
Reinforcement Learning Methods to Enable Automatic

Tuning of Legged Robots

Nicolas Zeitlin
Pieter Abbeel, Ed.
Ronald S. Fearing, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-129

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-129.html

May 30, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

ABSTRACT

Reinforcement Learning Methods to

Enable Automatic Tuning of Legged Robots

by

Nicolas Zeitlin

Masters of Engineering in EECS

University of California, Berkeley

Professor Pieter Abbeel

Reinforcement learning applied to legged-robots opens up the possibility to design robots capable not

simply of walking, but of adapting and learning how to walk autonomously without any human

interaction. This new generation of robots can one day navigate disaster areas and explore unchartered

terrain. In this paper we evaluate the need for a reinforcement learning algorithm to optimize the gait of

OctoRoACH, a hand-sized eight-legged robot. We then perform an evaluation of a likelihood-ratio

gradient policy and compare it against our hand-tuned results. Finally, we suggest a different approach to

reduce the policy search space that can make the problem more manageable.

1

I. INTRODUCTION

EARCH and rescue operations present a challenging situation for rescuers, who must find

and rescue the highest number of survivors while avoiding risking their own lives. In these

situations time is of the essence, since survival rates plummet over time as survivors struggle

trapped in the debris [1]. In order to reduce both the time necessary to find survivors and any risk

for rescue personnel, robots are being developed to assist in the search and rescue operations.

These remotely operated robots are tasked with navigating through rubble in search for

survivors, allowing rescuers to monitor the situation safely from a distance.

Currently available rescue robots are remotely operated which reduces the amount that can be

deployed and, in consequence, the speed at which survivors can be found. In this paper we

present a technology that could allow a rescue robot to efficiently walk autonomously across the

challenging disaster zone terrains, reducing its dependence from remote operators.

Legged robots, such as the DynaRoACH [5] or OctoRoACH [6] developed by the Biomimetic

Millisystems lab, have demonstrated the ability to walk over a variety of terrains such as those

encountered in a disaster situation. However, the efficiency and speed of their locomotion varies

greatly according to the timing of their legs. Because this timing is also affected by several

external factors, it is time-consuming, labor-intensive, and error-prone to tune by hand. Thus we

first want to determine whether it is possible to hand-tune a single policy that can enable the

robot to navigate across several terrains.

Our main contributions are to establish the need for a reinforcement learning algorithm to control

the OctoRoACH’s gait, and then specifically evaluate the performance of a Likelihood-Ratio

Policy Gradient enabled controller. In particular, we first define how to measure OcotoRoACH’s

S

2

walking efficacy. Then we manually optimize the robot’s walking parameters around that

definition and compare the results with those found by iteratively searching for an optimal policy

through the Likelihood-Ratio Policy Gradient method.

The remainder of this paper is structured as follows. Section II describes previous work in the

reinforcement learning space applied to legged robots. Section III describes our tests and policy

gradient controller chosen parameters. Section IV exposes our results, and Section V discusses

suggested future work.

II. PREVIOUS WORK

Given a legged robot’s potential to navigate a wide variety of terrains, many efforts have been

devoted lately to their development. For example Sony’s Aibo
1
 was a four-legged robot

(popularized by the RoboCup) that was able to walk through different playing fields with varying

levels of hardness and friction. LittleDog
2
 in turn is a bio-inspired robot developed by Boston

Dynamics, Inc. after a dog that was able to successfully traverse highly irregular terrain [2] [3].

Along the lines of bio-inspired robots, DASH [4] was inspired by cockroaches and offers a

sprawled posture and uses an alternating tripod gait to achieve dynamic open-loop horizontal

locomotion. After DASH other cockroach like robots have been developed including

DynaRoACH and OctoRoACH, the latter of which has eight legs driven by two independent

motors, each of which actuates all legs on one side. Having these two independent input

controllers, as well as embedded PID controllers, makes OctoRoACH more powerful than its

insect-inspired predecessors while remaining durable and inexpensive. For these reasons, we

chose OctoRoACH to test the reinforcement learning algorithm evaluated in this paper. An

1 http://www.sony.co.uk/support/en/hub/ERS
2 http://www.bostondynamics.com/robot_littledog.html

3

additional feature for OctoRoACH considered recently also studies the possibility of adding a

tail to the robot [6]. This method proved particularly successful when very quick turning was

needed. Since we aren’t particularly interested in fast turning of the robot, the simpler leg

velocity control method was deemed sufficient for the work done here.

