(∆t)) ≤ R(θt).
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Combining this inequality with the earlier bound (D.1) yields

R(ΠM(θ∗)) +R(ΠM̄⊥(∆t))−R(ΠM⊥(θ∗))−R(ΠM̄(∆t)) ≤ R(ΠM(θ∗)) +R(ΠM⊥(θ∗)) +R(∆∗).

Re-arranging yields the inequality

R(ΠM̄⊥(∆t)) ≤ R(ΠM̄(∆t)) + 2R(ΠM⊥(θ∗)) +R(∆∗). (D.2)

The final step is to translate this inequality into one that applies to the optimization
error ∆̂t = θt − θ̂. Recalling that ∆∗ = θ̂ − θ∗, we have ∆̂t = ∆t −∆∗, and hence

R(∆̂t) ≤ R(∆t) +R(∆∗), by triangle inequality. (D.3)

In addition, we have

R(∆t) ≤ R(ΠM̄⊥(∆t)) +R(ΠM̄(∆t))
(i)

≤ 2R(ΠM̄(∆t)) + 2R(ΠM⊥(θ∗)) +R(∆∗)

(ii)

≤ 2Ψ(M⊥
)‖ΠM̄(∆t)‖+ 2R(ΠM⊥(θ∗)) +R(∆∗),

where inequality (i) uses the bound (D.2), and inequality (ii) uses the definition (3.3) of the
subspace compatibility Ψ. Combining with the inequality (D.3) yields

R(∆̂t) ≤ 2Ψ(M⊥
)‖ΠM̄(∆t)‖+ 2R(ΠM⊥(θ∗)) + 2R(∆∗).

Since projection onto a subspace is non-expansive, we have ‖ΠM̄(∆t)‖ ≤ ‖∆t‖, and hence

‖ΠM̄(∆t)‖ ≤ ‖∆̂t +∆∗‖ ≤ ‖∆̂t‖+ ‖∆∗‖.

Combining the pieces, we obtain the claim (6.44).

D.1.2 Proof of Lemma 6.2

We start by applying the RSC assumption to the pair θ̂ and θt, thereby obtaining the lower
bound

Ln(θ̂)−
γℓ
2
‖θ̂ − θt‖2 ≥ Ln(θt) + 〈∇Ln(θt), θ̂ − θt〉 − τℓ(Ln)R2(θt − θ̂)

= Ln(θt) + 〈∇Ln(θt), θt+1 − θt〉+ 〈∇Ln(θt), θ̂ − θt+1〉 − τℓ(Ln)R2(θt − θ̂).
(D.4)

Here the second inequality follows by adding and subtracting terms.
Now for compactness in notation, define ϕt(θ) : = Ln(θt)+〈∇Ln(θt), θ − θt〉+ γu

2
‖θ−θt‖2,

and note that by definition of the algorithm, the iterate θt+1 minimizes ϕt(θ) over the ball

BR(ρ). Moreover, since θ̂ is feasible, the first-order conditions for optimality imply that
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〈∇ϕt(θt+1), θ̂ − θt+1〉 ≥ 0, or equivalently that 〈∇Ln(θt) + γu(θ
t+1 − θt), θ̂ − θt+1〉 ≥ 0.

Applying this inequality to the lower bound (D.4), we find that

Ln(θ̂)−
γℓ
2
‖θ̂ − θt‖2 ≥ Ln(θt) + 〈∇Ln(θt), θt+1 − θt〉+ γu〈θt − θt+1, θ̂ − θt+1〉 − τℓ(Ln)R2(θt − θ̂)

= ϕt(θ
t+1)− γu

2
‖θt+1 − θt‖2 + γu〈θt − θt+1, θ̂ − θt+1〉 − τℓ(Ln)R2(θt − θ̂)

