HYDRASCOPE: ADAPTING EXISTING WEB
APPLICATIONS FOR MULTI--DISPLAY WALLS

Viraj Kulkarni
Bjorn Hartmann

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-135
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-135.html

May 30, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to thank my advisor, Bjoern Hartmann, and my project partners,
Hong Wu and Yun Jin for their support and encouragement. | also want to
thank Michel Beaudouin-Lafon and Wendy Mackay for their continuous
guidance.

HYDRASCOPE: ADAPTING EXISTING WEB

APPLICATIONS FOR MULTI-DISPLAY WALLS

By
Viraj Kulkarni

May 2012

TABLE OF CONTENTS

20 2 L O . 3
INTRODUCTION ... sssss s ssss s ssss s sss s s s s n s n s e m s s am s s san s s 3
RELATED WORK ... s s s ss s s sas s s s s n s m s s st s s n 7
MULTI-DISPLAY ARCHITECTURES ...cuturuutureeuresusesssesessessasessssesssssssssssssssssssssssssssasssssssasssssssssssassasssssssssasassasassasasses 7
USER INTERACTION ON MULTI-DISPLAY WALLS ...etureturesrressresssesssessssessssessssessssessssessssessssessssessssessssssssssassees 8
REVERSE ENGINEERING INTERFACESurutureeuresuseessesssessssesssssssssessasasssssssssassessssasasses 9
D0 D L 9
MOBILE REMOTE CONTROL ...ttt sssssssss s ssssssb s ssssss s bsssss s ssasss s ssanes 10
APPLICATION INSTANCE MANAGER ..ottt ssssss s ssssssssssans 11
SYNCHRONIZATION SERVER ...ttt bbbt sassas 12
SYSTEM INPUT MANAGER ..ttt 12
IMPLEMENTATION ... sssss s s s s s s s sssassssas s sas s sas s sasss sassnsananss 13
MOBILE REMOTE CONTROL ...ttt ssssss s ssssssb s sssssss s ssasss s ssanes 13
APPLICATION INSTANCE MANAGER ...ttt sssssssssssans 14
SYNCHRONIZATION SERVER ...ttt bbb sassas 15
SYSTEM INPUT MANAGER ..ttt bbbt 15
HYDRASCOPE APPLICATION DEVELOPMENT. ... s sasnsasanss 15
EXAMPLE APPLICATIONS ... s s ss s s s sssasssas s sasss sasss sassnsananss 17
PRESENTATION VIEWER ...ttt ssss s ssss b bssass b sass s ssassb s ssans 17
MULTI-DISPLAY STOCKS ..ottt ssss s ssss b sass bbb s s 18
TILED MAPS oottt ss bbb b b AR bbb bbb b 18
AGGREGATED SEARCH. ...ttt st s bbb s s 19
COLLABORATIVE TEXT EDITOR .ttt ssasssssssans 19
EVALUATION .. s s n s sm s m s s s m s a s e b na s A A 20
USER INTERACTION WITH APPLICATIONS ..ttt 20
APPLICATION DEVELOPMENT PROCESS ...ttt sssssssssssans 21
DISCUSSION AND FUTURE WORK. ... s sassnsasanss 22
L0100 00 8 L 23

REFERENCES ... n s s s s s s 24

ABSTRACT

Although large wall-sized displays are becoming increasingly available, their rate of
adoption in research and business environments has been limited due to (1) the
high cost of developing applications that scale to cluster-driven displays and (2) lack
of interaction techniques for multi-user input on such shared displays. In this
report, we introduce Hydrascope, a framework for creating multi-view meta-
applications for cluster-driven displays by adapting existing web applications
without modifying their source code. Hydrascope meta-applications work by
running multiple instances of an application in parallel and synchronizing their
views. We demonstrate the capabilities of our framework with five example
applications. We also report on informal evaluations of a developer writing a
Hydrascope meta-application, and five pairs of users interacting with our example

meta-applications.

