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Abstract

Model-based Bayesian Seismic Monitoring
by
Nimar S. Arora
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Stuart Russell, Chair

This thesis presents the underlying probabilistic model, the parameter estimation, and
the inference algorithm of NET-VISA, Network Processing Vertically Integrated Seismic
Analysis. NET-VISA is an Open Universe Probability Model (OUPM) for seismic events,
the transmission of seismic waves through the earth, and their detection (or misdetection)
at stations, as well as a model for spurious detections.

The probabilistic model allows for seamless integration of various disparate sources of
information. Applied in the context of the International Monitoring System (IMS), a global
sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT), NET-
VISA achieves a reduction of around 60% in the number of missed events compared to the
currently deployed system. It also finds events that are missed by the human analysts who
post-process the IMS output.
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Chapter 1

Introduction

The Comprehensive Nuclear-Test-Ban Treaty (CTBT), which bans all nuclear explosions
on earth, is gaining renewed attention in light of growing worldwide interest in mitigating the
risks of nuclear weapons proliferation and testing. To monitor compliance with the treaty,
the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization
(CTBTO) has installed a suite of sensors of the International Monitoring System (IMS).
The IMS includes waveform physical sensor stations (seismic, hydroacoustic, and infrasound)
connected by a worldwide communications network to a centralized processing system in the
International Data Centre (IDC) in Vienna. The IDC operates continuously and in real
time, performing station processing (analysis and reduction of raw seismic sensor data to
detect and classify signal arrivals at each station) and network processing (association of
signals from different stations that have come from the same event). Network processing
is thus a data association problem similar to those arising in multi-target tracking (Bar-
Shalom and Fortmann, [1988). Perfect performance remains well beyond the reach of current
technology: the IDC’s automated system, a highly complex and well-tuned piece of software,
misses nearly one third of all seismic events in the magnitude range of interest, and about
half of the reported events are spurious. A large team of expert analysts post-processes the
automatic bulletins to improve their accuracy to acceptable levels.

The existing network processing algorithm in use at the IDC treats the problem as mul-
tiple independent sub-problems which are solved by a pipeline of modules. The output of
each module is fed into the next one without any opportunity to revisit a previous decision.
For example, a seismic phase label is assigned to each arrival based on signal properties alone
and this label is left unchanged even if it would make sense to choose a different phase label
based on a potential event which is inferred later on in the pipeline. In reality, many of the
decisions made by these modules, like assigning phase labels to arrivals, have a high degree
of uncertainty with them. It is inadvisable to make a hard decision on a small piece of the
input without analyzing the larger context. In this thesis, we address this shortcoming in
a vertically integrated probability model for the seismic component of network processing
(NET-VISA). We present a generative model which combines seismic knowledge with sta-
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tistical modeling and inference. The NET-VISA model starts by generating seismic events,
and then predicts the transmission and attenuation of seismic waves all the way to their
detection (or misdetection) at seismic stations. Of course, this model relies on the hard
decisions made by the existing signal processing software in terms of detecting arrivals. A
more complete model which extends all the way to seismic waveforms, SIG-VISA, is one of
the future goals of the larger VISA project.

The main contribution of this thesis is an integrated probability model for network pro-
cessing. Due to the integrated nature of the model, the individual components use much
more information than existing methods. Most notably the location of seismic events in
NET-VISA uses information from arrival time, arrival azimuth (the incoming direction of
the seismic waves), arrival slowness (the apparent surface speed of the waves), arrival am-
plitude, as well as detections and misdetections (i.e. negative information) of all potential
seismic phases at all the stations. In contrast, the standard seismic processing uses mainly
arrival time, and sometimes also includes azimuth and slowness. The output of the pro-
cessing produces the event longitude, latitude, depth, and time. Whereas in NET-VISA,
the event magnitude, since it affects the detection probability and the arrival amplitude, is
deduced simultaneously with the event location. In classical systems, event magnitude is
computed after the location is already established. A subsequent fitness measure might be
computed in these systems based on the event magnitude and the detections, but this is
used mainly to filter out unlikely events.

The other important aspect of the probability model is the model for spurious detections.
We distinguish independent false arrivals with another type of false arrival, the coda arrivals,
that arise because of the scattering of seismic energy. These two alternate explanations allow
the model to explain very complex and noisy sequences of arrivals without the need to filter
out coda arrivals upfront (as is done currently at the IDC).

The secondary contribution of this thesis is an inference algorithm which is based on sim-
ple heuristic moves motivated by generic Bayesian inference on Open Universe Probability
Models (OUPMs). The inference algorithm runs on a continuous stream of incoming arrivals
and produces a continuous output of event bulletins. A multithreaded and distributed im-
plementation of the algorithm is described for better scaling on large aftershock sequences.
The inference enforces hard seismic constraints on the permissible phase labels by borrowing
ideas from tempered probabilistic inference.

The results demonstrate that not only is NET-VISA able to outperform the current
automated system at the IDC, SEL3, but it is, in fact, able to significantly reduce the
detection threshold by detecting low magnitude seismic events which are missed by human
analysts in the LEB bulletin. The quality of the NET-VISA bulletin is immediately evident
by the distribution of events predicted by SEL3 and NET-VISA over a one week period.
These events are shown in Figures [I.1] and respectively. Also shown in the figures are
the LEB events, which we will treat as the ground truth for the most part. These figures
show that the NET-VISA events follow the locations of the LEB events much more closely
than SEL3. For this one week period, the SEL3 bulletin produces 53.8% spurious events
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and misses 30.3% of the LEB events, while NET-VISA produces 47.1% spurious events and
misses only 11.8% of the LEB events. In fact, many of the “spurious events” produced
by NET-VISA turn out to be weak local events which can be validated by dense regional
bulletins around the world.

LEB(yellow) and SEL3(red)

Figure 1.1: All true (yellow stars) and predicted (red squares) events from the current
automated system for a one week period
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LEB(yellow) and NET-VISA(blue)

Figure 1.2: All true (yellow stars) and predicted (blue squares) events for a one week period



Chapter 2
Related Work

2.1 Signal Processing

Signal processing is the first step of all seismic analysis. The main objective is to reduce
a seismic waveform into a series of parameterized arrivals that can be used by network
processing to form events. The IDC signal detection algorithm looks for spikes in the seismic
waveform by dividing the short-term average (STA) of the signal amplitude by the long-term
average (LTA). Whenever this ratio exceeds a predetermined threshold, a seismic arrival is
declared as being detected. Further processing is applied to compute the precise parameters
of the arrival. The main parameters that are considered here are arrival time, azimuth
(direction of the seismic wave), slowness (apparent surface speed of the wave), and amplitude
(the height of the first spike).

An example of the signal processing is shown in Figure 2.1 The top panel of this figure
displays a filtered seismic waveform, and the lower panel shows the STA/LTA ratio. In the
lower panel the blue lines mark the automatically detected arrivals while the red lines mark
the analyst-detected arrivals. From this figure alone it is hard to justify many of the marked
arrivals except for the largest one around 100 seconds into the waveform. In practice, the
signal processing algorithm has access to multiple channels of seismic data. These channels
could be constructed by filtering a single seismometer’s output into different frequencies. Or
the channels could be the output of different seismometers at the same location or, in the
case of seismic arrays, over an area spanning tens of kilometers.

2.2 Iterative Linear Least Squares

Locating a seismic event given all of its associated arrival times at a network of seismic
stations is a well studied, fundamental problem of seismology. Geiger’s method (1910;1912)
is the basis of the standard solution for this problem. This method was implemented soon
after the widespread availability of computing by Bolt| (1960)), |Flinn (1960]) and Engdahl and
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Figure 2.1: Example of seismic waveform, STA/LTA, and arrivals.

Gunst| (1966).

In the following description of the method we will assume that there is only one seismic
phase that is observed at each station. Let € = (ejon, €1at, €4, €:) be the longitude, latitude,
depth, and time respectively of the event we are trying to locate. Also, let A be the distance
of this event from station k, and I7 be a travel time table (a function of event depth and
distance to station). Then the arrival time of the seismic waves (from the event) at the
station k is given by,

Af =e; + [T<€d> Ak> + T’f,

where 7 is an unknown time residual. The goal, roughly, is to find an event such that the

time residuals at all the stations are minimized. More precisely, if ry is the vector of time
residuals at all the stations, then we are trying to minimize ||r¢||. The iterative algorithm
starts with an initial event location €® and attempts to minimize ||r|| by repeatedly making
a small perturbation de® from the current location. If,

Fr(e%) = ¢ + Ir(eq, AY),



CHAPTER 2. RELATED WORK 7

then we can linearize F}¥ around e® as follows,

OFF(e°)
0el

FF(e® +5e°) = FF(e°) + - el

Let A be the matrix of partial derivatives of F at all stations (i.e. A is a K x 4 matrix,
where K is the number of stations). The perturbation that minimizes ||r¢|| under this linear
assumption is given by the solution of,

ry = A-de’. (2.1)

As shown by Menke| (1989)) and [Lay and Wallace| (1995) we can solve Equation [2.1] by the
singular value decomposition (SVD) of A=U-W - VT as,

V-W . UT .1, =€’
An alternate approach is to multiply both sides of Equation by AT to get,
AT .rg =AT-A.0e°,
which can be solved by inverting ATA,
(AT A"t AT . ry = 0e°.

