
Reinforcement Learning Methods to Enable Automatic

Tuning of Legged Robots

Mallory Tayson-Frederick
Pieter Abbeel, Ed.
Ronald S. Fearing, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-145

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-145.html

May 31, 2012



Copyright © 2012, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Reinforcement Learning Methods to Enable 

Automatic Tuning of Legged Robots 

Mallory Tayson-Frederick 

Masters of Engineering in Electrical Engineering and Computer Science  

University of California, Berkeley 

Advisor: Pieter Abbeel 

 

Abstract – Bio-inspired legged robots have demonstrated the capability to walk and run across a wide 

variety of terrains, such as those found after a natural disaster.  However, the survival of victims of 

natural disasters depends on the speed at which these robots can travel.  This paper describes the need 

for adaptive gait tuning on an eight-legged robot, which will enable it to adjust its gait parameters to 

increase the speed at which it navigates difficult and varying terrains.  Specifically, we characterize 

the robot’s performance on varied terrains and use the results to inform the implementation of a 

finite-difference policy gradient reinforcement learning algorithm.  We compare the robot’s 

performance under hand-tuned policies with the performance under the reinforcement learning 

algorithm, and finally, suggest improvements to the presented policy search process. 

  



I. INTRODUCTION  

During a disaster situation, the goal of search and rescue operations is to rescue the greatest number 

of people in the shortest amount of time.  In particular, time is the largest factor in determining the 

number of people rescued from a disaster site. As seen in Figure1, the less time a victim spends 

trapped in rubble, the higher their 

chances are for surviving [1].  In order 

to reduce time spent in search efforts 

and to minimize risk to human rescue 

forces, robots are being developed to 

aid in the search for disaster survivors.   

Robots which can perform this role 

take many forms, and although 

existing platforms accomplish the necessary tasks, they do not do so optimally.  These platforms are 

often remote operated, slower than a human rescuer, and can be prohibitively costly.  Biomimetic 

legged robots such as the Octo- Robotic Autonomous Crawling Hexapod, or OctoRoACH, offer 

solutions to these problems.  They cost a tenth of the price to manufacture than existing solutions and 

have demonstrated the ability to walk autonomously over a variety of terrains.  However, the 

efficiency and speed of their locomotion vary greatly according to the timing of their gait.  Because 

this timing is also affected by several external factors, it is time consuming, labor-intensive, and 

error-prone to tune by hand for each type of terrain the robot might encounter. 

Thus, the challenge addressed here is to enable any OctoRoACH to automatically tune its gait timing 

while traversing different terrains, allowing the robots to travel to their destinations quicker, and 

ultimately perform their duties better.  In order to accomplish this, we first confirm the need for 

adaptive gait control on the OctoRoACH through a characterization of its performance on different 

Fig. 1: Mortality rate of people trapped after a natural disaster [1] 



terrains and with varying control schemes.  Next, we describe a simple policy gradient reinforcement 

learning algorithm and its implementation on OctoRoACH which will enable a robot to continuously 

tune its own gait parameters depending on specific mechanical and environmental conditions. Along 

with other developments in robotic technology, the implementation of adaptive learning techniques 

will ultimately enable OctoRoACH and other biomimetic legged robots to aid in search and rescue 

operations.  

The remainder of this paper is structured as follows.  Section II discusses the development of 

OctoRoACH and previous work in the area of learning algorithms applied to legged robots.  Section 

III describes our specific approach and methodology, while Section IV presents the results of our 

experimentation and the analysis of those results.  The paper concludes in Section V with a summary 

of findings and recommendations for future work. 

 

II. LITERATURE REVIEW  

 

In recent years, there have been a variety of developments in the field of bio-inspired legged robots 

and adaptive algorithms to accompany them.  These developments are mainly motivated by the fact 

that legged robots are often more successful than wheeled or track drive robots at traversing terrains 

which include features taller than the robot’s hip height [2].  Despite these robots’ successes in 

traversing terrain with large features, the variation in terrains a robot may encounter practically 

requires that the robot be able to modify its stride, or gait, to adjust to disturbances which may affect 

its operation.  Therefore, adaptive control is an important addition to this category of legged robots.   

We will discuss several relevant biomimetic robots here as well as the methods used to control them.  

It is also appropriate to understand the development of OctoRoACH and the design decisions that led 

to the current model. 