Given their potential to traverse different surfaces, enabling such legged-robots with the ability

to walk efficiently has received a lot of attention in recent years by the robotics community. In

[2] a hierarchical control architecture is presented that enables LittleDog to walk over rough

terrain. This controller consists of a high-level planner that plans a set of footsteps across the

terrain, a low-level planner that plans trajectories for the robot’s feet and center of gravity

(COG), and a low-level controller that tracks these desired trajectories using a set of closed-loop

mechanisms. The high-level controller uses Hierarchical Apprenticeship Learning (HAL) to

calculate the intended position of each foot throughout the path. This method was tested using

LittleDog on four different tracks, two of which were built by the LittleDog program. The

resulting success probabilities reached 97.5% with 20 runs.

The controller’s architecture can clearly provide improvements, but it is also subject to the

quality of learning algorithm. A popular approach to this problem is to compute the policy

gradient that maximizes a reward based on the walking efficiency.

Policy Gradient methods in general have been widely popular in robotics as evidenced by [7]-

[13]. These methods in turn can be usually grouped based on how they compute the policy

gradient: by finite-difference or by Likelihood Ratio / REINFORCE methods [14].

Finite-difference methods start by varying a policy parameter by small increments of around

a reference policy and evaluate the reward changes of . These results are then used to

4

calculate the policy gradient of the chosen parameter using () (). There have

also been improved methods developed around variations of this approach. For instance in [15] a

method is presented where random perturbations are applied simultaneously to the different

dimensions of the policy, and the results grouped based on how much they improve or worsen

the reward. This method can be used to arrive at a local optimum with less runs than with the

traditional finite-difference approach. It was applied to optimize the speed of Aibo and yielded

the best results up to that moment. PEGASUS [16], another popular approach, has also been

described as building on a finite-difference gradient method [14]. This method in turn was

applied to a bicycle simulator where the goal is to ride to a goal 1 Km. away. Using PEGASUS

yielded results with a median riding distance ranging from 0.995 Km. to 1.07 Km, far better than

the previous results published in [17].

Likelihood Ratio methods in general and REINFORCE [17] in particular arise from a different

premise: given a set of trajectories generated stochastically with () (|) and a set of

rewards () ∑

 where H denotes the horizon, represents the reward received by the

learning system at time k and denote time-step dependent weighting factors, the policy can be

estimated by:

 () ∫ () ()
 { () ()} [9]

This equation can be further optimized to reduce the variance by adding a baseline: since

∫ ()
 we can add () where b is a vector computed to minimize variance

without biasing our estimates [10]. Likelihood ratio methods are also guaranteed to converge to

the true gradient at the best Monte-Carlo convergence rate of (

), where I denotes the

number of roll-outs [19].

5

In [20] a further improvement is described for Likelihood Ratio policy methods. By making an

analogy with importance sampling an optimization is described that leverages past experiences

when computing the current gradient rewards. This optimization could enable a faster

convergence rate by leveraging more data points therefore better estimating the current policy

gradients.

Given the advantages of using policy gradient methods in general, and likelihood ratio methods

with the importance sampling optimization in particular, these methods are good candidates to

optimize legged-robots walking performance.

III. METHODOLOGY

To understand how our reinforcement learning algorithm improves the walking efficiency of

OctoRoACH we chose to evaluate how its speed and accuracy are affected by our program.

Currently, the available controller libraries offer functions to set the thrust for each of the two

motors for a fixed amount of time. As mentioned above, each motor controls the left and right

legs respectively. We chose to set the thrusts for a fixed amount of time and measure the distance

traveled by the robot to assess its speed and its normalized deviation from a straight line to assess

its accuracy. Specifically:

 () √

 ()

 ()

6

In the equations above x and y are the robot’s final coordinates taken with respect to its original

position, d is the distance travelled, s is the measured speed during a fixed time t and a is the

robot’s path accuracy. Our intention is to maximize the accuracy and speed that the robot can

achieve.

Figure 1: Measurements taken after each successful run.
y corresponds to the straight distance travelled, while x

corresponds to the perpendicular deviation

To understand OctoRoACH’s range of policies and their effects on speed and accuracy, we

tested a broad range of different hand-tuned thrust values on three different surfaces. In

particular, we ran our tests on carpet, wood, and gravel. For each one of these surfaces we tried

eight different thrust values, and to accommodate for random behavior and noise we tried

perturbations of each thrust value six times. These runs were used not just to determine the

relationship between speed and accuracy, but also as control samples to evaluate our algorithm

against. To be considered a valid alternative, the reinforcement learning algorithm’s policies

should perform equal or better than the hand-tuned policies given a minimum accuracy rate.