Of course, if the matrix A is singular or ill-conditioned then a better approach is to add a
damping term A as described in Ballard and Reeves| (2002) to get,

(AT A4+ XD AT . ry = 6e°.

Instead of minimizing ||r¢||, we could minimize ||o,~! - r¢||, where o is a diagonal matrix
of standard deviations for each station. This is equivalent to maximizing the likelihood of a
generative model where,

rfiﬂ (0,6F), k=1.. K.

In other words, the residuals of all the stations are drawn independently from a zero-mean
Gaussian with station-specific variance. The corresponding form of Equation that needs
to be solved is,

o tory = A-del. (2.2)

Equation [2.2] can also be used to estimate the confidence ellipse of the final solution as shown
by [Flinn (1965).

The above description is the crux of the iterative linear least squares method of Geiger.
It has been extended over time by incorporating evidence resulting from more phases and
additional measurements. Initially, the Jeffreys-Bullen tables for P and S phases (Jeffreys and
Bullen|, 1940)) were mainly used. Later, with the advent of the IASPEI 1-D model (Kennett
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and Engdahl, [1991) many more phases were used in event location. The widespread adoption
of seismic arrays as well as 3-component stations (with seismometers facing the north, east,
and vertical directions) allowed for the additional use of azimuth and slowness data as shown
in the work of [Roberts et al.| (1989) and Magotra et al. (1987) for example. Similar to the
travel time residuals at all the stations, the residuals in the azimuth and slowness are assumed
to be independent.

2.3 Global Association (GA)

The problem that Geiger’s method doesn’t address is determining the set of arrivals generated
by the same event and phase labels for all these arrivals. The Global Association (GA)
software (Le Bras et al., [1994ajb)), currently deployed by the IDC, attempts to solve just this
problem. In addition to associating arrivals and locating events, it also performs a series of
post-processing on the generated event bulletin to compute for example the magnitude of
the event and a probabilistic score of whether the event is genuine.

GA processing proceeds in a series of pipelined operations. After the signal processing
has computed the basic parameters of the arrival — time, amplitude, azimuth, and slowness,
the first step is to assign a phase label to the arrivals. The phase label is assigned using
a number of fixed rules and also a neural network. The important point is that the phase
label is not assigned based on a potential event hypothesis but the arrival alone. As will be
shown later (see Figure , this initial label can be highly inaccurate.

An earlier preprocessing step has already identified a set of grid locations on the surface of
the earth, such that overlapping circles around these locations would cover the entire earth.
These circles are called cells. Additional cell locations at depth are chosen in areas of known
deep seismicity. For each cell, the preprocessing computes the probability of detection at each
station. This probability is computed by simulating events within the cell. The magnitudes
of these simulated events in turn are drawn from a user-specified exponential distribution.
For each cell a list of “first-arrival stations” is computed.

The association step proceeds in two phases. In the first phase each of the precomputed
cell is considered a potential event location. A driver, or the first arrival of the station,
is searched on stations in the precomputed list of “first arrival stations”. Subsequently,
corroborating arrivals are searched in other stations. Preliminary confirmation tests are
performed on this event based on the weighted count of corroborating observations — time,
azimuth, and slowness. The first phase can create multiple incompatible events, i.e. events
sharing the same arrivals or multiple arrivals at a station for an event with the same phase
label. These incompatibilities are resolved in the second phase. In this phase, events may
be split or merged as needed to avoid inconsistencies. A network probability test further
attempts to remove unlikely event hypotheses. At this point any outliers in terms of residuals
are removed from the event and the location is recalculated using Geiger’s method and all
the currently associated arrivals. Further confirmation tests are performed using the newly
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computed event location as well as additional features like magnitude and the error ellipse
to determine if the event is indeed real.

The next step in the pipeline removes conflicts between events, for example an arrival
being shared by two different events. These conflicts can also arise as a result of the associ-
ation step being performed in parallel on different time intervals. The conflicts are resolved
by assigning the arrival to the better event. Various tests are available to determine the best
event, for example by counting the number of arrivals or the size of the error ellipse.

Finally a refinement phase adds late-arriving phases or other phases missed by the pro-
cessing so far. The event location is recomputed and many of the earlier confirmation tests
are repeated.

2.3.1 False Event Identification (FEI)

The FEI software of Mackey et al.| (2009) uses a Support Vector Machine (SVM) (Vapnik),
1998) to classify true and false events. This has been deployed at the IDC since 2012 to
help the analysts quickly determine if an event should be discarded. The SVM is trained on
many features of the event and the associated arrivals, for example the number of arrivals,
the error ellipse etc. The performance of FEI is, of course, limited by the performance of
GA (or SEL3, the name given to the output of GA) since FEI doesn’t propose new events.
These results can be seen in Figure [6.1] as the curve titled, “SEL3 extrapolation”.

2.4 Multiple-event Location

Multiple-event location (Douglas, [1967)) is another approach like FEI which seeks to improve
an existing seismic bulletin. It doesn’t create new events like GA, but instead relocates the
events in the bulletin. The underlying idea is that although the travel times of seismic waves
are unknown and can vary considerably even for events at similar depths and distances,
the travel time from a particular region of the earth to a station tend to be quite similar.
This similarity can be exploited to constrain the location of events clustered in a region.
However, these constraints tend to lead to better relative rather than absolute locations.
Various approaches are employed to improve the absolute locations as well, see for example
Jordan and Sverdrup| (1981)), Pavlis and Booker| (1983)), and Dewey (1972).

Waldhauser and Ellsworth (2000) dispense with the need to compute the arrival times
by directly using waveform correlations to determine the differences in travel times between
stations. This method can lead to much more accurate relative location, but its applicability
is limited to a narrower geographic region where the correlation is expected to be higher.
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2.4.1 BAYHLoc

A more direct approach to exploit the similarity in travel time of events from the same
region is to develop a model of spatially varying traveltime corrections. This is the approach
taken by [Schultz et al.| (1998) and [Myers and Schultz (2000)). However, it requires a carefully
curated dataset with accurate phase labels to train the corrections. A more sophisticated
statistical technique is employed by |[Myers et al.| (2007) also known as BAYHLoc, wherein
instead of learning the correction terms, a prior is placed on them, and they are inferred
directly from the data. A prior is also placed on the true phase label so that the phase labels
can be corrected, if needed, or a phase could be dropped altogether. Another important idea
of this paper is to use Markov Chain Monte Carlo (MCMC) (Andrieu et al., [2003)) inference
to locate the event and its associated location uncertainty, rather than the iterative linear
least squares method described earlier.

Since BAYHLoc has a probabilistic model which is similar in some aspects to our model
we will describe it in some detail. The following notation will help in the exposition.

e ¢! is the location(longitude and latitude) of the ith event. For 1 <i < |e|.
e ¢! is the time of the ith event.

e ¢/ is the depth of the ith event.

e c is the set of all €], ¢} and el.

° aij " is the arrival time of the Jth phase from event ¢ at station k as reported in the
original event bulletin. For 1 < j < J and 1 < k < K. Assume that a?k = 0 if the
bulletin doesn’t associate the jth phase for event i at station k.

e qa is the set of all aijk.

e A% is the true phase for arrival a* (assuming a’* # 0). If AY* = 0 then ¢¥* is not a
valid arrival for event i.

o A7* is the true arrival time for event i’s phase A" at station k (assuming A" # 0).
e A is the set of all Azjk and A7,
e A, is the distance between the ith event and the kth station.

e I7(d,A) is the travel time table estimate for the travel time of the jth phase for an
event at depth d and distance A from a station.

The BAYHLoc model describes the joint distribution p(e, A, a) and uses this to compute the
posterior p(e, A | a). The various parts of the joint distribution are as follows.

ijk

Aijk = ei + [}\hj (efj, Agy) + 5k,
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Where 6% is a path-specific travel time correction term given by,
6% = o + BT Ay

Here o/ and 37 are phase-specific corrections to the travel time curve. The prior distribution
of these two terms for each phase are drawn from independent Gaussians.

al® = NP 4 ik,

Here €7* captures both the path-specific residual corrections as well as the arrival time pick
errors. This term is drawn from a normal distribution whose precision (inverse variance) is
factored into event-, phase-, and station-specific terms.

ek~ N(0, VVidk)
VI = i)l

All three of these factors are drawn from gamma distributions. The phase-specific factor is
specified by a gamma with given hyperparameters v) and A7,

& ~ L), ).

The other two factors of the precision are also gamma distributions but follow a constraint
that the mode is one.

