
Instrumenting Linear Algebra Energy Consumption

via On-chip Energy Counters

James Demmel
Andrew Gearhart

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-168

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-168.html

June 23, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Instrumenting linear algebra energy consumption via on-chip
energy counters

James Demmel
UC Berkeley

demmel@cs.berkeley.edu

Andrew Gearhart
UC Berkeley

agearh@cs.berkeley.edu

Abstract

Despite the move toward chip multiprocessing in the mid-2000s, the problem of machine energy consumption
is still a prevalent and growing problem within the computing sector. To evaluate energy consumption at the ap-
plication level, researchers were previously limited to specialized external instrumentation, modeling or simulation.
Thankfully, new microprocessor designs have now exposed a handful of hardware counters that are able to measure
energy directly, avoiding many limitations of previous techniques. This work details the capability of these counters,
supports their accuracy via other measurement hardware, and explores the energy consumption of common dense and
sparse linear algebra routines for various problem sizes and core frequencies.

Keywords: on-chip counters, energy and power measurement, linear algebra

1 Introduction
A number of years ago, researchers noted [24, 5, 16] that the industry reliance on deeper pipelines and higher clock
frequencies for increased performance was inherently limited by the polynomial relationship between power and
frequency/voltage. This problem was regarded as the ”power wall”, and motivated the transition toward multicore
processor designs. By increasing the number of cores on die, peak floating point performance scales nearly linearly
with increasing core count. This allows for continued scaling of peak performance, but does not address the growing
gap between memory capability and floating point capability. Furthermore, large data centers and embedded devices
are still bound by the available power envelope. Due to these reasons, managing application power and energy still
represent areas of critical research interest. In particular, two problems are prevalent:

• Improving energy efficiency of an application’s execution to reduce the overall energy consumption of a
datacenter or portable device. From the datacenter perspective, a significant amount of expense is required
to provide energy for compute nodes and cooling [17]. By increasing the energy efficiency of algorithms, both
costs can be reduced. On the other hand, energy efficiency serves to increase the battery life of handheld devices.

• Managing power consumption within a power-constrained environment. Datacenter power is limited by
the building infrastructure and processor workloads must be accurately characterized so as to provide insight
into the thermal requirements of a system.

Toward addressing these above problems, accurate and efficient methods of measuring machine energy consump-
tion are required to aid researchers and allow for feedback to software. Previous methods for measuring power and
energy used external instrumentation and counters [15, 3, 20, 19, 1], simulation [6, 14], modeling [18, 8, 28] or em-
ulation [2]. While each of these techniques has advantages and disadvantages, researchers were unable to directly
access energy information during actual application execution on most machines (with the exception of handheld and
embedded devices). During the past year, Intel’s successors the to Nehalem microarchitecture, Sandy Bridge, have
emerged with on-chip counters that allow for CPU and DRAM energy to be queried entirely through software. The
latter capability (measuring DRAM energy) represents a critical feature to researchers, as on-node memory traffic is
expected to become the largest component of energy consumption for many algorithms [21, 12]. At time of writing,
no on-chip energy counting capability has been made available to the user from other major manufacturers. Thus, this
work will exclusively utilize Intel’s Running Average Power Limit (RAPL) interfaces for data collection.

This work explores the new energy counting capabilities of Intel processors and uses these counters to examine
the energy efficiency of various linear algebra algorithms and implementations. While these counters provide the
ability to set power limits for various chip domains (probably useful for the above mentioned second problem), this
work only reads energy state registers as opposed to actively setting limits. First, we demonstrate concordance between
measurements of wall power and energy counter readings for compute and communication-intensive microbenchmarks
(a cpu-intensive loop and STREAM [22], respectively). This accomplished, we demonstrate that energy counters allow
for easy experimental verification of energy savings due to frequency scaling and optimized thread allocation to logical
cores. Furthermore, we demonstrate that the energy required to compute sparse matrix-vector multiplication (SPMV)
is strongly dependent on the machine’s Last Level Cache (LLC) size, number of nonzero entries and the sparsity pattern
of the problem. Interestingly, SPMV is able to draw more DRAM power than STREAM with randomized memory
accesses and the DRAM power on the experimental machine represents a small fraction of wall power. Finally, we
discuss implications for future research and conclude.

