
Reinforcement Learning Methods to Enable Automatic

Tuning of Legged Robots

Mallory Tayson-Frederick
Pieter Abbeel, Ed.
Ronald S. Fearing, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-145

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-145.html

May 31, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Reinforcement Learning Methods to Enable

Automatic Tuning of Legged Robots

Mallory Tayson-Frederick

Masters of Engineering in Electrical Engineering and Computer Science

University of California, Berkeley

Advisor: Pieter Abbeel

Abstract – Bio-inspired legged robots have demonstrated the capability to walk and run across a wide

variety of terrains, such as those found after a natural disaster. However, the survival of victims of

natural disasters depends on the speed at which these robots can travel. This paper describes the need

for adaptive gait tuning on an eight-legged robot, which will enable it to adjust its gait parameters to

increase the speed at which it navigates difficult and varying terrains. Specifically, we characterize

the robot’s performance on varied terrains and use the results to inform the implementation of a

finite-difference policy gradient reinforcement learning algorithm. We compare the robot’s

performance under hand-tuned policies with the performance under the reinforcement learning

algorithm, and finally, suggest improvements to the presented policy search process.

I. INTRODUCTION

During a disaster situation, the goal of search and rescue operations is to rescue the greatest number

of people in the shortest amount of time. In particular, time is the largest factor in determining the

number of people rescued from a disaster site. As seen in Figure1, the less time a victim spends

trapped in rubble, the higher their

chances are for surviving [1]. In order

to reduce time spent in search efforts

and to minimize risk to human rescue

forces, robots are being developed to

aid in the search for disaster survivors.

Robots which can perform this role

take many forms, and although

existing platforms accomplish the necessary tasks, they do not do so optimally. These platforms are

often remote operated, slower than a human rescuer, and can be prohibitively costly. Biomimetic

legged robots such as the Octo- Robotic Autonomous Crawling Hexapod, or OctoRoACH, offer

solutions to these problems. They cost a tenth of the price to manufacture than existing solutions and

have demonstrated the ability to walk autonomously over a variety of terrains. However, the

efficiency and speed of their locomotion vary greatly according to the timing of their gait. Because

this timing is also affected by several external factors, it is time consuming, labor-intensive, and

error-prone to tune by hand for each type of terrain the robot might encounter.

Thus, the challenge addressed here is to enable any OctoRoACH to automatically tune its gait timing

while traversing different terrains, allowing the robots to travel to their destinations quicker, and

ultimately perform their duties better. In order to accomplish this, we first confirm the need for

adaptive gait control on the OctoRoACH through a characterization of its performance on different

Fig. 1: Mortality rate of people trapped after a natural disaster [1]

terrains and with varying control schemes. Next, we describe a simple policy gradient reinforcement

learning algorithm and its implementation on OctoRoACH which will enable a robot to continuously

tune its own gait parameters depending on specific mechanical and environmental conditions. Along

with other developments in robotic technology, the implementation of adaptive learning techniques

will ultimately enable OctoRoACH and other biomimetic legged robots to aid in search and rescue

operations.

The remainder of this paper is structured as follows. Section II discusses the development of

OctoRoACH and previous work in the area of learning algorithms applied to legged robots. Section

III describes our specific approach and methodology, while Section IV presents the results of our

experimentation and the analysis of those results. The paper concludes in Section V with a summary

of findings and recommendations for future work.

II. LITERATURE REVIEW

In recent years, there have been a variety of developments in the field of bio-inspired legged robots

and adaptive algorithms to accompany them. These developments are mainly motivated by the fact

that legged robots are often more successful than wheeled or track drive robots at traversing terrains

which include features taller than the robot’s hip height [2]. Despite these robots’ successes in

traversing terrain with large features, the variation in terrains a robot may encounter practically

requires that the robot be able to modify its stride, or gait, to adjust to disturbances which may affect

its operation. Therefore, adaptive control is an important addition to this category of legged robots.