INTRODUCTION

High-resolution multi-display walls are becoming increasingly available due to
reducing hardware costs. Such display walls support resolutions that are an order of
magnitude higher than standard personal computing workstations and offer
opportunities in the fields of large data visualization and collaboration. A big
hindrance for adoption of wall-sized displays, however, is the scarcity of
applications that can take advantage of them. Such displays are usually assembled

by tiling a number of smaller displays together in the form of a grid. Since there are

limitations on the number of displays that can be connected to a single computer,
they often need computing clusters to drive them and are commonly used in multi-
user environments. Most existing applications are developed for a single user using
a personal display connected to a single computer and, hence, they often do not

scale to such shared cluster-driven displays.

A number of Ul frameworks exist for developing applications to take advantage of
the high resolution and shared nature of these displays, such as jBricks [14] and
Shared Substance [6]. However, rewriting applications from scratch is expensive

and requires a significant amount of engineering expertise and effort.

Our project takes a complementary position and investigates how existing web
applications can be adapted to run on multi-display walls without modifying their
source code. Most web technologies follow design patterns such as MVC! that
promote separation of the data model and view components of the system. We take
advantage of the fact that an increasing number of web applications are now
designed to support multiple views that work on the same data model. For example

Google Docs? and Zoho Office3, among others, enable multiple instances of an
application to edit the same data simultaneously. These projects are based on a long
lineage of research in collaborative editors [15]. Hydrascope is a framework that

enables developers to instantiate multiple views of an application and control

2 http://docs.google.com

3 http://www.zoho.com

HYDRASCOPE E Aol - 3 bt 3 e -

B8 g =
O e B e B

AR

Figure 1: Four applications we built with Hydrascope: (A) A presentation viewer, (B) a stocks viewer, (C) A tiled map viewer
with pan and zoom control, (D) A multi-screen search application where the left two screens show search results, and the right

four screens automatically load pages from search results (here for the query "UIST 2012").

synchronization of these views across displays running on different computers.
While such adaptations cannot provide the full benefits of rewriting applications,
they have the advantages that they are much faster to produce, and can be used for
applications for which source code is not available. Users continue to operate the
existing software packages that they are familiar with and gain additional value
from additional displays. The primary limitation here is that any approach that does
not modify source code can only control or modify the functionality that is exposed
in the existing view of the application. We restrict our investigation to ‘multiple view
interfaces’ [17] that shows two or more views of a single concept or document, as

we believe such interfaces are possible to produce using Hydrascope.

= erizon % Yetizon & 245PM = rizon & 3:13PM = ([[erizon & 2:46 PM =
C) L) LEJ

Hydrascope Touchpad Hydrascope
[[

Hydrascope Hydrascope

[

Controllers About

Search Control

Hydrascope

Tap on the screen to select it and click
ACCEPT to continue:
Presentation: Hydrascope

1 2 3 Keyboard and Mouse

: 4 NN g
Hydra Search (running) ACCEPT CANCEL Finance

Hydra Maps

Search:

(VEEVEEVAR)

Web Search

HackPad - Metamorphosis. <PREV NEXT >

Tap here to enter text

Figure 2: (A) Hydrascope application Launchpad. When users tap on an application that is not yet running, they can (B) assign
available screens to that application. (C) When an application has launched, users can select an appropriate control interface:
either (D) a touch pad and text entry controller; or (E) application-specific controllers. The search controller shown here
enables users to “pin” search results to screens, and to enter new query terms without having to first navigate to the wall’s on

screen query box.

Human interaction with shared wall-sized displays is different from interaction with
smaller personal displays. Personal displays are operated using single-user devices
such as keyboard and mice that require a fixed supporting surface. On the other
hand, wall-sized displays call for multi-user input as well as user mobility - users
need to move about to observe different parts of the display from different
distances. To support these needs, Hydrascope features a mobile remote control (Fig.

2) that allows users to manage applications and interact with them.

