
Ballbot: A Low-Cost Robot for Tennis Ball Retrieval

John Wang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-157

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-157.html

June 2, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Pieter Abbeel, Karthik Lakshmanan, Ankush Gupta

Ballbot: A Low-Cost Robot for Tennis Ball Retrieval

John Wang

Abstract— This paper presents a robotic platform
which is targeted to perform the task of a tennis ball
boy. This platform is self-contained with on-board sensing
and computation, uses only cost-effective off-the-shelf
components, and was designed to perform robustly and
repeatably in semistructured real-world environments. In
particular, this paper presents a particle-filter implemen-
tation that allows the robot to localize itself and navigate
on a tennis court. Along with navigation and tennis ball
detection, this will enable it to pick up tennis balls on
a real tennis court. This paper describes our system,
presents our initial experimental results, and discusses
some of the challenges faced.

I. INTRODUCTION

Despite the success of the Roomba robotic vacuum,
similar robotics platforms have been slow to follow.
Roomba’s success lay in its promise of accomplishing a
simple repetitive task (vacuum cleaning) autonomously
and at a competitive price [1].

We present a low-cost robot platform which, like
the Roomba, is designed to perform a specific task
(picking up balls during a tennis match) autonomously
and reliably. A tennis “ball boy” robot must be more
aware of the environment than a Roomba. Rather than
wandering about blindly, it needs to be able to find its
own location and navigate to different points of interest
as the situation warrants. Specifically, it needs to stay
off the court during a match until it recognizes a dead
ball, fetch the ball, and re-park itself at the edge of the
court.

In this paper, we present our first steps toward this
goal and analyze some of the challenges involved. First
we constructed a mobile robot platform with a ball
pickup attachment, and implemented a ROS software
stack for base control and odometry. We then extended
the capabilities of the software stack with a motion
planner, a court localization module, and a stationary
ball detector (as depicted in Fig. 1). Each component of
the hardware and software systems are described in this
paper, along with an analysis of problems encountered
in their implementation.

The emphases of this project are two-fold. First,
it provides an in-depth case study of the develop-

Fig. 1. System block diagram

ment of a robotic platform to perform a specific task
autonomously, highlighting the use of state-of-the-art
techniques in localization, navigation and control. Sec-
ond, it presents a low-cost robotic platform that has
the potential to serve wider research and educational
purposes.

II. HARDWARE PLATFORM

For this task, we built a mobile robot platform with
on-board processing, computer vision, and wireless
communication. The platform is designed to be self-
contained and perform all computations on board. We
envision that the platform may be used to carry different
payloads to accomplish different tasks. Its relatively
low cost and availability of its constituent parts makes
it attractive for educational use, particularly at the high
school and university level.

A. Mechanical

1) Base chassis: The robot is built on top of a 1:10
scale RC car chassis. We decided to use an off-the-
shelf chassis for increased reliability. The Ackermann
steering geometry of the car lends it good stability and
handling at high speed. The car is a scale model sedan
meant for hobby racing; therefore, the chassis rides
very close to the ground. The tennis court is a flat,
regular surface which the on-road tires are well suited
for.

The entire robot weighs 4 kg, where the stock car
base is 1.5 kg (including the battery) and the payload
is 2.5 kg. This added weight required stiffening the
suspension using higher rate springs and adding preload
to the springs. (The high-rate springs we used are 700
N/m, so a compression of approximately 1.3cm on

Fig. 2. The ballbot prototype with ball pickup attachment, side
view

each suspension was necessary to support the car’s
weight.) Most of the robot’s payload weight comes
from the thick sheets of HDPE and polycarbonate
used to make the end-effector and electronics mounting
plates. Judicious use of thinner plastics or alternate
materials could have reduced the weight substantially.

2) Ball pickup: The ball pickup mechanism shown
in Fig. 2 was designed to collect tennis balls from
the ground, store the balls and deliver them back to
the players. It uses two horizontally positioned rollers
which are independently driven through timing belts.
(The use of timing belts enables more accurate speed
control, for example to launch the ball at varying
speeds; however, this was never necessary in practice.)
The motors chosen to power the pickup were 25mm-
diameter high-power motors with 75:1 gearboxes sold
by Pololu. The motors draw 6A at stall, providing 130
oz-in of torque, which was a ballpark figure we would
need to compress the tennis ball as it enters each roller.