2 Intel’s Running Average Power Limit (RAPL) interfaces

2.1 Overview
While exploring the current capabilities for on-chip energy counters, Intel model-specific (or machine-specific) regis-
ters (MSRs) are implemented within the x86 and x64-64 instruction sets as means for processes to access and modify
parameters related to cpu execution [11]. A large number of these registers exist, and most are beyond the scope
of this work. However, a handful of MSRs are allocated for platform specific power management within the Sandy
Bridge and successor microarchitectures and allow access to energy measurement and enforcement of power limits. In
particular, Intel refers to these registers as the Running Average Power Limit (RAPL) interfaces. According to Section
14.7 of [11], the RAPL interfaces ”expose multiple domains of power rationing within each processor socket” and

1

power management for multiple sockets (”processor complexes”) must be handled individually. The RAPL interfaces
currently define MSRs for access to 4 domains:

• Package (PKG): entire socket

• Power Plane 0 (PP0): cores

• Power Plane 1 (PP1): uncore∗

• DRAM: sum of DIMM powers for the socket

The Intel documentation [11] states that client platforms have access to {PKG,PP0,PP1} while server platforms
(code name Jaketown) may access {PKG,PP0,DRAM}. From the above domain definitions, one expects that energy(PP0)+
energy(PP1) = energy(PKG). The asterisk on the entry for PP1 above indicates that on client Sandy Bridge plat-
forms PP1 measures the energy of the on-chip graphics processor, as opposed to the entire uncore. On these machines
energy(PP0) + energy(PP1) <= energy(PKG) and energy(PKG) − (energy(PP0) + energy(PP1)) =
energy(uncore). These equations have been confirmed by Intel representatives [25].

2.2 Capabilities
[11] lists the capabilities of the RAPL interfaces to monitor and control system power and energy:

• Power Limit - MSR interfaces to specify power limit and time window

• Energy Status - Power metering interface providing energy consumption information

• Perf Status (certain machines) - Interface providing information on the performance effect due to power limits.

• Power Info (certain machines) - Interface providing information on the range of parameters for a given domain,
minimum power, maximum power, etc.

• Policy (certain machines) - 4-bit priority information which is a hint to hardware for the dividing power budget
between PP0/PP1 within PKG.

These capabilities are available in various degrees to each RAPL domain available on a given machine. As men-
tioned earlier, results presented within this work only utilize the Energy Status component of the RAPL interfaces and
thus access the MSRs in a read-only manner.

2.3 Access
To enable user level access to the RAPL interfaces on Linux, the ”msr” kernel module must be built and loaded. Once
loaded, the module creates the /dev/cpu/*/msr character device for each logical processor. These character devices by
default require superuser permissions to access, and for the purposes of this study were modified to allow user access.
Once accessed as a normal file, a specific MSR can be read or written according to offsets defined within the asm/msr.h
header file. Insight for the code utilized in this work was obtained via [26].

2.4 Limitations
Currently, the small set of RAPL interface MSRs are limited in functionality in that they represent metrics that are of
socket scope. Thus, individual cores cannot be measured and PP0 represents the sum of all core energies. Similarly,
DRAM and uncore energy data do not distinguish between various memory channels or uncore devices.

While the power limiting capabilities of the RAPL interface are not considered directly within this document, at
time of writing the ability to set per-core power limits is not available. Users are limited to setting limits for the RAPL
domains described above.

