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Abstract

Precision Timed Machines
by

Isaac Suyu Liu
Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Edward A. Lee, Chair

Cyber-Physical Systems (CPS) are integrations of computation with physical processes [65]. These
systems must be equipped to handle the inherent concurrency and inexorable passage of time of
physical processes. Traditional computing abstractions only concern themselves with the functional
aspects of a program, and not its timing properties. Thus, nearly every abstraction layer has failed to
incorporate time into its semantics; the passage of time is merely a consequence of the implementa-
tion. When the temporal properties of the system must be guaranteed, designers must reach beneath
the abstraction layers. This not only increases the design complexity and effort, but the systems are
overdesigned, brittle and extremely sensitive to change.

In this work, we address the difficulties of handling fime in computing systems by re-
examining the lower levels of abstraction. In particular, we focus on the instruction set architecture
(ISA) layer and its affects on microarchitecture design. The ISA defines the contract between soft-
ware instructions and hardware implementations. Modern ISAs do not constrain timing properties
of instructions as part of the contract. Thus, architecture designs have largely implemented tech-
niques that improve average performance at the expense of execution time variability. This leads to
imprecise WCET bounds that limit the timing predictability and timing composability of architec-
tures.

In order to address the lack of temporal semantics in the ISA, we propose instruction ex-
tensions to the ISA that give temporal meaning to the program. The instruction extensions allow
programs to specify execution time properties in software that must be observed for any correct
execution of the program. These include the ability to specify a minimum execution time for code
blocks, and the ability to detect and handle missed deadlines from code blocks that exhibit vari-
able execution times. This brings control over timing to the software and allows programs to con-
tain timing properties that are independent of the underlying architecture. In addition, we present
the Precision Timed ARM (PTARM) architecture, a realization of Precision Timed (PRET) ma-
chines [32] that provides timing predictability and composability without sacrificing performance.
PTARM employs a predictable thread-interleaved pipeline with an exposed memory hierarchy that
uses scratchpads and a predictable DRAM controller. This removes timing interference among
the hardware threads, enabling timing composability in the architecture, and provides deterministic
execution times for instructions within the architecture, enabling timing predictability in the archi-
tecture. We show that the predictable thread-interleaved pipeline and DRAM controller design also
achieve better throughput compared to conventional architectures when fully utilized, accomplish-



ing our goal to provide both predictability and performance.

To show the applicability of the architecture, we present two applications implemented
with the PRET architecture that utilize the predictable execution time and the extended ISA to
achieve their design requirements. The first application is a real-time fuel rail simulator that im-
plements a one dimensional computational fluid dynamics (1D-CFD) solver on a multicore PRET
architecture. The implementation leverages the timing instructions to synchronize the communica-
tion of multiple PRET cores with low overhead. The predictable nature and the improved throughput
of the architecture allow us to optimize the resource usage while statically ensuring that the timing
requirements are met. This provides a scalable solution to close the loop of fuel delivery, allowing
for more precise fuel injections that lead to a cleaner and more efficient engine. The second ap-
plication presents a case study that uses PRET to remove the vulnerability of timing side-channel
attacks on encryption algorithms. Encryption algorithms are vulnerable to side-channel attacks that
measure the execution time of the encryption to derive the encryption key. The uncontrollable ex-
ecution time variance can stem from the unpredictable sharing of architecture features or from the
various control paths of the encryption algorithm. We implement the RSA and DSA [82] encryption
algorithms on PRET and show that by using the timing extended ISA and a predictable architecture,
we can completely remove the vulnerabilities that are exploited for the attacks.

By providing a predictable architecture, we provide simpler and more accurate timing
analysis of the software. With the instruction extensions to the ISA, we provide timing control and
allow architecture independent timing properties to be specified in the software. Through these con-
tributions, we aim to introduce a timing deterministic foundation to the lower levels of computing
abstractions, which enables more precise and efficient control over timing for the design of CPS.
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Chapter 1

Introduction

1.1 Motivation

Cyber-Physical Systems (CPS) are integrations of computation with physical processes [65].
In these systems, computation and physical process often form a tight feedback loop, affecting the
behavior of each other. The embedded platforms and networks employed not only control the phys-
ical process, but at the same time monitor and adapt to the changes of the physical process. An
enormous number of applications can be categorized as CPS. They include high confidence med-
ical devices and systems, assisted living, traffic control and safety, advanced automotive systems,
process control, energy conservation, environmental control, avionics, instrumentation, critical in-
frastructure control (electric power, water resources, and communications systems for example),
distributed robotics (telepresence, telemedicine), defense systems, manufacturing, and smart struc-
tures. However, in order for CPS to be deployed in high confidence systems, such as advanced
automotive or avionics systems, the platforms employed need to deal with two important properties
of the physical process: they are inherently concurrent, and time progresses at its own pace.

Traditionally, real-time embedded systems have dealt with the notion of time. These
systems impose deadlines and timing constraints to their underlying tasks to deliver services in real
time. The timing constraints of soft real-time systems are typically used to guarantee quality of
service, while the constraints of hard real-time systems are used to guarantee safety critical tasks, so
they must be met. The real-time embedded community has widely adopted techniques developed for
general purpose applications, believing that they will provide the same advantages and benefits for
embedded systems. These include the programing language, the operating system, the tool-chains,
and the computer architecture. However, these techniques are designed for general purpose systems
that do not require stringent interaction with the physical environment. Thus, they place emphasis on
improving average performance over predictability. As a result, when computing systems absolutely
must meet tight timing constraints, these computing advances often do more harm than good [64].
The scale and complexity of traditional embedded systems allow designers to compensate with extra
effort in design and analysis. However, these solutions begin to break down when transitioning to
larger scale CPS.

In the current state of embedded software, nearly every abstraction has abstracted away
time. The Instruction Set Architecture (ISA), meant to hide the hardware implementation details
from the software, does not include timing semantics for the instruction executions. Widely adopted



programming languages, meant to hide the details of the ISA from the program logic, do not ex-
press timing properties; timing is merely an accident of the implementation. Real-time operating
systems (RTOS), meant to hide the details of the program from their concurrent orchestration, of-
ten use priorities to dictate the execution of tasks; the execution time of tasks can easily affect the
scheduled outcome of execution. The lack of fime in the abstraction layers can lead to the following
consequences:

e Unnecessary complexities in the interaction of concurrent components — This often is mani-
fested when components share resources. For example, software threads are the typical ab-
stractions for concurrent software written in C or Java. Because there is no guarantee of when
a shared variable will be accessed by each thread, locks and semaphores are required to avoid
race conditions. This not only introduces bugs, but also introduces complex and almost im-
possible to analyze interactions between threads [61]. As a result, there is great difficulty
when synchronizing and communicating between components or tasks.

o Unnecessary complexities in interactions across layers — For example, scheduling could be
done at multiple levels simultaneously without any coordination. As tasks or software threads
are scheduled for execution in the OS, an explicit multithreaded dynamic dispatch architecture
could also be scheduling instructions from different hardware threads without the knowledge
of the OS [112].

o Misleading or pessimistic analysis results when analyzing the whole system — For exam-
ple, task scheduling and context switching cost may vary from the cache or pipeline state
change after executing each tasks. This is often not factored into the analysis [112]. Further-
more, because the large variation of execution time in modern complex processors, worst-
case execution time (WCET) analysis techniques often lead to overly conservative results for
safety [125]. As the WCET is often the basis for priority of any scheduling scheme, the
conservativeness is propagated throughout the system.

When the temporal properties of the system must be guaranteed, designers must reach be-
neath the abstraction layers, and understand thoroughly the complex underlying details and its affect
on execution time. This not only increases the design complexity and effort, but the designed sys-
tems are brittle and extremely sensitive to change [99, 32]. For example, Sangiovanni-Vincentelli
et al.[99] show that when increasing the execution time of a task, any priority based scheduling
scheme results in discontinuity in the timing of all tasks besides the task with the highest priority.
At a lower level, adding a few instructions can easily result in a huge variation in program execu-
tion time; the state of the hardware dynamic prediction and speculation units, such as caches and
pipelines, can easily be affected by small program additions. Thus, in order to verify the timing of
safety critical systems, the verification must be done on both the software system and its execution
platform; they cannot be separated. This process is often time consuming and expensive. Since the
abstraction layers do not give any temporal semantics to the system, each layer must be completely
understood in order to reason about and prove the timing properties of the full system. For avionics
manufacturers, this means stockpiling the same hardware for the lifetime of an aircraft; any upgrade
of components or software in their system could result in drastic timing changes, and thus require
re-certification.



1.1.1 Timing Predictable Systems

Thiele et al. [112], Henzinger [46] and Lee [64] have all identified the importance and
difficulties of designing timing-predictable systems. Timing-predictable systems should exhibit the
following property: a small change in the input must not result in a large change in the output [46].
If the definition of output includes the timing behavior exhibited by the system, then current ab-
stractions disrupts this property at almost all levels.

A change is needed to efficiently and safely design next generation systems, especially if
they effect the well being of our lives. In particular, how software and hardware deal with the notion
of time needs to be more carefully understood and designed. At the lowest levels of abstraction, cir-
cuits and microarchitectures, timing is central to correctness. For example, in a microarchitecture,
if the output of an ALU is latched at the wrong time, the ISA will not be correctly implemented.
However, at higher levels, for example, the ISA, timing is hidden, and there are no temporal se-
mantics; the execution time is irrelevant to correctness. Thus, each abstraction layer needs to be
revisited to judiciously introduce some form of temporal semantics. Specifically for CPS, platforms
must be equipped to handle the inherent concurrency and the inexorable passage of time for physi-
cal processes. Sangiovanni-Vincentelli et al. [99] identified these issues as the timing composability
and timing predictability of systems, and list them as requirements to enable efficient designs of
large-scale safety-critical applications.

Timing Composability

Modern systems handle the concurrency of physical processes with multiple tasks, com-
ponents or subsystems that are integrated together. In order to efficiently design the system, these
individual parts are designed and tested separately, then later integrated to form the final system.
This modularity of design is crucial for the continued scaling and improvement of systems. How-
ever, if component properties may be destroyed during integration, then the components can no
longer be designed and verified separately. Timing composability refers to the ability to integrate
components while preserving their temporal properties.

To preserve component properties during integration, modern designs often use a feder-
ated architecture. A federated architecture develops functions and features on physically separate
platforms which are later integrated through an interconnect or system bus. As these features are
only loosely coupled through an interconnect, interference is limited, allowing the preservation of
certain properties independently verified. However, as the platforms are feature specific, they are
often idle during run time. In order to reduce resource consumption, there is a shift towards inte-
grated architectures [84, 27], where multiple functions are integrated on a single, shared platform.
Several challenges exists to make the shift, but among them, it is crucial to guarantee that the timing
properties are preserved during system integration. Only then can designs continue to stay modular.
Modern abstractions result in unnecessary complexity in the interaction of concurrent components,
which leads to unpredictable interference between components. This hinders the ability to compose
functions together on a shared resource while maintaining timing properties.

These challenges are present not only in research, but also in industry. The Integrated
Modular Avionics (IMA) concept [93] aims to replace numerous separate processors and line re-
placeable units (LRU) with fewer, more centralized processing units in order to significant reduce
the weight and maintenance savings in new generation of commercial airliners. AUTOSAR (AU-



Tomotive Open System ARchitecture)[1] is an architecture for automotive systems that is jointly
being developed by manufacturers, suppliers and tool developers that attempts to defined standards
and protocols to help modularize the design of these complex systems. We contend that in order
for these standards to be safely defined, modern layers of abstraction that have been adopted from
conventional computing advances must be redefined to allow for timing predictable composition of
components.

Timing Predictability

In order to keep up with the continuous passage of time in physical processes, the system
must be able to reason about its own passage of time. Timing predictability is the ability to predict
the timing properties of the system. Timing composition plays a big part of this when features are
integrated, but even separately, it is difficult to analyze the execution time of programs.

Wilhelm et al. [125] describe the abundance of research and effort that has been put into
bounding the WCET of programs. Not only is determining the worst case program flow a challenge,
but the precision and usefulness of the analysis also depend on the underlying architecture [43].
Conventional architectures have implemented techniques that target the improvement of average
case execution time (ACET) at the expense of execution time variability. As a result, it is extremely
complex, if not impossible to obtain a precise bound of the execution time on modern architectures.
The imprecision is often propagated through the system during integration, requiring pessimistic
over-provisioning to ensure timing requirements are met. Thus, time determinism and reduced jitter
are needed for future systems to increase performance [99].

As modern layers of abstraction for computing have no notion of time, the passage of time
is a merely a consequence of the implementation. Therefore, existing techniques can only bound
the WCET for a processor-program pair, and not the individual programs. Time bounds from the
analysis are broken even when the underlying processor is upgraded to a newer model of the same
family. Thus, the redefinition of abstraction layers must also include temporal semantics to allow
reasoning of timing properties at each layer independently from the abstract layers below it.

1.2 Contributions

The contribution of this work is to provide more precise and efficient control over the
timing properties of computing systems. Specifically in this thesis, we focus on the lack of tem-
poral semantics in the ISA abstraction layer, and its effects on microarchitecture design. The ISA
defines the contract between software instructions and hardware implementations. Any correct im-
plementation of an ISA will yield a consistent view of the processor state (eg. the contents registers
or memory) for a given program developed with that ISA. However, modern ISAs do not spec-
ify timing properties of the instructions as part of the contract, and the benchmarks typically used
to evaluate architectures compare them by the measured average performance. Thus, architecture
designs have largely introduced techniques that improve average performance at the expense of ex-
ecution time variability, leading to imprecise WCET bounds that limit the timing predictability and
timing composability of the architecture. The key challenges we contribute to are twofold.

First, we address the difficulty of predicting execution time and integrating multiple pro-
grams on modern computer architectures by proposing a new design paradigm for computer archi-



tectures. PREcision Timed (PRET) machines [32] are designed with timing-predictability as the
main metric for success. However, predictability can be easily achieved if one is willing to forgo
performance; computer architectures 50 years ago were very predictable. Thus, our contribution is
to deliver both predictability and performance. We believe that as systems are becoming increas-
ingly large and complex, increasing the speed of the underlying architecture through complexity
will only do more harm than good. We do not intend to reinvent computing advancements, but in-
stead evaluate them through the lenses of predictability and composability. In doing so, we present
an architecture designed for timing-predictability without sacrificing performance.

Second, we address the lack of temporal semantics in the ISA by exploring instruction ex-
tensions that introduce timing semantics and control into programs. Introducing temporal semantics
into any abstraction layer is a non-trivial task. Specifically for the ISA, over constraining the timing
definitions can easily thwart architecture innovation opportunities. Thus, we explore extensions that
aim to give temporal meaning to the program, not the individual instructions. These instruction ex-
tensions allow programmers to describe the passage of time within programs, and any architecture
implementation of the extended ISA must abide to those descriptions. In doing so, we give temporal
meaning to programs without limiting the innovation of architecture designs.

We contend that both contributions are essential to cyber-physical systems. Without a
predictable architecture, programs can exhibit unpredictable execution time variances. But a pre-
dictable architecture by itself does not bring temporal meaning to the programs, it merely executes
them predictably. Time will still only be a side effect of the underlying implementation. With both
the ISA extensions and the predictable architecture, we equip platforms with the ability to inter-
act with physical processes and provide a solid foundation to enable precise and efficient control
over the timing properties of the system. This prevents the overdesigning of computing systems for
applications that absolutely must meet timing constraints, such as CPS.

1.3 Background

Programs manifest varying execution times. This is illustrated in figure 1.1, which shows
the distribution of execution times exhibited by an arbitrary program on an arbitrary processor. It
highlights several key issues that are important to understanding program execution time. First, the
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Figure 1.1: “Program Execution Times [125]”



observable execution times may not observe all possible execution times. This is important because
far too often we rely on testing and end-to-end measurement to determine the WCET. This will, in
general, overestimate the best-case execution time (BCET) and underestimate the WCET, and is not
safe when timing must be guaranteed. Second, it is often difficult to determine the actual WCET,
thus the worst case guarantee that is given is usually a bound on the WCET. The goal of the WCET
analysis is to obtain a safe and precise bound on the WCET of a program [125]. Safe means that the
execution time will never exceed the bounded time. Precise means that the bounded time is as close
to the absolute WCET as possible.

Several factors contribute to the difficulties of a safe and precise WCET analysis. In gen-
eral, it is impossible to obtain the upper bounds on execution times for programs because programs
are not guaranteed to terminate. Real-time systems use a restricted form of programming to ensure
an execution time upper bound. Recursion is often not allowed or must be explicitly bounded, as
are the iteration counts of loops. Despite that, algorithms contain input dependent program paths
that complicate analysis. The worst case program path depends on the worst-case input, which in
general, is not known or hard to derive.

Along with complications from the software structure, the execution time variance ex-
hibited by the underlying architecture further complicates analysis. A conventional microprocessor
executes a sequence of instructions from an instruction set. Each instruction in the instruction set
changes the state of the processor in a well-defined way. The microprocessor provides a strong
guarantee about this behavior: a sequence of instructions always changes the processor state in the
sequential order of the instructions. For speed, however, modern microprocessors rarely execute
the instructions strictly in sequence. Instead, pipelines, caches, write buffers, and out-of-order ex-
ecution reorder and overlap operations while preserving the illusion of sequential execution. This
causes the execution time of even the same sequence of instructions to fluctuate, depending on the
architecture’s underlying execution of its instructions. To illustrate this, we show in figure 1.2 a
code segment with a simple control structure and a static loop bound.

Even with a simple software structure,

several situations can arise from the execution on Cache hit /miss?] [Branch prediction?]
the underlying architecture. Each array access in the RN <
code is compiled into a memory access. Whether the i< 0; i++)
memory access hits or misses the cache has huge im- if ( a[|] > b[l] )

plications on program execution time. The if state- ) . .

ment is usually compiled to a conditional branch. C[l] = C[|'1] + a[l];
The outcome of the branch predictor could easily af- else

fect the execution time of the program. Superscalar C[I] — C[i-1 ] — b[l],
architectures can execute instructions out-of-order, — =z

so data-dependencies in this code may or may not [Data dependency?] ‘ Out-of-order execution?
stall, depending on the memory accesses and how Multithreading?
much loop unrolling is done by the compiler/archi-
tecture.

Figure 1.2: Simple Loop Timing Issues

Further complications arise as architectures become increasingly parallel with multipro-
cessing techniques such as multicore and multithreading. These techniques allow the architecture
to inherently handle concurrency, but can easily introduce temporal interference even between log-
ically independent behaviors. For example, in a multicore machine with shared caches, the pro-



cesses running on one core can affect the timing of processes on another core even when there
is no communication between these processes. Similarly, Simultaneous Multithreading [113] ar-
chitectures share a wide-issue superscalar pipeline across multiple hardware threads. Instructions
are dispatched from all threads simultaneously using scoreboaring mechanisms. However, the con-
tention for pipeline resources between threads can easily vary the execution time of a particular
thread.

The common misconception is that at

least a safe upper bound on the execution time Branch Condition
. . . Evaluated
can be easily determined by assuming the worse !
case in unknown situations. This is not true Cache Hit ( A %Prefetch B - Miss I c )

because dynamic processors can exhibit tim- :
ing anomalies [97, 69]; situations where a local :
worst-case does not result in the global worst- Cache Miss ( A :I c )
case. Reineke et al. [97] illustrate this with the !
example shown in figure 1.3. In this example, a  Figure 1.3: Timing anomaly cause by speculation [97]
mispredicted branch results in unnecessary in-
struction fetching that destroys the cache state. However, if the first instruction being fetched is a
cache miss, the correct branch condition will be computed before the fetch, and no speculatively
executed instruction will destroy the cache state. This example shows that simply assume a cache
miss (local worst-case) will not always lead to the global worst-case execution time.

The increasing complexity of architectures leads to the conclusion that the usefulness of
the results of WCET analysis strongly depends on the architecture of the employed processor [43].
Modern processors employ features that improve average performance at the expense of worst-case
performance, creating a large variation in execution time from the processor. These features are
controlled and manage completely in hardware, not explicitly exposed to the software. As a result,
decrypting the state of the processor to obtain reasonable execution time estimates is often extremely
difficult, if not impossible, on modern architectures.

1.4 Precision Timed Machines

In this thesis we present the design and implementation of a Precision Timed (PRET) ma-
chine [32] — the Precision Timed ARM (PTARM). PTARM employs a thread-interleaved pipeline
and a memory controller designed for predictable and composable execution. It also implements an
extended ARM [15] ISA to demonstrate the ISA extensions with temporal semantics. Our bench-
marks show that an architecture designed for timing predictability and composability does not need
to sacrifice performance.

Many people have contributed to the results given in this thesis. The predictable DRAM
controller that is presented in section 2.2.2 is a collaborative effort jointly done with Jan Reineke
and Sungjun Kim. Hiren Patel, Ben Lickly, Jan Reineke, David Broman and Edward Lee have all
greatly contributed to timing extensions to the ISA presented in section 2.3. And finally, the engine
fuel rail simulation application presented in section 4.1 is a collaborated effort with Matthew Viele,
Guoqgiang Wang and Hugo Andrade. It is a pleasure to thank those who made this thesis possible,
as this thesis could not have been complete without them.



Chapter 2

Precision Timed Machine

In this chapter we present the design principles of a PREcision Timed (PRET) Machine.
Specifically, we discuss the implementation of a predictable pipeline and memory controller, and
present timing extensions to the ISA. It is important to understand why and how current architectures
fall short of timing predictability and repeatability. Thus, we first discuss the common architectural
designs and their effects on execution time, and point out some key issues and tradeoffs when
designing architectures for predictable and repeatable timing.

2.1 Pipelines

The introduction of pipelining vastly improves the performance of processors. Pipelining
increases the number of instructions that can be processed at one time by splitting up instruction
execution into multiple steps. It allows for faster clock speeds, and improves instruction throughput
compared to single cycle architectures. Ideally in each processor cycle, one instruction completes
and leaves the pipeline as another enters and begins execution. In reality, different pipeline hazards
occur that reduce the throughput and create stalls in the pipeline. The techniques introduced to
mitigate the penalties of pipeline hazards greatly effect to the timing predictability and repeatability
of architectures. We analyze several commonly used techniques to reduce the performance penalty
from hazards, and show their effects on execution time and predictability.

2.1.1 Pipeline Hazards

Data Hazards

Data hazards occur when the data
needed by an instruction are not yet available. add 10,1, r2 10=r1 +12
Pipelines begin the execution of instructions be- sub r1, 10, r1 11 =r0-r

Idr  r2, [r1] ;12 =mem[ri]

fore preceding ones are finished. Thus, consec- sub r0, r2, r1 10 =12 - r1
utive instructions that are data-dependent can cmp r0, r3 ; compare r0 and r3
simultaneously be executing in the pipeline.
For example, the code in figure 2.1 shows as- Figure 2.1: Sample code with data dependencies

sembly instructions from the ARM instruction
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Figure 2.2: Handling of data dependencies in single threaded pipelines

set architecture (ISA). Each instruction in the code segment depends on the result of its previous
instruction. Figure 2.2 shows two ways data hazards are commonly handled in pipelines.

In the figure, time progresses horizontally towards the right. Each column represents a
processor cycle. Each row represents an instruction that is fetched and executed within the pipeline.
Each block represents the instruction entering the different stages of the pipeline — fetch (F), decode
(D), execute (E), memory (M) and writeback (W). We assume a classic five stage RISC pipeline.

A simple but effective technique stalls the pipeline until the previous instruction com-
pletes. This is shown in the top of figure 2.2, as delays are inserted to wait for the results from
previous instructions. The dependencies between instructions are explicitly shown in the figure to
make clear why the pipeline delays are necessary. The performance penalty incurred in this case
comes from the pipeline delays inserted.

Data forwarding is commonly used to mitigate the delays when data hazards occur.
Pipelines split up the execution of instructions into different execution stages. Thus, the results
from an instruction could be ready, but waiting to be committed in the last stage of the pipeline.
Data forwarding introduces backwards data paths in the pipeline, so earlier pipeline stages can ac-
cess the data from instructions in later stages that have not yet committed. This greatly reduces the
delays inserted in the pipeline. The circuitry for data forwarding usually consists of the backwards
data paths and multiplexers in the earlier pipeline stages to select the correct data to be used. The
pipeline controller dynamically detects whether a data dependency exists, and changes the selection
bits of the multiplexers accordingly.

The bottom of figure 2.2 shows the execution sequence of the previous example in a
pipeline with data forwarding. No pipeline delays are inserted for the first sub and Idr instruction
because the data they depend on are forwarded. However, delays are still inserted for the second
sub instruction after the /d instruction. For longer latency operations, such as memory accesses,
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the results are not yet available to be forwarded by the forwarding paths, so pipeline delays are
still required. This illustrates the limitations of data forwarding. They can address data hazards
that result from pipelining, such as read-after-write register operations, but they cannot address
data hazards that result from long latency operations, such as memory operations. More involved
techniques such as the out-of-order execution or superscalars are required to mitigate the effects of
long latency operations.

The handling of data hazards in pipelines can cause instructions to exhibit dynamic ex-
ecution times. For example, figure 2.2 shows the sub instruction, in both top and bottom figures,
exhibiting different execution times. To determine the execution time of instructions on pipelines
that stall for data hazards, we need to determine when a stall is inserted, and how long the pipeline
is stalled for. Stalls are required when the current instruction uses the results of a previous instruc-
tion that is still in execution in the pipeline. Thus, depending on the pipeline depth, a window of
previous instructions needs to be checked to determine whether any stalls are inserted. The length
of the stall is determined by the execution time of the dependent instructions, because the pipeline
will stall until those instructions complete. Data forwarding does not remove the data hazards, but
only reduces the number of stalls required to take care of the data hazards. Thus, to determine the
execution time when data forwarding is used, timing analysis needs to determine when the data
forwarding circuitry cannot not forward the data for data hazards.

Both stalling and forwarding cause the execution time of instructions to depend on a
window of previous instructions. The deeper the pipeline, the larger the window. Thus, execution
time analysis needs to model and account for this additional window of instructions on pipelined
architectures that use stalling or forwarding to handle the data hazards.

Control Hazards

Branches cause control-flow hazards,

or control hazards, in the pipeline; the instruc- ged: )
tion after the branch, which should be fetched cmp r0, ri : compare r0 and r1
the next cycle, is unknown until after the branch beq end : branch if r0 == r1
instruction is completed. Conditional branches blt less ;branch ifrO<r1
further complicate matters, as whether or not sub r0,r0,11  ;rO=r0-r1

the branches are taken depends on an additional less: b ged » branch to label gcd

condition that could also be unknown when the sub rM,M1,10 :rl=rl-r0

conditional branches are in execution. The code b gcd  branch to label gcd
segment in figure 2.3 implements the Great- end:

est Common Divisor (GCD) algorithm using add r1,r1,r0 ;ri=r1+1r0

the conditional branch instructions beq (branch | mov r3, r1 ;13 =r1 )

equal) and blt (branch less than) in the ARM
ISA. Conditional branch instructions in ARM
branch based on conditional bits that are stored
in a processor state register. The conditional bits can be set based on the results of standard arith-
metic instructions [15]. The cmp instruction is one such instruction that subtracts two registers
and sets the conditional bits according to the results. The GCD implementation shown in the code
uses this mechanism to determine whether to continue or end the algorithm. Figure 2.4 shows the
execution of the conditional branches from our example, and demonstrates two commonly used

Figure 2.3: GCD with conditional branches



11

cycle 0 |1 |2|3|4|5|6|7|8|9| cycle 0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

cmp 10,11 | F cmp r0,r1 | F E[{M|W E

— —

beq end beq end FlD|E€mTwW i | Pipeline Flush

1 1 1

blt less E add—1++1+0- E F|D ' E i

sub r0, 10, r1 1 ! .

BRI movrrar | /| DEETHI | |

b ged PR g blt less oo F|(D|E Wi

Pipeline Delays ! !

cmp 10,r1 [ ZPCIE DOV ey, sub 10,1011 /1 1 1 | D|E[mM|w]
| | | | | | | | ! ! ! !

. . . : ! ! ! ! IBranch Prediction = Taken l: | : LN L L :

[ <---% — denotes dependency ] I Re-Fetch Correct Instruction l

GCD without branch prediction GCD with branch prediction (mispredict)

Figure 2.4: Handling of conditional branches in single threaded pipelines

techniques to handling control hazards in pipelines. To show only the timing effects of handling
control hazards, we assume an architecture with data forwarding that handles data hazards. As there
are no long latency instructions in our example, all stalls observed in the figure are caused by the
handling of control hazards.

Similar to data hazards, control hazards can also be handled by stalling the pipeline until
the branch instruction completes. This is shown on the left of figure 2.4. Branch instructions
typically calculate the target address in the execute stage, so two pipeline delays are inserted before
the fetching of the blt instruction to wait for beq to complete the target address calculation. The same
reasoning applies to the two pipeline delays inserted before the sub instruction. The performance
penalty (often referred to as the branch penalty) incurred in this case is the two delays inserted after
every branch instruction, to wait for the branch address calculation to complete.

To mitigate the branch penalty, some architectures require the compiler to insert one or
more non-dependent instructions after each branch instruction. These instruction slots are called
branch delay slots, and are always executed before the pipeline branches to the target address. This
way, instead of wasting cycles to wait for the target address calculation, the pipeline continues
to execute useful instructions before it branches. However, if the compiler cannot place useful
instructions in the branch delay slot, nops need to be inserted into those slots to ensure correct
program execution. Thus, branch delay slots are less effective for deeper pipelines, because more
delay slots need to be filled by the compiler to account for the branch penalty.

Instead of stalling, branch predictors are commonly employed to predict the branch con-
dition and target address so the pipeline can speculatively continue its execution. Branch predictors
internally maintain a state machine that is used to determine the prediction of each branch. The in-
ternal state is updated after each branch according to the results of the branch. Different prediction
schemes have been proposed, and some can even accurately predict branches up to 98.1% [73]. If
the branch prediction is correct, no penalty is incurred for the branch because the correct instruc-
tions are speculatively executed. However, when the prediction is incorrect (often referred to as a
branch midpredict), the speculatively executed instructions are flushed, and the correct instructions
are re-fetched into the pipeline for execution.

The right of figure 2.4 shows the execution of GCD in the case of a branch misprediction.
The beq branch is predicted to be taken, so the add and mov instructions from label end are directly
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fetched into execution. When beq progresses past the execute stage, cmp has forwarded its results
used to determine the branch condition, and the branch target address has been calculated, so the
branch is resolved. At this point, the misprediction is detected, so the add and mov instructions are
flushed out of the pipeline. The next instruction from the correct path, the blt instruction, is im-
mediately re-fetched, and execution continues. The performance penalty of branch mispredictions
is derived from the number of pipeline stages between instruction fetch and branch resolution. In
our example, the misprediction penalty is 2, as branches are resolved after the execute stage. This
penalty only occurs on a branch mispredict, thus branch predictors with high success rates typically
improve average performance of pipelines drastically, compared to architectures that simply stall
for branches.

Stalling and branch predicting exhibit vastly different effects on execution time. When
stalls are used to handle control hazards, the execution time effects are static and predictable. The
pipeline will simply always insert pipeline delays after a branch instruction. Thus, no extra com-
plexity is added to the execution time analysis; the latency of branch instructions simply needs to
be adjusted to include the branch penalty. On the other hand, if a branch predictor is employed, the
execution time of each branch will vary depending on the result of the branch prediction. To deter-
mine the success of a branch prediction, the prediction and the branch outcome, both of which can
dynamically change in run-time, must be known. Program path analysis can attempt to analyze the
actual outcome of branches statically from the program code. However, the predictions made from
the branch predictor depend on the internal state stored in the hardware unit. This internal state,
updated by each branch instruction, must be explicitly modeled in order to estimate the prediction.
If the predictor state is unknown, the miss penalty must conservatively be accounted for. There has
been work on explicitly modeling branch predictors for execution time analysis [79], but the results
only take into account the stalls from the branch penalty. Caches and other processor states are
assumed to be perfect. In reality, the speculative execution on the predicted program paths lead to
further complications that need to be accounted for. Other internal states exist in the architecture
that could be affected by speculatively executing instructions. For example, if caches are used, their
internal state could be updated during the speculative execution of a mispredicted path. As archi-
tectures grow in complexity, the combined modeling of all hardware states in the architecture often
leads to an intractable explosion in state space for the analysis. This makes a tight static execution
time analysis extremely difficult, if not impossible.

The difference in execution time effects between stalling and employing a branch predic-
tor highlights an important tradeoff for architecture designs. It is possible to improve average-case
performance by making predictions, and speculatively executing based upon them. However, this
comes at the cost of predictability, and a potential decreasing of the worst-case performance. For
real-time and safety critical systems, the challenge remains to improve worst-case performance
while maintaining predictability, and how pipeline hazards are handled plays a key role in tackling
this challenge.

Although less often mentioned, the presence of interrupts and exceptions in the pipeline
also creates control hazards. Exceptions can occur during the execution of any instruction and
change the control flow of the program to execute the exception handler. For single threaded
pipelines, this means that all instructions fetched and not committed in the pipeline are speculative,
because when an exception occurs, all uncommitted instructions in the pipeline become invalid.
These effects are acknowledged, but often ignored in static analysis because it is simply impossible
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to model every possible exception and its effect on the architecture states.