In this report, we present the motivation behind Hydrascope and introduce related
concepts. We describe the design and implementation of the system and outline the
process of developing applications using Hydrascope. We demonstrate the
capabilities of the framework with five example applications: a slides viewer, a stock
chart navigator, a tiled map, a search application, and a multi-user text editor (Fig.

1). We evaluate the system from the standpoint of both developers and users with

an informal study involving a developer using the framework to repurpose an
application, and 10 different users interacting with our example applications in
pairs. We conclude by discussing the challenges and limitations of our approach and

our future vision for Hydrascope.

RELATED WORK

Hydrascope builds on prior work in three main research areas: multi-display
architectures, multi-user interaction in collaborative environments and reverse

engineering of existing applications.

Multi-display Architectures

Early work on developing visualization applications for clustered displays, such as
Chromium [9], focused on using low-level graphics APIs such as DirectX and
OpenGL. They worked well for high performance applications, but were difficult to
develop and required a large engineering effort. The approach of running multiple
instances of an application simultaneously on different screens and synchronizing
their views has been studied. jBricks [14] is a Java toolkit that integrates a graphics
rendering engine and an input configuration module into a coherent framework
enabling rapid development of visualization applications. Shared Substance [6]
provides a middleware that offers data sharing abstractions and has been use for
developing multi-display applications. WeSpace [18] is a collaborative workspace
that integrates a large data wall with a multi-user multi-touch table. An alternative

to this distributed rendering approach is pixel streaming, as used in the SAGE

environment*, where applications are run on a single machine and their outputs are
streamed to display servers using protocols such as VNC [16]. The drawbacks of this
approach include high bandwidth requirements and visual artifacts caused by
scaling images. Hydrascope uses a version of the distributed rendering approach by
running a copy of the application on each display server. Unlike previous work, it

does not require access to the source code of the application.

User Interaction on Multi-display Walls

Small personal displays are operated using single-user devices like keyboard and
mice that require a fixed supporting surface. Wall-sized displays, due to their larger
size and shared nature, call for multi-user interaction techniques that allow users to
move freely in front of the displays while interacting with them. Nancel et al. [13]
study different families of location independent mid-air interaction techniques for
pan-zoom navigation on wall-sized displays. For interacting with distant
unreachable display areas, Khan et al. [11] proposed a new widget known as a
“Frisbee”, whereas Boring et al. [3] proposed using a live video of the display taken
by a mobile phone. Malacria et al. [12] proposed clutch-free panning and integrated
pan-zoom control on touch-sensitive surfaces by drawing circles. We did not
incorporate these techniques in our mobile controllers, but we may do so in the

future.

Supporting multi-user interaction is a challenging problem since the existing

infrastructure consisting of hardware devices, operating systems and applications

4 http://www.sagecommons.org

has been designed for single user input using mice or keyboards. PointRight [10]
distributes multi-user mouse and keyboard inputs to multiple screens running
across multiple computers. Since the existing infrastructure supports a single mouse
cursor, these systems either multiplex the cursor, such as in Mighty Mouse [2] or
support multiple cursors for specially designed applications, such as in Mischief [1].

Hydrascope uses cursor multiplexing for supporting multi-user input.

Reverse Engineering Interfaces

For programmatic interaction with applications, developers need to reverse
engineer the interfaces to extract state information or execute interaction events.
One approach includes extracting information from the code structure of the
application, such as d.mix [8] that extracts DOMS information from webpages or
Scotty [5] that programmatically queries the state of desktop applications on Mac
OS X. Another approach is to apply computer vision techniques to screen pixels,
such as Sikuli [19] and Prefab [4]. Hydrascope is closely related to DOM based

reverse engineering such as d.mix.

DESIGN

Wall-sized screens usually require multiple display servers® to drive them.
Hydrascope works by running one or more instances of the application on each
display server, and synchronizing the views of these instances across all servers.