The opening of the rollers is 24 cm wide, which is
wide enough to tolerate an imprecise approach to the
ball. The balls are stored in a downward-sloped tube
which accommodates up to 3 balls. Ejecting balls is
achieved by reversing the rotation of the top roller,
launching the ball through the middle of the two
rollers. This simple mechanism was found to work
fairly reliably with a 96% success rate in autonomous
pickup tests.

B. Power Electronics

1) Main Drive Motor: Control of the main drive
motor is provided by an off-the-shelf Pololu Simple
18v25 motor controller, which can handle up to 25A
continuous current. This is enough to drive the main
drive motor, which is a stock Tamiya (Mabuchi) RS-
540 motor that stalls at around 34A at 7.2V. The
decision to buy a motor controller rather than build
one was motivated by the difficulty of building and
debugging a discrete H-bridge motor driver that could
handle the necessary current.

2) Pickup Motors: Control of the two smaller ball
pickup motors is provided by a custom relay driver
board, whose relay contacts can handle 8A. The driver
board uses two DPDT relays, allowing one motor (the
top roller) to be reversed. This board only handles
on/off motor switching without variable speed control.
The decision to build a relay board was motivated
by the simplicity of bidirectional control (vs. an H-
bridge) and the need for only on/off control. Off-the-
shelf motor control solutions would also have worked,
but were not pursued at the time.

3) Power Supply: The Zeus 3A from Basic Micro, a
buck-type switching regulator, supplies the Pandaboard
with 5V from the 7.2V battery. This works somewhat,
but the lack of a boost regulator (and the large currents
drawn by the drive motor) makes the Pandaboard
susceptible to brown out when the battery is at about
75% charge. This should be addressed, but has been
temporarily mitigated by keeping the batteries fresh
and occasionally using a second battery to power the
Pandaboard.

C. Control Electronics

Our platform has a two-tiered control system, where
compute-intensive, non-realtime tasks such as particle
filtering and vision processing are performed on a
separate microprocessor from real-time tasks such as
actuator and sensor interfacing.

1) PandaBoard: The PandaBoard is used as the
main processor and is responsible for compute-
intensive tasks and external communications. It uses
the OMAP4430, a dual-core 1GHz ARM Cortex-A9
processor, which is roughly equivalent to a netbook in
terms of computing power. It features an onboard WiFi
module, Ethernet, and 2 USB ports.

2) Arduino Mega: The Arduino Mega is used
for low-level motor and sensor interfacing. It is
an ATmega2560-based development board which is
clocked at 16MHz and features 8kB SRAM, 4 hardware

UARTs, a 2-wire interface for I2C, and 16 ADC chan-
nels. This board communicates with the Pandaboard via
a hardware serial port on the OMAP processor. The
hardware serial is important because USB-serial incurs
a non-deterministic latency from the USB-serial driver
stack in a non-realtime operating system, which may
result in random localization errors and destabilize the
control loop.

D. Sensors

The Arduino Mega board is easily reprogrammed via
USB and provides flexibility in interfacing different
attachments or sensors. Our sensor suite features a
quadrature optical encoder and a 9DOF IMU.

1) Wheel Encoder: The optical encoder is used both
for velocity control and for odometry. It uses an Om-
ron EE-SX1031 slot-type dual photointerruptor and an
appropriately-sized codewheel to provide a resolution
of 204 counts/m.

2) IMU: The IMU module used is the commercially
available SparkFun 9DOF IMU. It provides stable,
filtered yaw rate measurements for odometry. The IMU
is mounted on the centerline of the car for accurate
yaw measurements. It is not drift-free, but it has
proven reliable enough for incremental measurements
of odometry.

3) Stereo Vision: Two Playstation Eye cameras are
interfaced with the PandaBoard via USB. The Playsta-
tion Eyes have many features that make them suitable
for computer vision on a budget. They provide a high
framerate of 100 frames/s at 320x240 resolution, have
a relatively low-latency Linux driver which bypasses
the weakness of traditional UVC cameras, and are
commercially available for under $30. The two cameras
are mounted in a parallel stereo configuration on a rigid
piece of aluminum bracket. The camera pair is then
mounted on a pan/tilt servo mount which allows full
freedom to pan and tilt +/- 90 degrees. The camera
centers are aligned with the tilt axis so that the camera
height remains constant as the camera mount tilts.