2

Table 1: Machines utilized in experiments

Machine Model Physical Cores Max freq Min freq Memory Hyperthreading? Turbo Boost?
Sandy Bridge client Core(TM) i7-2600 4 3.4Ghz 1.6Ghz 32Gb Y N
Sandy Bridge server Core(TM) i7-3960X 6 3.3Ghz 1.2Ghz 16Gb Y N

3 Hardware and Experimental Setup
There were 2 machines used in this study, with key parameters as shown in Table 1. All parallel codes were run with
the number of threads equal to the number of physical (as opposed to logical) cores and caches were warmed up by
running the test function once prior to beginning data collection. Both machines in Table 1 were running Ubuntu
Linux version 10.04 and code was compiled with the Intel compiler version 12.1.0. Tuned linear algebra routines were
called from Intel’s Math Kernel Library version 10.3. To reduce potential noise in data collection, the Turbo Boost
[10] feature of these machines was disabled. The effect of turbo upon energy counter behavior is currently unclear,
but certainly warrants future investigation.

Sandy Bridge machines have a single clock domain that encompasses all cores, the on-chip communication net-
work and last-level cache. Thus, frequency scaling data is obtained by scaling all cores simultaneously to the same
clock rate.

4 Microbenchmarks and relationship to wall power
Before presenting results related to linear algebra routines, it is useful to sanity-check the RAPL counters by comparing
average energy consumption to the results measured by a wall power meter (Brand Electronics Model 21-1850-CI).
These experiments were performed on the Sandy Bridge client platform running 4 threads (one thread per physical
core). Observing the concordance between different instrumentation methods also allows for the relationship between
chip power draw and total system power to be observed. Wall power traces were obtained at a granularity of 1 second,
and were recorded for several seconds before and after the run period of the benchmark. Note that one should not
expect Wall power to correlate exactly with chip package measurements as the wall power measurement also includes
machine components such as DRAM DIMMs, fans and power supply losses.

4.1 STREAM benchmark
The STREAM benchmark [22] is a commonly utilized microbenchmark designed to measure sustained memory band-
width on multicore nodes. It is an operation completely dominated by data operations, and as such should be less
dependent upon core frequency for performance. Indeed, the runtime of STREAM at 1.6Ghz is similar to that at
3.4Ghz at about 10.1 seconds. In this work, STREAM’s INIT test (which initializes an array to a constant value)
was measured for the purposes of energy. We note that a significant amount of extra energy is required to run the
benchmark at the higher core frequency. By dividing the energy counter data by the runtime, we can obtain a value for
average power over the PKG domain. These values for core frequencies of 3.4 and 1.6Ghz are shown in Table 2, and
differ by over 20W.

By correlating wall power data with timestamps, we can calculate the average wall power increase over idle during
a data run. To calculate idle, we performed no work on the machine1 and collected wall power data at 1 second
intervals for 2 minutes at the target core frequency. Idle power was then set to be the average of these values and was
approximately 76W at both core frequencies under consideration. Figure 1(a) shows annotated wall power traces for
the Sandy Bridge client machine while running STREAM’s INIT test. The meaning of the plot labels is as follows:

• START: test program start

• INIT(3.4): start of STREAM INIT test with core frequency 3.4Ghz

• END: end of INIT test
1No other users were present on the machine, and only standard system processes were running.

