
Towards Comprehensible and Effective Permission

Systems

Adrienne Porter Felt

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-185

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-185.html

August 9, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Towards Comprehensible and Effective Permission Systems

by

Adrienne Porter Felt

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor David Wagner, Chair
Professor Vern Paxson
Professor Tapan Parikh

Fall 2012

Towards Comprehensible and Effective Permission Systems

Copyright c© 2012

by

Adrienne Porter Felt

Abstract

Towards Comprehensible and Effective Permission Systems

by

Adrienne Porter Felt

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Wagner, Chair

How can we, as platform designers, protect computer users from the threats associated with ma-
licious, privacy-invasive, and vulnerable applications? Modern platforms have turned away from
the traditional user-based permission model and begun adopting application permission systems
in an attempt to shield users from these threats. This dissertation evaluates modern permission
systems with the goal of improving the security of future platforms.

In platforms with application permission systems, applications are unprivileged by default and
must request permissions in order to access sensitive API calls. Developers specify the permis-
sions that their applications need, and users approve the granting of permissions. Permissions are
intended to provide defense in depth by restricting the scope of vulnerabilities and user consent by
allowing users to control whether third parties have access to their resources.

In this dissertation we investigate whether permission systems are effective at providing de-
fense in depth and user consent. First, we perform two studies to evaluate whether permissions
provide defense in depth: we analyze applications to determine whether developers request mini-
mal sets of permissions, and we quantify the impact of permissions on real-world vulnerabilities.
Next, we evaluate whether permissions obtain the user’s informed consent by surveying and inter-
viewing users. We use the Android application and Google Chrome extension platforms for our
studies; at present, they are popular platforms with extensive permission systems.

Our goal is to inform the design of future platforms with our findings. We argue that
permissions are a valuable addition to a platform, and our study results support continued
work on permission systems. However, current permission warnings fail to inform the ma-
jority of users about the risks of applications. We propose a set of guidelines to aid in the
design of more user-friendly permissions, based on our user research and relevant literature.

Professor David Wagner
Dissertation Committee Chair

1

Contents

Contents i

Acknowledgements iv

1 Introduction 1

2 An Overview of Approaches to Permissions 4

2.1 Permissions For Malicious Users . 4

2.2 Permissions For Adversarial Applications . 5

2.3 Usable Permissions . 7

3 Case Studies’ Backgrounds 16

3.1 Android Applications . 16

3.2 Chrome Extensions . 20

4 Developers’ Permission Request Patterns 23

4.1 Introduction . 23

4.2 Permission Request Rates . 24

4.3 Overprivilege in Android Applications . 30

4.4 Overprivilege in Chrome Extensions . 44

4.5 Other Overprivilege Considerations . 48

4.6 Conclusion . 48

4.7 Acknowledgements . 49

5 The Effect of Permissions on Chrome Extension Vulnerabilities 50

5.1 Introduction . 50

i

5.2 Threat Model . 51

5.3 Extension Security Review . 52

5.4 Evaluation of the Permission System . 55

5.5 Evaluation of Isolated Worlds . 57

5.6 Evaluation of Privilege Separation . 59

5.7 Defenses . 62

5.8 Related Work . 66

5.9 Conclusion . 67

5.10 Acknowledgements . 68

6 Android Permissions: User Attention, Comprehension, and Behavior 69

6.1 Introduction . 69

6.2 Methodology . 70

6.3 Attention During Installation . 74

6.4 Comprehension of Permissions . 80

6.5 Influence on User Behavior . 86

6.6 Implications . 88

6.7 Conclusion . 91

6.8 Acknowledgments . 92

7 A Survey of Smartphone Users’ Concerns 93

7.1 Introduction . 93

7.2 Ratings . 94

7.3 Open-Ended Survey . 99

7.4 Reasons for Uninstallation . 102

7.5 Limitations . 104

7.6 Discussion . 105

7.7 Conclusion . 106

7.8 Acknowledgments . 107

8 How To Ask For Permission 108

8.1 Introduction . 108

8.2 Guiding Principles . 109

ii

8.3 Permission-Granting Mechanisms . 110

8.4 Expert Review . 115

8.5 Applying Our Guidelines . 116

8.6 Future Work . 121

8.7 Acknowledgements . 122

9 Conclusion 123

A Lists of Applications 124

A.1 Extension Overprivilege . 124

A.2 Extension Vulnerabilities . 124

B Full Results Of User Concern Survey 126

C Categorized Permissions 129

D Research Ethics and Safety 135

Bibliography 136

iii

Acknowledgements

This thesis would not have been possible without my family, friends, and colleagues. I would
like to express my thanks to everyone who has provided me with support.

I owe my deepest gratitude to my family. My family has always encouraged me to be curious,
tenacious, and ambitious. I attribute my career in computing to my upbringing; at present, women
are underrepresented in the field of Computer Science, but the lessons I learned at home taught me
not to be intimidated by the gender imbalance. My father brought me to his software company’s
office, my grandfather patiently answered all of my grade school “interview” questions about his
career, and my mother never accepted my excuses for not completing my math homework. I was
always told that I could accomplish anything.

I am grateful to my husband Mark, who always provided me with his patience and support.
Without him, I surely would have starved while working on paper deadlines.

I would like to thank my graduate advisor, Professor David Wagner. His keen advice taught
me how to formulate problems and identify feasible research directions. Too often, academia is
harsh and hypercritical; David taught me how to temper criticism with kindness and a genuine
desire to help. I also would like to thank my undergraduate advisor, Professor David Evans, who
introduced me to research and encouraged me to consider graduate school. I would not have
applied to graduate school without his assurance that I was capable of completing a Ph.D.

Professors Vern Paxson, Coye Cheshire, and Tapan Parikh provided valuable feedback on my
work that helped shape my research. Their comments contributed greatly to the way I thought
about the problems discussed within this dissertation.

I am also indebted to Adam Barth, who served as my unofficial mentor during my first year of
graduate school. He taught me how to write a research paper.

iv

Chapter 1

Introduction

Most modern platforms support large, thriving third-party application marketplaces. Users
can select from an unprecedented number of applications to supplement their experiences with
their smartphones, computers, web browsers, and social networking sites. For example, as of
2012, Google Play lists over 500,000 Android applications, the Facebook platform supports more
than nine million applications, and the Apple App Store includes more than 600,000 iOS applica-
tions [106, 53]. These applications offer a diverse set of features from a diverse set of developers.

Unfortunately, third-party applications create risks for the user. Many otherwise legitimate
applications aggressively collect personal information about their users (e.g., for marketing cam-
paigns) in ways that make users uncomfortable [144]. Malicious applications use social engineer-
ing tactics to convince users to install them [64, 159, 48, 134]. Applications can also put users
at risk of external (e.g., network-based) attacks by containing vulnerabilities; the authors of third-
party applications usually are not security experts [104, 154]. How can platform designers help
users avoid these threats while still supporting a broad range of colorful applications?

Traditional user-based security mechanisms were designed to protect users from each other on
time-shared computers, in an era when most applications were downloaded from trusted sources
or written by users themselves. Consequently, traditional operating systems assign the user’s full
privileges to all applications. However, this threat model is no longer appropriate now that users
cannot fully trust their applications. Modern platforms are consequently transitioning to a new se-
curity model in which each application has a different set of permissions based on its requirements.
These permissions control applications’ access to security- and privacy-relevant system resources,
so that users can decide whether to give individual applications access to these sensitive resources.

This new style of permission system can be found in contemporary smartphone operating sys-
tems (e.g., Android and Windows Phone 7), new desktop operating systems (e.g., Windows 8
Metro), social networking platforms (e.g., Facebook and Twitter), and browsers (e.g., the Google
Chrome extension platform and new HTML5 features). In some of these platforms, users are
prompted to approve permissions as needed by applications at runtime. In others, developers are
asked to declare their applications’ permission requirements up-front so that users can grant per-

1

missions at install-time. Regardless of when the permission request occurs, users are asked to make
security decisions on a per-application basis, and developers need to design their applications to
work within the constraints of the permission systems.

This dissertation evaluates whether modern permission systems have a positive effect on end
user security, with the goal of guiding the design of security mechanisms in future platforms.
Application permissions can potentially provide two security benefits:

• Defense in Depth: For systems with install-time permissions, the impact of a vulnerability
in an application will be limited to the vulnerable application’s declared permissions. This
could also be true for a system with runtime consent dialogs, if developers declare their
applications’ maximum possible permissions up-front.

• User Consent: Security-conscious users may be hesitant to grant access to dangerous per-
missions without justification and trust in the application. Ideally, permissions should em-
power users to provide or withhold their informed consent.

We use the Android application and Google Chrome extension permission systems as case
studies to evaluate whether modern permission systems are achieving these goals. We selected
these platforms for case studies because they are popular platforms with extensive permission
systems, relatively thorough documentation, and available source code.

Specifically, this dissertation investigates the following questions:

• Do developers request fewer than full privileges? A low permission request rate is a prereq-
uisite for achieving the defense in depth and user consent benefits. Permissions can reduce
the severity of vulnerabilities only in applications without high-severity permissions, and
users would be overwhelmed by large numbers of consent dialogs or warnings. We evaluate
the Google Chrome extension and Android application permission request rates in Chapter 4.

• Do permissions mitigate vulnerabilities? An overall low permission request rate is not suffi-
cient to achieve defense in depth. More specifically, vulnerable applications need to have low
permission request rates. In Chapter 5, we identify real-world vulnerabilities in extensions
and consider whether the extensions’ permissions mitigate them.

• Do permissions inform users about the risks of applications? Users need to pay attention to,
comprehend, and act on permission information. We performed two user studies — a large-
scale online survey and a set of in-person interviews — to determine whether Android’s
install-time permission warnings are usable security indicators that inform users (Chapter 6).
We also investigate whether the permissions that platforms have chosen to ask users about
match the resources that users are concerned about protecting from applications (Chapter 7).

2

We conclude that permissions are a valuable addition to a platform because they reduce the
impact of vulnerabilities in applications if developers declare them up-front. Based on this finding,
we strongly recommend the inclusion of permissions with up-front declarations in future platforms.
However, Android’s install-time permission warnings fail to adequately inform the majority of
users about the risks of applications. Future permission systems need to investigate different ways
of presenting permissions to users.

With the goal of usable permissions in mind, Chapter 8 proposes a set of guidelines to aid
future platform designers. When should the platform ask the user for consent? What types of
permissions need consent? How should consent dialogs be presented to the user? We aim to answer
these questions by discussing the strengths and weaknesses of the different design choices that are
available to platform designers. Existing permission systems each rely primarily on a single type
of permission-granting mechanism for obtaining consent from users. Instead, we recommend that
platforms should include multiple permission-granting mechanisms, assigned to and customized
for permissions based on the nature of each specific permission. We apply our proposal to a set
of platform-neutral operating system permissions, and a preliminary evaluation indicates that our
proposed model has the potential to improve the user experience.

We believe that the results of our case studies are generalizable to other platforms. Our eval-
uations of the Android and Google Chrome platforms were structured to generate both platform-
specific and platform-neutral lessons and recommendations. Furthermore, burgeoning platforms
(e.g., Boot2Gecko, the HTML5 Device API, the Mozilla WebAPI) are being directly influenced
by Android and Google Chrome’s permission systems. Consequently, we believe that our recom-
mendations and proposals apply to future platforms as well as Android and Google Chrome.

3

Chapter 2

An Overview of Approaches to Permissions

We discuss the evolution of permission systems and warnings, from the early time-sharing systems
to modern smartphones and browsers. We also survey the different types of platforms with user-
facing permissions. This serves to contextualize this dissertation.

2.1 Permissions For Malicious Users

Through the 1980s, most computers were time-shared by multiple users. Users sometimes spied
on or harmed each other, which introduced the security threat of a malicious user. Users wrote
many of the programs that ran on their computers, and the first widespread malware did not appear
until 1988 [59]. Consequently, operating system security mechanisms were designed to protect
users from each other, and applications were assumed to run on the behalf of their invoking users.
Their primary security goal was to isolate users, with controlled sharing between users.

UNIX, VAX/VMS, and Multics are three prominent examples of time-sharing operating sys-
tems. They were built with the threat of a malicious user in mind. UNIX associates protection
bits with each file that specify which users may read, write, and execute a given file; when a pro-
gram executes, it typically can only access the files that the invoking user can access [124]. In
VAX/VMS, users are assigned to one of seven privilege levels, and processes run with their in-
voking users’ privilege levels unless otherwise specified by a system administrator [92]. Multics
processes similarly run on behalf of human users [128]. Indeed, an external evaluation of Multics
by U.S. Air Force officers found that Multics had the potential to enforce user isolation well enough
to store the military’s classified files [86, 87]. Modern desktop operating systems (e.g., Windows,
Mac OS X) inherited UNIX’s access control model; as a result, these platforms still typically grant
all of a user’s permissions to the user’s applications.

4

Within this context of malicious users, Saltzer and Schroeder famously defined seven design
principles: economy of mechanism, fail-safe defaults, complete mediation, open design, privilege
separation, least privilege, least common mechanism, and psychological acceptability [127]. These
principles provided the foundation of modern computer security. This dissertation focuses on
whether permission systems facilitate least privilege and psychological acceptability, which Saltzer
and Schroeder define thusly:

Least privilege: Every program and every user of the system should operate using the
least set of privileges necessary to complete the job. Primarily, this principle limits the
damage that can result from an accident or error.

Psychological acceptability: It is essential that the human interface be designed for
ease of use, so that users routinely and automatically apply the protection mechanisms
correctly.

Although Saltzer and Schroeder originally defined these principles for security mechanisms that
protect users from each other, they are still relevant in the modern context of malicious applications.

2.2 Permissions For Adversarial Applications

As the popularity of computing increased, malicious and benign-but-buggy applications became
a concern. Users could be tricked into installing malicious applications, applications could take
advantage of operating system vulnerabilities to remotely install themselves, or poorly written
applications could enable external attackers to take control of a computer. When this shift occurred,
applications could no longer be thought of as trusted agents for users. It became inappropriate for
applications to have all of the privileges of their invoking users. In response, researchers developed
mechanisms for restricting the privileges of applications. However, the focus was on the security
mechanisms themselves; little effort was made to make the policies developer- or user-friendly.

Omniware. Omniware is a mobile code system that provides safety by isolating and controlling
untrusted mobile code [21]. It uses software fault isolation [150] to isolate applications from each
other despite sharing an address space. The authors of Omniware focused on isolation techniques
and left the details of policies and policy generation to future work.

System Call Interposition. Several subsequent monitoring systems enforced policies that re-
stricted applications’ system calls. These policies are inherently complex and difficult to write
because of their detailed, low-level, technical nature. Among the first of these systems was TRON:
a user could use TRON to execute a process in a restricted domain with a subset of the user’s file
permissions [33]. In order to use TRON, the user would need to invoke the process with a list of
all of the files and directories that the process needs access to. Janus, Systrace, and Ostia allow
a user to whitelist the system calls that individual applications could make [73, 121, 70]. Janus
and Ostia policies are at the level of individual system calls and files. The authors of Systrace

5

attempted to simplify the policy creation process with a policy generation tool that creates poli-
cies from execution traces. Dynamic analysis cannot automatically exercise all of an application’s
paths, so Systrace’s policy generation tool is supplemented with an interactive policy mode for
when Systrace encounters a system call that the trace-generated policy does not cover. Although
the policy generation tool was an improvement, it was still complex and unfriendly to users who
do not know what system calls are.1

Mandatory Access Control. Mandatory access control (MAC) systems are centralized informa-
tion flow control systems where the operating system enforces a fixed information flow control
policy across integrity or confidentiality levels. Such systems mandate that no information can
flow from low-integrity principals to high-integrity principals or from high-confidentiality to low-
confidentiality principals. MAC systems have been deployed to restrict the damage of both mali-
cious users (e.g., military users with different security clearances [14]) and adversarial applications
(e.g., Internet-connected applications with bugs [67]).

SE Linux is a version of Linux with mandatory access control to limit the damage of benign-
but-buggy applications [10]. Under SE Linux, applications are supposed to be restricted to least
privilege. System administrators and distribution managers are supposed to write policies to iden-
tify the minimal sets of permissions that applications require. However, the policies are difficult to
author, even for system administrators and power users. For example [49], consider the following
excerpt from a policy:

full_user_role(staff)
allow staff_t unpriv_userdomain:process signal_perms;
can_ps(staff_t, unpriv_userdomain)

This short example demonstrates the complexity of defining policies: policy administrators need
to manage the creation and assignment of roles, domains, and processes. Due to this complex-
ity, many applications do not have appropriate policies. Incorrect or missing policies will break
applications. Consequently, SE Linux is typically run in “targeted mode,” in which only certain
high-risk applications are subjected to SE Linux’s restrictions.

POSIX Capabilities. POSIX capabilities aim to reduce the need to run applications as the root
user [78]. Instead of having a single, all-powerful root user, the system supports capabilities that
each endow the ability to perform a small number of privileged tasks. Using POSIX capabilities,
applications are invoked with the capabilities that they need; although each individual capability is
potentially dangerous, a malicious or vulnerable application still has fewer privileges with POSIX
capabilities than as a traditional root user. Using POSIX requires that the user or developer assign
the correct capabilities to the application, which requires in-depth knowledge of the operating
system. POSIX also suffered from a series of design and implementation security flaws [115].

Capsicum. Capsicum uses capabilities to protect users from vulnerabilities in benign-but-buggy
applications [151]. Capsicum capabilities are rights to objects (i.e., files or sockets). Unlike UNIX,
Omniware, POSIX capabilities, and many other file access control systems, Capsicum’s privileges

1For reference, Provos included a screenshot of the tool in the paper that describes Systrace [121].

6

are more fine-grained than read or write (e.g., seek or fstat). Developers only have to make
minor changes to their applications to correctly obtain their capabilities. However, users are not
involved in the capability approval process: obtaining user consent was not one of their goals. Like
other work in this vein, their policies are too low-level to easily ask end users about.

Model-Carrying Code. With all of the previously described systems, it is unknown whether an
application will attempt restricted actions until runtime. In contrast, model-carrying code (MCC)
verifies an application’s safety properties prior to installation [132]. With MCC, a model extraction
tool creates a model of an application that describes the security implications of the given applica-
tion. Adherence to the model is enforced at runtime. Users can compare the model against their
own security policies to determine whether they wish to run the application. Policies are described
with finite state automata that can express policies like “program P is allowed to use the function
gethostbyname.” This approach has the benefit of being developer-friendly (model extraction
is automated), but users still need to create technical policies in a technical policy language.

2.3 Usable Permissions

Once isolation techniques had been established, researchers and companies began to consider how
to make their policies usable by end consumers and developers.

2.3.1 Platforms With User-Facing Permissions

We overview several of the most notable platforms with user-facing permission systems. We later
discuss user studies of those platforms in Chapter 2.3.2.

Java. Java applets were among the first instances of mobile code. They were commonly distributed
as part of web sites. By default, applets are unprivileged. There have been several ways for applets
to gain access to additional privileges [137]; the exact mechanism depends on the browser and
version of Java. In some cases, users have been involved in the permission-granting process.
Figure 2.1(a) shows a Java applet permission request in Netscape from 1999.

CapDesk. CapDesk is a capability-secure desktop [140, 101]. By default, applications have
no privileges. In CapDesk, some permissions (capabilities) require user approval or interaction.
CapDesk applications typically request permissions when they are launched, but applications can
request additional permissions at runtime. Developers need to request capabilities from a central
“powerbox” that distributes the capabilities to the parts of the application that require them.

Symbian. Symbian is a smartphone operating system; it was among the first smartphone oper-
ating systems to support the installation of arbitrary third-party applications. Symbian offers an
application-signing service, and only signed applications are allowed to access the most danger-
ous Symbian permissions [83]. Signed applications automatically receive all of their requested
permissions without user approval. However, Symbian prompts users to grant permissions during

7

the installation of unsigned applications (Figure 2.1(b)). Unsigned applications can only request
a few permissions, like connecting to the network; the remainder are off-limits for unsigned ap-
plications. Developers need to determine the permissions that their applications require and, if
necessary, apply for the Symbian signing process.

Blackberry. Blackberry is a smartphone operating system that supports third-party applications.
When a user installs a Blackberry application, the user is asked whether to grant the application
“trusted app status.” A trusted application can request and receive permissions without prompting
the user, although the user can modify the granted permissions in Blackberry’s settings. Non-
trusted applications have to prompt the user to gain specific permissions (Figure 2.1(c)). Black-
berry applications can ask for permissions at any time, although most ask when the application is
first launched. Blackberry permissions cover phone settings, user data, Bluetooth, WiFi, etc. [126].
Developers need to initiate permission requests before trying to use restricted API calls.

Windows UAC. In Windows Vista and Windows 7, users are encouraged to run applications from
a low-privilege user account [111]. Applications run with the user’s full privileges, but the low-
privilege user account does not have many privileges. User account control (UAC) allows ap-
plications to ask for additional permissions as needed. With UAC, a permission dialog appears
whenever an application attempts to perform a privileged action (Figure 2.1(d)). In order to use
UAC, a developer must list the UAC resources that her application needs in a manifest file; a
permission dialog will later be raised when the application tries to access the resource.

Facebook. Facebook supports a third-party application market. With users’ approval, applications
can access users’ profile data, friends, and “activity feeds” [9]. Applications can ask for permis-
sion at any time, although most ask for permissions as part of installation. Figure 2.1(e) shows a
permission request; the permissions are in the lower right quadrant of the dialog. Developers need
to raise the appropriate permission request dialogs prior to trying to access protected API calls.

iOS. iOS is a smartphone and tablet operating system. iOS users can run third-party applications
that they download from the Apple App Store. Apple subjects all iOS applications in the App
Store to an official review process which includes a human security review. Due to this review,
applications can access most privileges without OS-mediated user approval. However, some priv-
ileges require explicit user permission. In iOS versions 5 and earlier, user-controlled permissions
governed access to GPS location and notifications (Figure 2.1(f)). In iOS 6, permissions are also
required for contacts, calendar, and the photo library [74]. iOS permission prompts are raised
automatically the first time that the developer tries to access the restricted resource.

Bitfrost. The One Laptop Per Child (OLPC) project distributes low-cost laptops to children in
developing countries. Bitfrost is the security model for the OLPC operating system [96]. With
Bitfrost, applications are unprivileged by default. Applications have to request privileges from the
user. Permissions can be requested when the application is launched or at runtime.

Browsers. Web sites are sandboxed in the browser: by default, they cannot access local files or
other user data. However, modern browsers are beginning to offer additional resources to web sites
(e.g., the HTML 5 device API proposal [15]). Figure 2.2(a) shows the location dialog that appears
when web sites attempt to read the user’s current location.

8

Google Chrome Extensions. Google Chrome’s extension platform allows third-party extensions
to add functionality to the browser and modify web sites. In order to gain access to web sites or
user data, Google Chrome extensions must request permissions. Developers list the permissions
in a manifest file, and users approve the permission requests during installation (Figure 2.2(b)).
The Google Chrome extension platform was the first browser extension platform to have a defined
permission system; Firefox and Internet Explorer provide all extensions with full privileges. We
selected Google Chrome as one of our case studies; it is described further in Chapter 3.

Android. Android is a smartphone and tablet operating system that supports third-party applica-
tions. By default, Android applications cannot access sensitive user data or phone settings. If an
application needs such privileges, the developer must specify the list of permissions that the appli-
cation requires. Android informs users of the application’s desired permissions during installation
(Figure 2.2(c)). Android’s permission system is extensive. We selected Android as one of our case
studies; its permission system is described further in Chapter 3.

Windows Phone. Beginning with Windows Phone 7, users are asked to approve install-time per-
missions for applications. Developers must specify the permissions that their applications need,
and users are shown an application’s permissions as part of the installation process. Applica-
tions cannot request additional permissions at runtime. Windows Phone 7 has 16 permissions,
which cover hardware (e.g., the microphone) and personal data (e.g., phone identity). Windows 8
Metro-style applications are subjected to very similar restrictions: they are sandboxed by default,
developers need to specify any additional permissions, and users are asked to grant permission at
install-time. Figure 2.2(d) shows the permissions for the “Photos” application in Windows 8.

2.3.2 Warning Science

Users experience permissions as warnings about applications. We therefore can turn to warning
science to understand how users interact with permissions.

C-HIP. Wogalter proposed a model of how humans process warnings, known as the
Communication-Human Information Processing (C-HIP) model [155]. The model formalizes
the steps of a human’s experience between being shown a warning and deciding whether or
not to heed the warning. C-HIP assumes that the user is expected to immediately act upon the
warning, which is appropriate for research on computer security dialogs. (Other warning science
research has focused on situations in which consumers need to recall warnings for later use [107].)
Researchers in the area of usable security have begun to use Wogalter’s model to analyze the
specific ways in which computer security dialogs can fail users. For example, Cranor used the
C-HIP model as the basis for her “human in the loop” framework, which addresses problems for
designers of interactive systems [51]. We similarly use the C-HIP model to study the usability of
Android’s permissions (Chapter 6).

9

(a) Java applet, in a Netscape browser [136] (b) Symbian [3]

(c) Blackberry [126] (d) Windows UAC

(e) Facebook (f) iOS

Figure 2.1. User-facing permission requests.

10

(a) Safari (b) Google Chrome extensions

(c) Android (d) Windows 8 Metro

Figure 2.2. User-facing permission requests.

11

Browser Security Warnings. Most warning research in the usable security community has cen-
tered on phishing and SSL certificate warnings. Although they serve a different purpose than
permission warnings, the warnings are experienced similarly. Unfortunately, most research in this
area indicates that users do not pay attention to or understand browser security warnings.

Dhamija et al. challenged desktop web browser users to identify phishing attacks in the pres-
ence of phishing and fraudulent certificate warnings [54]. 23% of their subjects completely ignored
the passive phishing warnings, and 68% of subjects quickly clicked through the active fraudulent
certificate dialogs. Egelman et al. used the C-HIP model to examine the anti-phishing warnings
used by two popular web browsers [57]. They evaluated how people responded to phishing warn-
ings when subjected to spear phishing attacks. Under their experimental conditions, 79% of sub-
jects heeded the active (i.e., interruptive) warnings whereas only 13% heeded the passive (i.e.,
non-interruptive) warnings. Sunshine et al. performed a followup study using the C-HIP model
to identify improvements to web browser certificate warnings [141]. Based on their subjects’
low rates of attention and comprehension, their ultimate recommendation was to block access to
dangerous sites without asking the user to try to understand certificate warnings. Together, these
studies suggest that it is difficult to capture user attention for security. This leads us to believe that
it will be similarly difficult to design usable permission warnings.

EULAs. Users often see End User License Agreements (EULAs) and terms of service (TOS)
when installing applications. EULAs and TOS are similar to install-time permissions because they
must be accepted as a condition of installation. Few people read EULAs or TOS. As an example,
a software company offered a financial prize for anyone who read their EULA; only one person
claimed it after four months and more than 3,000 downloads [108]. Good et al. asked people to
select and install applications and found that most subjects ignored EULAs, few subjects knew
what EULAs contained, and subjects often regretted their installation decisions after learning what
was in the EULAs [75]. Unfortunately, users’ lack of attention to EULAs carries over to other types
of consent dialogs. Bohme et al. performed a large-scale field experiment that presented users with
install-time consent dialogs, with varied degrees of resemblance to EULAs [41]. They found a
positive correlation between the consent rate and how much the dialog resembled a EULA, even
though all of the dialogs conveyed the same information. This indicates that permission system
designers should design their warnings to not resemble EULAs or TOS.

Privacy Indicators. Researchers have examined whether the placement of privacy indicators on
web sites or in search results will influence user behavior. Tsai et al. placed privacy icons in online
shopping search results and found that subjects were willing to pay more to buy goods from online
stores with good privacy practices [145]. In a follow-up study, Egelman et al. considered whether
the timing and placement of privacy indicators affects user shopping choices [56]. They displayed
privacy scores as part of search results, as a warning on the top of the page, or as a full-screen
interruptive warning. Users who preferred to make a purchase from the first store they clicked
on were influenced only by the icons in search results, whereas users who comparison shopped
between stores were influenced by all three types of privacy indicators. Although we cannot draw
direct comparisons between the online store search scenario and permissions, we can hypothesize
that timing and placement will likewise be important for permission warnings.

12

Permission Warnings. Four other studies have considered the usability of permission warnings.
Motiee et al. performed user experiments with Windows UAC dialogs [111]. When subjects en-
countered inappropriate (i.e., malicious) UAC prompts while completing other tasks, 68% of the
subjects consented to the prompt or disabled UAC prompts completely. When subjects encoun-
tered inappropriate UAC prompts when installing an application, 95% of the subjects consented to
the prompts. This suggests that users are not paying attention to Windows UAC dialogs, and instal-
lation may not be a good time for security decisions. However, newer permission warnings may
be more effective: Android, iOS, and newer Windows permissions are simpler and more specific.

Besmer and Lipford conducted semi-structured interviews with Facebook users and found that
users did not realize how much information they are sharing with Facebook applications [35]. King
et al. ran a quantitative Facebook survey that asked subjects whether they noticed the Facebook per-
mission dialog that appeared when entering the researchers’ survey, and only a minority responded
affirmatively [91]. However, this result is not necessarily generalizable; the participants knew the
survey application had been created by a privacy researcher of their acquaintance, which may have
altered their interest in security indicators. They also presented survey participants with general
comprehension questions about the Facebook platform, such as whether Facebook applications
are created by Facebook, and approximately half of participants answered each question correctly.
(They do not report how many people answered all of the comprehension questions correctly.)

In concurrent work, Kelley et al. performed twenty semi-structured interviews to explore An-
droid users’ feelings about and understanding of permissions [90]. However, the scope of our
usability studies (Chapters 6 and 7) is much broader: their study reported qualitative data and did
not address attention, behavior, or users’ concerns, whereas we collected large-scale quantitative
results, performed an observational study, and experimentally measured comprehension with mul-
tiple metrics. Additionally, we designed our comprehension study to identity specific problems
with the way permissions are presented.

Smartphone Privacy Concerns. Smartphone privacy research has traditionally focused on users’
concerns about sharing location data, and numerous studies have examined the topic. Three inde-
pendent studies found that the identify of the person with whom the user was sharing was the most
important factor that influenced users’ sharing decisions [50, 98, 153], whereas Barkhuus found
that the user’s current location matters more [28]. Barkhuus et al. also found that people like loca-
tion services if they are useful and tend to stop worrying about location-based services after using
them for a while [29, 28]. Anthony et al. observed 25 undergraduates for a week and found that
they fell into three categories: people who never shared their location, people who always shared
their location, and people who are willing to share depending on both the requester and the current
location [25]. Kelley et al. report that 19 of 24 people “strongly agreed” that online companies
should never share information like location unless it has been authorized by the user [89]. This
prior literature thoroughly documents users’ privacy concerns about sharing location data.

Smartphone operating systems provide applications with the ability to access a number of re-
sources beyond location data, but few studies have explored the space of smartphone privacy and
security beyond location. Roesner et al. studied smartphone users’ privacy and security expecta-
tions for copy-and-paste, photography, and text messaging in addition to location; they found that
most subjects thought that applications can only access these resources when the user initiates an
action [125]. Muslukhov et al. asked a number of smartphone users about the value and sensitivity

13

of eleven types of data on their phones; their subjects report concern about sharing text messages,
photos, voice recordings, contacts, passwords, e-mails, documents, and location [114]. Egelman et
al. explored user attitudes towards Internet, location, audio, contacts, and photo permissions with
two controlled economic experiments. Their experiments suggest that some users care about pre-
serving the privacy of their contacts more than other types of data, but the experiments still only
cover a small subset of permissions [58]. We aim to further expand the scope of research on users’
smartphone concerns by studying users’ opinions about 99 risks associated with 54 smartphone
permissions (Chapter 7).

Smartphone Privacy Tools. Privacy researchers have built several tools to help Android users
avoid privacy violations. Most research has focused on identifying malicious behavior [61, 68, 60,
62, 159, 116], without considering how to help users make informed security decisions. However,
two sets of researchers have focused on usability. Howell and Schechter proposed the creation of a
sensor-access widget, which visually notifies the user when a sensor like the camera is active [80].
Roesner et al. proposed user-driven access control: rather than asking users to review warnings, this
approach builds permission-granting into user actions with trusted UI [125]. Neither of these past
proposals are sufficient for all of the functionality currently in smartphone platforms; in Chapter 8,
we build on this past work to discuss how to build a full smartphone permission system.

2.3.3 Developers and Permissions

End consumers are not the only users of permission systems: developers need to obtain the correct
permissions for their applications. All but one of the permission systems described in Chapter 2.3.1
require the developer to raise a permission-granting dialog or list the required set of permissions.