= ϕt(θ
t+1) +

γu
2
‖θt+1 − θt‖2 + γu〈θt − θt+1, θ̂ − θt〉 − τℓ(Ln)R2(θt − θ̂),

(D.5)

where the last step follows from adding and subtracting θt+1 in the inner product.
Now by the RSM condition, we have

ϕt(θ
t+1) ≥ Ln(θt+1)− τu(Ln)R2(θt+1 − θt)

(a)

≥ Ln(θ̂)− τu(Ln)R2(θt+1 − θt), (D.6)

where inequality (a) follows by the optimality of θ̂, and feasibility of θt+1. Combining this

inequality with the previous bound (D.5) yields that Ln(θ̂) − γℓ
2
‖θ̂ − θt‖2 is lower bounded

by

Ln(θ̂)−
γu
2
‖θt+1 − θt‖2 + γu〈θt − θt+1, θ̂ − θt〉 − τℓ(Ln)R2(θt − θ̂)− τu(Ln)R2(θt+1 − θt),

and the claim (6.46) follows after some simple algebraic manipulations.

D.2 Auxiliary results for Theorem 6.2

In this appendix, we prove the two auxiliary lemmas required in the proof of Theorem 6.2.

D.2.1 Proof of Lemma 6.3

This result is a generalization of Lemma 3.17, with some changes required so as to adapt the
statement to the optimization setting. Let θ be any vector, feasible for the problem (6.2),
that satisfies the bound

φ(θ) ≤ φ(θ∗) + η, (D.7)

and assume that λn ≥ 2R∗(∇Ln(θ∗)). We then claim that the error vector ∆ := θ − θ∗

satisfies the inequality

R(ΠM̄⊥(∆)) ≤ 3R(ΠM̄(∆)) + 4R(ΠM⊥(θ∗)) + 2min
{ η
λn
, ρ̄
}
. (D.8)

For the moment, we take this claim as given, returning later to verify its validity.
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By applying this intermediate claim (D.8) in two different ways, we can complete the

proof of Lemma 6.3. First, we observe that when θ = θ̂, the optimality of θ̂ and feasibility
of θ∗ imply that assumption (D.7) holds with η = 0, and hence the intermediate claim (D.8)

implies that the statistical error ∆∗ = θ∗ − θ̂ satisfies the bound

R(ΠM̄⊥(∆∗)) ≤ 3R(ΠM̄(∆∗)) + 4R(ΠM⊥(θ∗)). (D.9)

Since ∆∗ = ΠM̄(∆∗)ΠM̄⊥(∆∗), we can write

R(∆∗) = R(ΠM̄(∆∗) + ΠM̄⊥(∆∗)) ≤ 4R(ΠM̄(∆∗)) + 4R(ΠM⊥(θ∗)), (D.10)

using the triangle inequality in conjunction with our earlier bound (D.9). Similarly, when
θ = θt for some t ≥ T , then the given assumptions imply that condition (D.7) holds with η >
0, so that the intermediate claim (followed by the same argument with triangle inequality)
implies that the error ∆t = θt − θ∗ satisfies the bound

R(∆t) ≤ 4R(ΠM̄(∆t)) + 4R(ΠM⊥(θ∗)) + 2min
{ η
λn
, ρ̄
}
. (D.11)

Now let ∆̂t = θt − θ̂ be the optimization error at time t, and observe that we have the
decomposition ∆̂t = ∆t +∆∗. Consequently, by triangle inequality

R(∆̂t) ≤ R(∆t) +R(∆∗)

(i)

≤ 4
{
R(ΠM̄(∆t)) +R(ΠM̄(∆∗))

}
+ 8R(ΠM⊥(θ∗)) + 2min

{ η
λn
, ρ̄
}

(ii)

≤ 4Ψ(M)
{
‖ΠM̄(∆t)‖+ ‖ΠM̄(∆∗)‖

}
+ 8R(ΠM⊥(θ∗)) + 2min

{ η
λn
, ρ̄
}

(iii)