Structural Hazards

Structural hazards occur when a processor’s hardware component is needed by two or
more instructions at the same time. For example, a single memory unit accessed both in the fetch
and memory stage results in a structural hazard. The design of the pipeline plays an integral part
in eliminating structural hazards. For example, the classic RISC five stage pipeline only issues
one instruction at a time, and uses separate instruction and data caches to avoid structural hazards.
Structural hazards are generally much more prevalent in architectures that issue multiple instructions
at a time. If structural hazards cannot be avoided, then the pipeline must stall to enforce sequential
access to the contended hardware component. The execution time effects of structural hazards are
specific to how contention is managed for each pipeline design. Here we omit a general discussion
of the timing effects, and later address them specifically for our proposed architecture.

2.1.2 Pipeline Multithreading

Discussed above, data forwarding and branch prediction are simple techniques employed
to handle pipeline hazards. Advanced architectures, such as superscalar and VLIW machines, em-
ploy more complex mechanisms to improve the average performance of the architecture. Both
architectures issue multiple instructions every cycle, and superscalar machines dynamically execute
instructions out-of-order if no dependency is detected. These architectures exploit instruction-level
parallelism to overlap the execution of instructions from a single thread whenever possible. On the
contrary, multithreaded architectures exploit thread-level parallelism to overlap the execution of
instructions from different hardware threads. Each hardware thread in a multithreaded architecture
has its own physical copy of a processor state, such as the register file and program counter. When
a pipeline hazard arises from the execution of a hardware thread, another hardware thread can be
fetched for execution to avoid stalling the pipeline. This improves the instruction throughput of the
architecture.

Figure 2.5 shows the implementation of a simple multithreaded pipeline. It contains 5
hardware threads, so it has 5 copies of the Program Counter (PC) and register files. The rest of the
pipeline remains similar to a classic five stage RISC pipeline, with the addition of a few multiplexers
used to select the thread states. Thus, the extra copies of the processor state and multiplexers are
most of the hardware additions needed to implement hardware multithreading. When a hardware
thread executes in the pipeline, its corresponding thread state is passed into the pipeline to be used.
In most of this thesis, the term threads refers to the explicit hardware threads that have physical
hardware copies of the thread state. This is not to be confused with the common notion of threads,
which describes software contexts managed by an operating system, with its states stored in mem-
ory. It will be explicitly noted when we refer to the software notion of threads. Ungerer et al. [115]
survey different multithreaded architectures and categorize them based upon the thread scheduling
policy and the execution width of the pipeline.

The thread scheduling policy determines which threads are executing, and how often a
context switch occurs. Coarse-grain policies manage threads similarly to the way operation systems
manage software threads. A thread gains access to the pipeline and continues to execute until a
context switch is triggered. Context switches occur less frequently via this policy, so fewer threads
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Figure 2.5: Simple Multithreaded Pipeline

are required to fully utilize the processor. Different coarse-grain policies trigger context switches
with different events. Some policies trigger context switches on dynamic events, such as a cache
miss or an interrupt; some policies trigger context switches on more static events, such as specialized
instructions. Fine-grain policies switch context much more frequently — some as frequently as every
processor cycle. The execution width of the pipeline is the number of instructions fetched each cycle.
Multithreaded architectures with wider pipeline widths can fetch all instructions a single thread, or
mix instructions from different threads. The Sumultanous Multithreaded (SMT) architecture [113]
is an example where multiple instructions are fetched from different threads each cycle.
Multithreaded architectures present several challenges for static execution time analysis.
As figure 2.5 illustrates, threads share the hardware components within the pipeline. If a hardware
component, such as a branch predictor, maintains internal state, that internal state can be modified
by all threads in the pipeline. As the internal states of the hardware components affect the execu-
tion time of the individual instructions, each thread can affect the execution time of all threads in
the pipeline. If the threads’ execution times are interdependent, their timing cannot be separately
analyzed. As aresult, in order to precisely model the hardware states, the execution order of instruc-
tions from all threads needs to be known. The interleaving of threads depends heavily on the thread
scheduling policy, execution width, and hazard handling logic employed in the pipeline. The com-
pounding effect of these can create an overwhelming combination of possible thread interleavings,
making static timing analysis nearly impossible, even if only a conservative estimation is desired.
Nonetheless, we contend that thread-level parallelism (TLP) can be exploited to handle
pipeline hazards predictably. Even the most sophisticated architectures that fully exploit instruction-
level parallelism (ILP) cannot guarantee enough parallelism in a single instruction stream to remove
all stalls caused by pipeline hazards. This is known as the ILP Wall [117]. Conventional multi-
threaded architectures use coarse-grain thread scheduling policies to dynamically exploit TLP when
there is not enough ILP to be exploited. However, the compounding effects of the combined archi-
tectural features lead to unpredictable architectural timing behaviors. Instead, a thread-interleaved
pipeline fully exploits TLP with a fine-grained thread scheduling policy. We show that with sev-
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eral predictable architectural adjustments to the thread-interleaved pipeline, we can achieve a fully
time-predictable pipeline with deterministic execution time behaviors.

2.1.3 A Predictable Thread-Interleaved Pipeline

Thread-interleaved pipelines use a fine-grain thread scheduling policy; every cycle a dif-
ferent hardware thread is fetched for execution. A round robin scheduling policy is often employed
to reduce the context switch overhead every cycle. The thread-interleaved pipeline is known for
implementing the peripheral processors of the CDC6600 [2]. Each “peripheral processor” is imple-
mented as a hardware thread. Interacting with input/output peripherals often lead to idle processor
cycles to wait for the peripherals’ responses. By interleaving several threads, thread-level paral-
lelism is fully exploited, and the idle cycles can be used for simultaneous interaction with multiple
input/output devices. Figure 2.6 shows an example execution sequence from a 5 stage single width
thread-interleaved pipeline with 5 threads.

cycle
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[

. D{E|M|W
ged: | Thread 0
cmp r0, r1 add r0, 1, r2 FID|E|M|W

beq end
blt less SN\t
sub r1,r1,r0

sub r0, r0, r1
b ged W

(ed4) |

less:

e sub_rt, 0,71 HEEEE
end: sub r1,r0, r1

add r1,r1,r0

mov r3, ri

add r0, r1,r2 -\
sub r1,r0, r1

Idr r2, [r1] Ny
sub r0, r2,r1
cmp r0, r3

Figure 2.6: Sample execution sequence of a thread-interleaved pipeline with 5 threads and 5 pipeline stages

The same code segments from figure 2.3 and figure 2.1 are used in this example. Threads
0, 2 and 4 execute GCD (figure 2.3) and threads 1 and 3 execute the data dependent code segment
(figure 2.1). The thick arrows on the left show the initial execution progress of each thread at cycle 0.
We observe from the figure that each cycle, an instruction from a different hardware thread is fetched
in round robin order. By cycle 4, each pipeline stage is occupied by a different hardware thread.
The fine-grained thread interleaving and round robin scheduling combine to form this important
property for thread-interleaved pipelines, which provides the basis for a timing predictable pipeline
design.
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The interleaving of threads by itself does not guarantee timing predictability for the
pipeline. Shared hardware components or a selective thread execution policy can easily allow the
execution time of threads to be affected by each other. As previously discussed, a combined timing
analysis of all threads in the pipeline is extremely difficult, if not impossible. In order for multi-
threaded architectures to achieve predictable performance, threads must be temporally isolated from
one another. Temporal isolation removes cross-thread timing dependencies to allow timing analysis
of threads independently. This enables a simple and more precise execution time analysis. We refine
several features on the thread-interleaved pipeline to temporally isolate the threads and predictably
handle pipeline hazards. This establishes a time-predictable thread-interleaved pipeline.

Control Hazards

By interleaving enough threads, control hazards can be completely removed in thread-
interleaved pipelines. This can be observed from the execution sequence shown in figure 2.6.

Atcycle 2, a blt instruction from thread 2 is fetched into the pipeline. In a single-threaded
pipeline, a stall or branch prediction would be required before the next instruction fetch. However,
as the figure illustrates, the next instruction fetched (/dr) at cycle 3 belongs to a different thread.
There is no control hazard in this case, because the /dr instruction does not rely on the branch
results of the bit instruction. Thus, no stall or branch prediction is needed to fetch this instruction.
In fact, the branch result from blf is not needed until cycle 7, when thread 2 is fetched again. By this
point, the branch has already been resolved, so no control hazard is caused from the bit instruction.
The next fetched instruction from thread 2 is always from the correct program path. In this way, the
control hazards from branches are eliminated.

The interleaving of threads also eliminates control hazards in the presence of exceptions.
If the pipeline detects an exception for the blt instruction in its writeback stage (cycle 6), the control
flow for thread 2 will be changed to handle the exception. Because no other instruction in the
pipeline belongs to thread 2 at cycle 6, no instruction needs to be flushed. This reveals an important
property our timing predictable pipeline, that no instruction is speculatively executed. The next
instruction fetch from thread 2 does not occur until cycle 7. At that point, any control flow change,
including one caused by an exception, is already known. Therefore, the correct program path is
always executed.

The minimum number of threads required to eliminate control hazards depends on the
number of the pipeline stages. Conservatively, interleaving the same number of threads as pipeline
stages will always remove control hazards. Intuitively, this is because at any point in time, each
stage of the pipeline will be executing an instruction from a different hardware thread. Thus, no
explicit dependency will exist between instructions in the pipeline. Lee and Messerschmitt [62]
further showed that it is possible to use one less thread than the number of pipeline stages for
certain implementations. From here on, when we refer to the thread-interleaved pipeline, we assume
enough threads to remove explicit dependencies between instructions in the pipeline.

Because control hazards are eliminated, branch predictors are not needed in our pipeline
design. Removing the branch predictor contributes to the temporal isolation of threads, as the shared
internal state of the branch predictor can create implicit dependencies between threads.
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Data Hazards

In a thread-interleaved pipeline, data hazards that stem from the pipelining of instructions
are removed. The same reasoning for control hazard elimination is applied here, that no explicit
dependencies exist between instructions in the pipeline, However, long latency operations can still
cause data hazards in a thread-interleaved pipeline. This happens when a long latency operation is
not completed before the next instruction fetch from the same thread. Although thread-interleaved
pipelines can continue to fill the pipeline with other threads, if all threads simultaneously execute a
long latency operation, then no thread will be available to fill the pipeline.

To maximize pipeline utilization and instruction throughput, thread-interleaved pipelines
can mark threads inactive for long latency operations. However, this dynamic thread scheduling
leads to non-trivial timing effects for the pipeline. First, the number of active threads can fall below
the minimum number of threads required to remove explicit dependencies of instructions in the
pipeline. In this case, the eliminated control and data hazards are now reintroduced, and hazard
handling logic, like the branch predictor, is required again. This can be circumvented by inserting
pipeline stalls when the number active threads falls below the minimum. This is illustrated in
figure 2.7. In the figure, 3 (out of 5) threads are interleaved through a 5 stage pipeline. We assume
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Figure 2.7: Execution of 5 threads thread-interleaved pipeline when 2 threads are inactive

that the other 2 threads are inactive waiting for memory access. On the left we show that explicit
dependencies between instructions in the pipeline are reintroduced. However, by inserting pipeline
stalls to meet the minimum required thread count, the dependencies are once again removed. This is
shown on the right. Employing more total threads in the pipeline can reduce the amount of stalling
needed, since there is a larger pool of threads to select from. However, to ensure that explicit
dependencies are removed, stalls are always required when the active thread count drops below the
minimum.

More importantly however, the dynamic activation and deactivation of threads breaks
temporal isolation between the threads. When a thread is deactivated, other threads are fetched more
frequently into the pipeline. At any one moment, the execution frequency of threads would depend
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on the number of active threads. Because a thread can deactivate based upon its own execution and
affect other threads’ execution frequency, threads are no longer temporally isolated.

In order to maintain temporal isolation between the threads, threads cannot affect the
execution time of others. For a time-predictable thread-interleaved pipeline, threads are not dynam-
ically deactivated. Instead, when a thread is fetched in the presence of a data hazard, a pipeline delay
is inserted to preserve the round robin thread schedule. This only slightly reduces the utilization of
the pipeline, as other threads are still executing during the long latency operation. But the temporal
isolation of threads is preserved, as the execution frequency of threads remains the same regardless
of any thread activity. Compared to single threaded pipelines, the benefits of latency hiding from
mulithreading are still present.

Because no explicit dependency exists between the instructions in the pipeline, the for-
warding logic used to handle data hazards can be stripped out in thread interleaved pipelines. Data
forwarding logic contains no internal state, so threads are temporally isolated even if it is present.
However, the pipeline datapath can be greatly simplified in the absence of forwarding logic and
branch predictors. The static thread schedule reduces the overhead of context switches to almost
none; it can be implemented with a simple log(n) bit up-counter, where n is the number of threads.
This enables thread-interleaved pipelines to be clocked at faster clock speeds, because less logic
exists between each pipeline stage.

Structural Hazards

Threads on a multithreaded architecture, by definition, share the underlying pipeline dat-
apath and any hardware unit implemented in it. Thus, multithreaded architectures are more suscep-
tible to structural hazards, which can break temporal isolation if not handled predictably.

In multithreaded pipelines with a width of one, shared single-cycle hardware units do not
cause structural hazards, because no contention arises from the pipelined instruction access. How-
ever, multi-cycle hardware units cause structural hazards when consecutive instructions access the
same unit. The second instruction needs to wait for the first to complete before obtaining access. For
thread-interleaved pipelines, this causes timing interference between threads, because consecutive
instruction fetches come from different threads. One thread’s access to a multi-cycle hardware unit
can cause another to delay.

If it is possible to pipeline the multi-cycle hardware unit to be single-cycle accessible, the
structural hazard and timing interference can be eliminated. In our time-predictable thread inter-
leaved pipeline, floating point hardware units are pipelined to be single-cycle accessible. Hence,
they are shared predictably between the hardware threads, and cause no timing interference.

If pipelining is not possible, then the management of contention for the hardware unit
becomes essential to achieve temporal isolation of threads. The single memory unit in a thread-
interleaved pipeline is an example of a shared, multi-cycle, non-pipeline-able hardware unit. In
this situation, a time division multiplex access (TDMA) schedule can be enforced to remove timing
interference. The TDMA schedule divides the access channel to the hardware unit into multiple
time slots. Each thread only has access to the hardware unit at its assigned time slots, even if no
other thread is currently accessing the unit. By doing so, the access latency to the hardware unit is
determined only by the timing offset between the thread and its access slot, not the activities of the
other threads. In section 2.2 we show a predictable DRAM memory controller that use TDMA in
the backend to schedule accesses to DRAM memory.
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It is important to understand that a TDMA schedule removes timing interference, but
does not remove structural hazards. In fact, a TDMA schedule can further expose the performance
penalty of structural hazards. By reserving privatized time slots for threads, the hardware unit
will appear to be busy even when no thread is accessing it. Thus, structural hazards can occur
even when the hardware unit is not being used. Although a TDMA schedule increases the average
latency to access the hardware unit, the worst-case access latency is similar that of a conventional
first-come-first-serve (FCFS) queuing based access schedule with a queue size of one. In both cases,
the worst-case access latency needs to account for the accesses of all threads. However, by using
a TDMA schedule to predictably handle the structural hazards, the temporal isolation of threads
enable a much tighter and simpler WCET analysis [70].

Even though shared single-cycle hardware units do not cause structural hazards, they can
still introduce timing interference between threads in multithreaded architectures. Shared hardware
units can create implicit dependencies between threads if the internal hardware states can be updated
by any thread. A shared branch predictor, as discussed earlier, is a prime example for this. Our
thread-interleaved pipeline removes the need for a branch predictor by the interleaving of hardware
threads. A shared cache is another example. A cache maintains internal state that determines
whether a memory access goes to the cache or to the main memory. There is typically an enormous
latency difference between the two different accesses. When the cache is shared between threads,
the different interleaving of threads can affect the execution time of all threads. It is even possible
to degrade the performance of the system if threads continuously evict cache lines from each other.
This phenomenon is known as cache thrashing. Partitioned caches [119] in this case can be used
to enforce separate internal states, so each thread updates only its own internal state. Our time-
predictable thread-interleaved pipeline employs scratchpads instead of caches. We discuss this in
the context of a timing predictable memory hierarchy in section 2.2.

As a side note, the sharing of internal hardware states between threads also increases
security risks in multithreaded architectures. Side-channel attacks on encryption algorithms [53]
exploit the shared hardware states to disrupt and probe the execution time of threads running the
encryption algorithm. The timing information can be used to crack the encryption key. We show in
section 4.2 how our predictable thread-interleaved pipeline prevents timing side-channel attacks for
encryption algorithms.

Deterministic Execution

The time-predictable thread-interleaved pipeline uses multithreading to improve instruc-
tion throughput, and maintains temporal isolation of threads to achieve deterministic execution.
To highlight these features, we show the isolated execution of threads within a thread-interleaved
pipeline. We use the example shown earlier (in figure 2.6), where we execute the sample GCD
(figure 2.3) and data-dependent (figure 2.1) code on a 5 thread 5 stage thread-interleaved pipeline.
Figure 2.8 shows the execution of the first two threads in isolation. Thread 0 executes GCD, and
thread 1 executes the data-dependent code.

From the perspective of a thread, most instructions observe a 5 cycle latency, as shown
in figure 2.8. The minimum observable latency for instructions depend on the number of threads
executing in the pipeline. This can also be understood as the latency for each thread between
instruction fetches. In our time-predictable thread-interleaved pipeline, the static round robin thread
schedule enables this latency to be constant. We use the term thread cycle to encapsulate this latency,
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Figure 2.8: Isolated execution of threads with a thread-interleaved pipeline

and simplify the numbers for timing analysis. In our example, the instructions shown in thread 0
each take 1 thread cycle.

The Idr instruction in thread 1 accesses main memory. From the thread-interleaving, the
access latency to main memory is hidden in the concurrent execution of other threads. Thus, long
latency instructions can appear to have a reduced latency in the isolated view of threads. In this
example, the /dr instruction observes only a 2 thread cycle latency, even though the actual memory
access latency could have been up to 10 processor cycles.

Threads are temporally isolated in our thread-interleaved pipeline, so execution of each
thread can be analyzed in isolation. From the isolated view of each thread, each instruction com-
pletes its execution before the next one is fetched, and no instruction is executed speculatively.
Because instructions do not overlap in execution, each instruction’s execution time is not affected
by prior instructions. Control hazards are eliminated because a branch or exception is resolved be-
fore the next instruction fetch. The long latencies caused by structural or data hazards are hidden
from the thread interleaving, improving the throughput of the pipeline. We will describe in detail
our implementation of the thread-interleaved pipeline in the beginning of chapter 3.

2.2 Memory System

While pipelines designs continue to improve, memory technology has been struggling to
keep up with the increase in clock speed and performance. Even though memory bandwidth can be
improved with more bank parallelization, the memory latency remains the bottleneck to improved
memory performance. Common memory technologies used in embedded systems contain a sig-
nificant tradeoff between access latency and capacity. Static Random-Access Memories (SRAM)
provide a shorter latency that allows single cycle memory access from the pipeline. However, the
hardware cost to implement each memory cell prevents SRAM blocks from being implemented with
high capacity. On the other hand, Dynamic Random-Access Memories (DRAM) use a more com-
pact memory cell design that can easily be combined into larger capacity memory blocks. But the
memory cell of DRAMs must be constantly refreshed due to charge leakage, and the large capacity
memory blocks often prohibit faster access latencies. To bridge the latency gap between the pipeline
and memory, smaller memories are placed in between the pipeline and larger memories to act as a
buffer, forming a memory hierarchy. The smaller memories give faster access latencies at the cost
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of lower capacity, while larger memories make up for that with larger capacity but slower access la-
tencies. The goal is to speed up program performance by placing commonly accessed values closer
to the pipeline and placing less accessed values farther away.

2.2.1 Memory Hierarchy
Caches

A CPU Cache (or cache) is com-
monly used in the memory hierarchy to man-
age the smaller fast access memory made of
SRAMs. The cache manages the contents of
the fast access memory in hardware by leverag-
ing the spatial and temporal locality of data ac-
cesses. The main benefits of the cache is that it
abstracts away the memory hierarchy from the Figure 2.9: Memory Hierarchy w/ Caches
programmer. When a cache is used, all memory
accesses are routed through the cache. If the data from the memory access is in the cache, then a
cache hit occurs, and the data is returned right away. However, if data is not in the cache, then a
cache miss occurs, and the cache controller fetches the data from the larger memory and adjusts
the memory contents in the cache. The replacement policy of the cache is used to determine which
cache line, the unit of memory replacement on caches, to replace. A variety of cache replacement
policies have been researched and used to optimize for different memory access patterns of applica-
tions. In fact, modern memory hierarchies often contain multiple layers of hierarchy to balance the
tradeoff between speed and capacity. A commonly used memory hierarchy is shown in figure 2.9.
If the data value is not found in the L1 cache, then it is searched for in the L2 cache. If the L2 cache
also misses, then the data is retrieved from main memory, and sent back to the CPU while the L1
and L2 cache update its contents. Different replacement policies can be used at different levels of
the memory hierarchy to optimize the hit rate or miss latency of the memory access.

When caches are used, the program is oblivious to the different levels of memory hierar-
chy because they are abstracted away from the program; the cache gives its best-effort to optimize
memory access latencies. Whether or not an access hits the cache or goes all the way out to main
memory is hidden from the program. Thus, the programmer does not need to put in any effort, and
can get a reasonable amount of performance. Furthermore, when programs are ported to another
architecture with a different cache configuration, no change in the program is required to still obtain
a reasonable amount of performance from the hardware. For general purpose applications, this gives
the ability to improve design time and decrease design effort, which explains the cache’s popularity.

However, the cache makes no guarantees on actual memory access latencies and program
performance. The execution time of programs could highly vary depending on a number different
factors — cold starts, previous execution contexts, interrupt routines, and even branch mispredic-
tions that cause unnecessary cache line replacements. Thus, when execution time is important, the
variability and uncontrollability of caches may outweigh the benefits they provide.

The cache’s internal states include the controller state and memory contents. As the pro-
grammer cannot explicitly control the state of the cache, it is extremely difficult to analyze execution
time on systems with caches. At an arbitrary point of execution, if the state of the cache is unknown,
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a conservative worst-case execution time analysis needs to assume the worst case, as if the memory
access went directly to main memory. In order to acquire tighter execution time analysis, the cache
must be modeled with program execution to predict the cache state. The ease of such modeling
depends on the replacement policy used in the cache.

For example, the Least Recent Used (LRU) replacement policy replaces the least recently
used cache line whenever an eviction occurs. Within a basic block, a code segment without a control
flow change, the contents of a cache with N cache lines can be fully known after N different
memory accesses [43]. The N different memory accesses will evict all cache lines in the cache
prior to the basic block, and fill them with the memory contents of the /V accesses. In this case, the
analysis assumes NV initial cache misses before the cache state is known. However, the cache state
is destroyed when analysis hits a control flow merge with another path. Thus, the usefulness of this
analysis depends on IV and how long basic blocks are in programs. In practice, the complexity of
modern programs and memory architectures often introduce a high variability in program execution
time, rendering analysis imprecise.

Even outside of the context of real-time applications, caches can present unintended side
effects. For applications that require extreme high speed, the best-effort memory management that
caches offer simply is not good enough. Programs often need to be tuned and tailored to specific
cache architectures and parameters to achieve the desired performance. In order to tune algorithm
performance, algorithm designers are required to understand the abstracted away memory architec-
ture and enforce data access patterns that conform to the cache size and replacement policy. For
example, instead of operating on entire rows or columns of an array, algorithms are rewritten to
operate on a subset of the data at a time, or blocks, so the faster memory in the hierarchy can be
reused. This technique is called Blocking [60], and is very well-known and commonly used.

Multithreaded threaded architectures with shared caches among the hardware threads can
suffer from cache thrashing, an effect where different threads’ memory accesses evict the cached
lines of others. With multiple hardware threads, it is extremely difficult for threads have any knowl-
edge on the state of the cache, because it is simultaneously being modified by other threads in the
system. As a result, the hardware threads have no control over which level in the memory hierar-
chy they are accessing, and the performance highly varies depending on what is running on other
hardware threads.

For multicore architectures, caches create a data coherency problem when data needs to
be consistent between the multiple cores. When the multiple cores are sharing memory, each core’s
private cache may cache the same memory address. If one core writes to a memory location that is
cached in its private cache, then the other core’s cache would contain stale data. Various methods
such as bus snooping or implementing a directory protocol [108] have been proposed to keep the
data consistent in all caches. Implementing a scalable and efficient cache coherence scheme is still
a hot topic of research today.

Scratchpads

We cannot argue against the need for a memory hierarchy, as there is an undeniable gap
between processor and DRAM latency. However, instead of abstracting away the memory hierarchy,
we propose to expose the memory layout to the software.

Scratchpads were initially proposed for their power saving benefits over caches [16].
Scratchpads can be found in the Cell processor [39], which is used in Sony PlayStation 3 consoles,
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and NVIDIA’s 8800 GPU, which provides 16KB of SPM per thread-bundle [83]. Scratchpads use
the same memory technology (SRAMs) as caches, but do not implement the hardware controller
to manage their memory contents. Instead, scratchpads occupy a distinct address space in memory
when they are used as fast access memory. Memory accesses that access the specific scratchpad
address space will go to the scratchpad, and other accesses will go to main memory. Because in
hardware scratchpads do not need to check whether the data is on the scratchpad or not, they have a
reduced access latency, area and power consumption compared to caches [16].

Unlike caches, which overlay their ad-
dress space with main memory to hide the hierarchy,
scratchpads explicitly expose the memory hierarchy,
as figure 2.10 illustrates. The exposed memory hi-
erarchy gives software full control over the manage-
ment of memory contents in the hierarchy. Data allo-
cated on the scratchpad will have single cycle access
latencies, while other data will take the full DRAM
access latency. The memory access latency for each ~ Figure 2.10: Memory Hierarchy w/ Scratchpads
request now depends only on the access address, and
not that state of another hardware controller. This drastically improves the predictability of memory
access times, and removes the variability of execution time introduced with caches. However, this
places the burden of memory management on the programmer or compiler toolchains. The Cell
processor [39] is often criticized for being difficult to program, and one of the main reason is its
use of scratchpads. Programmers have become accustomed to a uniform memory space, making it
difficult to adjust to the non uniform memory space that must be explicitly managed.

Embedded system designs inherently need to deal with limited resources and other design
constraints, such as limited memory or hard timing deadlines. Thus, the design of such systems
often requires analysis of memory usage and latency to ensure that the constraints are met. These
analysis results can be used to generate automatic allocation schemes for scratchpads, lessening the
burden on programmers. Two allocation schemes are commonly employed to manage the contents
of scratchpads in software. Static allocation schemes allocate data on the scratchpad during com-
pile time, and the contents allocated on the scratchpad do not change throughout program execution.
Static scratchpad allocation schemes [109, 86] often use heuristics or a compiler-based static analy-
sis of the program to find the most commonly executed instructions or data structures. These are al-
located statically on the scratchpad to improve program performance. Dynamic allocation schemes
modify the data on the scratchpad during run time in software through DMA mechanisms. The al-
location could either be automatically generated and inserted by the compiler, or explicitly specified
by the user programmatically. Higher level models of computation, such as Synchronous Dataflow
(SDF) [63] or Giotto [45], expose more structure and semantics of the model for better analysis,
which can be used to optimize scratchpad allocation dynamically. Bandyopadhyay [17] presents an
automated memory allocation of scratchpads for the execution of Heterochronous Dataflow mod-
els. The Heterochronous Dataflow (HDF) model is an extension to the Synchronous Dataflow (SDF)
model with finite state machines (FCM). The HDF models contain different program states. Each
state executes a SDF model that contains actors communicating with each other. Bandyopadhyay
analyzes the actor code and the data that is communicated in each HDF state, and derives an opti-
mized scratchpad allocation for each state. The scratchpad allocation code is automatically inserted
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into the code to dynamically change the scratchpad contents during state transitions, so the mem-
ory allocation is optimized for the execution of each HDF state. This allocation not only shows
roughly a 17% performance improvement compared to executions using LRU caches, but also a
more predictable program performance.

The underlying memory technology that is used to make both scratchpads and caches is
not inherently unpredictable, as SRAMs provide constant low-latency access time. However, by
using caches in the memory hierarchy, the hierarchy is hidden from the programmer, and the hard-
ware managed memory contents create highly variable execution times with unpredictable access
latencies. Scratchpads on the other hand expose the memory hierarchy to the programmer, allow-
ing for more predictable and repeatable memory access performances. Although the allocation of
scratchpads requires more programming effort, it also provides opportunity for high efficiency, as it
can be tailored to specific applications. Thus, in our time-predictable architecture, scratchpads are
employed as our fast-access memory.

2.2.2 DRAM Memory Controller

Because of its high capacity, DRAMs are often employed in modern embedded systems
to cope with the increasing code and data sizes. However, bank conflicts and refreshes within the
DRAM can cause memory accesses to stall, further increasing the memory latency. Modern memory
controllers are designed to optimize average-case performance by queueing and reordering memory
requests to improve the throughput of memory requests. This results in unpredictable and varying
access times along with an increased worst-case access time for each memory request. In this section
we will present a DRAM memory controller that privatizes DRAM banks with scheduled memory
refreshes to provide improved worst-case latency and predictable access times. The contributions
from this section are research done jointly with the several co-authors from Reineke et. al [96].
We do not claim sole credit for this work, and the summary is included in this thesis only for
completeness. We will first give some basic background on DRAM memories, then present the
predictable DRAM controller designed.

DRAM Basics

DRAM Device
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Figure 2.11: A dual-ranked dual in-line memory module. =~~~

Figure 2.11 shows the structure of a dual ranked in-line DDRII DRAM module. Starting
from the left, a basic DRAM cell consists of a capacitor and a transistor. The capacitor charge
determines the value of the bit, which can be accessed by triggering the transistor. Because the
capacitor leaks charge, it must be refreshed periodically, typically every 64 ms or less [51].

A DRAM array is made of a two-dimensional array of DRAM cells. Each access made to
the DRAM array goes through two phases: a row access followed by one or more column accesses.
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During the row access, one of the rows in the DRAM array is moved into the row buffer. To read
the value in the row buffer, the capacitance of the DRAM cells is compared to the wires connecting
them with the row buffer. The wires need to be precharged close to the voltage threshold so the
sense amplifiers can detect the bit value. Columns can be read and written to quickly after the row
is in the row buffer.

The DRAM device consists of banks formed of DRAM arrays. Modern DRAM devices
have multiple banks, control logic, and I/O mechanisms to read from and write to the data bus, as
shown in the center of figure 2.11. Banks can be accessed concurrently, but the data, command and
address busses, which is what the memory controller uses to send commands to the DRAM device,
are shared within the device. The following table! lists the four most important commands and their
function:

Command Abbr. Description
Precharge PRE Stores back the contents of the row buffer into the DRAM array, and
prepares the sense amplifiers for the next row access.

Row RAS Moves a row from the DRAM array through the sense amplifiers into
access the row buffer.

Column CAS Overwrites a column in the row buffer or reads a column from the row
access buffer.

Refresh REF Refreshes several” rows of the DRAM array. This uses the internal
refresh counter to determine which rows to refresh.

To perform reads or writes, the controller first sends the PRE command to precharge the
bank containing the data. Then, a RAS is issued to select the row, and one or more CAS commands
can be used to access the columns within the row. Accessing columns from the same row does not
require additional PRE and RAS commands, thus higher throughput can be achieved by performing
column accesses in burst lengths of four to eight words. Column accesses can immediately be
followed by a PRE command to decrease latency when accessing different rows. This is known
as auto-precharge (or closed-page policy). Refreshing of the cells can be done in two ways. One
common way is to issue a refresh command that refreshes all banks of the device simultaneously.
The refresh latency depends on the capacity of the device, but the DRAM device manages a counter
to step through all the rows. The rows on the device could also be manually refreshed by performing
row accesses to them. Thus, the memory controller could perform row accesses on every row within
the 64 ms refresh period. This requires the memory controller to keep track of the refresh status of
the device and issue more refresh commands, but each refresh takes less time because it is only a
rOW access.

DRAM modules are made of several DRAM devices integrated together for higher band-
width and capacity. A high-level view of the dual-ranked dual in-line memory module (DIMM) is
shown in the right side of figure 2.11. The DIMM has eight DRAM devices that are organized in two
ranks. The two ranks share the address, command inputs, and the 64-bit data bus. The chip select is
used to determine which ranks are addressed. All devices within a rank are accessed simultaneously
when the rank is addressed, and the results are combined to form the request response.

Our controller makes use of a feature from the DDR2 standard known as posted-CAS. Un-
like DDR or other previous versions of DRAMs, DDR2 can delay the execution of CAS commands

L This table is as shown in [96]
2The number of rows depends on the capacity of the device.
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(posted-CAS) for a user-defined latency, known as the additive latency (AL). Posted-CAS can be
used to resolve command bus contention by sending the posted-CAS earlier than the corresponding
CAS needs to be executed.

Table 2.1 gives an overview of timing parameters for a DDR2-400 memory module. These
timing constraints come from the internal structure of DRAM modules and DRAM cells. For exam-
ple, trep, trp, and tgrpc are from the structure of DRAM banks that are accessed through sense
amplifiers that need to be precharged. tcr,, twr, twrr, and tyy 1, result from the structure of DRAM
banks and DRAM devices. The four-bank activation window constraint ¢4y constrains rapid ac-
tivation of multiple banks that would result in too high of a current draw. The memory controller
must conform to these timing constraints when sending commands to the DDR2 module. Here we
only give a quick overview of DRAMs, we refer more interested readers to Jacob et al. [50] for
more details.