3

Table 2: Comparison of average wall and PKG powers for LOOP/STREAM

Freq (Ghz) Wall Total (W) Idle Wall-Idle PKG
STREAM 3.4 125.57 76.48 49.09 42.23

1.6 98.66 75.9 22.76 16.58
LOOP 3.4 113.75 76.48 37.27 41.65

1.6 89.65 75.9 13.75 16.07

The program activity between START and INIT is dominated by memory allocation and initialization, and is thus
excluded. We calculated the average total wall power based upon the values between the INIT and END labels, as is
shown in the ”Wall Total (W)” column of Table 2. Once the average wall power for the entire machine was calculated,
the idle power (”Idle” column of Table 2) was subtracted in an attempt to capture the dynamic power utilized during
the benchmark run (”Wall-Idle” column of Table 2). For STREAM, the counter-derived average power (42.23W) for
the processor die (PKG) differed from the wall power average (49.09W) by approximately 7W. The authors suspect
that most of the discrepancy in this value is due to dynamic DRAM DIMM power, which is not measured via the PKG
counter. The Sandy Bridge client machine has only 4 DDR3 DIMMS of DRAM, suggesting that the DIMM power
contribution to wall power at high utilization will be relatively small (hence the difference of only a few Watts between
the two averages). On servers with many DIMMs, one would expect the DRAM power to be a significant portion of
overall machine power.

4.2 Cpu-intensive loop
While STREAM attempts to saturate memory bandwidth, Algorithm 1 stresses the integer computation capability of
the processor.

Algorithm 1 LOOP benchmark
Require: INPUT x, outer, inner

1: #pragma omp parallel for
2: for i = 0 to outer do
3: for j = 0 to inner do
4: x = XOR(x, x+ (i&j))
5: end for
6: end for
7: return x

This micro benchmark is based upon the code utilized by Buchert in his work on processor performance emulation
[7], but with the addition of an OpenMP [4] pragma for parallelism. Similarly to STREAM, a significant amount of
additional energy is required to run at the highest clock frequency (see Table 2). In the case of LOOP there is little
initialization overhead for the benchmark, so the START label on the wall power trace (Figure 1(b)) indicates the
beginning of the actual test (equivalent to the INIT label in the case of STREAM). To calculate average total wall
power, the values between START and END were considered. In this situation, we see in Table 2 that the average
power obtained via the wall power meter (37.27W) is several Watts less than that obtained by the energy counter for
the die. The reason for this effect is currently unknown, as one would expect the wall power to be strictly higher than
the on-die counter average.

5 Dense linear algebra

Computation and Communication-bound algorithms
As an initial step toward analyzing more practical algorithms, we consider tuned implementations of dense matrix-
matrix (GEMM) and matrix-vector multiplication (GEMV) via Intel’s Math Kernel Library (MKL) 10.3. These cases
are useful in that matrix-matrix multiplication is a common example of a compute bound O(n3) algorithm, while

4

(a) STREAM INIT (b) LOOP

Figure 1: Wall power traces for microbenchmarks

Table 3: Comparison of average wall and PKG powers for DGEMM/DGEMV

Freq (Ghz) Wall Total (W) Idle Wall-Idle PKG
DGEMM 3.4Ghz 155.17 76.48 78.68 81.63

1.6Ghz 100.4 75.9 24.51 29
DGEMV 3.4Ghz 126.31 76.48 49.83 49.08

1.6Ghz 101.6 75.9 25.7 22.48

the matrix-vector multiplication runtime is dominated by the cost of moving data into fast memory. As such, one
would expect the performance of GEMM to scale almost linearly and the performance of GEMV to stagnate with core
frequency. The balance between compute and communication-boundedness of an algorithm is dependent on machine,
algorithm and implementation factors, and is a key consideration when attempting to improve code performance. The
interplay between these factors is elaborated upon with the Roofline model, presented in [29].

In the extremely computationally dominated GEMM, the typical strategy is to finish the problem as fast as possible
and then allow the processor to do other useful work. This strategy is commonly known as Race to Halt (RtH). While
our results do show a strong relationship between core frequency and floating point performance for GEMM (Figure
2(a)), it is still more energy efficient to complete the problem at a lower clock frequency (Figure 2(b)). On the other
hand, the communication-dominated GEMV algorithm does not improve in floating point performance with higher
clock rate as available DRAM bandwidth limits the amount of computation that can be performed rapidly (Figure
2(c)). Higher clock frequencies are even less efficient in this case (Figure 2(d)), making execution at a slower rate a
clear choice to obtain efficiency without reducing runtime.