≤ 4Ψ(M)
{
‖∆t‖+ ‖∆∗‖

}
+ 8R(ΠM⊥(θ∗)) + 2min

{ η
λn
, ρ̄
}
, (D.12)

where step (i) follows by applying both equation (D.10) and (D.11); step (ii) follows from the
definition (3.3) of the subspace compatibility that relates the regularizer to the norm ‖ · ‖;
and step (iii) follows from the fact that projection onto a subspace is non-expansive. Finally,

since ∆t = ∆̂t −∆∗, the triangle inequality implies that ‖∆t‖ ≤ ‖∆̂t‖+ ‖∆∗‖. Substituting
this upper bound into inequality (D.12) completes the proof of Lemma 6.3.

It remains to prove the intermediate claim (D.8). Letting θ be any vector, feasible for
the program (6.2), and satisfying the condition (D.7), and let ∆ = θ − θ∗ be the associated
error vector. Re-writing the condition (D.7), we have

Ln(θ∗ +∆) + λnR(θ∗ +∆) ≤ Ln(θ∗) + λnR(θ∗) + η.
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Subtracting
〈
∇Ln(θ∗), ∆

〉
from each side and then re-arranging yields the inequality

Ln(θ∗ +∆)− Ln(θ∗)−
〈
∇Ln(θ∗), ∆

〉
+ λn

{
R(θ∗ +∆)−R(θ∗)

}
≤ −

〈
∇Ln(θ∗), ∆

〉
+ η.

The convexity of Ln then implies that Ln(θ∗ +∆)−Ln(θ∗)−
〈
∇Ln(θ∗), ∆

〉
≥ 0, and hence

that
λn

{
R(θ∗ +∆)−R(θ∗)

}
≤ −

〈
∇Ln(θ∗), ∆

〉
+ η.

Applying Hölder’s inequality to
〈
∇Ln(θ∗), ∆

〉
, as expressed in terms of the dual norms

R and R∗, yields the upper bound

λn

{
R(θ∗ +∆)−R(θ∗)

}
≤ R∗(∇Ln(θ∗)) R(∆) + η

(i)

≤ λn
2

R(∆) + η,

where step (i) uses the fact that λn ≥ 2R∗(∇Ln(θ∗)) by assumption.
For the remainder of the proof, let us introduce the convenient shorthand ∆M̄ : = ΠM̄(∆)

and ∆M̄⊥ : = ΠM̄⊥(∆), with similar shorthand for projections involving θ∗. Making note of
the decomposition ∆ = ∆M̄ + ∆M̄⊥ , an application of triangle inequality then yields the
upper bound

R(θ∗ +∆)−R(θ∗) ≤ 1

2

{
R(∆M̄) +R(∆M̄⊥)

}
+

η

λn
, (D.13)

where we have rescaled both sides by λn > 0.
It remains to further lower bound the left-hand side (D.13). By triangle inequality, we

have

−R(θ∗) ≥ −R(θ∗M)−R(θ∗M⊥). (D.14)

Let us now write θ∗ +∆ = θ∗M + θ∗M⊥ +∆M̄ +∆M̄⊥ . Using this representation and triangle
inequality, we have

R(θ∗ +∆) ≥ R(θ∗M +∆M̄⊥)−R(θ∗M⊥ +∆M̄) ≥ R(θ∗M +∆M̄⊥)−R(θ∗M⊥)−R(∆M̄).