The last four years have each seen a new generation of the robot family leading up to the current 

design of OctoRoACH.  First, there was the miniRoACH [3].  Weighing in at only 2.4g, the 

miniRoACH qualifies as a millirobot and was the smallest and lightest autonomous legged robot 

produced at the time of its fabrication [3].   This basic design of RoACH included six legs and an 

alternating tripod gait.  Because it was so small, the robot used shape-memory alloy (SMA) and 

opposing springs as actuators for the legs.  In order to steer, RoACH’s middle legs were made to be 

shorter than the outside legs, allowing the timing of the gait to dictate the heading.  Although the 

fabrication (Smart Composite Manufacturing) and mechanical design of this robot provided proofs of 

concept in the design of milli-sized robots, other technologies did not yet exist at a level which could 

be integrated with the small size of the RoACH.  Therefore, the next generation of robots, the 

Dynamic Autonomous Sprawled Hexapod, or DASH [1], was built with the same manufacturing 

process, but was made slightly larger (16g) to better understand locomotion dynamics and control of 

hexapedal robots [1].  Also with six legs, this DASH utilized the same alternating tripod gait seen in 

miniRoACH, by using a single DC motor.   In order to steer, DASH was designed with SMA wire 

which could deform the robot’s frame to bias one turning direction or the other.  Overall, DASH was 

more effective at running straight than it was at making reliable turns at zero forward velocity [5].  In 

order to improve the turning dynamics, the next robot in the family, DynaRoACH (24g), featured an 

improved leg design and a new steering method while still relying on a single DC motor [4].  The 

new legs were designed in a semi-circle C shape and made out of a compliant rubber material rather 

than the stiff paddle-style legs used on DASH.  In order to make turns, the middle leg on one side of 

DynaRoACH’s body was switched out with a stiffer leg.  Although the switching of the legs was 

done offline, it was also proven that they could be stiffened dynamically using SMA wire embedded 

in the leg itself [4].  Despite the improvements in turning ability, the DynaRoACH was still more 

effective at walking straight than making turns.   



To accommodate the need for reliable turning, the most recent design in the RoACH family, 

OctoRoACH, was given a second DC motor so that each side of the robot could be driven 

individually, similar to the drive system on a tank [5].  With the added motor, the two sets of legs are 

no longer forced to be in synchronization with each other, allowing the possibility for instability in 

the robot’s gait.  OctoRoACH was given two extra legs to ensure stability.  With the extra legs and 

motor, OctoRoACH is the largest robot of the RoACH family, weighing in at 35g [5].  A further 

description of the mechanical design of the robot can be found in Section III.   

The design additions described above allowed for improved turning and steering ability in 

OctoRoACH, specifically during turning at low forward speeds [5].  With the improved functionality, 

two main steering methods have been implemented on the robot.  The first method is simple leg 

velocity control which overcomes disturbances, such as change in terrain friction, using a basic rate-

gyro control system.  This is the method used here, and will be described in further detail below.  The 

second method of steering involves mounting a tail to the robot using a modified servo [5].  While 

successful, it was found that the tail method of steering the robot was most useful when very quick 

turning was needed [5].  Since we are not interested in fast turning of the robot, the simpler leg 

velocity control method was deemed sufficient for the work done here. 

In addition to the RoACH family, there have been numerous other legged robots developed recently.  

These include Sprawl [6], RHex [7], Whegs [8], and Aibo [9] to name a few.  Here, we will review 

the most relevant robots and some of the adaptive gait control algorithms which have been 

implemented on them.  

Also inspired by a cockroach, the Sprawl robot displays many similarities to OctoRoACH.  It has six 

legs and uses an alternating tripod gait for locomotion.  However, this robot uses a system of 

pneumatic pistons to actuate the legs individually rather than electric motors for actuation of a 

collection of legs [6].  For this robot, Cham et al derived an adaption law from a single-legged 



vertical hopping model; the law attempts to maximize the length of the robot’s stride by adjusting the 

stride period and the duty cycle of the actuating pistons.  The adaption algorithm uses feedback from 

binary contact switches placed on the robot’s feet [6].  It was found that the robot successfully 

optimized its locomotion parameters based on the adaption method described.  Although the 

algorithm relies on the unique mechanics of Sprawl, making it inapplicable to OctoRoACH, this 

success further motivates the need for adaptive and autonomous gait control on biomimetic robots. 