05, ~ D (X0, Xo)-
0 ~ T (), AD)-

The rate parameters A! and \* are drawn from vague exponential priors. The only remaining
parts of the model are the priors on event location and time which are drawn independently
from Gaussian distributions.

For inference, BAYHLoc combines a number of different MCMC moves. The event
location e} and e’ are updated by a Metropolis-Hastings (MH) move which draws a new
location and depth from a proposal distribution centered around the current location. This
update is accepted or rejected using the usual MH rule. The event time e! as well as o/ and
B9 can be sampled using the more efficient Gibbs sampler. This relies on the fact that each
of these terms has a Gaussian prior and likelihood which makes it possible to compute the
conditional posterior in closed form. Finally the precision factors ¢!, fl, ®" as well as the
rate parameters \. and A\* are updated using slice sampling (Neal, [2003)).
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2.5 Data Association and Open Universe Probability
Models

Data association is the general problem of associating observations to unknown objects. For
example in the case of multi-target tracking (Blackman, [1986; Bar-Shalom and Fortmann,
1988) it is the task of associating observed radar blips to unobserved aircraft. Probability
models for such tasks have been proposed as early as in the work of Sittler| (1964). In the
context of seismology, the problem is to associate the observed seismic arrivals with unknown
seismic events.

Open Universe Probability Models (OUPMs) provide a rigorous statistical basis for de-
scribing data association probability models, see for example Milch et al.| (2005a). OUPMs
can describe situations with unknown number of objects with relational or identity uncer-
tainty and as such are an extension of Bayes Nets (Pearl, |1988). Various languages and
generic inference algorithms have been proposed for OUPMS. IBAL (Pfeffer, 2001}, 2007)
was the first such language based on a lisp-like syntax. Its inference engine is based mainly
on forward sampling. Bayesian Logic (BLOG) (Milch et al., 2005a,b; Milch and Russell,
20006)) is a language based on first-order logic and with a more declarative syntax. The infer-
ence engine of BLOG combines forward sampling with the ability to provide custom proposal
distributions. Church (Goodman et al., 2008)) is another lisp-like language with a forward
sampling inference engine. More efficient inference by using Gibbs sampling (Geman and
Gemanl, |1984)) in the context of OUPMs has been described in Arora et al.| (2010blc]).

2.6 Tempered Inference

In many probabilistic inference algorithms which are based on local moves hard deterministic
constraints can hamper the ability of the moves to draw samples from the distribution or
search for the mode. In essence, a local change to the current state can cause a global
constraint to be violated and hence lead to a rejected state. A common solution to this
problem is to somehow quantify the violation of the constraint and then temper it. Tempering
is an idea which involves the use of a temperature parameter that is gradually decreased.
It was originally used in simulated annealing (Kirkpatrick et al., [1983]) which searches for
the minimum of a cost function. The technique allows uphill moves (or moves that increase
the violation of a global constraint) at high temperature and gradually discourages such
moves at lower temperatures. In a probabilistic setting, simulated tempering (Marinari
and Parisi, [1992; \Geyer and Thompson, [1995) extends this idea to drawing samples from a
probability distribution p(z) by exponentiating the distribution to p(m)Tﬁl, where T is the
current temperature. The motivation for tempering, similar to annealing, is that at higher
temperatures the probability distribution, p(w)T_1 approaches the uniform distribution, in a
sense it gets heated up, and mixing is much faster.
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Chapter 3

Model Motivation

In order to give some intuition into our integrated probabilistic model of seismology we
will present some plots of the posterior distribution in a simplified 2-D model of the world.
Assume a world in which there is exactly one seismic event which occurs at time 0 somewhere
on the unit square with equal probability. The event may or may not be detected at each of
four seismic stations independently. Figure [3.1] shows the 2-D world and the location of the
stations are marked on it as triangles.

1.0

08| A A

0.6

04}

0.2 A A

. . . .
0'(8).() 0.2 0.4 0.6 0.8 1.0

Figure 3.1: 2-D world with seismic stations (triangles)

Now, consider that the detection probability depends only on the distance between the
event location and the station and this dependence is exp(—distance). In this world if all we
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know is that three of the stations detected the event then based entirely on the information
from the 3 detections and the 1 misdetection we can get an approximate idea of the event
location. Figure shows the posterior location density assuming that the station on the
top right is the only one that misses the event. This posterior is concentrated on the station
at the lower left since this is farthest from the station which missed the event. Note that
this posterior density is very weak. Even at its peak the posterior is only twice the uniform
density.

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

0.00

Figure 3.2: Posterior event location density given that one stations missed it.

Now, let’s assume that we observe the arrival time of the seismic waves at the stations
as well. This arrival time is based on a very simple travel time function plus a Gaussian
residual distribution. We will assume that the seismic waves travel at a unit speed and the
residual distribution has a standard deviation of 0.1. Consider again the case where exactly
three stations detect the event and the arrival time is exactly equal to the theoretical time.
Figure [3.3| shows this posterior distribution. The true event location is marked with an x
and the misdetecting station is shown with a hollow triangle. This posterior distribution
is now much more tightly concentrated and goes up to 24 times the uniform distribution.
Notice also that this posterior is slightly shifted away from the true location in the opposite
direction of the misdetecting station, as expected.

Now, if we had more precise travel time information, or in other words if the standard
deviation of the residual was further reduced, then our posterior location density would
be even further concentrated around the true location. To demonstrate this we repeated
the previous experiment with half the standard deviation, i.e 0.05. This result is shown in
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Figure 3.3: Posterior location uncertainty with arrival time uncertainty of 0.1.

Figure The posterior now peaks at 105 times the uniform distribution.

However, if we reduce the number of detecting stations while still keeping the reduced
arrival time uncertainty, the event location is no longer well constrained. In fact, as Figure[3.5
shows the posterior is now multi-modal. Also, the higher mode is the one which is farther
away from the misdetecting stations.
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Figure 3.4: Posterior location uncertainty with arrival time uncertainty of 0.05.

Figure 3.5: Posterior location uncertainty with two stations failing to detect.
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Chapter 4

Generative Probabilistic Model

Our generative model for seismic events and arrivals follows along the lines of the aircraft
detection model in (Milch et al. [2005a, Figure 3). In our model, there is an unknown
number of seismic events with unknown parameters (location, time, etc.). These events
produce 14 different types of seismic waves or phases. A phase from an event may or may
not be detected by a station. If a phase is detected at a station, a corresponding arrival
is generated. However, the parameters of the arrival may be imprecise. Additionally, an
unknown number of noise arrivals are generated at each station.

4.1 Events

In the following, we only consider events with body-wave magnitude, m;, 2 or higher. All
other events are considered noise.

4.1.1 Event Rate and Time

The events are generated by a time-homogeneous Poisson process with a rate parameter,
Ae. If e is the set of events (of size |e|), and T is the time period under consideration (in
seconds), we have

(e - ) exp (<A, - T)

Py, — 4.1
slel) o (1)
For each event, ¢, the event time, €!, is uniformly distributed between 0 and T, i.e.
; 1
Posler) = - (4.2)

The parameter ). is estimated from the average historical event frequencies as shown in
Figure The estimated value of A, is 0.001266 per second or 4.6 per hour.
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Figure 4.1: Estimating event rate.

4.1.2 Event Location

The longitude and latitude of the ith event, e} are drawn from an event location density,
Pyi(e;) on the surface of the earth. This density is a mixture of a uniform density (to allow
for explosions anywhere on the surface) as well as a kernel density estimate using historical
event locations.

H
1 1
P9,l(el) = OOlW + 999E hz_; Kb,glh(el) s

where R is the earth’s radius, H is the number of historical events, ¢*,...,¢”, and K. (")
is a kernel function defined over the surface of the earth.

1+ 1/b* exp(—A,,/b)
2rR? 1+exp(—7/b)’

Kb,x (y) =

where b > 0 is the bandwidth of the kernel and A, is the distance between locations x and
y. Both b and A, are expressed in radians. Notice that in the limit as b — oo, the kernel
tends to the uniform density over the earth’s surface.

The optimal value of b is chosen by leave-one-out cross validation (LOOCV) over a
random subset of 1000 event locations in the dataset. We use grid search to find the value
of b within 0 and 2 which maximizes the LOOCV value. We initially use a grid size of 0.2
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and refine with a grid size of 0.05. Figure plots the results of this search. The best value
of b that is chosen is 0.7. In Figure [4.3| we show the event location prior log(Pp,(-)) using all
of the training dataset and the optimal bandwidth.
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Figure 4.2: Event location average leave-one-out log likelihood vs. bandwidth.

The depth of the event, €/ is uniformly distributed up to a maximum depth D (700 km

in our experiments),
1

Pya(ey) = D (4.3)

4.1.3 Event Magnitude

The Gutenberg-Richter law (Gutenberg and Richter, [1954) posits that the number of events
with magnitude m or more is ten times the number of events with magnitude m + 1 or
more. In terms of the event magnitude probability of an arbitrary event: Py (¢!, >=m) =
10+ Py, (€, >=m+1). We represent this prior knowledge in our model with an exponential
distribution on e?, with rate \,, = log(10):

Pym(el) = A exp(=An, - (e, —2)). (4.4)
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Figure 4.3: Event location log density.