Android Applications. Previous studies have examined Android permission usage, although they
have been limited due to the lack of Android permission documentation. Enck et al. apply Fortify’s
Java static analysis tool to decompiled applications; they study their API use [60]. They looked
for misuse of privacy sensitive information or developer errors that expose private information.
The scope of their study could have been expanded if the documentation more clearly specified
which API calls can be used to gain access to private information. Vidas et al. studied overprivi-
lege in Android applications [147]. However, Vidas’s results are not reliable because they solely
relied on developer documentation when judging overprivilege; as we explain in Chapter 4.3.3, the
documentation is too limited to use as a measure of correct permission usage.

Others have studied Android permissions without considering the role that developers play in
permission requests. Enck et al. developed Kirin, a tool that reads application permission require-
ments during installation and checks them against a set of security rules [61]. They do not examine
whether or how permissions are used by the applications. Barrera et al. examine 1,100 Android ap-
plications’ permission requirements and use self-organizing maps to visualize which permissions
are used in applications with similar characteristics [30]. They primarily focus on the structure of
the permission system and conclude that some permissions are too broad.

14

Researchers at SMobile present a survey of the permissions requested by 48,694 Android ap-
plications [146]. They do not state whether their sample set is composed of free applications, paid
applications, or a combination. They report that 68% of the applications in their sample set request
enough permissions to be considered “suspicious.” In Chapter 4, we similarly find that applications
have high privilege requests and further explore why.

Google Chrome Extensions. Barth et al. conducted an analysis of 25 popular Google Chrome
extensions that shows that most developers request fewer than all permissions [31]. However,
their sample set is too limited and unrepresentative to be definitive: Google employees authored
9 of the 25 extensions, the most popular extensions might not be representative of all extensions,
and the extension platform had only been public for a few weeks prior to their study. The results
of our large-scale evaluation of Google Chrome extensions (Chapter 4.2) show that Barth et al.’s
small-scale study overestimated the prevalence of extension privileges. Guha et al. [76] performed
a concurrent, short study of the permissions used by Google Chrome extensions and report similar
permission request rates to ours; however, they do not consider the effects of popularity. We
provide a significantly more detailed discussion of extension privileges and consider the reasons
for overprivilege.

15

Chapter 3

Case Studies’ Backgrounds

We provide background on our two case studies: Android and the Google Chrome extension plat-
form. We selected these platforms for our case studies because they are popular and widely-
deployed platforms with established permission systems.

3.1 Android Applications

Android smartphone users can install third-party applications through the Android Market or Ama-
zon Appstore. We present basic information about Android applications in Chapter 3.1.1. The
quality and trustworthiness of these third-party applications vary widely, so Android treats all
applications as potentially buggy or malicious. Each application runs in a process with a low-
privilege user ID, and applications can access only their own files by default. In order to gain
access to more privileges, applications must request permissions (Chapter 3.1.2). Users grant or
deny these permissions during installation (Chapter 3.1.3). Android enforces permissions with
proprietary mechanisms (Chapter 3.1.4).

3.1.1 Application Architecture

Android applications are split into components. Android defines four types of components: Activ-
ities to provide user interfaces, Services to run in the background, Broadcast Receivers to handle
message passing, and Content Providers for data storage [1]. Applications can define many or
none of each type of component. Applications are typically written in Java, but they can include
native code. All of an application’s code runs in the same process.

16

Android’s Intent system is used for inter- and intra-application communication [6]. An Intent
can be thought of as a self-contained object that specifies a remote procedure to invoke and in-
cludes the associated arguments. Applications commonly use Intents for internal communication
between components [47], but applications also register for system-wide Intents. System-wide In-
tents are sent by the operating system to notify applications about events such as low battery or
disconnection from the network. An application can make a component public by registering the
component to receive Intents from other applications.

3.1.2 Requesting Permissions

Application developers determine the permissions that their applications require. An application
may need permissions in order to access Android API calls, system-provided Content Providers,
and system-wide Intents. Developers specify the appropriate permissions in files that are packaged
with applications. Each application has its own set of permissions that reflects its functionality and
requirements. There are 134 permissions in Android 2.2 for developers to select from. Android
documentation categorizes permissions into threat levels:

• Normal permissions protect API calls with annoying but not harmful consequences. Exam-
ples include vibrating the phone and setting the wallpaper.

• Dangerous permissions protect potentially harmful API calls. These include actions that
could cost the user money or leak private information. Example Dangerous permissions
control opening a network socket, recording audio, and using the camera.

• Signature/System permissions protect the most sensitive operations. For example, these per-
missions protect the ability to reboot the phone or inject keystrokes into other applications.
These permissions are difficult to obtain: Signature permissions are granted only to ap-
plications that are signed with the device manufacturer’s certificate, and SignatureOrSys-
tem permissions are granted to applications that are signed or installed in a special system
folder. These restrictions essentially limit Signature/SignatureOrSystem permissions to pre-
installed applications, and requests for Signature/SignatureOrSystem permissions by other
applications will be ignored. However, advanced users who have rooted their phones [81]
can manually install applications with SignatureOrSystem permissions.

As far as we are aware, permissions were classified into these categories without user input.

3.1.3 Install-Time User Consent

Users approve applications’ permissions as part of the installation process. When a user initiates
installation, a confirmation page interrupts the process to warn the user about the application’s
requested permissions (Figure 3.1). Dangerous permissions are displayed with three-layer warn-
ings: a large heading that states each permission’s general category, a small label that describes

17

Figure 3.1. On the left, a screenshot of the Android Market’s installation confirmation
page, displaying the application’s permission requests. On the right, the permission dialog
that appears if a user clicks on a permission warning.

the specific permission, and a hidden details dialog that opens if the user clicks on the permission.
If an application requests multiple permissions in the same category, their labels will be grouped
together under that category heading. Normal and Signature/System permissions are hidden under
a “More” label beneath the Dangerous permissions. At this point, users have a binary choice: they
can accept all of the permissions and proceed with installation, or cancel the installation.

On most phones, Android users can download applications from both the official Android
Market and non-Google stores such as the Amazon Appstore. When users install applications from
the official Android Market, the confirmation page with permission information is displayed prior
to payment and download. When users install applications from other sources, the confirmation
page with permissions is always the last step of installation (i.e., after payment and download).

3.1.4 Permission Enforcement Mechanisms

The API. The Android API is composed of two parts: a library that resides in each application’s
virtual machine and an implementation of the API that runs in the system process(es). The API
library runs with the same permissions as the application it accompanies, whereas the API im-
plementation in the system process has no restrictions. The library provides syntactic sugar for
interacting with the API implementation. API calls that read or change global phone state are
proxied by the library to the API implementation in the system process.

API calls are handled in three steps (Figure 3.2). First, the application invokes the public API in
the library. Second, the library invokes a private interface, also in the library. The private interface
is a stub for making Remote Procedure Calls (RPCs). Third, the RPC stub initiates an RPC request
that asks a system service to perform the desired operation. For example, if an application calls
ClipboardManager.getText(), the call will be relayed to IClipboardStubProxy,
which proxies the call to the system process’s ClipboardService.

18

Application

Application Process System Processes

Dalvik Virtual Machine

C Library
Native

Application
Component

Dalvik Virtual Machine

Native Code

Binder Service1

Thread

Thread

Binder ServiceN

API Library

...

Public
API RPC Stub

IBinder

Hidden

Figure 3.2. The Android platform architecture. Permission checks occur in the system process.

Applications are written in Java, and applications can use Java reflection [109] to access all of
the API library’s hidden and private classes, methods, and fields. Some private interfaces do not
have any corresponding public API; however, applications can still invoke them using reflection.
These non-public library methods are intended for use by Google applications or the framework
itself, and developers are advised against using them because they may change or disappear be-
tween releases [77]. Nonetheless, some applications use them. Java code running in the system
process is in a separate virtual machine and therefore immune to reflection.

To enforce permissions, various parts of the system invoke a permission validation mechanism
to check whether a given application has a specified permission. The permission validation mech-
anism is implemented as part of the trusted system process, and invocations of the permission
validation mechanism are spread throughout the API. There is no centralized policy for checking
permissions when an API is called. Rather, mediation is contingent on the correct placement of
permission validation calls.

Permission checks are placed in the API implementation in the system process. When neces-
sary, the API implementation calls the permission validation mechanism to check that the invoking
application has the necessary permissions. In some cases, the API library may also redundantly
check these permissions, but such checks cannot be relied upon: applications can circumvent them
by directly communicating with the system process via the RPC stubs. Permission checks there-
fore should not occur in the API library. Instead, the API implementation in the system process
should invoke the permission validation mechanism.

A small number of permissions are enforced by Linux groups, rather than the Android permis-
sion validation mechanism. (We learned about this during permission testing.) In particular, when
an application is installed with the INTERNET, WRITE_EXTERNAL_STORAGE, or BLUETOOTH
permissions, it is assigned to a Linux group that has access to the pertinent sockets and files. Thus,
the kernel enforces the access control policy for these permissions. The API library (which runs
with the same rights as the application) can accordingly operate directly on these sockets and files,
without needing to invoke the API implementation in the system process.

19

Applications can include native code in addition to Java code, but native code is still beholden
to the permission system. Attempts to open sockets or files are mediated by Linux permissions. It
would be very difficult for native code to communicate directly with the system API; the developer
would need to re-implement the communication protocol. Instead, applications create Java wrapper
methods to invoke the API on behalf of the native code. Android permissions are enforced as usual
when the API calls are executed.

Content Providers. System Content Providers are system databases that are separate from the
system process and API library. Android uses two ways to restrict access to Content Providers.
First, static declarations assign separate Android permissions to a given Content Provider’s read
and write operations when the Content Provider is defined. By default, these permissions are
applied to all resources stored by the Content Provider. Restrictions can also be applied at a finer
granularity by associating permissions with a path (e.g., content://a/b). Second, Content
Providers can also enforce permissions programmatically: the Content Provider code that handles
a query can explicitly call the system’s permission validation mechanism.

Intents. To prevent applications from mimicking system Intents, Android restricts who may send
certain Intents. All Intents are sent through the ActivityManagerService (a system service), which
enforces this restriction. Two techniques are used to restrict the sending of system Intent. Some
Intents can only be sent by applications with appropriate permissions. Other system Intents can
only be sent by processes whose UID matches the system’s. Intents in the latter category cannot be
sent by applications, regardless of what permissions they hold, because these Intents must originate
from the system process. Applications may also need permissions to receive some system Intents,
which the ActivityManagerService checks before delivering the Intents.

3.2 Chrome Extensions

We define Chrome extension terminology and then present Chrome’s security features.

3.2.1 Extension Architecture

The Chrome extension platform allows third-party code to run as part of the browser. Extensions
change the user’s browsing experience by editing web sites1 and changing browser behavior.

Google Chrome extensions can have three types of components:

• Content scripts read and modify websites as needed. They are injected into websites: when
the page loads, the content script’s JavaScript executes in the context of the site. A content
script has full access to its host site’s page. Content scripts do not have any HTML or UI
elements of their own; instead, they can insert elements into the host page.

1When we say web site, we refer specifically to the client-side representation of the web site in the browser.

20

Figure 3.3. Google Chrome extension installation.

• Core extensions comprise the main, persistent portions of extensions. They implement fea-
tures that do not directly involve websites, such as background jobs, preference panels, and
other browser UI elements. Core extensions are written in JavaScript and HTML.

• Plug-ins are native executables. They can be used to implement complex features. Exten-
sions with plug-ins can only be listed in the official Market if the developer submits the
extension for a security review [8].

3.2.2 Chrome Extension Security Model

Many Firefox extensions have publicly suffered from vulnerabilities [104, 154]. To prevent this,
the Google Chrome extension platform was designed to protect users from vulnerabilities in
benign-but-buggy extensions [31]. It features four security mechanisms: permissions, privilege
separation, isolated worlds, and Content Security Policy.

Permissions. By default, extensions cannot use parts of the browser API that impact users’ privacy
or security. In order to gain access to these APIs, a developer must specify the desired permissions
in a file that is packaged with the extension. The extension gallery prompts the user with a warning
during installation (e.g., Figure 3.3) that indicates what privileges the extension has requested. An
extension is limited to the permissions that its developer requested.

Extensions with plug-ins have the most permissions: plug-ins are native executables, so a
plug-in grants the extension full access to the user’s machine. The installation warning for an
extension with a plug-in says the extension “can access all data on your computer.” Extensions
can also specify permissions for various browser managers. Each manager is controlled with one
permission. For example, an extension must request the bookmarks permission to read or alter
the user’s bookmarks via the bookmark manager. Permissions also restrict extensions’ use of
content scripts and cross-origin XMLHttpRequests (XHRs).2 Extensions need to specify the
domains that it wants to interact with. They can request all-domain access or list specific domains,
using wildcards for protocols or subdomains (e.g., *://*.foo.com).

2Cross-origin XHRs allow extensions to fetch content from any domain, which web sites are not allowed to do [5].

21

Extension

Content Script Core Extension

Browser API

ServersWebsite
[attacker]

Network attacker
(if website is HTTP)

Network attacker
(if connection is HTTP)

XHR

Browser

Figure 3.4. The architecture of a Google Chrome extension, annotated with external threats.

Privilege Separation. Chrome extensions are primarily built from content scripts and core ex-
tensions, and these components run in separate processes. Content scripts and core extensions
communicate by sending JSON messages to each other. Only the core extension can make API
calls that require permissions; content scripts cannot invoke browser APIs or make cross-origin
XHRs.3 A content script has only two privileges: it can access the website it is running on, and
send messages to its core extension. Figure 3.4 illustrates privilege separation.

The purpose of this architecture is to shield the privileged part of an extension (i.e., the core
extension) from attackers. Content scripts are at the highest risk of attack because they directly
interact with websites, so they are low-privilege. The sheltered core extension is higher-privilege.
As such, an attack that only compromises a content script does not pose a significant threat to the
user unless the attack can be extended across the message-passing channel to the higher-privilege
core extension. (Binary plug-ins also run in their own processes, but privilege separation is not
used to shield them. Instead, they undergo a manual security review process.)

Isolated Worlds. The isolated worlds mechanism is intended to protect content scripts from web
attackers. A content script can read or modify a website’s DOM, but the content script and website
have separate JavaScript heaps with their own DOM objects. Consequently, content scripts and
websites never exchange pointers.4

Content Security Policy. Contemporaneously with our case study (Chapter 5), the Google
Chrome extension team began to implement Content Security Policy (CSP) for extensions. CSP
allows an extension developer to specify a policy that governs what type of content can be in-
cluded in the website [138]. CSP can restrict the domains that scripts, frames, and images come
from. Additionally, a policy can specify whether inline scripts and eval are allowed to execute in
the page context. If used correctly, CSP can prevent cross-site scripting and other code injection
attacks. For example, untrusted data that is accidentally inserted into HTML cannot execute if the
extension’s policy disallows inline scripts.

3In newer versions of Chrome, content scripts can make cross-origin XHRs [5]. However, this was not permitted
at the time of our study (Chapter 5).

4Although isolated worlds separates websites from content scripts, it not a form of privilege separation; privilege
separation refers to techniques that isolate parts of the same application from each other [122, 127].

22

Chapter 4

Developers’ Permission Request Patterns

4.1 Introduction

Application permissions offer two advantages over traditional user-based permissions: defense-in-
depth and user consent. However, these benefits rely on the assumption that applications generally
request fewer than full privileges. One challenge is that developers might routinely assign more
permissions to their applications than they require, due to confusion or indifference. We explore
whether the assumption of a low permission request rate is realized in practice, by performing
large-scale studies of Android applications and Google Chrome extensions.

We collect the permission requirements of 956 Android applications and 1,000 Google Chrome
extensions. From this data, we measure the overall rate at which developers request permissions
and discuss the effects of the rate on defense-in-depth and user consent. We then evaluate the
rates of overprivilege in Android applications and Google Chrome extensions by analyzing the
applications and extensions; overprivileged applications unnecessarily increase the impact of bugs
and expose users to extra permission warnings.

Our results indicate that application permissions can benefit system security. We find that
almost all applications ask for fewer than maximum permissions: only 14 of 1,000 extensions re-
quest the most dangerous privileges, and the average Android application requests fewer than 4
of 56 available dangerous permissions. These results indicate that application permission systems
with up-front permission declarations have the potential to decrease the impact of application vul-
nerabilities and simplify review. We further explore this in Chapter 5 by examining the impact of
permissions on actual vulnerabilities in applications.

Although developers use fewer than full permissions, we find evidence of overprivilege. Our
review of privilege usage found that about one-third of Android applications and fifteen percent of
Chrome extensions are overprivileged. We investigate causes of overprivilege and find that many
instances of overprivilege stem from confusion about the permission systems. Our results indicate

23

that developers are trying to follow least privilege, which supports the potential effectiveness of
permissions. Consequently, developer tools could further decrease the permission request rate.

Unfortunately, the permission request rate may not be low enough to achieve the goal of user
consent. Our measurements show that Google Chrome and Android users are presented with at
least one dangerous permission request during the installation of almost every extension and ap-
plication. Warning science literature indicates that frequent warnings desensitize users, especially
if most warnings do not lead to negative consequences [139, 107]. We therefore hypothesize that
users are not likely to pay attention to or gain information from the install-time permission prompts
in these systems; we further explore this hypothesis in Chapter 6.

4.2 Permission Request Rates

We examine the frequency of permission requests. These results should be compared to traditional
systems, which grant all applications full privileges.

4.2.1 Android Applications

We survey 100 paid and 856 free applications from the Android Market, collected in October 2010.
For the paid applications, we selected the 100 most popular. The free set is comprised of the 756
most popular and 100 most recently added applications. Although Android applications written
by the same developer could theoretically collude, we consider each application’s permissions
independently. Legitimate developers have no incentive to circumvent permission warnings.

Dangerous Permissions

We are primarily concerned with the prevalence of “Dangerous” permissions, which are displayed
as warnings to users during installation and can have serious security ramifications if abused. We
find that 93% of free and 82% of paid applications have at least one Dangerous permission.

Although many applications ask for at least one Dangerous permission, the number of permis-
sions required by an application is typically low. Even the most highly privileged application in
our set asks for less than half of the available 56 Dangerous permissions. Figure 4.1 shows the dis-
tribution of Dangerous permission requests. Paid applications use an average of 3.99 Dangerous
permissions, and free applications use an average of 3.46 Dangerous permissions.

24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%
 o

f A
pp

lic
at

io
ns

Number of Permissions

Figure 4.1. Percentage of paid and free applications with at least the given number of
Dangerous permissions.

A small number of permissions are requested very frequently. Table 4.1(a) shows the most
popular Dangerous permissions. In particular, the INTERNET permission is heavily used. We find
that 14% of free and 4% of paid applications request INTERNET as their only Dangerous permis-
sion. Barrera et al. hypothesize that free applications often need the INTERNET permission only
to load advertisements [30]. The disparity in INTERNET use between free and paid applications
supports this hypothesis, although it is still the most popular permission for paid applications.

The prevalence of the INTERNET permission means that most applications with access to per-
sonal information also have the ability to leak it. For example, 97% of the 225 applications that ask
for ACCESS FINE LOCATION also request the INTERNET permission. Similarly, 94% and 78%
of the respective applications that request READ CONTACTS and READ CALENDAR also have the
INTERNET permission. We find that significantly more free than paid applications request both
Internet access and location data, which possibly indicates widespread leakage of location informa-
tion to advertisers in free applications. This corroborates a previous study that found that 20 of 30
randomly selected free applications send user information to content or advertisement servers [62].

Android permissions are grouped into functionality categories, and Table 4.1 shows how many
applications use at least one Dangerous permission from each given category. This provides an
overview of the types of permissions that applications request. During installation, all of the per-
missions in a category are grouped together into one warning under the category’s heading, so
Table 4.1 also indicates how often users see each type of warning.

Signature and System Permissions

Applications can request Signature and SignatureOrSystem permissions, but the operating system
will not grant the request unless the application has been signed by the device manufacturer (Sig-
nature) or installed in the /system/app folder (System). It is pointless for a typical application
to request these permissions because the permission requests will be ignored.

25

Permission (Category) Free Paid
INTERNET** (NETWORK) 86.6 % 65 %
WRITE EXTERNAL STORAGE** (STORAGE) 34.1 % 50 %
ACCESS COARSE LOCATION** (LOCATION) 33.4 % 20 %
READ PHONE STATE (PHONE CALLS) 32.1 % 35 %
WAKE LOCK** (SYSTEM TOOLS) 24.2 % 40 %
ACCESS FINE LOCATION (LOCATION) 23.4 % 24 %
READ CONTACTS (PERSONAL INFO) 16.1 % 11 %
WRITE SETTINGS (SYSTEM TOOLS) 13.4 % 18 %
GET TASKS* (SYSTEM TOOLS) 4.4 % 11 %

(a) The most frequent Dangerous permissions and their categories.

Category Free Paid
NETWORK** 87.3 % 66 %
SYSTEM TOOLS 39.7 % 50 %
STORAGE** 34.1 % 50 %
LOCATION** 38.9 % 25 %
PHONE CALLS 32.5 % 35 %
PERSONAL INFO 18.4 % 13 %
HARDWARE CONTROLS 12.5 % 17 %
COST MONEY 10.6 % 9 %
MESSAGES 3.7 % 5 %
ACCOUNTS 2.6 % 2 %
DEVELOPMENT TOOLS 0.35 % 0 %

(b) Prevalence of each permission category.

Table 4.1. Survey of the permissions used by 856 free and 100 paid Android applications.
Android documentation defines the permissions listed here [7]. We indicate significant
differences between the free and paid applications at 1% (**) and 5% (*) significance
levels, computed with z-tests.

26

Eight paid applications request Signature/System permissions, but they are unlikely to receive
these permissions: to our knowledge, none of these applications are signed by device manufac-
turers. Of the free applications, 25 request Signature permissions, 30 request SignatureOrSystem
permissions, and four request both. We have found four of these free applications pre-installed on
phones; the remainder will not receive the permissions on a typical device. Requests for unobtain-
able permissions may be developer error or left over from testing.

Implications

Defense in Depth. Given the prevalence of Dangerous permissions, an application vulnerability
is likely to occur in an application with at least one Dangerous permission. However, the av-
erage Android application is much less privileged than a traditional operating system program.
Every desktop Windows application has full privileges, whereas no Android application in our set
requests more than half of the available Dangerous permissions. A majority of the Android ap-
plications ask for less than seven, and only 10% have access to functionality that costs the user
money. This is a significant improvement over the traditional full-privilege, user-based approach.

User Consent. Nearly all applications (93% of free and 82% of paid) ask for at least one Danger-
ous permission, which indicates that users often install applications with Dangerous permissions.
We hypothesize that this high request rate causes users to become habituated to clicking through
Android’s permission warnings. The INTERNET permission is so widely requested that users can-
not consider its warning anomalous. Security guidelines or anti-virus programs that warn against
installing applications with access to both the Internet and personal information are likely to fail
because almost all applications with personal information also have INTERNET.

4.2.2 Chrome Extensions

We study the 1,000 “most popular” extensions, as ranked in the official Google Chrome extension
gallery1. Of these, the 500 most popular extensions are relevant to user consent and application
vulnerabilities because they comprise the majority of user downloads. The 500 less popular exten-
sions are installed in very few browsers. Table 4.2 provides an overview of our results.

Popular Extensions

Of the 500 most popular extensions, 91.4% ask for at least one security-relevant permission. This
indicates that nearly every installation of an extension generates at least one security warning.2

1We crawled the directory on August 27, 2010.
2We discovered that Google Chrome sometimes fails to generate a warning for history access. The bug has been

fixed for new versions [66]. Our analysis assumes that all requests for history access correctly generate a warning.
The bug affects 5 of extensions in our set.

27

Permission Popular Unpopular
Plug-ins 2.80 % 0.00 %
Web access 82.0 % 60.8 %

All domains 51.6 % 21.8 %
Specific domains 30.4 % 39.0 %

Browser manager(s) 74.8 % 43.4 %

Table 4.2. We measure the prevalence of permissions in 1,000 Google Chrome extensions,
split into the 500 most popular and 500 less popular. For web access, we report the highest
permission of either the content script or core extension.

Plug-ins. Only 14 of the 500 extensions include plug-ins.

Browser Managers. The majority of security warnings are caused by the window manager, which
is requested by almost 75% of the 500 extensions. Requesting access to the window manager
generates a warning about history access because history is available through the window man-
ager. The bookmark and geolocation managers are requested infrequently: 44 times and once,
respectively.

All Domains. Half of the 500 extensions request all-domain access for either content scripts or the
core extension. 52% request access to all http sites, and 42% ask for all https sites.

Specific Domains. One-third of extensions only request a set of specific domains. This reduces the
attack surface and reduces the possibility that an extension is snooping on sensitive web data; for
example, none of the extensions request specific domain access to financial web sites.

No Warning. Only 43 of the 500 extensions do not request access to a security-relevant permission.
They load normal web sites into their extension windows, apply “themes” to the user interface, or
use browser managers that are not relevant to privacy or security.

Unpopular Extensions

Not all of the extensions listed in the “most popular” directory ranking are popular (Figure 4.2).
After approximately the first 500 of 1,000 popularity-ranked extensions, the number of users per
extension abruptly decreases, and applications are no longer ranked solely according to the number
of users. (Although the ranking algorithm is private, we believe it incorporates factors beyond the
number of downloads such as posting dates and ratings.) 16.2% of the bottom 500 extensions have
fewer than ten users. These 500 low-ranked extensions are of uneven quality. E.g., two of them
are unaltered copies of the example extension on the developer web site.

71.6% of the less popular extensions have at least one security-relevant permission. Table 4.2
breaks down the permission usage of the 500 less popular extensions. When compared to the top
500 extensions, the unpopular extensions request far fewer permissions than popular extensions.
All of the differences are significant at a 1% significance level. We hypothesize that this is because
less popular extensions offer less functionality.

28

0

2000

4000

6000

8000

10000

12000

14000

16000

20
0

22
9

25
8

28
7

31
6

34
5

37
4

40
3

43
2

46
1

49
0

51
9

54
8

57
7

60
6

63
5

66
4

69
3

72
2

75
1

78
0

80
9

83
8

86
7

89
6

92
5

95
4

98
3

!
"#
$"
%

&'()*+$,-.%/+01%

Figure 4.2. Users per extension, sorted by the official gallery’s ranking. We omit the first
200 for graph clarity; on the date of our survey, the most popular extension had 1.3M users.

Unranked extensions are as unpopular as the unpopular extensions in our data set. If one were
to review the remaining 5,696 unranked Google Chrome extensions, we expect their permission
requirements would be equivalent to or less than the permission requirements of these 500 un-
popular applications. We note with caution that future studies on permissions need to consider the
effect of popularity: a study that were to look at the full set of 6,696 extensions to evaluate warning
frequency would underestimate the number of warnings that users see in practice by approximately
20% because installations are heavily concentrated in the most popular extensions. However, the
effect of popularity may be smaller in other application markets; for example, we did not observe
a relationship between permissions and popularity in Android applications.

Evaluation

Defense in Depth. This study shows that the permission system dramatically reduces the scope
of potential extension vulnerabilities. A negligible number of extensions include plug-ins, which
means that the typical extension vulnerability cannot yield access to the local machine. This is a
significant improvement over the Firefox and Internet Explorer extension systems, which provide
all extensions with access to the local file system. We also find that all-domain access is frequent
but not universal: 18% of popular extensions need no web access, and 30.4% only need limited web
access. This means that the permission system prevents half of popular extensions from having
unnecessary web privileges (e.g., access to financial information).

User Consent. Nearly all popular extensions (91% of the top 500) generate at least one security
warning, which decreases the value of the warnings. History and all-domain permissions are re-
quested by more than half of extensions; consequently, users may have grown accustomed to them.
However, warnings about plug-ins are rare and therefore potentially notable.

29

4.3 Overprivilege in Android Applications

We studied Android applications to determine whether developers follow least privilege with their
permission requests. We built Stowaway, a tool that detects overprivilege in compiled Android
applications. Stowaway is composed of two parts: a static analysis tool that determines what
API calls an application makes (Chapter 4.3.1), and a permission map that identifies what per-
missions are needed for each API call. Android’s documentation does not provide a permission
map, so we empirically determined Android 2.2’s access control policy (Chapters 4.3.2 and 4.3.3).
We apply Stowaway to a set of 940 applications and find that about one-third are overprivileged
(Chapter 4.3.4). We investigate the causes of overprivilege and find evidence that developers are
trying to follow least privilege but sometimes fail due to insufficient API documentation. Better
documentation and developer tools could help reduce the Android permission request rate.

4.3.1 Application Analysis Tool

We built a static analysis tool, Stowaway, which analyzes an Android application and determines
the maximum set of permissions it may require. Stowaway takes compiled Android applications
as input. Compiled applications for the Android platform are in Dalvik executable (DEX) for-
mat [143]. The DEX files are bundled with XML files that describe application layout. Stowaway
extracts XML files from the target applications’ package and uses Dedexer [120] to disassemble
the target application’s code. Each subsequent stage uses the disassembled DEX and XML files as
input. Stowaway analyzes the application’s use of API calls, Content Providers, and Intents and
then uses the permission map built in Chapter 4.3.2 to determine what permissions they require.

API Calls

Stowaway first parses the disassembled DEX files and identifies all calls to standard API methods.
Stowaway tracks application-defined classes that inherit methods from Android classes so we can
differentiate between invocations of application-defined methods and Android-defined inherited
methods. We use heuristics to handle Java reflection and two unusual permissions. Our static
analysis is primarily linear; we do not handle all non-linear control flows, such as jumps. We only
handle simple gotos that appear at the ends of methods.

Reflection. Java reflection is a challenging problem [105, 39, 130]. In Java, methods can
be reflectively invoked with java.lang.reflect.Method.invoke() or java.lang.
reflect.Constructor.newInstance(). Stowaway tracks which Class objects and
method names are propagated to the reflective invocation. It performs flow-sensitive, intra-
procedural static analysis, augmented with inter-procedural analysis to a depth of two method
calls. Within each method body, it statically tracks the value of each String, StringBuilder, Class,
Method, Constructor, Field, and Object. We also statically track the state of static member vari-

30

ables of these types. We identify method calls that convert strings and objects to type Class, as
well as method calls that convert Class objects to Methods, Constructors, and Fields.

We also apply Android-specific heuristics to resolving reflection by handling methods and
fields that may affect reflective calls. We cannot model the behavior of the entire Android and Java
APIs, but we identify special cases. First, Context.getSystemService(String) returns
different types of objects depending on the argument. We maintain a mapping of arguments to
the types of return objects. Second, some API classes contain private member variables that hold
references to hidden interfaces. Applications can only access these member variables reflectively,
which obscures their type information because they are treated like generic Objects. We created
a mapping between member variables and their types and propagate the type data accordingly.
If an application subsequently accesses methods on a member variable after retrieving it, we can
resolve the member variable’s type.

Internet. Any application that includes a WebView must have the Internet permission. A WebView
is a user interface component that allows an application to embed a web site into its UI. WebViews
can be instantiated programmatically or declared in XML files. Stowaway identifies programmatic
instantiations of WebViews. It also decompiles application XML files and parses them to detect
WebView declarations.

External Storage. If an application wants to access files stored on the SD card, it must have the
WRITE_EXTERNAL_STORAGE permission. This permission does not appear in our permission
map because it (1) is enforced entirely using Linux permissions and (2) can be associated with
any file operation or API call that accesses the SD card from within the library. We handle this
permission by searching the application’s string literals and XML files for strings that contain
sdcard; if any are found, we assume WRITE_EXTERNAL_STORAGE is needed. Additionally,
we assume this permission is needed if we see API calls that return paths to the SD card, such as
Environment.getExternalStorageDirectory().

Content Providers

Content Providers are accessed by performing a database operation on a URI. Stowaway collects
all strings that could be used as Content Provider URIs and links those strings to the Content
Providers’ permission requirements. Content Provider URIs can be obtained in two ways:

1. A string or set of strings can be passed into a method that returns a URI. For example, the API
call android.net.Uri.parse("content://browser/bookmarks") returns a
URI for accessing the Browser bookmarks. To handle this case, Stowaway finds all string
literals that begin with content://.

2. The API provides Content Provider helper classes that include public URI constants. For
example, the value of android.provider.Browser.BOOKMARKS_URI is
content://browser/bookmarks. Stowaway recognizes known URI constants, and
we created a mapping from all known URI constants to their string values.

A limitation of our tool is that we cannot tell which database operations an application performs
with a URI; there are many ways to perform an operation on a Content Provider, and users can set

31

their own query strings. To account for this, we say that an application may require any permission
associated with any operation on a given Content Provider URI. This provides an upper bound on
the permissions that could be required in order to use a specific Content Provider.