The Hydrascope system comprises of four components (1) Mobile Remote Control,

5 http://en.wikipedia.org/wiki/Document_Object_Model
6 A display server is any computer in the environment that controls one or more display surfaces.

input events to/from .
synchronization server application events to/from
& other display servers synchronization server

Synchronization

Server Yest —_ j Input Manager

Application Application Application | AIM Server
< Window | Window 2 Window 3 | : SRR (TR
“L i tate ch: i
- : mouse+ il :\:ssaa;ges :U;:‘[t
AIM instances running on each display server : keyboard events messages

Application || Application : : T3

Window 4 || Window 5] s inject events, TN Glient
/ \ p . - change URL (content ssript)
vee monitor
D'SPlay URL & DOM
§, Servers changes

(content script)
Target Page Target Page
Mobile Remote Controllers _
Window | Window 2

Figure 3: (left) Global architecture of Hydrascope (right) Local architecture on a single display server

(2) Application Instance Managers, (3) Synchronization Server and (4) System Input
Manager (Fig. 3). The Mobile Remote Control is an application that enables users to
launch and manage applications on the multi-display wall and interact with them.
The Application Instance Manager (AIM) is a process that runs on each display
server and is responsible for launching multiple application instances and
synchronizing them. The Synchronization Server is a central server that facilitates
communication between the Mobile Remote Control and the AIMs. The System Input
Manager (SIM) runs on each display server and executes system-level mouse and

keyboard events on that server.

MOBILE REMOTE CONTROL

The mobile remote control consists of an Application Launchpad for launching and
killing applications, the Screenscape screen manager for assigning different parts of
the wall to different applications, and a set of controllers for interacting with the
multi-display wall. On running the mobile remote control, the Launchpad presents

the user a list of installed applications. On selecting an application to launch,

Screenscape displays a screen map that allows the user to assign screens to the
application. The user then launches the application. This process is illustrated in Fig.
2. The application configurations and screen topologies are stored on the

synchronization server.

The mobile remote control supports a keyboard and mouse controller that can be
used to redirect text and mouse events to the multi-display wall. This controller
provides an interface for low-level input such as mouse click, drag, scroll and pinch-
zoom. For applications that can benefit from more sophisticated forms of
interaction, Hydrascope also supports custom controllers. These controllers provide
high-level interfaces for application specific tasks that otherwise require the user to
perform a series of low-level mouse interactions to accomplish. This can be seen in
our example search application where the user pins search results to screens using
the custom controller (Fig. 2E). Custom controllers are especially important in
shared environments where multiple users may simultaneously perform different

tasks.

APPLICATION INSTANCE MANAGER

Every display server runs one instance of the AIM for each application. The AIM is
responsible for (1) launching multiple application instances on the display server,
(2) listening for view changes in each instance and synchronizing changes across all
instances and (3) executing input events and application specific interactions
performed using the mobile controllers (Fig 3, right). There are two components to

an AIM: (1) a system level AIM Server, one per display server and (2) multiple AIM

Clients, one per application instance. The AIM Server launches multiple application
instances and handles their synchronization. There is an AIM Client for every
application instance that the AIM Server launches, and it is responsible for
monitoring view changes and executing interaction events for that instance. The
AIM clients execute application-level interaction events, while the system input
manager executes system-level interactions such as mouse and keyboard events.
Synchronizing application instances running on different display servers needs
communication between AIMs running on these servers and is handled by the

synchronization server.

SYNCHRONIZATION SERVER

Instances of an AIM running on different display servers are synchronized by the
synchronization server. The synchronization server also facilitates message passing
between the mobile remote control and the AIMs. This server resides on a
networked machine that has an IP address accessible by all display servers and

mobile devices.

SYSTEM INPUT MANAGER

The system input manager is a separate module running on each display server that
executes system level events such as text entry and mouse click, drag, scroll and

Zoom.

Mac Pro [2 GPUs] ini e ey i .

ckpad 3 : L= =l

Figure 4: (left) In our lab, a Mac Pro drives 6 monitors with a total resolution of 5760x2160 and a Mac Mini drives a single
display of 1600x1200 (right) Our collaborative document editor enables multiple users to edit a single document

simultaneously by providing input from their mobile devices.