A robot which bears more mechanical similarity to OctoRoACH is RHex.  Featuring only six legs, 

RHex also uses a C shaped leg design; however, these legs are all individually actuated and rotate in a 

complete circle [10].  Because the legs are individually actuated, the gait of RHex is much more 

complex than that of OctoRoACH and consequently has a high dimensional control policy.  In order 

to reduce the complexity of this high-dimension space, the legs on RHex were grouped together to 

form the same alternating tripod gait used in previously described robots.   To optimize the gait on 

RHex, a Nelder-Mead algorithm was implemented.  This algorithm successfully optimized the robot’s 

gait for both speed and endurance, but was found to provide unstable results when presented with 

poor initial conditions [10].  A second optimization tool implemented only in a simulation of RHex 

utilized the Bipedal Spring-Loaded Inverted Pendulum (BSLIP) model as a template for control of the 

robot [11].  Although it was not implemented on the actual robot, this method provides another 

example of how adaptive gait optimization can improve robot control.  

The previously discussed robots bear the most mechanical similarities to OctoRoACH; however, the 

adaptive algorithms used on the Sprawl and RHex robots were specifically tailored to the mechanics 

of those robots.  A more general application of reinforcement learning techniques can be seen in use 

on the Sony Aibo quadruped robots [9].  The Sony Aibo is a commercially available robot which 

resembles and moves like a dog; it uses four legs which are all actuated in multiple places.  Using the 

Aibo, Kohl and Stone presented a policy gradient method of optimizing gait for speed which averages 



the speed of the robot during several trials using different gait parameter settings.  This policy 

gradient method was successful in finding gait settings for the robot which maximized forward speed. 

Overall, the Sprawl and RHex robots provide good mechanical comparisons with the OctoRoACH, 

but the adaptive optimization algorithms implemented on these robots do not necessarily provide 

good models for algorithms on OctoRoACH.  Reinforcement learning offers a promising approach 

which is easily applied and has been demonstrated to work well on other platforms.  

 

III. METHODOLOGY 

 

A. Robotic Platform 

The robot used for this work, OctoRoACH [5], is pictured below in Figure 2.  As discussed in Section 

II, the robot’s mechanical design allows independent drive of its left and right sets of legs.  The 

control and sensing hardware on the robot includes an inertial sensing unit (a three-axis accelerometer 

and a three-axis gyroscope) and an 802.15.4 wireless radio for communications.  Figure 3 shows the 

block diagram for velocity control on the robot, where ωL,ref and ωR,ref are supplied by the user and the 

back-EMF for each motor is measured as during the off phase of the PWM cycle [5].  

Fig. 2: OctoRoACH robot Fig. 3: Block diagram of velocity control loops using motor 

back-EMF [5] 



B. Experiments 

 

Experiments on the OctoRoACH crawler were split into three parts.  In the first and second parts, 

open-loop and closed-loop tests were performed to confirm the need for reinforcement learning on the 

robot.  In order to test this, two robots were run on three different surfaces with varying control 

policies, where a control policy Π = (θ1, θ2) with θ1 and θ2 being the left and right motor thrusts.  The 

surfaces tested were a smooth wooden surface, a carpeted surface, and gravel.  The goal of finding an 

optimal policy was for the robot to travel in a straight line as fast as possible. 

As mentioned above, a specific control policy was considered 

better than others if the robot traveled in a straight line faster than 

any other run; therefore, performance metrics included speed and 

accuracy.  These metrics were measured based only on the initial 

and final positions of the robot (see Figure 4), as well as the 

robot’s running time.  In both equations below, x and y are the 

horizontal and vertical positions of the robot respectively, and 

pose measurements were collected by hand through human 

observation, with accuracy of approximately 0.075 m. 

 

The robot traveled relatively straight for each run, so speed was approximated as follows: 
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Accuracy was used as a metric to provide an intuitive understanding of how straight the robot 

traveled on a particular run, and was calculated as follows:  
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Fig. 4: Final and initial positions of 

the robot measured in the world 

coordinate system 



In order to hand tune each robot’s control policy for a specific surface, we started by testing policies 

which optimized only for one performance metric, either speed or accuracy.  However, it was found 

that a policy which optimized accuracy made the robot run slowly, and policies which optimized 

speed gave the robot low accuracy.  Therefore, we tested a range of policies between the two 

extremes and chose policies which maximized both speed and accuracy as the optimal policy for a 

specific robot and surface.  

After we found an optimal policy for each robot on all three terrains, we cross-tested policies across 

different robots and surfaces.  Tables 1 and 2 show the full range of tests performed. 