Intents

We use ComDroid [47] to detect the sending and receiving of Intents that require permissions.
ComDroid performs flow-sensitive, intra-procedural static analysis, augmented with limited inter-
procedural analysis that follows method invocations to a depth of one method call. ComDroid
tracks the state of Intents, registers, Intent-sending sinks (e.g., sendBroadcast), and application
components. When an Intent object is instantiated, passed as a method parameter, or obtained as a
return value, ComDroid statically tracks all changes to it from its source to its sink and outputs all
information about the Intent and all components expecting to receive messages.

Stowaway takes ComDroid’s output and, for each sent Intent, checks whether a permission is
required to send that Intent. For each Intent that an application is registered to receive, Stowaway
checks whether a permission is required to receive the Intent. Occasionally ComDroid is unable to
identify the message or sink of an Intent. To mitigate these cases, Stowaway searches for protected
system-wide Intents in the list of all string literals in the application.

4.3.2 Permission Testing Methodology

Android’s access control policy is not well documented, but the policy is necessary to determine
whether applications are overprivileged. To address this shortcoming, we empirically determined
the access control policy that Android enforces. We used testing to construct a permission map
that identifies the permissions required for each method in the Android API. In particular, we
modified Android 2.2’s permission verification mechanism to log permission checks as they occur.
We then generated unit test cases for API calls, Content Providers, and Intents. Executing these
tests allowed us to observe the permissions required to interact with system APIs. A core challenge
was to build unit tests that obtain call coverage of all platform resources. The resulting permission
map is publicly available at http://www.android-permissions.org.

We chose to use dynamic testing to generate the permission map because of the complexities of
Android’s architecture (Chapter 3.1.4). Android’s API is written in two languages (Java and C++),
crosses multiple processes, and includes code that is only reachable under factory conditions (i.e.,
when certain pre-consumer variables are set to be true). However, in concurrent work, Gibler et
al. [72] applied static analysis to the Android API to find permission checks. Unlike our dynamic
approach, their static analysis might have false positives and will miss permission checks in native
code.

32

The API

As described in Chapter 3.1.4, the Android API provides applications with a library that includes
public, private, and hidden classes and methods. The set of private classes includes the RPC stubs
for the system services.3 All of these classes and methods are accessible to applications using
Java reflection, so we must test them to identify permission checks. We conducted testing in three
phases: feedback-directed testing; customizable test case generation; and manual verification.

Feedback-Directed Testing. For the first phase of testing, we used Randoop, an automated,
feedback-directed, object-oriented test generator for Java [118, 119].4 Randoop takes a list of
classes as input and tries different orderings of the methods from these classes. We modified Ran-
doop to run as an Android application and to log every method it invokes. Our modifications to
Android log every permission that is checked by the Android permission validation mechanism,
which lets us deduce which API calls trigger permission checks.

Randoop maintains a pool of valid initial input sequences and parameters, initially seeded with
primitive values (e.g., int and String). Randoop builds test sequences incrementally by ran-
domly selecting a method from the test class’s methods and selecting sequences from the input pool
to populate the method’s arguments. If the new sequence is unique, then it is executed. Sequences
that complete successfully (i.e., without generating an exception) are added to the sequence pool.
Randoop’s goal is full coverage of the test space. Unlike comparable techniques [117, 52, 26],
Randoop does not need a sample execution trace as input, making large-scale testing such as API
fuzzing more manageable. Because Randoop uses Java reflection to generate the test methods from
the supplied list of classes, it supports testing non-public methods. We modified Randoop to also
test nested classes of the input classes.

Randoop’s feedback-guided space exploration is limited by the objects and input values it
has access to. If Randoop cannot find an object of the correct type needed to invoke a method
in the sequence pool, then it will never try to invoke the method. The Android API is too
large to test all interdependent classes at once, so in practice many objects are not available
in the sequence pool. We mitigated this problem by testing related classes together (for ex-
ample, Account and AccountManager) and adding seed sequences that return common
Android-specific data types. Unfortunately, this was insufficient to produce valid input param-
eters for many methods. Many singleton object instances can only be created through API
calls with specific parameters; for example, a WifiManager instance can be obtained by
calling android.content.Context.getSystemService(String) with the parame-
ter "wifi". We addressed this by augmenting the input pool with specific primitive constants

3The operating system also includes many internal methods that make permission checks. However, applications
cannot invoke them because they are not currently exposed with RPC stubs. Since we are focused on the application-
facing API, we do not test or discuss these permission checks.

4Randoop is not the only Java unit test generation tool. Tools like Eclat [117], Palulu [26] and JCrasher [52] work
similarly but require an example execution as input. Given the size of the Android API, building such an example
execution would be a challenge. Enhanced JUnit [63] generates tests by chaining constructors to some fixed depth.
However, it does not use subtyping to provide instances and relies on bytecode as input. Korat [43] requires formal
specifications of methods as input, which is infeasible for post-facto testing of the Android API.

33

and sequences. Additionally, some API calls expect memory addresses that store specific values
for parameters, which we were unable to solve at scale.

Randoop also does not handle ordering requirements that are independent of input parameters.
In some cases, Android expects methods to precede each other in a very specific order. Randoop
only generates sequence chains for the purpose of creating arguments for methods; it is not able to
generate sequences to satisfy dependencies that are not in the form of an input variable. Further ag-
gravating this problem, many Android methods with underlying native code generate segmentation
faults if called out of order, which terminates the Randoop testing process.

Customizable Test Case Generation. Randoop’s feedback-directed approach to testing failed to
cover certain types of methods. When this happened, there was no way to manually edit its test se-
quences to control sequence order or establish method pre-conditions. To address these limitations
and improve coverage, we built our own test generation tool. Our tool accepts a list of method
signatures as input, and outputs at least one unit test for each method. It maintains a pool of default
input parameters that can be passed to methods to be called. If multiple values are available for
a parameter, then our tool creates multiple unit tests for that method. (Tests are created combi-
natorially when multiple parameters of the same method have multiple possible values.) It also
generates tests using null values if it cannot find a suitable parameter. Because our tool separates
test case generation from execution, a human tester can edit the test sequences produced by our
tool. When tests fail, we manually adjust the order of method calls, introduce extra code to satisfy
method pre-conditions, or add new parameters for the failing tests.

Our test generation tool requires more human effort than Randoop, but it is effective for quickly
achieving coverage of methods that Randoop was unable to properly invoke. Overseeing and edit-
ing a set of generated test cases produced by our tool is still substantially less work than manually
writing test cases. Our experience with large-scale API testing was that methods that are challeng-
ing to invoke by feedback-directed testing occur often enough to be problematic. When a human
tester has the ability to edit failing sequences, these methods can be properly invoked.

Manual Verification. The first two phases of testing generate a map of the permission checks per-
formed by each method in the API. However, these results contain three types of inconsistencies.
First, the permission checks caused by asynchronous API calls are sometimes incorrectly associ-
ated with subsequent API calls. (For example, one of the methods to connect to a network returns
immediately; the system service then continues to set up the connection.) Second, a method’s per-
mission requirements can be argument-dependent, in which case we see intermittent or different
permission checks for that method. Third, permission checks can be dependent on the order in
which API calls are made. To identify and resolve these inconsistencies, we manually verified the
correctness of the permission map generated by the first two phases of testing.

We used our customizable test generation tool to create tests to confirm the permission(s) as-
sociated with each API method in our permission map. We carefully experimented with the or-
dering and arguments of the test cases to ensure that we correctly matched permission checks to
asynchronous API calls and identified the conditions of permission checks. When confirming per-
missions for potentially asynchronous or order-dependent API calls, we also created confirmation
test cases for related methods in the pertinent class that were not initially associated with permis-
sion checks. We ran every test case both with and without their required permissions in order

34

to identify API calls with multiple or substitutable permission requirements. (For example, the
method killBackgroundProcesses accepts either the RESTART PACKAGES permission
or the KILL BACKGROUND PROCESSES permission.) If a test case throws a security exception
without a permission but succeeds with a permission, then we know that the permission map for
the method under test is correct.

Testing The Internet Permission. Applications can access the Internet through the Android API,
but other packages such as java.net and org.apache also provide Internet access. In order
to determine which methods require access to the Internet, we scoured the documentation and
searched the Internet for any and all methods that suggest Internet access. Using this list, we wrote
test cases to determine which of those methods require the INTERNET permission.

Content Providers

Our Content Provider test application executes query, insert, update, and delete opera-
tions on Content Provider URIs associated with system Content Providers. We collected a list of
URIs from the android.provider package to determine the core set of Content Providers to
test. We additionally collected Content Provider URIs that we discovered during other phases of
testing. For each URI, we attempted to execute each type of database operation without any per-
missions. If a security exception was thrown, we recorded the required permission. We added and
tested combinations of permissions to identify multiple or substitutable permission requirements.
Each Content Provider was tested until security exceptions were no longer thrown for a given oper-
ation, indicating the minimum set of permissions required to complete that operation. In addition
to testing, we also examined the system Content Providers’ static permission declarations.

Intents

We built a pair of applications to send and receive Intents. The Android documentation does not
provide a single, comprehensive list of the available system Intents, so we scraped the Android
2.2 source code to find string constants that could be the contents of an Intent.5 For example, the
string android.net.wifi.STATE CHANGE is used to send or receive the system-wide Intent
that notifies applications about an Internet connectivity change. We sent and received Intents
with these constants between our test applications. In order to test the permissions needed to
receive system broadcast Intents, we triggered system broadcasts by sending and receiving text
messages, sending and receiving phone calls, connecting and disconnecting WiFi, connecting and
disconnecting Bluetooth devices, and other actions. For all of these tests, we recorded whether
permission checks occurred and whether the Intents were delivered or received successfully.

5For those familiar with Android terminology, we searched for Intent action strings [6].

35

4.3.3 Permission Map Results

Our testing of the Android application platform resulted in a permission map that correlates per-
mission requirements with API calls, Content Providers, and Intents. In this section, we discuss
our coverage of the API, compare our results to the official Android documentation, and present
characteristics of the Android API and permission map.

Coverage

The Android 2.2 API consists of 1,665 classes with a total of 16,732 public and private methods.
We covered 85% the methods through two phases of testing. (We define a method as covered if
we executed it without generating an exception; we do not measure branch coverage.) Randoop
attained an initial method coverage of 60%, spread across all packages. We supplemented Ran-
doop’s coverage with our proprietary test generation tool, accomplishing close to 100% coverage
of the classes with at least one permission check (as per our first round of testing).

The uncovered portion of the API is due to native calls and the omission of second-phase
tests for packages that did not yield permission checks in the first phase. First, native methods
often crashed the application when incorrect parameters were supplied, making them difficult to
test. Many native method parameters are integers that represent pointers to objects in native code,
making it difficult to supply correct parameters. Approximately one-third of uncovered methods
are native calls. Second, we decided to omit supplemental tests for packages that did not reveal
permission checks during the Randoop testing phase. If Randoop did not trigger at least one
permission check in a package, we did not add more tests to the classes in the package.

We investigated a total of 62 Content Providers. We found that there are 18 Content Providers
that do not have permissions for insert, query, update, or delete. All of the Content Providers that
lack permissions are associated with the media content URI.

We examined Intent communication and measured whether permissions are required for send-
ing and receiving Intents. When sending broadcast Intents, 62 broadcasts are prohibited by non-
system senders, 6 require permissions before sending the Intent, and 2 can be broadcast but not
received by system receivers. Broadcast receivers must have permissions to receive 23 broadcast
Intents, of which 14 are protected by a Bluetooth permission. When sending Intents to start Activi-
ties, 7 Intent messages require permissions. When starting Services, 2 Intents require permissions.

Comparison With Documentation

Clear and well-developed documentation promotes correct permission usage and safe program-
ming practices. Errors and omissions in the documentation can lead to incorrect developer as-
sumptions and overprivilege. Android’s documentation of permissions is limited, which is likely
due to their lack of a centralized access control policy. Our testing identified 1,259 API calls with
permission checks. We compare this to the Android 2.2 documentation, as follows.

36

Permission Usage
BLUETOOTH 85
BlUETOOTH_ADMIN 45
READ_CONTACTS 38
ACCESS_NETWORK_STATE 24
WAKE_LOCK 24
ACCESS_FINE_LOCATION 22
WRITE_SETTINGS 21
MODIFY_AUDIO_SETTINGS 21
ACCESS_COARSE_LOCATION 18
CHANGE_WIFI_STATE 16

Table 4.3. Android’s 10 most checked permissions; brief descriptions of the permissions
are available in the documentation [7].

We crawled the Android 2.2 documentation and found that it specifies permission requirements
for 78 methods. The documentation additionally lists permissions in several class descriptions, but
it is not clear which methods of the classes require the stated permissions. Of the 78 permission-
protected API calls in the documentation, our testing indicates that the documentation for 6 API
calls is incorrect. It is unknown to us whether the documentation or implementation is wrong; if
the documentation is correct, then these discrepancies may be security errors.

Three of the documentation errors list a different permission than was found through testing.
In one place, the documentation claims an API call is protected by the Dangerous permission
MANAGE_ACCOUNTS, when it actually can be accessed with the lower-privilege Normal per-
mission GET_ACCOUNTS. Another error claims an API call requires the ACCESS_COARSE_
UPDATES permission, which does not exist. As a result, 5 of the 900 applications that we study
in Chapter 4.3.4 request this non-existent permission. (Applications can request non-existent per-
missions; an unobservant developer might miss the errors produced on the console when these
applications are loaded.) A third error states that a method is protected with the BLUETOOTH
permission, when the method is in fact protected with BLUETOOTH_ADMIN.

The other three documentation errors pertain to methods with multiple permission require-
ments. In one error, the documentation claims that a method requires one permission, but our test-
ing shows that two are required. For the last two errors, the documentation states that two methods
require one permission each; in practice, however, the two methods both accept two permissions.

Characterizing Permissions

Based on our permission map, we characterize how permission checks are distributed.

Number of Permissions Checks. We identified 1,244 API calls with permission checks, which is
6.45% of all API methods (including hidden and private methods). Of those, 816 are methods of
normal API classes, and 428 are methods of RPC stubs that are used to communicate with system
services. We additionally identified 15 API calls with permission checks in a supplementary part of

37

the API added by a manufacturer, for a total of 1,259 API calls with permission checks. Table 4.3
provides the rates of the most commonly-checked permissions for the normal API.

Signature/System Permissions. We found that 12% of the non-RPC API calls with permissions
are protected with Signature/System permissions, and 35% of the RPC stubs with permissions are
protected with Signature/System permissions. This effectively limits the use of these API calls to
pre-installed applications.

Unused Permissions. We found that some permissions are defined by the platform but never used
within the API. For example, the BRICK permission is never used, despite being oft-cited as an
example of a particularly dire permission [146]. The only use of the BRICK permission is in dead
code that is incapable of causing harm to the device. Our testing found that 15 of the 134 Android-
defined permissions are unused. For each case where a permission was never found during testing,
we searched the source tree to verify that the permission is not used. After examining several
devices, we discovered that one of the otherwise unused permissions is used by the custom classes
that HTC and Samsung added to the API to support 4G on their phones.

Hierarchical Permissions. The names of many permissions imply that there are hierarchical
relationships between them. Intuitively, we expect that more powerful permissions should be
substitutable for lesser permissions relating to the same resource. However, we find no evi-
dence of planned hierarchy. Our testing indicates that BLUETOOTH_ADMIN is not substitutable
for BLUETOOTH, nor is WRITE_CONTACTS substitutable for READ_CONTACTS. Similarly,
CHANGE_WIFI_STATE cannot be used in place of ACCESS_WIFI_STATE.

Only one pair of permissions has a hierarchical relationship: ACCESS_COARSE_LOCATION
and ACCESS_FINE_LOCATION. Every method that accepts the COARSE permission also
accepts FINE as a substitute. We found only one exception to this, which may be a bug:
TelephonyManager.listen() accepts either ACCESS_COARSE_LOCATION or READ_
PHONE_STATE, but it does not accept ACCESS_FINE_LOCATION.

Permission Granularity. If a single permission is applied to a diverse set of functionality, ap-
plications that request the permission for a subset of the functionality will have unnecessary
access to the rest. Android aims to prevent this by splitting functionality into multiple per-
missions when possible. As a case study, we examine the division of Bluetooth functionality,
as the Bluetooth permissions are the most heavily checked permissions. We find that the two
Bluetooth permissions are applied to 6 large classes. They are divided between methods that
change state (BLUETOOTH_ADMIN) and methods that get device information (BLUETOOTH). The
BluetoothAdapter class is one of several that use the Bluetooth permissions, and it appro-
priately divides most of its permission assignments. However, it features some inconsistencies.
One method only returns information but requires the BLUETOOTH_ADMIN permission, and an-
other method changes state but requires both permissions. This type of inconsistency may lead to
developer confusion about which permissions are required for which types of operations.

38

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

!(" '!(" #!(")!(" $!(" *!(" %!(" +!(" &!(" ,!(" '!!("!
"#

$%
&'
()
'*
+,
--
%-
'./
'0
%&
1%
/2
,3
%'
4,

/3
%'

0%&1%/2,3%'()'*+,--'5%26(7-'86.16'*6%19'0%&#.--.(/-'

Figure 4.3. A histogram of the number of classes, sorted by the percentage of the classes’
methods that require permissions. The numbers shown represent ranges, i.e., 10% repre-
sents [10-20%). We only consider classes with at least 1 permission check.

Class Characteristics. Figure 4.3 presents the percentage of methods that are protected per class.
We initially expected that the distribution would be bimodal, with most classes protected entirely
or not at all. Instead, we see a wide array of class protection rates. Of these classes, 8 require
permissions to instantiate an object, and 4 require permissions only for the object constructor.

4.3.4 Application Analysis Results

We applied Stowaway to 940 Android applications to identify the prevalence of overprivilege.
Stowaway calculates the maximum set of Android permissions that an application may need. We
compare that set to the permissions actually requested by the application. If the application requests
more permissions, then it is overprivileged. Our full set of applications is the same as the set
discussed in Chapter 4.2.1, although we removed randomly selected applications for tool testing
and training. This left us with 940 applications for analysis.

Manual Analysis

Methodology. We randomly selected 40 applications from the set of 940 and ran Stowaway on
them. Stowaway identified 18 applications as overprivileged. We then manually analyzed each
overprivilege warning to attribute it to either tool error (i.e., a false positive) or developer error. We
looked for false positives due to three types of failures:

39

1. Stowaway misses an API, Content Provider, or Intent operation that needs a permission. For
example, Stowaway misses an API call when it cannot resolve the target of a reflective call.

2. Stowaway correctly identifies the API, Content Provider, or Intent operation, but our permis-
sion map lacks an entry for that platform resource.

3. The application sends an Intent to some other application, and the recipient accepts Intents
only from senders with a certain permission. Stowaway cannot detect this case because we
do not determine the permission requirements of other non-system applications.

We reviewed the 18 applications’ bytecode, searching for any of these three types of error. If
we found functionality that could plausibly pertain to a permission that Stowaway identified as
unnecessary, we manually wrote additional test cases to confirm the accuracy of our permission
map. We investigated the third type of error by checking whether the application sends Intents
to pre-installed or well-known applications. When we determined that a warning was not a false
positive, we attempted to identify why the developer had added the unnecessary permission.

We also analyzed overprivilege warnings by running the application in our modified version
of Android (which records permission checks as they occur) and interacting with it. It was not
possible to test all applications at runtime; for example, some applications rely on server-side
resources that have moved or changed since we downloaded them. We were able to test 10 of the
18 applications in this way. In each case, runtime testing confirmed the results of our code review.

False Positives. Stowaway identified 18 of the 40 applications (45%) as having 42 unnecessary
permissions. Our manual review determined that 17 applications (42.5%) are overprivileged, with
a total of 39 unnecessary permissions. This represents a 7% false positive rate.

All three of the false warnings were caused by incompleteness in our permission map. Each
was a special case that we failed to anticipate. Two of the three false positives were caused by appli-
cations using Runtime.exec to execute a permission-protected shell command. (For example,
the logcat command performs a READ_LOGS permission check.) The third false positive was
caused by an application that embeds a web site that uses HTML5 geolocation, which requires a
location permission. We wrote test cases for these scenarios and updated our permission map.

Of the 40 applications in this set, 4 contain at least one reflective call that our static analysis
tool cannot resolve or dismiss. 2 of them are overprivileged. This means that 50% of the applica-
tions with at least one unresolved reflective call are overprivileged, whereas other applications are
overprivileged at a rate of 42%. However, a sample size of 4 is too small to draw conclusions. We
investigated the unresolved reflective calls and do not believe they led to false positives.

Automated Analysis

We ran Stowaway on 900 Android applications. Overall, Stowaway identified 323 applications
(35.8%) as having unnecessary permissions. Stowaway was unable to resolve some applications’
reflective calls, which might lead to a higher false positive rate in those applications. Consequently,
we discuss applications with unresolved reflective calls separately from other applications.

40

Permission Usage
ACCESS_NETWORK_STATE 16%
READ_PHONE_STATE 13%
ACCESS_WIFI_STATE 8%
WRITE_EXTERNAL_STORAGE 7%
CALL_PHONE 6%
ACCESS_COARSE_LOCATION 6%
CAMERA 6%
WRITE_SETTINGS 5%
ACCESS_MOCK_LOCATION 5%
GET_TASKS 5%

Table 4.4. The 10 most common unnecessary permissions and the percentage of overprivi-
leged applications that request them.

Applications With Fully Handled Reflection. Stowaway was able to handle all reflective calls for
795 of the 900 applications, meaning that it should have identified all API access for those appli-
cations. Stowaway produces overprivilege warnings for 32.7% of the 795 applications. Table 4.4
shows the 10 most common unnecessary permissions among these applications.

56% of overprivileged applications have 1 extra permission, and 94% have 4 or fewer extra per-
missions. Although one-third of applications are overprivileged, the low degree of per-application
overprivilege indicates that developers are attempting to add correct permissions rather than arbi-
trarily requesting large numbers of unneeded permissions. This supports the potential effectiveness
of install-time permission systems like Android’s.

We believe that Stowaway should produce approximately the same false positive rate for these
applications as it did for the set of 40 that we evaluated in our manual analysis. If we assume
that the 7% false positive rate from our manual analysis applies to these results, then 30.4% of
the 795 applications are truly overprivileged. Applications could also be more overprivileged in
practice than indicated by our tool, due to unreachable code. Stowaway does not perform dead
code elimination; dead code elimination for Android applications would need to take into account
the unique Android lifecycle and application entry points. Additionally, our overapproximation
of Content Provider operations (Chapter 4.3.1) might overlook some overprivilege. We did not
quantify Stowaway’s false negative rate, and we leave dead code elimination and improved Content
Provider string tracking to future work.

The Challenges of Java Reflection. Reflection is commonly used in Android applications. Of the
900 applications, 545 (61%) use Java reflection to make API calls. We found that reflection is used
for many purposes, such as to deserialize JSON and XML, invoke hidden or private API calls, and
handle API classes whose names changed between versions. The prevalence of reflection indicates
that it is important for an Android static analysis tool to handle Java reflection, even if the static
analysis tool is not intended for obfuscated or malicious code.

Stowaway was able to fully resolve the targets of reflective calls in 59% of the applications that
use reflection. We handled a further 117 applications with two techniques: eliminating failures
where the target class of the reflective call was known to be defined within the application, and

41

Apps with Total
Warnings Apps Rate

Reflection, failures 56 105 53%
Reflection, no failures 151 440 34%
No reflection 109 355 31%

Table 4.5. The rates at which Stowaway issues overprivilege warnings, by reflection status.

manually examining and handling failures in 21 highly popular libraries. This left us with 105
applications with reflective calls that Stowaway could not resolve or dismiss, which is 12% of the
900 applications.

Stowaway identifies 53.3% of the 105 applications as overprivileged. Table 4.5 compares this
to the rate at which warnings are issued for applications without unhandled reflections. There are
two possible explanations for the difference: Stowaway might have a higher false positive rate in
applications with unresolved reflective calls, or applications that use Java reflection in complicated
ways might have a higher rate of actual overprivilege due to a correlated trait.

We suspect that both factors play a role in the higher overprivilege warning rate in applications
with unhandled reflective calls. Although our manual review did not find that reflective failures
led to false positives, a subsequent review of additional applications identified several erroneous
warnings that were caused by reflection. On the other hand, developer error may increase with the
complexity associated with complicated reflective calls.

Handling Java reflection is necessary to develop sound and complete program analyses. How-
ever, resolving reflective calls is an area of open research. Stowaway’s reflection analysis fails
when presented with the creation of method names based on non-static environment variables, di-
rect generation of Dalvik bytecode, arrays with two pointers that reference the same location, or
Method and Class objects that are stored in hash tables. Stowaway’s primarily linear traversal
of a method also experiences problems with non-linear control flow. We also observed several
applications that iterate over a set of classes or methods, testing each element to decide which one
to invoke reflectively. If multiple comparison values are tested and none are used within the block,
Stowaway only tracks the last comparison value beyond the block; this value may be null. Future
work — particularly, dynamic analysis tools – may be able to solve some of these problems.

Stowaway’s results are comparable with past research into resolving reflective calls. Livshits
et al. created a static algorithm which approximates reflective targets by tracking string constants
passed to reflections [105]. Their approach falls short when the reflective call depends on user input
or environment variables. We use the same approach and suffer from the same limitations. They
improve their results with developer annotations, which is not a feasible approach for our domain.
A more advanced technique combines static analysis with information about the environment of
the Java program in order to resolve reflections [130]. However, their results are sound only if
the program is executed in an identical environment as the original evaluation. Even with their
modifications, they are able to resolve only 74% of reflective calls in the Java 1.4 API. We do not
claim to improve the state of the art in resolving Java reflection; instead, we focus on domain-
specific heuristics for how reflection is used in Android applications.

42

Common Developer Errors

In some cases, we are able to determine why developers asked for unnecessary permissions. Here,
we consider the prevalence of different types of developer error among the 40 applications from
our manual review and the 795 fully handled applications from our automated analysis.

Permission Name. Developers sometimes request permissions with names that sound related to
their applications’ functionality, even if the permissions are not required. For example, one applica-
tion from our manual review unnecessarily requests the MOUNT_UNMOUNT_FILESYSTEMS per-
mission to receive the android.intent.action.MEDIA_MOUNTED Intent. As another ex-
ample, the ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE permissions have similar-
sounding names, but they are required by different classes. Developers often request them in pairs,
even if only one is necessary. Of the applications that unnecessarily request the network permis-
sion, 32% legitimately require the WiFi permission. Of the applications that unnecessarily request
the WiFi permission, 71% legitimately need the network permission.

Deputies. An application can send an Intent to another deputy application, asking the deputy to
perform an operation. If the deputy makes a permission-protected API call, then the deputy needs
a permission. The sender of the Intent, however, does not. We noticed instances of applications re-
questing permissions for actions that they asked deputies to do. For example, one application asks
the Android Market to install another application. The sender asks for INSTALL_PACKAGES,
which it does not need because the Market application does the installation.

We find widespread evidence of this type of error. Of the applications that unnecessarily request
the CAMERA permission, 81% send an Intent that opens the default Camera application to take a
picture. 82% of the applications that unnecessarily request INTERNET send an Intent that opens a
URL in the browser. Similarly, 44% of the applications that unnecessarily request CALL_PHONE
send an Intent to the default Phone Dialer application.

Related Methods. As shown in Figure 4.3, most classes contain a mix of permission-protected
and unprotected methods. We have observed applications that use unprotected methods but
request permissions that are required for other methods in the same class. For example,
android.provider.Settings.Secure is a convenience class in the API for accessing
the Settings Content Provider. The class includes both setters and getters. The setters require the
WRITE_SETTINGS permission, but the getters do not. Two of the applications that we manually
reviewed use only the getters but request the WRITE_SETTINGS permission.

Copy and Paste. Popular message boards contain Android code snippets and advice about per-
mission requirements. Sometimes this information is inaccurate, and developers who copy it
will overprivilege their applications. For example, one of the applications that we manually re-
viewed registers to receive the android.net.wifi.STATE_CHANGE Intent and requests the
ACCESS_WIFI_STATE permission. As of May 2011, the third-highest Google search result for
that Intent contains the incorrect assertion that it requires that permission [2].

43

Deprecated Permissions. Permissions that are unnecessary in Android 2.2 could be necessary in
older Android releases. Old or backwards-compatible applications therefore might have seemingly
extra permissions. However, developers may also accidentally use these permissions because they
have read out-of-date material. 8% of the overprivileged applications request either ACCESS_GPS
or ACCESS_LOCATION, which were deprecated in 2008. Of those, all but one specify that their
lowest supported API version is higher than the last version that included those permissions.

Testing Artifacts. A developer might add a permission during testing and then forget to remove it
when the test code is removed. For example, ACCESS_MOCK_LOCATION is typically used only
for testing but can be found in released applications. All of the applications in our data set that
unnecessarily include the ACCESS_MOCK_LOCATION permission also include a real location
permission.

Signature/System Permissions. We find that 9% of overprivileged applications request unneeded
Signature or SignatureOrSystem permissions. Standard versions of Android will silently refuse to
grant those permissions to applications that are not signed by the device manufacturer. The permis-
sions were either requested in error, or the developers removed the related code after discovering
it did not work on standard handsets.

We can attribute many instances of overprivilege to developer confusion over the permission
system. Confusion over permission names, related methods, deputies, and deprecated permissions
could be addressed with improved API documentation. To avoid overprivilege due to related meth-
ods, we recommend listing permission requirements on a per-method (rather than per-class) basis.
Confusion over deputies could be reduced by clarifying the relationship between permissions and
pre-installed system applications.

Despite the number of unnecessary permissions that we can attribute to error, it is possible
that some developers request extra permissions intentionally. Developers are incentivized to ask
for unnecessary permissions because, as we have observed, applications will not receive automatic
updates if the updated version of the application requests more permissions.

4.4 Overprivilege in Chrome Extensions

We next investigate factors that influence permission requests in Chrome extensions. We establish
the rate of overprivilege and then examine the amount of effort that developers are willing to put
into using wildcards for domain lists. Last, we consider whether Chrome’s extension permission
system’s low degree of granularity contributes to application overprivilege.

4.4.1 Rate of Overprivilege

As seen in Android (Chapter 4.3.4), developers may ask for unnecessary permissions. We explore
the prevalence of overprivilege in Chrome extensions.

44

Extension Analysis Results

Detecting unnecessary browser managers and domains requires different techniques, so we con-
sider these two forms of overprivilege separately.

Browser Managers. We count the extensions that request browser managers but do not use them.
About half of the extensions in our set of 1,000 “popular” extensions request access to security-
relevant browser managers. We search their source code (including remotely sourced scripts) for
references to their requested browser managers. 14.7% of the 1,000 extensions are overprivileged
by this measure because they request access to managers that they never use. It is possible for
an extension to name a browser manager without explicitly including the name as a string (e.g.,
"book"+"marks"); we examined a random sample of 15 overprivileged extensions and found
no evidence of developers doing this.

Domains. We also review fifty randomly selected extensions for excessive domain access (see Ap-
pendix A.1). For each extension, we compare the permissions it requests with the domains needed
to implement its functionality, which we determine by manually exercising the user interface and
consulting its source code when necessary. We find that 41 of the 50 extensions request access to
web data, and 7 of those are overprivileged: 5 request too many domain permissions for their core
extensions, and 2 install content scripts on unnecessary domains.

The reasons for overprivilege are diverse. One example is “PBTweet+”, which requests web
access for a nonexistent core extension; other examples are “iBood” and “Castle Age Auto-
player”, which request access to all domains even though they only interact with ibood.com
and facebook.com, respectively. “Send using Gmail (no button)” demonstrates a common er-
ror, which is that developers sometimes request access to all and specific domains in the same list.
The author of the “Send using Gmail (no button)” extension wrote the following specific domain
list: "http://*/*", "https://*/*", "http://*.google.com/". We find that an
additional 27 of the 1,000 popularity-ranked extensions also make this mistake. This is a conser-
vative measure of wildcard-induced error; subdomain wildcards can feature the same mistake, like
asking for both http://www.example.com and http://*.example.com.

Tools for Error Reduction

Our Google Chrome extension overprivilege detection tool is simple but sufficient to find some
types of errors. A JavaScript text search (i.e., a set of regular expressions) is sufficient to remove
unnecessary browser manager permissions from 147 of the 1,000 popularity-ranked extensions.
Our text search can potentially have false positives; when manually verifying the results of our
tool, we identified three extensions that only contain references to browser managers in remotely
sourced scripts. However, a developer can disregard a warning if she feels it is incorrect. Our tool
also detects simple redundant wildcard errors and asks the developer to remove the broad wildcard
in favor of the more specific domain. Detecting the larger problem of overly broad domain requests
is a challenging open problem for future research in JavaScript program analysis.