Finally, since θ∗M ∈ M and ∆M̄⊥ ∈ M⊥
, the decomposability of R implies that R(θ∗M +

∆M̄⊥) = R(θ∗M) +R(∆M̄⊥), and hence that

R(θ∗ +∆) ≥ R(θ∗M) +R(∆M̄⊥)−R(θ∗M⊥)−R(∆M̄). (D.15)

Adding together equations (D.14) and (D.15), we obtain the lower bound

R(θ∗ +∆)−R(θ∗) ≥ R(∆M̄⊥)− 2R(θ∗M⊥)−R(∆M̄). (D.16)
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Combining this lower bound with the earlier inequality (D.13), some algebra yields the bound

R(∆M̄⊥) ≤ 3R(∆M̄) + 4R(θ∗M⊥) + 2
η

λn
,

corresponding to the bound (D.8) when η/λn achieves the final minimum. To obtain the
final term involving ρ̄ in the bound (D.8), two applications of triangle inequality yields

R(∆M̄⊥) ≤ R(∆M̄) +R(∆) ≤ R(∆M̄) + 2ρ̄,

where we have used the fact that R(∆) ≤ R(θ)+R(θ∗) ≤ 2ρ̄, since both θ and θ∗ are feasible
for the program (6.2).

D.2.2 Proof of Lemma 6.4

The proof of this result follows lines similar to the proof of convergence by Nesterov [102].

Recall our notation φ(θ) = Ln(θ) + λnR(θ), ∆̂t = θt − θ̂, and that ηtφ = φ(θt) − φ(θ̂).
We begin by proving that under the stated conditions, a useful version of restricted strong
convexity (6.42) is in force:

Lemma D.1. Under the assumptions of Lemma 6.4, we are guaranteed that

{γℓ
2
− 32τℓ(Ln)Ψ2(M)

}
‖∆̂t‖2 ≤ 2τℓ(Ln) v2 + φ(θt)− φ(θ̂), and (D.17a)

{γℓ
2
− 32τℓ(Ln)Ψ2(M)

}
‖∆̂t‖2 ≤ 2 τℓ(Ln) v2 + TL(θ̂; θ

t), (D.17b)

where v : = ǭstat + 2min( η
λn
, ρ̄).

See Appendix D.2.3 for the proof of this claim. So as to ease notation in the remainder of
the proof, let us introduce the shorthand

φt(θ) : = Ln(θt) +
〈
∇Ln(θt), θ − θt

〉
+
γu
2
‖θ − θt‖2 + λnR(θ), (D.18)

corresponding to the approximation to the regularized loss function φ that is minimized
at iteration t of the update (6.4). Since θt+1 minimizes φt over the set BR(ρ̄), we are
guaranteed that φt(θ

t+1) ≤ φt(θ) for all θ ∈ BR(ρ̄). In particular, for any α ∈ (0, 1), the

vector θα = αθ̂ + (1− α)θt lies in the convex set BR(ρ̄), so that

φt(θ
t+1) ≤ φt(θα) = Ln(θt) +

〈
∇Ln(θt), θα − θt

〉
+
γu
2
‖θα − θt‖2 + λnR(θα)

(i)
= Ln(θt) +

〈
∇Ln(θt), αθ̂ − αθt

〉
+
γuα

2

2
‖θ̂ − θt‖2 + λnR(θα)

(ii)

≤ Ln(θt) +
〈
∇Ln(θt), αθ̂ − αθt

〉
+
γuα

2

2
‖θ̂ − θt‖2 + λnαR(θ̂) + λn(1− α)R(θt),
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where step (i) follows from substituting the definition of θα, and step (ii) uses the convexity
of the regularizer R.

Now, the stated conditions of the lemma ensure that γℓ/2− 32τℓ(Ln)Ψ2(M) ≥ 0, so that

by equation (D.17b), we have Ln(θ̂) + 2τℓ(Ln)v2 ≥ Ln(θt) +
〈
∇Ln(θt), θ̂− θt

〉
. Substituting

back into our earlier bound yields

φt(θ
t+1) ≤ (1− α)Ln(θt) + αLn(θ̂) + 2ατℓ(Ln)v2 +

γuα
2

2
‖θ̂ − θt‖2 + αλnR(θ̂) + (1− α)λnR(θt)