To correlate the on-chip energy counters, we also considered data from a wall power meter. The same idle power
results were used as with the LOOP and STREAM benchmarks, and wall power traces (Figure 3) were annotated in a
similar fashion to STREAM. Table 3 shows that the counter and wall meter average power meters only differ by several
Watts. Interestingly, the compute-bound DGEMM differs more at 1.6Ghz while the communication-bound DGEMV
values are nearly exactly identical at 3.4Ghz. This undermines the hypothesis of memory power consumption being
a significant contributor to accuracy differences, and will have to be investigated further on a machine with a DRAM
counter and a large number of DRAM DIMMs (so that system memory is a significant fraction of total wall power).

5.1 Saving energy via logical cores
In addition to the RAPL interfaces, the Sandy Bridge machines utilized for this study are capable of simultaneous
multithreading (SMT). SMT allows multiple threads to utilize on-core hardware so as to improve resource efficiency
in certain cases. Intel’s implementation of SMT is called Hyper-Threading Technology [9], and manifests itself by
allowing two threads to run on each physical core. For these machines, we can choose at runtime between two types
of thread layouts (affinity schemes): scatter and compact. As shown in Figure 4, a scatter layout favors placing threads
on independent physical cores while the compact layout tends to place two threads per physical core if possible.

5

(a) DGEMM FP performance vs. core frequency (b) DGEMM energy vs core frequency

(c) DGEMV FP performance vs. core frequency (d) DGEMV energy vs. core frequency

Figure 2: Energy consumption and floating point performance for DGEMM/DGEMV

In practice, SMT typically works well when both threads on the core are dominated by communication and can
yield the core to each other often. In this situation, SMT of two threads on one physical core can approach the
performance of two physical cores. Figure 5 shows the effect of thread affinity upon performance and energy for the
MKL 10.3 GEMM and GEMV. This figure does not include energy data from the PP0 domain, as results were quite
similar to PKG.

In the case of GEMM, computation dominates and utilizing a compact scheme results in threads competing for
floating-point unit resources. This significantly reduces floating point performance over a scatter layout, and as such
requires more energy to complete (as the code requires more execution time before the machine is able to idle).
These results are shown in Subfigures 5(a) and 5(b). On the other hand, the communication-bound GEMV achieves
a slightly higher level of floating point performance for higher core frequencies with a compact layout (Figure 5(c)).
The compact layout also utilizes less energy in this case (Figure 5(d)), resulting in a lower energy expenditure for
slightly higher performance.

In general, however, the tradeoff between thread affinity scheme, energy consumption and performance is a com-
plex function of hardware configuration, algorithm choice and implementation efficiency. In the presented case of
GEMV on a Sandy Bridge client platform, two physical cores are able to saturate the entire available memory band-
width. As such, performance of the matrix-vector multiplication does not reduce when using two cores. On other
machines, all further cores or multiple sockets would be required to achieve further bandwidth for an algorithm so
constrained.

6 Sparse linear algebra

6.1 Background
In the previous section, we assume that each entry of the input matrices are nonzero entries. In many situations,
the formulation of a scientific problem results in input matrices that have very few nonzero entries relative to the

6

(a) DGEMM (b) DGEMV

Figure 3: Wall power traces for DGEMM/DGEMV

Figure 4: Assigning 4 threads to a 4 core CPU with SMT

dimensions of the matrix. Such matrices are called ”sparse”, and allow algorithms to calculate the correct answer
with many fewer floating point operations than if the matrices were considered to be dense. Furthermore, many
problems require iterated solvers that perform repeated sparse matrix-vector multiplication (SPMV) operations in
hope of converging to a numerical solution. In order to take advantage of the fewer flops required to calculate a
given SPMV, the sparse matrix must be stored in a data structure that allows the algorithm to reference the location
of nonzeros efficiently. While many sparse matrix storage schemes have been developed (see [27]), the experiments
performed for this work exclusively utilized matrices stored in Compressed Sparse Row (CSR) format. Figure 6
outlines the CSR storage scheme.