45

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 21 31 41 51 101 201

Fr
eq

ue
nc

y

List Length

Figure 4.4. The number of content script specific domain lists with at least a given length.

4.4.2 Developer Effort

Domain access in the Google Chrome extension system relies on wildcards. A developer can write
<all urls> or *://*/* and gain access to all domains, or she can define a list of specific
domains. When it is not feasible for a developer to list all possible subdomains, she can use
wildcards to capture multiple subdomains. However, a developer might choose to use a wildcard
even though it includes more privileges than the application requires.

Compliance. To determine whether developers are willing to write specific domain lists when they
can more easily request access to all domains, we evaluate the prevalence of specific domain lists
in the 1,000 popularity-ranked extensions. Of the 714 extensions that need access to web data,
428 use a specific domain list for either a content script or core extension. This is a surprising and
positive finding: 60% of developers whose extensions need web access choose to opt in to domain
restrictions for at least one component. However, 367 extensions also have at least one component
that requests full domain access. (An extension with multiple content scripts might request full
domain access for some scripts but place restrictions on others.)

Amount of Effort. We suspect that developers will default to requesting all-domain access if the
number of specific domains in the list grows too high. To examine this further, we consider the
237 content scripts that use specific domain lists. The lists are short: only 31 are longer than
five. Figure 4.4 presents the distribution. This indicates that most developers either request a very
small number of domains or opt to request full domain access, with few in-between. However, six
developers wrote eight lists that are longer than fifty domains. These outliers result from developers
internationalizing their extensions by repeating the same domains with different suffixes; wildcards
cannot be used to represent suffixes because the domains may have different owners.

46

Noncompliance. Chapter 4.4.1 describes a manual analysis of fifty extensions. Five of those ex-
tensions are overprivileged due to improper wildcard use. Two of the developers choose to request
all-domain access rather than write specific domain lists, two write specific domain lists but unnec-
essarily use wildcards for subdomains, and one incorrectly requests all-domain access alongside
specific domains. In other words, 12% of the extensions with web access request excessive per-
missions because their developers are unable or unwilling to write specific domain lists.

In summary, our findings are twofold. We show that 60% of extension developers write at
least one specific domain list. This demonstrates that the option to write specific domain lists
is a worthwhile part of a declarative permission system. On the other hand, 40% of developers
whose extensions need web access do not write any specific domain lists. Furthermore, our manual
analysis indicates that 12% of extensions with web access use wildcards improperly.

4.4.3 Permission Granularity

If a single permission protects a diverse set of API calls, then an application seeking to use only a
subset of that functionality will be overprivileged even though the developer requested the correct
permissions. Separating a coarse permission into multiple permissions can improve the correlation
between permissions and application functionality. On the other hand, excessively fine-grained
permissions would burden developers.

At the time of our study, Google Chrome extension permissions were at the granularity of
a browser manager: one permission per entire browser manager. This posed a problem for the
window manager, which includes some methods that provide indirect access to history via the
location property of loaded windows. (In other words, an extension with the window manager
permission cannot access the history manager, but it can observe the address of every page as
it is loaded.) Using the window manager generated history warnings, regardless of whether the
extension used any of the methods that provide access to the location property. The fact that the
window manager caused a history warning was confusing to users and developers. Consider this
quote from the developer of Neat Bookmarks:

Installing this extension will ask for permission to access your browsing history, which
is totally useless, not used and not stored by the extension at all. Not really sure why
‘History’ is part of ‘Bookmarks’ in the Chrome browser.

The developer is so confused by the history warning that he or she believes it is caused by the
extension’s use of the bookmark manager, rather than the window manager.

Since the time of our study, the window manager has been changed so that certain methods
do not require any permission [11]. Consequently, developers can access some non-history-related
functionality without acquiring a permission that shows users the history warning.

47

4.5 Other Overprivilege Considerations

Not all instances of overprivilege are caused by developer error. In some cases, developer incen-
tives can encourage or discourage the rate of overprivilege.

Review Process. Formal review can delay an application’s entrance into the directory. Developers
are often concerned about the length of the review process [12]. If dangerous permissions increase
the review time (and a lack of dangerous permissions decreases it), then developers have an incen-
tive to use as few permissions as necessary. Google Chrome extensions have to undergo a review
process if they include plug-ins, which incentivizes developers to not use plug-ins. Other platforms
could adopt similar systems or institute a timed delay for applications with more permissions.

Pressure From Users. The ultimate goal of a developer is to reach as many users as possible. If
users are hesitant to install applications with certain permissions, then developers are motivated
to avoid those permissions. Users can express their dislike of permission requests in application
comments and e-mails to the developer.

To illustrate user pressure, we read the user comments for 50 randomly selected Google
Chrome extensions with at least one permission. Of the 50 extensions, 8 (15%) have at least
one comment questioning the extension’s use of permissions. A majority of the critical permission
comments refer to the extension’s ability to access browsing history. Several commenters state that
the permission requests are preventing them from installing an application, e.g., “Really would like
to give it a try. ... But why does it need access to my history? I hope you got a plausible answer
because I really would like to try it out.” These comments indicate that a small number of vocal
users are pressuring developers to use fewer permissions. Additionally, the developers of 3 exten-
sions include an explanation of their permission usage in the extension description. This indicates
that these developers are concerned about user reactions to permission requests.

Automatic Updates. Android and Google Chrome will automatically update applications as they
become available, according to user preferences. However, automatic updates will not proceed
for applications whose updates request more permissions. Instead, the user needs to manually
install the update and approve the new permissions; in Android, this amounts to several additional
screens. This incentivizes developers to request unnecessary permissions in the first version, in
case later versions require the permissions. The user interface for updates could be improved to
minimize the user effort required to update applications with new permissions.

4.6 Conclusion

This chapter contributes evidence in support of application permission systems. Our large-scale
analysis of Google Chrome extensions and Android applications finds that applications ask for
significantly fewer than the maximum set of permissions. Only 14 of 1,000 Google Chrome ex-
tensions use native code, which is the most dangerous privilege. Approximately 30% of extension

48

developers restrict their extensions’ web access to a small set of domains. All Android applications
ask for less than half of the available Dangerous permissions, and a majority request less than 4.

We developed a tool, Stowaway, that detects overprivilege in Android applications. We ap-
plied Stowaway to 940 Android applications and found that about one-third are overprivileged.
Applications generally are overprivileged by only a few permissions, and overprivilege can often
be attributed to developer confusion. We also reviewed Chrome extensions and found that many
developers are willing to take the time to create specific domain lists. These studies demonstrate
that most developers are willing to attempt to follow least privilege.

These findings indicate that permission systems with up-front permission declarations have an
advantage over the traditional user permission model because the impact of a potential third-party
vulnerability is greatly reduced when compared to a full-privilege system. These results can be
extended to platforms with runtime consent dialogs if the platform requires developers to declare a
set of maximum permissions. Chapter 5 further explores the potential benefit of defense-in-depth
by examining vulnerable extensions.

However, our study shows that users are frequently presented with requests for dangerous
permissions during application installation in install-time systems. As a consequence, installation
security warnings may not be an effective malware prevention tool, even for alert users. Chapter 6
further evaluates the usability of Android permissions.

4.7 Acknowledgements

We thank our collaborators for contributing to this work. Kate Greenwood helped review exten-
sions’ wildcard lists (Chapter 4.4.2). Erika Chin worked on testing the Android API and building
Stowaway; in particular, she implemented the inter-procedural static analysis to handle Java re-
flection (Chapter 4.3). Steve Hanna, Royce Cheng-Yue, and Kathryn Lingel also tested Content
Providers as part of the Android overprivilege analysis (Chapter 4.3).

49

Chapter 5

The Effect of Permissions on Chrome

Extension Vulnerabilities

5.1 Introduction

Vulnerabilities in browser extensions put users at risk by providing a way for website and network
attackers to gain access to users’ private data and credentials. Developers need to build extensions
that are robust to attacks originating from malicious websites and the network. In 2009, Google
Chrome introduced a new extension platform with several features intended to prevent and mitigate
extension vulnerabilities:

• Permissions. Each extension comes packaged with a list of permissions, which govern access
to the browser APIs and web domains. If an extension has a core extension vulnerability, the
attacker will only gain access to the permissions that the vulnerable extension already has.

• Privilege separation. Chrome extensions adhere to a privilege-separated architecture [122].
Extensions are built from two types of components, which are isolated from each other:
content scripts and core extensions. Content scripts interact with websites and execute with
no privileges. Core extensions do not directly interact with websites and execute with the
extension’s full privileges.

• Isolated worlds. Content scripts can read and modify website content, but content scripts
and websites have separate program heaps so that websites cannot access content scripts’
functions or variables.

50

In this chapter, we provide an empirical analysis of these security mechanisms, which together
comprise a state-of-the-art least privilege system. We analyze 100 Chrome extensions, including
the 50 most popular extensions, to determine whether Chrome’s security mechanisms successfully
prevent or mitigate extension vulnerabilities. We find that 40 extensions contain at least one type
of vulnerability. Twenty-seven extensions contain core extension vulnerabilities, which give an
attacker full control over the extension.

Based on this set of vulnerabilities, we evaluate the effectiveness of each of the three security
mechanisms. Our primary findings are:

• Permissions significantly reduce the severity of half of the core extension vulnerabilities,
which demonstrates that permissions are effective at mitigating vulnerabilities in practice.
Additionally, dangerous permissions do not correlate with vulnerabilities: developers who
write vulnerable extensions use permissions the same way as other developers.

• The isolated worlds mechanism is successful at preventing content script vulnerabilities.

• The success of the isolated worlds mechanism renders privilege separation unnecessary.
However, privilege separation would protect 62% of extensions if isolated worlds were to
fail. In the remaining 38% of extensions, developers either intentionally or accidentally
negate the benefits of privilege separation. This highlights that forcing developers to divide
their software into components does not automatically achieve security on its own.

Although these mechanisms reduce the rate and scope of several classes of attacks, a large number
of high-privilege vulnerabilities remain.

We propose and evaluate four additional defenses. Our extension review demonstrates that
many developers do not follow security best practices if they are optional, so we propose four
mandatory bans on unsafe coding practices. We quantify the security benefits and functionality
costs of these restrictions on extension behavior. Our evaluation shows that banning inline scripts
and HTTP scripts would prevent 67% of the overall vulnerabilities and 94% of the most dangerous
vulnerabilities at a relatively low cost for most extensions. In concurrent work, Google Chrome
implemented Content Security Policy (CSP) for extensions to optionally restrict their own behav-
ior. Motivated in part by our study, new versions of Chrome use CSP to enforce some of the
mandatory bans that we proposed and evaluated [32].

5.2 Threat Model

In this chapter, we focus on non-malicious extensions that are vulnerable to external attacks. Most
extensions are written by well-meaning developers who are not security experts. We do not con-
sider malicious extensions; preventing malicious extensions requires completely different tactics,
such as warnings, user education, security scans of the market, and feedback and rating systems.
Benign-but-buggy extensions face two types of attacks:

51

• Network attackers. People who use insecure networks (e.g., public WiFi hotspots) may
encounter network attackers [129, 110]. A network attacker’s goal is to obtain personal
information or credentials from a target user. To achieve this goal, a network attacker will
read and alter HTTP traffic to mount man-in-the-middle attacks. (Assuming that TLS works
as intended, a network attacker cannot compromise HTTPS traffic.) Consequently, data and
scripts loaded over HTTP may be compromised.

If an extension adds an HTTP script — a JavaScript file loaded over HTTP — to itself, a
network attacker can run arbitrary JavaScript within the extension’s context. If an extension
adds an HTTP script to an HTTPS website, then the website will no longer benefit from
the confidentiality, integrity, and authentication guarantees of HTTPS. Similarly, inserting
HTTP data into an HTTPS website or extension can lead to vulnerabilities if the untrusted
data is allowed to execute as code.

• Web attackers. Users may visit websites that host malicious content (e.g., advertisements or
user comments). A website can launch a cross-site scripting attack on an extension if the
extension treats the website’s data or functions as trusted. The goal of a web attacker is to
gain access to users’ data in the browser (e.g., history) or violate website isolation (e.g., read
another site’s password).

Extensions are primarily written in JavaScript and HTML, and JavaScript provides several
methods for converting strings to code, such as eval and setTimeout. If used improperly,
these methods can introduce code injection vulnerabilities that compromise the extension. Data
can also execute if it is written to a page as HTML instead of as text, e.g., through the use of
document.write or document.body.innerHTML. Extension developers need to be care-
ful to avoid passing unsanitized, untrusted data to these execution sinks.

5.3 Extension Security Review

We reviewed 100 Google Chrome extensions from the official directory. This set is comprised
of the 50 most popular extensions and 50 randomly-selected extensions from June 2011.1 Chap-
ter 5.3.1 presents our extension review methodology. Our security review found that 40% of the
extensions contain vulnerabilities, and Chapter 5.3.2 describes the vulnerabilities. Chapter 5.3.3
presents our observation that 31% of developers do not follow even the simplest security best
practices. We notified most of the authors of vulnerable extensions (Chapter 5.3.4).

1We excluded four extensions because they included binary plugins, which require different analysis techniques;
they were replaced with the next popular or random extensions. The directory’s popularity metric is primarily based
on the number of users.

52

5.3.1 Methodology

We manually reviewed the 100 selected extensions, using a three-step security review process:

1. Black-box testing. We exercised each extension’s user interface and monitored its network
traffic to observe inputs and behavior. We looked for instances of network data being inserted
into the DOM of a page. After observing an extension, we inserted malicious data into its
network traffic (including the websites it interacts with) to test potential vulnerabilities.

2. Source code analysis. We examined extensions’ source code to determine whether data from
an untrusted source could flow to an execution sink. After manually reviewing the source
code, we used grep to search for any additional sources or sinks that we might have missed.
For sources, we looked for static and dynamic script insertion, XMLHttpRequests, cook-
ies, bookmarks, and reading websites’ DOMs. For sinks, we looked for uses of eval,
setTimeout, document.write, innerHTML, etc. We then manually traced the call
graph to find additional vulnerabilities.

3. Holistic testing. We matched extensions’ source code to behaviors we identified during
black-box testing. With our combined knowledge of an extension’s source code, network
traffic, and user interface, we attempted to identify any additional behavior that we had
previously missed.

We then verified that all of the vulnerabilities could occur in practice by building attacks. Our goal
was to find all vulnerabilities in every extension.

During our review, we looked for three types of vulnerabilities: vulnerabilities that extensions
add to websites (e.g., HTTP scripts on HTTPS websites), vulnerabilities in content scripts, and
vulnerabilities in core extensions. Some content script vulnerabilities may also be core extension
vulnerabilities, depending on the extensions’ architectures. Core extension vulnerabilities are the
most severe because the core is the most privileged extension component. We do not report vulner-
abilities if the potential attacker is a trusted website (e.g., https://mail.google.com) and
the potentially malicious data is not user-generated; we do not believe that well-known websites
are likely to launch web attacks.

After our manual review, we applied a commercial static analysis tool to six extensions, with
custom rules. However, our manual review identified significantly more vulnerabilities, and the
static analysis tool did not find any additional vulnerabilities because of limitations in its ability to
track strings through manipulations. Prior research has similarly found that a manual review by ex-
perts uncovers more bugs than static analysis tools [149]. Our other alternative, VEX [27], was not
built to handle several of the types of attacks that we included in our threat model. Consequently,
we did not pursue static analysis further.

53

Web Network
Vulnerable Component Attacker Attacker

Core extension 5 50
Content script 3 1
Website 6 14

Table 5.1. 70 vulnerabilities, by location and threat model.

Vulnerable Component Popular Random Total

Core extension 12 15 27
Content script 1 2 3
Website 11 6 17

Any 22 18 40

Table 5.2. The number of extensions with vulnerabilities, of 50 popular and 50 randomly-
selected extensions.

5.3.2 Vulnerabilities

We found 70 vulnerabilities across 40 extensions. Appendix A.2 identifies the vulnerable exten-
sions. Table 5.1 categorizes the vulnerabilities by the location of the vulnerability and the type of
attacker that could exploit it. More of the vulnerabilities can be leveraged by a network attacker
than by a web attacker, which reflects the fact that two of the Chrome extension platform’s security
measures were primarily designed to prevent web attacks. A bug may be vulnerable to both web
and network attacks; we count it as a single vulnerability but list it in both categories in Table 5.1
for illustrative purposes.

The vulnerabilities are evenly distributed between popular and randomly-selected extensions.
Table 5.2 shows the distribution. Although popular extensions are more likely to be professionally
written, this does not result in a lower vulnerability rate in the set of popular extensions that we
examined. We hypothesize that popular extensions have more complex communication with web-
sites and servers, which increases their attack surface and neutralizes the security benefits of having
been professionally developed. The most popular extension with a vulnerability had 768,154 users
in June 2011.

5.3.3 Developer Security Effort

Most extension developers are not security experts. However, there are two best practices that a
security-conscious extension developer can follow without any expertise. First, developers can use
HTTPS instead of HTTP when it is available, to prevent a network attacker from inserting data or
code into an extension. Second, developers can use innerText instead of innerHTML when
adding untrusted, non-HTML data to a page; innerText does not allow inline scripts to execute.

54

We evaluate developers’ use of these best practices to determine whether they are security-
conscious. We find that 31 extensions contain at least one vulnerability that was caused by not
following these two simple best practices. This demonstrates that a substantial fraction of devel-
opers do not make use of optional security mechanisms, even if the security mechanisms are very
simple to understand and use. As such, we advocate mandatory security mechanisms that force
developers to follow best security practices (Chapter 5.7).

5.3.4 Author Notification

We disclosed the extensions’ vulnerabilities to all of the developers that we were able to contact.
We found contact information for 80% of the vulnerable extensions.2 Developers were contacted
between June and September 2011, depending on when we completed each review. We sent devel-
opers follow-up e-mails if they did not respond to our initial disclosure within a month.

Of the 32 developers that we contacted, 19 acknowledged and fixed the vulnerabilities in their
extensions, and 7 acknowledged the vulnerabilities but have not fixed them as of February 7, 2012.
Two of the un-patched extensions are official Google extensions. As requested, we provided guid-
ance on how the security bugs could be fixed. None of the developers disputed the legitimacy of the
vulnerabilities, although one developer argued that a vulnerability was too difficult to fix because
it would require moving some content to child frames.

Appendix A.2 identifies the extensions that have been fixed. However, the “fixed” extensions
are not necessarily secure despite our review. While checking on the status of vulnerabilities, we
discovered that developers of several extensions have introduced new security vulnerabilities that
were not present during our initial review. We do not discuss the new vulnerabilities in this chapter.

5.4 Evaluation of the Permission System

The Chrome permission system is intended to reduce the severity of core extension vulnerabilities.
If a website or network attacker were to successfully inject malicious code into a core extension, the
severity of the attack would be limited by the extension’s permissions. However, permissions will
not mitigate vulnerabilities in extensions that request many dangerous permissions. We evaluate
the extent to which permissions mitigate the core extension vulnerabilities that we found.

Table 5.3 lists the permissions that the vulnerable extensions request. Ideally, each permission
should be requested infrequently. We find that 70% of vulnerable extensions request the tabs per-
mission; an attacker with access to the tabs API can collect a user’s browsing history or redirect
pages that a user views. Fewer than half of extensions request each of the other permissions.

2For the remaining 20%, contact information was unavailable, the extension had been removed from the directory,
or we were unable to contact the developer in a language spoken by the developer.

55

Permissions Times Requested Percentage

tabs (browsing history) 19 70%
all HTTP domains 12 44%
all HTTPS domains 12 44%
specific domains 10 37%
notifications 5 19%
bookmarks 4 15%
no permissions 4 15%
cookies 3 11%
geolocation 1 4%
context menus 1 4%
unlimited storage 1 4%

Table 5.3. The permissions that are requested by the 27 extensions with core extension
vulnerabilities.

None
15%

Low
11%

Medium
30%

High
44%

Figure 5.1. The 27 extensions with core vulnerabilities, categorized by the severity of their
worst vulnerabilities.

To summarize the impact of permissions on extension vulnerabilities, we categorized all of the
vulnerabilities by attack severity. We based our categorization on the Firefox Security Severity
Ratings [19], which has been previously used to classify extension privileges [31]:

• Critical: Leaks the permission to run arbitrary code on the user’s system

• High: Leaks permissions for the DOM of all HTTP(S) websites

• Medium: Leaks permissions for private user data (e.g., history) or the DOM
of specific websites that contain financial or important personal data (e.g.,
https://*.google.com/*)

• Low: Leaks permissions for the DOM of specific websites that do not contain sensitive data
(e.g., http://*.espncricinfo.com) or permissions that can be used to annoy the
user (e.g., fill up storage or make notifications)

56

• None: Does not leak any permissions

We did not find any critically-vulnerable extensions. This is a consequence of our extension se-
lection methodology: we did not review any extensions with binary plugins, which are needed to
obtain critical privileges.

Figure 5.1 categorizes the 27 vulnerable extensions by their most severe vulnerabilities. In the
absence of a permission system, all of the vulnerabilities would give an attacker access to all of
the browser’s privileges (i.e., critical privileges). With the permission system, less than half of the
vulnerable extensions yield access to high-severity permissions. As such, our study demonstrates
that the permission system successfully limits the severity of most vulnerabilities.

We hypothesized that permissions would positively correlate with vulnerabilities. Chapter 4
showed that many extensions are over-permissioned, and we thought that developers who are un-
willing to follow security best practices (e.g., use HTTPS) would be unwilling to take the time to
specify the correct set of permissions. This would result in vulnerable extensions requesting dan-
gerous permissions at a higher rate. However, we do not find any evidence of a positive correlation
between vulnerabilities and permissions. The 27 extensions with core vulnerabilities requested
permissions at a lower rate than the other 73 extensions, although the difference was not statisti-
cally significant. Our results show that developers of vulnerable extensions can use permissions
well enough to reduce the privileges of their insecure extensions, even though they lack the exper-
tise or motivation required to secure their extensions.

Permissions are not only used by the Google Chrome extension system. Android implements
a similar permission system, and future HTML5 device APIs will likely be guarded with permis-
sions. Although it has been assumed that permissions mitigate vulnerabilities (Chapters 4 and
[76]), our study is the first to evaluate whether this is true for real-world vulnerabilities or measure
quantitatively how much it helps mitigate these vulnerabilities in practice. Our findings indicate
that permissions can have a significant positive impact on the system’s security and are worth
including in a new platform as a second line of defense against attacks. However, they are not
effective enough to be relied on as the only defense mechanism.

5.5 Evaluation of Isolated Worlds

The isolated worlds mechanism is intended to protect content scripts from malicious websites,
including otherwise-benign websites that have been altered by a network attacker. We evaluate
whether the isolated worlds mechanism is sufficient to protect content scripts from websites. Our
security review indicates that isolated worlds largely succeeds: only 3 of the 100 extensions have
content script vulnerabilities, and only 2 of the vulnerabilities allow arbitrary code execution.

Developers face four main security challenges when writing extensions that interact with web-
sites. We discuss whether and how well the isolated worlds mechanism helps prevent these vulner-
ability classes.

57

Data as HTML. One potential web development mistake is to insert untrusted data as HTML into
a page, thereby allowing untrusted data to run as code. The isolated worlds mechanism mitigates
this type of error in content scripts. When a content script inserts data as HTML into a website,
any scripts in the data are executed within the website’s isolated world instead of the extension’s.
This means that an extension can read data from a website’s DOM, edit it, and then re-insert it
into the page without introducing a content script vulnerability. Alternately, an extension can copy
data from one website into another website. In this case, the extension will have introduced a
vulnerability into the edited website, but the content script itself will be unaffected.

We expect that content scripts would exhibit a higher vulnerability rate if the isolated worlds
mechanism did not mitigate data-as-HTML bugs. Six extensions’ content scripts contained data-
as-HTML errors that resulted in web site vulnerabilities, instead of the more-dangerous content
script vulnerabilities. Content scripts have strictly more privileges than web sites, so content script
vulnerabilities are more severe; content scripts have the additional ability of communicating with
the core extension. Consequently, we conclude that the isolated worlds mechanism reduces the
rate of content script vulnerabilities by reducing data-as-HTML errors to web site vulnerabilities.

Eval. Developers can introduce vulnerabilities into their extensions by using eval to execute
untrusted data. If an extension reads data from a website’s DOM and evals the data in a content
script, the resulting code will run in the content script’s isolated world. As such, the isolated worlds
mechanism does not prevent or mitigate vulnerabilities due to the use of eval in a content script.

We find that relatively few developers use eval, possibly because its use has been responsible
for well-known security problems in the past [46, 13]. Only 14 extensions use eval or equivalent
constructs to convert strings to code in their content scripts, and most of those use it only once in
a third-party library function. However, we did find two content script vulnerabilities that arise
because of an extension’s use of eval in its content script. For example, the Blank Canvas Script
Handler extension can be customized with supplemental scripts, which the extension downloads
from a website and evals in a content script. Although the developer is intentionally running data
from the website as code, the integrity of the HTTP website that hosts the supplemental scripts
could be compromised by a network attacker.

Click Injection. Extensions can register event handlers for DOM elements on websites. For
example, an extension might register a handler for a button’s onClick event. However, extensions
cannot differentiate between events that are triggered by the user and events that are generated by
a malicious web site. A website can launch a click injection attack by invoking an extension’s
event handler, thereby tricking the extension into performing an action that was not requested by
the user. Although this attack does not allow the attacker to run arbitrary code in the vulnerable
content script, it does allow the website to control the content script’s behavior.

The isolated worlds mechanism does not prevent or mitigate click injection attacks at all. How-
ever, the attack surface is small because relatively few extensions register event handlers for web-
sites’ DOM elements. Of the 17 extensions that register event handlers, most are for simple buttons
that toggle UI state. We observed only one click injection vulnerability, in the Google Voice exten-
sion. The extension changes phone numbers on websites into links. When a user clicks a phone
number link, Google Voice inserts a confirmation dialog onto the DOM of the website to ensure
that the user wants to place a phone call. Google Voice will place the call following the user’s con-

58

firmation. However, a malicious website could fire the extension’s event handlers on the link and
confirmation dialog, thereby placing a phone call from the user’s Google Voice account without
user consent.

Prototypes and Capabilities. In the past, many vulnerabilities due to prototype poisoning and
capability leaks have been observed in bookmarklets and Firefox extensions [104, 154, 20]. Proto-
type poisoning occurs when a website maliciously alters the behavior of native objects by changing
their prototypes [20]. The isolated worlds mechanism provides heap separation, which prevents
both of these types of attacks. Regardless of developer behavior, these attacks are not possible in
Chrome extensions as long as the isolation mechanism works correctly.

Based on our security review, the isolated worlds mechanism is highly effective at shielding
content scripts from malicious websites. It mitigates data-as-HTML errors, which we found were
very common in the Chrome extensions that we reviewed. Heap separation also prevents prototype
poisoning and capability leaks, which are common errors in bookmarklets and Firefox extensions.
Although the isolated worlds mechanism does not prevent click injection or eval-based attacks,
we find that developers rarely make these mistakes. We acknowledge that our manual review could
have missed some content script vulnerabilities. However, we find it unlikely that we could have
missed many, given our success at finding the same types of vulnerabilities in core extensions. We
therefore conclude that the isolated worlds mechanism is effective, and other extension platforms
should implement it if they have not yet done so.

5.6 Evaluation of Privilege Separation

Privilege separation is intended to shield the privileged core extension from attacks. The isolated
worlds mechanism serves as the first line of defense against malicious websites, and privilege
separation is supposed to protect the core extension when isolated worlds fails. We evaluate the
effectiveness of extension privilege separation and find that, although it is unneeded, it would be
partially successful at accomplishing its purpose if the isolated worlds mechanism were to fail.

5.6.1 Cross-Component Vulnerabilities

Some developers give content scripts access to core extension permissions, which removes the
defense-in-depth benefits of privilege separation. We evaluate the impact of developer behavior on
the effectiveness of extension privilege separation.

Vulnerable Content Scripts. The purpose of privilege separation is to limit the impact of content
script vulnerabilities. Even if a content script is vulnerable, privilege separation should prevent
an attacker from executing code with the extension’s permissions. We identified two extensions
with content script vulnerabilities that permit arbitrary code execution; these two extensions could
benefit from privilege separation.

59

Permissions Number of Scripts

All of the extension’s permissions 4
Partial: Cross-origin XHRs 9
Partial: Tab control 5
Partial: Other 5

Table 5.4. 61 extensions have content scripts that do not have code injection vulnerabilities.
If an attacker were hypothetically able to compromise the content scripts, these are the
permissions that the attacker could gain access to via the message-passing channel.

Despite privilege separation, both of the vulnerabilities yield access to some core extension
privileges. The vulnerable content scripts can send messages to their respective core extensions,
requesting that the core extensions exercise their privileges. In both extensions, the core exten-
sion makes arbitrary XHRs on behalf of the content script and returns the result to the content
script. This means that the two vulnerable content scripts could trigger arbitrary HTTP XHRs even
though content scripts should not have access to a cross-origin XMLHttpRequest object. These
vulnerable extensions represent a partial success for privilege separation because the attacker can-
not gain full privileges, but also a partial failure because the attacker can gain the ability to make
cross-origin XHRs.

Hypothetical Vulnerabilities. Due to the success of the isolated worlds mechanism, our set of
vulnerabilities only includes two extensions that need privilege separation as a second line of de-
fense. To expand the scope of our evaluation of privilege separation, we explore a hypothetical
scenario: if the currently-secure extensions’ content scripts had vulnerabilities, would privilege
separation mitigate these vulnerabilities?

Of the 98 extensions that do not have content script vulnerabilities, 61 have content scripts. We
reviewed the message passing boundary between these content scripts and their core extensions.
We determined that 38% of content scripts can leverage communication with their core extensions
to abuse some core extension privileges: 4 extensions’ content scripts can use all of their cores’
permissions, and 19 can use some of their cores’ permissions. Table 5.4 shows which permis-
sions attackers would be able to obtain via messages if they were able to compromise the content
scripts.3 This demonstrates that privilege separation could be a relatively effective layer of defense,
if needed: we can expect that privilege separation would be effective at limiting the damage of a
content script vulnerability 62% of the time.

Example. The AdBlock extension allows its content script to execute a set of pre-defined functions
in the core extension. To do this, the content script sends a message to the core extension. A
string in the message is used to index the window object, allowing the content script to select
a pre-defined function to run. Unfortunately, this also permits arbitrary code execution because
the window object provides access to eval. As such, a compromised content script would have
unfettered access to the core extension’s permissions.

3In newer versions of Chrome, content scripts can directly make cross-origin XHRs. However, this was not per-
mitted at the time of our study, so we consider these cases as potential privilege escalation vulnerabilities.

60

Example. A bug in the Web Developer extension unintentionally grants its content script full
privileges. Its content script can post small notices to the popup page, which is part of the core
extension. The notices are inserted using innerHTML. The notices are supposed to be text, but
a compromised content script could send a notice with an inline script that would execute in the
popup page with full core extension permissions.

5.6.2 Web Site Metadata Vulnerabilities

The Chrome extension platform applies privilege separation with the expectation that malicious
website data will first enter an extension via a vulnerable content script. However, it is possible for
a website to attack a core extension without crossing the privilege separation boundary. Website-
controlled metadata such as titles and URLs can be accessed by the core extension through brow-
ser managers (e.g., the history, bookmark, and tab managers). This metadata may include inline
scripts, and mishandled metadata can lead to a core extension vulnerability. Website metadata
does not flow through content scripts, so privilege separation does not impede it. We identified five
vulnerabilities from metadata that would allow an attacker to circumvent privilege separation.

Example. The Speeddial extension replicates Chrome’s built-in list of recently closed pages.
Speeddial keeps track of the tabs opened using the tabs manager and does not sanitize the titles of
these pages before adding them to the HTML of one of its core extension pages. If a title were to
contain an inline script, it would execute with the core extension’s permissions.

5.6.3 Direct Network Attacks

Privilege separation is intended to protect the core extension from web attackers and HTTP web-
sites that have been compromised by network attackers. However, the core extension may also be
subject to direct network attacks. Nothing separates a core extension from code in HTTP scripts
or data in HTTP XMLHttpRequests. HTTP scripts in the core extension give a network at-
tacker the ability to execute code with the extension’s full permissions, and HTTP XHRs cause
vulnerabilities when extensions allow the HTTP data to execute.