Parameter ~ Value 3 Description

treD 3 Row-to-Column delay: time from row activation to first read or write
to a column within that row.

torn 3 Column latency: time between a column access command and the start
of data being returned.

twi tcr, —1=2 Write latency: time after write command until first data is available on
the bus.

twr 3 Write recovery time: time between the end of a write data burst and
the start of a precharge command.

twTRr 2 Write to read time: time between the end of a write data burst and the
start of a column-read command.

trp 3 Row precharge time: time to precharge the DRAM array before next
row activation.

trrC 21 Refresh cycle time: time interval between a refresh command and a
row activation.

traw 10 Four-bank activation window: interval in which maximally four
banks may be activated.

tar set by user Additive latency: determines how long posted column accesses are
delayed.

Table 2.1: Overview of DDR2-400 timing parameters of the Qimonda HYS64T64020EM-2.5-B2. [96]

Predictable DRAM Controller

We will split the discussion of the predictable DRAM controller into its backend and
frontend. The backend translates memory requests into DRAM commands that are sent to the
DRAM module. The frontend manages the interface to the pipeline along with the responsibility
of scheduling refreshes. Here we specifically refer to a DDR2 667MHz/PC2-5300 memory module
operating at 200Mhz, which has a total size of 512MB over two ranks with four banks on each
rank. While our discussion of the design of this DRAM controller is specific to our DDR2 memory
module, the key design features are applicable to other modern memory modules.

3In cycles at 200 MHz
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Backend Conventional DRAM memory controllers view the entire memory device as one re-
source, and any memory request can access the whole DRAM device. Subsequent memory ac-
cesses can target the same bank within the DRAM, which results in the need for memory requests
to be queued and serviced sequentially, without exploiting bank parallelism. Our controller views
the memory devices as independent resources partitioned by banks. Specifically, we partition our
memory module into four resources, each consisting of two banks within the same rank. The banks
within each resource can be arbitrarily chosen, but all banks within a resource must belong to the
same rank, and each of the ranks must contain at least two resources. This is to avert access patterns
that would incur high latency from the contention for the shared busses within banks and ranks.
The partitioning of the memory device allows us to fully exploit bank parallelism by accessing the
resources in a periodic and pipelined fashion. The periodic access scheme to the four resources
interleaves each memory access between the ranks. Subsequent accesses to the same rank go to
the other resource, grouped from banks. Figure 2.12 shows an example of the following access
requests: read from resource 0 in rank 0, write to resource 1 in rank 1, and read from resource 2 in
rank 0.

Cycles T T T T T T T T T T T T T T T T T T 1
Resource/Rank I 0/0 I i1 I 2/0 I 31 I I 0/0 I 11 I
[RTCcINYR[CINYR]JCINYN][N]NIN[R]JCINYR]C]N]
CommandBus [ A |aA|o|Aa|Aa|O|A|lA|lO|O|lO|O|Oo|A]|lAa]oOo|lA|A]oO
LS S P 1S S P 1S S P 1P P P ] P S S P 1S S P )
Posted- Posted-
N e £ EE e
Rank 0 | B | Poted™4| C oA ['R P c R P c
Resource 0+2 A with A A R1A A Rla
S tAL=2 S S E S S E|S
Auto-Precharge Auto-Precharge l
Rank 1 i i Auto-Precharge ; 2
Resource 1+3 S S E S
Burst from Burst to Burst from
Data Bus Rank 0 Rank 1 Rank 0
| tRCD | tCL . | tRP
~ 1
tRCD WL ,%'

| tFAW |

Figure 2.12: The periodic and pipelined access scheme employed by the backend [96].

Each access request is translated into a RAS (Row Access), posted-CAS (Column Access)
and NOP command. An access slot is formed of all three commands. The NOP command in the
access slot is inserted between any two consecutive requests to avoid a collision on the data bus
that occurs when a read request follows and a write request. This collision is cause by the one
cycle offset between the read and write latencies. The RAS command moves a row into the row
buffer, and the CAS command accesses the columns within the row loaded into the row buffer. CAS
commands can be either reads or writes, causing a burst transfer of 8 - 4 = 32 bytes that occupies
the data bus for two cycles (as two transfers occur in every cycle). We send a posted-CAS instead
of a normal CAS in order to meet the row to column latency shown in table 2.1. This latency
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specifies that the RAS command and the first CAS command need to be 3 cycles apart. However,
manually issuing a CAS command to the first resource 3 cycles after its RAS command would
cause a command bus conflict with the RAS command for the second resource. Thus, we instead
set the additive latency ¢ 41, to 2 and use the posted-CAS that offsets the CAS command to conform
to the row to column latency. This allows our memory controller to preserve our pipelined access
scheme while meeting the latency requirements of the DRAM. We use a closed-page policy (also
known as auto-precharge policy), which causes the accessed row to be immediately precharged after
performing the column access (CAS), preparing it for the next row access. If there are no requests
for a resource, the backend does not send any commands to the memory module, as is the case for
resource 3 in figure 2.12.

Our memory design conforms to all the timing constraints listed in table 2.1. The write-
to-read timing constraint tyy g, incurred by the sharing of I/O gating within ranks, is satisfied by
alternating accesses between ranks. The four-bank activation window constraint is satisfied because
within any window of size ¢t 41y we activate at most four banks within the periodic access scheme.
Write requests with the closed-page policy requires 13 cycles to access the row, perform a burst
access, and precharge the bank to prepare for the next row access. However, our periodic access
scheme has a period of 12 cycles, as each access slot is 3 cycles, and there are four resources
accessed. Thus, a NOP is inserted after the four access slots: to increase the distance between
two access slots belonging to the same resource from 12 to 13 cycles. As a result, the controller
periodically provides access to the four resources every 13 cycles. The backend does not issue any
refresh commands to the memory module. Instead, it relies on the frontend to refresh the DRAM
cells using regular row accesses.

A high level block view of our back-

end implementation is shown in figure 2.13. PRET DRAM Controller Backend

Resp. Buf

Req. Buf

Each resource has a single request buffer and %_ [ modtacounter |
a respond buffer. These buffers are used to in- ! 1
terface with the frontend. A request is made Req. Buf |—— | command | | resource |
of an access type (read or write), a logical ad- @. I
dress, and the data to be written for write re- — |3 x Memory
quests. Requests are serviced at the granular- @l— — I Map
ity of bursts, i.e. 32 bytes in case of burst j' Resp. Buf |"
length 4 and 64 bytes in case of burst length @_ (é(;r:;:tr;t:
8. A modulo-13 counter is used to implement —

L |

the 13 cycle periodic access scheme in our con-

troller. The “resource” and “command” blocks

are combinational circuits that are used to se- Figure 2.13: Sketch of implementation of the back-
lect the correct request buffer and generate the ¢4 [96].

DRAM commands to be sent out. The “mem-

ory map” block is where logical addresses are mapped to physical addresses that determine the rank,
bank, row and column to access. The data for read requests are latched into the response buffers to
be read by the frontend.

Frontend The frontend of our memory controller manages the interfacing to our backend, and
the refreshing of the DRAM device. The privatization of DRAM banks creates four independent
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resources that are accessed separately from the front end. Thus, our memory controller is designed
to be used by multicore or multithreaded architectures that contain multiple requesters which need
access to the main memory. Several recent projects, such as MERASA [114], PREDATOR [9],
JOP [105], or CoMPSoC [42], strive to develop predictable multi-core architectures that require
predictable and composable memory performance. These could potentially profit from using the
proposed DRAM controller.

Specifically, we designed this memory controller to interface with the thread-interleaved
pipeline discussed previously in section 2.1.3. The thread-interleaved pipeline contains multiple
hardware threads that each require access to main memory. We assign each hardware thread to a
private memory resource, and send out memory requests to the memory controller frontend, which
receives the request and places it within the request buffer. Each thread in the thread-interleaved
pipeline sends out only one outstanding memory request at a time, so the single request buffer for
each resource is sufficient to interface with our thread-interleaved pipeline. Once the request is
serviced from the backend, the pipeline can read the data from the response buffer, and prepare to
send another memory request. In section 3.2 we will detail how our implemented thread-interleaved
pipeline interfaces with this predictable DRAM controller, and discuss the memory access latency
of this interaction.

Shared Data The privatization of resources for predictable access means that there is
no shared data in the DRAM. This serves as an interesting design challenge, as it is impossible to
assume no communication between contexts in a multicore or multithreaded environment. In our
implementation, which we will detail in section 3.2, the scratchpads can be configured to be shared
between the hardware threads for communication. This can be done because the scratchpad and
DRAM memory have distinct address regions, so no shared memory space will overlap onto the
DRAM address space. Most multi-core processors use DRAM to share data while local scratchpads
or caches are private. In this case, the sharing of data on the DRAM can be achieved by arbitrat-
ing accesses in the frontend. The four independent resources in the backend can be combined into
one, and any access to this single resource would result in four smaller accesses to all the backend
resources. This single resource could then be shared among the different cores of a multi-core archi-
tecture using predictable arbitration mechanisms such as Round-Robin or CCSP [11] or predictable
and composable ones like time-division multiple access (TDMA). This sharing of DRAM resources
comes at a cost of increased memory access latency, which is detailed in [96].

Refreshing the DRAM The frontend of our memory controller also manages the re-
freshing of DRAM cells. DRAM cells need to be refreshed at least every 64 ms. Conventionally
this is done by issuing a hardware refresh command that refreshes several rows of a device at once*.
Hardware refresh commands have longer refresh latencies each time a refresh is issued, but require
fewer refresh commands to meet the refresh constraints posed by the DRAM. However, when the
hardware refresh command is issued, all banks in the target DRAM device are refreshed, prohibiting
any other memory access to the device. In our backend, this would extend across multiple resources,
causing multiple resources to be blocked for memory accesses. Memory access latencies now need
to account for potential refresh command latencies, which vary depending on the refresh progress.

Instead, we use the distributed, RAS-only refresh [77] to each bank separately. Memory refreshes in

“Internally, this still results in several consecutive row accesses.
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this case are equivalent to row accesses to a bank; each resource can be refreshed without effecting
others. Manually accessing rows on the other give much shorter latencies each time, but incur a
slight bandwidth hit because more accesses need to be performed to meet the refresh constraints.
The shorter latencies however improve the worst-case access latency, because the refresh latency is
shorter.

In our device, each bank consists of 8192 rows, so each row has to be refreshed every
64ms /8192 = 7.8125us. At a clock rate of 200 MHz of the memory controller, this corresponds to
7.8125us - (200cycles/us) = 1562.5 cycles. Since each resource contains two banks, we need to
perform two refreshes every 1562.5 cycles, or one every 781.25 cycles. One round of access is 13
cycles at burst length 4, and includes the access slots to each resource plus a nop command. So in
the frontend we schedule a refresh every | 781.25/13|** = 60" round of the backend. If no memory
access is in the request buffer for the resource being scheduled for refresh, then the row refresh can
be directly be issued. Conventionally, when a contention between a memory request and a refresh
occurs, the refresh gets priority so the data can be retained in the DRAM cell. However, our refresh
schedule schedules refreshes slightly more often than necessary. Scheduling a refresh every 60 - 13
cycles means that every row, and thus every DRAM cell, is refreshed every 60 - 13 cycles - 8192 -
2/(200000 cycles/ms) < 63.90ms. We can thus push back any of these refreshes individually by
up to 0.1ms = 20000 cycles without violating the refreshing requirement. So in our frontend, the
memory request is serviced first (which takes 13 cycles), then the refresh is issued in the next access
slot.

In section 3.2 when we detail the interaction between our thread-interleaved pipeline and
the memory controller, we will show that the synchronization of the thread-interleaved pipeline to
our controller backend allows us to completely hide memory refreshes in some unusable access slots
lost in the synchronization. This provides predictable access latencies for all load/store instructions
to the DRAM through our DRAM controller.

2.3 Instruction Set Architecture Extensions

The instruction-set architecture (ISA) serves as the contract between the software and the
hardware. The programmer understands the semantics of each instruction and uses it to construct
programs. Computer architects ensure that the implementation of each instruction abides by the se-
mantics specified in the ISA. The semantics of the instructions in modern ISAs often do not specify
temporal properties for the instructions. Thus, in order to reason about the temporal properties of
a program, we must step outside of the ISA semantics and dive deep into the architectural details.
Since ISAs do not provide any means of exposing or controlling the timing behavior of software,
their implementations are under no obligations to exhibit predictable and repeatable timing behav-
iors. This makes the reasoning of temporal behaviors of programs even more difficult. In the previ-
ous sections, we presented a predictable computer architecture that implements timing predictable
behaviors for conventional instructions in the ISA. In this section, we will present our initial efforts
to extend the ISA with timing properties. Our vision is to bring temporal properties to the semantics
of ISA, which allows us to reason about timing of programs independent of the platform. This al-
lows higher-level models with temporal semantics, such as models expressed using e.g. MathWorks
Simulink® or Giotto [45], to be more easily synthesized into lower-level implementations, such as
C code, without deeply coupling the design to a particular hardware platform.
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A naive way to the extend the ISA with timing properties would be to associate with each
instruction a constant execution time. This constant time ISA provides a clear timing definition to all
programs written with it. The semantics of the program would include the execution time of basic
blocks, and any underlying architecture implementation must conform to it. All programs written
with the constant time ISA can also be ported across different architectures of the same family and
maintain the same timing behavior. This also means that any architecture implementation that does
not exhibit the defined timing properties is an incorrect implementation. A constant time ISA would
allow the reasoning of temporal properties independent of architecture, and engrave in the semantics
of programs temporal definitions. However, the major limitation of the constant time ISA is that it
prevents performance improvements at the micro-architectural level, as instruction execution time
must conform to the constant time specified in the ISA. Modern ISAs allow computer architects
to freely innovate in architectural techniques to speed up execution time of instructions while still
conforming to the semantics of the ISA. The program performance improves as the architecture per-
formance improves, without any effort from the programmer. By associating a constant execution
time for each instruction, the constant time ISA over-constrains the timing semantics of the ISA,
and limits the innovation of architecture implementations.

Instead of associating with all instructions a constant execution time, we extend the ISA
by adding assembly level instructions that allow us to control the timing behavior of programs. Ip
and Edwards [49] propose a simple extension to the processor which implements the deadline in-
struction, an instruction that allows the programmer to specify a minimum execution time of code
blocks. They show an implementation of a VGA controller in software by using the deadline in-
structions to control the output horizontal and vertical sync signals. Such functions are typically
implemented in hardware because the timing precision required is hard to achieve in software.
However, the deadline instruction provides the precise timing control needed, which enables a soft-
ware implementation. We further expand on this concept of controlling execution time in software,
and introduce a set of assembly timing instructions that allow us to control not only the minimum
execution time, but to also handle cases where the execution time exceeds a specified deadline.

It is currently already possible to manipulate external timers and set interrupts in most
modern embedded platforms. However, the procedure for setting timing interrupts highly varies
depending on platform implementation. The external timer is often viewed as just another 1/O
component, and access to the timer is often done through memory mapped registers. As a result,
the timing behavior of the program is deeply tied to the underlying implementation platform. By
defining the timing instructions as part of the instruction set, we unify the semantics of time across
all programs implemented using the ISA, and any correct implementation must conform to the
timing specifications in the software. This brings the control of timing up to software, instead of it
being a side effect of the underlying architecture implementation. In this section, we will introduce
the timing instructions added to the instruction set that allow us to experiment and investigate the
effects of and possibilities for extending the ISA with timing properties. Formally defining the ISA
extensions is part of an ongoing work for the PRET project. Here, we describe informally their
semantics, and through illustrative examples we also present their usage. In section 3.4 we will
present the implementation and timing details of these instructions.



32

2.3.1 Timing Instructions

Our extension of the ISA assumes a platform clock that is synchronous with the execution
of instructions. This platform clock is used by all timing instructions to specify and manipulate the
execution time of code blocks. The representation of time in the ISA is in itself an interesting topic
of research. For example, IEEE 1588 [66] timestamps use 32 bits of nanoseconds and 48 bits of
seconds to represent time. Our current implementation uses 64 bits of nanoseconds in the platform
clock to represent time. We choose this representation for several reasons. First, with our timing
instructions, timestamps are obtained by the programmer and can be manipulated throughout the
program with data operating instructions. Typical datapaths and registers are 32 bits. By using 64
bits of nanoseconds to represent time, programmers can use add with carry instructions to manage
the overflow of 64 bit additions without extra overhead. On the other hand, if we used the IEEE
1588 timestamp format to represent time, then any manipulation of time through the software would
require explicit checking of the nanoseconds overflowing to the seconds register. Second, the 64
bit nanoseconds simplifies the hardware implementation and comparisons of the platform clock
and timestamp values. In chapter 3 we will show our implementation, which utilizes the existing
datapath and integrates the platform clock deeply into the architecture.

Unsigned 64 bits of nanoseconds can only represent time up to a little more than 584
years, so the platform clock in our ISA is meant for a local representation of time. The platform
clock is reset to zero on processor reset. Even though the timing instructions operate on the exact
64 bit value of time, they are used to control offsets of time. The actual value of the timestamps
are merely used to calculate the elapsed time of code blocks. For distributed systems that require
communication of timestamps across platforms, the consistent view of time across platforms must
be obtained [138]. This can occur during system initialization, where the global time is obtained
and kept in the system. This initial global time can be appended to the current platform time to
obtain the current global time. For systems designed run longer than 584 years, the overflow of the
65th bit must be managed in software to ensure a consistent view of time.

Instruction Description
get_time get_time is used to obtain the current platform time.
delay _until delay_until is used to delay the execution of the program until a certain

platform time.

exception_on_expired | exception_on_expire is used to register timestamps that trigger timing
exceptions when the platform time exceeds the registered timestamp.
deactivate _exception | deactivate_exception is used to deactivate the registered timestamps that
trigger timing exceptions.

Table 2.2: List of assembly timing instructions

Table 2.2 shows the timing instructions and a brief description of their functionality. Our
current implementation extends the ARM [15] instruction set, so here we will present our timing
instruction extensions in the context of the ARM ISA. However, the concepts and extensions could
easily be applied to other ISAs. The ARM ISA sets aside an instruction encoding space to allow
additions to the architecture with co-processor extensions. Our timing instructions are currently
implemented using the co-processor instruction encoding, which also enables us to use conventional
ARM cross-compilers to compile programs that use our extensions.
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Get_Time

The get_time instruction is mainly used to obtain the time on the platform clock. This
instruction interfaces the program with the current platform time by loading the 64 bit timestamp of
the current platform time in general purpose registers. The timestamps are stored in general purpose
registers to make them accessible to programmers. The programmer can manipulate the timestamps
by using conventional data-processing instructions like add or subtract. However, because the times-
tamps are 64 bits, architectures with 32 bit registers store the value in 2 separate registers. Thus,
any manipulation of timestamps must handle the overflow caused by 32 bits operations properly.
Several ISAs provide an add with carry instruction that can be used, or else the programmer must
explicitly do so in software. The timestamps are used as inputs to other timing instructions which
we will introduce below.

We can technically implement the functionality of this instruction by memory mapping
the platform clock to two 32 bit memory locations. This would be similar to conventional methods
of accessing timers. However, loading a 64 bit time value would require 2 separate load instructions.
Without care, the programmer could easily read 2 inconsistent 32 bit values of time, because the
platform time continues to elapse in between the 2 reads. Even if a 64 bit load instruction is present
in the ISA, the ISA makes no guarantee that a loaded 64 bit value from main memory would contain
a consistent timestamp value from the same point in time. Thus, to make explicit the nature of the
operation, we use a separate instruction that ensures the programmer will get a consistent 64 bit
timestamp from a single point in time. In our implementation, this single point of time is when the
get_time instruction enters the pipeline.

Delay_Until

The delay_until instruction is used to delay program execution until a specified time. The
effect is similar to the one presented by Ip and Edwards [49], where the programmer can specify
a minimum execution time for a code block. The difference is, in our ISA, the unit of time is
represented by nanoseconds, instead of processor cycles. The delay_until instruction takes as input
a timestamp, usually derived from the timestamp obtained from get_time, and compares it to the
current platform time to determine whether delays are needed. Listing 2.1 shows an example of
how delay_until and get_time are used together to control a minimum execution time a code block.
The assembly code is written using the ARM ISA. The ARM ISA allows extra functionality to be
added to the instruction set by providing 16 co-processor instruction spaces. The timing instructions
are implemented as co-processor 13 instructions, so all timing instructions are in the format cdp,
p13, <opcode> rd, rn, rm, 0. Get_time has an opcode of 8, and delay_until has an opcode of 4.

Listing 2.1: Sample assembly code of delay_until

cdp p13, 8, c2, c0, c0O, 0 ; {c2,c3} = platform time (get_time)

1

2 adds r3, r3, #400 ; €3 += 400 (save carry)

3 adc r2, r2, #0 ; €2 = €2 + <previous carry>
4

5 add r5, r6, r6 ; code block to execution

6

7 cdp p13, 4, c2, c2, c3, 0 ; delay_until

8 b end
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In the code sample, lines 1 through 3 setup the timestamp that is passed into delay_until.
Get_time is used to obtain the current platform time, and an offset of 400 nanoseconds is added to
the timestamp with adds and adc instructions. The adds instruction does a 32 bit add and saves
the carry bit in the processor state register, so adc can use the carry along with its 32 bit addition.
The 400 nanosecond offset added to the timestamp is the minimum execution time specified for the
code between get_time and delay_until. This also includes time it takes to compute the deadline
timestamp, as both adds and adc instructions execute between get_time and delay_until. When the
delay_until instruction is decoded, the deadline timestamp is checked against platform time. The
program will be delayed until platform time passes the deadline timestamp. If platform time has
already passed the deadline timestamp, then this delay_until instruction will simply act as a nop,
and the program will continue to execute.

It is important to know that delay_until merely specifies a minimum execution time. If
the execution of the code block takes longer than the specified offset to execution, delay_until will
have no effect on the program. Thus, delay_until should not be used to enforce real-time constraints.
Instead, delay_until can be used to synchronize programs with external sources. For example, the
VGA controller presented in [49] is implemented with the same mechanics to send the horizontal
and vertical sync signals to the monitor from software. In chapter 4 we will also show applications
that use this mechanism to synchronize the communication of hardware threads, and remove the
execution time variance exhibited by software control paths.

Exception_on_Expire and Deactivate_Exception

The delay_until instruction is only used to specify minimum execution times, and cannot
express a desired maximum execution time for code blocks. The exception_on_expire instruction is
introduced to for this purpose; to specify a desired maximum execution time for code blocks. A
new exception is added to the ARM exception vector table that represents a timer expired excep-
tion. Exception_on_expire takes as input a 64 bit timestamp. When exception_on_expire is decoded,
the timestamp is registered as the timeout value. This timeout value is checked in hardware as the
program continues execution. When platform time exceeds the timeout value, the timer expired
exception is thrown in hardware, and the corresponding entry in the exception vector table is ex-
ecuted. The deactivate_exception instruction takes no input, and is simply used to deactivate the
timeout value in hardware before an exception is thrown. When deactivate_exception is decoded,
any timeout value that is currently registered by exception_on_expire is deactivated, and no timer
expired exception will be thrown. Listing 3.3 shows the sample assembly code of using excep-
tion_on_expire with deactivate_exception.

In the code sample, lines 1 to 3 are used to setup the timestamp passed into excep-
tion_on_expire. It uses get_time and then adds an offset to the timestamp obtained. Line 4 passes the
timestamp to exception_on_expire, which stores it to be checked in hardware. If the platform time
were to exceed the the timestamp during execution of lines 6 and 7, which signifies a missed dead-
line, then a timer expired exception would trigger in hardware, and the control flow would jump to
the exception handler. Or else, the deactivate_exception instruction on line 9 would deactivate that
timestamp, and the program would continue to execute.

Currently only one timeout value is kept in hardware as part of the processor state. This
means that at any moment in time, only one timestamp value can be stored and checked in hardware.
Multiple deadlines can be managed in software, using data structures to keep an ordered list of
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Listing 2.2: Sample assembly code of exception_on_expire and deactivate_exception

cdp p13, 8, c2, ¢c0, c1, 0 ; get_time

adds c3, c3, #400

adc c2, c2, #0

cdp p13, 2, c2, c2, c3, 0 ;exception_on_expire

add r5, r6, r6 ; code block that is executed
add r7, r5, r6

ol - Y I N S I SR

cdp p13, 5, c0, c0, cO, 0 ;deactivate_exception
b end

)

deadlines to be checked. Multiple timeout slots can be implemented and checked in hardware at the
cost of hardware complexity.

Similar to delay_until, exception_on_expire and deactivate_exception merely create a mech-
anism to specify desired timing constraints. None of the timing instructions enforces execution time
behavior, they merely provide a method for users to monitor, detect, and interact with the timing
variability in software. This is in line with our original goal, to introduce timing semantics to the
ISA without over-constraining the temporal properties of the ISA. These instructions do not limit
the improvement of performance in the architecture for other instructions, as long as the timing
properties of the timing instructions are faithfully implemented. With the introduction of these tim-
ing instructions, programmers can reason about and control temporal properties of the program with
timing instructions, independently of the architecture. At the same time, these instructions by them-
selves do not provide guarantees on the execution time of programs. An underlying architecture
must still provide predictable execution times in order for static analysis to obtain a tight worst-case
execution time bound.

2.3.2 Example Usage

In this section we show different use cases for the timing instructions introduced. We
demonstrate different timing behaviors that can be built with the timing instructions to show how
these assembly level instructions can be used by higher level languages to synthesize different tim-
ing behaviors.

Constructing Different Timing Behaviors

Figure 2.14 shows four possible timing behaviors that we can construct for a code block
using the assembly level timing instructions. The code block in this case can be a task, a function,
or any piece of code that might exhibit timing variability. Here we simply refer to this code block as
a task. We assume there is a desired execution time for the task. The desired execution time could
be from a specification of the application, or a synthesized timing requirement from a higher level
model. We will call this desired execution time the deadline of the task.

If the actual execution time of the task is longer than the specified deadline, the deadline
is missed. Two possible timing behaviors can be used to handle this situation, which we show with
scenario A and B in figure 2.14. Scenario A is used if the execution of task needs to completed.
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Deadline of Task
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Figure 2.14: Different Desired Timing Behaviors

It could be that the task modifies external I/O states that cannot afford to be left in an unknown
state. In this scenario, the task must first complete, then execute the miss handler before the next
task continues execution. This is also known as a late miss detection. Listing 2.3 shows how this
is implemented using our timing instructions. Lines 1 to 3 of the listing are used to set up the
deadline timestamp, which is stored in r2 and r3. Line 5 branches to the task and returns when the
task completes. Lines 7 to 10 are where the miss detection occur. We simply use another ger_time
instruction to obtain the current platform time and compare it with the deadline timestamp. The
blmi instruction is a branch with link instruction that is conditionally executed only if the [N]egative
condition code is set. Thus, the branch to miss_handler only occurs if the deadline timestamp is less
than the current platform time, which means the deadline was missed.

Listing 2.3: Assembly code to implement scenario A

cdp p13, 8, c2, c0, c0, 0 ; get_time, current timestamp stored in [c2, c3]
adds r3, r3, #0xDEAD ; assuming the deadline is #0xDEAD

adc r2, r2, #0 ; lines 2 and 3 calculate the deadline timestamp
bl task ; execute Task

cdp p13, 8, c4, c0, c0, O
subs r3, r3, r5

; get_time, current timestamp stored in [c4, c¢5]
sbc r2, r2, r4 ;

lines 8 and 9 check for deadline miss

© ® N AW N =

blmi miss_handler branch to miss_handler if negative

condition code is set

S o= o

bl task2 ; execute next task

If the missed deadline is to be handled immediately, then we cannot check the dead-
line timestamp in software, but it must be checked in hardware. The exception_on_expire and de-
activate_exception instructions are then used to immediately execute the miss_handler when the
timer expires. This is shown as scenario B in figure 2.14. Listing 2.4 shows the usage of excep-
tion_on_expire and deactivate_exception to achieve this timing behavior. The code is similar the one
showed in listing 3.3 for the example usage of exception_on_expire and deactivate_exception. In this
case, if deactivate_exception is not executed before platform time exceeds the deadline timestamp,
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then the deadline is missed and the timer expired exception is thrown in hardware. In the listing we
assume that miss_handler has been registered as the exception handler, and will be executed when
the timer expired exception is thrown. The miss_handler can directly abort task 1 to start task 2, or
it could return to the program point where the exception was thrown after miss_handler completes.
This is application dependent, and both can be supported in software.

Listing 2.4: Assembly code to implement scenario B and C

cdp p13, 8, c2, c0, c0O, 0 ; get_time, current timestamp stored in [c2, c3]
adds r3, r3, #0xDEAD ; assuming the deadline is #0xDEAD

adc r2, r2, #0 lines 2 and 3 calculate the deadline timestamp
cdp p13, 2, c2, c2, c3, 0 ; exception_on_expire, register [c2, c3]

bl task ; execute Task

cdp p13, 5, c0, c0, cO, 0 ; deactivate_exception

N - Y I NP I SR

bl task2 ; execute next task

S

When the execution time of the task does not exceed the specified deadline, two different
behaviors can also be implemented. The first is shown in scenario C of figure 2.14, where the next
task immediately begins to execute. In this scenario, we merely want to ensure that the task does
not exceed the deadline. The code shown in the previous listing 2.4 exhibits this behavior. Once the
task finishes earlier, deactivate_exception is executed to deactivate the exception, and the next task
is immediately executed.

However, if we do not want the next task to start until after the specified deadline, then
a delay_until can be used to ensure a minimum execution time for the task. This could be useful if
the tasks are synchronized to an external source. The sample code is shown in listing 2.5, which is
scenario D in figure 2.14.

Listing 2.5: Assembly code to implement scenario D
cdp p13, 8, c2, c0, c0, O

; get_time, current timestamp stored in [c2, c3]

l 3

2 adds r3, r3, #O0xDEAD ; assuming the deadline is #0xDEAD

3 adc r2, r2, #0 ; lines 2 and 3 calculate the deadline timestamp
4 cdp p13, 2, c2, c2, c3, 0 ; exception_on_expire, register [c2, c3]
5

6 bl task ; execute Task

7

8 cdp p13, 5, c0, c0, cO, 0 ; deactivate_exception

9 cdp p13, 4, c2, c2, ¢3, 0 ; delay_until

10

11 bl task2 ; execute next task

The delay_until instruction is added after deactivate_exception, and whenever the execu-
tion time of the task is less than the specified deadline, it will delay the program until the dead-
line is reached, ensuring the next task will not execute early. The order of delay_until and deacti-
vate_exception in this case is very important. If the order were the other way around, then delay_until
would first delay the program until after the specified deadline. Because deactivate_exception has
not executed yet, the timer expired exception would always be thrown, even if the task did not miss
the deadline. Thus, deactivate_exception must be before delay_until. Delay_until can also be used
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Figure 2.15: Timing diagram of different timed loops

in scenario A to achieve the same effect for late miss-detections. In that situation, simply insert a
delay_until in line 12 of listing 2.3 and use the first deadline timestamp as its input.

Timed Loops

By using timing instructions within loops, we can construct timed loops for programs that
exhibit periodic timing behaviors. Listing 2.6 shows sample code that uses get_time and delay_until
to construct a timed loop.

Listing 2.6: Timed loops with get_time and delay_until

1 loop:
cdp p13, 8, c2, c0, c0, 0 ; get_time, current timestamp stored in [c2, c3]
adds r3, r3, #O0xDEAD ; assuming the deadline is #O0xDEAD
adc r2, r2, #0 ; lines 2 and 3 calculate the deadline timestamp
bl task ; execute Task

cdp p13, 4, c2, c2, c3, 0 ; delay_until

2
3
4
5
6
7
8
9 b loop

The period of each loop iteration is specified by the calculations of lines 2 and 3 in list-
ing 2.6. Ideally, the execution time of the task never exceeds the period of the loop, and the timing
behavior shown in scenario A from figure 2.15 is observed. In this scenario, each iteration exhibits
slightly different execution times, but the delay_until instruction ensures each iteration takes the
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whole period to execute. However, if one iteration misses the deadline, and its execution time ex-
ceeds the period, then scenario B in figure 2.15 would be observed in our current implementation.
We see that iteration 1 is the only iteration that misses its deadline, but because get_time is called
in the beginning of each loop iteration, our next deadline for iteration 2 will be shifted due to the
overrun in execution time. Even though iteration 2 executes in less time, all future iterations are still
shifted after one missed deadline.

The timestamps are stored in general purpose registers and can be manipulated using
data-processing instructions, so we can slightly modify the implementation of the timed loop to
account for that missed deadline. Listing 2.7 shows a different implementation of timed loops. In
this implementation, we only call get_time once outside of the loop, and within the loop the deadline
timestamps are incremented directly by arithmetic operations, shown on lines 3 and 4.