While CSR avoids representing zero values, and compresses n2 values to 2NNZ + n + 1 where NNZ is the
number of non-zero entries, the format adds a level of memory indirection when attempting to compute a matrix-
vector multiplication. This indirection can be seen in the access of the b vector within Algorithm 2. As such, the
memory access pattern of CSR SPMV is somewhat dependent on the pattern of nonzeros within the input matrix. This
often limits load/store locality and results in a significant performance penalty due to bad caching behavior.

To generate SPMV data for this report, we utilized several hundred sparse matrices with in-memory data structure
sizes ranging from several hundred bytes to several gigabytes. Matrices were stored in the Matrix Market format [23]
and downloaded from the University of Florida sparse matrix collection [13]. All sparse problems used in this study
were symmetric.

6.2 Observations
Figure 7 show MKL DSPMV energy and floating point performance data for the Sandy Bridge client and Sandy Bridge
server machines. In these plots, a single point on the x-axis represents a single sparse problem. Problems were sorted
by the number of nonzero values, so that matrices to left side of the x-axis are very small (several hundred bytes) while
matrices to the right of the x-axis are large (several Gigabytes). The sample set was biased toward small matrices,

7

(a) DGEMM FP performance vs. core frequency (b) DGEMM energy vs core frequency

(c) DGEMV FP performance vs. core frequency (d) DGEMV energy vs. core frequency

Figure 5: DGEMM/DGEMV thread assignment comparison

Figure 6: Converting a sparse matrix to CSR format

so the size increase along the x-axis is nonlinear. On each plot in Figure 7, the percent change between PKG energy
between the maximum and minimum clock frequencies of the machine is plotted in blue. Similarly, percent change
in GFLOP/S between the two frequencies is plotted in orange. On both machines, a distinctive transition can be seen
toward the center of each plot where floating point performance and energy becomes considerably more variable. On
each machine, this transition appears to occur when the in-memory size of the problem is 1-2Mb larger than the size
of the on-chip L3 cache2. If the problem fits into cache, moving to a lower clock frequency results in a relatively
constant tradeoff between performance degradation and energy improvement. On the other hand, problems larger than
cache show a significant amount of variability even between similarly-sized problems. On the client machine, a large
number of matrices show a favorable energy/gflop/s tradeoff with energy savings outweighing performance penalty at
the lower frequency. On the other hand, the server data clearly shows that one will almost always lose more floating
point performance than energy by running at the lower frequency.

In an attempt to explore the performance variability mentioned above, we run the MKL DSPMV on a band matrix
(stored in CSR format) of size N=50000 on the Sandy Bridge server platform (Figure 8). Along the x-axis, we scale
the bandwidth of the matrix from completely diagonal (no diagonals) to a bandwidth of 200. This results in a series of
matrices that range in size from approximately 1 Mb to 1Gb. Again, we notice the transition as the problem falls out
of L3 (toward the left side of the x-axis in this case, as opposed to the center) and note that the performance variability
has been nearly eliminated. This supports the hypothesis that sparsity pattern reflects approximately 10-20% of the

2L3 sizes: Sandy Bridge client 8 Mb and Sandy Bridge server 15 Mb.

8

Algorithm 2 Naive sparse matrix-vector multiplication in CSR format
Require: matrix A in CSR form: A = {values,columns,rowIndex}, vectors b and c

1: for i = 0 to n do
2: ci = 0
3: currIndex = rowIndex[i],nextIndex = rowIndex[i+ 1]
4: for j = 0 to nextIndex− currIndex do
5: offset = currIndex+ j
6: ci+ = values[offset] ∗ b[columns[offset]]
7: end for
8: c[i] = ci
9: end for

floating point performance and energy consumption difference between the two targeted frequencies. Future work
may the consider the frequency tuning space represented by this variation for large problems.