(iii)
= φ(θt)− α(φ(θt)− φ(θ̂)) + 2τℓ(Ln)v2 +

γuα
2

2
‖θ̂ − θt‖2, (D.19)

where we have used the definition of φ and α ≤ 1 in step (iii).
In order to complete the proof, it remains to relate φt(θ

t+1) to φ(θt+1), which can be
performed by exploiting restricted smoothness. In particular, applying the RSM condition
at the iterate θt+1 in the direction θt yields the upper bound

Ln(θt+1) ≤ Ln(θt) +
〈
Ln(θt), θt+1 − θt

〉
+
γu
2
‖θt+1 − θt‖2 + τu(Ln)R2(θt+1 − θt),

so that

φ(θt+1) ≤ Ln(θt) +
〈
Ln(θt), θt+1 − θt

〉
+
γu
2
‖θt+1 − θt‖2 + τu(Ln)R2(θt+1 − θt) + λnR(θt+1)

= φt(θ
t+1) + τu(Ln)R2(θt+1 − θt).

Combining the above bound with the inequality (D.19) and recalling the notation ∆̂t = θt−θ̂,
we obtain

φ(θt+1) ≤ φ(θt)− α(φ(θt)− φ(θ̂)) +
γuα

2

2
‖θ̂ − θt‖2 + τu(Ln)R2(θt+1 − θt) + 2τℓ(Ln)v2

(iv)

≤ φ(θt)− α(φ(θt)− φ(θ̂)) +
γuα

2

2
‖∆̂t‖2 + τu(Ln)[R(∆̂t+1) +R(∆̂t)]2 + 2τℓ(Ln)v2

(v)

≤ φ(θt)− α(φ(θt)− φ(θ̂)) +
γuα

2

2
‖∆̂t‖2 + 2τu(Ln)(R2(∆̂t+1) +R2(∆̂t)) + 2τℓ(Ln)v2.

(D.20)

Here step (iv) uses the fact that θt− θt+1 = ∆̂t− ∆̂t+1 and applies triangle inequality to the
norm R, whereas step (v) follows from Cauchy-Schwarz inequality.

Next, combining Lemma 6.3 with the Cauchy-Schwarz inequality inequality yields the
upper bound

R2(∆̂t) ≤ 32Ψ2(M)‖∆̂t‖2 + 2v2 (D.21)

where v = ǭstat(M,M) + 2min( η
λn
, ρ̄), is a constant independent of θt and ǭstat(M,M)

was previously defined in the lemma statement. Substituting the above bound into inequal-
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ity (D.20) yields that φ(θt+1) is at most

φ(θt)− α(φ(θt)− φ(θ̂)) +
γuα

2

2
‖∆̂t‖2 + 64τu(Ln)Ψ2(M)‖∆̂t+1‖2

+ 64τu(Ln)Ψ2(M)‖∆̂t‖2 + 8τu(Ln)v2 + 2τℓ(Ln)v2. (D.22)

The final step is to translate quantities involving ∆̂t to functional values, which may be
done using the RSC condition (D.17a) from Lemma D.1. In particular, combining the RSC
condition (D.17a) with the inequality (D.22) yields

φ(θt+1) ≤ φ(θt)− αηtφ +

(
γuα

2 + 64τu(Ln)Ψ2(M)
)

γℓ
(ηtφ + 2τℓ(Ln)v2) +

64τu(Ln)Ψ2(M)

γℓ
(ηt+1
φ + 2τℓ(Ln)v2) + 8τu(Ln)v2 + 2τℓ(Ln)v2.

where we have introduced the shorthand γℓ : = γℓ−64τℓ(Ln)Ψ2(M). Recalling the definition

of β, adding and subtracting φ(θ̂) from both sides, and choosing α = γℓ
2γu

∈ (0, 1), we obtain

(
1− 64τu(Ln)Ψ2(M)

γℓ

)
ηt+1
φ ≤

(
1− γℓ

4γu
+

64τu(Ln)Ψ2(M)

γℓ

)
ηtφ + β(M)v2.