4.1.4 Overall Event Prior

Under the assumption that the event location, depth, time, and magnitude are independent
of each other:

Py(e') = Pou(e)) Poaley) Po(ey) Pom(er,)
Substituting from Equations [£.2] [1.3 and [4.4] we get
i i 11 i
Py(e') = P9,l(€z)5f)\m exp (=M - (e, —2)) . (4.5)

In our model, all the events are exchangeable and are generated independently, thus

lel

By(e) = Pon(le]) - [ef! - HPe(ei)-

Note, we are overloading Py(-) to refer to the distribution over the set of events as well as
the distribution of a single event. Substituting from Equations [4.1] and [4.5]

le|

P@(e) = exp (_)‘e ' T) H P@,l(eg)%)‘e)\m €xXp (_)‘m ’ (ein - 2)) : (46)
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We define,

pale’) = Pg}l(e})ﬁ)\e)\m exp (—Am - (e, —2)).

Thus simplifying Equation [4.6] to

le|

Py(e) = exp (=Ac - T) [ [ po(e’). (4.7)

4.2 Correct Arrivals

4.2.1 Detection Probability

The probability that an event i’s j'* phase, 1 < j < J, is detected by a station k, 1 < k < K,
depends on the phase, the station, and the event’s magnitude, depth, and distance to the
station. Let P;Z(ei) be the probability of this detection. The phase- and station-specific

detection distributions, P(gf“d(-), were obtained using logistic regression models. In other

words, the log odds of detecting an arrival is a linear function of features defined on €’ , €/,
and A;;, the distance between event 7 and station k.

Pk (eh) , o
log| —24 "~ | = wik (el el A,
g(l—Péfd(ei) S e )

weFg

Where F; C R3 — R is a set of features, and u&”jk is the weight for the feature w. The
complete set of features is defined in Table[4.1] The figure also shows some validation results
for each feature. We have trained a logistic regression model on the first 1000 hours of
training data for a single station, Alice Springs. Then we compute the average log likelihood
of the subsequent 100 hours of training data using the learned model. This computation is
repeated for increasing number of features and corresponding likelihood numbers are shown
in the figure.

Directly estimating the feature weights uzl”jk is not possible since many of the station-
phase combinations have very little data. To deal with this data sparsity we used a hierarchi-
cal Bayesian procedure |Gelman et al.| (2004), which posits that the weight for a station-phase
is drawn from a global prior for that phase. This global prior is in turn drawn from a non-
informative prior, as follows:

g~ N (g 037
py? ~ N(0,100)
(647)72 ~ (0.0, 100)
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Feature Value Avg. Log Likelihood
(Intercept) 1 -0.271477614686
mag el -0.25283924485
depth e -0.22786110952
dist A -0.148838588413
dist0 ( ik, 0,5) -0.145619510179
dist35 N (A, 35,20)  -0.143358785181
dist40 N (A, 40,20)  -0.137420683639
dist12520 N (A, 125,20) -0.136943948297
dist12540  N(Aj, 125,40) -0.132671965356
magb6 N (e, 6,5.5) -0.132297181033
mag68 N (et ,6,8) -0.131333296357
md (7—¢ ) Ay -0.129367021293

Table 4.1: List of features used for computing the probability of detecting an arrival from
an event ¢ with magnitude ¢, depth ¢}, and distance A;; from station k. Here N (x, u, o) is
the standard Gaussian density with mean p and standard deviation o measured at z. Also,
the log likelihood from using that feature.

Where N and I are the Gaussian and the Gamma distributions parameterized by their mean
and standard deviation, and shape and scale respectively. Estimation of parameters follows
a coordinate ascent procedure For each phase J, we 1n1t1ahze [y Y — () and azl” =1, and
then alternately optimize ud s Yw, ky py? : Vw, and o)’ : Vw till convergence. In each
maximization step, the optimal value of ud‘ is computed by second order optimization,
while the rest of the values have a closed form solution.

In Figure we show the model prediction for one phase at a station.

4.2.2 Arrival Attributes

If event i’s j*" phase is detected by a station k, we define A¥* as the corresponding arrival,
otherwise A% = (. Our model specifies probability distribution for the attributes of this
arrival: time — A", azimuth — A%* slowness — AY* amplitude — A%*, and phase — AY*. The
arrival time is

ijk i J (0 ijk
AT =6+ [T<€d> Ag) + 177,

where I% is the prediction from the IASPEI travel time model (a function of the event depth,
and distance to the station), and r}’ " is a residual, distributed as a Laplacian,

% ~ Laplace(pl®, bi"),
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Figure 4.4: Conditional detection probabilities for the P phase of surface events between 3
and 4 mb at Station ASAR.

with mea 1% and scale b/". The residual distribution accounts for the inhomogeneities
in the earth’s crust, which allow seismic waves to travel faster or slower than the IASPEI
prediction. This distribution also accounts for any systematic biases in picking seismic onsets
from waveforms. Thus, we get

PN | €') = — ex "

1 p(_MW—%—h@@&w—Mk>
2b7* '

Similarly, the arrival azimuth and slowness follow a Laplacian distribution.

Rmmqazi_mCﬂmwﬂmmm—wg
z k

’ 20! b ’
j ij i |A?k - ]g(ei ) Aik) - Mik‘
Pii(/\sjk\e)zﬁexp (— bi’k :

!The usual way to parametrize a Laplacian is by its location and scale. However, we use the terms mean
and scale to avoid confusion with event locations. Fortunately, the mean of a Laplacian coincides with its
location.
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Where 1 computes the difference in the observed angle A“* and the angle computed from the
geographical function G, which depends on the station location, s¥, and the event location,
el. Also, I7 is the slowness value computed from the TASPEI model for phase j. It should
be noted that the observed values of azimuth and slowness referred to above already include
certain station-specific corrections called SASC (Slowness Azimuth Site Correction). The
estimation of all the station-and-phase-specific means and scales, for example ,u{k and b{k,
is based on a hierarchical model. In this model, each mean and scale is generated from a
phase-global prior, which we describe below for the arrival time.

rzjk ~ Laplace(pl*, bi%)

pi" ~ Laplace(p, b))
(b") " ~T(1,5)

w} ~ Laplace(0,100)
(b))~! ~ I'(.01,100)
(B~ ~ T(.01,100)

For each phase j, we start by initializing ,uk 0, bjk — 1 for all stations k, ¢l =0, b/ =1,
and ﬁt = 1. Next, we iteratively optimize the values of pu]", * b]k for each station, and the
globals ut, bi, and @. This is repeated till convergence. Each of these optimization steps
has a simple closed-form solution. A very similar procedure is adopted for estimating the
azimuth parameters, p/* and /%, and the slowness parameters, p/*, and b*. An example for
each of these three types of dlstrlbutlons is shown in Figures .5 [£.6] and [4.7]

The arrival amplitude A%* is similar to the detection probability in that it depends
only on the event magnitude, depth, and distance to the station. We model the log of the
amplitude via a linear regression model with Gaussian noise,

”k lOg Aljk Z ,uw]k m7 efj? [%(efi? Alk))?

wG}—a

rik ~ N(0,03%),

where F, is a set of feature functions (see Table , and % is the weight for feature w.
This implies that

P (A* —e ) =
. ( ) = V2rod o < 202k2 AF*
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Figure 4.5: Arrival time distribution around the IASPEI prediction for P phase arrivals at
station ASAR.

In order to estimate the feature weights, we use a hierarchical model, as before, which
assumes that for each phase the feature weights at a station are drawn from a global prior.

p?t ~ N (g 03)
(02")7% ~ (100, 3)
27 ~ N(0,100)
(0¥) ™2 ~ T'(.01,100)
(87)~" ~1(.01,100)

Maximum a-posteriori (MAP) inference of these weights is along the lines of the method
already described for other parameters. Figure has an example of a learned model.
Table shows the successive improvement in log likelihood on held-out data after adding
each feature to the model.

Finally, the phase label Aﬁljk, which is automatically assigned to the arrival, follows a
multinomial distribution whose parameters depends only on the true phase, j:

PiaA" 1 eh) = play).

Learning the multinomial distributions p{l is a simple matter of counting with add-one
smoothing. The learned distribution is plotted as a heat map in Figure 4.9,
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Figure 4.6: Arrival azimuth distribution around the geographical prediction (plus SASC
correction) for P phase arrivals at station ASAR.