IMPLEMENTATION

In our lab, we use a setup with two display servers. A Mac Pro with 2 GPUs drives a
3x2 tiled display of 6 monitors with a total resolution of 5760x2160 (1980x1080
per monitor). A Mac Mini drives a single monitor with a resolution of 1600x1200.

We use Android and iOS devices to run the mobile controllers.

MOBILE REMOTE CONTROL

The mobile remote control is packaged as a web application written in HTML5 and
jQuery Mobile’. It is optimized to run on mobile devices with the form factor of a
phone, but can be used from any device that supports a web browser. The remote
control features the Screenscape screen manager that is responsible for managing
screen ownership for applications and resolving screen assignment conflicts that

occur frequently between users in multi-user environments.

7 http://jquerymobile.com/ is an HTML5 web development framework for mobile devices

The remote control also supports custom controllers for application specific tasks.
These are supplied by the application developer as standalone HTML files. At
present, communication between the controllers and the AIMs must be managed
entirely by the developer. In future, we plan to standardize this process by

encapsulating it in the form of an API.

APPLICATION INSTANCE MANAGER

We developed the AIMs as Google Chrome Extensions®. The extension background
page performs the task of the AIM Server launching multiple application instances in
the form of chrome windows with each window running one instance of the
application. It also redirects custom input events from the mobile controllers to
these windows. We used Chrome content scripts to perform the tasks of AIM Clients.
The content scripts listen for events and view changes in webpages in these windows
and communicate these changes to the background page, which then synchronizes
all other windows with these changes. Monitoring the webpage for view changes is
performed by extracting view information by reverse engineering the DOM of the
webpage. The background page also communicates these changes to other
background pages running on different display servers through the synchronization

server.

8 http://support.google.com/chrome/bin/answer.py?hl=en&answer=154007

SYNCHRONIZATION SERVER

We implemented the communication server using Node/S® and socket.io’?. There is
no application specific code inside the server. A server configuration file is used to
specify configuration data such as topology of the multi-display wall, display servers

and the list of applications and mobile controllers.

SYSTEM INPUT MANAGER

The system input manager is a native OS X application that runs on each display
server. It receives system level interaction events such as keyboard text entry or
mouse events from the keyboard and mouse mobile controller or any of the
application instance managers. On receiving these events, the system input manager

executes them on the display server.

HYDRASCOPE APPLICATION DEVELOPMENT

Hydrascope works by running multiple instances of the application in parallel and
synchronizing views between them. For this approach to work, application
instances need a shared coherent data model (e.g., the document that is being
edited). We leverage the fact that an increasing number of web applications now
come with built-in data synchronization to support multiple simultaneous
collaborators. As a result, the Hydrascope framework relies on the applications’

built-in data synchronization instead of providing its own mechanisms.

9 http://nodejs.org/
10 http://socket.io/

In order to produce a new Hydrascope application, developers need to build or
provide access to (1) an existing web application that supports data synchronization
(2) an Application Instance Manager (AIM) and (3) optional mobile controllers.
Although we developed Google Chrome Extensions as our AIMs in our example
applications, developers can write their own AIMs using any development platform.
They can provide their own mobile controllers, use our built-in generic controllers
or choose to use the conventional keyboard and mouse devices. They must add their
application to the server configuration file to make it visible to the Application

Launchpad in the mobile remote control.

From our observation, most applications that can benefit from multi-display walls
serve one of the following purposes:

1. View different parts of a document: View different segments of the same
document. Examples include our presentation and maps applications. The tiled
maps example displays a different part of the map on every display.

2. View different views (operations) on a document: Display different views or
results of different operations on the same document. An example would be a photo
editing application that displays the same photograph with different operations
performed on it on different screens.

3. Time-lapse view of a document: Show snapshots of the same document at
different points in time such as different revisions of a piece of code or a series of

medical scans taken at different times.