Recalling the definition of the contraction factor κ from the statement of Theorem 6.2, the
above expression can be rewritten as

ηt+1
φ ≤ κηtφ + β(M)ξ(M)v2, where ξ(M) =

{
1− 64τu(Ln)Ψ2(M)

γℓ

}−1
.

Finally, iterating the above expression yields ηtφ ≤ κt−TηTφ + ξ(M)β(M)v2

1−κ , where we have used
the condition κ ∈ (0, 1) in order to sum the geometric series, thereby completing the proof.

D.2.3 Proof of Lemma D.1

The key idea to prove the lemma is to use the definition of RSC along with the iterated cone
bound of Lemma 6.3 for simplifying the error terms in RSC.

Let us first show that condition (D.17a) holds. From the RSC condition assumed in the
lemma statement, we have

Ln(θt)− Ln(θ̂)− 〈∇Ln(θ̂), θt − θ̂〉 ≥ γℓ
2
‖θ̂ − θt‖2 − τℓ(Ln) R2(θ̂ − θt). (D.23)

From the convexity of R and definition of the subdifferential ∂R(θ), we obtain

R(θt)−R(θ̂)−
〈
∂R(θ̂), θt − θ̂

〉
≥ 0.
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Adding this lower bound with the inequality (D.23) yields

φ(θt)− φ(θ̂)− 〈∇φ(θ̂), θt − θ̂〉 ≥ γℓ
2
‖θ̂ − θt‖2 − τℓ(Ln) R2(θ̂ − θt),

where we recall that φ(θ) = Ln(θ) + λnR(θ) is our objective function. By the optimality of

θ̂ and feasibility of θt, we are guaranteed that 〈∇φ(θ̂), θt − θ̂〉 ≥ 0, and hence

φ(θt)− φ(θ̂) ≥ γℓ
2
‖θ̂ − θt‖2 − τℓ(Ln) R2(θ̂ − θt)

(i)

≥ γℓ
2
‖θ̂ − θt‖2 − τℓ(Ln)

{
32Ψ2(M)‖θ̂ − θt‖2 + 2v2

}

where step (i) follows by applying Lemma 6.3. Some algebra then yields the claim (D.17a).

Finally, let us verify the claim (D.17b). Using the RSC condition, we have

Ln(θ̂)− Ln(θt)− 〈∇Ln(θt), θ̂ − θt〉 ≥ γℓ
2
‖θ̂ − θt‖2 − τℓ(Ln) R2(θ̂ − θt). (D.24)

As before, applying Lemma 6.3 yields

Ln(θ̂)− Ln(θt)− 〈∇Ln(θt), θ̂ − θt〉︸ ︷︷ ︸
TL(θ̂;θt)

≥ γℓ
2
‖θ̂ − θt‖2 − τℓ(Ln)

(
32Ψ2(M)‖θ̂ − θt‖2 + 2v2

)
,

and rearranging the terms and establishes the claim (D.17b).

D.3 Proof of Lemma 6.5

Given the condition R(θ̂) ≤ ρ ≤ R(θ∗), we have R(θ̂) = R(θ∗ + ∆∗) ≤ R(θ∗). By triangle
inequality, we have

R(θ∗) = R(ΠM(θ∗) + ΠM⊥(θ∗)) ≤ R(ΠM(θ∗)) +R(ΠM⊥(θ∗)).