4.2.3 Overall Correct Arrivals

We assume that all the attributes of an arrival are independent of each other. Thus,
PN e') = PIRATY | &) PIL(ATY | €) Py o(AZF | &) PIL(AZF | &) PIL(AE | &),

Further, assuming that the arrivals are all independent, we have,

lel] J K
Py(Ae) = HHH[ (A7 = )(1 = Ply(e) + 1(AY* # QP () PIF (AT | )] .
i=1 j=1k=1

(4.8)

4.2.4 Model Validation

We present some results justifying the model choices made for the arrival parameters. The
arrival time, azimuth, and slowness residuals are all modeled as Laplace distributions. This
is in contrast to the standard seismological practice of modeling these as Gaussian residuals.
In order to compare the effectiveness of the two distributions at modeling the residuals,
we trained both distributions on a 1000 hour training data from station Alice Springs and
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Figure 4.7: Arrival slowness distribution around the TASPEI prediction (plus SASC correc-
tion) for P phase arrivals at station ASAR.

evaluated on a separate 100 hours of data from the same station. The results of this validation
are shown in Table[4.3] The table shows that the time residuals for the most common phases
(P and S) are much better modeled as Laplacian. Similarly, for the azimuth and the slowness
residuals the Laplace distribution explains the held-out data much better.

Another choice made in the model is to assume that the residuals are all independent.
We have evaluated this decision based on the Pearson’s correlation coefficient (Soper et al.,
1917). Table shows the correlation between the three residuals (time, azimuth, and
slowness) for various phases. Since all but two of the residuals are less than 0.2 and there
is no consistent pattern indicating positive or negative dependence, it appears reasonable to
assume independence.

4.3 False Arrivals

The station, k, also generates a set ¥ of false arrivals, i.e. not associated to any event
phase, described by the distribution P;f. The number of false arrivals is generated by a
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Feature Value Avg. Log Likelihood
(Intercept) -1.65893054005
mag el -1.50107477111
depth e, -1.38073535802
ttime ' -1.32228249442

ttimeO -1.29296470633

—_

N (I7(e4, Air), 0,50)

Table 4.2: List of features used for predicting the amplitude of a phase j arrival from an
event 7 at a station k. Also, the log likelihood after adding each feature

Phase Time Residual Azimuth Residual | Slowness Residual
Laplace | Gaussian | Laplace | Gaussian | Laplace | Gaussian
P -1.6405 | -1.6698 -4.0487 | -14.4774 | -1.7369 | -1.9064
Pn -2.0521 | -2.2165 -4.4192 | -7.0387 -4.1790 | -5.1656
PKP | -1.7046 |-1.6426 -15.1104 | -83.7955 | -1.0028 | -1.2878
S -3.3560 | -3.3879 -3.2432 | -3.2826 -2.8765 | -2.9791
PcP | -1.5537 | -1.4841 -7.8644 | -23.9002 | -1.2650 | -1.3540
ScP -2.3160 | -2.4292 -8.1886 | -25.2298 | -2.2920 | -2.1730

Table 4.3: Average log likelihood on held-out data of a Laplacian and a Gaussian model.

time-homogeneous Poisson process with rate )\’]‘é:

(N5 T)l T exp (—Ak - T)
[€-]!

The values of A} are displayed in Figure 4.12L If £ is one of this set of false arrivals, its
time &, azimuth €Y and slowness € are generated uniformly over their respective ranges,

PLAET) =7, P5.(88) =g P& =5p

T?
where M, and M, are the range of values for azimuth and slowness respectively. The log
amplitude of the false arrival is generated from a mixture of two Gaussians, which is estimated
from the data with a standard Expectation Maximization (EM) procedure, and a flat uniform
prior with probability 0.1. The resulting distribution, p';va(-), at one station is displayed in

Figure [4.10]

P (I€") =

1
P (€41 = a0(68) g

Finally, the phase label £ assigned to the false arrival follows a multinomial distribution,
P;f?h( k1) (See Figure D learned by add-one smoothing. Overall, assuming the false arrival
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Figure 4.8: Arrival log amplitude distribution for the P phase of a surface event of 3-4 mb
at station ASAR.

attributes are independently generated
PL(EM) = P y(&) Py (&) Pa (€ Pl (82 ) P n(€R)-

Since the false arrivals at a station are exchangeable, we have

=l¢*]
PE(ER) = PE(IEFD) - 1€ T T Ph(e™)
=1
I=|¢¥| k

= exp (—A]}-T) H A M Pk (ffl)Pj;,h( flfl)

Where, as before, we have overloaded P;f to refer to a distribution over a set of arrivals as
well as a single arrival. We define

PV
Pel€") = g Peal & PEa(E).
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Figure 4.9: Arrival phase probability as function of the true phase.

Now, assuming that the false arrivals at different stations are independent of each other,

K I=|¢F|

R = (3005 )HHm €, (49

k=1 I=1

4.4 Coda Arrivals

In our model, the scattered energy which follows a true or false arrival may trigger subse-
quent coda arrivals. For example the extra arrivals marked in Figure 2.1 It might appear
that such arrivals are just ordinary false arrivals. However, unlike false arrivals which are
generated from a mostly uniform prior, the coda arrivals are strongly correlated with the
triggering arrival. If the coda arrivals are not modeled explicitly then our inference will end
up hypothesizing additional spurious events as the most likely explanation for many of the
coda arrivals.

We model the parameters of the coda arrival with a distribution P,, which is a function of
the parameters of the previous triggering arrival. Whether the triggering arrival was a false
arrival, or caused by an event, or itself triggered by another arrival, is immaterial. We define
n® as the previous arrival at the same station as arrival a, or ( if there is no such previous
arrival. Now, the probability that an arrival a is a coda arrival is given by P, 4(n®), which is a
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Phase | Time and Slowness | Time and Azimuth | Slowness and Azimuth
P 0.0079 0.0893 0.1971
Pn 0.1015 0.1284 0.0842
PKP 0.0166 0.1419 0.1034
S 0.1222 0.3634 0.0693
PcP -0.0905 -0.1624 0.6670
ScP 0.0645 -0.1292 0.1062

Table 4.4: Correlation between the various residuals

function of the amplitude of the previous arrival n®, and we define P, 4(¢) = 0. We estimate
P, 4 with a non-parametric model by discretizing the previous arrival’s log amplitude into
buckets of size .25 between —4 and 10. This distribution is displayed in Figure Any
points outside these extreme values are mapped to the nearest bucket.

One problem that arises while training the coda arrivals is that the IDC analysts don’t
annotate coda arrivals in the LEB bulletin making it hard to estimate the parameters of P,.
Our solution is to heuristically annotate some of the unassociated arrivals as coda arrivals,
and use this annotation to learn P,, and also P,. Our procedure is to search the training
data for any unassociated arrivals within 30 seconds of a prior arrival at the same station
and with an azimuth and slowness within 50 degrees and 10 seconds per degree respectively
of the prior arrival’s values, and to mark such arrivals as coda.

We model the distribution of the time delay between the coda arrival and the triggering
arrival as a Gamma distribution, see Figure [4.14]

ap —1¢ ~T(p, ), ie.
1 - a — 1y
P ay _ a\pe—1 o t )
'y,t<at ‘ n ) F(pt)Vft (at Th) eXp( v )
The difference in azimuth, slowness, and log amplitude of the coda versus the triggering
arrival are all modeled as Laplace distributions, see Figures |4.15] and 4.17|

a 1 wa’zang — Pz
P’y,z<a2‘77):_exp(_‘ ( ) |)7

2u, v,
a 1 as — 77? — Ps
Pt 1) = 5o (L) g
a 1 |log(a,) —log(ng) — pal \ 1
P’Y,a<aa | n ) = 2 €xXp (_ y a_u

Finally, the coda phase is a multinomial distribution, P, (this doesn’t depend on the
previous arrival’s phase), see Figure 4.18, It is worth noting that the coda model is not
station-specific, hence data sparsity is not a concern.
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Figure 4.10: Amplitude distribution for false arrivals at stations ASAR.

Overall, assuming that all the parameters of the coda arrival are independent,
P.(a) = Py(ar | n°) Py 2(az | n) Pys(as | n*) Pya(aa | n*) Pyn(an).

Further, if x is the set of all coda arrivals, and A is the set of all observed arrivals then
assuming that the coda arrivals are independent of each other,

Py(x]4) = [T Pra(n®)Py(a) TT (1= Pra(n®): (4.10)

aEr a€EA—K
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Figure 4.13: Coda detection probability as a function of the triggering arrival’s log amplitude.
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Figure 4.14: Time delay for coda arrival after the triggering arrival.
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Chapter 5

Inference

Combining the model components developed in the preceding section, the overall prob-
ability of any hypothesized sequence of events e, true arrivals A, false arrivals &, and coda
arrivals x for a given set of observed arrivals A, where A is the set of arrivals at station k is

P(e,N, &k, A) = Py(e)Py(A | e)Po(§)Py(k | A)L(A=ADED k). (5.1)

Where the last term is required to ensure that any arrival is in exactly one of the three
sets A, &, and k. Other obvious consistency requirements such as requiring £¥ C A* are
left out for brevity. We will attempt to find the most likely explanation consistent with the
observations,

arg max P(e, A, & Kk, A).