Table 1: Control Policies Tested on Robot 1 

 Carpet Surface Wood Surface Gravel 

Robot 1 R1 Optimal Carpet Policy R1 Optimal Wood Policy R1 Optimal Gravel Policy 

R1 Optimal Wood Policy R1 Optimal Carpet Policy R1 Optimal Wood Policy 

R1 Optimal Gravel Policy R1 Optimal Gravel Policy R1 Optimal Carpet Policy 

R2 Optimal Carpet Policy R2 Optimal Wood Policy R2 Optimal Gravel Policy 

R2 Optimal Wood Policy R2 Optimal Carpet Policy R2 Optimal Wood Policy 

R2 Optimal Gravel Policy R2 Optimal Gravel Policy R2 Optimal Carpet Policy 

 

Table 2: Control Policies Tested on Robot 2 

 Carpet Surface Wood Surface Gravel 

Robot 2 R2 Optimal Carpet Policy R2 Optimal Wood Policy R2 Optimal Gravel Policy 

R2 Optimal Wood Policy R2 Optimal Carpet Policy R2 Optimal Wood Policy 

R2 Optimal Gravel Policy R2 Optimal Gravel Policy R2 Optimal Carpet Policy 

R1 Optimal Carpet Policy R1 Optimal Wood Policy R1 Optimal Gravel Policy 

R1 Optimal Wood Policy R1 Optimal Carpet Policy R1 Optimal Wood Policy 

R1 Optimal Gravel Policy R1 Optimal Gravel Policy R1 Optimal Carpet Policy 

 

The closed-loop experiments followed the same general procedure as above; however, we wanted to 

know if the robot could perform better with simple sensory feedback integrated into the control.  To 

do this, we used the onboard gyroscope and a PID controller which was provided with the platform.  

The control block diagram of this system is presented in Figure 5.  The addition of a PID loop for 

steering control added four additional control parameters to the control policy.  Therefore, when 

choosing an optimal policy for a specific robot on a specific surface, it was necessary to choose 

optimal PID parameters in addition to motor thrust values. 



Once optimal policies were found for each robot 

on each surface, the policies were applied 

across robots and terrains in the same manner as 

for the open-loop policies. 

After characterizing the robot’s performance at 

different inputs, we implemented finite 

difference policy gradient.  Based on the results of the open and closed-loop experiments, we found a 

direct relationship existed between speed and accuracy (see Section V).  Due to this relationship, we 

determined that the harmonic mean of speed, s(x, y, t) and accuracy, a(x, y), provided an intuitive 

reward function for the learning algorithm. 

 ( )  
 ( (     ))( (   ))

 (     )    (   )
                                                        ( ) 

Therefore, the learning algorithm followed the procedure outlined below: 

input: control policy          

while not converged 

    for i = 1 to 6 

        generate policy variations          

        perform trial with    (  
         

     ) 

        record  (     )      (   ) 

        calculate  (  ) 

    end for  

    estimate    using least squares: 

     

[
 
 
 
 
 
 
  
   

 

  
   

 

  
   

 

  
   

 

  
   

 

  
   

 ]
 
 
 
 
 
 

   

[
 
 
 
 
 
 
  (  )

  (  )

  (  )

  (  )

  (  )

  (  )]
 
 
 
 
 
 

 

                  

                  

end while 

Fig. 5: Block diagram for steering control [5]. 

Where 𝜖 was chosen such that (𝜖 𝛻𝑟𝑖) is on the order of five 



 

IV. RESULTS AND DISCUSSION  

 

The results of the open and closed-loop hand tuning experiments provided useful insight into the 

characteristics of the robot.  We found that no single control policy worked well across multiple 

terrains, or on different robots.  For instance, Figure 6 indicates that control policies tuned for a 

specific surface performed well on that surface; they had high speed, high accuracy, or both.  

However, Figure 7 shows that those same policies do not perform well on different surfaces, as 

indicated by the wide spread of speeds and accuracies. 

Also, the open-loop tests provided 

insight into the relationship between 

speed and accuracy.  We found that 

policies which gave the robot high 

speed also caused low accuracy, and 

policies with high accuracy caused 

low speed.  This relationship 

motivated our choice of the harmonic 

mean as a reward function in the 

reinforcement learning algorithm 

because it gives a high reward to 

policies which maximize both speed 

and accuracy, rather than just one. 