We then write

R(θ∗ +∆∗) = R(ΠM(θ∗) + ΠM⊥(θ∗) + ΠM̄(∆∗) + ΠM̄⊥(∆∗))

(i)

≥ R(ΠM(θ∗) + ΠM̄⊥(∆∗))−R(ΠM̄(∆∗))−R(ΠM⊥(θ∗))

(ii)
= R(ΠM(θ∗)) +R(ΠM̄⊥(∆∗))−R(ΠM̄(∆∗))−R(ΠM⊥(θ∗)),

where the bound (i) follows by triangle inequality, and step (ii) uses the decomposability of

R over the pair M and M⊥
. By combining this lower bound with the previously established

upper bound

R(θ∗ +∆∗) ≤ R(ΠM(θ∗)) +R(ΠM⊥(θ∗)),
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we conclude that R(ΠM̄⊥(∆∗)) ≤ R(ΠM̄(∆∗))+2R(ΠM⊥(θ∗)). Finally, by triangle inequal-
ity, we have R(∆∗) ≤ R(ΠM̄(∆∗)) +R(ΠM̄⊥(∆∗)), and hence

R(∆∗) ≤ 2R(ΠM̄(∆∗)) + 2R(ΠM⊥(θ∗))

(i)

≤ 2Ψ(M⊥
)‖ΠM̄(∆∗)‖+ 2R(ΠM⊥(θ∗))

(ii)

≤ 2Ψ(M⊥
)‖∆∗‖+ 2R(ΠM⊥(θ∗)),

where inequality (i) follows from Definition 3.3 of the subspace compatibility Ψ, and the
bound (ii) follows from non-expansivity of projection onto a subspace.

D.4 A general result on Gaussian observation opera-

tors

In this appendix, we state a general result about a Gaussian random matrices, and show
how it can be adapted to prove Lemmas 6.6 and 6.7. Let X ∈ R

n×d be a Gaussian random
matrix with i.i.d. rows xi ∼ N(0,Σ), where Σ ∈ R

d×d is a covariance matrix. We refer to
X as a sample from the Σ-Gaussian ensemble. In order to state the result, we use Σ1/2 to
denote the symmetric matrix square root.

Proposition D.1. Given a random matrix X drawn from the Σ-Gaussian ensemble, there
are universal constants ci, i = 0, 1 such that

‖Xθ‖22
n

≥ 1

2
‖Σ1/2θ‖22 − c1

(E[R∗(xi)])
2

n
R2(θ) and (D.25a)

‖Xθ‖22
n

≤ 2‖Σ1/2θ‖22 + c1
(E[R∗(xi)])

2

n
R2(θ) for all θ ∈ R

d (D.25b)

with probability greater than 1− exp(−c0 n).
We omit the proof of this result. The two special instances proved in Lemma 6.6 and 6.7
have been stated in the paper [109] and in Proposition 4.1 respectively. We now show how
Proposition D.1 can be used to recover various lemmas required in our proofs.

Proof of Lemma 6.6: We begin by establishing this auxiliary result required in the proof
of Corollary 6.2. When R(·) = ‖ · ‖1, we have R∗(·) = ‖ · ‖∞. Moreover, the random
vector xi ∼ N(0,Σ) can be written as xi = Σ1/2w, where w ∼ N(0, Id×d) is standard normal.
Consequently, using properties of Gaussian maxima [78] and defining ζ(Σ) = maxj=1,2,...,dΣjj,
we have the bound

(E[‖xi‖∞])2 ≤ ζ(Σ) (E[‖w‖∞])2 ≤ 3ζ(Σ)
√
log d.

Substituting into Proposition D.1 yields the claims (6.56a) and (6.56b).
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Proof of Lemma 6.7: In order to prove this claim, we view each random observation ma-
trixXi ∈ R

m×m as a d = m2 vector (namely the quantity vec(Xi)), and apply Proposition D.1
in this vectorized setting. Given the standard Gaussian vector w ∈ R

m2
, we let W ∈ R

m×m

be the random matrix such that vec(W ) = w. With this notation, the term R∗(vec(Xi)) is
equivalent to the operator norm |||Xi|||2. As shown in Chapter 4, E[|||Xi|||2] ≤ 24ζmat(Σ)

√
m,

where ζmat was previously defined (6.59).