A stereo camera calibration was performed on the
mount to find both the individual camera parameters
and the stereo camera parameters. In this process the
distance between cameras was found to be 16.2 cm.

E. Power Source

The entire platform is powered by a standard 7.2V
NiMH battery pack. The robot has fairly good en-
durance. A fully-charged battery can power the on-
board computer for 3-4 hours during typical testing,

although actual battery life will depend on how often
the drive motors are run.

F. Robustness

Hardware robustness contributes greatly to software
robustness. Conversely, brittle hardware can affect the
performance of otherwise-robust algorithms. This was
experienced many times throughout our development
cycle as hardware problems came up. The latency prob-
lems encountered with USB-serial communications are
an example of how an overlooked hardware problem
caused a difficult-to-diagnose software problem.

Another such occurrence happened with the original
camera, a Logitech QuickCam Orbit. It was selected
for its integrated pan/tilt functionality. However, after
a few months of operation, the internal pan/tilt mount
became loose. Our vision data became corrupted with
large amounts of up/down vibration. The solution was
to buy a real pan/tilt camera mount and switch to a
different camera that could be affixed on the mount.

III. SOFTWARE PLATFORM

The PandaBoard runs Ubuntu, a Linux-based OS.
Using a widely-available open source operating system
ensures compatibility with existing software frame-
works such as ROS and OpenCV. It also enables the
use of commodity hardware, such as USB webcams
for vision. The Linux environment provides rich APIs
and abstracts the software away from the choice of
hardware (i.e. the ARM-based OMAP4). In principle, it
would be simple to migrate to an Intel-based processor
should the need arise. The use of a Linux-based OS
allows for great flexibility in software and hardware
choices.

A. Arduino Mega Software

The Arduino Mega is programmed with software
necessary to interface with the motors, servos and
sensors. It runs a message-processing loop to receive
commands (velocity, steering angle, ball pickup state)
from the PandaBoard.

The Arduino Mega runs a few time-critical tasks.
Foremost of these, it runs a PID control loop to set
the speed of the robot. This is done on board the low-
level microcontroller because the control loop requires
precise timing stability. It also sends odometry read-
ings back to the PandaBoard at regular intervals. This
ensures that the readings are spaced evenly so that the
time delta between readings is consistent.

The Arduino Mega only needs to be programmed
once with the base controller software. It has many

more hardware peripherals, GPIO pins and ADC in-
puts allowing the robot to support flexible hardware
configurations.

B. PandaBoard Software

PandaBoard software is developed onboard through
an SSH connection. The SSH connection is also used
to run and debug software. All our code is integrated
with ROS [2], an open source codebase widely used in
robotics. ROS provides a publisher / subscriber model
for different nodes, or processes, to communicate. ROS
handles communications between ROS nodes running
either on the same computer, or on a different network-
connected computer. ROS also provides rosbag, a
tool to record and playback timestamped messages for
offline computations.

IV. LOCALIZATION

In order to determine our position on court, we used
the computer vision system to track court lines, and
used visible lines as well as motion cues to deduce our
position.

The chief challenge faced in using court lines as
features is that court lines are relatively sparse and non-
unique, and they only constrain the robot’s position in 1
dimension. That is to say, from observing a court line,
the robot can determine its heading and distance from
the line, but not its lateral position along the line. The
posterior distribution from that one observation, then,
is two parallel lines along the court line.

Some work has been done using court lines to sup-
plement uniquely identified landmarks on the RoboCup
field [3], and using constraint-based landmarks of vary-
ing types [4]. However, there are no unique landmarks
on a tennis court, and lines on a court are not all visible
to the robot at once, leading to ambiguity. Furthermore,
tennis courts are highly symmetric, so a series of
measurements while on the move are necessary to
establish the robot position.

Because the inherent symmetry requires multiple
hypotheses, we took a Monte Carlo Localization
(MCL) [5] approach to localization using court lines
as observed landmarks. To conserve computational
resources on the embedded system, we constrain the
problem further. First, we assume that the robot is
initially placed by the sideline facing the service line,
where it can see a corner (Fig. 3). This allows it to get
a global initialization much more quickly. Second, to
improve our accuracy, we constrain the robot’s path to
stay near court lines, similar to the coastal navigation
presented in [6].