Direct network attacks comprise the largest class of core extension vulnerabilities, as Table 5.5
illustrates. Of the 50 core extension vulnerabilities, 44 vulnerabilities (88%) stem from HTTP
scripts or HTTP XMLHttpRequests, as opposed to website data. For example, many extensions
put the HTTP version of the Google Analytics script in the core extension to track which of the
extensions’ features are used.

Example. Google Dictionary allows a user to look up definitions of words by double clicking on a
word. The desired definition is fetched by making a HTTP request to google.com servers. The
response is inserted into one of the core extension’s pages using innerHTML. A network attacker
could modify the response to contain malicious inline scripts, which would then execute as part of
the privileged core extension page.

61

Type Vulnerabilities

Website content 2
Website metadata 5
HTTP XHR 16
HTTP script 28

Total 50

Table 5.5. The types of core extension vulnerabilities.

5.6.4 Implications

The isolated worlds mechanism is so effective at protecting content scripts from websites that
privilege separation is rarely needed. As such, privilege separation is used to address a threat
that almost does not exist, at the cost of increasing the complexity and performance overhead of
extensions. (Privilege separation requires an extra process for each extension, and communication
between content scripts and core extensions is IPC.) We find that network attackers are the real
threat to core extension security, but privilege separation does not mitigate or prevent these attacks.
This shows that although privilege separation can be a powerful security mechanism [122], its
placement within an overall system is an important determining factor of its usefulness.

Our study also has implications for the use of privilege separation in other contexts. All Chrome
extension developers are required to privilege separate their extensions, which allows us to evaluate
how well developers who are not security experts use privilege separation. We find that privilege
separation would be fairly effective at preventing web attacks in the absence of isolated worlds:
privilege separation would fully protect 62% of core extensions. However, in more than a third of
extensions, developers created message passing channels that allow low-privilege code to exploit
high-privilege code. This demonstrates that forcing developers to privilege separate their software
will improve security in most cases, but a significant fraction of developers will accidentally or
intentionally negate the benefits of privilege separation. Mandatory privilege separation could be
a valuable line of defense for another platform, but it should not be relied on as the only security
mechanism; it should be coupled with other lines of defense.

5.7 Defenses

Despite Google Chrome’s security architecture, our security review identified 70 vulnerabilities
in 40 extensions. Based on the nature of these vulnerabilities, we propose and evaluate four ad-
ditional defenses. The defenses are bans on unsafe coding practices that lead to vulnerabilities.
We advocate mandatory bans on unsafe coding practices because many developers do not follow
security best practices when they are optional (Chapter 5.3.3). We quantify the security benefits
and compatibility costs of each of these defenses to determine whether they should be adopted.
Our main finding is that a combination of banning HTTP scripts and banning inline scripts would

62

Security Broken, Broken And
Restriction Benefit But Fixable Unfixable

No HTTP scripts in core 15% 15% 0%
No HTTP scripts on HTTPS websites 8% 8% 0%
No inline scripts 15% 79% 0%
No eval 3% 30% 2%
No HTTP XHRs 17% 29% 14%

All of the above 35% 86% 16%
No HTTP scripts and no inline scripts 32% 80% 0%
Chrome 18 policy 27% 85% 2%

Table 5.6. The percentage of the 100 extensions that would be affected by the restrictions.
The “Security Benefit” column shows the number of extensions that would be fixed by the
corresponding restriction.

prevent 94% of the core extension vulnerabilities, with only a small amount of developer effort to
maintain full functionality in most cases.

In concurrent work, Google Chrome implemented Content Security Policy (CSP) for exten-
sions. CSP can be used to enforce all four of these defenses. Initially, the use of CSP was wholly
optional for developers. As of Chrome 18, extensions that take advantage of new features will be
subject to a mandatory policy; this change was partially motivated by our study [32].

5.7.1 Banning HTTP Scripts

Scripts fetched over HTTP are responsible for half of the vulnerabilities that we found. All of
these vulnerabilities could be prevented by not allowing extensions to add HTTP scripts to their
core extensions [82] or to HTTPS websites. Extensions that currently violate this restriction could
be easily modified to comply by packaging the script with the extension or using a HTTPS URL.
Only vulnerable extensions would be affected by the ban because any extension that uses HTTP
scripts will be vulnerable to man-in-the-middle attacks.

Core Extension Vulnerabilities. Banning HTTP scripts from core extensions would remove 28
core extension vulnerabilities (56% of the total core extension vulnerabilities) from 15 extensions.
These 15 extensions load HTTP scripts from 13 domains, 10 of which already offer the same script
over HTTPS. The remaining 3 scripts are static files that could be packaged with the extensions.

Website Vulnerabilities. Preventing extensions from adding HTTP scripts to HTTPS websites
would remove 8 website vulnerabilities from 8 extensions (46% of the total website vulnerabili-
ties). These vulnerabilities allow a network attacker to circumvent the protection that HTTPS pro-
vides for websites. The extensions load HTTP scripts from 7 domains, 3 of which offer HTTPS.
The remaining 4 scripts are static scripts that could be packaged with the extensions.

63

5.7.2 Banning Inline Scripts

Untrusted data should not be added to pages as HTML because it can contain inline
scripts (e.g., inline event handlers, links with embedded JavaScript, and <script> tags).
For example, untrusted data could contain an image tag with an inline event handler:
. We find that 40% of the core extension vulnerabil-
ities are caused by adding untrusted data to pages as HTML. These vulnerabilities could be
prevented by not allowing any inline scripts to execute: the untrusted data will still be present as
HTML, but it would be static. JavaScript would only run on a page if it is in a separate .js file
that is stored locally or loaded from a trusted server that the developer has whitelisted.

Banning inline scripts from extension HTML would eliminate 20 vulnerabilities from 15 exten-
sions. All of these vulnerabilities are core extension vulnerabilities. Content script vulnerabilities
cannot be caused by inline scripts, and we cannot prevent extensions from adding inline scripts to
HTTPS websites because existing enforcement mechanisms cannot differentiate between a web-
site’s own inline scripts and extension-added scripts.

However, banning inline scripts has costs. Developers use legitimate inline scripts for several
reasons, such as to define event handlers. In order to maintain functionality despite the ban, all
extensions would need to delete their inline scripts from HTML and move them to separate .js
files. Inline event handlers (e.g., onclick) cannot simply be copied and pasted; they need to be
rewritten as programmatically using the DOM API.

We reviewed the 100 extensions to determine what changes would be needed to comply with
a ban on inline scripts. Applying this ban breaks 79% of the extensions. However, all of the
extensions could be retrofitted to work without inline scripts without significant changes to the
extension. Most of the compatibility costs pertain to moving the extensions’ inline event handlers.
The extensions contain an average of 7 event handlers, with a maximum of 98 and a minimum of
0 event handlers. Each of these handlers would need to be moved by the extensions’ authors.

5.7.3 Banning Eval

Dynamic code generation converts strings to code, and its use can lead to vulnerabilities if the
strings are untrusted data. Disallowing the use of dynamic code generation (e.g., eval and
setTimeout) would eliminate three vulnerabilities: one core extension vulnerability, and two
vulnerabilities that are both content script and core extension vulnerabilities.

We reviewed the 100 extensions and find that dynamic code generation is primarily used in
three ways:

1. Developers sometimes pass static strings to setTimeout instead of functions. This coding
pattern cannot be exploited. It would be easy to alter instances of this coding pattern to
comply with a ban on dynamic code generation; the strings simply need to be replaced with
equivalent functions.

64

2. Some developers use eval on data instead of JSON.parse. We identified one vulnerabil-
ity that was caused by this practice. In the absence of dynamic code generation, developers
could simply use the recommended JSON.parse.

3. Two extensions use eval to run user-specified scripts that extend the extensions. In both
cases, their error is that they fetch the extra scripts over HTTP instead of HTTPS. For these
two extensions, a ban on eval would prevent the vulnerabilities but irreparably break core
features of the extensions.

Richards et al. present additional uses of eval in a large-scale study of web applications; we did
not observe all of the use cases of eval in our set of 100 extensions [123].

We find that 32 extensions would be broken by a ban on dynamic code generation. Most
instances can easily be replaced, but 2 extensions would be permanently broken. Overall, a ban
on eval would fix three vulnerabilities at the cost of fundamentally breaking two extensions.
Extensions that require eval could potentially be handled through a review process, similar to the
review process for extensions with plugins.

5.7.4 Banning HTTP XHR

Network attacks can occur if untrusted data from an HTTP XMLHttpRequest is allowed to flow
to a JavaScript execution sink. 30% of the 70 vulnerabilities are caused by allowing data from
HTTP XHRs to execute. One potential defense is to disallow HTTP XHRs; all XHRs would have
to use HTTPS. This ban would remove vulnerabilities from 17 extensions.

However, banning HTTP XHRs would have a high compatibility cost. The only way to comply
with an HTTPS-only XHR policy is to ensure that the server supports HTTPS; unlike scripts,
remote data cannot be packaged with extensions. Developers who do not control the servers that
their extensions interact with will not be able to adapt their extensions. Extension developers
who also control the domains may be able to add support for HTTPS, although this can be a
prohibitively expensive and difficult process for a novice developer.

We reviewed the 100 extensions and found that 29% currently make HTTP XHRs. All of these
would need to be changed to use HTTPS XHRs. However, not all of the domains offer HTTPS.
Ten extensions request data from at least one HTTP-only domain. Additionally, four extensions
make HTTP XHRs to an unlimited number of domains based on URLs provided by the user; these
extensions would have permanently reduced functionality. For example, Web Developer lets users
check whether a website is valid HTML. It fetches the user-specified website with an XHR and
then validates it. Under a ban on HTTP XHRs, the extension would not be able to validate HTTP
websites. In total, 14% of extensions would have some functionality permanently disabled.

65

5.7.5 Recommendations

Table 5.6 summarizes the benefits and costs of the defenses. If the set of 100 extensions were
subject to all four bans, only 5 vulnerable extensions would remain, and 16 extensions would be
permanently broken. Based on this evaluation, we conclude:

• We strongly recommend banning HTTP scripts and inline scripts; together, they would pre-
vent 47 of the 50 core extension vulnerabilities, and no extension would be permanently
broken. The developer effort required to comply with these restrictions is modest.

• Banning eval would have a neutral effect: neither the security benefits nor the costs are
large. Consequently, we advise against banning eval.

• We do not recommend banning HTTP XHRs, given the number of extensions that would
be permanently disabled by the ban. Of the 20 vulnerabilities that the ban on HTTP XHRs
would prevent, 70% could also be prevented by banning inline scripts. We do not feel that
the ban on HTTP XHRs adds enough value to justify breaking 14% of extensions.

Starting with Chrome 18, extensions will be subject to a CSP that enforces some of these
bans [4]. Our study partially motivated their decision to adopt the bans [32], although the policy
that they adopted is slightly stricter than our recommendations. The mandatory policy in Chrome
18 will ban HTTP scripts in core extensions, inline scripts, and dynamic code generation. Due to
technical limitations, they are not adopting a ban on adding HTTP scripts to HTTPS websites. The
policy will remove all of the core extension vulnerabilities that we found. The only extensions that
the policy will permanently break are the two extensions that rely on eval.

5.8 Related Work

Extension Vulnerabilities. To our knowledge, our work is the first to evaluate the efficacy of the
Google Chrome extension platform, which is widely deployed and explicitly designed to prevent
and mitigate extension vulnerabilities. Vulnerabilities in other extension platforms, such as Fire-
fox, have been investigated by previous researchers [104, 27]. We found that 40% of Google
Chrome extensions are vulnerable, which is in contrast to a previous study that found that 0.24%
of Firefox extensions contain vulnerabilities [27]. This does not necessarily imply that Firefox ex-
tensions are more secure; rather, our scopes and methodologies differ. Unlike the previous study,
we considered network attackers as well as web attackers. We find that 5% of Google Chrome
extensions have the types of web vulnerabilities that the previous study covered. The remaining
discrepancy could be accounted for by our methodology: we employed expert human reviewers
whereas previous work relied on a static analysis tool that does not model dynamic code evalua-
tion, data flow through the extension API, data flow through DOM APIs, or click injection attacks.
However, it is impossible to know precisely what percentage of the discrepancy is due to differ-
ences in methodology.

66

Privilege Separation. Privilege separation is a fundamental software engineering principle pro-
posed by Saltzer and Schroeder [127]. Numerous works have applied this concept to security, such
as OpenSSH [122] and qmail [34]. Studies have established that privilege separation has value
in software projects that employ security experts (e.g., browsers [55]). However, we focus on the
effectiveness of privilege separation in applications that are not written by security experts.

Recently, researchers have built several tools and frameworks to help developers privilege sep-
arate their applications [37, 65, 93, 94, 113]. For example, Akhawe et al. demonstrated how to
privilege-separate Chrome extensions using HTML5 features [23]. These frameworks are targeted
at security-conscious developers who voluntarily choose to privilege-separate their applications; in
contrast, we consider the role of privilege separation in arbitrary applications, many of which are
built by non-security-conscious developers.

In concurrent and independent work, Karim et al. studied the effectiveness of privilege sepa-
ration in Mozilla Jetpack extensions [88]. Like Chrome extensions, Jetpack extensions are split
into multiple components with different permissions. They statically analyzed Jetpack extensions
and found several capability leaks in modules. Although none of these capability leaks are actual
vulnerabilities, the capability leaks demonstrate that developers can make errors in a privilege-
separated environment. Their findings support the results of our analysis of privilege separation in
Chrome extensions.

CSP Compatibility. Adapting websites to work with CSP can be a challenging undertaking for de-
velopers, primarily due to the complexities associated with server-side templating languages [152].
However, extensions do not use templating languages. Consequently, applying CSP to extensions
is easier than applying it to websites in most cases. We expect that our CSP compatibility findings
for extensions will translate to packaged JavaScript and packaged web applications.

Malicious Extensions. Extension platforms can be used to build malware (e.g., FFsniFF and In-
fostealer.Snifula [157]). Mozilla and Google employ several strategies to prevent malicious exten-
sions, such as domain verification, fees, and security reviews. Liu et al. propose changes to Chrome
to make malware easier to identify, such as making permissions even more fine-grained [103]. Re-
search on extension malware is orthogonal to our work, which focuses on external attackers that
leverage vulnerabilities in benign-but-buggy extensions.

5.9 Conclusion

We performed a security review on a set of 100 Google Chrome extensions, including the 50 most
popular, and found that 40% have at least one vulnerability. Based on this set of vulnerabilities,
we evaluated the effectiveness of Chrome’s three extension security mechanisms: isolated worlds,
privilege separation, and permissions.

We found that the isolated worlds mechanism is highly effective because it prevents common
developer errors (i.e., data-as-HTML errors). The effectiveness of isolated worlds means that
privilege separation is rarely needed. Privilege separation’s infrequent usefulness may not justify
the complexity and communication overhead that it adds to extensions. However, our study shows

67

that privilege separation would improve security in the absence of isolated worlds. We also found
that permissions can have a significant positive impact on system security; developers of vulnerable
extensions can use permissions well enough to reduce the scope of their vulnerabilities.

Although we demonstrated that privilege separation and permissions can mitigate vulnera-
bilities, developers do not always use them optimally. We identified several instances in which
developers accidentally negated the benefits of privilege separation or intentionally circumvented
the privilege separation boundary to implement features. Similarly, extensions sometimes ask for
more permissions than they need (Chapter 4). Automated tools for privilege separation and per-
mission assignment could help developers better use these security mechanisms, thereby rendering
them even more effective.

Despite the successes of these security mechanisms, extensions are widely vulnerable. The
vulnerabilities occur because the system was designed to address only one threat: websites that
attack extensions through direct interaction. There are no security mechanisms to prevent direct
network attacks on core extensions, website metadata attacks, or attacks on websites that have
been altered by extensions. This finding should serve as a reminder that multiple threats should
be considered when initially designing a system. We propose to prevent these additional threats
by banning insecure coding practices that commonly lead to vulnerabilities; bans on HTTP scripts
and inline scripts would remove 94% of the most serious attacks with a tractable developer cost.

5.10 Acknowledgements

We thank Nicholas Carlini for reviewing the extensions. We also thank Prateek Saxena and Adam
Barth for their insightful comments.

68

Chapter 6

Android Permissions: User Attention,

Comprehension, and Behavior

6.1 Introduction

The purpose of Android permissions is to “inform the user of the capabilities [their] applications
have” [24]. In this chapter, we explore whether Android permissions are usable security indica-
tors that fulfill this goal. We base our inquiry on Wogalter’s Communication-Human Information
Processing (C-HIP) model, which provides a framework for structuring warning research [155].
The C-HIP model identifies a set of steps between the delivery of a warning and the user’s final
behavior. We connect each step with a research question:

1. Attention switch and maintenance. Do users notice permissions before installing an applica-
tion? A user needs to switch focus from the primary task (i.e., installation) to the permission
warnings, for long enough to read and evaluate them.

2. Comprehension and memory. Do users understand how permissions correspond to applica-
tion risks? Users need to understand the scope and implications of permissions.

3. Attitudes and belief. Do users believe that permissions accurately convey risk? Do users
trust the permission system to limit applications’ abilities?

4. Motivation. Are users motivated to consider permissions? Do users care about their phones’
privacy and security, or view applications as threats?

5. Behavior. Do permissions influence users’ installation decisions? Do users ever cancel
installation because of permissions? Users should not install applications whose permissions
exceed their comfort thresholds.

69

We focus on the first two steps because they are the most important: a failure of usability in one of
these early steps will render all subsequent steps irrelevant. We also study the end behavior, for an
end-to-end assessment of how Android permissions affect user actions.

We performed two usability studies to address the attention, comprehension, and behavior
questions. First, we surveyed 308 Android users with an Internet questionnaire to collect data
about their understanding and use of permissions. Next, we observed and interviewed 25 Android
users in a laboratory study to gather nuanced data. The two studies — performed with different
sets of participants and in different contexts — serve to confirm and validate each other.

Our primary findings are:

• Attention. In both the Internet survey and laboratory study, only 17% of participants paid
attention to permissions during a given installation. At the same time, 42% of laboratory
participants were unaware of the existence of permissions.

• Comprehension. Overall, participants demonstrated very low rates of comprehension.
Only 3% of Internet survey respondents could correctly answer three comprehension ques-
tions. However, 24% of laboratory study participants demonstrated a competent—albeit
imperfect—understanding of permissions.

• Behavior. A majority of Internet survey respondents claimed to have decided not to install an
application because of its permissions at least once. Twenty percent of our laboratory study
participants were able to provide concrete details about times that permissions caused them
to cancel installation.

Our findings indicate that the Android permission system is neither a total success nor a com-
plete failure. Due to low attention and comprehension rates, permissions alone do not protect
most users from undesirable applications (i.e., malware or grayware). However, a minority of lab-
oratory study participants (20%) demonstrated awareness of permissions and reasonable rates of
understanding (comprehension grades of 70% or higher). This minority could be sufficient to pro-
tect others if their opinions about application permissions could be successfully communicated via
user reviews. We also found that some people have altered their behavior based on permissions,
which demonstrates that users can be receptive to security and privacy warnings during installation.

6.2 Methodology

We surveyed 308 Android users with an Internet survey and interviewed 25 Android users in a
laboratory study. We designed the two studies to validate each other. We recruited Internet survey
respondents with AdMob advertisements and laboratory study participants with Craigslist adver-
tisements; although both recruitment procedures might introduce bias, it is unlikely that they intro-
duced the same biases. We piloted our studies with 50 AdMob-recruited Internet respondents and
interviews of acquaintances.

70

6.2.1 Internet Survey

In September 2011, we recruited Android users to answer an Internet survey about Android permis-
sions. The purpose of this survey was to gauge how widely users understand and consider Android
permissions. To recruit respondents, we commissioned an advertising campaign using AdMob’s
Android advertising service. Our advertisement was displayed in applications on Android devices
in the U.S. and Canada. (The advertisement did not appear on web sites.) As an incentive to par-
ticipate, each person who completed a survey received a free MP3 download from Amazon.com.
The advertisement included our university’s name and said, “Survey for free Amazon MP3.” We
recruited people with AdMob advertisements because doing so restricted survey respondents to
those using applications on Android devices.

We paid AdMob $0.116 per click and received 31, 984 visitors, of which 1, 994 (1%) began
and 350 (17.5%) completed the survey. The rate at which people began the survey was likely
influenced by the high rate of accidental clicks on advertisements on mobile devices [16] and our
request that only people age 18 and over take the survey. Among people who started the survey,
the completion rate was likely influenced by the difficulty of completing a survey on a phone. We
ran the advertisement for two hours, and respondents completed it in an average of seven minutes.

We filtered out respondents who (1) stated that they were under 18, (2) had non-Android
user-agent strings, or (3) appeared to be duplicates based on their IP addresses and
user-agent strings. This left us with 326 unique responses. We designed our survey to make
cheating (i.e., false responses for the purpose of receiving the reward) easy and obvious by making
every question optional and providing an “I don’t know” option for each question. Survey re-
sponses fell into two distinct groups: responses that were complete except for two or three “I don’t
know” responses, and responses that were incomplete except for one or two completed questions.
Thus, we filtered out responses in the latter group. This resulted in a total of 308 valid responses.

The 308 respondents reported that they were 50% male and 49% female, with the remainder
declining to report their gender. Respondents indicated that their age distribution was: 28% be-
tween the ages of 18 and 28, 28% between the ages of 29 and 39, 22% between the ages of 40
and 50, 15% between the ages of 51 and 61, and 5% over the age of 62. This age distribution is in
line with Android age demographics [22], although the gender breakdown of our survey is more
balanced than overall Android demographics.

The survey was nine pages long and meant to be completed on an Android smartphone. Each
page filled a standard phone screen. We used the first three pages to ask respondents about Android
usage information: how long they had owned an Android phone, from where they had downloaded
Android applications, and the factors they considered when downloading applications. On each of
the three subsequent pages, we randomly displayed 1 of 11 Android permission warnings and asked
respondents to indicate what the permission allows the application to do. We gave respondents four
choices, in addition to “none of these” and “I don’t know.” We then asked respondents to complete
the three Westin index questions,1 tell us about their past actions relating to Android permissions,
and provide demographics information (age and gender).

1The Westin index is a set of three questions designed to segment users into three groups: Privacy Fundamentalists,
Privacy Pragmatists, and Privacy Unconcerned [142]. The Westin index is widely used in surveys to gauge users’

71

Figure 6.1. Screenshot of a quiz question from the Internet survey.

Figure 6.1 depicts one of the quiz questions from the survey, and Table 6.3 lists the 11 quiz
questions and choices. We designed the permission quiz questions to include one completely in-
correct choice and one choice to test fine-grained comprehension (e.g., whether they understood
that a permission to read calendar events does not include the privilege to edit the calendar). The
set of 11 quiz questions included two questions about the READ_SMS permission: one to test the
distinction between reading and sending SMS messages, and another to test respondents’ familiar-
ity with the “SMS” acronym. Survey respondents received only one of these two related questions,
so scores for these questions were independent of each other.2

All of the quiz questions had one or two correct choices, with the exception of the question
about the CAMERA permission. This permission controls the ability to take a new photograph or
video recording; it does not control access to the photo library. However, we later discovered
that all applications can view or edit the photo library without any permission. Consequently, the
correct answer to the CAMERA permission question is to select all four choices.

6.2.2 Laboratory Study

In October 2011, we recruited 25 local Android users for a laboratory study. The primary purpose
of the laboratory study was to supplement the Internet survey with detailed and explanatory data.
Technology users’ feelings about privacy are complicated and often contradictory. When asked
directly about their privacy preferences, most surveys have found that people are very protective of

attitudes towards privacy [97]. Buchanan et al. validated the Westin index for use in a computing context by showing
that it correlates with users’ privacy concerns and behavior on the Internet [45].

2We refer to these questions as READ SMS1 and READ SMS2, as depicted in Table 6.3.

72

Figure 6.2. Screenshot of permissions on an application’s Settings page.

their personal data [18, 45]. However, users’ actions do not always correspond to their professed
preferences [84]. This may be because users overestimate their privacy concerns or do not under-
stand the ramifications of their actions (i.e., the user does not understand that the action violates his
or her privacy preferences). As such, we design our laboratory study to be robust to over-reporting
of security concerns by directly observing participants and asking questions about participants’
past actions.

To recruit participants, we posted a Craigslist ad for the San Francisco Bay Area. Our ad-
vertisement offered people $60 to participate in an hour-long interview about how they “choose
and use Android applications.” In order to be eligible for the laboratory study, we required that
participants owned an Android phone and used applications. We also asked study applicants to
look at a screenshot and tell us whether they had the new or old version of the Android Market;
we then secretly limited eligibility to users with the newer version of the Android Market. Google
released a new version of the Market in August 2011, and not all phones had been upgraded yet.
We decided to focus on users with the new version of the Market to reduce study variability.

Our Craigslist advertisement yielded 112 eligible participants. In order to match our partici-
pants’ ages to Android demographics [22], we grouped applicants by age and selected a random
proportion of people from each age group. We scheduled interviews with 30 participants. Three
people failed to attend and two people had technical problems with their phones, leaving us with
25 completed interviews (12 women and 13 men). The age distribution was close to overall An-
droid age demographics by design, with 20% of participants between 18 and 24, 32% between 25
and 34, 20% between 35 and 44, 16% between 45 and 54, and 12% older than 55. None of the
participants were affiliated with our institution, although some of the younger participants were
students at other universities.

Each interview took 30–60 minutes and had six parts:

73

1. General Android usage questions (e.g., how many applications they have installed).

2. Participants were instructed to find and install an application from the Android Market, using
their own phones. We prompted them to install a “parking finder app that will help [the user]
locate your parked car.” This task served to confirm that participants were familiar with
installing applications from the Android Market.

3. Participants were instructed to find and install a second application from the Android Market
using their own phones. We prompted them to:

Pretend you are a little short on cash, so you want to install a coupons app. You
want to be able to find coupons and sales for groceries, your favorite electronics,
or clothes while you’re out shopping. If you already have a coupons app, pretend
you don’t like it and want a new one.

All of the top-ranked applications for search terms related to this scenario had multiple per-
missions. During this application search process, we asked participants to tell us what they
were thinking about while using the Market. We also observed what user interface elements
they interacted with.

4. Westin index questions.1

5. We asked participants about an application on their phone that they had installed and recently
used. We then opened the application’s information page in Settings (Figure 6.2) and asked
them to describe and explain the permissions.

6. We asked participants for specific details about past permission-related behaviors, such as
whether they have ever looked up permissions or decided not to install an application because
of its permissions.

Two researchers performed each interview, with one acting as the interviewer and the other
acting as a notetaker. To promote a casual atmosphere, we held the interviews at a coffee shop
and offered participants coffee, tea, or water. Participants used their own phones to encourage
them to behave as they would in the real world. We made an effort to not prime participants to
security or privacy concerns until the fourth task, at which point we specifically asked them about
their attitudes towards privacy. We introduced ourselves as computer science students and did not
reveal that we were security researchers until the end of the study. We prevented participants from
determining the security focus of the study in advance by posting the Craigslist advertisement in
the name of a researcher with no online presence or prior publications.

6.3 Attention During Installation

Do users notice Android permissions before installing an application? Attention is a prerequisite
for an effective security indicator: a user cannot heed a warning that he or she does not notice. In
our Internet survey we asked respondents whether they looked at permissions during installation.

74

To supplement this self-reported statistic, we empirically determined whether laboratory study
participants were aware of permission warnings. We also report users’ attention to user reviews,
which are shown during installation.

6.3.1 Permissions

Internet Survey

In our Internet survey, we asked respondents, “The last time you downloaded an Android appli-
cation, what did you look at before deciding to download it?” Respondents were able to select
multiple choices from a set of options that included “Market reviews,” “Internet reviews,” “screen-
shots,” and “permissions.”

We found that 17.5% of our 308 respondents (95%CI: [13.5%, 22.3%]) reported looking at per-
missions during their last application installation. Respondents who can be classified as Privacy
Fundamentalists using the Westin index were significantly more likely to report looking at permis-
sions than other respondents (p < 0.0005; Fisher’s exact test). While statistically significant, the
proportion of Privacy Fundamentalists who claimed to look at permissions was still a minority:
40.5% of the 42 Privacy Fundamentalists reported looking at permissions, whereas 13.9% of the
remaining 266 respondents reported looking at permissions.

This self-reported question suffers from two limitations: some people over-report security con-
cerns, and others may read permissions without knowing the technical term that refers to them. We
asked survey respondents specifically about their “last installation” to discourage over-reporting,
but people may still guess when they cannot remember. Our laboratory study served to confirm the
results of the survey on a second population with a different metric.

Laboratory Study

In the follow-up laboratory study, we performed an experiment to empirically determine whether
users noticed permissions during installation. We instructed study participants to talk us through
the process of searching for and installing a coupon application. We recorded whether they clicked
on or mentioned the permissions on the final Market installation page. To avoid priming partici-
pants, we did not mention permissions unless the participant verbally indicated that he or she was
reading them. After each participant passed through the page with permissions, we asked him or
her to describe what had been on the previous page.

We categorized participants into three groups:

75

Attention to Permissions Number of users 95% CI

Looked at the permissions 4 17% 5% to 37%
Didn’t look, but aware 10 42% 22% to 63%
Is unaware of permissions 10 42% 22% to 63%

Table 6.1. Attention to permissions at installation (Lab Study, n = 24)

• Participants who looked at permissions during the installation. These participants either
told us that they were looking at permissions while on the page with permissions or they
were later able to provide specific details about the contents of that page. They were also
able to discuss permissions in general, indicating that the laboratory study was not the first
time that they had viewed permissions. For example, one participant opened the page with
permissions and stated,

The only thing I started doing recently, is kinda looking at these — is there any-
thing really weird.

When questioned, that participant described concern over “the network stuff.”

• Participants who did not look at the permissions for this specific application, but were able
to tell us that the final installation page listed permissions. In order to answer our question,
these participants must have paid attention to permissions at some point in the past. For
example, one participant in this category responded,

I’ve seen a lot of them...A lot of ’em have full network access, access to your
dialer, your call logs, and GPS location also.

• Participants who were unaware that the final installation page included a list of permis-
sions. For example, one participant said, “I don’t remember. I just remember ‘Download
and install’.” Another said, “I don’t ever pay attention. I just accept and download it.”

We did not require knowledge of the term “permissions”; participants typically used other phrases
(e.g., “little warning things”) to describe what they saw or remembered.

Table 6.1 shows the number of study participants who fell into each of the three categories.
Fourteen participants (58% of 24) noticed permissions during the experimental installation or re-
ported paying attention to permissions in the past.3 The remaining participants were unaware of
the presence of permissions on the final installation page in the Market. We did not observe a
relationship between Westin indices and participants’ attention to permissions.

Of the ten participants who did not look at permissions during the study but were aware of them,
three volunteered that they used to look at permissions but no longer do. For example, one partic-
ipant said, “I used to look...I just stopped doing that.” These participants might have experienced
warning fatigue, since users see permission warnings for about 90% of applications (Chapter 4).

3For this statistic, we omit one participant who had never previously completed an installation without help.

76

One participant said that she used to be concerned about the location permission, but gradually lost
her concern because so many of the applications that she installed requested this permission.

Of the ten participants who had never paid attention to permissions, two knew that they were
accepting an agreement on the final installation page. They both described the page as containing
legal terms of use, with one incorrectly elaborating that the text specified legal restrictions on the
use of the application. Due to their lack of interest in legal text, neither had ever read the screen so
they were unaware that the text pertains to security and privacy.

The self-reported survey and observational study results both suggest that 17% of users rou-
tinely look at permissions when installing an application. We also found that 42% of study partic-
ipants could not possibly benefit from permission information because they had never noticed it.
The remaining 42% of participants were aware of permissions but do not always consider them.

6.3.2 Reviews

Like permissions, user reviews have the ability to convey privacy and security information during
installation. User reviews can warn people about undesirable or privacy-invasive applications.

Internet Survey

We asked survey respondents, “The last time you downloaded an Android application, what did
you look at before deciding to download it?” A total of 219 survey respondents (71.1% of 308;
95%CI: [65.5%, 76.2%]) reported looking at some type of review before installation. Of these,
193 respondents (62.7% of 308; 95%CI: [57.0%, 68.1%]) indicated that they looked at Market re-
views during their last application installation, and 42 respondents (13.6% of 308; 95%CI: [10.0%,
18.0%]) stated that they had looked at other reviews on the Internet. Twenty-six respondents (8.4%
of 308; 95%CI: [5.6%, 12.1%]) reported that they had looked at both Internet and Market reviews.
We did not find that any age, gender, or Westin group was more or less likely to look at reviews.