D.5 Auxiliary results for Corollary 6.5

In this section, we provide the proofs of Lemmas 6.8 and 6.9 that play a central role in
the proof of Corollary 6.5. In order to do so, we require the following result, which is a
re-statement of Theorem 5.1:

Proposition D.2. For the matrix completion operator Xn, there are universal positive con-
stants (c1, c2) such that

∣∣∣∣
‖Xn(Θ)‖22

n
− |||Θ|||2F

∣∣∣∣ ≤ c1m‖Θ‖∞ |||Θ|||nuc
√
m logm

n
+ c2

(
m‖Θ‖∞

√
m logm

n

)2

for all Θ ∈ R
m×m

(D.26)

with probability at least 1− exp(−m logm).

D.5.1 Proof of Lemma 6.8

Applying Proposition D.2 to ∆̂t and using the fact that m‖∆̂t‖∞ ≤ 2α yields

‖Xn(∆̂
t)‖22

n
≥ |||∆̂t|||2F − c1α|||∆̂t|||nuc

√
m logm

n
− c2 α

2m logm

n
, (D.27)

where we recall our convention of allowing the constants to change from line to line. From
Lemma 6.1,

|||∆̂t|||nuc ≤ 2Ψ(M⊥
) |||∆̂t|||F + 2|||ΠM⊥(θ∗)|||nuc + 2|||∆∗|||nuc +Ψ(M⊥

)|||∆∗|||F .

Since ρ ≤ |||Θ∗|||nuc, Lemma 6.5 implies that |||∆∗|||nuc ≤ 2Ψ(M⊥
)|||∆∗|||F + |||ΠM⊥(θ∗)|||nuc, and

hence that

|||∆̂t|||nuc ≤ 2Ψ(M⊥
) |||∆̂t|||F + 4|||ΠM⊥(θ∗)|||nuc + 5Ψ(M⊥

)|||∆∗|||F . (D.28)

Combined with the lower bound, we obtain that
‖Xn(∆̂t)‖22

n
is lower bounded by

|||∆̂t|||2F

{
1−

2c1 αΨ(M⊥
)
√

m logm
n

|||∆̂t|||F

}
− 2c1 α

√
m logm

n

{
4|||ΠM⊥(θ∗)|||nuc + 5Ψ(M⊥

)|||∆∗|||F
}
− c2 α

2m logm

n
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Consequently, for all iterations such that |||∆̂t|||F ≥ 4c1Ψ(M⊥
)
√

m logm
n

, we have

‖Xn(∆̂
t)‖22

n
≥ 1

2
|||∆̂t|||2F − 2c1 α

√
m logm

n

{
4|||ΠM⊥(θ∗)|||nuc + 5Ψ(M⊥

)|||∆∗|||F
}
− c2 α

2m logm

n
.

By subtracting off an additional term, the bound is valid for all ∆̂t—viz.

‖Xn(∆̂
t)‖22

n
≥ 1

2
|||∆̂t|||2F − 2c1 α

√
m logm

n

{
4|||ΠM⊥(θ∗)|||nuc + 5Ψ(M⊥

)|||∆∗|||F
}
− c2 α

2m logm

n
− 16c21α

2Ψ2(M

D.5.2 Proof of Lemma 6.9

Applying Proposition D.2 to Γt and using the fact that m‖Γt‖∞ ≤ 2α yields

‖Xn(Γ
t)‖22

n
≤ |||Γt|||2F + c1α|||Γt|||nuc

√
m logm

n
+ c2 α

2m logm

n
, (D.29)

where we recall our convention of allowing the constants to change from line to line. By
triangle inequality, we have |||Γt|||nuc ≤ |||Θt− Θ̂|||nuc + |||Θt+1 − Θ̂|||nuc = |||∆̂t|||nuc + |||∆̂t+1|||nuc.
Equation D.28 gives us bounds on |||∆̂t|||nuc and |||∆̂t+1|||nuc. Substituting them into the upper
bound (D.29) yields the claim.
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