Fig. 3. Ideal initial placement zones for the robot

Fig. 4. View from the robot-mounted camera with detected lines
labeled. Note the limited view at this height.

A. Line Detector

The line detector thresholds the image in grayscale to
find the light-colored regions, then uses a probabilistic
Hough transform [7], [8] to detect lines, as shown in
Fig. 4. The Hough transform lines are then processed
to remove duplicates using grouping by distance and
similarity of angle. This line detector detects lines
reliably within about 3 meters, but it also generates
many false positives. The particle filter is able to handle
these false positives.

B. Particle Filter

The MCL particle filter uses the detected lines as
observations. Using the known tennis court model and
the particle pose, it generates the backprojection of
each court line onto the camera frame. Then, using a
distance metric which takes into account both distance

for each particle (x
(i)
t , w

(i)
t) do

w1 ← 1.0
w2 ← 1.0
for each observed line z(j)t do

w1 ← w1 ∗ (1 + p(z
(j)
t |x

(i)
t))

end for
for each expected line ẑ(k)t do

w2 ← w2 ∗maxj p(z
(j)
t = ẑ

(k)
t |x

(i)
t)

end for
w

(i)
t ← w

(i)
t ∗ (w1 + w2)

end for

Fig. 5. Pseudocode for the MCL observation update

Fig. 6. Odometry vs. MCL estimated pose

and orientation, the filter re-weights the particles based
on the observation according to the algorithm outlined
in Fig. 5.

The observation update models the line detector’s
false positives by rewarding a matching line (small
distance metric) but not penalizing for extra lines (large
distance metric). However, expected lines which are not
detected are penalized slightly. This allows the lack of
a line to inform the filter. The filter must be tuned not
to penalize missing lines too much; otherwise particles
that expect to see no lines, such as particles facing away
from the court, may gain too much weight.

C. Experimental Results

Experiments were conducted on an outdoor ten-
nis court in (1) midday, (2) sunset, and (3) overcast
lighting conditions. The robot was steered by radio
control. Odometry measurements and camera images

were recorded for offline computation.
Initial results show that odometry alone looks quali-

tatively good but exhibits some drift. When court lines
are in view, the particle filter corrects for drift. This
correction can be seen in the yellow track in Fig. 6.

1) Backprojection model and noise rejection: Com-
paring detected lines and model lines in the image plane
(using the backprojection model) was found to be much
more robust to mechanical noise than comparing the
lines in the world coordinate plane. This is because in
the image plane, any mechanical vibrations which pitch
the camera up and down will affect near and far lines
equally.

2) Global vs. local localization: The particle filter
can successfully perform a global localization from
an arbitrary starting location. However, to perform the
initial global localization, it was necessary to have
about 5000 particles evenly spaced around the field.
By relaxing this constraint and specifying that the ball
must start in one of two starting locations, only about
200 particles are necessary to get an initial fix.

3) Running time: For 200 particles, each observation
takes about 80ms on average using on-board process-
ing. Therefore we are currently processing at about 12.5
frames per second. While this is sufficient, further code
optimization should yield some performance gains.

D. Next Steps

Vanilla MCL localization is currently sensitive to
global initialization failures. A major feature of tennis
courts is the symmetry. A bimodal particle distribution
can easily devolve into a unimodal distribution when
there is not enough evidence to differentiate between
two hypotheses, even using a low-variance sampler.
One simple solution, which must be tested more thor-
oughly, is to resample the particles less frequently. An-
other solution which has been pursued to a limited de-
gree is to inject random particles if the weight sum falls
below some threshold. A more sophisticated solution
may involve using a Mixture MCL as described in [5].
This particle filter sometimes uses the observation as
the proposal distribution, drawing likely poses from the
current observation. It may be more a more intelligent
and principled way to overcome global initialization
failures than the random particle injection method.

V. MOTION PLANNING AND CONTROL

The on-board motion planning and control frame-
work is responsible for generating optimal and feasible
paths in different scenarios, and for generating controls

that move the robot from start to goal accurately. In
essence, the planner is responsible for driving the car
to a ball, retrieving the ball and delivering it to another
location. The optimality of a plan is judged by its
length, ease of control and time to compute given our
limited computational resources and the need for quick
response times during a tennis match.