Listing 2.7: Timed loops with get_time outside of the loop

1 cdp p13, 8, c2, c0, c0, 0 ; get_time, current timestamp stored in [c2, c3]
2 loop:

3 adds r3, r3, #O0xDEAD ; assuming the deadline is #O0xDEAD

4 adc r2, r2, #0 ; lines 8 and 4 calculate the deadline timestamp
5

6 bl task ; execute Task

7

8 cdp p13, 4, c2, c2, c3, 0 ; delay_until

9 b loop

Figure 2.15 scenario C shows the effects of this implementation. Although iteration 1
misses its deadline, but the execution time of iteration 2 is short enough to “make up” the delayed
time cause from the first iteration. Future iterations are not effected by the missed deadline from
iteration 1, and continue to execute as desired. By placing get_time outside of the loop, the incre-
ments to the deadline timestamp are purely the period of the loop, since we do not call get_time
again to obtain the current time. Of course, both implementations are susceptible to the effects of
multiple missed deadlines in a row, as shown in scenario D and E. In both scenarios, iterations 1
and 2 overrun their deadline, and the timing error is compounded. With our first implementation of
timed loops, the error jitter continues to increase, because the new deadline is set according to the
late execution of each iteration, as shown in scenario D. The error jitter never recovers, even though
the execution time of iteration 3 is short enough to allow recovery. As shown in scenario E, our
second implementation recovers the period by the 3rd iteration, and the 4th iteration is not effected.

Furthermore, we can construct a timed loop that self compensates whenever it detects
that an iteration overran its deadline. We do so by using the late miss detection mechanism shown
previously in our timed loop to run a shorter version of the task whenever a previous deadline is
missed. This is shown in listing 2.8.

In this sample code, we place the late miss detection in the beginning of each loop, and
use it to detect if the current platform time is greater than the previously set deadline timestamp.
On lines 4 and 5 we subtract an offset that is used to compensate for the execution time of the
loop overhead and miss detection. This is an important step that cannot be omitted. For each
iteration, if the previous iteration meets its deadline, the delay_until instruction will delay program
execution until the current platform time exceeds the specified deadline. Thus, if the time it takes
to execute the loop overhead and miss-detection is not accounted for, then we will always detect
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Listing 2.8: Timed loops with compensation

cdp p13, 8, c2, c0, c0, 0 ; get_time, deadline timestamp stored in [c2, c3]
loop:

1

2

3 cdp p13, 8, c4, c0, cO, 0 ; get_time, current timestamp stored in [c4, c5]
4 subs r5, r5, #<offset> ; <offset> is implementation dependent and used to
5 sbc rd4, rd4, #0 ; account for loop overhead and miss detection

6

7 subs r5, r3, r5 ; Check if previous iteration deadline is missed
8 sbc r4, r2, r4 ;

9

10 bimi task_short ; execute shorter task if previous deadline mess
11 blpl task_normal ; or else execute normal task

12

13 adds r3, r3, #O0xDEAD ; assuming the deadline is #0xDEAD

14 adc r2, r2, #0 ; calculate the deadline timestamp for this iter.

15 cdp p13, 4, c2, c2, c3, 0 ; delay_until

17 b loop

a missed deadline from the effects of delay_until. The actual offset is implementation dependent,
depending on how long each instruction takes to execute. We will show how this offset is calculated
in our implementation in section 3.6.3. Once the overhead is accounted for, lines 7 and 8 check
whether the previous deadline was met, and lines 10 and 11 execute the short task if the deadline
was missed, or execute the normal task otherwise. We assume that both tasks saves the processor
condition codes in the preamble of the task, and restores it in the postamble. In this code, we delay
the deadline calculation for this iteration until right before the delay_until instruction, because the
miss detection checks against the previous deadline timestamp. The timing behavior that is created
is shown in figure 2.15 scenario F.

Other combinations of timing instructions can further be explored. For example, the use
of exception_on_expire and deactivate_exception to handle cases where loop iterations exceed the
period. In these examples, we are not claiming that a particular implementation of timed loops is
the “correct” implementation. We mainly show different possible ways to implement a timed loop
with our timing extensions to point out the subtleties when doing so.
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Chapter 3

Precision Timed ARM

In this chapter we introduce the Precision Timed ARM (PTARM). The PTARM is a re-
alization of the PRET principles on the ARM instruction set architecture [15]. In this chapter we
describe in detail the implementation of the timing-predictable ARM processor and the timing anal-
ysis on the architecture. We show that with the architectural design principles of PRET, the PTARM
architecture is easily analyzable and has repeatable timing.

Following the design principles discussed in chapter 2, PTARM employs a thread-interleaved
pipeline and an exposed memory hierarchy with scratchpads and a timing predictable DRAM con-
troller. The ARM ISA is chosen not only because of its popularity in the embedded community, but
also because it is a Reduced Instruction Set Computer (RISC), which contains simpler instructions
that allow for more precise timing analysis. Complex Instruction Set Computers (CSIC), such as In-
tel’s x86 ISA, add complexity to the instructions, hardware, and timing analysis. RISC architectures
typically feature a large uniform register file, use a load/store architecture, and use fixed-length in-
structions. In addition, the ARM ISA contains several unique features. Here we list of a few. First,
the ARM ISA does not contain explicit shift instructions. Instead, data-processing instructions can
shift their operands before the data operation. This requires a separate hardware shifter in addition
to the arithmetic logic unit (ALU) in the hardware. Second, ARM’s load/store instructions contain
auto-increment capabilities that can increment or decrement the value stored in the base address
register. This occurs when load/store instructions use the pre or post-index addressing mode. This
is useful to compact code that operates on data structures such as arrays or stacks. In addition,
almost all of the ARM instructions are conditionally executed. The conditional execution improves
architecture throughput with potential added benefits of code compaction [29].

The ARM programmer’s model specifies 16 general purpose registers (RO to R15), with
register 15 being the program counter (PC). Writing to R15 triggers a branch to the written value,
and reading from R15 reads the current PC plus 8. PTARM implements the ARMv4 ISA, with-
out support for the thumb mode, an extension that compacts the instructions to 16 bits, instead
of the typical 32 bits. In addition to the predictable architecture, PTARM extends the ARM ISA
with timing instructions introduced in chapter 2.3. We describe the implementation of these timing
instructions in detail in section 3.4.4 below.
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3.1 Thread-Interleaved Pipeline

PTARM implements a thread-interleaved pipeline for the ARM instruction set. Curretly,
PTARM is implemented as a soft core on the Xilinx Virtex-5 and 6 Family FPGAs, thus several
design decisions were made to optimize PTARM for those FPGA families. Soft core processors
are microprocessors that are synthesized onto FPGAs. They can often be customized with different
feature sets and configurations before being implemented on the FPGA. The PTARM implements
a 32 bit datapath with a five stage thread-interleaved pipeline. Thread-interleaved pipelines remove
pipeline hazards by interleaving multiple threads, improving throughput and predictability. Con-
ventional thread-interleaved pipelines have at least as many threads as pipeline stages to keep the
pipeline design simple and maximize the clock speed. However, Lee and Messerschmitt [62] show
that hazards can also be removed in the pipeline even if the number of threads is one less than the
number of pipeline stages. Increasing the number of threads in the pipeline increases each thread’s
latency, because threads are time-sharing the pipeline resource. Thus, PTARM implements a five
stage thread-interleaved pipeline with four threads to slightly improve thread latencies.

Figure 3.1 shows a block diagram view of the pipeline. Some multiplexers within the
pipeline have been omitted for a clearer view of the hardware components that make up the pipeline.
It contins four copies of the program counter (PC), thread states, and register file. The register
file has 3 read ports and 1 write port. Most of the pipeline design follows the five stage pipeline
described in Hennessey and Patterson [44], with the five stages in the pipeline being Fetch, Decode,
Execute, Memory, and Writeback. We briefly describe the functionality of each stage, and leave
more details to section 3.4, where the instruction implementations are presented.

The fetch stage of the pipeline fetches the PC from different threads in a round robin
fashion every cycle. A simple 2 bit up-counter is used to keep track of which thread to fetch. This
reduces the time and space overhead of context switching close to zero. The PC forward path is used
when an instruction loads to R15, which causes a branch to the value loaded from main memory.
We will discuss the need for the forwarding path below when the memory stage is described. The
timer implements the platform clock used by the timing instructions. In addition, it contains the
hardware logic that registers and checks for timer expiration exceptions for each thread. A 64 bit
timestamp, representing the time in nanoseconds, is associated with each instruction when it begins
execution in the pipeline. This 64 bit timestamp is latched from the timer in the fetch stage, and is
kept with the instruction for the duration of its execution.
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The decode stage contains the pipeline controller that decodes instructions and determines
the pipeline control signals to be propagated down the pipeline. Most of the ARM instructions are
conditionally executed, so the pipeline controller also checks the condition bits against the processor
state condition codes to determine whether the instruction is to be executed or not. Conventional
pipeline controllers need to keep track of all instructions currently executing in the pipeline, to
detect the possibility of pipeline hazards and handle them accordingly. However, from the decode
stage of our thread-interleaved pipeline, other instructions executing in the pipeline are instructions
from other threads. Thus, the controller logic is greatly simplified because no hazard checking for
in-flight instructions is required. A small decoding logic, the register address decoder, is inserted in
parallel with the controller to decode the register addresses from the instruction bits. In some RISC
instruction sets, the register operands have a fixed location in the instruction word for all instruction
encodings. Thus, they can directly be passed into the register file before decoding. However, in the
ARM instruction set, certain instructions encode the register read address at different bit locations of
the instruction. For example, data-processing register shift instructions and store instructions read
a third operand from the register that is at encoded at different bit locations. Thus, a small register
address decoding logic is inserted for a quick decoding of the register addresses from the instruction
bits.

The PC Adder is the logic block that increments the PC. Single threaded pipelines need to
increment the PC immediately in the fetch stage to prepare for instruction fetch the next processor
cycle. For thread-interleaved pipelines, the next PC from the current thread is not needed until sev-
eral cycles later, so there is no such restriction. In addition to outputting the current PC incremented
by 4, the PC Adder also outputs the value of the current PC incremented by 8. In the ARM ISA,
instructions that use R15 as an operand actually read the instruction PC plus 8, instead of the instruc-
tion PC, as the value of the operand. This feature is meant to simplify architecture implementations
of the ARM ISA. Typically in pipelines, instructions take 2 cycles (fetch and decode) before they
enter the execute stage. Thus, for single-threaded pipelines, the program counter has likely been
incremented by 8. By using instruction_pc+ 8 as the operand value, the hardware implementation
can directly use the PC without compensating for the two increments that occurred. However, for
thread-interleaved pipelines, we need to explicitly calculate instruction_pc + 8 because the PC for
each thread is not incremented every processor cycle, but only incremented once every round robin
cycle. Since instruction_pc + 8 can be used as a data operand in the execute stage, the PC Adder
in placed in the decode stage.

The execute stage contains the execution units and the multiplexers that select the correct
operands to be fed into the ALU. The ARM ISA assumes an additional shifter to shift the operands
before data operations, so a 32 bit Shifter is included. The 32 bit ALU performs most of the logical
and arithmetic operations, including data-processing operations and branch address calculations.
The Load/Store Multiple Offset logic block calculates the offset for load/store multiple instructions.
Load/store multiple instructions use a 16 bit vector to represent each of the 16 general purpose
registers. Memory operations are done only on the registers whose corresponding bit values are
set in the bit vector. The memory addresses of each memory operation are derived from the base
register and an offset. The Load/Store Multiple Offset logic block calculates this offset according to
the bit count of the remaining bit vector during load/store multiple instructions. The Timer Adder is
a 32 bit add/subtract unit used with the ALU to compare 64 bit timestamps for timing instructions.
Specifically, delay_until requires the comparison of two 64 bit timestamps every thread cycle. Thus,
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the additional Timer Adder is added to accomplish that. The implementation details of delay_until
is described in section 3.4.4.
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the writeback stage would cause a control hazard, because the updated PC would not be observed by
the concurrent instruction fetch. For most instructions, including branch instructions, the next PC
is known before the memory stage, so moving the PC commit one stage earlier does not cause any
problems. The PC Write Logic updates the next PC, depending on the instruction, and whether an
exception occurred or not. Section 3.3 describes the hardware mechanism for handling exceptions
in PTARM. Normally, PC+4 from the PC Adder or the result from the ALU is used to update the
PC.

Whenever instructions write to R15 (PC), the control flow of the program branches to the
value written to R15. Data processing instructions that write to R15 have their results computed
by the execute stage, ready to be committed as the new PC in the memory stage. However, a load
instruction that loads to R15 will not know the branch target until after the memory read. Thus,
a PC forwarding path is added to forward the results back from memory as the fetched PC if a
load instruction loads to R15. The forwarding path does not cause any timing analysis difficulties
because the forwarding path is always used when a load instruction loads to R15. This does not
stall the pipeline, and does not effect the timing of any following instructions. We describe the
implementation details in section 3.4.3.

The writeback stage simply writes back the results from memory or the ALU to the correct
registers. Writing back to registers in the writeback stage does not cause data hazards even if there
are only four threads, because the data from registers are not read until the following decode stage.
Figure 3.2 shows that the two stages do not overlap in the same cycle, thus causing no hazards.

3.2 Memory Hierarchy

The memory hierarchy of PTARM is exposed in software, as discussed in section 2.2.
This allows for a more predictable and analyzable memory access latency. The memory map is
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composed of regions reserved for the boot code, the instruction and data scratchpads, a 512MB
DRAM Module, and the memory mapped I/O, all occupying separate address regions. Figure 3.3
shows the memory address regions reserved for each memory type. Both the boot code and scratch-
pads are synthesized to dual-ported block RAMs on the FPGA, and provide deterministic single
cycle access latencies.

3.2.1 Boot code

The boot code region contains initialization and 0x00000000
.. . B
setup code for PTARM. This includes the exception vector ta- oot Code 0X0000FFFF
ble, which st0r§s entries used. jump to spemﬁ? exception ha.ln— : Ox40000000
dlers for the different exceptions. The specific table entries é’;f;‘;f“g;%
and layout are explained in section 3.3. Non-user registered — 0x50000000
exception handlers and the exception setup code are also part Scratchpad 0x60000000

of the boot code. When PTARM resets, all threads begin ex-

) AR ) . 0x80000000
ecution at 'address 0x0, which is the reset exFeptlon entry in 512MB DRAM module
the exception vector table. The reset exception handler will OxAG000000
set up each thread’s execution state, including the stack, which

0xF0000000

is allocated on the data scratchpad. Then the handler transfers Memory Mapped /0
control flow to the user compiled code for each thread. Dedi- OxFFFFFFFF
cated IF)cations in the boot cod.e are reserved for user-registered Figure 33: Memory Layout of
exception handlers; these entries can be modified programmat-  ppaArM

ically. For example, a location is reserved to store the address

of a user registered timer_expired exception handler.

3.2.2 Scratchpads

Scratchpads replace caches as the fast-access memory in our memory hierarchy. The par-
tition of instruction and data scratchpads between threads can be configured with different schemes
depending on the application. For embedded security applications, such as encryption algorithms,
partitioning the scratchpads into private regions in hardware for each thread might be desired to
prevent cross-thread attacks. In section 4.2 we discuss the security implications and how partition-
ing the scratchpad can defend against timing side-channel attacks that exploit underlying shared
resources. On the other hand, on applications with collaborative hardware threads, sharing the
scratchpad could provide flexibility for the memory allocation scheme [110] of scratchpads and
communication between hardware threads. This opens up opportunities to optimize system per-
formance, instead of just individual thread performance. Hybrid schemes can also be used that
privatize a hardware thread for security, and allow other threads to collaborate.

3.2.3 DRAM

The PTARM interfaces with a 512M B DDR2 667M H Z DRAM memory module (Hynix
HYMP564S64CP6-Y5). All accesses to the DRAM go through the predictable DRAM controller
described in section 2.2.2. The DRAM controller privatizes the DRAM banks into four resources,
which we assign to each thread in our pipeline. This removes bank access conflicts and gives us



46

Cycles —mr—T—T— T 1T T T T T T T T T T T T T T

Threadi [ EX | MEM [WB/F | 1D | MEM [ WB/F [ 1D
Access Slot 2% S i1%S i i+1%S i+2% S . = g
K] < o2
B ’ N[ R 2 2 83
ackend Accesses oA ET ] ET 3
tld SEHEELL s
Data Bus to OSSO T 1 =2
DDR2 Module S 2 8 &2
o o T2
=< : = | S ||° 3=
Backend Latency DRAM Read Latency  Thread Alignment Latency
BEL = 4 cycles DRL = 12 cycles TAL = 4 cycles
| |
r 1 N . .
Pl tatency L Figure 3.5: Integration of PTARM core with
Figure 3.4: Example load by thread ¢ in the thread- DMA units, PRET memory controller and dual-

interleaved pipeline. ranked DIMM [96].

predictable memory access latencies to the DRAM. The pipeline interacts with the frontend of the
DRAM controller, which routes requests to the correct request buffer in the backend. The frontend
of the DRAM controller also manages the insertion of row-access refreshes to ensure the refresh
constraint is met. In conventional memory architectures where the hierarchy is hidden, the processor
interacts with the DRAM indirectly by the filling and writing back of cache lines. In our memory
system, the processor can directly access the DRAM through load and store instructions that address
the distinct memory regions of the DRAM. In addition, each hardware thread is also equipped with
a direct memory access (DMA) unit, which can perform bulk transfers between the scratchpads and
the DRAM. Figure 3.5 shows the integration of PTARM with the DMA units, memory controller
and DRAM.

When the DRAM is accessed through load (read) and store (write) instructions, the mem-
ory requests are issued directly from the memory stage of pipeline. Each request is received from
the frontend of the memory controller, and placed in the correct request buffer. Depending on the
alignment of the pipeline and the backend, it takes a varying number of cycles until the backend
generates corresponding commands to be sent to the DRAM module. After the read has been per-
formed by the DRAM and has been put into the response buffer, again, depending on the alignment
of the pipeline and the backend, it takes a varying number of cycles for the corresponding hardware
thread to pick up the response. Figure 3.4, illustrates the stages of the execution of an example
read instruction in the pipeline. In [96] we derive the access latencies from the alignment and show
that even though memory access latencies can dependent on the alignment of the pipeline and the
backend, they still exhibit only a small range of execution time. They are either 3 or 4 thread cycles.
This is because the thread-interleaved pipeline hides the full memory latency with the interleaving of
threads. We also leverage the misalignment of the pipeline and backend to hide the refresh latency
from the front end. When a refresh is scheduled for the DRAM resource, if no memory request is in
the request buffer, the refresh is serviced. As mentioned in section 2.2.2, if a refresh conflicts with a
pipeline load or store, we push back the refresh until after the load or store. In this case, the pushed
back refreshes become invisible. Because the pipeline only reads back the data in the memory stage
of the next instruction, it is not able to use successive access slots of the backend. Even if the the
data is ready from the DRAM and put in the response buffer, it still needs to wait for the pipeline to
reach the correct stage. Thus, the refreshes can be hidden in the successive unused access slot, and
the frontend does not observe the refresh latency.

Whenever a DMA transfer is initiated, the DMA unit uses the thread’s request buffer slot
to service the DMA request to or from the scratchpad. Thus, while a DMA transfer is initiated, the



47

thread gives up access of the DRAM to the DMA unit. During this time, the thread can continue
to execute and access the scratchpad regions that are not being serviced by the DMA request. This
is possible because scratchpads are dual-ported, allowing a DMA unit to access the scratchpads
simultaneously with its corresponding hardware thread. If at any point the thread tries to access the
DRAM, it will be blocked until the DMA transfer completes. Similarly, accesses to regions of the
scratchpad being serviced by the DMA will also stall the hardware thread!. The DMA units can
fully utilize the bandwidth provided by the backend because unlike the accesses from the pipeline,
they suffer no alignment losses. When a refresh conflicts with a DMA transfer, we push back the first
refresh and schedule one at the end of the DMA transfer. This can be seen as shifting all refreshes,
during the DMA transfer, back by 63 slots or to the end of the transfer. More sophisticated schemes
would be possible, however, we believe their benefit would be slim. With this scheme, refreshes
scheduled in between DMA transfers are predictable, so the latency effects of the refresh can be
easily analyzed, which we do in [96].

Store Buffer Stores are fundamentally different from loads in that a hardware thread does not
have to wait until the store has been performed in memory. By adding a single-place store buffer to
the frontend, we can usually hide the store latency from the pipeline. Using the store buffer, stores
to DRAM that are not preceded by other memory operations to DRAM can appear to execute in a
single thread cycle. Otherwise, the store will observe the full two thread cycle latency to store to
the DRAM. A bigger store buffer can hide the latencies of more successive stores at the expense of
increasing the complexity of timing analysis.

3.24 Memory Mapped I/0

Currently, PTARM implements a primitive I/O bus for communicating with external input
and output devices. Access to the bus occurs in the memory stage of the pipeline, by accessing the
memory mapped I/O region with memory instructions. I/O devices snoop the address bus to deter-
mine whether the pipeline is communicating with them. The I/O bus is shared by all threads in the
thread-interleaved pipeline, thus, in addition to address and data, a thread ID is also sent out for po-
tential thread-aware I/O devices. In section 3.5.1 below we describe the several I/O components that
are connected to our PTARM core. Currently all I/O devices interface with the processor through
single cycle memory mapped /O control registers to prevent bus contention between threads. In
order to ensure predictable access times to all I/O devices, a timing predictable bus architecture
must be used [126]. A predictable thread-aware I/O controller is also needed to ensure data from
the I/O devices are read by the correct thread, and contention is properly managed. These issues
present future research opportunities — to interface a timing predictable architecture with various
I/O devices while maintaining its timing predictability.

3.3 Exceptions

When exceptions occur in a single threaded pipeline, the whole pipeline must be flushed
because of the control flow shift in the program. The existing instructions in the pipeline imme-
diately become invalid, and the pipeline fetches instructions from an entry in the exception vector

1 This does not affect the execution of any of the other hardware threads.
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table. The exception vector table stores entries that direct the control flow to the correct exception
handling code. The table is part of the boot code, and its contents are shown in table 3.1. The timer
expired exception entry is added to the ARM ISA with our timing extensions. It is triggered when
a user registered timestamp with exception_on_expire expires.

Address | Exception Type Description

0x0 Reset Occurs when the processor resets

0x4 Undefined instructions Occurs when an undefined instruction is
decoded

0x8 Software Interrupt (SWI) | Occurs when a SWI instruction is decoded

0x18 Interrupt (IRQ) Occurs on external interrupts

0x1C Timer Expired Occurs when a thread’s exception timer ex-
pires

Table 3.1: Exception vector table in PTARM

In the PTARM thread-interleaved pipeline, exceptions are separately managed for each
hardware thread. All threads are designed to be temporally isolated. Thus, an exception that trig-
gers on one thread must not effect the execution of other threads in the pipeline. In PTARM, any
exception that occurs during instruction execution propagates down the pipeline with the instruc-
tion. The exception is checked and handled before modifying any pipeline states, such as the PC,
CPSR, register, or memory of the thread. When an exception is detected, the current instruction ex-
ecution is ignored, and the PC and thread states are updated to handle the exception. According to
the exception type, the PC is redirected to the corresponding entry in the exception vector table. The
current PC is stored in the link register (R14), so the program can re-execute the halted instruction
if desired.
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For longer latency instructions that
modify the program state, exceptions can cause an inconsistent view of the program state. For ex-
ample, a timer_expired exception could occur in the middle of a memory instruction to the DRAM.
In this case, we cannot cancel the memory request abruptly because the memory request is handled
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by the external DRAM controller, and possibly already being serviced by the DRAM. If the memory
instruction is a load, the results can be simply disregard. But if the instruction is a store instruction,
we cannot cancel the store request that is already writing data to the DRAM. In this case, the pro-
grammer must disable the timer_expired exception before writing to critical memory locations that
require a consistent program state.

Besides an inconsistent program state, interrupting a memory instruction can also com-
plicate the interaction between the pipeline and DRAM controller. The DRAM controller, with a
request buffer of size one, does not queue up memory requests. This normally is not an issue be-
cause our pipeline does not reorder instructions or speculatively execute when there are outstanding
memory requests. However, if a memory instruction is interrupted, the pipeline flushes the current
instruction, and control flow directly jumps the exception vector table, which directs the program to
execute the corresponding exception handler. If instructions immediately following the exception
access the DRAM, a new memory request would be issued to the DRAM controller that is still ser-
vicing the previous request prior to the exception. The new memory request would then need to be
queued until the previous “canceled” memory request completes before it can begin being serviced.
This creates timing variability for exception handlers, because the latency of initial load instructions
would vary depending on the instruction interrupted by the exception. Because it is very difficult
to statically analyze the exact instruction an exception would interrupt, it will be difficult to predict
when this timing variance would occur.

To achieve predictable and repeatable timing for exception handlers, we leverage the ex-
posed memory hierarchy to ensure sufficient time has elapsed for the DRAM controller to finish
servicing any potential memory requests. In PTARM, we ensure that the instructions executed
before the worst-case memory latency in any exception handler does not access the DRAM. The
exception vector table and the exception handler setup code are all part of the boot code synthesized
to dual-ported BRAMs, thus instruction fetching is guaranteed to avoid the DRAM. The exception
vector entries contain only contain branch instructions, which also do not access the DRAM. We
statically compile the data stack onto the data scratchpad, so any stack manipulations that occur
also avoid the DRAM. Thus, the exception handling mechanism in PTARM is timing predictable
and repeatable. In section 3.6.4 we will show an example to demonstrate this.

Currently PTARM does not implement an external interrupt controller to handle external
interrupts. But when implementing such an interrupt controller, each thread should be able to regis-
ter specific external interrupts that it handles. For example, a hard real-time task could be executing
on one thread, while another task without timing constraints is executing on another thread waiting
for an interrupt to signal the completion of a UART transfer. In this case, the thread running the
hard real-time task should not be interrupted when the UART interrupt occurs. Only the specific
thread handling the UART transfers should be interrupted by this interrupt. Thus, we envision a
thread-aware interrupt controller that allows each thread to register specific interrupts to handle.

3.4 Instruction Details

In this section we present the details on each instruction type implementation to show
how each hardware block in the pipeline, shown in figure 3.1, is used. We will go through different
instruction types and discuss the timing implications of each instruction in our implementation.
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3.4.1 Data-Processing

We begin by explaining how data-processing instructions are implemented. These in-
structions are used to manipulate register values by executing register to register operations. Most
data-processing instructions take two operands. The first operand is always a register value. The
second operand is the shifter operand, which could be an immediate or a register value. Both can be
shifted to form the final operand that is fed into the ALU. Figure 3.7 explains how data-processing
instructions are executed through the pipeline.
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Figure 3.7: Data Processing Instruction Execution in the PTARM Pipeline

The execution of data-processing instructions is fairly straightforward. Operands are read
from the register file or instructions bits. They are shifted if required, then sent to the ALU for the
data operation. Because R15 is the PC, instructions that use R15 as an operand will read the value of
PC+8 as the operand. Any instruction that uses R15 as the destination register will trigger a branch,
which simply writes back the results from the ALU to the next PC. Otherwise they are written back
in the writeback stage.

Data processing instructions can also update the program condition code flags that are
stored in the thread state. Some instructions that update the condition code flags do not writeback
data to the registers, but only update the condition code flags. The condition code flags zero (Z),
carry (C), negative (N) and overflow (V) are used to predicate execution for ARM instructions. The
high four bits of each instruction form a conditional field that is checked against the condition code
flags in the pipeline controller to determine whether or not the instruction is executed.

All data-processing instructions only take one pass through the pipeline, even instructions
that read from or write to R15. So all data-processing instructions take only one thread cycle to
execute.
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3.4.2 Branch

Branch instructions in the ARM can conditionally branch forward or backwards by up
to 32MB. There is no explicit conditional branch instruction in ARM. Conditional branches are
implemented using the ARM predicated instruction mechanism. Thus, the condition code flags
determine whether a conditional branch is taken or not. Figure 3.8 shows how branch instructions
are executed in our thread-interleaved pipeline.
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Figure 3.8: Branch Instruction Execution in the PTARM Pipeline

The branch instructions for the ARM ISA calculate the branch target address by adding a
24 bit signed offset, specified in the instruction, to the current PC incremented by 8. Thus, the PC+8
output from the PC Adder is used as an operand for the ALU to calulate the target branch address.
Once the address is calculated, it is written back to its thread’s next PC ready to be fetched. Branch
and link (bl) instructions save the next address as a return address, so PC+4 is propagated down the
pipeline and written back to the link register (R14).

All branch instructions, whether conditionally taken or not, take only one thread cycle
to execute. But more importantly, the next instruction in the thread that executes after the branch,
whether it is a conditional branch or not, is not stalled or speculatively executed. Rather, it is
fetched after the conditional branch is resolved, and the branch target address is calculated. The
thread-interleaved pipeline simplifies the implementation of the branches and removes the need for
control hazard handling logic. Instead of predicting the branch target address for the next processor
cycle, instructions from other threads will be fetched and executed.

3.4.3 Memory Instructions

There are two type of memory instructions implemented in PTARM from the ARM ISA:
Load/Store Register and Load/Store Multiple. We discuss both type of memory instructions, and
also present the special case when a load instruction loads to R15. This triggers a branch that loads
the branch target address from memory. Although this slightly complicates our pipeline design,
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we show that it does not affect the timing predictability and execution of the instruction nor subse-
quent instructions after the triggered branch. Currently load/store halfword and doubleword are not
implemented in PTARM, but can easily be implemented using the same principles described below.

Load/Store Register

Load instructions load data from memory to registers, and store instructions store data
from registers to memory. Store instructions utilize the third register read port to read in the register
value to be stored to memory. The memory address is formed by combining a base register and an
offset value. The offset value can be a 12 bit immediate encoded from the instruction, or a register
operand that can be shifted. The current load/store instructions support word or byte operations.
Figure 3.9 describes how the load/store register is implemented in the pipeline.
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Figure 3.9: Load/Store Instruction Execution in the PTARM Pipeline

Accesses to different memory regions yield different latencies for memory instructions.
When the memory address accesses the scratchpad or boot code memory region, memory opera-
tions are completed in a single processor cycle. Thus, the data is ready in the following (writeback)
stage to be written back to the registers. However, if the DRAM is accessed, the request must go
through the DRAM memory controller, which takes either three or four thread cycles to complete.
Our thread-interleaved pipeline implementation does not dynamically switch threads in and out of
execution when they are stalled waiting for a memory access to complete. Thus, when a memory
instruction is waiting for the DRAM, the same instruction is replayed by withholding the update for
the next PC, until the data from the DRAM arrives and is ready to be written back in the next stage.
The memory access latencies to the I/O region is device dependent. Currently, all I/O devices con-
nected to PTARM interface with PTARM through single cycle memory mapped control registers.
So memory instructions accessing I/O regions currently also take only one thread cycle.
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Load/store instructions in ARM have the ability to update the base register after any mem-
ory operation. This compacts code that reads arrays, as a load or store instruction can access memory
and update the base register so the next memory access is done on the updated base register. The
addressing mode of the instruction dictates how the base address register is updated. Pre-indexed
addressing mode calculates the memory address by first using the value of the base register and off-
set, then updating the base register after the memory operation. Post-indexed addressing mode first
updates the base register, then uses the updated base register value along with the offset to form the
memory address. Offset addressing mode simply calculates the address from the base register and
offset, and does not update the base register. When pre and post-indexed addressing modes are used,
load operations require an additional thread cycle to complete. This results from the contention of
the single write port in the register file. We cannot simultaneously write back a loaded result and
update the base register in the same cycle. Thus, an extra pass through the pipeline is required to
resolve the contention and update the base register.

Load/Store Multiple

The load/store multiple instruction is used to load (or store) a subset, or possibly all, of
the general purpose registers from (or to) memory. This instruction is often used to compact code
that pushes (or pops) registers to (or from) the program stack. The list of registers used is encoded
in a 16 bit bit-vector as part of the instruction. The Oth bit of the bit-vector represents RO and the
15th bit represents R15. A base register supplies the base memory address that is loaded from or
stored to. The base address is sequentially incremented or decremented by 4 bytes and used as
the memory address for each register that is subsequently operated on. Figure 3.10 shows how the
load/store multiple instruction executes in the pipeline.
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The load/store multiple instruction is inherently a multi-cycle instruction, because each
thread cycle can only write back one value to the register or store one value to memory. When the
instruction is initially decoded, the register list is read and stored in the thread state to keep track of
the instruction progress. During each execution cycle, the register address decoder in the pipeline
decodes the register list and determines the register being operated on. For loads, this indicates the
destination register that is written back to. For stores, this indicates the register whose value will be
stored to memory. The load/store multiple offset block calculates the current memory address offset
based on the remaining bits in the register list. The offset is added to the base register to form the
memory address fed into memory. Each cycle, the register that is operated on is cleared from the
remaining register list. The instruction completes execution when all registers have been operated
on, which occurs when all bits in the register list are cleared.

The execution time of this instruction depends on the number of registers specified in
the register list and the memory region being accessed. For accesses to the scratchpad or boot code,
each register load or store takes only a single cycle. However, if memory accesses are to the DRAM,
then each register load/store will take multiple cycles. Load/store multiple instructions can also
update the base register after all the register operations complete. Similar to the load/store register
instruction, an additional thread cycle will be used to update the base register for load multiple
instructions. Although the execution time of this instruction seems to be dynamic depending on the
number of registers specified in the register list, but this number can be determined statically from
the instruction binary. Thus, the execution time of this instruction can easily be statically analyzed.