Finally, Figure 9 displays data collected from the DRAM energy counter on the Sandy Bridge server machine and
compares the average DRAM power consumption at 1.2Ghz (orange) and at 3.3Ghz (blue). This machine was installed
with 4 DDR3 non-ECC DIMMS running on 4 channels at 1600Mhz. Memory clock frequency was not varied in the
course of this experiment. Unsurprisingly, the counter data shows a significant increase in power once the problem
falls out of the L3 cache and memory is accessed more often. When the problem fits in L3 the DRAM appears to sit in
a low-power state and only consumes a fraction of a Watt. On the other hand, larger problems result in a power draw
of about 5.5W at 1.2 Ghz and over 8W at 3.3Ghz.

It is to be noted that the reported power consumption for the DRAM is not an extremely significant fraction of the
wall power. Thus, we were unable to utilize the wall power meter to confirm the results reported in Figure 9 due to
system noise varying the wall power by a handful of Watts. We hope to explore the accuracy of the DRAM energy
counter in greater detail on a machine with a larger number of installed DIMMs in the near future.

7 Conclusions
This work provides an initial exploration of Intel’s on-chip energy counters, and attempts to show some evidence for
accuracy based upon measurements from a wall power meter. Furthermore, the work notes energy and floating point
performance trends between common communication and compute-bound linear algebra routines and also tests a large
number of sparse matrix problems. It was found that (perhaps unsurprisingly) floating point performance saturates at
a low core frequency for communication-bound algorithms, resulting in a significant energy motivation to run these
codes as the minimal possible frequency. This benefit even extended to using a lower number of physical cores on the
chip in combination with low frequency.

Regarding the sparse matrix-vector multiplication data, we found that energy efficiency and floating point perfor-
mance varies significantly (10-20%) with sparsity pattern once the problem is larger than the last level cache. This
variation is nearly eliminated in problems that fit in cache (except for extremely small problems on the order of hun-
dreds of bytes). Finally, we presented initial results obtained from the DRAM energy counter on the Sandy Bridge
server platform. We found that for problems that fit in cache, the DRAM consumes a very small amount of average
power (.5W). On the other hand, larger problems showed a large amount of variation in DRAM power and also a
significant power difference between the minimum and maximum core frequencies (about 5.5W vs. 8.2W). We could
not verify the DRAM counter data with a wall power meter due to the small amount of memory power consumption
on this machine.

In the future, we hope to further evaluate the accuracy of the on-chip energy counters with various algorithms and
under differing levels of load. Also, we wish to verify the DRAM counter results on a machine where the dynamic
DRAM power is a significant portion of total wall power. Several of the results presented in this work suggest an
auto tuning space for core frequency and sleep states. We hope to explore this in the near future, with perhaps an
application to heterogeneous processing environments.

9

(a) Sandy Bridge client

(b) Sandy Bridge Server

Figure 7: MKL DSPMV performance and energy tradeoffs

References
[1] Frank Bellosa. The Benefits of Event Driven Energy Accounting in Power-Sensitive Systems. In Proceedings

of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for the operating
system, EW 9, pages 37–42, New York, NY, USA, 2000. ACM.

[2] Abhishek Bhattacharjee, Gilberto Contreras, and Margaret Martonosi. Full-system chip multiprocessor power
evaluations using FPGA-based emulation. In Proceedings of the 13th international symposium on Low power
electronics and design, ISLPED ’08, pages 335–340, New York, NY, USA, 2008. ACM.

[3] W. Lloyd Bircher and Lizy K. John. Analysis of Dynamic Power Management on Multi-core Processors. In
Proceedings of the 22nd annual international conference on Supercomputing, ICS ’08, pages 327–338, New
York, NY, USA, 2008. ACM.

[4] OpenMP Architecture Review Board. OpenMP Specifications. http://openmp.org/wp/
openmp-specifications/.

[5] Shekhar Borkar. Getting Gigascale Chips: Challenges and Opportunities in Continuing Moore’s Law. ACM
Queue, 1(7):26–33, 2003.