We will discuss several relevant biomimetic robots here as well as the methods used to control them.

It is also appropriate to understand the development of OctoRoACH and the design decisions that led

to the current model.

The last four years have each seen a new generation of the robot family leading up to the current

design of OctoRoACH. First, there was the miniRoACH [3]. Weighing in at only 2.4g, the

miniRoACH qualifies as a millirobot and was the smallest and lightest autonomous legged robot

produced at the time of its fabrication [3]. This basic design of RoACH included six legs and an

alternating tripod gait. Because it was so small, the robot used shape-memory alloy (SMA) and

opposing springs as actuators for the legs. In order to steer, RoACH’s middle legs were made to be

shorter than the outside legs, allowing the timing of the gait to dictate the heading. Although the

fabrication (Smart Composite Manufacturing) and mechanical design of this robot provided proofs of

concept in the design of milli-sized robots, other technologies did not yet exist at a level which could

be integrated with the small size of the RoACH. Therefore, the next generation of robots, the

Dynamic Autonomous Sprawled Hexapod, or DASH [1], was built with the same manufacturing

process, but was made slightly larger (16g) to better understand locomotion dynamics and control of

hexapedal robots [1]. Also with six legs, this DASH utilized the same alternating tripod gait seen in

miniRoACH, by using a single DC motor. In order to steer, DASH was designed with SMA wire

which could deform the robot’s frame to bias one turning direction or the other. Overall, DASH was

more effective at running straight than it was at making reliable turns at zero forward velocity [5]. In

order to improve the turning dynamics, the next robot in the family, DynaRoACH (24g), featured an

improved leg design and a new steering method while still relying on a single DC motor [4]. The

new legs were designed in a semi-circle C shape and made out of a compliant rubber material rather

than the stiff paddle-style legs used on DASH. In order to make turns, the middle leg on one side of

DynaRoACH’s body was switched out with a stiffer leg. Although the switching of the legs was

done offline, it was also proven that they could be stiffened dynamically using SMA wire embedded

in the leg itself [4]. Despite the improvements in turning ability, the DynaRoACH was still more

effective at walking straight than making turns.

To accommodate the need for reliable turning, the most recent design in the RoACH family,

OctoRoACH, was given a second DC motor so that each side of the robot could be driven

individually, similar to the drive system on a tank [5]. With the added motor, the two sets of legs are

no longer forced to be in synchronization with each other, allowing the possibility for instability in

the robot’s gait. OctoRoACH was given two extra legs to ensure stability. With the extra legs and

motor, OctoRoACH is the largest robot of the RoACH family, weighing in at 35g [5]. A further

description of the mechanical design of the robot can be found in Section III.

The design additions described above allowed for improved turning and steering ability in

OctoRoACH, specifically during turning at low forward speeds [5]. With the improved functionality,

two main steering methods have been implemented on the robot. The first method is simple leg

velocity control which overcomes disturbances, such as change in terrain friction, using a basic rate-

gyro control system. This is the method used here, and will be described in further detail below. The

second method of steering involves mounting a tail to the robot using a modified servo [5]. While

successful, it was found that the tail method of steering the robot was most useful when very quick

turning was needed [5]. Since we are not interested in fast turning of the robot, the simpler leg

velocity control method was deemed sufficient for the work done here.

In addition to the RoACH family, there have been numerous other legged robots developed recently.

These include Sprawl [6], RHex [7], Whegs [8], and Aibo [9] to name a few. Here, we will review

the most relevant robots and some of the adaptive gait control algorithms which have been

implemented on them.