4. Compare multiple documents: Compare different documents such as stock quotes
of different companies.

Often applications fall in multiple categories listed above.

EXAMPLE APPLICATIONS

To demonstrate the capabilities of Hydrascope, we developed five example
applications: presentation viewer, stocks viewer, maps viewer, search results

aggregator and collaborative text editor (Fig. 1).

PRESENTATION VIEWER

We developed a presentation viewer for multi-display walls by repurposing the
Google Docs Presentations web application. We display one slide per monitor. The
user can navigate slides with the help of the custom controller or by using the

mouse pointer to click on the previous and next buttons on the webpage.

The AIM’s content script adds event handlers to the previous and next buttons on
the Google Docs webpage to monitor slide change events, and notifies the
background page when the event occurs. The background page, on receiving this
event, notifies all other content scripts attached to instances of the Google Docs
application and also the communication server. The communication server passes
this event to the background pages running on other display servers. In this fashion,
all running instances of the application are notified of view changes and

synchronized across multiple display servers. Events generated using the mobile

controller are transmitted to the communication server, which then relays them to

all background pages for the presentation application.

MULTI-DISPLAY STOCKS

Our stocks viewer application is based on Google Finance web application. We run
multiple instances of the Google Finance application in different windows, one per
monitor. Each instance shows a stocks chart of a different company during the same
timeframe. Users can use the scrollbar on the webpage to change the timeframe, or
they can use the mobile controller that features previous and next buttons similar to

the presentation controller.

The Google Finance webpage uses URL parameters to set the timeframe for which it
displays the stocks chart. The AIM uses content scripts to listen for view changes by
tracking an embedded link in the page that exists sharing purposes. On detecting
changes in this link, the AIM reloads all windows with an updated URL that reflects
this change. These page refreshes are slow and may take up to a couple of seconds.
Since the stocks charts are written in flash, they do not offer an accessible interface

to send parameters.

TILED MAPS

We tile multiple instances of Google Maps across the multi-display wall to make a
single giant map. Users can perform interactions such as panning and zooming using
the keyboard and mouse mobile controller. We use Google Maps API to update views

for different instances.

AGGREGATED SEARCH

The search application allows users to take advantage of multiple displays to
perform web search. The two leftmost screens in our setup show the search result
list of Google Search, while the remaining screens are used to display the webpages
from the results. The two leftmost screens showing the results support
synchronized scrolling to give the appearance of a single scrolling list, so that the
results scroll across the physical monitors.

Users navigate results using the custom search controller. A new set of results can
be loaded by pressing next or previous buttons. Users can enter a new search query
using a textbox. The controller also displays a screen map of all the screens assigned
to the search application. Users can tap on the screen icon to ‘pin’ or ‘unpin’ a result
to a screen. Pinned results are not replaced on pressing previous and next buttons

or on entering new search queries.

COLLABORATIVE TEXT EDITOR

Our text editor application lets multiple users simultaneously edit a text document
(Fig. 4-right) Different pages are shown on different monitors and they support
synchronized scrolling similar to the search application. Multiple users can

simultaneously enter text using the keyboard and mouse controller.

Figure 5: An information visualization researcher adapted a visualization of Tour de France race data to create this

Hydrascope application

EVALUATION

USER INTERACTION WITH APPLICATIONS

We conducted an informal user study involving 10 participants aged between 20
and 30 years to gather feedback about the applications and controllers. All of them
were familiar with computers and had previously used some of the applications on
single displays. The participants were grouped in pairs and were asked to complete

predefined tasks.

Mobile Controllers: Users liked the mobility of the mobile controllers as it allowed
them to move around while interacting with applications. They found using custom
controllers convenient because it often took them a single tap to accomplish what
otherwise required a combination of cursor movement, pointing and clicking. For
other applications, however, users preferred the conventional mouse since it was

faster and more accurate than our keyboard and mouse controller.

Using a multi-display wall vs. a single display: Users preferred multiple displays for

certain applications because it allowed them to view and compare a number of

documents simultaneously. Another benefit was a reduction in the number of
window-switches performed for completing the given task. The disadvantages

included distance and excess information.