€7A7£7ﬁ

5.1 Overall Algorithm

Since arrivals from real seismic sensors are observed incrementally and roughly in time-
ascending order, our inference algorithm also produces an incremental hypothesis which
advances with time. Our algorithm can be seen as a form of greedy search, in which the
current hypothesis is improved via a set of local moves.

Let My denote the maximum travel time for any phase. Initially, we start with an event-
window of size W from ty, = 0 to t; = W, and an arrival-window of size W + My from t5 = 0
to to = W 4+ Myp. Then we perform a series of greedy moves which add or update events
in the event-window, delete existing events, or classify (as true arrival, false arrival, or coda
arrival) the arrivals in the arrival window. Next, the windows are moved forward by a step
size S. At this point, events older than t; — M7 become stable: none of the moves modify
either the event or arrivals associated with them. These events are then output. While
in theory this algorithm never needs to terminate, our experiments continue until the test
dataset is fully consumed.
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Our initial hypothesis is that all new arrivals added to the arrival window are false
arrivals. We refine this by classifying any arrival a (at station k) as a coda arrival if

Py a(n®)Py(a) > (1= Pya(n®))p(a).

This default classification for an arrival is retained whenever it is no longer associated with
an event. For convenience we define

T*(a) = max(Py,a(n") Py(a), (1 = Pya(n)py(a)).. (5.2)

Next, the birth move generates new events in the event-window. These events are added to
the hypothesis with A¥* = ( for each new event i. Subsequently, we repeat the following N
times: improve-arrival move for each arrival in the arrival-window, and improve-event move
for each event in the event window. Finally, the death move kills some of the events and
we repeat one round of improve-arrivals and improve-events move. We describe these steps
algorithmically below. The individual moves will be described in the next section.

1. to = O,tl == W,tg == W+MT
2. repeat while {5 < max time

(a) give a default classification to arrivals in ty to ty
(b) add events from birth-move(to, t1, {a : tog < a; < to})
(c) repeat N times
i. for each arrival a, s.t. to < a; < t9, improve-arrival(a)
ii. for each event €', s.t. ty < ¢! < t;, improve-event(e')
for all events ¢’, death-event(e’)

for each arrival a, s.t. ty < a; < ¢y, improve-arrival(a)

to+= S:ti+=S;tp+= S

)
)
f) for each event €', s.t. t; < e! < t;, improve-event(e’)
)
) output €', AUF for all ¢! s.t. e! <ty — My

3. output any remaining e’

In order to simplify the computations needed to compare alternate hypotheses, we decompose
the overall probability of Eq. into the contribution from each event. We define the score
S, of an event as the probability ratio of two hypotheses: one in which the event exists, and
another in which the event doesn’t exist and all of its associated arrivals have the default
classification (false or coda). If an event has score less than 1, an alternative hypothesis
in which the event is deleted clearly has higher probability. Critically, this event score is
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unaffected by other events in the current hypothesis. From Eqs. {.7] 4.8, [4.9] .10, and

we have

. A ) L Atk £ Y PI% (') PIF(AF | ¢
Se(e') = po(e’) H H LAY =()(1 - P;Z(ez)) + = 729 T¢1;(5V‘j>k)¢ : )

=1 k=1

Note that the final fraction above is a likelihood ratio comparing interpretations of the same
arrival as either the arrival of event i’s j* phase at station k, or the as a false arrival or a
coda arrival. We can further decompose the score into scores Sy for each arrival. The score
of A% defined when A¥* £ (, is the ratio of the probabilities of the hypothesis where the
arrival is associated with phase j of event ¢ at station k versus the default classification.

P;Z(ei) P(gk(Aijk | %)

SIE(AGR | ety = . —
d ( | ) 1— P(';Z(el) Tk:(Aij)

By definition, any arrival with score less than 1 is more likely to be a false or coda arrival.
Also, the score of an individual arrival is independent of other arrivals and events in the
hypothesis. These scores play a key role in the following local search moves.

5.2 Moves

Among the moves, the birth move is the only one which is not a greedy move: the pro-
posed event will almost always have a score S.(e') < 1 until some number of arrivals are
assigned by subsequent moves. The overall structure of these moves could be easily converted
to an MCMC or simulated annealing algorithm. However, in our experiments this search
outperformed simple MCMC methods in terms of speed and accuracy.

5.2.1 Birth Move

The birth move proposes events within a given time range, based on a list of arrivals. It starts
off by inverting each of these arrivals to obtain an initial candidate list of event locations
and times. The ability to invert an event follows from the fact that the slowness of an arrival
is a monotonic function of distance (with fixed depth). If one assumes that an arrival is
the P phase of a surface event one can obtain a distance estimate from the slowness which
combined with the arrival azimuth and time gives an estimate for an event location and time.
In Figure we show the statistics of the distance between the inverted locations obtained
from all arrivals in a 1 week period and the corresponding ground truth events during the
same time period.

Next, we attempt to construct the best possible event within a 5 degree and 50 second
ball around each of the candidate location in steps of 2.5 degrees, magnitudes 3, 4, surface
depth and using all available detections. The best such event is further optimized using the



CHAPTER 5. INFERENCE 40

Distance form LEB event to nearest inverted location N Distance from inverted location to LEB event
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Figure 5.1: Distance between events and inverted locations within 10 degrees and 100 sec-
onds. The left figure shows the distance from a true event and the nearest inverted location.
The right figure shows the converse, i.e. the distance from an inverted location to the nearest
true event.

improve-arrival and improve-event moves and then set aside. This process is repeated as long
as the best event has a score greater than 1. An event is not allowed to use arrivals associated
to events found earlier in this process. Finally, all these set aside events sans the arrivals
associated to them are returned. The more precise details of this are given algorithmically
below.

1. given ty, t;, and arrivals A
2. repeat for each a in A

(a) invert a to obtain a candidate location ¢,
(b) repeat for each location e in a ball around ¢,
i. initialize A°
ii. repeat for each arrival a in A (let k be a’s station)
A. determine the phase j with the max score S7"(a | €)
B. if $%%(a | €) > SIF(A* | €) or if A%* = ¢ and S (a | €) > 1 then set
NF = a.

3. let e be the event with the max score S.(e) in step
4. repeat 100 times

(a) invoke improve-event(e)

(b) invoke improve-arrival(a) for all a in A with e as the only potential event
5. if Se(e) > 1 then set aside event e and remove arrivals in A%* from A, go to step

6. return set aside events
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5.2.2 TImprove Arrival Move

For each arrival in the arrival window, we consider all possible phases j of all events ¢ up to
M seconds earlier. We then associate the best event-phase for this arrival that is not already
assigned to an arrival with higher score at the same station k. If this best event-phase has
score S7F(A9* | ¢') < 1, the arrival is changed to its default status (one of false or coda). In
more precise terms.

1. given arrival a at station k
2. repeat for each event e

(a) determine the phase j with the max score S7*(A%* | ¢)
3. let e be the event with the max score S7*(A%* | )

4. if S9F(a | ) > SIF(A9* | e) or if A% = ¢ and S (a | €) > 1 then set A%* = q.

5.2.3 Improve Events Move

For each event e’, we consider 100 points chosen uniformly at random in a small ball around
the event (2 degrees in longitude and latitude, 100 km in depth, 5 seconds in time, and 2
units of magnitude), and choose those attributes with the highest score S, ().

5.2.4 Death Move

Any event e’ with score S.(e') < 1 is deleted, and all of its currently associated arrivals are
marked as false alarms.

5.3 Parallel Birth Moves

The algorithm described so far works on a single core of one machine. This may be sufficient
for most days when the number of arrivals is low. However, after a large earthquake, for ex-
ample the 2004 Sumatra earthquake or the 2011 Tohoku earthquake (off the coast of Japan),
the number of seismic arrivals can jump ten-fold above normal. Under these circumstances
it is necessary to take advantage of parallel processing to keep up with the deluge of data.
The main object of our parallelization is the birth move in Section which is asymptoti-
cally the most expensive. This move is roughly quadratic in the number of arrivals since we
propose an event from each arrival and we attempt to associate each of these events with all
the other arrivals.

In order to parallelize the birth move we employ two different strategies. First we exploit
multiple cores by implementing a multithreaded birth move. Step 2 in the birth move (see
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Section inverts each arrival into an event and attempts to find the best of these events.
We divide the task of inverting the arrivals evenly among the threads. Each thread finds its
best event in parallel and then in serial we find the best event from all the threads.

The second approach is to divide the time windows among multiple machines and have
each machine compute the birth proposal events for its window in parallel, possibly using
the multithreaded proposer. The birth proposers for all the windows are computed up front
and stored before the rest of the algorithm is started. When the overall algorithm described
in Section invokes the birth proposer in Step 2b, the previously computed events are
returned. There is a slightly subtlety in the manner in which the time windows for the birth
move are divided among the available machines. Since the time taken by the birth move is
quadratic in the number of arrivals, the time windows are divided in such a manner that the
square of the number of arrivals in each window are roughly equal.