Also inspired by a cockroach, the Sprawl robot displays many similarities to OctoRoACH. It has six

legs and uses an alternating tripod gait for locomotion. However, this robot uses a system of

pneumatic pistons to actuate the legs individually rather than electric motors for actuation of a

collection of legs [6]. For this robot, Cham et al derived an adaption law from a single-legged

vertical hopping model; the law attempts to maximize the length of the robot’s stride by adjusting the

stride period and the duty cycle of the actuating pistons. The adaption algorithm uses feedback from

binary contact switches placed on the robot’s feet [6]. It was found that the robot successfully

optimized its locomotion parameters based on the adaption method described. Although the

algorithm relies on the unique mechanics of Sprawl, making it inapplicable to OctoRoACH, this

success further motivates the need for adaptive and autonomous gait control on biomimetic robots.

A robot which bears more mechanical similarity to OctoRoACH is RHex. Featuring only six legs,

RHex also uses a C shaped leg design; however, these legs are all individually actuated and rotate in a

complete circle [10]. Because the legs are individually actuated, the gait of RHex is much more

complex than that of OctoRoACH and consequently has a high dimensional control policy. In order

to reduce the complexity of this high-dimension space, the legs on RHex were grouped together to

form the same alternating tripod gait used in previously described robots. To optimize the gait on

RHex, a Nelder-Mead algorithm was implemented. This algorithm successfully optimized the robot’s

gait for both speed and endurance, but was found to provide unstable results when presented with

poor initial conditions [10]. A second optimization tool implemented only in a simulation of RHex

utilized the Bipedal Spring-Loaded Inverted Pendulum (BSLIP) model as a template for control of the

robot [11]. Although it was not implemented on the actual robot, this method provides another

example of how adaptive gait optimization can improve robot control.

The previously discussed robots bear the most mechanical similarities to OctoRoACH; however, the

adaptive algorithms used on the Sprawl and RHex robots were specifically tailored to the mechanics

of those robots. A more general application of reinforcement learning techniques can be seen in use

on the Sony Aibo quadruped robots [9]. The Sony Aibo is a commercially available robot which

resembles and moves like a dog; it uses four legs which are all actuated in multiple places. Using the

Aibo, Kohl and Stone presented a policy gradient method of optimizing gait for speed which averages

the speed of the robot during several trials using different gait parameter settings. This policy

gradient method was successful in finding gait settings for the robot which maximized forward speed.

Overall, the Sprawl and RHex robots provide good mechanical comparisons with the OctoRoACH,

but the adaptive optimization algorithms implemented on these robots do not necessarily provide

good models for algorithms on OctoRoACH. Reinforcement learning offers a promising approach

which is easily applied and has been demonstrated to work well on other platforms.

III. METHODOLOGY

A. Robotic Platform

The robot used for this work, OctoRoACH [5], is pictured below in Figure 2. As discussed in Section

II, the robot’s mechanical design allows independent drive of its left and right sets of legs. The

control and sensing hardware on the robot includes an inertial sensing unit (a three-axis accelerometer

and a three-axis gyroscope) and an 802.15.4 wireless radio for communications. Figure 3 shows the

block diagram for velocity control on the robot, where ωL,ref and ωR,ref are supplied by the user and the

back-EMF for each motor is measured as during the off phase of the PWM cycle [5].

Fig. 2: OctoRoACH robot Fig. 3: Block diagram of velocity control loops using motor

back-EMF [5]

B. Experiments

Experiments on the OctoRoACH crawler were split into three parts. In the first and second parts,

open-loop and closed-loop tests were performed to confirm the need for reinforcement learning on the

robot. In order to test this, two robots were run on three different surfaces with varying control

policies, where a control policy Π = (θ1, θ2) with θ1 and θ2 being the left and right motor thrusts. The

surfaces tested were a smooth wooden surface, a carpeted surface, and gravel. The goal of finding an

optimal policy was for the robot to travel in a straight line as fast as possible.

As mentioned above, a specific control policy was considered

better than others if the robot traveled in a straight line faster than

any other run; therefore, performance metrics included speed and

accuracy. These metrics were measured based only on the initial

and final positions of the robot (see Figure 4), as well as the

robot’s running time. In both equations below, x and y are the

horizontal and vertical positions of the robot respectively, and

pose measurements were collected by hand through human

observation, with accuracy of approximately 0.075 m.