We then proceeded to code the Likelihood-Ratio Policy Gradient Controller as described in [20].

Our reward function was determined by the harmonic mean of speed and accuracy, so as to

7

encourage policies having high values for both measurements. Specifically, our reward function

was given by:

 () ()

 () ()

To minimize the impact of noise, we ran each policy six times. For each run, slightly perturbed

input values were chosen using a multivariate distribution around the policy’s thrust. To reduce

the variance we decided to also use baselines as described in [20]. The baselines were calculated

as the average reward for each given policy. Finally, the least squares method was used to

calculate the policy gradient from the six distinct measurements. In other words, given L and R

as the thrust on both motors, j as the reward function and ⃗ as the baseline, the least squares

method was used to solve the following equation:

[

]

[

]

 ⃗

The gradient was then used to calculate new thrust values by following the direction of greatest

ascent. We then proceeded to repeat this process running OctoRoACH on one of the chosen

surfaces, carpet, until the control policies converged and compared the resulting speed and

accuracy against the hand-tuned policies. To determine that a policy had converged we waited

until the integer thrust values chosen by the algorithm were the same three times in a row.

8

IV. RESULTS AND ANALYSIS

The hand-tuned experiments were useful to confirm the need for a reinforcement learning

algorithm for policy control. We found that there was no single policy with a high speed and

accuracy that could run equally well on all different surfaces. In fact, those policies that had

returned a high reward value on a given surface often had a very poor performance on all others.

The plot below illustrates this by contrasting the speed and accuracy of a set of policies on wood

and carpet.

Figure 2: Speed and accuracy for 2 different sets of policies, evaluated on carpet and
wood. Note how the same policies that yield high rewards on one surface may have a

poor performance on another

The experiments were also useful to understand how speed and accuracy relate to each other: as

speed increases, we found that the path’s accuracy may decrease, as can be seen in Figure 3

below.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.000 0.050 0.100 0.150 0.200

A
cc

u
ra

cy
 (

%
)

Speed (m/s)

Hand-picked Optimal Carpet Policies on Carpet

Hand-picked Optimal Carpet Policies on Wood

Hand-picked Optimal Wood Policies on Wood

Hand-picked Optimal Wood Policy on Carpet

9

Figure 3: Hand-tuned Optimized Speed and Accuracy measurements for different
policies and different surfaces.

This tradeoff between speed and accuracy confirmed our assumptions and our reasoning for

choosing the harmonic mean between the normalized speed and accuracy as the reward function.

As a result, when we executed the likelihood-ratio policy gradient experiments on a carpet

surface, we were able to reach speeds and accuracies similar to those found manually and shown

in the plots above. After 8 iterations (with six runs each) the speed and accuracy converged to

0.1m/s and 99.5% respectively. A plot of the reward function shows the convergence, in spite of

choosing a poorly performing policy in the fourth iteration.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.000 0.050 0.100 0.150 0.200

A
cc

u
ra

cy
 (

%
)

Speed (m/s)

Hand-picked Optimal Carpet Policies on Carpet

Hand-picked Optimal Wood Policies on Wood

Hand-picked Optimal Gravel Policies on Gravel

10

Figure 4: Rewards computed by the Policy Gradient Algorithm. In spite of running into

a poorly performing policy in the fourth iteration, the algorithm later converged

V. LIMITATIONS AND FUTURE WORK

More tests should be performed to confirm the effectiveness of the reinforcement learning

algorithm. In particular, it would be useful to assess the validity of the algorithm on additional

surfaces. For multiple surfaces, one possibility would be to establish a mapping between optimal

policies across those surfaces. If equivalent rewards across surfaces can be found merely

modulating and translating through the 2-dimensional policy space, then a policy gradient

algorithm could be customized to find the appropriate translation.

To establish whether such a mapping is possible, we measured the robot’s distance travelled

across a longitudinal axis over a fixed amount of time using different policies on carpet and

wood. The resulting plots are shown below.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8

R
e

w
ar

d

Iteration

11

Figure 5: Distance travelled over a wooden
given a range of thrust values

Figure 6: Distance travelled over carpet surface
given a range of thrust values

As can be inferred from the plots above, there is a relationship between the resulting distances

travelled on wood (Figure 5) and carpet (Figure 6). Specifically, we see that similar distances can

be reached on carpet as in wood by increasing the left and right thrust values by 75 and 50 points

respectively. If this pattern were consistent across additional surfaces, then the policy search

could be performed in a lower dimensional space.