A. Path Planner

The tennis court is a fairly simple environment from
a planning point of view: it has fixed dimensions, is
bounded on all four sides and has one consistent fixed
obstacle—the net. A robot needs to account for other
static obstacles such as benches and dynamic obstacles
such as players. The planner is bound to respect both
environmental constraints (obstacles) and differential
constraints (e.g. a minimum turning radius of 0.7m for
our robot).

The configuration of the robot is fully determined by
a three dimensional vector (x, y, θ). Search based plan-
ning over a discretized configuration space is known
to work well in such relatively low dimensional state
spaces. In particular, lattice based planning [9], [10]
is an approach that discretizes the configuration space
into a set of states and connections that represent
feasible paths between states. These connections can
then be repeated to reach any configuration on the
lattice. Lattice based planning effectively converts mo-
tion planning into a graph based search problem. It is
well suited for our platform because it directly encodes
differential constraints into the plan without the need
for post processing. Moreover, it is easy to implement
and compare various search algorithms without making
large changes to the overall architecture of the planner.

Our planner is largely based on the framework
provided by Pivtoraiko et al. [11], with a number
of optimizations and simplifications to improve on-
board performance. The different components of the
planner will be explained below in accordance with the
aforementioned structure.

1) Lattice state space and control set: The state
lattice discretizes the tennis court into regular intervals
of 0.175m, which is approximately 40% of the robot’s
length. For robot heading, we chose a minimal set of 8
uniformly spaced headings with an average out degree
of 8. This was done in order to limit the branching
factor and therefore reduce running time of the search.
Motion primitives can be computed once from the
origin and stored. The set of allowed motions from any
lattice point can then be found by translating the stored

motion primitives from the origin to that point.
2) Computing edge costs: Edge costs are typically

computed by convolving the swath of the car with
the cost map below [11]. We made two improvements
that work well for our situation: (i) Convolving the
swath with map cells for every edge in the graph
search is expensive, but the sparsity of obstacles in our
map allows us to heavily optimize by not convolving
unless the edge is in close proximity to an obstacle.
We obtained speed-ups of up to 50x in some cases,
especially for paths around the net. (ii) We further
penalize turns to generate straighter and more easily
controllable paths.

3) Search algorithm: A* search [12] is a popular
heuristic based search algorithm, which serves as our
starting point. Our discretized search space, with low
branching factor for each state, resulted in low run-
times for A*. However, two issues require us to imple-
ment a better search algorithm with faster replanning:
(i) The goal position may change during execution,
either because the ball is moving or because the ball
detector reports an updated location (ii) The robot
might detect new obstacles that are not part of the map,
like a player stepping in front of it.

In both cases, A* search in its original form will
replan without using any information from previously
generated paths. However, better search algorithms
exist.

We use a version of Moving-Target (MT) search
called Lazy MT-Adaptive A*, first introduced by
Koenig et al [13] for the problem of quick path planning
for characters in video games. Our results show that the
algorithm works well for our situation as well, where
both the agent (robot) and the goal (ball) can move.

MT-Adaptive A* is similar to A*, but is modified to
incorporate two key ideas:

(i) Heuristic update after path computation:
For any state s that was expanded during an A*

search, let g(s) denote its g-value, i.e. the distance from
the start state to state s. Let g(starget) denote the g-
value of the goal state starget. Adaptive A* updates the
h-values of all states s that were expanded during the
search as follows:

h(s) := g(starget)− g(s). (1)

The new h-values are consistent and for any state,
they cannot be smaller than the user-generated h-value
for that state. Hence any new A* search using the new
h-values will typically expand fewer states than the
earlier searches.

(ii) Heuristic correction for Moving Target:
MT-Adaptive A* also corrects heuristics of nodes

to maintain consistency when the goal changes. Given
consistent h-values with respect to the previous goal
state starget, MT-Adaptive A* corrects the h-values of
all states s to make them consistent with respect to the
new goal state s′target. It does this by assigning

h(s) := max(H(s, starget), h(s)h(starget)) (2)

for all s. It can be proved that the new h-values h′(s)
are consistent with respect to the new goal state s′target
[13]

MT-Adaptive A* with the new h-values cannot ex-
pand more states than an otherwise identical A* search
with user-supplied initial h-values. In practice however,
it usually expands much fewer nodes. The lazy version
that we use does further optimizations to compute new
h-values only for nodes that are needed during a future
search. The entire algorithm is presented in detail in
[13].