The robot traveled relatively straight for each run, so speed was approximated as follows:

 ()
√()

 ()

 (1)

Accuracy was used as a metric to provide an intuitive understanding of how straight the robot

traveled on a particular run, and was calculated as follows:

 () √
()

()

 ()

 (2)

Fig. 4: Final and initial positions of

the robot measured in the world

coordinate system

In order to hand tune each robot’s control policy for a specific surface, we started by testing policies

which optimized only for one performance metric, either speed or accuracy. However, it was found

that a policy which optimized accuracy made the robot run slowly, and policies which optimized

speed gave the robot low accuracy. Therefore, we tested a range of policies between the two

extremes and chose policies which maximized both speed and accuracy as the optimal policy for a

specific robot and surface.

After we found an optimal policy for each robot on all three terrains, we cross-tested policies across

different robots and surfaces. Tables 1 and 2 show the full range of tests performed.

Table 1: Control Policies Tested on Robot 1

 Carpet Surface Wood Surface Gravel

Robot 1 R1 Optimal Carpet Policy R1 Optimal Wood Policy R1 Optimal Gravel Policy

R1 Optimal Wood Policy R1 Optimal Carpet Policy R1 Optimal Wood Policy

R1 Optimal Gravel Policy R1 Optimal Gravel Policy R1 Optimal Carpet Policy

R2 Optimal Carpet Policy R2 Optimal Wood Policy R2 Optimal Gravel Policy

R2 Optimal Wood Policy R2 Optimal Carpet Policy R2 Optimal Wood Policy

R2 Optimal Gravel Policy R2 Optimal Gravel Policy R2 Optimal Carpet Policy

Table 2: Control Policies Tested on Robot 2

 Carpet Surface Wood Surface Gravel

Robot 2 R2 Optimal Carpet Policy R2 Optimal Wood Policy R2 Optimal Gravel Policy

R2 Optimal Wood Policy R2 Optimal Carpet Policy R2 Optimal Wood Policy

R2 Optimal Gravel Policy R2 Optimal Gravel Policy R2 Optimal Carpet Policy

R1 Optimal Carpet Policy R1 Optimal Wood Policy R1 Optimal Gravel Policy

R1 Optimal Wood Policy R1 Optimal Carpet Policy R1 Optimal Wood Policy

R1 Optimal Gravel Policy R1 Optimal Gravel Policy R1 Optimal Carpet Policy

The closed-loop experiments followed the same general procedure as above; however, we wanted to

know if the robot could perform better with simple sensory feedback integrated into the control. To

do this, we used the onboard gyroscope and a PID controller which was provided with the platform.

The control block diagram of this system is presented in Figure 5. The addition of a PID loop for

steering control added four additional control parameters to the control policy. Therefore, when

choosing an optimal policy for a specific robot on a specific surface, it was necessary to choose

optimal PID parameters in addition to motor thrust values.

Once optimal policies were found for each robot

on each surface, the policies were applied

across robots and terrains in the same manner as

for the open-loop policies.

After characterizing the robot’s performance at

different inputs, we implemented finite

difference policy gradient. Based on the results of the open and closed-loop experiments, we found a

direct relationship existed between speed and accuracy (see Section V). Due to this relationship, we

determined that the harmonic mean of speed, s(x, y, t) and accuracy, a(x, y), provided an intuitive

reward function for the learning algorithm.

 ()
 (())(())

 () ()
 ()

Therefore, the learning algorithm followed the procedure outlined below:

input: control policy

while not converged

 for i = 1 to 6

 generate policy variations

 perform trial with (

)

 record () ()

 calculate ()

 end for

 estimate using least squares:

[

]

[

 ()

 ()

 ()

 ()

 ()

 ()]

end while

Fig. 5: Block diagram for steering control [5].