Our implementation of the keyboard and mouse controller executed mouse events
by capturing the system cursor. Since multiple users shared the system cursor, this
gave rise to conflicts and unexpected results. Due to this model, only one user could
enter text at a time. This limitation prevented us from exploring the full

collaborative potential of Hydrascope applications.

APPLICATION DEVELOPMENT PROCESS

We recruited a graduate student with prior experience developing web applications
for our study. He repurposed a visualization tool for Tour de France that shows
stage timing data for each cyclist. He adapted this application to show data for six
different cyclists on six displays. On changing the stages selected for a cyclist in one
window, the other windows were automatically updated to reflect the new stages
for the other cyclists. This task was similar to the stocks example application, where
the required information (selected stages and cyclist in this case) was passed to the

application through URL parameters.

The participant spent some time browsing the code of our example applications. His
familiarity with developing web applications was beneficial and he completed the
task in 2 hours 20 minutes. He did not develop any custom controllers. The

participant encountered some difficulties due to peculiarities of the Chrome

development environment. For example, during debugging he sometimes modified
the source code but forgot to reload the extensions. Since Chrome does not

automatically reload extensions, he wasted time debugging stale copies of the code.

From these observations, we realized that we could encapsulate some of the
message passing code and expose APIs to accomplish those tasks. In our present
version, it is the developer’s responsibility to ensure that his application does not
process messages that were not meant for it. We could relieve the developer of this
responsibility by performing intelligent message routing in our communication
server. Lastly, we could provide a generic Chrome extension template that has the
boilerplate code necessary for common tasks. The developer can then derive his

AIM from this template rather than having to build his own.

DISCUSSION AND FUTURE WORK

Hydrascope is an attempt to ease the adoption barrier for multi-display walls by
reducing the engineering investment required in developing applications for them.
We identified areas of possible improvements from our own experience with using
the framework and the subsequent user study. A more robust communication
protocol and intelligent message routing in the server will make future development
of more sophisticated applications possible. Providing extensible APIs for reusing
the functionality of the Screenscape manager will enable developers to develop
sophisticated custom controllers with capabilities of manipulating the multi-display

layouts. Presently, users must explicitly assign screens to applications when

launching them. In the future, we plan to augment the Screenscape manager with
functions for intelligent screen management and window positioning on the display
wall similar to those discussed in [7] to make it robust enough to support dynamic
reconfiguration. This will be especially helpful since users do not plan ahead and
anticipate which applications they will need to launch on what screens. From the
standpoint of developers, encapsulating the message passing code in the form of a
library and providing templates for the boilerplate code will reduce time spent in

navigating peculiarities of the Chrome extensions environment.

There are two challenges in improving user interaction with Hydrascope
applications. First, we need to find ways of providing multi-user input to single-user
applications designed to be driven by a single mouse pointer. Second, we need to
engineer ways to redesign the mouse controller so that it offers speed and accuracy

comparable to conventional mice and trackpads.

Lastly, we want to extend Hydrascope to repurpose native applications along with

web applications using pixel scraping or code injection techniques.

CONCLUSION

As large multi-display walls become increasingly available, there is a growing need
for a framework to rapidly develop applications that scale to such shared cluster-
driven displays. Instead of developing applications from scratch, we presented the

Hydrascope framework that allows developers to repurpose existing web

applications for multi-display walls in a matter of hours. We discussed the design
and implementation of Hydrascope and demonstrated its capabilities with five
example applications. We evaluated our system from the standpoint of both
developers and users. We concluded by discussing the impact of Hydrascope,

challenges and limitations of our approach and areas of future work.

REFERENCES

1. S. Amershi, M. R. Morris, N. Moraveji, R. Balakrishnan, K. Toyama. Multiple
mouse text entry for single display groupware. In Proc. Computer Supported

Coperative Work, CSCW ’10, 169-178. ACM, 2010.