10

Figure 8: Sandy-Bridge Server energy/performance change for MKL DSPMV

Figure 9: Sandy-Bridge Server memory power consumption for MKL DSPMV

11

[6] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Framework for Architectural-level Power
Analysis and Optimizations. SIGARCH Comput. Archit. News, 28(2):83–94, May 2000.

[7] Tomasz Buchert. Methods for Emulation of Multi-core CPU Performance. Master’s thesis, Poznan University
of Technology, Poland, 2010.

[8] J.A. Butts and G.S. Sohi. A Static Power Model for Architects. In Microarchitecture, 2000. MICRO-33. Pro-
ceedings. 33rd Annual IEEE/ACM International Symposium on, pages 191 –201, 2000.

[9] Intel Corporation. Intel Hyper-Threading Technology. http://www.intel.com/content/www/us/
en/architecture-and-technology/hyper-threading/hyper-threading-technology.
html.

[10] Intel Corporation. Intel Turbo Boost Technology: On-Demand Processor Performance. http:
//www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/
turbo-boost-technology.html.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual. 2011.

[12] William Dally. Power Efficient Supercomputing. Accelerator-based Computing and Manycore Workshop, 2009.

[13] Tim Davis. The University of Florida Sparse Matrix Collection. http://www.cise.ufl.edu/
research/sparse/matrices/.

[14] Noel Eisley, Vassos Soteriou, and Li-Shiuan Peh. High-level Power Analysis for Multi-core Chips. In Pro-
ceedings of the 2006 international conference on Compilers, architecture and synthesis for embedded systems,
CASES ’06, pages 389–400, New York, NY, USA, 2006. ACM.

[15] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and K.W. Cameron. PowerPack: Energy
Profiling and Analysis of High-Performance Systems and Applications. Parallel and Distributed Systems, IEEE
Transactions on, 21(5):658 –671, may 2010.

[16] Ed Grochowski and Murali Annavaram. Energy Per Instruction Trends in Intel Microprocessors. Computer,
2006.

[17] Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines. Morgan and Claypool Publishers, 1st edition, 2009.

[18] Sunpyo Hong and Hyesoon Kim. An Integrated GPU Power and Performance Model. SIGARCH Comput. Archit.
News, 38(3):280–289, June 2010.

[19] Canturk Isci and Margaret Martonosi. Runtime Power Monitoring in High-End Processors: Methodology and
Empirical Data. In Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 36, pages 93–, Washington, DC, USA, 2003. IEEE Computer Society.

[20] S. Kamil, J. Shalf, and E. Strohmaier. Power efficiency in High Performance Computing. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1 –8, april 2008.

[21] Peter Kogge, Dan Campbell, Jon Hiller, Mark Richards, and Allan Snavely. ExaScale Computing Study : Tech-
nology Challenges in Achieving Exascale Systems. Government PROcurement, page 278, 2008.

[22] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers. Technical
report, University of Virginia, Charlottesville, Virginia, 1991-2007. A continually updated technical report.
http://www.cs.virginia.edu/stream/.

[23] National Institute of Standards and Technology. Matrix Market Exchange Formats. http://math.nist.
gov/MatrixMarket/formats.html.

[24] Fred J. Pollack. New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies.
Microarchitecture, IEEE/ACM International Symposium on, 0:2, 1999.

12

[25] Mark Rowland. Email correspondence, 2012.

[26] Zhang Rui. introduce intel rapl driver. Posted on LWN.net, 2011.

[27] Youcef Saad. SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations - Version 2, 1994.

[28] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, Wei Huang, Sivakumar Velusamy, and David Tar-
jan. Temperature-aware Microarchitecture: Modeling and Implementation. ACM Trans. Archit. Code Optim.,
1(1):94–125, March 2004.

[29] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An Insightful Visual Performance Model
for Multicore Architectures. Commun. ACM, 52(4):65–76, April 2009.

13