Where 𝜖 was chosen such that (𝜖 𝛻𝑟𝑖) is on the order of five

IV. RESULTS AND DISCUSSION

The results of the open and closed-loop hand tuning experiments provided useful insight into the

characteristics of the robot. We found that no single control policy worked well across multiple

terrains, or on different robots. For instance, Figure 6 indicates that control policies tuned for a

specific surface performed well on that surface; they had high speed, high accuracy, or both.

However, Figure 7 shows that those same policies do not perform well on different surfaces, as

indicated by the wide spread of speeds and accuracies.

Also, the open-loop tests provided

insight into the relationship between

speed and accuracy. We found that

policies which gave the robot high

speed also caused low accuracy, and

policies with high accuracy caused

low speed. This relationship

motivated our choice of the harmonic

mean as a reward function in the

reinforcement learning algorithm

because it gives a high reward to

policies which maximize both speed

and accuracy, rather than just one.

Because we found that no open-loop

policy worked well across multiple

surfaces, we integrated sensory

Fig. 6: Performance of OctoRoACH across different surfaces using open-
loop policies tuned for those surfaces. The grouping of points in the
upper regions of the plot indicates optimal policies were found.

Fig. 7: Performance of OctoRoACH on multiple surfaces using open-loop
policies which were not tuned for those surfaces. The wide spread of
points indicates that policies did not perform well across surfaces.

feedback into the control policy to understand if that could remedy the control policy. As expected,

the integration of the rate-gyro sensor data increased the accuracy of the robot considerably, even

across multiple terrains. However, because the closed-loop only provided feedback about the

accuracy of the robot, it could not affect the speed at which the robot traveled. Figure 8 shows the

performance of a closed-loop policy on the three different terrains; while the robot had high accuracy

during all the runs, its speed decreased as the surface changed. Therefore, the closed-loop control

policy provided an improvement over the open-loop policies, but did not solve the problem of robot

performance across varying terrains.

Additionally, we can see in Figure 9

that mechanical wear on the robot

significantly decreased its

performance. At the initial time,

policies chosen for carpet offered

high performance for both speed and

accuracy; however, after

approximately three hours of

continuous running, those same

policies performed poorly on their

intended surface.

Although we were able to apply the

insights gained through tuning the

OctoRoACH by hand to parts of the

reinforcement learning

implementation, we were not able to

Fig. 8: Performance of OctoRoACH on multiple surfaces using a closed-
loop steering policy

Fig. 9: Performance of OctoRoACH over time

successfully execute the policy gradient algorithm described above in Section III. As the algorithm

iterated through policies chosen by following the gradient of the reward function, it chose policies

which performed worse rather than better in terms of speed and accuracy. This result could be

attributed to several factors of the experimentation. For instance, the robot used for the experiments

had worn considerably from use and displayed increasing randomness in its functionality.

Furthermore, our understanding of the robot’s performance with respect to its control inputs may not

have been as thorough as we believed, and may have affected the reward function we chose to

optimize over. In order to more fully understand the robot’s behavior, we performed an extended set

of experiments to characterize the distance an OctoRoACH travels as a function of the motor thrust

inputs. For these experiments, we varied motor input to the robot and tracked its position at a

frequency of 100 Hz using a Vicon Motion Capture system. The results of these experiments can be

seen in Figures 10 and 11. These plots indicate that the distances traveled on wood are similar to

those traveled on carpet if the robot’s left and right thrust values are increased by about 75 and 50

counts respectively. This relationship indicates that the policy search implementation may be

reduced in dimensionality.