Load to PC

When a load instruction loads to R15, a branch is triggered in the pipeline. This is also the
case for load multiple instructions when bit 15 is set in the register list. In our five stage pipeline,
the PC is updated in the memory stage to prepare for the next instruction fetch for the thread.
However, if the branch target address is loaded from memory, the address is not yet present in the
memory stage to be committed; only at the writeback stage will it be present. Thus, we introduce
a forwarding path that forwards the PC straight from the writeback stage to instruction fetch if the
next PC comes from memory. Figure 3.11 shows how this is implemented in our pipeline.

An extra multiplexer is placed in the fetch stage before the instruction fetch to select the
forward path. When a load to R15 is detected, it will signal the thread to use the forwarded PC on
the next instruction fetch, instead of the one stored in next PC. We show in figure 3.2 that for the
same hardware thread, the fetch and writeback stage overlap in execution. As the memory load will
be completed by the writeback stage, the correct branch target address will be selected and used in
the fetch stage.

Section 2.1.1 discusses the timing implications of data-forwarding logic in the pipeline.
Although it seems the selection of PC is dynamic, when forwarding occurs is actually static; the PC
forwarding only and always occur when instructions load from memory to R15. This mechanism
has no additional timing effects on any following instructions, because no stalls are needed to wait
for the address to be ready. Even if the load to R15 instruction is accessing the DRAM region,
the execution time of this instruction does not deviate from a load instruction destined for other
registers. Although the target address will not be known until after the DRAM access completes, a
typical load instruction also waits until the DRAM access completes before the thread fetches the
next instruction. So this extra forwarding mechanism does not cause load to R15 instructions to
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Figure 3.11: Load to R15 Instruction Execution in the PTARM Pipeline

deviate from other load timing behaviors.

If the load to R15 instruction updates the base register, then the forwarding path is not
needed and not used. The extra cycle used to update the base register will allow us to propagate the
results from memory to update the PC in the memory stage. This timing behavior conforms to a
typical load instruction that updates its base register.

3.4.4 Timing Instructions

Section 2.3 gives the instruction extensions to the ARM ISA that bring timing semantics
to the ISA level. These instructions are added using the co-processor instruction slots in the ARM
instruction space. In particular, the timing instructions are implemented using co-processor 13.
Table 3.2 summarizes the instructions, their op codes, and their operations. All instructions have the
assembly syntax “cdp, p13, <opcode> rd, rn, rm, 0", with <opcode> differentiating the instruction
type.

All timing instructions use the platform clock to obtain and compare deadlines. Instead

Type Opcode | Functionality

get _time 8 timestamp = current_time;

crd = high32(timestamp);

crd+1 = low64(timestamp);

delay until 4 deadline = (crm << 32) + crn;

while ( current_time < deadline )
stall_thread();

exception _on_expired | 2 offset = (crm << 32) + crn;
register_exception(offset);
deactivate _exception | 3 deactivate_exception();

Table 3.2: List of assembly deadline instructions
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of using an external timer that is accessed through the I/O bus, the platform clock is implemented
as a core hardware unit in the pipeline. The deterministic single cycle access latency to the clock
value increases the precision and predictability of the timing operations on our processor. The plat-
form clock is implemented in the fimer hardware block shown in figure 3.1. An unsigned 64 bit
value represents time in nanoseconds, and resets to zero when PTARM is reset. Unsigned 64 bits
of nanoseconds covers approximately 584 years. The platform clock is implemented with a simple
64 bit adder increments to the current time value each processor clock cycle. We clock PTARM
at 100M H z, so the timer value is incremented by 10 nanoseconds every processor cycle. If the
processor clock speed is modified, then the timer increment must be modified to reflect the correct
clock speed. For architectures that allow the processor frequency to be scaled, the platform clock
must also be adjusted when the frequency is scaled. For the purposes of clock synchronization, the
time increment is stored in a programmable register that can adjust the timer increment to synchro-
nize with external clocks. The timer increment value can only be modified through a privileged
set_time_increment instruction, to protect the programmer from accidentally speeding up or slowing
down the platform clock. This privileged instruction simply modifies the timer increment, thus we
omit the implementation details due to its trivial implementation.

The timestamp associated with each instruction execution is latched during the fetch stage
of the pipeline. In other words, the time of execution for each instruction is the precise moment
when the instruction begins execution in the pipeline. Timestamps are 64 bits, so they require two
32 bit registers to store. The timestamps are loaded into general purpose registers with the get_time
instruction, so standard register-to-register operations can be used to manipulate the timestamps.
PTARM does not currently provide 64 bit arithmetic operations, so programmers must handle the
arithmetic overflow in software. The timing effects from the timing instructions are thread specific.
Each thread operates on its own timestamps, and is not affected by the timing instructions from other
threads. With 4 hardware threads interleaving through the pipeline, each hardware thread observes
the time change once every 4 processor clock cycles. So the minimum observable interval of time
for our implementation is 40ns. The timing implications of this is discussed in section 3.6. We now
describe how the pipeline implements each timing instruction.

Get_Time

The get_time instruction is used to obtain the current clock value. The timestamp obtained
from get_time represents the time of execution of this instruction. The execution of get_time is
straightforward and shown in figure 3.12. The timestamp is latched during instruction fetch, and
stored into registers. Because the register file only contains one write port, get_time takes two thread
cycles to complete; each cycle writes back 32 bits of the timestamp. The timestamp is written back
to the destination register rd and rd+1, with rd storing the lower 32 bits and rd+1 storing the higher
32 bits. This instruction will not write to R15 (PC), and it will not cause a branch. If R14 or R15 is
specified as rd, causing a potential write to R15, then this instruction will simply act as a NOP.

Delay_Until

Delay _until is used to delay the execution of a thread until the platform clock exceeds an
input timestamp. It takes in 2 source operands that form the 64 bit timestamp checked against the
platform clock every thread cycle. As described in section 2.3, the delay_until instruction can be
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used to specify a lower bound execution time for code blocks. This could be useful for synchroniza-
tion between tasks or communicating with external devices. Figure 3.13 shows the execution of the
delay _until instruction in the PTARM pipeline.
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Figure 3.13: Delay_Until Instruction Execution in the PTARM Pipeline

The delay_until instruction highlights the reason timer adder is added into the pipeline.
During the execution of delay_until, the platform clock value is compared every thread cycle to the
input timestamp. However, the input timestamp and clock value are both 64 bit values. Without
the additional timer adder in the pipeline, comparing 64 bits would require two thread cycles using
our 32 bit ALU. This increases the jitter of this instruction by a factor of two, because now the
two timestamps can only be compared every two thread cycles. The added timer adder allows
delay_until to compare the timestamps every thread cycle, and ensures that no additional thread
cycles elapse after the input timestamp is reached. To delay program execution, the PC is only
updated when the clock value is greater then or equal to the input timestamp. No thread states are
modified by delay_until. If the clock value already exceeds the input timestamp when the instruction
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is first decoded, then this instruction acts as a NOP. The PC is simply updated and the program
execution continues. We detail the jitter effects of delay_until in section 3.6.2.

Exception_on_Expire and Deactivate_Exception

Delay_until passively compares an input timestamp against the platform clock when the
instruction is executed. Exception_on_expire registers a timestamp to be actively checked against
the platform clock in hardware. When the platform clock exceeds the registered timestamp value, a
timer_expired exception is thrown. Deactivate_exception deactivates the timestamp that is actively
being checked, so no exception will be thrown. The idea is similar to the setting of timer interrupts
on embedded platforms, which is typically controlled through memory mapped registers.

Within the timer unit, there is one 64 bit dead-

line slot for each thread to register a timestamp to be ac- | ;L%(;kdviihtfe
tively checked. PTARM has 4 hardware threads, so there - fetch stage

are four deadline slots in the timer unit. Whenever an ex- >§

ception_on_expire instruction is executed, the two source 3 Trigger
operands form the timestamp that is stored to the thread’s ti";i;;%’;g;ed

corresponding deadline slot. The exception_on_expire in-
struction takes only one thread cycle to execute. It simply
stores and activates the timestamp in the thread’s deadline
slot. Once activated, program execution continues, and
the deadline slot timestamp is compared against the plat-
form clock every thread cycle in the fimer unit, until de-
activated with deactivate_exception. When the platform
clock is greater than or equal to the stored timestamp, a
timer_expired exception is triggered by the timer unit, and
the deadline slot is deactivated to ensure only one exception is thrown per timestamp. When deac-
tivate_exception is executed, if the deadline slot for the thread is active, then it will be deactivated.
If the deadline slot for the thread is not active, then deactivate_exception will do nothing. The
implementation of the timer unit is shown in figure 3.14.

Exception_on_expire and deactivate_exception instructions are thread specific; each thread
has its own dedicated deadline slot. The handling of timer_expired exceptions, described in sec-
tion 3.3, preserves temporal isolation for the hardware threads in the pipeline. So the timing effects
of exception_on_expire and deactivate_exception can only affect the specific thread they are execut-
ing in. The timing details and jitter introduced with this mechanism are detailed in section 3.6.2.

Each thread currently can only check for one timestamp in hardware. To create the effects
of multiple timestamps being checked in hardware, the timestamps need to managed in software
and share the one physical deadline slot. It is possible to add more deadline slots for threads in the
timer unit at the cost of increased hardware. One deadline slot for each thread (4 deadline slots total)
requires a multiplexer and a 64 bit comparator against the current clock, as shown in figure 3.14. So
more deadline slots would add more comparators and multiplexers, plus an additional OR gate to
OR the exception triggering signal. The instructions exception_on_expire and deactivate_exception
can easily be modified to take an ID representing a specific deadline slot.

Current Time

vV
64 bit Cmp

iii> Deadline Slots
e

Figure 3.14: Implementation of Timer Unit
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3.5 Implementations

3.5.1 PTARM VHDL Soft Core

The PTARM soft core is written in VHDL. It includes the pipeline, scratchpad memories,
predictable memory controller and connects to several I/O devices on the FPGA. We synthesize the
PTARM on the Xilinx ML505 [134] evaluation board, which includes the Virtex-5 XC5VLX110T
FPGA [132] and several I/O interfaces on the board. PTARM connects to the on board LEDS,
RS232 connector, DVI transmitter device and the DDRII DRAM. All I/O devices are connected
through the I/O bus, while the DDRII DRAM is connected directly to the DRAM controller. We
also include the Xilinx Integrated Logic Analyzer (ILA) to be used for debugging the pipeline and
memory controller. All VHDL source code, software code samples, and instruction manual can
be downloaded from http://chess.eecs.berkeley.edu/pret. Figure 3.15 shows the high level block
diagram of the PTARM soft core.

PTARM communicates with the cur-

rent I/O devices through memory mapped con- 7 )
trol registers. Each control register can be ac- PTARM —{ Scratchpads
cessed within a single cycle, so no contention 5
arises on the I/O bus. The LEDs are mem- Thread-Interleaved Pipeline z
ory mapped and can be toggled by setting and N Controller
clearing bits. PTARM interfaces to the UART VO Bus
through the UART gateway, which queues read - —
and write requests from the core and relays it to UART UART [ DVI ] LED Lo

. Gateway || Controller | | Registers Y
the UART. The UART gateway status registers . vicor
are mapped to memory I/O locations, so pro- /

grams can poll them to determine that status of Vi onBoard) [ DDR2 DRAM
. n boar
the UART. Currently all read and write opera- [ RS232 J [Transmltter] [ LEDs J [Memory ModuIeJ

tions to the UART are done through blocking
procedure calls. The UART runs at a baud rate
of 115200, and sends and receives bytes.

The DVI controller interfaces with the Chrontel CH7301C DVI transmitter device [5] on
the evaluation board. We initialize the DVI transmitter to RGB bypass mode to manually supply
the sync signals to the DVI output. A software DVI controller similar to the one presented in [49]
has been implemented, where the VGA sync signals are managed in software through the deadline
instructions presented in the paper. Here, we use the timing constructs presented in section 2.3 to
control the sending out of vertical and horizontal sync signals in software. As one hardware thread
manages the sync signals, other hardware threads in our core are used to render pixels and draw to
the screen buffer. Because hardware threads are temporally isolated, the timing of hardware sync
signals is not affected by the operations on other hardware threads.

We target a 100M H z clock rate for the PTARM pipeline and a 200M H z clock rate for
memory controller to interface with the DDR2 DRAM. We compare the resource consumption to the
Xlinx MicroBlaze [130] soft processor platform generated from the Xilinx Embedded Development
Kit (EDK) [131]. We also target the MicroBlaze at a 100M hz clock rate, and choose to optimize
the area over performance. We configure the MicroBlaze platform to include a DDR2 DRAM
controller, a UART controller and a generated LED controller. The MicroBlaze also includes a

Figure 3.15: PTARM Block Level View
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local memory block (LMB) and instruction and data caches. For fair comparison, we configure
the caches and local memory block to have similar sizes to the scratchpads and boot memory on
PTARM.

We use the Xilinx Virtex-5 XC5VLX110T FPGA to implement both PTARM and Mi-
croBlaze. Each Virtex-5 logic slice contains four 6-input look up tables (LUT6s), four flip flops
(FFs), muxes, and carry chains. The FPGA also includes block RAMs (BRAMS), which are dedi-
cated memory blocks, and DSP slices, which are special logic slices for DSP or other computational
functions. The BRAMs are used to implement the scratchpads and register file for PTARM. The
physically duplicate copies of the register file for each hardware thread warrant the use of BRAMs
to save on logic slices. We use the DSP slices to implement the most of the timer increment and
comparison functions.

PTARM
Pipeline DRAM Interface Peripherals
Shifter [ Timer [ ALU | Total || Controller [ Total || UART | DVI [ ILA || Total |
LUTs 288 35 242 1615 286 1551 63 76 806 || 4134
FFs 0 84 0 1042 607 2181 49 84 837 || 4439
DSP Slices 0 4 1 6 0 0 0 0 0 6
[ SPMs | Boot [ Registers | Total || Controller | Total [ UART [ DVI [ ILA [ Total |
BRAMs [ 6 [ 1 | 3 [ 10 ] o [ 2 ] o [ o ]9 ] 2|
Microblaze
Pipeline DRAM Interface Peripherals
Shifter | Timer [ ALU | Total - | Total || UART [ LEDs | - Total |
LUTs 96 - 35 1831 - 2175 130 122 - 4402
FFs 36 - 0 1433 - 3049 124 194 - 5032
DSP Slices - - - 3 - 0 0 - - 3
H Caches \ Local \ Registers \ Total H - \ Total H UART \ LEDs \ - H Total ‘
BRAMs | 6 [ v [ - [ 7 [ - [B] o o ]-]2 ]

Table 3.3: PTARM and Microblaze Resource Usage on the Xilinx Virtex5 ML505 Evaluation Board

Table 3.3 shows that the resource consumption of PTARM is similar to the area optimized
MicroBlaze. PTARM uses slightly less LUTs and FFs for the pipeline, as the data and control
hazard logic are stripped out, and the cost of the extra copies of the register file is absorbed by
the BRAM implementation. The timer added to extend the ISA with timing semantics uses mostly
DSP slices to implement the platform clock and comparator for timing exceptions. The BRAMs
used for scratchpads vs caches were the same because we configured the sizes to be similar, but the
scratchpads also saved on the logic slices used to implement the hardware replacement policies of
caches. Thus, even though the MicroBlaze implements a more optimized ALU and shifter compared
to PTARM, the PTARM pipeline still uses fewer resources. The critical path of our pipeline is at the
execute stage, which includs a serial connection of the 32 bit barrel shifter and the ALU. To further
improve the clock frequency, we can split up this stage into 2 stages, one for the shifter and one for
the ALU, at the cost of one additional hardware thread. We show this in chapter 4 for an engine fuel
rail simulation application, in which we clock a six thread six stage thread-interleaved pipeline at
150M H z.

The PTARM DRAM Interface is based on the Xilinx core generated [129] DRAM In-
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terface, which is also what is used in the MicroBlaze architecture. We replace the queuing and
reordering logic in the generated DRAM controller with our own front and back end implementa-
tion of bank privatization. The slice consumption is shown in the table labeled “controller” under
the DRAM interface. It shows that our predictable DRAM interface uses fewer logic slices and
BRAMs than the original DRAM controller.

Although these results may vary slightly depending on the synthesis toolchains, settings,
and versions used, it gives us a general estimate of the resources consumed by our predictable ar-
chitecture. The resource comparisons confirm our conjecture that a predictable thread-interleaved
pipeline, scratchpads and memory controller can lead to similar or less resources compared to con-
ventional architectures that use hardware techniques to optimize average case performance.

3.5.2 PTARM Simulator

Along with the VHDL soft core of our architecture, we also provide a cycle accurate C++
simulator, which can also be downloaded from http://chess.eecs.berkeley.edu/pret. The simulator
faithfully models the five stage thread-interleaved pipeline and its interaction with the memory hier-
archy, including scratchpads and the predictable DRAM controller. The simulator is mainly used for
software experimentation and architecture exploration. The DMA units described in section 3.2.3
are currently implemented only in the simulator, as we are still exploring the architectural design
to make DMA transfers from scratchpad to the DRAM predictable. The timing instructions are
also implemented in the simulator to allow for software experimentation of the ISA with timing
semantics.

To evaluate the performance of our architecture, we used the Malardalen WCET bench-
marks [40] and compare our simulator against the SimIT-ARM [92] cycle-accurate simulator. The
SimIT-ARM simulator simulates a StrongARM 1100 [48], which contains a five stage pipeline,
branch delay slots without branch prediction, a 16kb instruction cache and a 8kb data cache. We
configure our PTARM simulator to use similar sizes for the instruction and data scratchpad. The
StrongARM1100 is implemented with 0.35um process technology, and can be clocked from 133
MHz to up to 220 MHz, Although we currently clock PTARM at 100MHz, it is implemented on
an FPGA, and not silicon. Thus, we use clock cycles as our unit of measurement in our experi-
ments. Both architectures implement the ARMv4 ISA, so we used similar ARM cross-compilers
to compile the benchmarks for both architectures. In this way, the compiler or ISA played no ef-
fect on the performance differences. Because the Malardalen benchmarks are single threaded, we
set up our experiments to run the same benchmark on all four threads of the PTARM architecture,
and four times sequentially on the single threaded SimlIt-ARM simulator. This way, the total num-
ber of instructions executed on both architectures are roughly the same, and the setup mimics an
embarrassingly parallel application.

Most of the benchmarks we choose fit entirely within the scratchpad/cache of the archi-
tectures. This is intentional, as a full system evaluation of scratchpads vs caches involves several
factors including the scratchpad allocation scheme, and is beyond the scope of the thesis. We thus
mainly measure the effects of the thread-interleaved pipeline compared to the StrongARM1100’s
single threaded five stage pipeline. For the benchmarks that do not fit entirely within the scratchpad
for PTARM, we profile and statically compile the most frequently used memory locations onto the
scratchpad. Because the StrongARM1100 uses instruction and data caches, it suffers from a cache
cold start, so the initial run of the benchmarks suffers more cache misses to load the instructions
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and data onto the caches. “SA1100 cold” denotes the measurement of four runs including the cold
start. To mitigate the performance effects from the cold start, we warm up the cache by first running
the benchmark once, then measuring four sequential runs of the benchmark on the StrongARM100.
This is labeled as “SA1100 warm” in the figure. To further remove the effects of caches from the
StrongARM architecture, we adjust the memory access latency to 0 cycles, to appear as if every
memory access were to the cache. This is labeled as “SA1100 allcache”. We obtained the cycle
counts for both architectures, and compare the instruction throughput, shown in figure 3.16, and
overall latency, shown in figure 3.17, for several benchmarks.

WCET Benchmarks Instruction Throughput (higher is better) WCET Benchmarks Latency (lower is better)
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Figure 3.16: Malardalen benchmarks throughput Figure 3.17: Malardalen benchmarks latency

Several observations can be made from these measurements. First, we observe from fig-
ure 3.16 that PTARM achieves almost an one instruction/cycle throughput for all benchmarks. The
thread-interleaved pipeline removes the control and data hazards from within the pipeline. Thus, the
pipeline almost never stalls. On the contrary, with the single threaded StrongARM1100, the effects
of pipeline hazards reduce the throughput of instructions, as the pipeline needs to stall for control
and data hazards that can arise. With the higher instruction throughput, PTARM observes a smaller
latency in terms of clock cycles for all benchmarks executed, as shown in figure 3.17.

Second, we observe the effects of caches on the execution time variance by comparing the
throughput and latency of “SA1100 cold” and “SA1100 warm.” The greatest execution time vari-
ance can be observed from binsearch, which performs a binary search on an array of 15 elements.
In this particular benchmark, the throughput and latency difference is a factor of two between the
warmed up cache and the cold started cache. By comparing the throughput of “SA1100 warm” and
“SA1100 all cache,” we can observe that most benchmarks fit entirely in the cache, as the through-
puts are roughly the same. Because the memory hierarchy is hidden by caches, even though most
benchmarks fit entirely in the cache, we cannot avoid the cold start because the programmer has no
control over the cache. With an exposed memory hierarchy in PTARM, we statically compile the
benchmarks on the scratchpad, and are able to benefit from the smaller code size without suffering
the effects of cold starts. We also maintain a deterministic execution time.

The higher instruction throughput achieved by interleaving hardware threads in the pipeline
comes from trading off single thread latency. The thread-interleaved pipeline time-shares the pipeline
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resources between the hardware threads, so the latency of a single thread is slower compared to a
single threaded pipeline. But for applications with enough parallelism to fully utilize the pipeline,
the higher instruction throughput gives better overall performance. We show one such application
in section 4.1 that models, in real time, an engine fuel rail to enable more precise fuel injection for
combustion engines. A thread-interleaved pipeline also allows us to clock the pipeline at a higher
frequency, because the data hazard handling logic can be stripped out of the pipeline, providing
less logic within each pipeline stage. Thus, with a higher instruction throughput and higher clock
speed, timing predictability and composability can be achieved without sacrificing performance.
We also highlight the uncontrollable execution time variance of a hidden memory hierarchy using
caches. We do not claim that scratchpads will always provide better average case performance, as
a full performance comparison between scratchpads and caches is outside of the scope of this the-
sis. However, with an exposed memory hierarchy, we are able to control and remove the execution
time variance by statically compiling instructions and data onto scratchpads, providing timing de-
terminism for memory accesses. For the predictable DRAM controller, Reineke et. al [96] show
that bank privatization of DRAMs not only achieves predictable DRAM access latencies, but also
lowers worst case access latency, and improves throughput and average case memory latency under
high contention. These results demonstrate that one does not need to forgo performance in order to
achieve timing-predictability in architecture design.

3.6 Timing Analysis

Worst-case execution time (WCET) analysis requires a combination of software analysis
to determine the worst-case path, and architectural analysis to determine the execution time of
the worst case path on the underlying architecture. A plethora of research has been done on the
software analysis of program paths. Wilhelm et al. [125] present a survey of tools and techniques
available for worst-case path enumeration, loop analysis, etc. However, the precision of the WCET
analysis of those techniques ultimately depends on the underlying architecture implementation [43].
Architectures that exhibit wildly unpredictable execution times will result in overly conservative
WCET analysis, even if the software structure is simple. Designed as a predictable architecture,
the instructions of PTARM all exhibit deterministic timing behaviors, allowing precise architectural
analysis for the WCET analysis. Table 3.4 summarizes the execution time each instruction takes in
terms of thread cycles.

A thread cycle is the unit used to represent execution time for each thread. Timing anal-
ysis can be done separately for each hardware thread running on PTARM because the threads are
temporally isolated; the execution time of each thread is not affected by other threads. The thread-
interleaved pipeline switches thread contexts every processor cycle in a predictable round robin
fashion. Thus, each thread is fetched and executed in the pipeline every N processor cycles, N
being the number of threads in the pipeline. One thread cycle represents each time the thread en-
ters in the pipeline, which is the thread’s perceived notion of cycles. The execution frequency of
each thread (Fipreqd) i Fprocessor/IN, 80 each thread cycle is 1/ Fypyeqq long. Our PTARM core is
clocked at 100M Hz (Fyrocessor = 100 X 109) and has 4 threads (N = 4) , so each thread cycle is
m = 40 x 107 secs, or 40ns long. The length of the thread cycle will not change because
of the predictable thread-switching policy, making it a reliable unit of measurement for execution
time.
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Memory Region Accessed

| Instruction | Latency || Instruction (Addressing Mode) | SPM/Boot | DRAM
Data Processing 1 Load Register (offset) 1 49
Branch 1 Load Register (pre/post-indexed) 2 5%
Software Interrupt (SWI) 1 Store Register (all) 1 20
get_time 2 Load Multiple (offser) Nyeg Nyeg x 4%
delay_until 17 Load Multiple (pre/posi-indexed) | Nypeg + 1 | (Npeg x 49) + 1
exception_on_expire 1 Store Multiple (all) Niyeg Niyeg X 2
deactivate_exception 1
Notes:

Nreg: This is number of registers in the register list.

9: The single store buffer (described in section 3.2.3) can hide the store latency to DRAM, making it 1 thread cycle. But
in cases where the store buffer cannot be used, the latency is 2 thread cycles.

®: The DRAM load latency is 3 or 4 thread cycles depending on the alignment of the pipeline and the DRAM controller
backend, as described in section 3.2.3. For conservative estimates, 4 thread cycles is used.

T: This is the minimum execution time of delay_until. The actual execution time varies depending on the input timestamp.

Table 3.4: Timing properties of PTARM instructions (in thread cycles)

3.6.1 Memory instructions

Data-processing and branch instructions have straightforward execution times. The ex-
ecution time of branches is deterministic because the branch penalty is completely hidden by the
thread interleaving. On the other hand, memory instructions in our architecture can have several
different latencies depending on addressing mode or region of access, as listed in table 3.4. For
memory instructions that use pre or post-indexed addressing mode to update the base register, an
additional cycle latency is needed to write back to the base register. This is documented in the in-
struction implementation of load/store register in section 3.4.3. The addressing mode of load/store
instructions is specified as part of the instruction binary. Thus, it can be determined statically and
does not affect the complexity or precision of execution time analysis.

Different memory technologies provide different access latencies. The exposed memory
hierarchy allows us to clearly label and identify access latencies based on the address accessed by
the memory instruction. In execution time analysis tools, value analysis attempts to determine the
address accessed by each instruction [125]. Once the value analysis determines the memory address,
a precise memory access latency can be associated with the memory instruction. This allows for
a simpler and more accurate timing analysis compared to conventional memory hierarchies with
caches. If caches are used to hide the memory hierarchy, additional modeling of the cache state is
required after the value analysis to predict the cache state and determine whether the access hits or
misses the cache.

For store instructions, the single store buffer described in section 3.2.3 can usually hide
the latency to access DRAM, if the subsequent instruction does not access the DRAM. Otherwise
the store to DRAM will observe full memory access latency of two thread cycles. Architectural
timing analysis can account for the store buffer by statically checking the next instruction to see
whether it is a memory accessing instruction to the DRAM. Since only one instruction needs to be
checked, it only slightly complicates the timing analysis. If it is not possible, then the full 2 cycle
latency can be used for conservative analysis.

The execution time of load/store multiple instructions depend on the number of registers
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operated on, and the memory region it accesses. Because the register list is statically encoded in the
instruction, the number of registers operated on can be determined statically. For each register that
is operated on, the latency will depend on which memory region it accesses. The total execution
time of the instruction will be the sum of the latencies for all register operations. Store multiple
instructions to the DRAM do not benefit from the store buffer, because they issue consecutive stores
to the DRAM. Thus, each store takes the full DRAM store latency. If pre or post-indexed addressing
mode is used, an extra cycle is added to update the base register, just like the load/store register
instructions.

3.6.2 Timing instructions

With the exception of delay_until, which by design exhibits variable execution time, the
execution time of all other timing instructions is static. However, the timing instructions can impact
the execution time of the program in a very dynamic way. For example, the execution of excep-
tion_on_expire and deactivate_exception only take one thread cycle, but when the timer_expired
exception is thrown, the execution time of the whole program dynamically changes. To precisely
understand the timing effects of the timing instructions, we must understand the jitter of the timing
instructions caused by the underlying implementation. It is impossible for any hardware implemen-
tation to provide absolute precision of time, as we are limited by the digital synchronous circuits that
discretize the notion of time. Although the timing extensions allow the manipulation of timestamps
that represent nanoseconds, in software, with the thread-interleaved pipeline in PTARM, the basic
unit of time for each thread is one thread cycle, or 40ns. In other words, 40ns is the shortest inter-
val of time that is observable by each thread. This can also be understood from the implementation
of the thread-interleaved pipeline. Each thread only latches the clock value in the fetch stage, and
the timestamp is propagated along the pipeline and associated with the instruction. Since there are
four threads cycling in a round robin fashion, each thread latches the clock value only once every 4
processor cycles. With 100MHz clocking the pipeline in our implementation, 4 processor cycles is
equivalent to 40ns.

When manipulating timestamps, the execution time of the timing instructions and jitter
must be accounted for. The timestamp associated with each instruction represents the time of execu-
tion of that instruction. In our implementation, the time of execution is when the instruction begins
to execute, so the timestamp is latched in the fetch stage. This is the value stored into registers for
get_time instructions. Since get_time takes 2 thread cycles to complete, 80ns will have elapsed when
the next instruction begins its execution. In the same way, delay_until delays programs execution
until the current time of execution is greater than or equal to the input timestamp value. When de-
lay_until completes its execution, the next instruction will observe a platform time of at least 40ns
greater than the input timestamp passed to delay_until. This effect is illustrated in figure 3.18.

The code segment starts executing at time ¢. The code only consists of get_time, de-
lay_until, and 2 add instructions used to add an offset to the timestamp obtained by get_time. In all
3 cases, the timestamp obtained by get_time contains the value ¢, and the instruction after get_time
executes at ¢t + 80. Taking into account the 2 thread cycles used to add the offset to the timestamp,
if the offset is less than or equal to 160, then the delay_until will simply serve as a NOP. This is
because when delay_until is executed, it will latch ¢ + 160 for the current time, and it will only
delay program execution if the input timestamp is greater than ¢ + 160. This is the top case shown
in the figure. The instruction after delay_until executes at time ¢ + 200, which accounts for the 1
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offset < 160 ns get_time | adds | adc

160 ns < offset <200 ns get_time | adds | adc | delay_until

200 ns < offset <240 ns get_time | adds | adc delay_until

Figure 3.18: Timing details of get_time and delay_until

thread cycle it takes to execute delay_until. Assuming delay_until does delay the program, in the
worst-case, the instruction after delay_until can execute 79ns after the input timestamp. This can be
observed if the offset is set to 161, which is shown in the middle timeline in figure 3.18. Delay_until
will first latch the time ¢ 4 160 to compare with the input timestamp of ¢ + 161. Because current
platform time is less than the input timestamp, even by 1ns, delay_until will delay the execution of
the program until the next cycle, when ¢ + 200 is latched to be compared against the input times-
tamp. At that point, delay_until will complete its execution, and the next instruction will execute
at ¢ + 240. This jitter results from the minimum observable time interval of 40ns for each thread,
causing delay_until to have an observable jitter of up to 39ns.

For each thread, the hardware timer unit checks an activated deadline slot once every
thread cycle (40ns). Thus, the triggering of timer_expired exceptions from the timer unit also
observes a similar jitter effect. This is illustrated in figure 3.19. If the thread has a deadline of

0 40 80 120 160 200 240 280 320 360 400

time (t+...) | : } } } } t } } } |
t+120 ns < deadline < t+160 ns Program Exception Handler
®
t+160 ns < deadline < t+200 ns Program / @ Exception Handler

(timer_expired exception triggered)

[}

Figure 3.19: Timing details of the timer_expired exception triggering

t 4+ 161ns, then the actual exception will not be triggered until ¢ 4+ 200ns, when the observed
platform time is greater than the deadline.

3.6.3 Timed Loop revisited

We give a concrete example of analysis of timing instructions on PTARM by deriving the
offset from the self compensating timed loop introduced in section 2.3.2. This timed loop detects
whether the previous loop iteration missed its deadline. If it did, then the current iteration will
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Figure 3.20: Execution of the self compensating timed loop

Listing 3.1: Timed loops with compensation revisited

1 cdp p13, 8, c2, c0, c0, 0 ; get_time, deadline timestamp stored in [c2, c3]
2 loop:

3 cdp p13, 8, c4, c0, cO, 0 ; get_time, current timestamp stored in [c4, c5]
4 subs r5, r5, #80 ; compensate for loop overhead and delay_until

5 sbc r4, r4, #0 ;
6
7
8
9

subs r5, r3, r5 ; Check whether previous iteration deadline is missed
sbc r4, r2, r4 ;

10 bimi task_short ; execute shorter task if previous deadline miss

1 blpl task_normal ; or else execute normal task

12

13 adds r3, r3, #4000 ; assuming the deadline is 4 us (4000 ns)

14 adc r2, r2, #0 ; calculate the deadline timestamp for this iteration

15 cdp p13, 4, c2, c2, c3, 0 ; delay_until

17 b loop

execute a shorter version of the task in attempt to make up for the lost time, as shown in figure 3.20.
Obtaining the offset

Listing 3.1 shows the source code that is used to construct this timed loop. During the miss
detection (lines 3 to 8), an additional offset is used to compensate for the execution of delay_until
and loop overhead. Time elapses between the delay_until of the previous loop iteration (line 15),
where the previous deadline timestamp is checked, and the get_time used for miss detection (line
3) in the current iteration. Without the offset compensation, the loop overhead will cause the miss
detection to always detect a missed deadline. This can be observed from table 3.5, where we show a
sample execution trace of four iterations in this timed loop. Figure 3.20 shows the timing behavior
of these four iterations, where a missed deadline in the second iteration will cause the third iteration
to compensate by executing the shorter version of the task.