5.4 Tempering

The model and inference that we have described so far places no constraints on which seismic
phases from an event may be detected at a station. As long as the detection probability
PQZZ(@") is non-zero, we could allow an arrival at station k to be associated as the phase j
for event e'. In reality, the phase labels capture properties of the seismic waves which only
make sense at certain event-station distances, or when the event is at a certain depth, or
both. For example, a P phase is not detected at a station which is 10 degrees away from an
event unless the event is more than 40 km deep. If the event was less than 40 km deep a Pn
phase may be possible though. A complete list of these constraints is presented in table [5.1]
In general, the phase labels in the training data follow these constraints and the learned
model assigns low probability to a phase association which violates them. The training data
though is not perfect and even if there is a small probability assigned by the model, it is
quite possible that such violations can make it into the resulting bulletin. To ensure that
all these phase constraints are respected we could always force the detection probability to
be zero whenever a constraint is violated. However, this would greatly limit the ability of
the inference to search the space of hypotheses. We have chosen to gradually decrease the
detection probability in each iteration of the inference for phases that violate constraints.
This allows the inference flexibility in associating any phase early on, but then over successive
iterations all the violations are removed. Let ¢/* be the maximum of the amount that the
distance in degrees between event i and station k exceeds the bounds for phase j or the
amount that the depth of event ¢ exceeds the bounds for phase j. We replace the original
detection probability in the model by the tempered detection probability, which is defined
as,
ciik
)
Where 7,, > 0 is the temperature in the nth iteration (1 to N) of Step 2c in the overall

Pﬁd,(ei) = P(gfj(ei) - exp(—
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algorithm (Section . If T, is very small and approaching zero then the detection prob-
abilities for impossible phases will approach zero and the inference will automatically avoid
these phase labels. On the other hand, for larger 7,, the constraints will be almost ignored.
In our inference we start with 77 = 100 and multiply the temperature by .6 in each iteration.
After the typical N = 20 iterations, the temperature goes down to 0.0036.

Phase min-distance (deg) max-distance (deg) min-depth (km) max-depth (km)

ScP
PKKPbc
Pg

Rg

0 98 40 800
17 98 0 40
2 17 0 40
114 180 0 800
2 12 0 40
0 30 40 800
149 155 0 800
10 70 0 800
10 98 10 800
0 12 0 40
145 176 0 800
10 62 0 800
105 125 0 800
0 8 0 40
0 3 0 0

Table 5.1:

Event to station distance and event depth ranges for seismic phases.
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Chapter 6

Experimental Results

6.1 Evaluation of seismic bulletins

The accuracy of a seismic bulletin depends primarily on the accuracy of the event locations
in the bulletin and the coverage of the events reported. At the same time, the bulletin must
not contain too many false alarms which could render it useless. Another important factor
is the quality of the arrivals associated with the events. However, the quality can be quite
subjective and we will not consider this much further other than ensuring that each arrival
associated to an event is within the distance and depth guidelines for the corresponding
phase.

The central question in evaluation is determining whether a reported event in a predicted
bulletin matches a true event in the ground truth bulletin. We have chosen the operational
criteria that two events which are within 5 degrees of epicentral distance and within 50
seconds in time are a potential match. In practice, multiple reported events could match a
true event and vice versa. Our approach is to find a one-to-one matching between reported
and true events and mark all other events as either spurious reported events, or missed true
events. Clearly, if given a choice, we would match the events which are closer to each other
in terms of epicentral distances. At the same time our prime objective is to maximize the
size of the matching. In other words, we compute a max-cardinality min-weight matching
on the bipartite graph over events in the two bulletins with edges between reported and true
events which are a potential match. The weight of an edge is the epicentral distance (in
km) between the two events. Given a matching between two bulletins we will estimate the
precision, the percentage of reported events which match, the recall, the percentage of true
events which match, and the average error, the average distance between matched events.
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6.2 Comparison of NET-VISA and SEL3

We first treat the IDC analyst-generated LEB as ground truth, and compare the performance
of our NET-VISA algorithm to the currently deployed SEL3 system. Using the scores for
hypothesized events, we have generated a precision-recall curve for NET-VISA, and marked
SEL3 on it as a point (see Figure . Also in this figure, we show a precision-recall curve
for SEL3 using scores from an SVM trained to classify true and false SEL3 events (Mackey
et al} [2009), SEL3 extrapolation. As shown in the figure, NET-VISA has at least 18% more
recall at the same precision as SEL3, and at least 33% more precision at the same recall as
SELS3.

Precision-Recall curve with LEB as ground truth

O O SEL3
: : ‘ N T SEL3 extrapolation
0.9 e | == NET-VISA

recall

014 015 [).‘6 0‘7 0‘,8 019 V J”l’.O
precision

Figure 6.1: Precision-recall performance of the proposed NET-VISA and deployed SEL3

algorithms, treating the analyst-generated LEB as ground truth.

To further understand why NET-VISA is able to find events missed by SEL3 we subdivide
the NET-VISA and SEL3 recall and average error by two different criteria. In Table [6.1] we
subdivide by LEB event magnitude. For magnitudes up to 4, NET-VISA has nearly 20%
higher recall with similar error. In Table we subdivide by LEB event azimuth gap. The
azimuth gap of an event is the largest difference between successive event-to-station azimuths
for stations where the automated processing detected an arrival for the event. Large gaps
indicate that the event location is under-constrained. For example, if all stations are to
the southwest of an event, the gap is greater than 270 degrees and the event will be poorly
localized along a line running from southwest to northeast. The results in these two tables
highlight a common theme: NET-VISA performs significantly better than SEL3 whenever
there is less data available. Under these circumstances the additional information in the



CHAPTER 6. EXPERIMENTAL RESULTS 46

SEL3 NET-VISA
Recall Err Recall Err

unknown 74 64.9 101 90.5 87

my Count

2-3 36 50.0 186 88.9 137
34 958 66.5 104 86.6 100
> 4 164 86.6 70 92.1 65
all 832 69.7 99 88.2 94

Table 6.1: Recall and average error (km) subdivided by LEB event magnitude (my).

Azimuth Count SEL3 NET-VISA
Gap ou Recall Err Recall Err
0-90 55 100.0 22 100.0 32

90 — 180 260 93.5 66 98.1 55
180 — 270 273 59.7 120 88.3 104
270 — 360 244 48.8 173 75.0 152

all 832 69.7 99 88.2 94

Table 6.2: Recall and average error (km) subdivided by LEB event azimuth gap

NET-VISA model — location prior, amplitude, misdetections etc. — play a critical role in
determining a better location for the events.

Bulletin lon lat  depth (km) my time  S.(-)  Pou()
LEB 177.67 -33.29 0.0 3.5 1237691617.7 13.3 -10.9
NET-VISA -179.61 -33.50 0.7 3.3 1237691599.7 16.0 -9.9
SEL3 170.48 -32.42 0.0 3.8 1237691669.5 -1.8 -17.2

Table 6.3: The various bulletin events around LEB origin-id 5287957.

In Table [6.3] we show the location of one such under-constrained LEB event, origin-id
5287957, the nearest NET-VISA event, which is 2 degrees and 18 seconds away, and the
nearest SEL3 event, which is 8 degrees and 52 seconds away. Although there are very few
arrivals to help locate this event and the azimuth gap is more than 270 degrees it is worth
noting that NET-VISA is able to use the event location prior, shown in the last column of
Table [6.3], to choose a more likely location for the event. Further, NET-VISA associates this
event to an Sn phase at station URZ (Urewera, New Zealand) without a corresponding Pn
phase at the same station, something SEL3 would avoid! The associations of the events to
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Bulletin station:phase station:phase station:phase
LEB URZ:Sn ASAR:P WRA:P
Sa(+) 7.8 13.1 15.0
NET-VISA URZ:Sn ASAR:P WRA:P
Sa(+) 8.8 12.6 14.8
SEL3 PLCA:P ASAR:P WRA:P
Sa(+) 1.2 13.0 15.1

Table 6.4: The station-phase associations of various bulletin events around LEB origin-id
5287957.

the automatically detected arrivals are displayed in Table [6.4, Not shown in this table is
a Pn arrival at station URZ that the analyst manually added to the LEB event. If it were
not for this Pn arrival, the analyst would probably not have associated the Sn arrival either.
Of course, the additional arrival was not available to NET-VISA or SEL3 and hence their
location estimates are expected to be different from the LEB location. This particular event
also demonstrates the perils of choosing the MAP event location. In Figure we plot the
contours of max(Se(e; = -, e = eﬁﬂB), Se(er =", ems = e%fT_VISA), or in other words the
maximum score of a hypothetical event which could use the NET-VISA or the LEB event
time, magnitude, and associated arrivals. As this figure suggests, the posterior event location
density is multimodal. The mode picked by NET-VISA happens to be 2 degrees away from
the mode near the LEB location.