B. Controller

The robot has a closed loop controller that enables it
to use localization information to follow planned paths
accurately. The controller has two components—speed
control and steering control.

1) Speed control: The controller commands speeds
to the Arduino, which then runs PID control based on
a wheel encoder to maintain the commanded speed.
The controller uses a 0.25m lookahead to determine
safe running speeds. This allows it to slow down before
turns, when near obstacles and before reverse segments
in the path.

2) Steering control: 1. Our steering controller is
based on the one used by Stanley, Stanford’s robot that
won the DARPA Grand Challenge [14].

Fig. 7. a. Illustration of the Stanley steering controller [14] b.
Stanley steering controller corrects trajectory from an inital cross-
track error of 0.4m, k = 2 (Court markings are in cm)

The controller is based on a nonlinear feedback
function of the cross-track error x(t) which measures
the lateral distance of the center of the robot’s front
wheels from the nearest point on the trajectory (Fig. 7).

In the error-free case, using this term, the front wheels
match the global orientation of the trajectory. The angle
θ describes the orientation of the nearest path segment,
measured relative to the vehicle’s own orientation. In
the absence of any lateral errors, the controller points
the front wheels parallel to the planner trajectory. u(t)
is the robot’s speed at time t. The basic steering angle
control law is given by

δ(t) = ψ(t) + arctan(
kx(t)

u(t)
), (3)

where k is a gain parameter that can be tuned.
Using a linear bicycle model with infinite tire stiff-

ness and tight steering limitations, it can be shown that
for small cross track error, this control law results in
error converging exponentially to zero [14].

C. Experiments

Fig. 8 shows various situations where the planner
generates a plan and the controller drives the bot along
the plan. All computation is done on board. These
trajectories were recorded using the Vicon MX motion
capture system, and superimposed onto a map of the
tennis court. Table I displays quantitative measures of
performance for both the planner and the controller,
averaged over 10 runs per example. For the planner,
the number of nodes expanded and runtimes provide
a measure of performance, while the controller is
measured by average cross-track error, final cross-track
error and heading error at goal. Along with these
average quantities, we also report the standard deviation
as a measure of statistical significance of our results.
We can see that although there is room for improvement
with the planner’s speed, it does a satisfactory job
of generating initial plans. The controller performs
very well. As an additional measure of the controller’s
performance, we can report a 93% success rate for the
robot arriving at the goal such that the ball is encased
within its roller.

VI. BALL DETECTION

A. Approach

We developed a novel approach for locating station-
ary balls on the surface of a tennis court. In order
to cut out impossible regions where stationary balls
could be found and reduce the search domain, only
the region below a finite horizon extending over the
court length is considered. The approach assumes that
at most one ball is present in the frame. It further
assumes that fine texture details in the image are

Fig. 8. Examples of plans generated (blue) and trajectories taken by car (red) for three cases — a) Picking up a ball b) Delivering a
ball at a specific pose c) Retrieving a ball across the net. The court markings are all in meters

TABLE I
MEAN ERROR (S.D.) FROM ON-BOARD TESTS OF PLANNING AND CONTROL

Plan (from Fig. 8) Nodes expanded Runtime (s) Average cross-track
error (m)

Cross-track error at
goal (m)

Heading error at
goal (rad)

a) 104 0.48 (0.04) 0.05 (0.007) 0.067 (0.033) 0.1 (0.04)
b) 179 0.99 (0.47) 0.21 (0.025) 0.116 (0.0146) 0.13 (0.02)
c) 608 4.4 (0.42) 0.107 (0.007) 0.15 (0.017) 0.13 (0.09)

redundant. The textures and noise are smoothed by
running mean shift like clustering over space [15].
The resulting posterized image has larger areas with
nearly constant colors. Connected components or blobs,
which are contiguous regions of nearly constant color
are generated from the posterized image using a flood
fill algorithm. Connected components which have pixel
area much greater than what is possible for an image
of a taken ball from the camera’s height are discarded.

Contours bounding the connected components are
found [16]. Contours help in obtaining useful geometric
properties like area, shape and position of the blobs.
Contours are filtered on size and shape. This filtering
based shape is done by first fitting ellipses to the blobs
using a least squares technique [17] and then evauating
the following two measures,

ρ := M/m (4)

where M = length of major axis,m = length of minor
axis,

∆ := 1− Area(Blob)

Area(Ellipse)
(5)

For a circular blob, it is expected that ρ → 1+ and
∆→ 0+.