In table 3.5, execution starts at time ¢. As mentioned before, each thread cycle is 40ns,
which is reflected in the left most column that shows the progression of time. We also show the
thread cycle (TC) count, which starts at n when execution begins. The execution time of each
instruction is according to table 3.4. All instructions are statically compiled onto the instruction
scratchpad. In this code segment, we keep track of two timestamps each iteration. The dead-
line_timestamp keeps track of the loop deadlines, and is stored in registers 12 and r3. The cur-
rent_timestamp is updated with ger_time in the beginning of each loop iteration to detect if the
previous iteration missed its deadline. It is stored in registers r4 and r5. The loop period is set to
be 415, which is 4000n.s (100 thread cycles). We add the loop period to the deadline_timestamp in
each loop iteration (lines 13 and 14).
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Time | TC | Instruction Comment |
tns \ n \ cdp pl3, 8, c2, 0, c0, 0 get_time (deadline: t)
—— Loop Ist iteration / No deadline miss — —
t+80 ns n+2 cdp pl13, 8, c4, c0, c0, 0 get_time, (current: t+80)
t+160 ns n+4 subs r5, r5, #80 (current -= 80)
t+200 ns n+5 sbc r2, 12, r4 (current: t)
t+240 ns n+6 subs r5, r3, r5 compare deadline (t) and current (t)
t+280 ns n+7 sbcrd, r2, r4 result is 0, clear cc[“n”’]
t+320 ns n+8 blmi task_short nop since cc[“n”] ==0
t+360 ns n+9 blpl task_normal branch since cc[“n”] == 0
- ns - e executing task_normal
t+3800 ns n+95 adds r3, r3, #4000 (deadline += 4000)
t+3840 ns n+96 adc r2, r2, #0 (deadline: t+4000)
t+3880 ns n+97 cdp pl3, 4, c2, c2, c3, 0 delay_until, input timestamp is t+4000
- ns - e delay_until for 3 thread cycles
t+4040ns | n+101 | b loop jump back to loop
—— Loop 2nd iteration / Deadline miss — —
t+4080 ns n+102 | cdp pl3, 8, ¢4, c0, c0, 0 get_time, (current: t+4080)
t+4160 ns n+104 | subs r5, r5, #80 (current -= 80)
t+4200 ns n+105 | sbcr2, r2, r4 (current: t+4000)
t+4240 ns n+106 | subs r5, r3, r5 compare deadline (t+4000) and current (t+4000)
t+4280 ns n+107 | sbc r4, r2, r4 result is 0, clear cc[“n”’]
t+4320 ns n+108 | bilmi task_short nop since cc[“n”] == 0
t+4360 ns n+109 | bipl task_normal branch since cc[“n”] == 0
- ns - ... code for task_normal
t+7960 ns n+199 | adds r3, r3, #4000 (deadline += 4000)
t+8000 ns n+200 | adc r2, r2, #0 (deadline: t+8000)
t+8040 ns n+201 | cdp pl3, 4, c2, c2, c3,0 delay_until, *no delay*
t+8080ns | n+202 | b loop jump back to loop
— —Loop 3rd iteration / Compensate with shorter task — —
t+8120ns | n+203 | cdp p13, §, ¢4, 0, c0, 0 get_time, (current: t+8120)
t+8200 ns n+205 | subs r3, r3, r5 (current -= 80)
t+8240 ns n+206 | sbcr2, r2, r4 (current: t+8040)
t+8280 ns n+207 | subs r5, r3, r5 compare deadline (t+8000) and current (t+8040)
t+8320 ns n+208 | sbc r4, r2, r4 result is -40, set cc[“n”’]
t+8360 ns n+209 | blmi task_short branch since cc[“n”] == 1
-ns - ... code for task_short
t+10280 ns | n+257 | bipl task_normal nop since cc[“n”] == 1
t+10320 ns | n+258 | adds r3, r3, #4000 (deadline += 4000)
t+10360 ns | n+259 | adc r2, r2, #0 (deadline: t+12000)
t+10400 ns | n+260 | cdp pl3, 4, c2, c2, c3,0 delay _until
-ns - . delay until time is t+12000
t+12040 ns | n+301 | b loop jump back to loop
— — Loop 4th iteration / Execute normal task — —
t+12080 ns | n+302 | cdp p13, 8, ¢4, 0, c0, 0 get_time, (current: t+12080)
t+12160 ns | n+304 | subs r3, r3, r5 (current -= 80)
t+12200 ns | n+305 | sbcr2, r2, r4 (current: t+12000)
t+12240 ns | n+306 | subsrS, r3, r5 compare deadline (t+12000) and current (t+12000)
t+12280 ns | n+307 | sbc r4, r2, r4 result is 0, clear cc[“n”]

Table 3.5: Instruction execution trace of the self compensating timed loop
(TC = thread cycles)



69

The need for the offset can be observed at the beginning of the second loop iteration. At
time ¢ 4+ 4080ns, get_time is called to initiate the miss detection sequence. The previous dead-
line_timestamp is t + 4000, which was met in the first iteration. However, get_time updates the
current_timestamp to t + 4080, because the execution of delay_until and b loop took 2 thread cycles
combined. Thus, our miss detection needs to account for this by subtracting the 2 thread cycles
(80ns) difference from current_timestamp before comparing it with the deadline_timestamp. In
general, the offset that needs to be accounted for is the time elapsed between the deadline checking
delay_until instruction and the miss detection get_time instruction. Intuitively, we want to check
whether the previous delay_until executed before the previous deadline_timestamp, so the offset is
calculates the time of execution of the previous delay_until.

Overhead of the self compensating timed loop

In this self compensating timed loop, the loop period is set to 4000ns and regulated with
the delay_until instruction. Each loop period includes the execution of the actual task along with the
loop and timing control overhead. The loop overhead in this example is only the branch instruction
on line 17 in listing 3.1, which is 1 thread cycle (40 ns). The overhead for timing control and self
compensation consists of all the timing instructions, the arithmetic on the timestamps, and the 2
conditional branch instructions that determine which task to execute. From table 3.5 we can count
a total overhead of 11 thread cycles which includes: 1 get_time (2 thread cycles), 1 delay_until (1
thread cycle), 6 arithmetic operations on the timestamps (6 thread cycles), and 2 conditional branch
instructions (2 thread cycles). Overall the timed loop contains an overhead of 12 thread cycles
(480ns) , which means both tasks have a soft timing requirement of 88 thread cycles (3520n.s) for
each loop iteration to meet its deadline. In the second loop iteration of our example, task_normal
executes for 89 thread cycles, exactly one thread cycle over its timing requirement. As a result, the
delay_until of the second loop iteration does not delay program execution, and the third iteration
miss detection detects a missed deadline and switches to execute task_short.

First loop iteration jitter

The offset previously derived is the time difference between the desired deadline and the
time of execution of the get_time used for miss detection. In our code, because of the simple loop
structure, the offset only includes the execution time of the delay_until and a branch. However, if
the difference was larger, for example, in a conditional loop structure, then it could introduce jitter
for the first iteration. An example is shown in figure 3.21. We assume that the setup code remains
the same with only one get_time, and the offset is adjusted to 200ns. We also assume that the loop
period remains the same, 4000ns, and all loop iterations meet the loop period timing requirements.
In this example, we see that the first iteration executes for 120ns longer than subsequent iterations.
The jitter introduced for the first iteration is exactly the execution time difference between the offset
and the setup code. Between each delay_until instruction, exactly 4000 ns elapses, since 4000 ns is
used as the loop period and added to the deadline_timestamp each loop iteration. From the figure we
observe that the execution of offset occurs between each subsequent delay_until instruction. How-
ever, between the initial deadline_timestamp value (t) and the first delay_until, the only overhead
that is observed is the execution of a gef_time instruction, which is 80 ns. Thus, the first iteration
of the loop executes for an addition 120ns, which is the difference between the offset and the exe-
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Figure 3.21: Jitter caused by initial timed loop setup

cution time of the loop setup code. This effect is not observed in the previous example because the
execution time of both offset and loop setup is 80ns, so the first iteration also executed for exactly
4000 ns.

Listing 3.2: Jitter adjusted timed loop

1 mov r6, #0 ;0= 0;

2 mov r7, #0 ;] = 0;

3

4 cdp p13, 8, c2, cO, cO, 0 ; get_time, deadline timestamp stored in [c2, c3]
5 subs r3, r3, #40 ; adjustment for first loop period

6 sbc r2, r2, #0 ; deadline —= 40

7 loop:

8 cdp p13, 8, c4, cO, cO, 0 ; get_time, current timestamp stored in [c4, c5]
9 subs r5, r5, #200 ; compensate for loop overhead and delay_until

10 sbc rd4, rd4, #0 ;

11

12 subs r4, r3, r5 ; Check if previous iteration deadline is missed
13 sbc 5, r2, r4 ;

15 bimi task_short ; execute shorter task if previous deadline mess
16 blpl task_normal ; or else execute normal task

17

18 adds r3, r3, #4000 ; assuming the deadline is 4 us (4000 ns)

19 adc r2, r2, #0 ; calculate the deadline timestamp for this iter.

20 cdp p13, 4, c2, c2, c3, 0 ; delay_until

2 add r6, r6, #1 0o+= 1
23 add r7, r7, r6 LSL #1 j o= ix2
24 cmp r7, #1000
25 blt loop

branch back if ( j < 10000 )

This first iteration jitter can be accounted for by adjusting the initial deadline_timestamp
in the loop setup code. In listing 3.2 we show the source code that adjusts for the initial loop iteration
jitter. Lines 22 to 25 show the additional loop overhead that conditionally checks whether to branch
back to the beginning of the loop. The offset that we have to adjust for in this example is exactly
200ns, which includes the 4 instructions for the loop overhead and the delay_until. This offset is
accounted for on line 9. Lines 4 to 6 show the loop setup code where we adjust for the execution
time of the initial loop iteration. 40 is subtracted from the initial deadline_timestamp obtained by
the get_time on line 4. This value is obtained by the execution time difference of the offset (200ns)
and the setup code (160ns). We show the resulting timing behavior in figure 3.22, where the first
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Figure 3.22: Adjusted timed loop setup

loop iteration is adjusted to 4000ns, the same as subsequent iterations. By entering the loop with the
deadline_timestamp value of t — 40, we shift the delay_until deadlines for all loop iterations by 40
ns, which compensates for the initial loop iteration jitter. Intuitively, the initial deadline_timestamp
is adjusted before the loop to create the illusion that the setup code and the loop overhead observed
between each delay_until has the same execution time. By doing so, the first loop iteration will
observe the same loop period as all subsequent iterations.

3.6.4 Exceptions

In section 3.3 we described how exceptions are thrown in PTARM. When an exception is
triggered in one hardware thread, none of the other hardware threads are affected, as the pipeline
is not flushed. For the thread on which the exception occurs, only one thread cycle is lost, and
the control flow jumps to the correct exception handler depending on the exception vector table.
Here, we give a concrete example of the timing behavior of exceptions on PTARM by using ex-
ception_on_expire and deactivate_exception to trigger a timer_expired exception. The code for the
example is shown in listing 3.3.

Listing 3.3: Sample code that triggers a timer_expired exception

1 mov r3, #0x98 ; r3 = address of _timer_handler_loc
2 add r4, pc, #32 ; r4 = addr of delay_-handler

3 str r4, [r3] ; register delay_handler

4

5 cdp p13, 8, c2, cO0, cO, 0 ; get_time

6 adds r3, #240

7 adc r2, #0

8 cdp pl13, 2, c2, c2, c3, 0 ; exception_on_expire

9

10 add r5, r6, r6 ; arbitrary code block

add r7, r5, r6 ;

S

13 cdp pl13, 5, c8, c2, c3, 0 ; deactivate_exception
14 b end_program

15

16 delay_handler:

17 mov pc, Ir ; simply return

In this example, a delay_handler (lines 16 and 17) is implemented to simply return when
called. The delay_handler is registered as the user-level exception handler (lines 1 to 3) for the
timer_expired exception. This is done by deriving the address of the delay_handler on line 2, and
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storing it to the _timer_handler_loc. The _timer_handler_loc is a reserved location that points to the
address of a handler executed when the timer_expired exception is thrown. When a timer_expired
exception occurs, the current address is saved and control flow jumps to the exception table entry for
the rimer_expired exception. This table entry redirects execution to a timer_expired exception setup
code which calls the user-level exception handler registered. This setup code is shown in listing 3.4.
The setup code loads the address of _timer_handler_loc into a register, and jumps to the handler on
line 7. If the handler returns, lines 9 to 11 re-enable interrupts, and line 12 returns control to the
original PC where the exception occurred.

Listing 3.4: The timer_expired exception setup code

1 .text

2 .global _tmr_exp_setup;

3 _tmr_exp_setup:

4 push {r0, Ir} ; push registers to stack

5 Idr r0, -timer_handler_loc ; load address of timer expired exception handler
6 mov Ir, pc ; get return address after calling handler

7 mov  pc, r0 ; jump to exception handler

8

9 mrs r0, cpsr get CPSR

10 bic r0, r0, #0x80 enable interrupts

write to CPSR
pop stack and return from exception

11 msr cpsr, r0
12 pop  {r0, pc}

14 _timer_handler_loc: .word 0x00000000;

The execution trace of this example is shown in table 3.6. Because execution jumps
back and forth between the main code, the timer_expired setup code, and the delay_handler, we
show the address of the instructions to help follow which code segment is being executed. The
user code is compiled to start at 0x40000000, which is in the instruction scratchpad space. As
described in section 3.2, the exception vector table and timer_expired setup code are all compiled
as part of the boot code. The str instruction is storing to the _timer_handler_loc, which is a reserved
location in the boot code, so it executes in one thread cycle. The deadline timestamp is set so the
timer_expired exception is thrown during the execution of the code block, which occurs at time
t + 360. Although the address of execution at that time is 0x400000020, the instruction at that
address does not complete, because the timer_expired exception is thrown in that thread cycle. That
address is saved to the link register (R14) by the hardware when the exception is thrown. The
next thread cycle, the exception vector entry for the timer_expired exception (at address 0x1C)
is executed. The entry forces a branch to the timer_expired setup code, which executes to call
delay_handler. The push and pop instructions are load/store multiple instructions that operate on
the stack, statically compiled on the data scratchpad. Because these instructions are operating on
2 registers each, so they take at least 2 thread cycles to access the data scratchpad. In addition,
they both update the base stack register, so pop, which loads from memory to the registers, takes an
additional cycle to complete.

In section 3.3 we discussed the potential execution variability for exception handling if
the instruction interrupted by the exception is accessing the DRAM. In order to maintain a deter-
ministic execution time, we must ensure that the first 3 thread cycles (the worst-case DRAM access
latency) after an exception is thrown does not access the DRAM. The exposed memory hierarchy
with scratchpads allows us to statically compile the exception setup code and data stack, both ac-
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Time TC | Address Inst Comment
tns n 0x40000000 | mov r3, #0x98 gets the _timer_handler_loc
t+40 ns n+1 | 0x40000004 | add r4, pc, #32 get delay_handler address
t+80 ns n+2 | 0x40000008 | strr4, [r3] register delay_handler as timer expire handler
t+120 ns n+3 | 0x40000014 | cdp pl3, 8, c2, c0, c0, 0 get_time (timestamp: t+120)
t+200 ns n+5 | 0x400000C adds r3, #240 timestamp += 240
t+240 ns n+6 | 0x40000010 | adc r2, #0 timestamp: t+360
t+280 ns n+7 | 0x40000018 | cdp pl3, 2, c2, c2, ¢3, 0 exception_on_expire, input timestamp: t+360
t+320ns | n+8 | 0x4000001C | add r5, r6, r6 code block
t+360 ns | n+9 | 0x40000020 | **throw exception** timer expired, hardware exception thrown
t+400 ns | n+10 | Ox1C b _tmr_exp_setup branch to setup code
t+440ns | n+11 | 0x78 push {r0, Ir} push registers to stack
t+520 ns | n+13 | 0x7C Idr v0, _timer_handler_loc load address of timer expired handler
t+560 ns | n+14 | 0x80 mov Ir, pc store return address after timer handler
t+600 ns | n+15 | 0x84 mov pc, r0 jump to handler (delay_handler)
t+640ns | n+16 | 0x4000002C | mov pc, Ir delay_handler code, return
t+680ns | n+17 | Ox88 mrs r0, cpsr get CPSR
t+720ns | n+18 | 0x8C bic r0, r0, #0x80 enable interrupts
t+760 ns | n+19 | 0x90 msr cpst, r0 write to CPSR
t+800 ns | n+20 | 0x94 pop {r0, pc} pop stack and return from exception
t+920 ns | n+23 | 0x40000020 | add r7, r5, r6 re-execute instruction
t+960 ns | n+24 | 0x40000024 | cdp pl13, 3, c2, c0, cl, 0 deactivate_exception (does nothing)
t+1000 ns | n+25 | 0x40000028 | b end_program jump to end of program

Table 3.6: Exception_on_expire sample code timing details

cessed right after an exception is thrown, onto the scratchpad. This ensures that the DRAM is not
accessed during the first 3 thread cycles after the exception is thrown, and allows for predictable
exception handling.

We show that the timing analysis of exceptions is deterministic and straightforward in the
PTARM architecture. No flushing of the pipeline occurs, no other hardware threads are affected,
and the hardware exception throwing mechanism only suffers a single thread cycle overhead. Due
to deterministic instruction execution time and exposed memory hierarchy, the response time of
hardware exceptions, which is the time elapsed between when the exception is thrown and when the
user registered exception handler executes, is deterministic and can be statically obtained. For the
timer_expired exception in PTARM, the response time is 8 thread cycles (320ns), which includes
the one thread cycle when the exception is thrown, and 7 thread cycles for code executed from the
exception vector table and timer_expired setup code. This is reflected in table 3.6.

In this chapter, we present the PTARM, an implementation of a precision timed machine
utilizing the principles described in chapter 2. Along with a full description of the architecture, we
show that each instruction in the PTARM exhibits deterministic execution times, and the hardware
threads in the PTARM are temporally isolated. Our benchmarks show that when the architecture is
fully utilized, the PTARM achieves higher instruction throughput compared to the single threaded
ARMVv4 StrongARM1100 architecture, proving competitive performance with timing predictability.
We demonstrate the predictable execution time behavior and simplified timing analysis through
several examples that use the timing extensions to the ISA. These also demonstrate the use and
possibilities of the timing extended ISA.
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Chapter 4

Applications

In this chapter we present two applications that have been implemented with our preci-
sion timed architecture. The first application is a real-time one dimensional computational fluid
dynamics (1D-CFD) simulator. This simulator runs in real-time to simulate the fuel rail pressure
and flow rate for an improved engine efficiently when injecting fuel. The application makes use
of the lightweight hardware threads in our thread-interleaved pipeline to implement a massively
parallel simulator with hundreds of computational nodes communicating to their neighbors. The
timing predictable architecture allows us to statically analyze the execution time to ensure that each
computational node can meet the timing constraints imposed by the application. A time based
communication scheme is used to reduce communication overhead. The communication synchro-
nization is enforced in software with timing instructions. This minimizes overhead and ensures that
the communication of all nodes are in sync. We present the synthesis results to show that by us-
ing the PRET architecture we can successfully simulate a common fuel rail configuration of up to
234 nodes on a Xilinx Virtex-6 FPGA, and enable real-time engine fuel rail simulation. This work
is joint research in collaboration with Guoqiang Gerald Wang and Hugo Andrade, from National
Instruments Corp., and Matthew Viele, from Drivven Inc. The results are also published in [68].

The second application shows how we use our predictable architecture to eliminate tim-
ing side-channel attacks for encryption algorithms. Time-exploiting attacks take advantage of the
variations in execution time of crypto-algorithms to deduce the encryption keys. The root cause of
these time-exploiting attacks is the uncontrollable run-time variations that are caused by the under-
lying architecture, allowing attackers to bypass the strong mathematical properties of the encryption
and deduce the keys. We show that by using a timing-predictable architecture that provides more
control over execution time, we remove the vulnerability that is exploited to initiate the attack,
and remove architecture deficiencies that can lead to more timing-attacks. We demonstrate this by
running the RSA and DSA encryption algorithms on PRET, and successfully illustrate the use of
PRETS timing-centric methods to counter time-exploiting attacks.

4.1 Real-Time 1D Computational Fluid Dynamics Simulator

Modern diesel engines inject diesel fuel with high pressure into the combustion chamber
for combustion. A digital control valve is used to control the amount of fuel injected, which depends
on the pressure and fuel rate within the fuel rails delivering the fuel. Several pilot injections are
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injected ahead of the main injection to mitigate the injection delay in the chamber and reduce audible
noise. However, these pilot injections send pulsations through the fuel supply rail that need to be
modeled or damped before subsequent injection events to ensure that the correct amount of fuel
is injected [19]. Currently, fuel rails are modeled and developed with 1D-CFD solvers like GT-
Fuel. They use an ad-hoc model of fuel pressure for injection events [127]. 1D-CFD models are
commonly used when simulating the transient operation of internal combustion engines [106]. Here,
we present an implementation for a real-time execution of a 1D-CFD solver using multiple PRET
cores that model the fuel rail. Although the calculations are slightly rougher than the GT-Fuel
calculations, it is sufficient to allow improved fuel pressure estimation and close the loop of fuel
delivery, allowing for a cleaner, more efficient engine.

4.1.1 Background

The 1D CFD model of the fuel rail system is described as a network of pipes. The system
is built up from different types of pipe segments, each modeling the fluid dynamics of a segment in
the fuel rail. A fixed time step solver is implemented. At each time step, the pipe segments calculate
its current pressure and flow-rate, and communicate these to their neighboring pipe segments. The
time step is determined by the speed of information flow, expressed in equation 4.1.

ﬁa:C’

Ax 4.1)

In this equation, a is the wave speed, C' is the courant number and Az is the discretization length.
For stability, the courant number needs to be less than 1, and a number below 0.8 is recom-
mended [38]. For example, if a fluid has a wave speed a of 1 c¢m per microsecond and a dis-
cretization length Ax of 1 cm, then we require a time step At of less than one microsecond. This
discretization length of a pipe network is dominated by its smallest sub-volume. A discretization
length of 1 ¢m and a speed of sound (wave speed) of 1500 m /s [111] are commonly used for diesel
fuel systems. The real-time requirements of this application thus require adequate performance so
that the slowest node can complete in At. Although highly parallel, the heterogeneity of pipe ele-
ments differentiates this application from typical homogeneous parallel problems often solved using
GPUs, or SIMD with large common memories [136], such as in image processing applications.

In order to evaluate our system of pipes, we define a few types of computing nodes that
correspond to different pipe elements. These are shown in table 4.1 along with their derived pressure

Type (Pressure) P, = (Flow Rate) Q;, =
i (Cp+Cwm) (P1,, +Cm)
Pipe Segment 5 (71) ot —
Imposed pressure PBgnd S R
Imposed mass flow Cr+BQpna QBnd
—BCv+ (BCV)zJFQCch
(Qo)?
Valve Cp—BQy, Oy =% 0)
Cap Cp 7BQ1H 0
_br + [
. . cp _‘_CIMQ +CA43 B, B
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= Bs Ba
_ b + Oy
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Table 4.1: Table of supported pipe elements and their derived equations
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and flow rate equations. From these pipe elements we can generate a network of pipes that represent
our fuel system. The imposed pressure is used to represent the pressure sensor on the fuel system.
The imposed mass flow is used to represent a pump, and the valve is typically used to represent an
injector. Pipe segments and pipe “T” are the interconnected pipe elements, and the cap is used to
represent the end of a pipe. The derived equations shown in the table use the following simplified
characteristic equations derived in [116].

Cp=Pi_1+Qi—1(B— R|Qi-1|) 4.2)

Cyu = Piy1 — Qiv1 (B — R|Qiy1]) (4.3)

In the equations, B = ap/A and R = pfAx/2DA?, where A is the cross sectional area of the
pipe, and () is the flow rate along the pipe. P is the pressure, p is the fluid density, V' is the fluid
velocity, f is the Darcy-Weisbach friction factor, D is the pipe diameter, and a is the wave speed.
The p,q subscript denotes a boundary condition. C, is the flow coefficient which is a function of
o, the nominal open flow, Py, the downstream pressure, and 7, the fraction of the valve that is
open. The ;1 subscript and ;_; subscript represent values that are received from the neighboring
pipe elements. Any implementation of the system must ensure that these calculations for all pipe
elements can be completed within the specified time step timing requirements.

Figure 4.2 shows an overview of a representative system for modeling fuel rails. The
1D-CFD model is bounded inside the dashed rectangle. External to that is the real-word sensor and
actuator interfaces that provide boundary conditions or consume model output variables. The small
blue squares inside the dashed rectangle represent the network of pipes. In a practical simulation
of a diesel fuel system, the total number of pipe elements can range from around 50 to a few
hundred. The overall design flow of generating the 1D-CFD model is shown in figure 4.1. The
flow system description describes the fuel rail configuration, which is used to create a graph that
describes the system and determines the system parameters and time step requirements. With the
graph and library of elements, we instantiate the hardware implementation, then compile and deploy
the system.

For illustrative purposes, we show a sample pipe network graph in figure 4.3. Each pipe
element is also referred to as a computational node, and its graphical representation is shown in
Table 4.4. The pipe network starts with an imposed input flow (P1) element on the left that represents
a pump. Fluid travels through a few pipe segment nodes (P2 and P3) to a “T” intersection (P4),
where it splits off to a second branch of the network. The “T” node is also measured by the outside
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world (D1) through an output port. Output elements are used when data needs to be communicated
out of the model to other parts of the FPGA. Flow going up the new leg ends in a cap (P8), while flow
continuing down the original path exits the system through a valve (P6). Mechanical calculation
elements compute the inputs to the valve, the defined flow, and the defined pressure blocks. The
system is assumed to be at uniform temperature. Temperature dependent variables like density and
wave speed are computed by the global calculation nodes (G1, G2, and G3). These values are
needed by all computational elements in the graph, thus are distributed by the global distributions
(GD1, GD2, and GD3) to each of the computational elements every time step.

4.1.2 Implementation

This application presents several requirements that must be considered when being im-
plemented. First, the whole system operates in time steps, which serve as the timing constraints that
the longest executed computation node must meet. Second, communication is exchanged between
nodes only once each time step, so synchronization is required between the heterogeneous nodes
that exhibit varying execution times. Third, a typical fuel rail configuration range from fifty to sev-
eral hundred pipe elements, thus any implementation must be able to scale to support the larger
configurations. With these requirements in mind, we will detail the implementation of the 1D-CFD
simulator with precision timed architectures.

Hardware Architecture

PTARM Cores Our hardware implementation synthesizes multiple PTARM cores connected through
shared local memories on an FPGA. Computational nodes are mapped to hardware threads on the
PTARM cores. The PTARM cores used for this application are a slightly modified version of the
one presented in chapter 3. In order to improve the throughput and clock frequency of our pipeline,
we implement a six-stage thread-interleaved pipeline shown in figure 4.5. This thread-interleaved
pipeline follows the same design principles as discussed in chapter 2, and supports a minimum of
six threads interleaving through the pipeline. The memory footprint for each of the computational
nodes range from roughly 100 to 1000 bytes. Thus, the scratchpad memories within a PTARM
core are sufficient to hold all instruction and data for all threads; no external memory is required.
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Figure 4.5: The PTARM 6 Stage Pipeline

The pipeline also contains hardware floating point units to support the application’s need of floating
point computations. The floating point units used are single-precision, and generated using the Xil-
inx Coregen tool [129]. They are pipelined to accept inputs every cycle to avoid structural hazards,
as explained in section 2.1.3. The floating point operations supported are: add, subtract, multiply,
float-to-fix, fix-to-float, divide and square root.

Our pipeline design supports configurations which exclude certain floating point units,
since not all computational nodes require all floating point operations. For example, square root
is only used by the valve node, and divide is only used by the “T” node, as shown in table 4.2.
Even though the floating point divide and square root are the most resource intensive hardware
units, there are usually only a few valve and “T” nodes in the overall system. The common fuel rail
system we present later contains 234 nodes, but only 5 nodes are “T” nodes and only 4 nodes are
valves. To save on hardware resources, we could use software emulation for the complex operations
at the cost of increasing the execution time of the “T”” nodes and valve nodes. However, the overall
performance of our system is bounded by the slowest computational element, because all nodes
synchronize communication points at the end of each time step. As a result, the performance hit
from using software emulation for these small percent of nodes would limit the overall performance.
Instead, by allowing different configurations of the PTARM core, we can include the extra hardware
units only on cores that require them, getting the performance boost from hardware without a huge
resource overhead. This results in substantial resource savings, which we show in section 4.1.3.

The real-time, highly parallel, yet heterogeneous nature of this application makes it a per-
fect match for our precision timed architecture. As explained in section 2.1.3, thread-interleaved
pipelines contain simpler pipeline architectures, allowing for higher clock frequencies and less re-
source usage. The sharing of the data-path between multiple hardware threads further allows us to
optimize the resource usage per computational element. The thread-interleaved pipeline also max-
imizes throughput over latency, which benefits this highly parallel application. The pipeline hides
the latencies of multi-cycle operations, such as floating point operations, with execution from other
threads. E.g., in our implementation, the normally 4 processor cycle floating-point additions and
subtractions appear as single thread cycle instructions because their latencies are fully hidden by the
thread interleaving.
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Interconnect This application requires sup-
port for two types of communication. Between
neighboring nodes, the computed pressure and
flow rate values are exchanged every time step.
Across the system, several temperature depen-
dent parameters are calculated and broadcast to
all nodes every time step as well. Thus, along
with point to point communications between
nodes, we also implement a global broadcast
circuit. Each node can receive up to four in-
puts and transmit four outputs each time step,
depending on the number of neighboring nodes
it is connected to. Out of the inputs, one is ded-
icated to receiving broadcasts from the global t
distribution circuit. Figure 4.6: System of PRET Cores and Interconnects

Because nodes are mapped to the hardware threads on the PTARM cores, their neighbor-
ing nodes may be mapped to threads on the same core, or threads on a neighboring core. Nodes
mapped to the same core (intra-core communication) communicate through the shared scratchpad
memory within the core. Nodes mapped to different cores (inter-core communication) use privately
shared Block RAMs (BRAMs) between cores to establish point-to-point communication channels.
BRAMs are dedicated memories on the FPGA that provide single cycle deterministic access laten-
cies; scratchpad memories within each core are also synthesized to BRAMs. Because the commu-
nication bandwidth requirements are small, we only need one shared BRAM between two cores to
establish communication channels for all threads on both cores. This allows all threads to commu-
nicate with each other in a single cycle, whether it is intra-core or inter-core communication. As an
added benefit, by using BRAMs for communication, we save the logic slices on the FPGA to im-
plement more cores to support bigger models. On modern FPGA designs, the limiting resource is
typically logic slices, not the BRAMs. Each PTARM core only requires a small number of BRAMs
for registers and scratchpads, so the BRAM utilization ratio is far less than the logic slice utilization.
We present our synthesis results in section 4.1.3, which show that the number of cores synthesized
is indeed limited by the logic slices, not the BRAMs.

When implementing the global distribution circuit, we observe that only a few nodes are
required to the broadcast all the temperature dependent parameters. In fact, in diesel fuel systems,
the number of nodes needed to broadcast all parameters can be mapped to the six threads of one
single PTARM core. Thus, we dedicate one PTARM core in the system as the broadcast core. For
each other core, we add a dedicated broadcast receiving memory that is connected to the broadcast
core. The broadcast receiving memory is also synthesized to a small dual-ported BRAM, with
a read-only port connected to the core, and a write-only port connected to the broadcaster. The
broadcast core contains a broadcast bus that can simultaneously write the same values to all the
broadcast memories. The broadcast memory for each core is shared amongst all threads in the core
so all threads can access the global values. This architecture allows us to save on the resources
needed to implement a full fledged interconnect routing system, and any network protocol for the
purpose of broadcasting. Figure 4.6 shows a block-level view of the hardware architecture.

I Thread 1

Shared Core Memory

>0 [2200] 230 [Z> 00|




80

PRET Deadlines

\

Compute Pressure and Flow Rate Post Results

Broadcast Globals

A

Read Adjacent &
Global Data

\ Pipe Nodes

Read External sensor values &
Compute Global Temperature Dependent Variables
L Global Calculation Nodes

Read External sensor values &
Compute Mechanical Variables

\ Mechanical Calculation Nodes

Post Results

} Single Time Step . |

Figure 4.7: Execution of Nodes at Each Time Step
Software Architecture

We implement the equations shown in table 4.1 in C, and compile them with the GNU
ARM cross compiler [3] to be run on our cores. In order to minimize the computation required,
the equations are statically optimized. The communication channels in and out of each node are
memory mapped to the shared BRAMSs between cores.

The execution of the system progresses in time steps. Computational nodes have varying
execution speeds; to avoid data races and ensure all communication is synchronized each time step,
we enforce an execution model where each time step consists of several synchronized phases, as
shown in figure 4.7. For pipe nodes that read in neighboring data, shown on the top of figure 4.7,
the first phase of each time step is to read in the pressure and flow rate values from neighboring
nodes, and the temperature dependent variables from the global broadcasters. Once input values are
read, the computations occur according to the specific fluid dynamics equations. In the final phase
of each time step, the computed results are posted to be used in the next time step. For global and
mechanical nodes, the two phases consists of reading in external values for calculation, and posting
results. We synchronize the data exchange between nodes to avoid data races and ensure that all data
is consistent and from the same time step. This communication model is very similar to Giotto [45],
where tasks communicate explicitly through ports, and only at the end of the execution of tasks,
to ensure deterministic communication between the tasks. While implementations of Giotto use an
explicit run-time system to enforce the execution model, we use the timing instructions provided by
the PRET architecture to implement our execution model.