2. K. S.Booth, B. D. Fisher, C.]. R. Lin, and R. Argue. The "mighty mouse” multi
screen collaboration tool. In Proc. User Interface Software and Technology, UIST

'02, 209-212. ACM, 2002.

3. S.Boring, S. Gehring, A. Wiethoff, M. Blockner, J. Schoning, A. Butz. Mobile
Interaction Through Video. In Proc. Human Factors in Computing Systems, CHI

10,2287 - 2296. ACM, 2010

4. M. Dixon and]. Fogarty. Prefab: implementing advanced behaviors using pixel
based reverse engineering of interface structure. In Proc. Human Factors in

Computing Systems, CHI '10, 1525-1534. ACM, 2010.

. J. R. Eagan, M. Beaudouin-Lafon, and W. E. Mackay. Cracking the cocoa nut: user
interface programming at runtime. In Proc. User Interface Software and

Technology, UIST '11, 225-234. ACM, 2011.

. T. Gjerlufsen, C. N. Klokmose, J. Eagan, C. Pillias, M. Beaudouin-Lafon. Shared
Substance: developing flexible multi-surface applications. In Proc. Human

Factors in Computing Systems, CHI '11, 3383-3392. ACM, 2011.

F. Guimbretikre, M. Stone, T. Winograd. Fluid Interaction with High-resolution
Wall-size Displays. In Proc. User Interface Software and Technology, UIST '01,

ACM, 2001

B. Hartmann, L. Wy, K. Collins, and S. R. Klemmer. Programming by a sample:
rapidly creating web applications with d.mix. In Proc. User Interface Software

and Technology, UIST '07, 241-250. ACM, 2007.

G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and J. T.
Klosowski. Chromium: a stream processing framework for interactive rendering
on clusters. In Proc. Computer Graphics and Interactive Techniques, SIGGRAPH

'02, 693-702. ACM, 2002.

10. B. Johanson, G. Hutchins, T. Winograd, and M. Stone. PointRight: experience with
flexible input redirection in interactive workspaces. In Proc. User Interface

Software and Technology, UIST '02, 227-234. ACM, 2002

11. A. Khan, G. Fitzmaurice, D. Almeida, N. Burtnyk, G. Kurtenbach A remote control
interface for large displays. In Proc. User Interface Software and Technology,

UIST '04, 127-136, ACM 2004

12.S. Malacria, E.Lecolinet, Y. Guiard Clutch-free panning and integrated pan-zoom
control on touch-sensitive surfaces: the cyclostar approach, In Proc. Human

Factors in Computing Systems, CHI '10, ACM, 2010

13. M. Nancel,]. Wagner, E. Pietriga, O. Chapuis, W. Mackay. Mid-air Pan-and-Zoom
on Wall-sized Displays. In Proc. Human Factors in Computing Systems, CHI '11,

177 -186.ACM, 2011

14. E. Pietriga, S. Huot, M. Nancel, and R. Primet. Rapid development of user
interfaces on cluster-driven wall displays with jBricks. In Proc. Engineering

Interactive Computing Systems, EICS '11, 185-190. ACM, 2011.

15. A. Prakash. Group editors. In M. Beaudouin-Lafon, editor, Computer Supported

Cooperative Work, Trends in software, 103-133. Wiley, 1999.

16. T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper. Virtual network

computing. Internet Computing, IEEE, 2(1):33 -38, jan/feb 1998.

17. M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for using
multiple views in information visualization. In Proc. Advanced Visual Interfaces,

AVI’00,110-119. ACM, 2000.

18. Daniel Wigdor, Hao Jiang, Clifton Forlines, Michelle Borkin, Chia Shen WeSpace:
The Design, Development, and Deployment of a Walk-Up and Share Multi-
Surface Collaboration System, In Proc. Human Factors in Computing Systems,

CHI'09, ACM, 2009

19.T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using GUI screenshots for search and
automation. In Proc. User Interface Software and Technology, UIST '09, 183-192.

ACM, 2009.