  

Because we found that no open-loop 

policy worked well across multiple 

surfaces, we integrated sensory 

Fig. 6: Performance of OctoRoACH across different surfaces using open-
loop policies tuned for those surfaces. The grouping of points in the 
upper regions of the plot indicates optimal policies were found. 

Fig. 7: Performance of OctoRoACH on multiple surfaces using open-loop 
policies which were not tuned for those surfaces.  The wide spread of 
points indicates that policies did not perform well across surfaces. 



feedback into the control policy to understand if that could remedy the control policy.  As expected, 

the integration of the rate-gyro sensor data increased the accuracy of the robot considerably, even 

across multiple terrains.  However, because the closed-loop only provided feedback about the 

accuracy of the robot, it could not affect the speed at which the robot traveled.  Figure 8 shows the 

performance of a closed-loop policy on the three different terrains; while the robot had high accuracy 

during all the runs, its speed decreased as the surface changed.  Therefore, the closed-loop control 

policy provided an improvement over the open-loop policies, but did not solve the problem of robot 

performance across varying terrains.    

Additionally, we can see in Figure 9 

that mechanical wear on the robot 

significantly decreased its 

performance.  At the initial time, 

policies chosen for carpet offered 

high performance for both speed and 

accuracy; however, after 

approximately three hours of 

continuous running, those same 

policies performed poorly on their 

intended surface.   

Although we were able to apply the 

insights gained through tuning the 

OctoRoACH by hand to parts of the 

reinforcement learning 

implementation, we were not able to 

Fig. 8: Performance of OctoRoACH on multiple surfaces using a closed-
loop steering policy 

Fig. 9: Performance of OctoRoACH over time 



successfully execute the policy gradient algorithm described above in Section III.   As the algorithm 

iterated through policies chosen by following the gradient of the reward function, it chose policies 

which performed worse rather than better in terms of speed and accuracy.  This result could be 

attributed to several factors of the experimentation.  For instance, the robot used for the experiments 

had worn considerably from use and displayed increasing randomness in its functionality.  

Furthermore, our understanding of the robot’s performance with respect to its control inputs may not 

have been as thorough as we believed, and may have affected the reward function we chose to 

optimize over.  In order to more fully understand the robot’s behavior, we performed an extended set 

of experiments to characterize the distance an OctoRoACH travels as a function of the motor thrust 

inputs.  For these experiments, we varied motor input to the robot and tracked its position at a 

frequency of 100 Hz using a Vicon Motion Capture system.  The results of these experiments can be 

seen in Figures 10 and 11.  These plots indicate that the distances traveled on wood are similar to 

those traveled on carpet if the robot’s left and right thrust values are increased by about 75 and 50 

counts respectively.  This relationship indicates that the policy search implementation may be 

reduced in dimensionality. 

Fig. 10: Relationship between motor thrusts and forward 
distance traveled on wood surface 

Fig. 11: Relationship between motor thrusts and forward 
distance traveled on carpet surface 



V. CONCLUSIONS AND FUTURE WORK 

 

Overall, it was found that reinforcement learning is a necessary tool in efficient locomotion for the 

OctoRoACH; however, more work is necessary to perfect its implementation.  When tuning the 

robot’s gait by hand, our initial hypotheses were validated.  In an open-loop setting where the 

gyroscopes did not provide feedback to the controller, it was difficult to find a control policy which 

worked well on one robot for a given surface.  This difficulty increased when trying to apply the same 

policy across different terrains.  Therefore, no control policy worked well on all robots and across 

multiple terrains in the open-loop setting.  Although adding sensory feedback made it easier to find a 

policy which worked well for one robot on a single surface, it did not solve the problem of finding a 

global policy which works well on multiple terrains.   

Implementing an effective policy search method on OctoRoACH will require further understanding 

about the robot’s behavior.  As presented in the previous section, this understanding may begin with a 

characterization of the robot’s behavior across different surfaces, as well as behavior across multiple 

robots.  If consistent relationships can be determined, the policy search problem may be made less 

complex. 

Although these results are interesting, there remains more to be learned about adaptive gaits on the 

OctoRoACH.  First, other types of reinforcement learning could be better suited for OctoRoACH. 

Specifically, continuous learning should be implemented on the robot.  Currently, the robot must 

perform several runs across a specific terrain before the control policy converges to an optimal policy.  

In order to perform better in a real world situation, the robot should be able to update the control 

policy as it performs its higher level tasks, such as exploring an area.  As the robot’s on-board sensing 

capabilities improve, this goal will become achievable. 
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