In section 2.3 we introduce ISA extensions that provide programmers with explicit timing
control in software. The implementation of the various timing instructions for PTARM is explained
in section 3.4. Specifically for this application, we use a specialized timing macro delay_and _set,
which uses the delay_until instruction. The semantics of the delay_and_set macro is similar to the
deadline instruction introduced by Ip and Edwards [49]. It first enforces a previously specified
timing constraint, then it sets a new timing constraint for the next code block. The delay_until
instruction enforces a minimum execution time within the code, which we use to enforce the syn-
chronized execution of time steps for all nodes. Fig. 4.7 shows the program synchronization points
that our timing instruction enforces. The hatched area in the figure denotes slack time that is gen-
erated by the timing instructions. Each delay_and_set macro takes at least 2 thread cycles because
it manipulates a 64-bit value representing time. For our computational nodes, 3 timing macros are
used each time step, thus 6 thread cycles of overhead are introduced per time step.



81

The timing instructions provide a very lightweight and simple mechanism to enforce syn-
chronization in software. No additional run-time system is needed to enforce the execution model,
and we avoid the need to use locks or mutexes to ensure a correct ordering of the communicated
data. The same effect can possibly be achieved with no overhead using instruction counting and
NOP insertions. This can certainly be done on any deterministic architecture such as PRET. How-
ever, NOP insertion is both tedious and brittle. Any change in the code would change the timing of
the software, and the NOP insertions would need to be readjusted to ensure the correct number of
NOPs are added. Designs now are mostly written in higher level programming languages like C and
compiled into assembly code, making it even more difficult to gauge the number of NOPs needed
at design time. The timing instructions allow for a much more scalable and flexible approach. In a
system with heterogeneous nodes that each have different execution times, the timing instructions
allow us to set the same timing constraints in all nodes regardless of their execution content.

The delay_and_set macro only enforces a minimum execution time on the computational
nodes. Thus, static timing analysis is still required to verify that the worst-case execution time
of all nodes meet the imposed timing constraints set by the application parameters. However, as
soon as the timing constraints are met, there are no additional benefits to continue improving the
execution speed of the computational nodes; the system time steps are synchronized with sensors
that interface with the physical world and execution is real-time along the engine. In this case,
precise execution time analysis can help us optimize other system resources, such as power and
area, improving the scalability of the approach. On the other hand, over estimation of execution
time could lead to over-provisioning of hardware resources. In this application, the computation
code on the nodes within each time step contains only a single path of execution, voiding the need
for complex software analysis. Thus, the predictability of the underlying architecture determines
how precise the worst-case execution time analysis is. Communication is handled by the synchro-
nized communication points, which enforces an ordering between the writing and reading of shared
data. This voids the need of any explicit synchronization methods, removing any overhead and
unpredictability for communication. The underlying architecture uses the time-predictable PRET,
and implements a latency-deterministic communication network of shared BRAMs on the FPGA.
These properties allow us to statically obtain an exact execution time for each computation node, so
no over-provisioning of hardware occurs. We show and present these results in the next section.

4.1.3 Experimental Results and Discussion

We use three examples to evaluate our framework. The first example is a simple wa-
terhammer example taken from Wylie and Streeter [128]. The configuration of the waterhammer
example is similar to the one shown in figure 4.3, but without the “T” element and the nodes that
branch up. This example contains an imposed pressure, 5 pipe segments, a valve, and two mechan-
ical input blocks that provide both the reference pressure and the valve angle as a function of time.
We use this simply as a sanity check to ensure correctness of functionality of our framework.

The second and third example cover two common diesel injector configurations: the unit
pump and the common rail. The data for configuring these examples were taken from reference
examples provided by Gamma Technologies’ GT-SUITE software package [38]. The unit pump is
much like the simple waterhammer case in that there are no branches in the system. The input is
a defined flow specified by an electronically controlled cam driven pump. The output is a single
valve. There are a total of 73 fluid sub-volumes in this system. The common rail example is more
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Without Interpolation / With Interpolation
Type Mul | Add/Sub [ Abs [ Sqrt | Div | Thread cycles
Pipe segment 10/18 5/13 2/210/0(0/0 51/81
Imposed pressure | 6/ 10 3/17 1/7110/0|0/0 38750
Imposed flow 579 3/17 1/110/0|0/0 40/51
Valve 13717 5/9 1/1]1/1]10/0 55764
Cap 4/8 2/6 1/110/0|0/0 39748
Pipe “T” 16/28 | 13/25 |3/0]0/0|4/4 72 /111

Table 4.2: Computational Intensity of Supported Types

complex where the topology is roughly described by the 1D-CFD model in figure 4.3. It has a total
of 234 sub-volumes, including 5 “T” intersections and 4 valves. The GT-SUITE-based models for
the comman rail and the unit pump use a 1 ¢m discretization length, which, using a 1500 m /s wave
speed and a stability factor of 0.8, yields a 5.33 s time step to complete our worst-case instructions
for the slowest computational node.

We synthesize all our cores and interconnects on the Xilinx Virtex 6 XC6VLX195T [133]
with a speed grade of 3. Each Virtex-6 FPGA logic slice contains 4 LUTs and 8 flip-flops, and this
particular FPGA contains 31,200 logic slices and 512 18- K' B BRAMs. Each PRET core is clocked
at 150 M Hz and has 6 threads. All floating point units are generated from the Xilinx Coregen
tool [129], and are configured to maximize DSP slice usage and minimize logic slice usage as much
as possible. We use the logic slices to synthesize as many cores as possible. For these examples,
we use a mapping heuristic that groups nodes requiring the same computations onto the same core.
In the sections below we will show that this heuristic allows us to save hardware resources by
synthesizing less floating point hardware units.

Timing Requirements Validation

In order to ensure that the worst-case computational element can meet the timing require-
ments, static timing analysis is done on all computational nodes to determine the minimum time
step we can support. As discussed in section 4.1.2, the computation code within each time step only
consists of a single path, simplifying the timing analysis. The thread-interleaved pipeline provides
temporal isolation for all hardware threads, so no timing interference occurs between the threads.
We can safely use the timing analysis done separately for each computational node even as they are
executed simultaneously in the architecture. Because all code, data, and communication channels
reside on the BRAMs of the FPGA, the memory access latency is all deterministically one cycle.
The PTARM architecture provides deterministic execution times for each instruction implemented,
and the full list of instruction execution cycles are listed in table 3.4. Most floating point instructions
take only a single thread cycle, as the latency is fully hidden by interleaving the hardware threads
in the pipeline. The more complex floating point square root and divide operations take four thread
cycles. Using the deterministic instruction execution cycles and the compiled code, we are able to
obtain the exact thread cycles required for each computational node, which are shown in table 4.2.

To convert thread cycles to physical time, we use the processor clock speed and the num-
ber of threads executing in the architecture. Given a 150 M H z clock rate and six hardware threads,
each thread executes at 25 Mhz in our thread-interleaved pipeline. Thus, each thread cycle con-



83

verts to a physical time of 40 ns. The unit pump and common rail have a time step requirement of
5.33 ws, which gives us 133 thread cycles to complete the computation each time step. Table 4.2
shows that the “T” element, which takes 111 thread cycles with interpolation, is the node with the
worst-case execution time, well below the 133 thread cycle constraint. For the simple waterhammer
example, a bigger discretization Az is used, which leads to a bigger time step than the two complex
examples. This validates that we can safely meet the timing requirements, ensuring the correctness
of functionality of our implementation.

Resource Utilization

Table 4.3 shows the resource usage in logic slices for different configurations of a PTARM
core. Each core uses 7 BRAMs: 3 for the integer unit register set (3 read and 1 write port), 2
for the floating point register set (2 read and 1 write port), 1 for the scratchpad, and 1 for the
global broadcast receiving memory. We include the fixed point configuration for reference purposes
only; it does not contain any floating point units, and it is not used in our implementation. The
baseline configuration used in our implementation is the “basic float”, which contains a floating
point add/subtracter, a floating point multiplier, and floating point to fixed point conversion units.
The “sqrt”, “div”’ and “sqrt & div” configurations add the corresponding hardware units onto the
“basic float” configuration. Besides the effect of hardware units, we also show the area impact of
adjusting the thread count on a single core.

Threads per core ‘ 6 ‘ 8 \ 9 \ 16 ‘
Fixed point only 572 | 588 | 764 | 779
Basic float 820 | 823 | 1000 | 1022
Float with sqrt 987 | 992 | 1146 | 1172
Float with div 1039 | 1051 | 1231 | 1237
Float with div & sqrt | 1237 | 1249 | 1403 | 1413

Table 4.3: Number of Occupied Slices per Core on the Virtex 6 (xc6vIix195t) FPGA.

Two important observations are made from the results of table 4.3. First, the area increase
associated with adding more threads to the core is proportional only to the number of bits required
to encode the number of threads. For example, running 6 threads or 8 threads (both requiring
three bits to encode the thread number) on the processor yields similar area usage. But once a 9th
thread is introduced, the used area noticeably increases, but remains similar for up to 16 threads.
This can be explained by the architecture of multithreaded processors. Multithreaded processors
maintain independent register sets and processor states for each thread while sharing the datapath
and ALU units amongst all threads. The register sets are synthesized onto BRAMs, so the number
of bits used to encode thread IDs will determine the size of the BRAM used for the register sets.
The size of the multiplexers used to select thread states and registers are also determined by the
number of bits encoding the thread IDs, not the actual number of threads running. Thus, it is
possible to increase the number of threads per core with almost negligible impact on area as long
as the incremented thread count uses the same number of bits to encode. Increasing the thread
capacities will allow our architecture to support more nodes in a single FPGA. However, since
hardware threads share the processor pipeline, adding threads slows down the running speed of the
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individual threads. Nonetheless, for implementations that have sufficient slack time or require faster
performance, adjusting the number of threads can help designs meet the required constraints. Our
precise execution time analysis allows us to determine the maximum number of threads, six in our
case, we need to support to meet our timing constraints. An over estimated execution time in this
case could lead to under utilizing the hardware. For example, if we were limited to using five threads
for each core in order to meet the timing constraint, then additional cores would be needed to fully
implement our 234 node fuel rail example.

The second observation relates to the resource impact of the floating point square root and
divide units. Looking at the resource usage for 6 threads on a core, adding a floating point square
root unit adds roughly 20.3% more logic slices than the “basic float” configuration. Ading a floating
point division unit adds roughly 26.7% more logic slices than the “basic float” configuration. A
core with both square root and division hardware units will use roughly 50.8% more slices. These
are estimates because the slices occupied might vary slightly based on how the synthesis tool maps
LUTs and flip flops to logic slices. But they give an intuition to the resource difference of each
configuration.

The actual resource impact can be seen from Table 4.4, which shows the total slices occu-
pied for the three examples after place and route. In the homogeneous (hom. suffix) configuration,
all the cores contain the square root and divide hardware. In the heterogeneous (het. suffix) configu-
ration, only necessary cores contain square root and divide, the rest use the basic float configuration.

Slices / BRAM
Example Nodes|Cores / Conn. Absolute | Relative (%)
Water het. 12 271 1805/ 15 5.7172.1
Hammer | hom. 2379/ 15 7.6/2.1
Unit het. 10566 /103 | 33.0/15.0
Pump hom. 73 13712 16635/103 | 44.0/15.0
Common | het. 29134 /311 | 93.4/45.0
Rail hom. 234 39738 N/A

Table 4.4: Total Resource Utilization of Examples Synthesized on the Virtex 6 (xc6vix195t) FPGA

For the simple waterhammer example, since only 2 cores are used, the savings is less no-
ticeable. But as the application size scales up, the resource savings of a heterogeneous architecture
become more apparent. The homogeneous approach uses roughly 1.5 times the number of slices
our heterogeneous approach uses, which is consistent with the findings in table 4.3. This proves
to be critical for the 234-node common rail example, as only our heterogeneous architecture can
implement the design on the XC6VLX195T FPGA; the homogeneous design did not fit. These
results also reflect our decision to use a heuristic that groups nodes with the similar computations
together. By doing so, we synthesize less hardware floating point units, saving hardware resources.
Table 4.4 also shows the BRAM usage for the implemented examples. Each interconnect uses 1
BRAM and each core uses 7 BRAMs. We see that the BRAM utilization ratio is far below the logic
cell utilization, validating our design choice of using BRAMs for interconnects and broadcasts.

4.1.4 Conclusion

In this application, we presented a novel framework for solving a class of heterogeneous
micro-parallel problems. Specifically we showed that our approach is sufficient to model a diesel
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fuel system in real time using the 1D-CFD approach on FPGAs. To the best of our knowledge,
we believe this is the first attempt to attack real-time CFD on this timescale and complexity. There
may exist different implementation options for our application on FPGAs. For example, we could
attempt to tackle the problem by using discrete FPGA blocks. However, in order to make the
application fit in a practical FPGA, we would need to re-use the hardware multipliers, adders, and
other functional units. This would require a state machine to run it and begins to look a great deal
like a processor.

Instead, we use the PRET architecture to ensure timing determinism and implement a
light-weight timing based synchronization on a multicore PRET architecture. We set up a con-
figurable heterogeneous architecture that leverages the programmability of FPGAs to efficiently
synthesize the design for efficient area usage. Our results show ample resource savings, proving
that our approach is practical and scalable to larger and more complex systems.

4.2 Eliminating Timing Side-Channel-Attacks

Encryption algorithms are based on strong mathematical properties to prevent attackers
from deciphering the encrypted content. However, their implementations in software naturally in-
troduce varying run times because of data-dependent control flow paths. Timing attacks [56] exploit
this variability in cryptosystems and extract additional information from executions of the cipher.
These can lead to deciphering the secret key. Kocher describes a timing attack as a basic signal
detection problem [56]. The “signal” is the timing variation caused by the key’s bits when running
the cipher, while “noise” is the measurement inaccuracy and timing variations from other factors
such as architecture unpredictability and multitasking. This signal to noise ratio determines the
number of samples required for the attack—the greater the “noise,” the more difficult the attack. It
was generally conceived that this “noise” effectively masked the “signal,” thereby shielding encryp-
tion systems from timing attacks. However, practical implementations of the attack have since been
presented [25, 31, 137] that clearly indicate the “noise” by itself is insufficient protection. In fact,
the architectural unpredictability that was initially believed to prevent timing attacks was discov-
ered to enable even more attacks. Computer architects use caches, branch predictors and complex
pipelines to improve the average-case performance while keeping these optimizations invisible to
the programmer. These enhancements, however, result in unpredictable and uncontrollable timing
behaviors, which are all shown to be vulnerabilities that lead to side-channel attacks [20, 87, 7, 30].

In order to not be confused with Kocher’s [56] terminology of timing attacks on algorith-
mic timing differences, we classify all above attacks that exploit the timing variability of software
implementation or hardware architectures as time-exploiting attacks. In our case, a timing attack
is only one possible time-exploiting attack. Other time-exploiting attacks include branch predictor,
and cache attacks. Examples of other side-channel attacks are power attacks [75, 55], fault injection
attacks [22, 36], and many others [137].

In recent years, we have seen a tremendous effort to discover and counteract side-channel
attacks on encryption systems [22, 30, 57, 52, 6, 53, 28, 119, 118]. However, it is difficult to be
fully assured that all possible vulnerabilities have been discovered. The plethora of research on side-
channel exploits [30, 22, 57, 52, 6, 53, 28, 119, 118] indicate that we do not have the complete set
of solutions, as more vulnerabilities are still being discovered and exploited. Just recently, Coppens
et al. [30] discovered two previously unknown time-exploiting attacks on modern x86 processors
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caused by the out-of-order execution and the variable latency instructions. This suggests that while
current prevention methods are effective at defending against their particular attacks, they do not
prevent other attacks from occurring. This, we believe, is because they do not address the root
cause of time-exploiting attacks, which is that run time variability cannot be controlled by the
programmer.

It is important to understand that the main reason for time-exploiting attacks is not that
the program runs in a varying amount of time, but that this variability cannot be controlled by the
programmer. The subtle difference is that if timing variability is introduced in a controlled man-
ner, then it is still possible to control the timing information that is leaked during execution, which
can be effective against time-exploiting attacks. However, because of the programmer’s lack of
control over these timing information leaks in modern architectures, noise injection techniques are
widely adopted in attempt to make the attack infeasible. These include adding random delays [56]
or blinding signatures [56, 28]. Other techniques such as branch equalization [80, 137] use software
techniques to rewrite algorithms such that they take equal time to execute during each conditional
branch. We take a different approach to directly address the crux of the problem, which is the lack of
control over timing behaviors in software. By using the PRET architecture, designed to allow pre-
dictable and controllable timing behaviors, we prevent the attacker from exploiting uncontrollable
timing side-channel leaks from the architecture.

At first it may seem that a predictable architecture makes the attacker’s task simpler, be-
cause it reduces the amount of “noise” emitted from the underlying architecture. However, we
contend that in order for timing behaviors to be controllable, the underlying architecture must be
predictable. This is because it is meaningless to specify any timing semantics in software if the un-
derlying architecture is unable to honor them. And in order to guarantee the execution of the timing
specifications, the architecture must be predictable. Our approach does not attempt to increase the
difficulty in performing time-exploiting attacks, but to eliminate them completely.

For this application, we present the PRET architecture in the context of embedded cryp-
tosystems, and show that an architecture designed for predictability and controllability effectively
eliminates all time-exploiting attacks. We target embedded applications such as smartcard read-
ers [57], key-card gates [24], set-top boxes [57], and thumbpods [101], which are a good fit for
the PRET architecture’s embedded nature. We demonstrate the effectiveness of our approach by
running both the RSA and DSA [82] encryption algorithms on the PRET architecture, and show
its immunity against time-exploiting attacks. This work shows that a disciplined defense against
time-exploiting attacks requires a combination of software and hardware techniques that ensure
controllability and predictability.

4.2.1 Background

Kocher outlines a notion of timing attacks [56] on encryption algorithms such as RSA
and DSS that require a large number of plaintext-ciphertext pairs and a detailed knowledge of the
target implementation. By simulating the target system with predicted keys, and measuring the
run time to perform the private key operations, the actual key can be derived one bit at a time.
Kocher also introduced power attacks [75, 55], which use the varying power consumption of the
processor to infer the activity of the encryption software over time. These played a large role in
stimulating research in side-channel cryptanalysis [81, 53], which also found side-channel attacks
against IDEA, RC5 and blowfish [53]. Fault-based attacks [22, 52, 36] were introduced by Bihan et
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al. [22]. These attacks attempt to extract keys by observing the system behavior to generated faults.
For the side-channel attacks that we have missed, Zhou [137] presents a survey on a wide range of
side-channel attacks.

Dhem et al. [31] demonstrate a practical implementation of timing attacks on RSA for
smart cards and the ability to obtain a 512-bit key in a reasonable amount of time. Several soft-
ware solutions such as RSA blinding [56, 28], execution time padding [56], and adding random
delays [56] have been proposed as possible defenses against this attack. However, these solutions
were not widely adopted by the general public until Brumley et al. [25] orchestrated a success-
ful timing attack over the local network on an OpenSSL-based web server. This motivated further
research on timing attacks for other encryption algorithms such as ECC [36] and AES [20]. In
particular, Bernstien’s attack on AES [20] targeted the the run time variance of caches. The intro-
duction of simultaneous multi-threading (SMT) architectures escalated this type of attack on shared
hardware components. Percival [87] showed a different caching attack method on SMT, made pos-
sible because caches were shared by all processes running on the hardware architecture. Acimez
et al. introduced branch predictor attacks [7, 6] that monitor control flow by occupying a shared
branched predictor. Compiler and source-to-source transformation techniques [30, 80] have also
been developed to thwart side-channel attacks.

Wang et al. [118] identified the causes of the timing attacks to be the underlying hard-
ware. In particular, their work focuses on specialized cache designs, such as Partition-Locked
Caches [119] and Random Permutation caches [118] that defend against caching attacks in hard-
ware. Very recently, Coppens [30] discovered two previously unknown attacks on the complex
pipeline run time variance of x86 architectures.

Our work builds upon the experiences of these. Most solutions employ either exclusively
hardware or software techniques to defend against attacks. We recognize that a complete solution
to control temporal semantics requires a combination of both software and hardware approaches to
defend against and prevent future side-channel attacks. Hence, we present an effort that includes
timing control instructions to control execution times in software, and a predictable processor ar-
chitecture to realize the instructions. By doing this, we completely eliminate the source of leaked
information used by time-exploiting attacks, rendering the system immune against such attacks.

4.2.2 A Precision Timed Architecture for Embedded Security

The foundation of time-exploiting attacks exploits the uncontrollable timing variability
introduced to programs by underlying the implementation of encryption algorithms. Software im-
plementations naturally introduce varying run times because of data-dependent control flow paths.
Modern computer architectures create unpredictable execution times by abstracting away hardware
optimizations meant to improve average case performance. In this section we will present several
features of PRET that bring controllability over timing to software, eliminating the origin of the
attacks. We will discuss the software extensions that allow timing specification in programs, and
the predictable architecture to comply with these specifications. These two approaches cannot be
separated. A predictable architecture by itself would only ease the feasibility of an attack, and soft-
ware timing specifications are meaningless if they cannot be met by the hardware. By combining
both hardware and software solutions, we yield a timing predictable and controllable architecture.
Thus, by design, PRET prevents leakage of any timing side-channel information, and eliminates the
core vulnerability of time-exploiting attacks.
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Controlling Execution Time in Software

Itis extremely difficult to control and reason about timing behaviors in software, even with
adequate understanding of the underlying architecture. Current instruction-set architectures (ISA)
have neglected to bring the temporal semantics of the underlying architecture up to the software
level. Thus, architecture designs have introduced clever techniques to improve on average case
execution time of the instructions, at the expense of introducing variability in instruction execution
time. These architecture improvements are hidden to the software behind the abstraction of the ISA.
This proves to be costly in terms of security, because it uncontrollably leaks timing information
which can correlate to the secret key.

In section 2.3 we introduce several ISA extensions that add time controlling behaviors
to software. The extensions provide timing instructions that enable a programmer to have more
control of execution time in software. These instructions do not physically alter processor speed, or
modify the execution time of instructions on the architecture. Instead, they are meant to aid the pro-
grammer in dealing with timing variability from data-dependent control flow paths by allowing the
programmer to interact with various execution time behaviors in software. This includes the ability
to specify a desired execution time for code segments, and the ability to detect and handle situa-
tions when the execution time exceeds the desired amount. Specifically in this context, the ability
to enforce a minimum execution time for code segments proves extremely useful for mitigating the
varying execution speeds exhibited by algorithms or code segments. We showed in section 4.1 how
the delay_and_set instruction can be used to synchronize execution and communication of different
nodes for an implementation of a real-time 1D-CFD simulation. Encryption algorithms can exhibit
varying execution time behaviors depending on the bits of the encryption key. The algorithm fol-
lows different execution paths if a particular bit in the key is set or not, allowing attackers to exploit
this execution time variance to obtain the key. By using the timing instructions provided by the
PRET architecture, we can mitigate the effects of this, eliminating the exploit causing this timing
attack.

At the expense of more programming effort, other solutions have been proposed to alter
and pad the execution time of different execution paths [56] to shield against the timing variability
of the algorithm. At a glance it might seem that the timing instructions are a similar solution to
these proposals, however, the principles are inherently different. While effective against certain
time-exploiting attacks, existing solutions alter the underlying algorithm implementation in attempt
to manually pad or distort the execution time. These solutions are not only algorithmically specific,
but could lead to unnecessarily degrading of the performance of the encryption algorithms. The
timing instructions, on the other hand, allow for a separation of concerns between the functionality
and timing behavior of the code. The programmer can implement the correct functionality of the
algorithm, then use timing instructions to regulate its timing behavior. The subtle difference will be
more apparent in section 4.2.3 when we show two different implementations of the RSA encryption
that both use timing instructions to regulate execution time. One implementation mimics existing
execution time padding solutions, and the second implementation uses timing instructions to enforce
an overall execution time of the RSA algorithm. We present performance comparisons and show
that explicit timing control instructions could prove more beneficial than simple execution time
padding.

The timing instructions provide a method to control the timing behavior of a program in
software. However, they do not change the behavior of the underlying architecture. If the underlying
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architecture makes the reasoning of execution time difficult, then these instructions become more
difficult to use. Timing instructions alone do not prevent attacks that exploit architectural designs
to inject execution time variances [87, 6] and obtain side-channel information. We argue that a
predictable architecture is also required to eliminate timing exploiting attacks.

Predictable Architecture

Pipeline Modern processor architectures often use speculation techniques such as caches and
branch predictors to improve average performance. These create timing variations in the program
execution. Depending on the outcome of its speculation, the processor might need to discard the
wrongly speculated work, and re-execute the correct instructions. Since these units are shared by
all software processes concurrently running on the processor, the states of the speculation units are
heavily dependent on the different interleaving of processes. This means that a process can unknow-
ingly be affected by other processes, since the speculation state is shared between them [61]. This
makes these units unpredictable. Because the goal of these speculation techniques is to improve
program performance without effort from the programmer, the controls of these speculation units
are concealed from the programmer, and cannot be directly accessed in software. Thus, these side
effects result in uncontrollable timing behaviors in the program.

Multithreaded architectures enable more opportunities to exploit the uncontrollable timing
behaviors. Attackers exploit such architectures by running a spy thread that executes concurrently
with a thread that implements the encryption algorithm. This spy thread probes the components
shared with the encryption thread [87, 6] by forcefully occupying the shared units and observing
when they are evicted by the encryption thread. The announcement of this vulnerability caused
Hyper-Threading, Intel’s implementation of simultaneous multithreading, to be disabled by default
in some Linux distributions because of its security risks [88]. For general purpose applications,
these side effects pose insignificant threats, but for security applications, the consequences are un-
controllable sources of side-channel information leakages.

As discussed in chapter 2.1.3, PRET employs a thread-interleaved pipeline, a multi-
threaded pipeline that uses a predictable round-robin thread scheduling policy between the hardware
threads every cycle. The thread-interleaved pipeline eliminates the need for any data forwarding/by-
passing logic, along with the need for hardware speculation units such as branch predictors. Each
individual hardware thread maintains their own copy of the processor state (program counter, gen-
eral purpose registers, stack pointer, etc.), and each hardware thread runs independently with no
shared state in the pipeline. Because of the simple and transparent thread-scheduling policy, each
hardware thread gets dispatched in a predictable way that cannot be affected by other hardware
threads. Thread-interleaved pipelines allow us to gain higher instruction throughput without the
harmful side effects. Most importantly, the hardware threads are temporally isolated, meaning that
no threads can affect each others timing behavior. This prevents attackers from exploiting shared
resources from the pipeline to initiate timing side-channel attacks.

Memory System The memory system presents another opportunity for attackers to gain side-
channel information. The high clock speed of modern processors combined with the high latency
to access main memory results in sometimes hundreds of cycles stalled when the processor needs
to access the main memory. On-chip fast access memories are used to bridge this access latency,
creating a memory hierarchy. Caches are hardware-controlled fast-access memories that predict
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and prefetch data from main memory based on temporal and spatial locality of data accesses from
the processor. If the cache control speculation is accurate, then access to data can complete in
one cycle, and no stall in the pipeline is required. However, when a misprediction occurs, data
needs to be fetched from the main memory, causing a drastic difference in the access time [112].
Caches abstract away the memory hierarchy and the access latency variation from the programmer
by managing the cache contents in hardware. Because threads and processes share the same memory
system, attackers can probe the memory access patterns of the encryption process by evicting shared
cache lines and observing the timing variation the eviction causes [87]. This is possible because
the memory hierarchy is abstracted away from the programmer, resulting in uncontrollable timing
behaviors.

PRET utilizes scratchpads memories (SPM) instead of caches in its memory hierarchy.
SPMs are fast access memories controlled by software. For security purposes, the scratchpad on
PRET is configured to provide each hardware-thread a private scratchpad region so the scratchpad
contents cannot be modified or monitored by spy threads on running another hardware thread. This
prevents shared resource time-exploiting attacks on the fast access memory across hardware threads.
Even if an encryption process is sharing a hardware thread with another process, the contents of the
scratchpad is controlled in software or statically compiled in by the compiler. The thread managing
supervisor code can manage the contents on the scratchpad before the processes are scheduled and
unscheduled, preventing a spy process from affecting the execution time of the encryption process.
Clearly, the edge that SPMs give over conventional caches is their controllability in software. This
prevents unwanted timing side-effects from attackers and spy threads, even if the SPM is shared by
software processes.

Although no known attacks have exploited main memory access, typical DRAM con-
trollers also result in variable memory access latencies, and are shared among all threads and
processes within the system. A predictable DRAM controller is designed and interfaced with the
thread-interleaved pipeline of PRET to provide predictable memory access latencies to all threads.
The DRAM controller privatizes DRAM bank resources to remove bank conflicts and fully utilize
bank level parallelism on the DRAM. Each hardware thread in the thread-interleaved pipeline is
mapped to a privatized DRAM bank resource. On the backend, the bank resources are accessed
in a round robin order fashion, to remove temporal interference between accesses to the bank re-
sources. All memory accesses from the hardware threads are isolated from each other, removing any
possibilities of cross-thread side-channel attacks from the shared memory controller. The DRAM
memory access latencies are decoupled from the data access patterns, thus, even processes on the
same hardware thread that access the same bank resources cannot alter each others execution time in
attempt to gain side-channel information. More details on the PRET DRAM controller is presented
in section 2.2.2.

We acknowledge the many efforts to counteract timing attacks with algorithm rewrites to
control and balance the run time of the algorithm. These efforts, while successful, are ad-hoc, coun-
teracting specific attacks without prevention of others. Without tackling the origin of time-exploiting
attacks, we believe that more exploits will eventually be discovered, attacking the uncontrollable
execution time variation caused by the shared resources of hardware or software control flow. The
PRET architecture provides control of timing properties in software and a predictable architecture
that with temporal isolation for its hardware threads. PRET is impenetrable known attacks such as
branch predictor attacks [7], cache attacks [87] or other attacks on the pipeline [30]. More impor-
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tantly, the predictable architecture design removes the root cause of time-exploiting attacks—the
uncontrollable timing variations caused by unpredictable hardware components or software control
flows.

4.2.3 Case Studies

In the following section we show the results of two encryption algorithms running on the
cycle accurate simulator of the PRET architecture described in lickly et al [67]. Lickly et al.[67]
introduced the first realization of the PRET architecture that implements the SPARC v8 instruction
set. It employs six threads on a six stage thread-interleaved pipeline, and also uses scratchpads
for an expose memory hierarchy. Programs are written in C and compiled using a standard gcc
cross compiler from Gaisler research labs [37]. Because the results of these experiments have yet
to be ported to the newer PTARM, we present the original measurements obtained on the SPARC
realization of the PRET architecture.

The precision timed SPARC architecture implements a simple processor extension in-
spired by Ip and Edwards [49] that adds timing instructions to the ISA. To be consistent with the
terminology used in [49], we call this instruction the deadline instruction. This deadline instruction
has similar semantics to the delay_and_set macro introduced in section 2.3. It first ensures the previ-
ous deadline specified is met, then sets the deadline for the next instruction sequence. The deadline
instruction specifies time in the units of thread cycles, which are a thread’s perceived cycle.

RSA Vulnerability

The central computation of the RSA algorithm is based primarily on modular exponen-
tiation. This is shown in algorithm 1. Of the inputs, M is the message, N is a publicly known
modulus, and d is the secret key. Depending on the value of each bit of d on line 4, the operation
on line 5 is either executed or not. This creates variation in the algorithm’s execution time that is

dependent on the key, as mentioned in [56].

Input: M, N,d = (dn,1dn,2...d1d0)
Output: S = M? mod N

Input: M, N,d = 1 S«1
(dn—1dn—2...d1do) 2 forj=n-1..0do
Output: S =M% mod N 3 /* 110000 is 6600006 cycles, since deadline registers
1 S«1 are decremented every 6 cycles.*/
2 forj=n-1..0do 4 dead(110000);
3 SFSZmOdN 5 S(—SQmodN
4 | ifd;j=1then 6 | ifd;=1then
5 [ S+ S-MmodN 7 | S« S-MmodN
6 return S 8 dead(0):
Algorithm 1: RSA Cipher 9 | returnS

Algorithm;Z: RSA Cipher with deadline instructions

When the reference implementation of RSA (RSAREF 2.0) was ported to the precision
timed SPARC architecture, single iterations of the loop varied in execution time almost exclusively
due to the value of d;, which is the j'* bit of the key. The triangle points in figure 4.8(a) show
the measured run time of each iteration in the for loop (lines 2—-6) in algorithm 1. Each iteration
took approximately either 440 or 660 kilocycles, with very little deviation from the two means.
As a simple illustration, we can fix the execution time of each iteration in software by adding
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deadline instructions in the body of the loop as shown in algorithm 2. When enclosed with deadline
instructions, the execution time of each iteration is uniform, and the bimodality of the execution time
is completely eliminated. The x points in figure 4.8(a) show the measured time of each iteration after
adding deadline instructions; they are simply a straight line.
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(a) Run time of Modular Exponent operation (b) Run time of RSA operation

Figure 4.8: RSA Algorithm

We observe the large-scale effect of this small change on the whole encryption in fig-
ure 4.8(b), where RSA was run fifty times using randomly generated keys. Without the deadline
instructions (triangle points), different keys exhibit significant diversity in algorithm execution time.
With the deadline instructions added within the modular exponentiation loop (circle points), the fluc-
tuation is dramatically reduced to almost none. The remaining small variations result from code that
is outside of the modular exponentiation loop, which is not influenced by the actual key. From figure
4.8(b) we can see that this small variation is not significant enough to correlate the total execution
time and the key.