The remaining contours’ pixels are then converted to
HSV colorspace for color-based filtering aided by the
tennis ball’s distinct color. In the rare case that multiple
blobs remain, the one with the largest area is assumed
to represent the ball (see Fig. 9). Successive averaging
and filtering leads to a progressively diminishing set of
ball candidates which aids in reducing the computation
overhead, a precious resource for embedded systems.

Fig. 9. Intermediate steps of ball detection. [from top] a. Connected
components after mean-shift clustering and flood-filling b. Blobs
left after filtering on shape, size and color. c. Detected ball and
estimated position (meters, degrees)

B. Experiments

This approach was found to detect balls much farther
away (5-6 meters) than naive color thresholding which
was only useful for balls within close range (1-2
meters). It was more robust to potential detractors like
distant trees, round objects like stones or even varying
lighting conditions. It was found to have a low false
negative rate. It tends to have a higher false positive
rate than color thresholding, which was primarily due to
random misdetection and can be improved by filtering
the position of the ball between frames.

VII. CONCLUSIONS AND FUTURE WORK

Our efforts to develop a low-cost integrated system
for tennis ball retrieval have thus far resulted in the

iterative development of a tested, proven hardware plat-
form. The software stack has been developed for court
localization, navigation, and ball detection. We are still
working on the robustness of court localization and
further code optimizations, which are two necessary
steps for the integration of these components.

The eventual goal for this project is fully automated
ball retrieval for tennis matches. We are encouraged by
the preliminary results for localization, motion planning
and ball detection. While we continue to make the
system robust to environmental variations, we also aim
to develop the decision-making functionality of the
platform to create a truly autonomous system.

VIII. ACKNOWLEDGEMENTS

This project was developed by a team which will
hopefully carry the project onto completion of its goals.
I would like to acknowledge Karthik Lakshmanan for
his work in motion planning, Ankush Gupta for his
work in constructing the ball pickup and developing
the ball detection algorithm, and Pieter Abbeel for his
overall guidance and support in overseeing the project.

REFERENCES

[1] J. Jones, “Robots at the tipping point: the road to iRobot
Roomba,” Robotics Automation Magazine, IEEE, vol. 13,
no. 1, pp. 76 – 78, march 2006.

[2] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating
system,” 2009.

[3] T. Rofer, T. Laue, and D. Thomas, “Particle-filter-based self-
localization using landmarks and directed lines,” in RoboCup
2005: Robot Soccer World Cup IX, ser. Lecture Notes in
Computer Science, A. Bredenfeld, A. Jacoff, I. Noda, and
Y. Takahashi, Eds. Springer Berlin / Heidelberg, 2006,
vol. 4020, pp. 608–615, 10.1007/11780519 60. [Online].
Available: http://dx.doi.org/10.1007/11780519 60

[4] A. Stroupe, K. Sikorski, and T. Balch, “Constraint-
based landmark localization,” in RoboCup 2002: Robot
Soccer World Cup VI, ser. Lecture Notes in Computer
Science, G. Kaminka, P. Lima, and R. Rojas, Eds.
Springer Berlin / Heidelberg, 2003, vol. 2752, pp. 8–
24, 10.1007/978-3-540-45135-8 2. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-45135-8 2

http://dx.doi.org/10.1007/11780519_60
http://dx.doi.org/10.1007/978-3-540-45135-8_2
http://dx.doi.org/10.1007/978-3-540-45135-8_2

[5] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust
Monte Carlo localization for mobile robots,” Artificial
Intelligence, vol. 128, no. 1-2, pp. 99 – 141, 2001.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0004370201000698

[6] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal
navigation-mobile robot navigation with uncertainty in dy-
namic environments,” in Robotics and Automation, 1999.
Proceedings. 1999 IEEE International Conference on, vol. 1,
1999, pp. 35 –40 vol.1.