6.3 Comparison of NET-VISA and LEB

Returning to Figure [6.1] the gap between SEL3 extrapolation and NET-VISA on the lower
right end of the figure suggests that NET-VISA is predicting spurious events with extremely
high confidence. In reality many of these events are real events which are missed in the LEB
bulletin by the human analysts. To understand the true scope of the LEB bulletin we have
compared it against various regional bulletins, which are based on data from many more
stations than in the IMS. In Table [6.5] we restrict both the LEB and NET-VISA bulletins
to different regions of the earth and evaluate against appropriate regional bulletins. This
table shows that NET-VISA outperforms LEB on all of these regions, and most notable in
the U.S. and Kazakhstan, where NET-VISA finds at least an additional 10% of the events
reported in the regional bulletin. The results in the continental U.S. are further subdivided
by the local magnitude (ML) in Table [6.6] These results show clearly that NET-VISA is
able to find half of the ML 3 to 4.5 and some even weaker events while LEB finds only 7%
of events with ML 3 to 4.5 and none below this.

The exact demarcations of these regions and the bulletins used are described in Table 6.7}
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Figure 6.2: SEL3 (red circle), LEB (yellow circle), NET-VISA (blue square) location and
posterior log odds ratio around LEB origin-id 5287957.

Incorporated Research Institutions for Seismology’s (IRIS) primary seismic origins were used
for the continental United States. For the other regions we relied upon the raw bulletins
from the International Seismological Centre (ISC)(International Seismological Centre] 2010)).
The relevant agency codes are displayed in the table.

6.4 Ablation Experiments

In order to demonstrate the effectiveness of each component of our model and inference, we
have separately ablated each component and measured the resulting performance. Figure|6.3
shows the precision-recall curve without the slowness. In other words, the slowness of the
arrivals is not observed. The slowness value is still used to compute the proposed locations
in the birth move. Similarly, Figure [6.4 has the curve for the model sans azimuth. These two
figures demonstrate that slowness and azimuth are crucial for determining the event location.
We haven’t included the curve after ablating arrival time because this was extremely low —
precision 10.8 % and recall 20.7%.

The arrival phase reported by the IDC software contains important information about
the polarization of the seismic waveform which helps distinguish the P and S waves which
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Region Count .. LEB . .NET_VISA
Precision Recall Err Precision Recall Err
Japan 1565 100.0 1.9 38 83.7 2.3 122
U.S. 132 100.0 3.0 33 78.3 13.6 106
Italy 96 50.0 1.0 49 66.7 2.1 43
Kazakhstan 65 73.3 16.9 57 70.4 30.8 67

Table 6.5: Precision, recall, and average error (km) of LEB and NET-VISA measured against
various regional bulletins.

LEB NET-VISA
ML Count Recall Err Recall Err

unknown 13 23.1 35 23.1 62

1.0 - 2.0 23 0.0 - 0 -
2.0-25 48 0.0 - 4.2 176
2.5-3.0 35 0.0 - 17.1 131
3.0 —4.5 13 7.7 28 3.8 &4

all 132 3.0 33 13.6 106

Table 6.6: Recall and average error (km) subdivided by event magnitude (ML) in the con-
tinental U.S.

have orthogonal particle motion and also the Lg phase (see Figure for the differences in
the phase to phase generation probabilities). With the phase information ablated from the
model, there is much more freedom to assign arrivals to events resulting in many spurious
events. This shows up as reduced precision as we increase the event score threshold. The
phase ablation results are presented in Figure [6.5] On the other hand, ablating amplitude,
Figure[6.6], doesn’t reduce performance as much since there is considerable uncertainty in the
amplitude model (Figure . This higher uncertainty results in the amplitude providing
very little information. .

Ablating the coda model, on the other hand, actually results in a slight increase of the
recall from 88.2% to 89.9%. However, this comes at the expense of a large number of spurious
events — the precision drops from 52.9% to 33.7%. The precision recall curve is plotted in
Figure [6.7. The spurious events mainly occur in clusters around large magnitude events
which tend to generate a number of coda detections.

The final ablation results are on the tempering of distance-depth constraints. In Fig-
ure we show three different results. The baseline curve, as usual, is the full NET-VISA
model and inference. The “hot” curve is the NET-VISA model running at the max tem-
perature T = 100 throughout. The “cold” curve is the NET-VISA model running at the
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Region Longitudes Latitudes Ground truth
Japan 130 to 145 30 to 45  JMA bulletin (ISC)
U.S. -125 to -70 25 to 50 IRIS

Italy 6 to 19 36 to 48 ~ ROM bulletin (ISC)

Kazakhstan 46 to 86 40 to 55 NNC bulletin (ISC)

Table 6.7: The definition of the various regions used for the regional evaluation and the
corresponding ground truth bulletin.

Precision-Recall curve with LEB as ground truth
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Figure 6.3: Performance after ablating arrival slowness.

minimum temperature 7' = .003. At the high temperature there is greater flexibility in
assigning phases to events and this leads to slightly better performance, and conversely the
run at the cold temperature has slightly worse performance than the baseline. However, in
the high temperature run only 35% of the inferred events respect the constraints, whereas
99% of the events from the other two runs respect all the constraints.

6.5 Data and Resources

All the results in this thesis are based on 3 months of IMS data (March 22 to June 20,
2009), which was made available by the CTBTO through vDEC, Virtual Data Exploitation
Center (Vaidya et al.,; 2009). The 3 months of data was divided into 7 days of validation
data (March 22 to March 29, 2009) on which all of the results were produced and 2.5 months
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Figure 6.4: Performance after ablating arrival azimuth.

of training data (April 5 to June 20, 2009).

The inference used a window size, W, of 30 minutes, a step size, S, of 15 minutes, and
N = 20 iterations. There were a total of 832 LEB events in the validation data and roughly
120,000 arrivals. Inference on a single 8-core machine running at 2.5 GHz took about 21
hours. On a cluster of 20 machines, each with 8 cores, the birth move completed in 1.2 hours
and consumed a total of 19.5 node-hours on the cluster. The rest of the inference finished
up in 3.5 hours in serial. Estimating model parameters on the training data took about 2
hours. All the performance results in this paper were obtained on the Amazon EC2 cluster
which was made possible by an AWS in Education grant award.

The regional events were obtained from two sources. The IRIS primary origins were down-
loaded from SeismiQuery (http://www.iris.edu/SeismiQuery/sq-events.htm) and the
ISC raw bulletins from http://www.isc.ac.uk/iscbulletin/search/catalogue/. The
IRIS primary origins in turn are derived from various sources — USGS ENS alert, USGS
QED, USGS Weekly PDE, USGS Monthly PDE, GCMT, and ISC.


http://www.iris.edu/SeismiQuery/sq-events.htm
http://www.isc.ac.uk/iscbulletin/search/catalogue/
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Figure 6.5: Performance after ablating arrival phase.
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Figure 6.6:

Performance after ablating arrival amplitude.
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Figure 6.7: Performance after ablating coda model.
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Figure 6.8: Performance after ablating tempering model.
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Chapter 7

Conclusions and Further Work

Standard seismological processing proceeds in multiple steps. Phase identification, ar-
rival association, event location, event quality determination, and magnitude estimation.
In sharp contrast, we have proposed a probabilistic model which incorporates all of these
separate processes in a single vertically integrated model. There is no need for an iterative
linearized least squares algorithm for event location. Our simple, parallelizable inference
algorithm takes the complete model into account when proposing and locating events. Al-
though probabilistic models for event location have been proposed before, ours is the first
one which combines association and location. In doing so, we have incorporated detection
probabilities and various other aspects such as historical seismicity, arrival amplitude and
phase into a holistic inference.

A vertically integrated model for seismology may be a new idea, but the individual com-
ponents of this model are based on standard seismological practice. For instance, we use the
[ASPEI travel time tables and corrections for the earth’s ellipticity as well as SASC correc-
tions for azimuth and slowness. All the seismic phases reported in the NET-VISA bulletin
comply with the accepted distance and depth ranges for those phases. The approach of using
tempering to gradually incorporate deterministic constraints allows us to take advantage of
seismic knowledge without being hampered by it.

Our results demonstrate a significant improvement on classical systems. The NET-VISA
system can not only reduce the human analyst effort required to achieve a given level of
accuracy, but can also lower the magnitude threshold for reliable detection. Given that the
difficulty of seismic monitoring was cited as one of the principal reasons for non-ratification of
the CTBT by the United States Senate in 1999, one hopes that improvements in monitoring
may increase the chances of final ratification and entry into force.

In future, we see various extensions to our work. The parameters of our model can be
estimated continuously without the need for a separate training and test set. The generative
model can be extended to include waveforms directly rather than the arrival parameters, so
that there is no need for explicitly picking arrivals. The general approach of combining asso-
ciation and location can be extended to other similar problems such as locating microseismic
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events in oil and gas drilling.
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