Without explicit control over timing, any attempt to make an algorithm run at constant
time in software would involve manual padding of conditional branches. This forces the algorithm
to run at the worst-case execution time, similar to what we have showed. Although this makes the
encryption algorithm completely secure against time-exploiting attacks, this method is not adopted
in practice because of the overhead. Nevertheless, with control over execution time, we will show
that running encryption algorithms in constant time does not necessarily require it to run at the
absolute worst-case execution time.

An Improved Technique of using Deadline Instructions

It is expected that the distribution of RSA run times will be normal over the set of all
possible keys [56]. Figure 4.9 shows the run time distribution measured for one thousand randomly
generated keys. A curve fitting yields a bell shaped curve formed from the run time distribution of
all keys. This means that the execution time of approximately 95% of the keys will be within £2
standard deviations of the mean, and the worst-case execution time will be an outlier on the far right
of this curve. Our previous example fixed the execution time of all keys to be roughly at this far right
outlier. An improved technique capitalizes on this distribution of run times to improve performance.
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First, instead of enclosing the loop iterations of the modular exponentiation operation, we
enclose the whole RSA operation with deadline instructions. Now the deadline instructions are used
to control the overall execution time of the RSA operation. Note that we could have done this for
the previous example as well to fix the execution time to be exactly the worst-case, always.

For RSA, key lengths typically need to be
longer than 512 bits to be considered cryptographi-
cally strong [94]. This gives roughly 2°'2 possible
keys, which is far more than needed for most appli-
cations. Suppose we are able reduce the key space
the application covers—instead of using 100% of
the keys, we refine our encryption system to only
assign 97% of all possible keys. Namely, the sub-
set of keys whose RSA execution times fall on the
left of the 42 standard deviation line on the curve.
Statistically, the keys that lie outside of £2 standard
deviation are the least secure keys, since it is easier
for time-exploiting attacks to distinguish those keys.
By doing so, we reduce the execution time of the en-
cryption algorithm because we know that keys that
are right-side outliers will not be used.
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With timing control in software, we can take advantage of this information by simply
reducing the value specified in the deadline instructions enclosing the whole RSA operation. The
square points in figure 4.8(b) show the results of using deadline instructions in this way. We re-
ran the same fifty keys from the previous section, and enclosed the whole operation with deadline
instructions that specified the run time at +2 standard deviations from the bell curve we obtained.
We can see that, compared to the previous results that fixed the execution time of each key to take
the worst-case time (circle points), we clearly reduced the overhead while still running in constant
time. By taking the run time difference between executions with and without deadline instructions,
we obtain the overhead introduced for each of the keys with run time below 2 standard deviations
(97.9% of keys in our case). This calculation reveals that by merely reducing the key space by 3%,
running the encryption with optimized deadline instructions only introduced an average overhead of
2.3% over all the keys we measured. All this while still being completely immune to time-exploiting
attacks. This is virtually impossible to achieve without explicit timing control, which illustrates the
value of decoupling timing control and functional properties of software.

Digital Signature Algorithm

Kocher’s [56] original paper mentioned that the Digital Signature Standard [82] is also
susceptible to timing attacks. Thus, to further illustrate our case, we port the Digital Signature
Algorithm from the current OpenSSL library (0.9.8j) onto the precision timed SPARC architecture.
We use the same method mentioned above to secure this implementation on PRET. Figure 4.10(a)
shows the distribution of DSA run time for one thousand keys. It also shows a normal distribution.
Then, we randomly generate another one hundred keys, and measure the run time with and without
deadline instructions, which we show in figure 4.10(b). We can clearly observe that the run time
with deadline instructions is constant, and any time-exploiting attack is not possible.
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Figure 4.10: Digital Signature Standard Algorithm

Currently, we do not know of any work that correlates the key value with run time for
different encryption algorithms. However, with the ability to control execution time in software,
such a study would be extremely valuable. Figures 4.9 and 4.10(a) show that RSA and DSA follow
a normal distribution. Thus, from the algorithm, we postulate that by simply counting the 1 bits in
the key should be sufficient to distinguish the 95% of secure keys before assigning. Note that no
change to the encryption algorithm itself is needed, but only the key assignment process. Since we
can adjust the execution time in software, we can tune the performance of each application based on
the application size, key bit length and performance needs. All this can be done while maintaining
complete immunity against time-exploiting attacks.

Note that there are several other software techniques specific to encryption algorithms that
successfully defend against timing attacks. Our work does not lessen or replace the significance of
those findings. Instead, we can use traditional noise injection defenses on PRET as well. For
example, if reducing the key space is not possible for some applications running RSA then RSA with
blinding can be ran on PRET. By simply running on PRET, the encryption algorithm is also secure
against shared hardware resource attacks such as caches, and branch predictors. Other encryption
algorithms that do not have software techniques or solutions readily available to counteract timing
attacks can easily use the deadline instructions provided by PRET to achieve security against timing
attacks.

4.2.4 Conclusion and Future Work

Side-channel attacks are a credible threat to many cryptosystems. They exist not just be-
cause of a weakness in an algorithm’s mathematical underpinnings, but also from information leaks
in the implementation of the algorithm. In particular, this work targets time-exploiting attacks, and
lays out a means of addressing what we consider the root cause of such attacks: the lack of con-
trollability over the timing information leaks. As an architecture founded on predictable timing
behaviors, PRET provides timing instructions to allow timing specifications in software. In addi-
tion, PRET is a predictable architecture that removes timing interference between threads through
a thread-interleaved pipeline, scratchpad memories, and a predictable DRAM memory controller.
This eliminates the shared states in the architecture that create uncontrollable timing interference,
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exploited by the attackers. Through a combination of hardware and software techniques, PRET
gives control over the timing properties of programs, which effectively eliminates time-exploiting
attacks.

We demonstrate the application of these principles to known-vulnerable implementations
of RSA and DSA, and show that PRET successfully defends against time-exploiting attacks with
low overhead. Our work does not undermine the significance of any related work, which have
mostly been specific to certain attacks. PRET does not target a specific encryption algorithm, be-
cause it can be used in combination with these partial solutions on specific encryption algorithms,
as well as provide a complete defense for other encryption algorithms that are less researched upon.
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Chapter 5

Related Work

We are certainly not the first or only one to tackle the unpredictability of computer archi-
tecture designs. In this chapter we survey an abundance of related research to our goal of predictable
architectures. Timing analysis techniques, compiler techniques and architectural techniques all play
a role in tackling the unpredictability of computer architectures. However, we limit the scope of
this survey to mainly focus on architectural techniques, as that is the focus of this thesis. Adding
temporal semantics to programming languages has been the focus of many research proposals, but
to the best of our knowledge, we believe this is the first attempt to introduce temporal semantics
down at the ISA level.

5.1 Pipeline-Focused Techniques

5.1.1 Static Branch Predictors

Dynamic branch predictors cause timing anomalies [34], and they are difficult to model
because of the aliasing of branch points. Aliasing occurs when two different branches occupy the
same branch predictor slot and cause interference. Burguiere et al. [26] make a case for static
branch prediction to be used for real-time systems. This can be done in several ways. The simplest
form can predict all branches taken or not taken. Improvements can include the Backward Taken,
Forward Not Taken scheme, to improve performance for loops and if statements. This scheme uses
the observation that for loop control branches, almost all backwards branches are taken to return
to the loop; only at the end of the loop are forward branches taken. With architecture support for
static branch predictions, compilers can analyze code patterns (loops, if-then-else, if then) and insert
instruction set constructs to denote the static prediction of each branch. The underlying architecture
will use that for its prediction, instead of relying on a dynamic hardware unit. This removes aliasing
and gives better estimated worst case branch mispredicts.

Bodin et al. [23] use this idea of software static branch prediction to improve the WCET
of programs. Intuitively, they aim to remove all branch mispredict penalties from the worst-case
path to improve the WCET. They propose an algorithm that iterates through the control flow graph
to find the worst-case execution path (WCEP). Initially, the algorithm finds the worst case path
assuming all the branches are mispredicted. Then, the algorithm assigns the static branch prediction
of all branches on the WCEP to be taken. The algorithm then iterates again to find the new WCEP
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until two iterations yield the same WCEP. Since the algorithm never reassigns assigned branches,
it always converges but is not optimal. The presence of caches can easily effect the WCEP, and
each branch prediction reassigned can modify the cache state. However, the experiments assumed
all code and data fit into the caches, thus the effects of caches were not factored into the algorithm.

5.1.2 Superscalar Pipelines

Superscalar pipelines issue multiple instructions at a time to exploit instruction-level par-
allelism (ILP). In order to keep the pipeline filled, superscalar pipelines typically employ more ag-
gressive techniques to fully utilize the ILP. As a result, attempting to model all advanced techniques
often leads to either very pessimistic results, or almost infeasible complex models.

Rochange et al. [98] propose to use instruction pre-scheduling to ease the difficulties of
analysis of superscalar pipelines. The concept is similar to resetting the pipeline state before each
basic block execution. This is done by postponing the scheduling of instructions from the next
basic block until the instructions from the previous basic block are completed. If it is possible to
remove all timing interference across basic blocks, then the resources needed to model the pipeline
can be significantly reduced, as each basic block will start with a consistent initial state. However,
the results assume the absence of caches, which can easily effect execution across basic blocks.
Furthermore, depending on how many instructions can be in flight at one time, waiting for the
pipeline state to be flushed can induce large penalties for programs with a lot of control flow transfer
and small basic blocks.

Whitham et al. [123] combine the techniques of instruction pre-scheduling and static
branch predictions to propose modifications to an out-of-order superscalar pipeline to provide pre-
dictability for single thread execution. Instead of basic blocks, the superscalar pipeline pre-schedules
instructions across virtual traces[122]. Virtual traces are program paths with static branch predic-
tions inserted. These are usually formed by predicting along the WCEP, similar to the algorithm
introduced by Bodin et al [23]. Each virtual trace can contain a fixed number of branches. A VTC
(virtual trace controller) is introduced to control the progress of the pipeline. The VTC contains a
VTR (virtual trace register) which stores the branch predictions. The pipeline state is reset between
traces so the WCET analysis can be limited to within traces. The out-of-order superscalar pipeline
is also modified to disallow memory prediction and reordering of branches. The architecture em-
ploys scratchpads instead of caches. This allows the execution of traces to run predictably for each
different exit (branch mispredict) within a trace. The architecture shows an improved throughput
for most programs when compared to a simple in-order CPU model.

5.1.3 VLIW architectures

VLIW machines, like superscalars, issue multiple instructions at a time to exploit ILP.
However, unlike superscalars, VLIW machines rely on the compiler to utilize ILP and determine the
instructions issued. This helps in the predictability because the hardware does almost no reordering
or stalling.

Yan et al. [135] study the predictability of VLIW machines, and propose changes to the
architecture and compiler to improve the predictability. They find that although most of the data
dependency is scheduled away by the compiler, there are still several factors that limit the pre-
dictability on the hardware. First, since statically it is not known whether a memory access is a hit
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or a miss, the hardware still needs to check for it and stall when needed. Second, data dependencies
still exist across compilation units, so the hardware still needs to support basic data dependency
checking to handle those dependencies. A compilation unit could be a basic block, a loop, a proce-
dure or a region [41]. Finally, if the VLIW machine uses branch prediction, there is still the need
for the handling of mispredictions.

As VLIW machines heavily utilize the compiler to improve performance, they propose
several compiler techniques to compile programs that lend themselves to better WCET. First, they
use the single-path paradigm proposed by Puschner and Burns [91], and eliminate all non-loop
backwards branches with full if-conversions [12]. To mitigate the performance penalty of single-
path programming, aggressive hyperblock scheduling [71] is used to exploit the ILP from VLIW
architectures. For the data dependencies across compilation units, they use code padding to ensure
the execution time is consistent across different paths. This will enable easier WCET analysis. This
work minimally deals with instruction caches, but does not account for the effects of data cache.

5.1.4 Multithreaded Pipelines
Thread Scheduling

With explicit hardware multithreading, the scheduling policy plays a huge role in the pre-
dictability of the architecture. Kreuzinger et al. [59] evaluate the use of different real time scheduling
schemes to schedule hardware threads to handle external events. They evaluate fixed priority pre-
emptive (FPP), earliest deadline first (EDF), least laxity first (LLF) and guaranteed percentage (GP),
which is similar to time sharing the pipeline. The architecture used for evaluation is a Java multi-
threaded superscalar pipeline with four threads [58]. A hardware priority manager is implemented
to facilitate the scheduling of threads. All real-time threads register their real-time requirements
during initialization with the priority manager. When the external event occurs, the priority man-
ager schedules the corresponding interrupt service thread, and starts assigning priorities based upon
the real time requirements. The evaluation criteria to compare scheduling policies is the throughput
of the processor. The conclusion of the report is that in order to maximize multiple threads on a
superscalar machine, the scheduler should try to keep as many threads active as long as possible
to leverage thread level parallelism and hide more latencies of pipeline stalls. Thus GP does the
best because it schedules different active threads each cycle until their percentage runs out. Thus, it
keeps threads alive as long as possible. The idea of using hardware threads to service interrupts is
novel because of the low overhead to switch contexts. By giving the interrupt service routine thread
priorities, it may be possible the bound the execution time of higher priority threads. Although the
dynamic thread scheduling can cause execution time bounds to be imprecise from the effects of
timing interference across threads.

El-Haj-Mahmoud et al. [33] propose a statically scheduled multithreaded architecture
called the Real-Time Virtual Multiprocessor (RVMP). The idea of a virtual processor is a slice
of time on the processor. The RVMP extends an in-order 4-way superscalar processor to support
the partitioning of the pipeline in space and time. In the space dimension, the resources of the su-
perscalar can be partitioned to different threads. In the fime dimension, the superscalar resources
are time shared, and different threads are scheduled to utilize the resources at different times. The
hardware extensions to the superscalar pipeline prevent interference between the virtual partition-
ings. Scratchpads are employed for predictable memory access latencies, although they assume all
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accesses go to the scratchpad. It is unclear how accesses to shared resources, in particular main
memory are dealt with. A static round-based schedule of the thread execution is constructed to ac-
count for the real-time requirements of each thread. The static schedule utilizes the flexibility of the
different time and space partitioning options to allow threads with higher utilization more access to
the pipeline.

Simultaneous Multithreaded Architectures

Simultaneous Multithreaded Architectures (SMT) attempt to exploit both instruction-level
and thread-level parallelism by dynamically scheduling multiple hardware threads onto a multi-
way pipeline. In each cycle, instructions from different threads can be fetched simultaneously to
fully utilize the pipeline. The dynamic scheduling and aggressive speculation techniques render
SMTs almost impossible to use for real-time systems. However, several proposals involve slight
modifications to architecture to create a WCET-aware SMT to be used for real-time systems.

Barre et al. [18] propose to assign one explicit hardware thread with the highest priority.
That thread, called the real-time thread, gains access to any resource whenever it is scheduled. Any
other thread that is currently occupying the resource will be preempted, and later replayed when
the real-time thread is not using it. The modifications to the SMT include additions to allow the
preemption, and also the partitioning of any resource that needs to be shared. This gives the highest
priority thread the illusion that it has the whole superscalar pipeline to itself, reducing the execution
time analysis of the real-time thread to the equivalent of a superscalar architecture. Currently the
cache effects and branch prediction are listed as future work.

Hily et al. [47] show that out-of-order execution may not be as cost effective as in-order
execution on SMT machines. Thus, Uhrig et al. [100] propose a similar concept to Barre et al. [18],
except for an in-order executed superscalar. Mische et al.[78] expand this to allow more than one
real-time thread to run on the SMT architecture. This is done by time-sharing the highest prior-
ity thread slot among the real-time threads. The time-sharing schedule is statically constructed to
ensure that the real-time threads still provide reasonable WCET guarantees. This architecture uses
instruction scratchpads without data scratchpads, and no branch predictors, as the branch penalty
can be filled with executions from other threads. Some issues do arise with the contention of mem-
ory access, as it is difficult to partition memory accesses between hardware threads. Contention
between the high priority thread slot and other thread slots are resolved by alerting the memory
controller from earlier stages in the pipeline that a high priority thread will issue a memory instruc-
tion. This way the memory controller can hold off service to the lower priority memory accesses
and wait for the high priority access to come. However, it is unclear how contention between the
real-time threads on the high priority thread slot is resolved.

Thread Interleaved Pipelines

Thread-interleaved pipelines have been proposed and employed in various architectures
from research and industry. Besides the CDC6600 [2], described in section 2.1.3, Lee and Messer-
schmitt [62], the Denelcore HEP [107], the XMOS XS1 architecture [72], the Parallex Propeller
chip [4] and the Sandbridge Sandblaster [35] all use fine grained thread interleaving for different
applications. In particular, Lee and Messerschmitt [62] and the Sandbridge Sandblaster [35] pro-
pose the use of thread-interleaved pipelines for DSP applications. Lee and Messerschmitt [62] also
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use a round robin thread scheduling policy while the Sandblaster uses a Token Triggered Threading
policy. The Token Triggered Threading policy is similar to the round robin scheduling policy in that
each hardware thread context can only issue one instruction each in a scheduling cycle. However,
a token is used to determine which thread’s instruction is executed next. The XMOS XS1 architec-
ture [72] allows hardware threads to dynamically be added and removed from the thread scheduling.
They use the dynamically added threads to handle interrupts, which improves the interrupt response
latency. The XS1 architecture specifies that during execution, there will always be a minimum the
number of threads equal to the pipeline depth. As explained in section 2.1.3, this removes pipeline
hazards to improve throughput. However, the dynamic thread scheduling can cause each thread’s
execution frequency to vary depending on the number of threads executing at one time.

5.1.5 Others
Virtual Simple Architecture

Anantaraman et al. [13] propose the virtual simple architecture (VISA), which uses dy-
namic checking to ensure tasks are meeting the deadlines. The microarchitecture is split into two
modes. A simple mode, which conforms to the timing of a hypothetical simple pipeline that is
amenable to safe and tight WCET analysis. And a high performance mode, in which the architec-
ture can use arbitrary performance-enhancing features. A task that executes on the VISA is divided
into multiple sub-tasks to gauge progress on the complex pipeline. Each sub-task is assigned an
interim deadline, based on the hypothetical simple pipeline. When tasks are executing on the VISA,
they are first speculatively executed in high-performance mode. If no checkpoints are missed, then
the high performance mode has met the timing requirements. If a checkpoint is missed, the archi-
tectures switches to a simple mode to bound the remaining task times in attempt to meet the timing
constraints. The results show that the high performance mode have average executions times of 3
to 4 times faster than the simple mode. The authors also discuss possible power savings by scaling
the voltage in high performance mode. However, the tasks and programs must have sufficient slack
time to allow for dynamic checking of deadlines, and it is unclear whether the simple mode will
always be able to make up the time if the high performance mode misses its checkpoint.

Java Optimized Processor

Schoeberl presents the Java Optimized Processor (JOP) [104] which uses Java for real
time embedded systems. The design of JOP includes a two level stack cache architecture [103].
Instead of using a large register file to store the stack, like the PicoJava[74], it uses only two registers
to store the top two entries of the stack (Register A and Register B). Leveraging the stack based
architecture of JavaVM, whenever an arithmetic operation occurs, the result is always stored back
to the top of the stack (Register A). Any push or pop operation simply results in a shift of values
between the two registers and the stack cache, which only requires one read and one write port for
the memory. This architecture does not have any data hazards and has very few pipeline stages
(no need for an explicit commit/writeback stage). Because of the few pipeline stages, it only has
a small branch delay penalty, so no branch predictor is used. All bytecode on JOP is translated
into a fixed length microcode. Each microcode executes in a fixed number of cycles, independent
of its surrounding instruction. Thus, the WCET analysis only requires a lookup table of bytecode
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translated into microcode, rendering it a predictable architecture.

MCGREP

Whitham introduces the Microprogrammed Coarse Grained Reconfigurable Processor
(MCGREP) [121], which is a reconfigurable predictable architecture. The architecture of MCGREP
contains multiple execution units, but each operation is implemented in microcode. The pipeline
architecture is extremely simple, reassembling a two stage pipeline with a fetch/decode stage and an
execute stage. No internal state is stored in the pipeline, and instructions do not affect each other’s
execution time. A fast internal RAM without cache is used to store the program and used as mem-
ory for data. The microcode operations are predictable in the MCGREP architecture, taking a fixed
number of cycles to complete. Advanced operations can be dynamically loaded as new microcode,
which enables application specific instructions to improve performance. All MCGREP instructions
take a fixed number of clock cycles to complete and are unaffected by execution history, making
MCGRERP a predictable processor.

ARPRET

Andalam et al. [14] introduce the Auckland Reactive PRET (ARPRET) architecture to
execute a new language called precision timed C (PRET-C). PRET-C is a synchronous language
extension to C designed to support synchronous concurrency, preemption, and a high-level construct
for logical time. ARPRET extends the Microblaze [130] with a custom Predictable Functional Unit
(PFU) that is used for thread scheduling. The Microblaze is configured to use on-chip memory to
achieve predictable memory access latencies. The PFU stores the thread contexts of each thread,
including the PC, thread status, priority, etc. that are used during each context switch. By doing
the thread scheduling in hardware, ARPRET reduces the thread switching overhead. Each thread
switch is triggered in software by the C language extensions in PRET-C, and the PFU is used to
determine the next context to run. Their benchmarks show that the ARPRET achieves predictable
execution without sacrificing throughput.

5.2 Memory-Focused Techniques

5.2.1 Caches

The dynamic behavior of caches cause headaches for real-time systems when trying to
predict memory access latencies. Reineke et al. [95] presented a study on the predictability of dif-
ferent cache replacement policies. They evaluate the Least Recently Used (LRU), First In First Out
(FIFO), Pseudo LRU (PLRU) and Most Recently Used (MRU) replacement policies to determine
if LRU was more predictable than other policies, as observed by Heckmann et al. [43]. The results
confirm that the LRU replacement policy was significantly more predictable than other policies.
Thus, the authors recommend any real-time system with caches to use LRU for its replacement
policy. This paper also reveals potential for improvement in existing analyses of PLRU and FIFO.

Puat and Decotigny [89] propose to use partitioned and lock caches to eliminate the intra-
and inter-task interferences when a cache is used. Intra-task interferences occur when different
memory blocks of the same task compete for cache blocks. Inter-task interferences occur when
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a preempting task’s memory blocks cause cache reloads in the preempted task. By using cache
partitioning, a part of the cache is reserved for a particular task, and inter-task interference is elim-
inated. To eliminate intra-task interference, cache locking is used to lock the contents of cache.
The cache contents can be locked statically, which are fixed at system start for the whole run time,
or dynamically, where the contents may change. By locking and partitioning caches, the memory
access latencies will have more predictable behavior.

Schoeberl [102] propose to use method caches for the instruction cache of the JOP ar-
chitecture [104]. Conventional caches use a cache line as its basic unit of replacement. Method
caches use methods as its unit of replacement. A cache can contain different block sizes that are
used to store methods. There exists a tradeoff between performance and predictability for the block
sizes of the method cache. Methods can occupy more than one block, depending on the method
size. When a method is called, the cache loads the whole method into the cache, occupying any
number of blocks it needs. The LRU replacement policy is used, since the end of a method usually
returns to its parent method. When a method is evicted, all blocks it occupies are evicted. Thus, the
instruction cache is more predictable, because it only changes on method calls. Within a method,
all instructions are known to be in the cache, so no cache miss results from the instruction cache.

Metzlaff et al. [76] use a method cache mechanism with the real-time SMT architecture
in [78]. They partition the scratchpad for each different thread so no inter-thread interference will
exist. Then, they implement the method cache [54] with scratchpads, and give priority to the high
priority thread when a filling is needed. They called this the function scratchpad. If the thread
is stalled when a method is being filled into the scratchpad, other threads occupy the pipeline, so
throughput is preserved with multiple threads.

5.2.2 Scratchpads

Scratchpads are known to allow more precise WCET analysis [120] because the contents
are managed in software. Puaut et al. [90] present a comparison of locked caches and scratchpads,
and show only subtle differences between the two in terms of performance. Most benchmarks give
similar WCET estimates. The difference stems from the granularity of allocation units. For locked
caches, the basic allocation unit is a cache line. Thus, it is possible to pollute the contents of the
cache line with contents that are not part of the allocation scheme. Also, depending on the asso-
ciativity of the cache, a cache line that should be locked could possibly be in conflict with another
cache line that is also locked, and thus lose its ability to be locked in the cache. For scratchpads, the
basic allocation unit is only determined by the allocation scheme, so the contents cannot be polluted.
However, if the basic allocation block is big, it is possible that the allocation block will not fit in the
scratchpad at the end due to fragmentation.

Whitham and Audsley [124] introduce a hardware scratchpad memory management unit
(SPMMU) that manages the transfers of data between memory and the data scratchpad to eliminate
pointer aliasing and pointer invalidation. Pointer aliasing occurs when the same memory loca-
tion is referenced using different names (pointers). Pointer invalidation occurs when an object in a
memory location is moved out from that memory location. As a result, an alias that points to the
object before the move, ends up pointing to an incorrect object. They propose to separate logical
addresses (used by the program) and physical addresses (identifying where an object resides). The
SPMMU maintains a table mapping the logical address and physical address. Although the SP-
MMU resides in hardware, its contents are controlled by software via explicit OPEN and CLOSE
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commands in the code. The user specifies the base address for the object, the size of the object and
the physical address at which the object is being loaded to. The SMMU then performs the transfer,
and updates an internal table mapping the logical address to the new physical location of the object.
This simplifies analysis because it eliminates the need for whole-pointer analysis in the program.

5.2.3 DRAM

DRAM cells leak charge and have to be refreshed periodically to retain their state. How-
ever, the refreshes of DRAMs stall other DRAM accesses, and potentially close DRAM rows, which
require additional precharges to reopen them. This causes DRAMs to be unpredictable for real-time
systems, as the DRAM refreshes are usually controlled in hardware. Bhat and Muller [21] tackle
this specific issue of DRAM refreshes by scheduling burst refreshes. They account for the DRAM
refresh requirements in software, and schedule refresh tasks to handle the DRAM refreshes pre-
dictably. Two implementations are provided. The first is a pure software implementation, and
use RAS-only refreshes to manually refresh the DRAM rows during the refresh task. The second
implementation uses a hybrid software-hardware solution, where the software initiates a hardware
DRAM refresh. Depending on the application needs, each refresh can contain smaller bursts at the
cost of scheduling more refreshes. By scheduling the DRAM refresh, other DRAM accesses are
more predictable because no conflict will arise from refreshes.

Akesson et al. [9, 10, 8] introduce the Predator, a predictable SDRAM memory con-
troller. It is predictable by providing a guaranteed maximum latency and minimum bandwidth to
each client, independent of the behavior of other clients. Standard DDR2 SDRAM memory con-
trollers schedule the requests of the different components dynamically. Predicting the execution
time of a particular component in such a system is difficult, because of interference on the shared
DRAM resource. Predator is a hybrid between static and dynamic memory controllers. Predator
precomputes a set of of read and write groups with corresponding static sequences of SDRAM com-
mands. These static sequences allow the computing of latency bounds, and are scheduled by the
backend dynamically. As predictor is meant to service multiple clients, requests by different clients
are scheduled using a Credit-Controlled Static-Priority arbiter (CCSP). This provides a maximum
latency and bandwidth to the clients based upon the guarantees of the backend. The front-end also
may delay each response by the back-end up to its worst-case bound. This eliminates interactions
between different requestors.

Paolieri et al. [85] present the Analyzable Memory Controller (AMC), which uses a very
similar approach to the Predator. The main difference between AMC and Predator is that the AM
uses a Round-Robin (RR) arbiter, instead of a CCSP arbiter employed in Predator. The RR arbiter
provides the same latency and bandwidth guarantees to all clients while the CCSP provides better
latency guarantee for high priority tasks.
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Chapter 6

Conclusion and Future work

In order to improve the efficiency and scalability of handing time in CPS and safety critical
systems, we contend that changes must be made to conventional abstraction layers to introduce time
as a first class citizen. In this thesis we focus on doing so for the ISA abstraction layer and below.
We explore instruction extensions to the ARM ISA to bring temporal semantics to the program,
independent of architecture implementation. We also present the precision timed ARM (PTARM),
an implementation of a PRET machine, in order to provide a timing predictable and composable
platform for deterministic execution times.

To bring temporal semantics to the ISA abstraction layer, we present a few instruction
extensions to the existing instruction set. The instructions operate on a platform clock that is syn-
chronous with the execution of instructions. The instruction set extensions allow programmers to
specify the timing properties of program segments, and to throw hardware exceptions when the
timing specifications are not met. In this way, our instruction extensions do not over constrain the
temporal semantics of the ISA, and continue to allow architecture innovation to improve program
performance. These extensions allow programmers to begin reasoning about temporal properties of
the programs independent of the underlying execution platform, provided that the ISA is faithfully
implemented.

The PTARM exploits thread-level parallelism for performance by employing a predictable
thread-interleaved pipeline. This removes the unpredictability when handling pipeline hazards, and
provides temporal isolation for all hardware threads within the pipeline. PTARM uses scratch-
pads instead of caches to expose the memory hierarchy, which enables a simpler and more precise
WCET analysis of memory accesses. With a bank privatized DRAM controller, PTARM provides
predictable DRAM access latencies for each hardware thread, and preserves temporal isolation be-
tween the hardware threads that access the DRAM as a shared resource. The timing predictability
and composability provided by PTARM does not come at the cost of aggregate performance, as
our benchmarks show an improved throughput for both the pipeline and DRAM memory controller
when fully utilized. Although achieving full utilization requires that applications have sufficient
concurrency, the deterministic architecture can better equip CPS platforms with the ability to han-
dle the concurrency and the uncontrollable timing properties exhibited by physical processes.

We also demonstrate the benefits of a PRET machine in the context of a real-time engine
fuel rail simulator and embedded security. To simulate an engine fuel rail in real time, we implement
a platform that uses multiple PTARM cores that communicate through local shared buffers. The
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predictable timing of PTARM allows us to statically verify that the timing constraints are met. The
timing control provided by the extended ISA enables us to implement a software based low overhead
time synchronized communication protocol between the hardware threads, saving the resources
required to implement a full hardware interconnection system. These features of PTARM enable us
to implement a scalable solution that can simulate, in real time, a 237 node common fuel rail systems
in a single Xinlinx Virtex 6 FPGA. In the context of embedded security, the underlying architectures
implementing encryption algorithms are susceptible to timing side-channel attacks. Attackers can
exploit the uncontrollable execution time variances caused by the architecture or algorithm to derive
the secret key. We implement the RSA and DSA encryption algorithms on a PRET architecture, and
show that a predictable architecture with controllable timing properties in the ISA not only defends
against all timing related side-channel attacks, but eliminates the root cause of them.

We continue to investigate the several challenges and questions mentioned in this thesis.
First, we continue to explore the formalization of the timing extensions to the ISA. The introduction
of temporal semantics in the ISA should be platform independent; our implementation in PTARM
merely opens up opportunities for further experimentation and research. Nailing down the formal
semantics of each instruction extension is key to a consistent meaning of “time” that is indepen-
dent of the underlying hardware implementation. Second, we continue to experiment with how a
predictable pipeline and memory controller handles external interrupts and I/O devices. With the
plethora of complex interfaces and protocols for modern high speed I/O interactions, typical I/O
controllers are implemented in hardware. However, we envision that a predictable architecture with
precise timing control can enable software implementations of protocols typically implemented in
hardware, due to the lack of precise control over timing in software. A software implementation
can enable flexibility for different protocols and reduce design efforts, leading to faster time-to-
market and more feature rich designs. Third, we continue to explore the interfacing with a timing
predictable bus or interconnect, which can be used in timing predictable multicore systems. In our
real-time engine fuel rail simulator, we show a multicore implementation with PRET architectures
that uses local shared memories for communication and a timing based synchronization commu-
nication protocol implemented in software. However, as communication schemes and applications
become more complex, the interconnect or bus will play a more integral role in the connection and
communication of multiple PRET cores. Thus, our future work also includes predictable commu-
nication protocols across interconnects and shared buses that leverage the predictable timing of the
PRET architecture.

It is important to understand that we are not proclaiming that all dynamic behavior in sys-
tems are harmful. However, the dynamic behavior must be controllable. For example, dynamically
scheduling hardware threads in the architecture causes uncontrollable timing interference because
the triggering of thread switches is hidden from, and cannot be explicitly controlled by, the pro-
grammer. We argue that only by achieving predictability in the architecture and platforms can we
begin to reason about more dynamic behavior in software. With a predictable architecture and the
introduction of temporal semantics in the ISA, we hope to provide a timing deterministic founda-
tion in the lower levels of abstraction. In doing so, we enable larger and more complex designs of
cyber-physical systems to gain more precise and efficient control over the timing properties of the
system.
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