Fig. 10: Relationship between motor thrusts and forward
distance traveled on wood surface

Fig. 11: Relationship between motor thrusts and forward
distance traveled on carpet surface

V. CONCLUSIONS AND FUTURE WORK

Overall, it was found that reinforcement learning is a necessary tool in efficient locomotion for the

OctoRoACH; however, more work is necessary to perfect its implementation. When tuning the

robot’s gait by hand, our initial hypotheses were validated. In an open-loop setting where the

gyroscopes did not provide feedback to the controller, it was difficult to find a control policy which

worked well on one robot for a given surface. This difficulty increased when trying to apply the same

policy across different terrains. Therefore, no control policy worked well on all robots and across

multiple terrains in the open-loop setting. Although adding sensory feedback made it easier to find a

policy which worked well for one robot on a single surface, it did not solve the problem of finding a

global policy which works well on multiple terrains.

Implementing an effective policy search method on OctoRoACH will require further understanding

about the robot’s behavior. As presented in the previous section, this understanding may begin with a

characterization of the robot’s behavior across different surfaces, as well as behavior across multiple

robots. If consistent relationships can be determined, the policy search problem may be made less

complex.

Although these results are interesting, there remains more to be learned about adaptive gaits on the

OctoRoACH. First, other types of reinforcement learning could be better suited for OctoRoACH.

Specifically, continuous learning should be implemented on the robot. Currently, the robot must

perform several runs across a specific terrain before the control policy converges to an optimal policy.

In order to perform better in a real world situation, the robot should be able to update the control

policy as it performs its higher level tasks, such as exploring an area. As the robot’s on-board sensing

capabilities improve, this goal will become achievable.

References:

[1] A.W. Coburn, R.J.S. Spence, A. Pomonis, “Factors determining human casualty levels in earthquakes:

Mortality prediction in building collapse,” Earthquake Engineering, Tenth World Conference, Balkema,

Rotterdam, 1992.

[2] P. Birkmeyer, K. Peterson, and R. S. Fearing, “DASH: A dynamic 16g hexapedal robot,” in IEEE

International Conference on Intelligent Robots and Systems, St. Louis, MO, 2009

[3] M. Hoover, E. Steltz, and R. S. Fearing, “Roach: An autonomous 2.4g crawling hexapod robot,” in IEEE

International Conference on Intelligent Robots and Systems, Nice, France, Sept. 2008.

[4] A. Hoover, S. Burden, X.-Y. Fu, S. Sastry, and R. Fearing, “Bioinspired design and dynamic

maneuverability of a minimally actuated six-legged robot,” in IEEE International Conference on Biomedical

Robotics and Biomechatronics. BioRob 2010., Sep. 2010.

[5] A.O. Pullin, N.J. Kohut, D. Zarrouk, and R.S. Fearing, “Dynamic turning of 13cm robot comparing tail and

differential drive,” to appear IEEE Int. Conf. Robotics and Automation, May 2012.

[6] J. Cham, J. Karpick, M. Cutkosky, “Stride Period Adaptation for a Biomimetic Running Hexapod,”

International Symposium on Robotics Research, Lorne, Victoria, Nov. 2001

[7] U. Saranli, M. Buehler, D. Koditschek, “RHex: A Simple and Highly Mobile Hexapod Robot,” The

International Journal of Robotics Research, vol. 20 no. 7, July 2001.

[8] J. M. Morrey, B. Lambrecht, A. D. Horchler, R. E. Ritzmann, and R. D. Quinn, “Highly mobile and robust

small quadruped robots,” in Intl Conf on Intelligent Robots and Systems, vol. 1, 2003, pp. 82–87.

[9] N. Kohl, P. Stone, “Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion,”

International Conference on Robotics and Automation, May 2004.

[10] J. Weingarten, M. Buehler, R. Groff, D. Koditschek, “Gait Generation and Optimization for Legged

Robots,” IEEE Conference of Robotics and Automation, Sep. 2003.

[11] U. Saranli, D. Koditschek, “Template Based Control of Hexapedal Running,” IEEE International

Conference on Robotics and Automation, Sep. 2003.