Laboratory Study

In our follow-up laboratory study, we observed whether participants actually considered reviews
during application installation. We instructed participants to tell us what they were reading and
considering while selecting and installing a coupon application. We did not mention reviews or
ratings unless the participant first spoke of or clicked on them. After participants mentioned re-
views or ratings, we asked them how much importance they placed on reviews and whether they
trusted them to be correct. If a participant did not consider reviews during installation, we asked
the participant for his or her opinion of reviews after the installation task.

77

Importance Read reviews Didn’t read reviews

A lot 68% 4%
Somewhat 16% 4%
Mistrust 4% 0%
Unknown 0% 4%

Total 88% 12%

Table 6.2. We observed whether users read reviews, and later asked how much importance
they place on reviews (Lab Study, n = 25)

Table 6.2 shows participants’ opinions of reviews and whether they considered reviews during
the installation. All but three participants mentioned application reviews during installation; of the
three that did not read reviews, two later claimed when questioned that they read reviews in some
situations. The majority of participants placed a lot of importance on reviews. For example,

[Reviews] let me know if it’s a decent app or not. Because most people will put on
there whether it’s a good app or a bad app.

A few participants reported that they read reviews but simply treated them as one factor among
many, rather than using them as their primary decision-making factor. One of these participants
described the rating system as “a starting point,” and another said that reviews are “just a place
to start.” One of the 25 participants actively mistrusts positive reviews because she has written
reviews for her company’s products on websites. Despite this, she still looks at reviews to identify
negative traits of applications.

At the end of the study, we asked participants whether they had ever tried to find out what a
permission means or why an application was asking for it. Eight of the study participants (32% of
25) responded affirmatively, with six (24% of 25) people stating that they found this information
in some type of review. Three of these participants stated that they had read user reviews to de-
termine whether an application’s permissions were appropriate, and another two said that they had
read news articles that reviewed applications’ permissions. Another participant said that he read
about permission information in reviews, but that he had never noticed that the same permission
information was available on the final installation page. One of the six said,

If I’m not sure about an app I’ll research it and see what other people say about the
permissions. Like, ‘It does this,’ ...and, ‘It’s necessary.’ And there will be an argument
or a discourse about the permissions that need to be on there or don’t need to be.

This suggests that reviews are an important part of communicating permission information, espe-
cially for users who do not understand permission warnings on their own.

78

Permission n Options Responses
4 Send information to the application’s server 45 41.3%

INTERNET 4 Load advertisements 30 27.5%
Category: Network communication 109 7 None of these 16 14.7%
Label: Full Internet access 7 Read your text messages 13 11.9%

7 Read your list of phone contacts 11 10.1%
I don’t know 36 33.0%

4 Read your phone number 41 47.7%
READ_PHONE_STATE 7 See who you have called 37 43.0%
Category: Phone calls 85 4 Track you across applications 20 23.3%
Label: Read phone state and identity 7 Load advertisements 11 12.8%

7 None of these 10 11.6%
I don’t know 15 17.4%

4 Place phone calls 30 35.3%
CALL_PHONE 7 Charge purchases to your credit card 27 31.8%
Category: Services that cost you money 83 7 None of these 16 18.8%
Label: Directly call phone numbers 7 See who you have made calls to 14 16.5%

7 Send text messages 11 12.9%
I don’t know 16 18.8%

4 Read other applications’ files on the SD card 41 44.6%
WRITE_EXTERNAL_STORAGE 4 Change other applications’ files on the SD card 39 42.4%
Category: Storage 92 7 None of these 16 17.4%
Label: Modify/delete SD card contents 7 See who you have made phone calls to 15 16.3%

7 Send text messages 11 12.0%
I don’t know 15 16.3%

4 Keep your phone’s screen on all the time 49 60.5%
WAKE_LOCK 4 Drain your phone’s battery 37 45.7%
Category: System tools 81 7 None of these 7 8.6%
Label: Prevent phone from sleeping 7 Send text messages 4 4.9%

7 Delete your list of contacts 4 4.9%
I don’t know 13 16.0%

4 Turn your WiFi on or off 36 52.9%
CHANGE_NETWORK_STATE 7 Send information to the application’s server 13 19.1%
Category: System tools 66 7 Read your calendar 7 10.3%
Label: Change network connectivity 7 None of these 7 10.3%

7 See who you have made calls to 5 7.4%
I don’t know 17 25.0%

4 Read text messages you’ve sent 30 54.5%
READ SMS2 4 Read text messages you’ve received 25 45.5%
Category: Your messages 54 7 Send text messages 10 18.2%
Label: Read SMS or MMS 7 Read your phone’s unique ID 6 10.9%

7 None of these 4 7.3%
I don’t know 11 20.0%

4 Read text messages you’ve received 44 56.4%
READ SMS1 7 Read e-mail messages you’ve received 30 38.5%
Category: Your messages 77 7 Read your call history 13 16.7%
Label: Read SMS or MMS 7 None of these 8 10.3%

7 Access your voicemail 8 10.3%
I don’t know 13 16.7%

4 Read your calendar 56 53.3%
READ_CALENDAR 7 None of these 18 17.1%
Category: Your personal information 101 7 Add new events to your calendar 12 11.4%
Label: Read calendar events 7 Send text messages 12 11.4%

7 Place phone calls 9 8.6%
I don’t know 19 18.1%

4 Read your list of contacts 52 60.5%
READ_CONTACTS 4 Read your call history 19 22.1%
Category: Your personal information 86 7 None of these 14 16.3%
Label: Read contact data 7 Delete your list of contacts 9 10.5%

7 Place phone calls 5 5.8%
I don’t know 14 16.3%

4 Take pictures when you press the button 27 37.0%
CAMERA 4 Take pictures at any time 27 37.0%
Category: Hardware controls 72 4 See pictures taken by other applications 16 21.9%
Label: Take pictures 4 Delete pictures taken by other apps 13 17.8%

7 None of these 13 17.8%
I don’t know 17 23.3%

Table 6.3. Survey respondents were each asked three questions, randomly selected from
this set. Respondents could select “None,” “I don’t know,” or one or more of the four
definitional choices. This table orders the choices by response rate. Checks are correct
answers, and X-marks are incorrect answers.

79

6.4 Comprehension of Permissions

Do users understand how permissions correspond to application privileges? Users can only make
correct security decisions based on permissions if they understand what the permission warnings
mean. We used three metrics to measure subjects’ understanding of permission warnings. First,
we tested Internet survey respondents with multiple-choice questions (Chapter 6.4.1). Second,
we graded laboratory study participants’ ability to describe the permission warnings of a familiar
application (Chapter 6.4.2). Third, we asked study participants whether the application’s set of
permissions gave it the ability to send text messages (Chapter 6.4.3).

6.4.1 Permission Comprehension Quiz

Internet survey respondents answered three randomly-selected quiz questions from the set of eleven
questions in Table 6.3. Six respondents omitted one or more questions; we filtered those partic-
ipants out of this analysis, leaving us with 302 respondents who answered three quiz questions.
Overall, respondents did not randomly select their responses: the observed median differs from
1/16, which would be the median if respondents were equally likely to select any choice or set of
choices (one-sample Wilcoxon Signed Rank test, p < 0.0005).

Eight respondents (2.6% of 302) answered all three questions correctly. On average, respon-
dents correctly answered 21% of the three questions. We considered the relationship between
respondent scores and demographics:

• We did not observe a correlation between respondent scores and the length of Android phone
ownership.

• No significant differences were observed between the genders or with regard to Westin index
classifications.

• There was a negative correlation between age and the number of correct answers (r =
−0.257, p < 0.0005); younger people were more likely to understand permissions.

• We compared the scores of respondents who did and did not report looking at permissions
in a past application installation. Respondents who reported looking at permissions scored
higher on average (30.3% vs. 18.6%). The difference was statistically significant (U =
5, 293.0, p < 0.007, r = 0.16) but small in absolute terms.

• In the survey, we asked respondents whether they typically used the Android Market or
unofficial application stores. Respondents who typically used the Android Market were
significantly more likely to understand the permissions (U = 2, 474.0, p < 0.001, r = 0.20).
The 28 respondents who did not use the Market had an average score of 4.7%, whereas the
remaining 274 respondents had an average score of 22.3%.

80

Permission n Correct Answers

1
C

ho
ic

e READ_CALENDAR 101 46 45.5%
CHANGE_NETWORK_STATE 66 26 39.4%
READ SMS1 77 24 31.2%
CALL_PHONE 83 16 19.3%

2
C

ho
ic

es
WAKE_LOCK 81 27 33.3%
WRITE_EXTERNAL_STORAGE 92 14 15.2%
READ_CONTACTS 86 11 12.8%
INTERNET 109 12 11.0%
READ_PHONE_STATE 85 4 4.7%
READ SMS2 54 12 22.2%

4 CAMERA 72 7 9.7%

Table 6.4. The number of people who correctly answered a question. Questions are grouped
by the number of correct choices. n is the number of respondents. (Internet Survey)

Although we found statistically significant differences between certain groups, no group performed
well on an absolute scale.

Despite their poor overall scores, many respondents demonstrate a limited understanding of the
permission warnings. As shown in Table 6.3, a plurality of respondents selected at least one correct
choice for every question, and a majority of respondents selected at least one correct choice for
six questions. Respondents’ low scores reflect the fact that we only consider an answer correct if
that respondent specified all of the correct choices and no incorrect choices. Although only 21% of
the 906 answers4 were completely correct, 53% of the answers contain at least one correct choice:
17% of answers contain a subset of the correct choices, and 15% of answers contain extra incorrect
choices. This type of error indicates that the respondent can identify (part of) the definition, but he
or she incorrectly believes that the permission’s scope is narrower or broader than it actually is.

Seven questions had multiple correct choices. Users performed significantly worse on ques-
tions with multiple correct choices (r = −0.59, p < 0.028; one-tailed), so we can only directly
compare permissions with the same number of possible correct choices. Table 6.4 depicts the
eleven permissions and the number of survey respondents who got each one completely correct.

We hypothesize that some respondents made decisions based primarily on the category head-
ings, which are featured in a much larger font than the specific permission labels. This may have
led respondents to overstate the meanings of permissions (i.e., they selected incorrect as well as
correct choices). Respondents’ answers to all but one of the permissions seem consistent with this
hypothesis (Table 6.3). For example, the CALL_PHONE permission illustrates this type of error:
the large category heading says “Services that cost you money,” and nearly as many respondents
selected the incorrect answer of “Charge purchases to your credit card” as the correct answer of
“Place phone calls.” The one question that does not fit this model is READ SMS2: 64% of respon-
dents correctly determined that the READ SMS2 permission grants the ability to read but not send
text messages (although many selected a subset of the correct responses).

4906 answers: 302 respondents provided three answers each.

81

6.4.2 Free-Form Permission Descriptions

We hypothesized that users might understand permission warnings better when the permissions
are associated with a familiar application. For example, a user who does not understand the
INTERNET permission in isolation might know that the permission is needed to fetch news from
the Internet when he or she sees that the permission is associated with a news application. As such,
we designed our follow-up laboratory study to ask users about the meaning of permissions in the
context of a familiar application.

During the laboratory study, we asked each participant to view the permissions of an applica-
tion that he or she had recently used on his or her phone. The participant was therefore familiar
with the application’s functionality. We asked participants to read each permission aloud and ex-
plain what it meant. We gave participants three chances to demonstrate their understanding of the
permissions: we asked what the permissions meant, why the application had them, and whether
each permission was necessary or unnecessary for the respective application.

To evaluate user understanding, we graded participants’ free-form descriptions of permissions
as follows:

• Correct. A correct answer completely explains the meaning of a permission. For exam-
ple, one participant correctly stated that the BLUETOOTH_ADMIN permission allowed the
application to “create a Bluetooth connection” and “disconnect Bluetooth to save battery.”

• Correct but overly broad. This type of answer contained correct information, but the partici-
pant believed that the permission granted more privileges than it actually does. For example,
one participant understood that the INTERNET permission could be used to send or retrieve
data, but he also believed it gave the application the ability to “check my GPS or see where
I’m going.” (In this example, the application did not have a location permission.)

• Incomplete. Incomplete answers show that the participant had a partial understanding of
the permission, but lacked comprehension of an important aspect of the permission. For
example, one participant understood that the RECEIVE_SMS permission pertains to text
messages but did not know how.

• Incomplete and overly broad. This type of answer includes wrong information in addition
to an incomplete but correct explanation of a permission. For example, one participant de-
scribed the READ_PHONE_STATE permission as,

Phone calls is probably like the call log or the phone calls that are made. It tells
you their names and maybe a picture.

This description is partially correct because the permission relates to call state, but it is
incomplete because the permission also provides access to the participant’s own identity.
The participant also incorrectly stated that the permission grants access to contacts’ names
and pictures.

82

0! 1! 2! 3! 4! 5! 6!

0 - 9!
10 - 19!
20 - 29!
30 - 39!
40 - 49!
50 - 59!
60 - 69!
70 - 79!
80 - 89!
90 - 99!

Number of Users!

%
 C

or
re

ct
!

Figure 6.3. A histogram of participants’ grades. (Lab Study, n = 25)

• Wrong. The participant provided an incorrect description of a permission that included sub-
stantially more privileges than the truth. For example, several participants stated that the
READ_PHONE_STATE permission applications listen to their phone calls. This confusion
likely occurred because the category heading for that permission is “Phone Calls.”

• Unable to answer. We placed responses in this category when the participant read the per-
mission aloud and then stated that he or she could not describe the permission.

• Omitted. Participants often skipped permissions that were present on the screen, and we
were not always able to prompt them to address the skipped permission. In these cases, we
have no way of knowing whether the participant would have been able to answer correctly.

Figure 6.3 depicts each laboratory study participant’s grade, where a person’s grade is the
percentage of descriptions that were correct. We calculated this percentage after filtering out per-
missions that they omitted; omitted permissions are excluded because we do not know why they
were omitted. Two participants received grades of 0%, the highest grade was 83%, and the average
was 39%. Contrary to our initial hypothesis, comprehension rates are still low when permissions
are associated with a familiar application.

Six participants received grades of 70% or higher. We observed two of the six high scorers
looking at permissions during installation (Chapter 6.3.1), and another three indicated that they
had looked at permissions in the past. The permission system could potentially help these five
participants (20% of 25) because they sometimes pay attention to and understand permission warn-
ings. The sixth high scorer expressed some familiarity with permissions but did not know that the
Market displayed them prior to installation.

Other participants commonly said that they did not know what the warnings meant: 25% of
the times that a participant read a permission, he or she was completely unable to describe it.

83

READ WAKE_LOCK WRITE_EXTERNAL READ_PHONE INTERNET
_CONTACTS _STORAGE STATE

Correct 0% 54% 47% 0% 68%
Correct but overly broad 9% 9% 0% 0% 4%
Incomplete [and overly broad] 18% 0% 18% 45% 9%
Wrong 45% 0% 23% 20% 9%
Unable to answer 27% 36% 12% 35% 9%

Total number of participants 11 11 17 20 22

Table 6.5. The grades of free-form responses for common permissions. (Lab Study, n = 25)

Several participants mentioned that they understood all of the vocabulary but did not know how
that information pertained to their phones. As one participant said,

I think I know what they mean as a person who has zero electronics or programming
training, just in terms of what I think the words mean...I know what they mean in
terms of the face value of the words. I don’t really know what they mean in terms of
complicated, in terms of technicalities...

Participants’ grades are not directly comparable to each other because each participant viewed
a different application’s permissions. However, a few popular permissions were present in 11
or more participants’ applications. Table 6.5 shows how participants performed when describing
these permissions. Notably, participants performed better on the three permissions that refer to
general computer concepts: Internet access, hard drive storage, and putting the phone to “sleep.”
Participants were less able to describe the two smartphone-specific permissions.

We observed that participants often placed more emphasis on the category heading than the
specific permission text, which caused them to err in the direction of overstating the privilege as-
sociated with permissions. (Figure 3.1 shows examples of categories and specific permissions.)
Descriptions were overly broad 29% of the time, and all but 3 of the overly-broad responses could
be attributed to the category heading. For example, the READ_CONTACTS permission is under the
heading of “Personal Information.” Upon seeing that warning, one participant stated that the per-
mission provided access to his passwords, and another believed that the permission encompassed
all of the data on her phone. Similarly, the READ_PHONE_STATE permission is under the heading
of “Phone Calls.” Participants inferred that the warning referred to a wide variety of phone-related
behavior, such as giving a company permission to make telemarketing calls to the participant.

6.4.3 Specific Permission Comprehension

After each participant described the set of permissions, we asked him or her whether the selected
application had the ability to send text messages without his or her knowledge. If the participant
asked for clarification, we elaborated that we wanted to know whether the application can send text
messages, not whether it does. This privilege is granted with the SEND_SMS permission, which
is in the “Services that cost the user money” category with the specific permission label of “Send
SMS messages.” This question was designed to gauge whether people can determine the tasks that

84

Participant response: Yes No Unsure

Correct 4% 32% -
Incorrect 44% 12% -

Total 48% 44% 8%

Table 6.6. Can an application send text messages? The correct answer depends on the
application that the given user selected. (Lab Study, n = 25)

an application can do on their phones, given its permissions. We chose the SEND_SMS permission
for this question because we thought that all participants would be familiar with text messages, and
the permission is associated with malware [64, 159].

Table 6.6 presents participants’ responses. The correct answer depends on the application that
the given user selected. Only nine of the participants (36% of 25) answered correctly. Participants’
answers were not significantly different from guessing: twelve responded affirmatively and eleven
negatively. None of the participants’ confusion stemmed from the language of the warning; instead,
their responses indicated that they did not understand the role or scope of permissions in general.

Four participants selected applications with the SEND_SMS permission, and three of them
incorrectly stated that the application could not send text messages. One of these participants
had asked us about the meaning of the SEND_SMS permission during the previous step of the
laboratory study, and she correctly repeated our explanation. Despite this, she still responded that
the application could not send text messages. She re-examined the permission warning after our
question and stated,

Well, I don’t know now. Cause it said that it could — I don’t know. I’m going to say
no.

Another participant was aware that her chosen application could send text messages because she
had used the application, but she still believed that it was not capable of sending text messages
without her expressed approval. She seemed to believe that all applications require user approval
to send text messages, regardless of the permissions. The third person looked at the category
heading (“Services that cost the user money”) and incorrectly decided that it referred to Internet
data and phone calls but not text messages.

Twenty-one participants selected applications that do not have the SEND_SMS permission.
Of those, eleven participants incorrectly thought that their applications could send text messages.
When asked why, six participants explained that various other permissions allow this behavior.
Two people said that the INTERNET permission (listed under the “Network communication” cat-
egory heading) allows an application to send a text message. For example,

It has access to my network, so I assume it could send a message if it wanted to.

Four people believed that the READ_PHONE_STATE permission (listed under the “Phone calls”
category heading) grants the ability to send text messages. For example,

85

Well, yeah, because of the phone calls. Because of the phone calls, they can read the
phone calls, so obviously they can.

A sixth participant believed that the application could combine the personal information, phone
calls, and network communication categories together to send a text message.

One of our participants said he had a small amount of experience as an Android developer.
He was among the eleven participants who incorrectly stated that an application could send text
messages. When asked for an explanation,

I’ve done some programming but I don’t know all the permissions. ... I just don’t know
if the permissions are so fine grained that they make texting a special permission that
you have to add.

The participant then reasoned that two other permissions likely include that ability. Without know-
ing the full list of possible Android permissions, it is difficult for a user — even a highly experi-
enced, technically competent user – to determine whether an application cannot perform an action.
In other words, users need to know what permissions their application does not have in order to
comprehend the scope of the permissions that it does have.

6.5 Influence on User Behavior

Do permissions influence users’ installation decisions? Users are shown permissions on the final
installation page of the Market so that they can refrain from downloading an application if they
dislike its requested permissions. We asked users whether they have ever decided not to install an
application because of its permissions.

6.5.1 Internet Survey

The survey asked, “Have you ever not installed an app because of permissions?” Respondents
were shown the following four choices:

• Yes, I didn’t like the permissions

• Yes, there were too many permissions

• No

• I don’t know

A respondent could select both affirmative options. The answers were not randomly ordered.

86

Self-Reported Behavior Respondents

Yes 56.7%
Didn’t like permissions 32.6%
Too many permissions 16.0%
Both 8.1%

No 34.5%
I don’t know 8.8%

Table 6.7. Respondents who claimed they did not install an application due to permissions.
(Internet Survey, n = 307)

We received 307 responses. Table 6.7 shows the results: 56.7% of respondents (95%CI:
[52.1%, 62.3%]) claimed to have decided not to install an application because of its permissions.
We found that respondents who can be classified as Privacy Fundamentalists using the Westin
index were more likely than other respondents to report not installing an application due to its
permissions (χ2=5.6161, p = 0.016): 73.8% of the 42 Privacy Fundamentalists (95%CI: [60.5%,
87.1%]) responded affirmatively, compared to 53.9% of the 265 remaining respondents (95%CI:
[47.9%, 59.9%]).

The number of affirmative responses to this question may be artificially inflated because of
position bias; people display a slight preference for the first choice over later choices [38]. Survey
respondents viewed this question after seeing the permission quiz questions, which also may have
increased their likeliness to respond affirmatively. We asked survey respondents about a past action
rather than a preference to mitigate over-reporting, but people may err with a bias when they cannot
remember the answer.

6.5.2 Laboratory Study

In our follow-up laboratory study, we asked participants the same question: “Have you ever not
installed an app because of permissions?” However, we designed the laboratory study question to
avoid over-reporting. If a person responded affirmatively, we asked for detailed information about
the application and why he or she objected to the permissions. Although people often over-report
their security concerns when asked abstract questions, we feel it is unlikely that a participant would
fabricate specific details of his or her application installation history in an in-person interview.

Table 6.8 shows how study participants responded to this question. We asked the five affirma-
tive participants to explain why and how often they had decided not to install certain applications
based on their permissions. Here, we excerpt their concerns:

• One person decided not to install a social networking application because “with exact loca-
tion then they could post that on my page or something like that.”

• “At least five. I felt it was asking for too much, or it was going to do too much data, and I
didn’t feel comfortable.”

87

Self-Reported Behavior Participants

Yes 5 20%
Probably 2 8%
No 18 72%

Table 6.8. Participants who claim they did not install an application due to permissions. The
two “Probably” responses refer to participants who could not provide confirming details.
(Lab Study, n = 25)

• One participant became alarmed after reading a Wall Street Journal article about Android
applications’ permissions and privacy policies [144]. “I haven’t really downloaded very
many apps since... And there have been a few I haven’t downloaded because they asked for
a bunch of accesses.”

• “In the zone of maybe one out of four, roughly. Mostly most of them look fairly benign to
me in terms of my concerns, but there are some of them that just look like they’re overkill. I
must say that in the beginning of installing apps, I — and I believe most people — are more
hesitant about installing apps that reveal your location.”

• Another person was aware of permissions but did not read them on his own. Instead, he
would look for reviews about certain permissions pertaining to battery life. “Some of the
ones that people say, ‘It runs at startup,’ and, ‘You can’t stop it,’ or something like that...then
I won’t download it.”

Two of the five participants who said that they had not installed an application because of
permissions scored very poorly on the comprehension study (Chapter 6.4.2). One was unable to
describe any permissions correctly, and the other described only two of seven permissions cor-
rectly. This shows that people may act on permission information even if they do not correctly
understand it.

Through our attention and comprehension studies, we identified five participants who were
aware of and understood permissions relatively well. Two of those participants said that they had
cancelled installation due to permissions in the past. In other words, 8% of 25 participants paid
attention to, understood, and previously acted on permissions. It is unclear why the other three
participants who paid attention to and understood permissions have never cancelled installation
because of permissions; it is possible that they lack motivation, lack trust in the permission system,
or have simply not yet encountered a suspicious application.

6.6 Implications

We evaluated whether the Android permission system can help users avoid security- and privacy-
invasive applications. We now assess the significance of our findings and several recommendations
for improving the usability of permissions.

88

6.6.1 Effectiveness of Permissions

Our studies demonstrated that the majority of Android users do not pay attention to or understand
permission warnings. Nearly half of the laboratory study participants were completely unaware
that permission warnings are displayed in the Market. Since attention and comprehension are pre-
requisites for informed security decisions, our study indicates that the current Android permission
system does not help most users make good security decisions.

However, we also found that permissions are effective at conveying security information to a
minority of users: 20% of the laboratory study participants were aware of permissions and scored
above 70% on the comprehension metric. It is possible that this is sufficient; a small fraction
of expert users could write negative reviews when they encounter troubling permission requests,
thereby protecting other consumers. Researchers have found that negative reviews can influence
sales in other contexts [133, 160], and 24% of laboratory study participants said that they had relied
on reviews or news reports to provide them with permission information.

6.6.2 Short-Term Recommendations

Our studies identified several factors that contribute to the low attention and comprehension rates.
We now present a set of specific design recommendations aimed at addressing these problems.

Low-Risk Warnings. We observed evidence of users experiencing warning fatigue. Warning
fatigue is exacerbated by unnecessary warnings. To avoid devaluing the warnings, we recommend
that permissions without clear risks should not be shown to users. For example, the ability to
connect to a Bluetooth device is unlikely to cause a user harm. Warnings that do not convey real
risks teach the user that all warnings are unimportant [141, 57], and there are limits on how much
information people can process when making decisions [36, 69]. Currently, some permissions are
not displayed to users unless they choose to “See more” because the permissions are considered
non-dangerous; we recommend that more permissions should be classified as non-dangerous (and
hidden by default). We study user concerns about various risks in Chapter 7.

Absent Permissions. Our SMS comprehension study demonstrated that people cannot reason
about the absence of permissions. A user cannot say with certainty that a permission does not
encompass a privilege unless the user knows that another permission exists to address that priv-
ilege or no permission permits the action. Consequently, users overestimate the scope and risk
of the permissions that are present. Currently, it is infeasible for any user to remember all of the
permissions, given that Android has more than 100 permissions. We recommend coalescing or
paring down the list of permission warnings to a set that is small enough for users to look up and
remember with accuracy.

Categories. We find that category headings widely confused users. As Figure 3.1 shows, the final
installation page uses a multi-layer user interface to convey permissions. The large category head-
ings are short, simple, and non-technical; below them, the smaller text includes more information

89

about the specific permissions. Multi-layer user interfaces are intended to simultaneously satisfy
novice, average, and expert users by providing subsequently more information at each layer of the
user interface [135, 100]. However, the category headings are currently so broad that they cause
users to overestimate the scope and risk of the requested permissions. Overestimation undermines
the warning system because it causes users to believe that they are granting dangerous permissions
to more applications than they are. This likely has a negative impact on the amount of attention
that users pay to permissions; there is little reason to read individual permission warnings if one
believes that all applications receive dangerous privileges.

We recommend re-organizing and re-naming categories to shape user expectations more ap-
propriately. In particular, the “Personal Information” and “Phone Calls” categories misled many
of the users in our studies. Although the category headings need to be re-designed, we do not
recommend removing them; the categories reduce warning fatigue by decreasing the number of
warnings that are shown on the screen. (E.g., a user sees only three warnings for eight permissions
if the eight permissions fall into three categories.)

Risks, Not Resources. We find that many users cannot connect permission warnings to risks, even
if they understand all of the technical terms in a permission warning. Currently, most of the warn-
ings are resource-centric and value-neutral (e.g., “full Internet access” and “read phone state and
identity”). Users are left to decide on their own how the resources might be used, which causes
them to underestimate or overestimate the risks of permissions. It is important for warnings to
clearly convey specific risks [156]. We cannot expect non-expert users to understand the relation-
ship between resources and risks, and users cannot provide informed consent if they do not realize
the risks. The long explanation dialog specifies the risks for a few permissions, but the majority
lack risk information; also, we did not observe any users reading the long dialogs. We recom-
mend that permission warnings focus wholly on risks (i.e., potential negative outcomes) instead
of resources. For example, “full Internet access” could be replaced with “use your data plan.” To
balance the risks with benefits, developers could be given space in the UI to justify why they need
the permissions.

Optional Permissions. Several researchers have suggested that users should be able to grant or
deny an application’s permissions individually, rather than as a bundle [112, 116]. This would
give users finer-grained control over the resources that applications have access to. We do not
recommend adopting this proposal until user understanding of permissions can be improved with
other measures. The low comprehension rates suggest that users cannot currently make informed
decisions about individual permissions. Even the users that displayed comprehension competency
during the laboratory study did not receive perfect comprehension scores. As such, individual
permission granting would add complexity to the user interface without increasing user control.

6.6.3 Longer-Term Recommendations

Larger changes are needed to improve the relevance of permission warnings and reach users who
are currently unaware of permission warnings. We present a set of open problems and future
research directions that are motivated by our studies.

90

Timing. Android shows users permission information during installation instead of when they are
using the application. This design decision was made because “over-prompting the user causes
the user to start saying ‘OK’ to any dialog that is shown” [24]. Indeed, many studies have shown
that users click through security dialogs that are presented when the user is trying to perform a
task with an application [111, 141, 131]. However, we find that the install-time permission dialog
is similarly dismissed by most users. Additionally, install-time permissions lack context; unlike
dialogs shown at runtime, there is no way to know what application functionality the install-time
permissions correspond to. This suggests that completely new solutions that avoid dialogs, such as
sensor-access widgets [80] or access-control gadgets [125], may be needed. We explore alternative
permission-granting mechanisms in Chapter 8.

Reviews. We identified a small minority of “expert” users who could potentially protect others by
sharing their concerns about permissions. One direction is to re-think how a system could sup-
port the sharing of privacy and security concerns. How can we incentivize writing reviews about
permissions? How can we help interested users determine what applications are doing with permis-
sions so that they can write useful reviews? How can other readers confirm claims about privacy
and security? Currently, Android does not provide any way to audit an application’s permission
usage, although researchers have developed tools for computer scientists [62, 79]. However, users
with interests in privacy and security are not necessarily computer scientists, despite some famil-
iarity with smartphone technology; none of our “expert” users had any formal technical education,
and we do not expect that they would be able to use any of the existing research tools.

Customization. We hypothesize that different users have different types of privacy and security
concerns. For example, a mother told us that she worried a lot about people knowing her daughter’s
location via their shared phone, whereas another user said he was concerned only about whether
applications will excessively drain his phone’s battery. When users read permissions aloud to us
for the comprehension study, they often told us (without prompting) that they did not care about
certain permissions. Warnings will likely be more effective if they are relevant to users’ specific
concerns about applications. The challenge is to identify users’ concerns without expecting all
users to fill out surveys or provide feedback. It might be possible to learn which warnings are
likely to be relevant to particular users, classes of users, or users generally.

6.7 Conclusion

This chapter represents a first step in understanding the effectiveness of Android permissions. Our
two studies indicate that Android permissions fail to inform the majority of users. Low rates of
user attention and comprehension indicate that significant work is needed to make the Android
permission system widely accessible. However, a minority of users demonstrated awareness and
understanding of permissions, and we found that permissions helped some users avoid privacy-
invasive applications. This motivates continued effort towards the goal of usable permissions.

We identified a set of issues that are impeding awareness and comprehension. In particular, cat-
egory headings are confusing, some users cannot connect resource-based warnings to risks, some
users cannot reason about the absence of permissions, and some users are experiencing warning

91

fatigue. In Chapters 7 and 8, we pursue approaches to some of these problems: identifying and
removing low-risk warnings, reducing the number of warnings that users see, and investigating
new types of permission-granting mechanisms.

6.8 Acknowledgments

We thank Elizabeth Ha, Serge Egelman, Ariel Haney, and Erika Chin for their help with instrument
design and/or study deployment. We also thank Angie Abbatecola for her help with survey and
study logistics, such as ensuring that laboratory study participants were paid in a timely fashion.

92

Chapter 7

A Survey of Smartphone Users’ Concerns

7.1 Introduction

In Chapter 6, we found that users do not pay attention to or understand Android’s install-time
permission warnings. One problem is that Android controls a large number of privileges with
permissions, and the multitude of warnings is difficult for users to process and recall. We recom-
mend that a permission system should have fewer permissions, focused on the highest risks. iOS
takes the extreme, opposite approach: users are only asked to provide consent for two application
permissions (reading location and sending notifications). However, iPhone users were outraged
when they discovered that applications access other resources without their approval [42]. These
experiences suggest that neither Android nor iOS ask users about the right permissions.