[7] R. O. Duda and P. E. Hart, “Use of the Hough transformation
to detect lines and curves in pictures,” Commun. ACM,
vol. 15, pp. 11–15, January 1972. [Online]. Available:
http://doi.acm.org/10.1145/361237.361242

[8] J. Matas, C. Galambos, and J. Kittler, “Robust detection of
lines using the progressive probabilistic Hough transform,”
Computer Vision and Image Understanding, vol. 78, no. 1,
pp. 119 – 137, 2000. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1077314299908317

[9] M. Likhachev and D. Ferguson, “Planning long dynamically
feasible maneuvers for autonomous vehicles,” The
International Journal of Robotics Research, vol. 28,
no. 8, pp. 933–945, 2009. [Online]. Available:
http://ijr.sagepub.com/content/28/8/933.abstract

[10] M. Pivtoraiko and A. Kelly, “Generating near minimal span-
ning control sets for constrained motion planning in discrete
state spaces,” in Intelligent Robots and Systems, 2005. (IROS
2005). 2005 IEEE/RSJ International Conference on, aug.
2005, pp. 3231 – 3237.

[11] M. Pivtoraiko, R. Knepper, and A. Kelly, “Differentially
constrained mobile robot motion planning in state lattices,”
Journal of Field Robotics, vol. 26, no. 3, pp. 308–333, March
2009.

[12] N. J. Nilsson, Principles of Artificial Intelligence, Nilsson,
N. J., Ed., 1982.

[13] S. Koenig, M. Likhachev, and X. Sun, “Speeding up moving-
target search,” in Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems,
ser. AAMAS ’07. New York, NY, USA: ACM, 2007, pp.
188:1–188:8. [Online]. Available: http://doi.acm.org/10.1145/
1329125.1329353

[14] S. Thrun et al, “Stanley: the robot that won the DARPA
Grand Challenge,” in The 2005 DARPA Grand Challenge,
ser. Springer Tracts in Advanced Robotics, M. Buehler,
K. Iagnemma, and S. Singh, Eds. Springer Berlin /
Heidelberg, 2007, vol. 36, pp. 1–43, 10.1007/978-3-540-
73429-1 1. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-73429-1 1

[15] D. Comaniciu and P. Meer, “Mean shift analysis and appli-
cations,” in Computer Vision, 1999. The Proceedings of the
Seventh IEEE International Conference on, vol. 2, 1999, pp.
1197 –1203 vol.2.

[16] S. Suzuki and K. be, “Topological structural analysis of

digitized binary images by border following,” Computer
Vision, Graphics, and Image Processing, vol. 30, no. 1, pp.
32 – 46, 1985. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0734189X85900167

[17] M. Pilu, A. Fitzgibbon, and R. Fisher, “Ellipse-specific direct
least-square fitting,” in Image Processing, 1996. Proceedings.,
International Conference on, vol. 3, sep 1996, pp. 599 –602
vol.3.

http://www.sciencedirect.com/science/article/pii/S0004370201000698
http://www.sciencedirect.com/science/article/pii/S0004370201000698
http://doi.acm.org/10.1145/361237.361242
http://www.sciencedirect.com/science/article/pii/S1077314299908317
http://www.sciencedirect.com/science/article/pii/S1077314299908317
http://ijr.sagepub.com/content/28/8/933.abstract
http://doi.acm.org/10.1145/1329125.1329353
http://doi.acm.org/10.1145/1329125.1329353
http://dx.doi.org/10.1007/978-3-540-73429-1_1
http://dx.doi.org/10.1007/978-3-540-73429-1_1
http://www.sciencedirect.com/science/article/pii/0734189X85900167
http://www.sciencedirect.com/science/article/pii/0734189X85900167

	INTRODUCTION
	HARDWARE PLATFORM
	Mechanical
	Base chassis
	Ball pickup

	Power Electronics
	Main Drive Motor
	Pickup Motors
	Power Supply

	Control Electronics
	PandaBoard
	Arduino Mega

	Sensors
	Wheel Encoder
	IMU
	Stereo Vision

	Power Source
	Robustness

	SOFTWARE PLATFORM
	Arduino Mega Software
	PandaBoard Software

	LOCALIZATION
	Line Detector
	Particle Filter
	Experimental Results
	Backprojection model and noise rejection
	Global vs. local localization
	Running time

	Next Steps

	MOTION PLANNING AND CONTROL
	Path Planner
	Lattice state space and control set
	Computing edge costs
	Search algorithm

	Controller
	Speed control
	Steering control

	Experiments

	BALL DETECTION
	Approach
	Experiments

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	References