VI. CONCLUSIONS

By evaluating different walking policies on different surfaces, we were able to establish the

necessity for a reinforcement learning enabled controller if we want OctoRoACH to efficiently

traverse different terrains. One possible method is Likelihood-Ratio Policy Gradient algorithm,

which we have shown has the ability to optimize the robots’ gait and reach speeds and accuracies

similar to those found by manual hand-tuning. This suggests that a walking controller for

OctoRoACH would benefit from such an algorithm, and encourages further research in mapping

the policy space to develop better policy gradients.

12

REFERENCES

[1] A.W. Coburn, R.J.S. Spence, A. Pomonis, “Factors determining human casualty levels in earthquakes: Mortality prediction

in building collapse” in Earthquake Engineering, Tenth World Conference, Balkema, Rotterdam, 1992.

[2] J. Zico Kolter, Mike P. Rodgers, and Andrew Y. Ng. “A control architecture for quadruped locomotion over rough terrain”.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages 811-818, 2008

[3] J. R. Rebula, P. D. Neuhaus, B. V. Bonnlander, M. J. Johnson, and J. E. Pratt, “A controller for the littledog quadruped

walking on rough terrain”. In Proceedings of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2007

[4] P. Birkmeyer, K. Peterson, and R. S. Fearing, “Dash: A dynamic 16g hexapedal robot”, in IEEE Int. Conf. on Intelligent

Robots and Systems, 2009

[5] A. Hoover, S. Burden, X.-Y. Fu, S. Sastry and R. Fearing, “Bio-inspired design and dynamic maneuverability of a

minimally actuated six-legged robot” in IEEE International Conference on Biomedical Robotics and Biomechatronics,

BioRob 2010., Sep. 2010

[6] A.O. Pullin, N.J. Kohut, D. Zarrouk and R. Fearing, “Dynamic turning of 13 cm robot comparing tail and differential drive”

[7] T. Mori, Y. Nakamura, M. Sato, and S. Ishii. “Reinforcement learning for cpg-driven biped robot”. In AAAI, 2004

[8] R. Tedrake, T. W. Zhang, and H.S. Seung. “Learning to walk in 20 minutes”. In Proceedings of the Fourteenth Yale

Workshop on Adaptive and Learning Systems, 2005

[9] J. Baxter and P. Bartlett. “Direct gradient-based reinforcement learning”. In Journal of Artificial Intelligence Research, 1999

[10] E. Greensmith, P. Bartlett, and J. Baxter. “Variance reduction techniques for gradient estimates in reinforcement learning”.

In Journal of Machine Learning Research, 2004

[11] Leonid Peshkin and Christian R. Shelton. “Learning from scarce experience”. In Proceedings of the Nineteenth

International Conference on Machine Learning, 2002

[12] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. “Policy gradient methods for reinforcement learning”. In NIPS 13,

2000

[13] Jens Kober and Jan Peters. “Policy search for motor primitives in robotics”. In NIPS, 2008

[14] J. Peters and S. Schaal. “Policy gradient methods for robotics”. In Proceedings of the IEEE International Conference on

Intelligent Robotics Systems, 2006

13

[15] N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal locomotion”. In IEEE International

Conference on Robotics and Automation, 2004

[16] Andrew Y. Ng and Michael Jordan. “PEGASUS: A policy search method for large MDPs and POMDPs“. In Proceedings of

the Sixteenth Conference on Uncertainty in Artificial Intelligence, pages 406–415, Stanford, California, 2000

[17] J. Randløv and P. Alstrøm. “Learning to drive a bicycle using reinforcement learning and shaping”. In Proceedings of the

Fifteenth International Conference on Machine Learning, 1998

[18] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” In Machine

Learning, vol. 8, no. 23, 1992

[19] P. Glynn, “Likelihood ratio gradient estimation: an overview”. In Proceedings of the 1987 Winter Simulation Conference,

Atlanta, GA, 1987, pp. 366–375

[20] J. Tang and P. Abbeel, “On a connection between importance sampling and the likelihood ratio policy gradient”. In Neural

Information Processing Systems, 2011