In order to guide the future selection of permission warnings, we performed two surveys to
rank the level of user concern about a wide range of smartphone resources. In our first survey
(Chapter 7.2), we asked 3,115 smartphone users to rate their level of concern about 99 risks corre-
sponding to 54 smartphone permissions. We ranked the risks using the percentage of respondents
who said they would be “very upset” if the risks occurred. In our second survey (Chapter 7.3), we
asked 42 smartphone users to state their reactions to low-ranked, medium-ranked, and high-ranked
risks in their own words. The open-ended responses validate the ranking: participants viewed low-
ranked risks as manageable annoyances, whereas they viewed high-ranked risks as severe offenses
that may require the help of their service provider, law enforcement, or a lawyer. We also collect
data on why users uninstall applications, in order to determine the types of application behaviors
that prompt user dissatisfaction (Chapter 7.4). We then present the limitations of our methods
(Chapter 7.5) and discuss the implications of our findings (Chapter 7.6).

93

7.2 Ratings

We asked 3,115 smartphone users to rate how upset they would be if an application performed
certain actions on their phones without user approval. The purpose of the large-scale rating survey
was to create an index that ranks the risks of allowing applications to access smartphone resources
by degree of user concern.

7.2.1 Methodology

We surveyed Mechanical Turk users with a survey instrument that we pre-tested with a focus group.

Instrument Design and Validation

Our instrument was designed to elicit user concerns about different resources. We faced two de-
sign constraints. First, we aimed to measure opinions about risks rather than application features.
(For example, a user might view an application that deletes files as useful or harmful depending on
whether the deletion was intentional.) Second, we did not want to scare participants by mentioning
malware or viruses. We suspected that participants would report high levels of concern for any ac-
tion that they were told is associated with malware. As such, we needed to ensure that respondents
were aware that we were asking about undesirable actions, without mentioning how or why those
actions were initiated (e.g., by malware).

We performed two preliminary surveys that asked respondents about situations in which ap-
plications performed an action “without my knowledge” or “when you believed [the app] had no
reason to do so.” The results of these surveys were inconsistent. Subsequent interviews revealed
that participants were unsure whether the listed actions were negative side-effects or positive fea-
tures. We conducted one-on-one interviews and a focus group with Craigslist-recruited smartphone
users to generate new wording.

We validated our final instrument by asking four smartphone users to take the survey and speak
with an interviewer. These participants were selected from applicants on Craigslist to represent a
diverse cross-section of smartphone users. We found that the respondents understood that the
questions asked about risks rather than features, and they used the full range of the scale. When
asked to describe how the scenarios in the questions could occur, all four participants listed both
buggy and compromised applications. Some participants also mentioned viruses, bad UI design,
or aggressive marketing. This indicated that all four participants had a firm grasp of the meaning
of the questions without specifically focusing on malware.

94

Instrument

The survey began by asking respondents to think about negative side-effects of applications. First,
we asked participants to answer a free-response question about applications that they disliked.
Next, we prepared respondents for the risk-based questions:

Every once in a while, an app might do something on your phone without asking you
first. Depending on what the app does to your phone, your feelings could range from
indifference (you don’t care) to being very upset.

We then asked participants about various risks:

How would you feel if an app [insert risk], without asking you first?

For example: “How would you feel if an app added new contacts, without asking you first?”
Respondents answered using a horizontal five-point scale that ranged from “Indifferent” to “Very
upset,” with unlabeled intermediate points.

Each survey participant saw 12 questions on one page, selected at random from a set of 99
potential questions. Appendix B shows the risks that participants were asked about. We compiled
the set of questions by assigning risks to Android, Windows Phone 7, and iOS permissions. The
three platforms define a total of 191 permissions, but we grouped equivalent permissions (e.g.,
“power device on or off” and “force device reboot”) and discarded irrelevant permissions (e.g.,
“enable application debugging”) to arrive at 54 permissions. We assigned risks to the permissions
using documentation and domain expertise. Some permissions are associated with multiple risks,
and we assigned least four risks to each type of smartphone data1: “publicly shared your [data
type],” “shared your [data type] with your friends,” “shared your [data type] with advertisers,”
“sent copies of [data type] to their servers (but didn’t share them with anyone else).”

On the last page of the survey, we collected demographic information.

Deployment and Demographics

We deployed the survey on Mechanical Turk for 13 days. Participants were paid $1 each for
completing the survey, and we limited the survey to respondents in the United States. We fil-
tered responses for validity based on users’ survey completion time, responses to short open-ended
questions, and the self-reported type of phone. (We discarded responses with implausibly short
times, nonsense answers for the open-ended questions, or non-smartphones.) After filtering the
responses, we obtained 3,115 valid responses from smartphone users.

Participants’ ages ranged from 18 to 80 (µ=29.7), while 47.9% were female and 51.9% were
male. Although the population was younger than the U.S. population overall (65% of respondents

1Due to a survey programming error, we accidentally omitted one of these risks for three types of data.

95

Highest completed level of education Respondents
Some high school 1.5%
High school diploma or GED 11.2%
Some college or Associate degree 42.3%
Bachelor’s degree 28.3%
Some graduate school 5.2%
Master’s degree 9.5%
Doctorate or professional graduate 2.0%

degree (Ph.D., J.D., M.D., etc.)

Table 7.1. The self-reported education levels of our respondents.

were below the age of 30), it was only slightly younger than U.S. smartphone user demograph-
ics [17]. Participants reported many occupations: healthcare workers, software engineers, financial
advisors, federal government employees, graphic designers, etc. However, the predominant occu-
pations were students, stay-at-home parents, and the unemployed. Completed levels of education
ranged from some high school to doctorates (Table 7.1).

Participants reported owning the following smartphones: 49.5% Android phones, 39.7%
iPhones, 7.7% Blackberries, and 1.7% Windows phones. The remainder stated that they owned
Palm, Symbian, or multiple phones. There was no incentive to lie about phone ownership because
we paid participants regardless of whether they owned smartphones.

7.2.2 Risk Rankings

Our goal is to rank the severity of potential risks based on users’ concerns. In our large-scale sur-
vey, respondents rated how upset they would be if certain risks occurred. Our resulting metric for
the severity of a risk is the percentage of respondents who indicated that they would be “very up-
set” if the given risk occurred. We refer to this metric as the VUR rate (the “very upset” respondent
rate). We obtained an average of 376.7 ratings per risk. All but 11 respondents indicated that they
would be “very upset” about at least one of the 12 risks.

The highest-ranked risk is “permanently disabled (broke) your phone,” with a 98.2% VUR rate.
The lowest-ranked risk is “vibrated your phone,” with a 15.6% VUR rate. Table 7.2 shows the ten
highest-ranked and ten lowest-ranked risks, and Appendix B provides the VUR rates for all of the
99 risks in our survey.

We surveyed respondents about four types of data sharing: public sharing, sharing with friends,
sharing with advertisers, and removing the data from the phone without sharing it with another
party. Figure 7.1 shows these results for the eleven data types. For all of the data types, publicly
sharing the data is approximately twenty percentage points more concerning than sending the data
to a server. Sharing with friends and advertisers rank in the middle, between public sharing and
sending the data to a server. Notably, illicit location sharing has the lowest or second-lowest VUR
rates of the eleven smartphone data types in our survey.

We consider the percentage of “very upset” respondents instead of medians because the re-

96

Risk VUR Rate
permanently disabled (broke) your phone 98.21%
made phone calls to 1-900 numbers (they cost money) 97.41%
sent premium text messages from your phone (they cost money) 96.39%
deleted all of your contacts 95.89%
used your phone’s radio to read your credit card in your wallet 95.15%
publicly shared your text messages 94.48%
deleted all of the information, apps, and settings on your phone 94.39%
publicly shared your e-mails 93.37%
deleted all of your other apps 93.14%
shared your text messages with your friends 92.49%
... ...
inserted extra letters into what you’re typing 45.48%
read files that belong to other apps 44.33%
sent your phone’s unique ID to their servers (but didn’t share it with anyone else) 42.16%
added new browser bookmarks 39.22%
sent the list of apps you have installed to their servers (but didn’t share it with 34.92%
anyone else)
turned the sound on your phone down really low 36.96%
sent your location to their servers (but didn’t share it with anyone else) 29.88%
turned your flash on 29.67%
connected to a Bluetooth device (like a headset) 27.47%
vibrated your phone 15.62%

Table 7.2. The highest- and lowest-ranked risks.

97

text messages

e-mails

photos

contact list

call history

browsing history and bookmarks

calendar

e-mail address

phone’s unique ID

location

list of installed apps

25 40 55 70 85 100

Public Friends Advertisers Servers

Figure 7.1. The VUR rates for 11 data types. We asked participants to rate how upset they
would be if applications illicitly shared their data: “publicly,” “with your friends,” “with
advertisers,” and “sent ... to their servers (but didn’t share it with anyone else).”

98

sponses were not normally distributed. (Despite this, ordering the risks by medians returns a very
similar ranking.) We observed different amounts of diversity of opinion between risks. Eighteen
risks had a standard deviation greater than 1, whereas six had a standard deviation less than .37. In
general, the risks with high VUR rates have low standard deviations, whereas the risks with low
VUR rates have larger standard deviations. One interpretation is that there is user consensus about
what is very upsetting, but not about what is not very upsetting. It may also be an artifact of our
five-point scale: some users might have selected something stronger than “very upset” if such an
option were available, which would have resulted in greater variance among high-ranked risks.

Individual respondents’ scores are not directly comparable to each other because they received
different questions, but we can compare groups of respondents. Women rank risks higher than men
do (µM = 4.47, µW = 4.55; p < 0.0005, z = −4.269, Wilcoxon-Mann-Whitney test), although
the effect size is very small (d = 0.18). People above the age of 50 rank risks higher than people
below the age of 30 do (µ<30 = 4.46, µ>50 = 4.67; p < 0.0005, z = 5.943, Wilcoxon-Mann-
Whitney test), with a medium effect size (d = 0.51). We do not find a significant difference
between types of phones (χ2 = 4.487, p = 0.6110, Kruskal-Wallis test).

7.3 Open-Ended Survey

The purpose of the open-ended survey was to validate the large-scale survey ratings with a different
metric and associate free-form responses with VUR rates.

7.3.1 Methodology

Instrument

The open-ended survey asked participants the following short essay questions about risks:

1. How would you feel if an app [insert risk], without asking you first?
2. Why would you feel that way?
3. What would you do if this happened?

Each participant was asked about three of nine risks, which we selected based on the results of
the large-scale study. We chose the three lowest-ranked risks, three mid-ranked risks, and three of
the highest-ranked risks:

• Lowest-ranked risks:
- vibrated your phone
- connected to a Bluetooth device (like a headset)
- turned your flash on

99

• Mid-ranked risks:
- added new contacts
- took screenshots when you’re using other apps
- un-muted a phone call

• Highest-ranked risks:
- deleted all of your contacts
- sent premium text messages from your phone (they
cost money)

- made phone calls to 1-900 numbers (they cost money)

We showed each respondent one of the lowest-ranked risks, one of the mid-ranked risks, and
one of the highest-ranked risks. We displayed one page for each risk. Participants could not move
backwards in the survey to prevent respondents from altering their responses after seeing “scarier”
risks. The last page of the survey collected demographic data.

Deployment and Demographics

We deployed the survey on Mechanical Turk for two days. Participants were paid $8 each. The
survey was advertised as being worth $3, with an additional $5 reward for complete sentences and
correct grammar. We ran the survey until we had 42 valid responses (with a target of 40) from
people in the United States. The participants were evenly split by gender, with an average age of
30.3. All of the respondents said that they have used smartphone applications, with an average of
29 applications installed on their phones.

7.3.2 Results

The VUR rate is a relative metric that allows us to compare risks against each other. However, the
metric does not provide us with any context for how users interpret “very upset.” Our open-ended
survey assigns user-supplied meaning to the metric. It also serves as a second measure to evaluate
whether there are differences in users’ concerns across risks.

Low-Ranked Risks Mid-Ranked Risks High-Ranked Risks
Avg vibrate Blue- flash Avg added screen- un- Avg deleted $ $

tooth contacts shots muted contacts SMS calls
nothing 21% 29% 20% 15% 12% 18% 0% 15% 5% 0% 5% 10%
tinker with app 33% 50% 27% 23% 12% 6% 33% 0% 0% 0% 0% 0%
uninstall the app 62% 42% 73% 69% 74% 71% 67% 85% 76% 67% 80% 80%
contact developer 12% 7% 7% 23% 17% 18% 8% 23% 40% 25% 45% 5%
write a review 5% 0% 7% 8% 14% 12% 8% 23% 21% 25% 20% 20%
contact press 5% 0% 13% 0% 5% 6% 0% 8% 5% 0% 10% 0%
call service provider 0% 0% 0% 0% 2% 0% 8% 0% 17% 17% 15% 20%
replace/wipe phone 0% 0% 0% 0% 5% 0% 8% 0% 5% 8% 0% 10%
contact authorities 0% 0% 0% 0% 2% 6% 8% 0% 19% 25% 15% 20%
pursue legal action 0% 0% 0% 0% 0% 0% 0% 0% 12% 17% 5% 20%

Table 7.3. Forty-two survey respondents told us how they would react if certain risks
occurred. We categorized their responses; some responses fall into multiple categories.

100

We asked participants what they would do if certain risks occurred. Table 7.3 displays the
frequency with which participants mentioned certain reactions. Respondents’ stated reactions fell
in the following categories:

• Nothing. Some participants stated that they would ignore the risk or simply reverse the
undesirable action.

• Tinker. Participants said that they would try to change the application’s settings. This was
often the first of multiple proposed steps. For example, “I would first try to change the
settings so that it doesn’t connect. If I can’t find the settings to turn such a feature off, I
would immediately delete the app.”

• Uninstallation. The most common recourse was to uninstall the application.

• Contact the Developer. Many people said that they would try to contact the developer of the
application to complain or request a refund.

• Reviews. Some participants said that they would try to make others aware of the applica-
tion’s problems by writing negative reviews. For example, “...for the first time ever, I would
probably review [the] app. I would type (probably even in all caps!) about what it does.”

• Contact the Press. Participants sometimes said that they would warn other users by contact-
ing blogs or “watchdog news groups.”

• Contact the Phone Company. Several participants said that they would contact their service
provider to reverse charges or restore data. Surprisingly, many participants in this category
said that they would blame their service providers for negative application behavior. For
example, one respondent wrote, “If this happened I would consult my service provider to try
and retrieve my contacts, and probably cancel my service.” Another said, “I would simply
switch to another phone company if I could not uninstall the defective app.”

• Replace or Wipe The Phone. Although none of the risks in the survey were permanent side-
effects, some participants said that they would get a new phone or wipe their existing phone
so that it would be like having a new phone. One participant wrote, “[If] this happened and I
could not turn off this feature in the settings, then I would not continue using the phone and
I would try to either get a refund or to sell it.” Another person said that he would “smash
[his] phone to bits.”

• Contact Authorities. Some participants said that they would notify authorities about the
application’s misbehavior so that the application would be punished or removed from the
store. For example, “I would call up the FBI or other organizations to look into how my
information might have been mishandled.”

• Legal Action. In some cases, participants wrote that they would seek legal action against the
application developer. For example, “...I may seek legal counsel to solve the issue and per-
haps receive compensation for the inconvenience and trouble that the application developer
put me through.”

101

As Table 7.3 shows, participants’ reactions increased in severity from the lowest-ranked risks
to the highest-ranked risks. Participants’ responses to risks with similar rankings are fairly similar.
This supports the validity of the ranking from the large-scale rating survey. For low-ranked risks,
participants would attempt to resolve the situation themselves or complain. Responses to mid-
range risks contain a greater emphasis on complaining in reviews or to the developer. For high-
ranked risks, some would seek help from external parties like service providers or lawyers.

7.4 Reasons for Uninstallation

As part of our large-scale survey, we asked participants to tell us about instances in which they
had uninstalled “misbehaving” applications. The purpose of this was to measure the prevalence of
risks: a permission system designer might want to guard a low-risk resource with a more severe
warning, despite the low VUR rate, if the likelihood of abuse is high.

7.4.1 Methodology

We asked the following question as part of the large-scale survey (described in Chapter 7.2.1):

If you have ever un-installed apps because they misbehaved, please tell us what the
apps did that you didn’t like.

Respondents answered in short essay format.

7.4.2 Results

Of the 3,115 respondents, 2,427 respondents provided us with short essays about negative experi-
ences with applications that they had uninstalled. We read all of the essay responses and identified
559 responses (17.9% of the total respondents) that described undesirable behaviors that certain
to intentional or accidental abuse of resources. We categorized these behaviors into the following
categories (Table 7.4):

Spam. Some participants reported having uninstalled applications because the applications caused
their phones to send or receive e-mail, text message, or Facebook spam. In order to send spam,
applications read users’ contact lists and send messages from their accounts. For example, one
participant said, “[the app] used information on my contact list to send over a hundred spam texts
and emails.” Another person wrote that an app “added a contact then sent email from that contact
telling my friends I liked the app and they should install it.”

Ads in Notifications. Under the rules of the Android Market and iOS App Store, applications are
not supposed to use notifications to display advertisements. Despite this restriction, some users

102

Undesirable behavior Number of respondents
Spam 243 (7.8%)
Ads in the notification bar 30 (1.0%)
Other misuses of the notification bar 46 (1.5%)
Drained the battery 85 (2.7%)
Used too much memory 58 (1.9%)
Used too much Internet data 21 (0.7%)
Other negative behaviors 154 (4.9%)

Table 7.4. The number of respondents who report experiencing each of the undesirable ap-
plication behaviors. Some participants’ responses fall into multiple categories. Percentages
are from the 3,115 total survey respondents.

report having uninstalled applications for this reason. One participant wrote, “it always put spam
in my notification bar, for example: You have won a $50 ATT giftcard! Claim it now!” Our
categorization (in Table 7.4) may underestimate the number of people who experienced this; 165
additional participants complained about “pop-up” advertisements, but it was unclear whether they
were referring to standard in-application advertisements or abuse of the notification bar.

Other Misuses of the Notification Bar. Other applications misused notifications for reasons other
than advertisements. For example, “The only one I remember in particular was one that kept
sending me push notifications even though I almost never used it. I know you can turn push off
on an iPhone, but I thought it’d be easier to just delete the app.” Additionally, a bug in some
versions of iOS allows applications to send push notifications even if it has been disabled; some
users reported experiencing this, e.g., “Some apps continued to pester me with notifications even
though I was more than certain that I had disabled notifications for that app.”

Resource Consumption. Some participants felt that applications used up too much battery life,
memory, or Internet data. For example, one participant uninstalled several applications because
the applications “racked up extra mb of data [while] they were running in the background without
me realizing it.”

Other Negative Behaviors. Participants also reported a number of behaviors that were too vague
or infrequent to categorize. Some vague responses included descriptions of “viruses” and “buggy
apps.” Infrequent reasons for un-installation included deleting contacts, deleting photographs,
recording location, transmitting contacts, and altering contacts.

103

7.5 Limitations

We discuss the limitations of our methodology to contextualize our discussion of the results.

7.5.1 Demographics

We relied on Mechanical Turk workers for survey data. As discussed in Chapter 7.2.1, the workers
who completed our study did not proportionately represent the smartphone population in terms
of occupation. Our survey did not reach many highly-paid professionals, who may have different
concerns. However, our survey was taken by a large number of participants with varying ages and
socio-economic statuses. Secondary studies may be needed to target specific groups that could
plausibly have their own privacy and security concerns, such as doctors (patient data), lawyers
(client data), or executives (corporate data).

7.5.2 Ranking Questions

The ratings and open-ended questions are not absolute measures of user concern because our sur-
veys explicitly asked respondents about privacy and security. Surveys that directly ask questions
about privacy suffer from inflated user concerns about privacy [44] and therefore are not a reliable
measure of the absolute level of concern. We expect this applies to our study as well. We inten-
tionally primed respondents to think about the negative side-effects of applications because we did
not want users to mix risks and features. Instead, our surveys provide a basis for comparing risks
against each other. The same set of priming biases are applied equally to all of the risks presented
in the surveys, so this effect should not influence our ranking.

The rating and open-ended questions also rely on self-reported data. Users might act differently
when confronted with actual problems on their phones. We do not claim to predict future user
behavior. As with the priming bias, we do not believe that self-reporting affects the validity of our
ranking because this bias is equally present for all risks.

7.5.3 Uninstallation Question

Participants may have failed to list their negative experiences with applications due to forgetfulness
or uncertainty over the open-ended question. Additionally, we only collect information on negative
experiences that upset participants enough to uninstall the offending applications; users may have
simply ignored other negative experiences that are not described here. On the other hand, we can
assume that all of the participants’ stories are true because there was no incentive to lie. Conse-
quently, the statistics in Table 7.4 should be viewed as a lower bound: the true rate of negative
experiences may be higher.

104

7.6 Discussion

We discuss the implications of our findings.

7.6.1 Rankings

Causes of Concern. The risks that evinced the highest levels of concern involve permanent data
loss or financial loss (e.g., sending premium text messages or spying on credit card numbers). The
lowest-ranked risks pertain to phone settings or sending data to servers. Unlike the highest-ranked
risks, many of the lowest-ranked risks are revertible: settings can be reset, unwanted browser
bookmarks can be removed, the phone’s vibrator can be turned off, etc.

Data Sharing. Respondents’ concerns about illicit data sharing depend on who the data is being
shared with. As Figure 7.1 shows, participants discriminate between publicly sharing data and
sharing data with only the application’s developers. For some types of data (e.g., contacts, e-mail
address), there is a large difference in the VUR rates for sharing with advertisers and other types
of sharing. Based on this finding, we suspect that warnings about data access that do not specify
where the data is being sent to do not provide users with enough information to gauge the risk of
sharing the data with the application. This motivates further work on tools like AppFence [79]
that tell users whether data is being sent to advertisers or other known third parties. Alternately,
developers could provide annotations that reflect their privacy policies, and this information could
be incorporated into warnings or data access requests.

Location. Most mobile privacy and security research has focused on location. However, we find
that improper location sharing is not viewed as dangerous in comparison to the other risks of using
applications. All of the location-related risks rank in the bottom half of risks, and location is the
second-lowest data type. Consequently, we believe that the privacy community should refocus
their efforts on other types of smartphone data that evoke higher levels of user concern, such as
text messages, photos, and contacts.

Android Warnings. We can compare our ranking to Android’s categorization of permissions. An-
droid divides permissions into three levels of severity. We find that their categorization differs from
our survey respondents’ concerns in many cases. For example, Android places the SET_TIME per-
mission in the highest-severity category, yet it falls in the bottom third in our ranking. As another
example, access to photos ranks in the top quartile in our study, yet Android does not restrict access
to photos with any permission at all.

iOS Warnings. We can also compare our ranking to iOS’s selection of warnings. iOS only prompts
users for consent for location data and pop-up notifications. However, we find that both rank
low in comparison to other privileges; this may indicate that iOS does not ask users about the
correct privileges. Although iOS applications cannot perform all of the actions in our ranking,
they can perform many of the actions that rank higher than location and notifications without a

105

consent dialog. Given our ranking, iPhone users’ complaints about the lack of a consent dialog for
contacts [42] is not surprising.

Service Providers. In our qualitative study, 19% of participants said that they expect their service
provider to remedy any data loss or data theft. Several participants stated that they would consider
switching service providers if an application severely misbehaved. In practice, service providers
do not provide backup services by default, nor do they control what applications are listed in
application markets. This suggests that some users may not understand the security or liability
implications of installing and using smartphone applications. In contrast, some participants said
that they would contact their service providers to refund fraudulent SMS or phone charges; this
expectation is likely well-founded for some service providers.

7.6.2 Uninstallation

Nearly 8% of all participants say that they have uninstalled applications because of spam. Spam is
related to several high-VUR risks: sending text messages (90.42%), spamming contacts with event
invitations (89.73%), sending spam to the user’s contact list (88.63%), and sending spam from the
user’s e-mail account (82.76%). Consequently, emphasizing the significance of permissions that
are associated with high-VUR risks would simultaneously promote spam prevention.

Fewer participants reported dissatisfaction due to notification abuse or resource consumption.
The risks related to notifications and resource consumption are low-VUR risks: notifications rank
83rd (51.90%) and draining the battery ranks 75th (55.61%). Although these risks might deserve
slightly more scrutiny than the other low-VUR risks, our study finds that fewer than 3% of respon-
dents mentioned these risks as causes of uninstallation. However, further research is needed to
confirm the true rate of dissatisfaction because our study represents a lower bound.

Among the behaviors that we classified as “other negative behaviors,” most correspond to mid-
or high-VUR risks. However, none of these behaviors were individually frequent enough to suggest
that they might be significant enough to require additional emphasis in a permission system.

7.7 Conclusion

We surveyed 3,115 smartphone users on Mechanical Turk about potential risks of smartphone
applications. Participants rated how upset they would be if the risks occurred. From this data, we
developed a ranking of risks by user concern. A follow-up, open-ended survey of 41 smartphone
users found that users view the lowest-ranked risks are annoyances that they can resolve, whereas
the highest-ranked risks are serious offenses that may require external parties. Our ranking could be
used to guide warning design, and our results show that location is not a high-ranked user concern.
We also found that some users hold service providers responsible for abusive applications.

106

7.8 Acknowledgments

We thank Serge Egelman, Coye Cheshire, and Galen Panger for their insightful comments regard-
ing survey design and data presentation.

107

Chapter 8

How To Ask For Permission

8.1 Introduction

Currently, there is no consensus on the best way to communicate permission information to users.
Chapter 6 demonstrates that Android’s current permission system does not adequately inform or
engage most users. iOS only asks users to consent to two permissions; the remainder of the per-
mission system is opaque to users. A number of research proposals argue for the use of trusted UI
in permission systems [80, 85, 125, 158], but these have seen minimal adoption in the real world
because they do not scale to an entire permission system.

We advocate for a new approach to permission systems: choosing the most appropriate
permission-granting mechanism independently for each permission. Our approach takes the unique
requirements and constraints of each permission into account. This is a departure from existing
platforms, which have applied a single permission-granting mechanism to all permissions. We
provide a set of guidelines for selecting from among permission-granting mechanisms.

In this chapter, we enumerate the permission-granting mechanisms that are available to plat-
form designers and discuss their strengths and weaknesses. We take into account a set of usabil-
ity principles from past literature and rank the permission-granting mechanisms according to the
quality of their user experiences. Based on this, we develop a preliminary decision procedure for
choosing the most appropriate permission-granting mechanism for each permission.

We apply our decision procedure to a set of smartphone application permissions. We find
that the permission-granting mechanisms that afford the best user experiences can be applied to a
majority of the permissions. In order to facilitate future work, we built prototypes of permission-
granting mechanisms for several permissions. Our prototypes incorporate initial feedback from five
iOS users. Future work is needed to evaluate the effectiveness of our guidelines and the usability
of new permission-granting mechanisms.

108

No No No

Automatic
grant Trusted UI Confirmation

dialog
Install-time

warning

Yes

No

Yes YesYes YesNo

Revertibility
Can the action be

undone with
minimal effort?

Severity
If abused, is it

just an
annoyance?

Initiation
Did the user
initiate the
request?

Alterable
Can the action
be altered by

 the user?

Approval
Does it need to

work without
immediate user

approval?

Figure 8.1. A guide to selecting between the different permission-granting mechanisms.

8.2 Guiding Principles

Permission-granting UI elements usually involve closed-form questions: the user is given a choice
between granting or denying the permission. Krosnick and Alwin’s dual path model [40, 95] is
a standard model used to understand human behavior when faced with closed-form questions.
According to this model, humans rely upon two distinct strategies. A user who is optimizing reads
and interprets the question, retrieves relevant information from long-term memory, and makes a
decision based on her disposition and beliefs. In contrast, a user who is satisficing does not fully
understand the question, retrieves only salient cues from short-term memory, and relies on simple
heuristics to make a decision. Based on this model, we discuss two principles guiding our design.

8.2.1 Conserve User Attention

Human attention is a shared, finite resource [40]. Its use should be infrequent, and uncontrolled use
can lead to a “tragedy of the commons” scenario. Repetition causes habituation: once a user clicks
through the same warning often enough, he or she will switch from reading the warning before
clicking on it to quickly clicking through it without reading (i.e., satisficing). The link between
repetition and satisficing has been observed by other researchers for Windows UAC dialogs and
browser security warnings [57, 111, 141]. We similarly observed evidence of habituation leading
to satisficing in Android (Chapter 6). Users pay less attention to each subsequent warning, and this
effect carries over to other, similar warnings [41].

Principle 1: Conserve user attention; use it only for permissions that have severe consequences.

8.2.2 Avoid Interruptions

Users generally do not set out to complete security-related tasks. Instead, they encounter security
information when they are trying to check their e-mail, surf the web, or perform some other typ-
ical task. Security dialogs often interrupt these primary tasks; for example, Android install-time
warnings stand between a user and his primary goal of installing the application.

109

Users have low motivation to consider interruptive security mechanisms. Instead, they want
to return to their primary tasks. Users will click through dialog boxes that interrupt their primary
tasks without fully understanding or evaluating the consequences. In other words, interruptions
lead to satisficing. Good et al. found that users dismiss or ignore interruptive warnings [75]. In a
study of Windows UAC consent dialogs, Motiee et al. observed that most study participants clicked
through illegitimate UAC prompts while completing tasks [111].

Principle 2: Avoid interrupting the user’s primary task to ask the user to make a security decision.

8.3 Permission-Granting Mechanisms

Permission systems can grant permissions to applications using four basic mechanisms: auto-
matic granting, trusted UI, runtime consent dialogs, and install-time warnings. We discuss these
permission-granting mechanisms in order of preference, based on the amount of user attention that
they consume. Figure 8.1 summarizes our proposed selection criteria.

8.3.1 Automatic Grant

Definition. An automatically-granted permission must be requested by the developer, but it is
granted without user involvement. We propose that permissions should be automatically granted if
they protect easily-revertible or low-severity permissions. For example, changes to the global audio
settings are easily revertible, and vibrating the phone is merely annoying. Currently, any web site
can play audio or generate pop-up alerts without requesting permission from the user; although this
can lead to annoyance, the web is still usable. Web users simply exit web sites that have unwanted
music or alerts. Users are aware that they can and should uninstall annoying applications: in
Chapter 7, many study participants reported having uninstalled misbehaving applications.

Automatically granted permissions should also include auditing mechanisms to help users
identify the source of an annoyance. Auditing can take many forms, such as notifications that
attribute actions to applications or “undo” options. These conceptual auditing mechanisms al-
low users to identify and uninstall abusive applications. Figure 8.2 provides examples of auditing
mechanisms for automatically-granted permissions.

Pros. Automatic grants do not require user attention, while still empowering the user to undo the
action or uninstall abusive applications.

Cons. Automatically-granted permissions could lead to severe user frustration if a large number
of applications were to abuse them. Some permissions may be more attractive as targets for abuse
than others. If there is widespread motivation to abuse a permission, then automatic granting may
not be appropriate for the permission. The platform can provide deterrents to prevent misuse. For
example, developers on platforms with centralized markets are unlikely to abuse permissions in
the presence of an auditing mechanism because they do not want users to write negative reviews.

110

(a) The user can see
which application is
responsible for the
current wallpaper and
revert to the last one.

(b) The user can see
which application last
set the time.

Figure 8.2. Examples of auditing for automatic grants.

Selection Criteria. A permission should be automatically granted if it is easily revertible or low
severity. Severity should be determined by surveying users.

8.3.2 Trusted UI

Definition. Trusted UI elements appear as part of an application’s workflow, but clicking on them
imbues the application with a new permission. To ensure that applications cannot trick users,
trusted UI elements can be controlled only by the platform. Trusted UI has been incarnated in many
forms, including CapDesk [148], access control gadgets [125], and sensor-access widgets [80].
Examples of trusted UI elements include the following:

• Choosers let users select a subset of photos, contacts, songs, etc. Choosers can be adapted
to serve as permission-granting mechanisms. Figure 8.3 shows an example photo chooser
as trusted UI. Web browsers and Windows 8 Metro currently rely on choosers for providing
file access. Other existing choosers (e.g., the iOS photo chooser) could be adapted to serve
this purpose, for example with the addition of a “select all” option.

• Review screens allow users to review, accept, or modify proposed changes. For example,
before adding events to a calendar, a conceptual review screen allows the user to see and
optionally edit the events (Figure 8.4(a)). iOS relies on review screens for text messaging:
after an application composes a message and selects a recipient, the OS shows the user an

111

(a) The application
wants to read the
user’s photos, so it
opens this chooser.

(b) After clicking on
the right arrow, the
user selects two al-
bums.

Figure 8.3. A photo chooser. The entire screen is trusted UI; after the application selects
the appropriate photos, the chooser would return the photo files to the application.

editable preview of the text message. The message is sent only after the user clicks the send
button.

• Embedded buttons allow a user to grant permissions as part of the natural flow. For example,
a user who is sending an SMS message from a third-party application will ultimately need
to press a button; using trusted UI means the platform provides the button (Figure 8.4(b)). In
a trusted UI design, the applications embed placeholder elements, and the platform renders
the button over the placeholder at runtime, optionally incorporating parameters such as the
recipient of a phone call or SMS.

Strengths. Trusted UI elements are non-interruptive because they are part of the user’s primary
task, which means users are motivated to interact with them. Roesner et al. showed that interactions
with trusted UI matched users’ expectations about privacy and security [125]. Motivation and
positive expectations lead to optimizing instead of satisficing.

Weaknesses. Not all permissions can be granted through trusted UI elements. In particular, actions
that are not user initiated cannot be represented with trusted UI. For example, a security application
may prompt the user when it detects malware. Trusted UI can’t accommodate this use case because
the application performs the action in response to external state, rather than initiated by the user.1

1Roesner et al. proposed the creation of embedded buttons with additional text such as “permanent access” [125].
We do not view these as trusted UI because they are displayed prior to the desired functionality and are not part of the
normal workflow of an application; they are therefore interruptive.

112

(a) An item review
screen for writing to
the calendar.

(b) A permission-
granting button for
sending SMS.

Figure 8.4. Item review screen and permission-granting button.

Trusted UI elements require effort to design because they need to fit applications’ workflows
and accommodate as much functionality as possible. They also constrain the appearance of appli-
cations, so their design needs to be neutral enough to fit most applications. To help trusted UI blend
into applications, the platform could allow some degree of customization or allow developers to
choose between multiple designs. For example, developers could choose the size, placement, or
color scheme of an element. Ideally, their design would involve input from application developers.

Selection Criteria. A permission should be granted with trusted UI if its use is typically user
initiated or the action can be altered by the user (e.g., selecting a subset of photos instead of all
photos, or modifying the calendar events that the application is adding).

8.3.3 Runtime Consent Dialogs

Definition. Runtime consent dialogs interrupt the user’s flow by prompting them to allow or deny
a permission. Runtime consent dialogs sometimes contain descriptions of the risk or an option
to remember the decision. Windows UAC prompts and the iOS location and notification dialogs
are examples of runtime consent dialogs. A platform can use a standardized consent dialog for all
relevant permissions (e.g., Figure 8.5(a)), or it can include customized dialogs for different actions
(e.g., Figure 8.5(b)).

Strengths. Runtime consent dialogs can be applied to nearly all permissions by changing the text
of a standardized consent dialog or creating new customized dialogs.

113

(a) The iOS location
dialog, which is sim-
ilar to the iOS notifi-
cation dialog.

(b) A dialog that is
specific to Bluetooth
pairing.

Figure 8.5. Runtime consent dialogs.

Weaknesses. As mentioned in Chapter 8.2, runtime consent dialogs encourage satisficing because
they are interruptive, repetitive, and overused.

From an application functionality standpoint, runtime consent dialogs are not well suited to
actions that need to be performed without the user’s immediate consent. For example, a security
application might delete all of a user’s text messages if the phone is stolen; in this scenario, imme-
diate user approval is not possible because the user does not have physical control of the phone at
the time the action needs to occur.

Selection Criteria. Runtime consent dialogs should be used for permissions that cannot be auto-
matically granted or represented with trusted UI. Runtime consent dialogs should not be used if
the permission needs to be used in the future without immediate user consent.

8.3.4 Install-Time Warnings

Definition. Install-time permission warnings integrate permission granting into the installation
flow. Installation screens list the application’s requested permissions. In some platforms (e.g.,
Facebook), the user can reject some install-time permissions. In other platforms (e.g., Android and
Windows 8 Metro), the user must approve all requested permissions or abort installation.

Strengths. Install-time warnings can be applied to any type of permission. Unlike runtime consent
dialogs, install-time warnings support situations in which an application needs advance approval
of a restricted action. They are also easy to implement.

114

Weaknesses. Install-time warnings are interruptive because they hinder the user’s primary goal of
installation. They are also repetitive: users see nearly-identical install-time warnings every time
they install an Android application, which results in satisficing (Chapter 6). Compounding their
monotony, install-time warnings also suffer from being similar to EULAs. Users typically ignore
EULAs [75], and their habituation to EULAs extends to other types of indicators that resemble
EULAs [41]. This implies that install-time warnings may not adequately capture users’ attention.

In Chapter 6, we also found that users may incorrectly believe that an application cannot use a
permission granted during installation until the user confirms its usage at runtime. Several study
participants felt that applications could not send text messages without runtime confirmation, re-
gardless of the application’s permissions. This indicates that install-time permissions do not match
user expectations about when permission will be granted. Another experiment by Roesner et al.
similarly found that users do not expect install-time warnings to grant a permission without addi-
tional confirmation [125].

Selection Criteria. Use install-time warnings only if no other permission-granting mechanism is
appropriate.

8.3.5 Multiple Mechanisms

A platform designer might be tempted to provide multiple mechanisms for the same permission.
For example, Android developers have two options for sending SMS messages: (1) they can use
trusted UI, or (2) they can forgo trusted UI by using a permission with an install-time warning. In
practice, developers often choose the latter for reasons other than functionality [64]. Developers
might prefer to design their own UI or be unaware of trusted UI. When developers choose to use
an install-time warning or runtime consent prompt instead of trusted UI, the platform designer’s
intention of conserving user attention is not realized. In general, developers’ decisions to use a
suboptimal permission-granting mechanism will negatively impact the overall platform.

Platform designers should not enable multiple mechanisms for the same permission without
carefully considering developer incentives. Without proper incentives, developers may select the
mechanism that is less favorable from the user’s and/or platform designer’s perspective, negating
any benefits of the alternative mechanism.

Selection Criteria. Multiple mechanisms should be avoided. When they are unavoidable, the
platform should disincentivize the use of the less-preferable mechanism.

8.4 Expert Review

Some platforms subject some or all applications to an expert security and privacy review. A re-
view process can be used to verify that automatically granted permissions are not abused, thereby
increasing the number of automatically granted permissions and reducing the burden that is placed
on users’ attention. For example, Apple automatically grants all permissions except for location

115

and notification; developers coarsely specify the privileges they need in their Info.plist files.
Alternately, a review process can ensure that applications are using the most dangerous permis-
sions appropriately. For example, Google reviews extensions with the most dangerous permissions
(i.e., full local machine access). If a platform includes multiple mechanisms, a review process
could be used to discourage developers from using the less-desirable mechanism.

We recommend against relying on reviews in lieu of user interaction. Experts cannot predict
individual privacy decisions. For example, consider an application that periodically collects and
transmits the user’s running applications: some users may approve this, while others may not want
the application to receive this information so frequently. Apple has approved applications that
violate user expectations, leading to user outcry [42]. Instead, platforms should use reviews in a
complementary manner. Apple could use reviews to ensure that automatically-granted permissions
are not abused but still provide users with auditing mechanisms (e.g., attributions and notifications).

8.5 Applying Our Guidelines

We systematically assigned permission-granting mechanisms to a set of permissions, according
to our guidelines. We then reviewed 20 iPhone applications to evaluate how the user experience
would change in our proposed permission granting system. Last, we prototyped 8 of the permis-
sions that use auditing or trusted UI.

8.5.1 Permission Assignment

To perform the assignment, we first created a set of platform-neutral operating system permissions
by combining Android permissions, Windows Phone 7 capabilities, iOS prompts, and the Mozilla
WebAPI. (Our guidelines are not platform- or smartphone-specific.) After grouping redundant
permissions and dividing broad permissions,2 we arrived at 75 platform-neutral permissions. We
then considered each permission individually. We devised auditing and trusted UI mechanisms as
appropriate. We used the set of user concerns from Chapter 7 to identify low-severity permissions.

We find that runtime consent dialogs and install-time warnings cannot be avoided (given that
we are unwilling to disable application features), but only a minority of permissions require run-
time consent dialogs or install-time warnings. Based on our analysis, 60% of the permissions can
be automatically granted, 21% can be represented with trusted UI, 12% require runtime consent di-
alogs, and 7% would need install-time warnings. Although we could not represent all permissions
with automatic grants or trusted UI, our assignment demonstrates that the majority of permissions
can be handled with non-interruptive permission-granting mechanisms. Appendix C lists, defines,
and categorizes all of the permissions.

2For example, we grouped Android’s “automatically start at boot” and “make application always run” permissions
into a “run all the time” permission, and we divided the “read phone state and identity” permission into “read phone
state” and “read phone identity” permissions.

116

Assigning mechanisms to permissions without compromising application functionality can be
complex. In some cases, it may require changes to APIs. For example, we decided to use an
embedded button to control the camera permission. After examining applications that take photos,
we found that past proposals for controlling camera access with trusted UI [125, 80] would not
satisfy many popular applications:

1. A trusted preview screen displays the current camera feed on a portion of the screen, so that
users can see what their applications may be recording. However, trusted preview screens
cannot be used for applications that omit or partially cover the camera preview as part of
their design (e.g., augmented reality).

2. Embedded buttons may not work for applications that capture future photos. Roesner et
al. proposed scheduling buttons (i.e., a small trusted calendar), but future events may not
conform to predetermined metrics. For example, a bicycling application may automatically
take photos at regular distance intervals during a ride. In our design, applications have to
use the trusted video button instead; a video recording notification will then flash until the
photography is complete.

3. An embedded button is not sufficient when applications apply realtime filters, e.g., to pre-
view a sepia photo. These applications access video data before the user presses a button.
This can be handled by creating an optional trusted preview screen that renders effects on
behalf of applications. (This can be implemented with existing technology, such as WebGL
shaders [102].)

Similarly, other permissions might also require changes to APIs to support diverse use cases.
For example, having separate API calls for Bluetooth, WiFi, and other settings instead of a single
settings API allows each one to have its own permission-granting mechanism.

8.5.2 Preliminary Evaluation of Impact

We reviewed the twenty most popular free iPhone applications to evaluate how our proposed per-
mission system would impact users’ and developers’ experiences. We manually tested the applica-
tions to match their behavior to the 83 API calls discussed in Chapter 8.5. Our results suggest that
our approach could potentially provide a feasible basis for a permission system.

Users. iOS is the only smartphone platform that currently uses runtime consent dialogs, and our
evaluation shows that our proposal would not degrade the iOS user experience. A user would see an
average of 0.25 runtime consent dialogs per application (min = 0,max = 1) under our proposed
permission system. All of these runtime consent dialogs already exist in iOS. Our proposal would
actually decrease the number of runtime consent dialogs because we automatically grant access to
the notification API instead of prompting users as iOS does.

Developers. We find that most applications would not require changes to use trusted UI elements
because they already use them (e.g., photo choosers). The average application would contain 0.60
trusted UI elements (min = 0,max = 3). Three similar applications would need changes: they

117

would have to replace their camera buttons with the trusted camera button, replace their custom
contacts choosers with the trusted contacts chooser, and give their preview filters to a trusted pre-
view window. Apart from trusted UI, other changes to permissions would not impact developers.

8.5.3 Prototype

We modified Android 4.0.4 to include new permission-granting mechanisms for eight permissions:

• vibrating the phone (notification for auditing)
• turning the camera flash on or off (notification for auditing)
• setting the time (an annotation in Date & Time Settings for auditing)
• setting the wallpaper (an annotation in Wallpaper Settings for auditing)
• reading the photo library (a trusted chooser)
• reading the contacts library (a trusted chooser)
• sending SMS messages (an embedded button)
• taking a photo (an embedded button3)

Screenshots of these mechanisms are shown in Figure 8.5.3. We selected Android for the prototype
because it is a mature, open source platform; the same mechanisms could be implemented for
Boot2Gecko, iOS, or a browser.

We ran a small, qualitative user study to evaluate whether these new mechanisms have the
potential to be usable. We recruited five iOS users from Craiglist to test our prototype: three
women and two men between the ages of 19 and 51. None of the participants had experience
as programmers or graphic designers. The interviews took place in a cafe, and participants were
unaware of the security focus. We told participants that we were testing new “smartphone features.”
None of the participants were familiar with Android, so none had seen the original versions of these
screens; consequently, they could not identify the specific alterations that we had made. Each
session took thirty minutes, and participants were paid $30 each.

We showed each participant the eight permission-granting mechanisms and asked them to ex-
plain the mechanisms to us. For every text label, we asked, “What does that mean?” For every
button, we asked, “What do you think would happen if you pressed that button?” Participants were
initially asked to not touch the screen. If a participant could not guess the function of a button,
we allowed the participant to test it and then asked a follow-up question: “What do you think that
button does?” We asked the same questions about other Android UI elements that we had not
altered; this served as a control and prevented the participants from fixating on security indicators.

Four of the five participants demonstrated comprehension of all of the mechanisms, with lim-
ited confusion over specific wording. For example, our initial wording for the camera flash notifi-
cation said, “[app name] has turned your flash on”; participants were unsure whether this referred
to the camera flash or Adobe Flash, but they were aware that the notification was telling them about

3We have not implemented a trusted preview screen that can perform transformations on behalf of applications,
which would need to be part of a final implementation, as discussed in Chapter 8.5.1.

118

(a) Setting the time: annotation
and undo mechanism.

(b) Camera flash: notification.

(c) Setting the wallpaper: anno-
tation and undo mechanism.

(d) Reading the contacts library:
the trusted contacts chooser.

Figure 8.6. Prototype auditing and trusted UI mechanisms for Android.

119

(a) Sending SMS: a trusted but-
ton that reflects the target num-
ber, embedded in a free example
application [99].

(b) Taking photos: a trusted but-
ton that controls the camera, em-
bedded in a free example appli-
cation [71].

Figure 8.7. Prototype trusted UI buttons for Android, embedded in applications.

120

an action that an application had taken. As another example, three participants were initially un-
sure whether they could select multiple contacts or photos but resolved their uncertainty when they
were allowed to touch the screen. These results indicate that notifications, annotations, trusted
UI, and embedded buttons may be practical forms of expressing permissions to users, although
additional studies will be needed to identify optimal phrases and icons.

One participant, a 39-year-old woman, did not understand any of the prototype mechanisms.
However, she also did not understand the original Android UI elements that we asked her about.
(E.g., she could not define “automatic date & time: use network-provided time.”) This participant
expressed general discomfort with her phone, despite having owned an iPhone for two years. She
does not use many applications and delegates “difficult” tasks on her phone to family members.
Her confusion indicates that additional steps may be needed to reach low-comfort users.

8.6 Future Work

Most current platforms use the same permission-granting mechanism for all permissions. In this
chapter, we argue for a new model in which developers choose the most appropriate mechanism
for each given permission, with the goal of minimizing the tax on user attention. While our model
seems like a plausible direction, further research is needed to perform a comprehensive usability
evaluation of a platform that follows our model.

Attention Cost. Although prior research has established that users become habituated to frequent
security dialogs, the rate at which users become habituated is not known. If the cost of each
interruptive dialog were known, it could be used as a parameter during the design of a permission
system: the cost could be used to determine whether the permission system has too many runtime
consent dialogs or install-time warnings. It is possible that users experience different habituation
rates for runtime consent dialogs and install-time warnings, so separate studies would be needed
to establish their respective attention costs.

Display Rates. In order to gauge whether users see interruptive dialogs too frequently, we need
to know how often users would see the dialogs in a deployed system. To perform this evaluation
without actually deploying the system, a future study should obtain a set of traces from users’
phones. This would require long-term monitoring of API calls on participants’ phones. The traces
would reflect both how users use applications and how applications use resources.

Choosers. We believe that users will optimize when using choosers because choosers are part of
the application workflow. However, this hypothesis has not been tested. Future research should
test whether users consider their options when selecting items from choosers (i.e., optimize) or
click through the default selection (i.e., satisfice).

Embedded Buttons. Although embedded buttons have been proposed by several prior researchers,
no one has performed a comprehensive study on the impact that embedded buttons have on applica-
tion development. Do the buttons restrict functionality? Does their constrained styling negatively

121

affect applications’ user interfaces? Such a study would need to involve input from developers and
a large-scale analysis of applications that would need to use embedded buttons.

8.7 Acknowledgements

We thank Matthew Finifter, Serge Egelman, and Devdatta Akhawe for collaborating on the assign-
ment of permissions to permission-granting mechanisms.

122

Chapter 9

Conclusion

This dissertation demonstrates that modern permission systems strongly benefit platform se-
curity. We performed case studies on the Google Chrome extension and Android application per-
mission systems. Based on our findings, future platforms should continue including permission
systems, even though they slightly increase the workload of developers.

We considered whether up-front permission declarations protect users from vulnerabilities in
benign-but-buggy applications. We found that developers are willing to request close-to-minimal
sets of permissions, which reduces the scope of vulnerabilities. Among a set of extensions with
real-world vulnerabilities, permissions prevent more than half of the vulnerable extensions from
exposing sensitive data (e.g., financial information). Platforms should therefore adopt up-front
permission declarations, regardless of when, whether, or how permissions are displayed to users.

We found that Android install-time permission warnings are not usable security indicators for
the majority of users. However, some people have altered their behavior based on permissions,
which shows that users can be receptive to permission indicators. Future platforms should involve
users in the permission-granting process, but they should learn from the flaws in Android’s install-
time warnings. We argue that permission system designers should avoid taxing user attention with
interruptive security dialogs except when it cannot be avoided. Instead, permission systems should
employ a diverse set of auditing and trusted UI mechanisms, customized to specific permissions.

We propose a set of guidelines for assigning permission-granting mechanisms to permissions,
based on the nature of the mechanisms and permissions. Our initial evaluation shows that this is
a promising direction for future research. Future researchers have an opportunity to quantify the
limits of user attention and measure the rate at which user attention would be consumed. Sev-
eral different types of permission-granting and auditing mechanisms have not yet been thoroughly
evaluated by usability researchers: ambient notifications, undo mechanisms, and choosers. We
believe that additional effort in this research area could yield a permission system that informs and
empowers the majority of smartphone users.

123

Appendix A

Lists of Applications

A.1 Extension Overprivilege

In Chapter 4, we reviewed the following Google Chrome extensions for overprivilege:

Orkut Chrome Extension, Google Similar Pages beta (by Google), Proxy Switchy!, AutoPager
Chrome, Send using Gmail (no button), Blog this! (by Google), Fbsof, Diigo Web Highlighter
and Bookmark, Woot!, Pendule, Inline Search & Look Up, YouTube Middle-Click Extension,
Send to Google Docs, [Non-English Title], PBTweet+, Search Center, Yahoo Mail Widget for
Google Chrome, Google Reader Compact, Chromed Movilnet, Ubuntu light-themes scrollbars,
Persian Jalali Calender, Intersect, deviantART Message Notifier, Expand, Castle Age Autoplayer
Alpha Patched, Patr Pats Flickr App, Better HN, Mark the visited links, Chrome Realtime Search,
Gtalk, SpeedyLinks, Slick RSS, Yahoo Avatar, Demotivation.ru ads remover, Short Youtube, (Non-
English Title), PPTSearch Edu Sites, Page2RSS, Good Habits, VeryDou, Wikidot Extender, Close
Left, iBood, Facebook Colored, eBay Espana (eBay.es) Busqueda avanzada, Keep Last Two Tabs,
Google Transliteration Service, Ohio State University Library Proxy Extension, Add to Google
Calendar, Rocky

A.2 Extension Vulnerabilities

We selected 100 extensions from the official Chrome extension directory. We have coded exten-
sions as follows: vulnerable and fixed (†), vulnerable but not fixed (‡), and created by Google (*).
We last checked whether extensions are still vulnerable on February 7, 2012.

124

A.2.1 Most Popular Extensions

The 50 most popular extensions (and versions) that we reviewed are as follows:

AdBlock 2.4.6, FB Photo Zoom 1.1105.7.2, FastestChrome - Browse Faster 4.0.6†, Adblock Plus
for Google Chrome? (Beta) 1.1.3†, Google Translate 1.2.3.1*‡, Google Dictionary (by Google)
3.0.0*†, Downloads 1, Turn Off the Lights 2.0.0.7, Google Chrome to Phone Extension 2.3.0*,
Firebug Lite for Google Chrome 1.3.2.9761†, Docs PDF/PowerPoint Viewer (by Google) 3.5*,
RSS Subscription Extension (by Google) 2.1.3*‡, Webpage Screenshot 5.2†, Mail Checker Plus for
Google Mail 1.2.3.3, Awesome Screenshot: Capture & Annotate 3.0.4‡, Google Voice (by Google)
2.2.3.4*†, Speed Dial 2.1‡, Smooth Gestures 0.15.2, Xmarks Bookmark Sync 1.0.14, Send from
Gmail (by Google) 1.12*, SocialPlus! 2.5.4‡, FlashBlock 0.9.31, AddThis - Share & Bookmark
(new) 2.1†, WOT 1.1, Add to Amazon Wish List 1.0.0.4†, StumbleUpon 3.5.18.1†, Google Calen-
dar Checker (by Google) 1.2.1*, Clip to Evernote 5.0.14.9248, Google Quick Scroll 1.8*, Stylish
0.7, Silver Bird 1.9.7.9†, SmoothScroll 1.0.1, Browser Button for AdBlock 0.0.13, TV 2.0.5, Fast
YouTube Search 1.2‡, Slideshow 1.2.9†, bit.ly — a simple URL shortener 1.2.1.9, Web Devel-
oper 0.3.1, LastPass 1.73.2, SmileyCentral 1.0.0.3‡, Select To Get Maps 1.1.1‡, TooManyTabs for
Chrome 1.6.5, Blog This! (by Google) 0.1.1*, TinEye Reverse Image Search 1.1, ESPN Cricinfo
1.8.3†, MegaUpload DownloadHelper 1.2, Forecastfox 2.0.10‡, PanicButton 0.13.1†, AutoPager
Chrome 0.6.2.12, RapidShare DownloadHelper 1.1.1.

A.2.2 Randomly Selected Extensions

The 50 randomly selected extensions (and versions) that we reviewed are as follows:

The Independent 1.7.0.3†, Deposit Files Download Helper 1.2, The Huffington Post 1.0.5‡, Book-
marks Menu 3.4.6, X-notifier (Gmail, Hotmail, Yahoo, AOL ...) 0.8.2‡, SmartVideo For YouTube
0.94, PostRank Extension 0.1.7, Bookmark Sentry 1.6.5†, Print Plus 1.0.5.0‡, 4chan 4chrome
9001.47‡, HootSuite Hootlet 1.5, Cortex 1.8.3, ScribeFire 1.7‡, Chrome Dictionary Lite 0.2.6†,
Taberareloo 2.0.17, SEO Status Pagerank/Alexa Toolbar 1.6, ChatVibes Facebook Video Chat!
1.0.7†, PHP Console 2.1.4, Blank Canvas Script Handler 0.0.17‡, Reddit Reveal 0.2, Greplin 1.7.3,
DropBox 1.1.5, Speedtest.or.th 1, Happy Status 1.0.1‡, New Tab Favorites 0.1, Ricks Domain
Cleaner for Chrome 1.1.1, Fazedr 1.6†, LL Bonus Comics First! 2.2, Better Reddit 0.0.4, (non-
English characters) 1, turl.im url shortener 1.1, Wooword Bounce 1.2, ntust Library 0.7, me2Mini
0.0.81‡, Back to Top 1.1, Favstar Tally by @paul shinn 1.0.0.0, ChronoMovie 0.1.0, AutoPager-
ize 0.3.1, Rlweb’s Bitcoin Generator 0.1, Nooooo button 1‡, The Bass Buttons 1.95, Buttons 1.4,
OpenAttribute 0.6†, Nu.nl TV gids 1.1.3‡, Hide Sponsored Links in Gmail? 1.4, Short URL 4,
Smart Photo Viewer on Facebook 1.3.0.1‡, Airline Checkin (mobile) 1.2102, Democracy Now!
1.1‡, Coworkr.net Chrome 0.9.

125

Appendix B

Full Results Of User Concern Survey

In Chapter 7, we collected survey data on user concerns. Table B.1 shows the VUR rates for all
of the 99 risks that were in our survey, ordered by rank. We have grouped questions about sharing
the same data type into the same row. The tightest confidence interval for a VUR rate is ±1.4%
at a 95% confidence level, and the widest confidence interval for a VUR rate is ±5.0% at a 95%
confidence level. (The confidence interval depends on the number of ratings for a given risk — the
average number of ratings was 376.7 — and how close the VUR rate is to 50%.)

126

Risk Very Upset Rate
permanently disabled (broke) your phone 98.21%
made phone calls to 1-900 numbers (they cost money) 97.41%
sent premium text messages from your phone (they cost money) 96.39%
deleted all of your contacts 95.89%
used your phone’s radio to read your credit card in your wallet 95.15%
publicly shared your text messages 94.48%
deleted all of the information, apps, and settings on your phone 94.39%
publicly shared your e-mails 93.37%
deleted all of your other apps 93.14%
shared your text messages with friends 92.49%
recorded your credit card # when you entered it into a different app 92.35%
publicly shared your photos 90.60%
changed your keylock/pattern/PIN 90.46%
sent text messages from your phone 90.42%
shared your contact list with advertisers 90.19%
spammed your contacts with event invitations 89.73%
made phone calls 89.62%
shared your text messages with advertisers 88.63%
sent spam to people on your contact list 87.95%
publicly shared your call history 87.77%
shared your photos with advertisers 87.26%
shared your e-mails with your friends 86.87%
shared your call history with advertisers 85.80%
shared your browsing history and bookmarks with friends 85.68%
shared your e-mails with advertisers 83.96%
publicly shared your calendar 83.68%
recorded the passwords that you enter into other apps and websites 83.38%
sent spam from your e-mail account 82.76%
shared your call history with your friends 82.04%
shared your photos with your friends 81.28%
shared your e-mail address with advertisers 82.31%
deleted or changed files used by other apps on your phone 82.14%
inserted spam messages at the end of a text message you sent 81.15%
hung up your phone when you’re talking 81.00%
publicly shared your e-mail address 80.70%
publicly shared your phone’s unique ID 78.92%
recorded you speaking with your phone’s microphone 78.86%
installed other apps onto your phone 78.46%
took a photo with your front-facing camera 77.30%
muted a phone call when you’re talking 77.27%
deleted all of the events on your calendar 76.89%
shared your phone’s unique ID with advertisers 76.61%
posted to your Facebook wall 76.30%
used your data plan to download data when you were roaming 75.57%
sent your e-mails to their servers (but didn’t share them with anyone else) 75.51%
turned your keylock/pattern/PIN off 74.72%
sent your text messages to their servers (but didn’t share them with anyone else) 75.48%
deleted other apps’ saved passwords 73.96%
shared your contact list with friends 73.59%
took a photo with your rear-facing camera 73.54%
shared your calendar with advertisers 73.47%
publicly shared your location 71.57%
shared your browsing history and bookmarks with advertisers 70.74%
un-muted a phone call 70.73%
took screenshots when you’re using other apps 70.23%
deleted all of your browser bookmarks and RSS feeds 69.87%

127

Risk Very Upset Rate
added new contacts 69.57%
sent your contact list to their servers (but didn’t share it with anyone else) 69.29%
force quit all your other apps 69.29%
sent your call history to their servers (but didn’t share it with anyone else) 68.41%
used your data plan to download data 67.83%
turned your Internet connection off while you were using the Internet 64.84%
logged in to your Facebook account 64.34%
prevented other apps from running 63.99%
shared your calendar with your friends 63.59%
shared your location with advertisers 62.80%
shared the list of apps you have installed with advertisers 61.85%
prevented your phone from being backed up to your computer 61.39%
sent your photos to their servers (but didn’t share them with anyone else) 60.95%
used your phone’s unique ID to track you across apps 60.33%
changed the time on your phone 60.00%
logged in to your saved Google account 59.38%
shared your location with your friends 58.10%
restarted your phone 57.56%
drained your battery 55.61%
publicly shared the list of apps you have installed 54.77%
sent your browsing history and bookmarks to their servers (but didn’t share them with anyone else) 54.59%
set alarms on your phone 54.05%
changed your phone’s wallpaper 52.51%
shared the list of apps you have installed with your friends 52.36%
turned the sound on your phone up really high 52.12%
shared your e-mail address with your friends 52.00%
showed you lots of pop-up notifications 51.90%
prevented your phone from being backed up to the cloud 50.52%
sent your calendar to their servers (but didn’t share it with anyone else) 50.14%
slowed down your phone 50.00%
disconnected you from a Bluetooth device (like a headset) while you were using the Bluetooth device 48.63%
sent your e-mail address to their servers (but didn’t share it with anyone else) 46.87%
turned your WiFi back on when you were on a plane 45.52%
inserted extra letters into what you’re typing 45.48%
read files that belong to other apps 44.33%
sent your phone’s unique ID to their servers (but didn’t share it with anyone else) 42.16%
added new browser bookmarks 39.22%
turned the sound on your phone down really low 36.96%
sent the list of apps you have installed to their servers (but didn’t share it with anyone else) 34.92%
sent your location to their servers (but didn’t share it with anyone else) 29.88%
turned your flash on 29.67%
connected to a Bluetooth device (like a headset) 27.47%
vibrated your phone 15.62%

Table B.1. The number of respondents who indicated they would be “Very upset” if a given
risk occurred. We asked 99 questions about risks; each respondent saw 12.

128

Appendix C

Categorized Permissions

We defined and categorized 81 platform-neutral permissions in Chapter 8. We list those per-
missions in Table C.1, which continues for multiple pages.

129

Property Android permission Web APIs Granting
mechanism

declare a widget that runs
before the PIN is entered

System tools: disable keylock Automatic

run all the time System tools: automatically start
at boot, System tools: make
application always run

Automatic

keep phone awake (drain the
battery)

System tools: prevent device
from sleeping

Automatic

turn vibrator on/off Hardware controls: control
vibrator

navigator.vibrate Automatic

turn camera flash on/off Hardware controls: control
flashlight

Automatic

change wallpaper System tools: set wallpaper possibly covered by
SettingsLock.set; still
unspecified in the specs

Automatic

change the time System tools: set time zone,
Default: set time

covered by SettingsLock.set
(set-
tings.time.useNetworkTime,
settings.time.timezone,
settings.time.msSinceEpoch);
might also support
adjustSystemClock

Automatic

turn sound up or down Hardware controls: change your
audio settings

possibly covered by
SettingsLock.set; still
unspecified in the specs

Automatic

set alarm Your personal information: set
alarm in alarm clock

Automatic

add words to the dictionary Your personal information: write
to user defined dictionary

Automatic

change the default locale System tools: change your UI
settings

possibly covered by
SettingsLock.set; still
unspecified in the specs

Automatic

change the font size and font System tools: change your UI
settings

possibly covered by
SettingsLock.set; still
unspecified in the specs

Automatic

change the ringtone System tools: change your UI
settings

possibly covered by
SettingsLock.set; still
unspecified in the specs

Automatic

force quit other apps (task
management)

System tools: force stop other
applications, System tools: kill
background processes, Default:
enable or disable application
components, Default: prevent app
switches, Default: monitor and
control all application launching

Automatic

control an app’s backup to the
cloud or a computer

Default: control system backup
and restore

Automatic

change sync settings for an
app’s own account, when not
roaming

System tools: write sync settings Automatic

view network state Network Communication: View
network state

MobileConnection.cardState,
MobileConnec-
tion.emergencyCallsPossible,
MobileConnec-
tion.roaming...etc,
Connection.bandwidth,
Connection.metered

Automatic

Table C.1. Our categorization of permissions.

130

Property Android permission Web APIs Granting
mechanism

view wifi state, not including
current SSIDs

Network Communication: View
Wi-Fi state

WifiManager.getNetworks,
WifiManager.connected,
WifiManager.signalStrength,
WifiManager.connectTemp
(note that all of these require
knowing the SSIDs);
Connection.bandwidth,
Connection.metered

Automatic

data plan access, including both
pull and push, when not
roaming

Network Communication: Full
Internet access, Network
Communication: Receive data
from Internet, Network
Communication: Download files
without notification

normal internet connectivity
for websites

Automatic

connect or disconnect from
bluetooth devices

Network Communication: Create
bluetooth connections, System
tools: Bluetooth administration

nsIDOMBlue-
toothAdapter.startDiscovery,
nsIDOMBlue-
toothAdapter.stopDiscovery,
ondevicefound etc

Automatic

connect or disconnect from
known wifi/cell networks

System tools: Change network
connectivity, System tools:
Change Wi-Fi state

according to the
WebMobileConnection wiki,
connecting to/from cell
networks will be covered by
SettingsLock.set

Automatic

connect or disconnect from new
wifi/cell networks

System tools: Change network
connectivity, System tools:
Change Wi-Fi state, System tools:
write access point name settings

according to the
WebMobileConnection wiki,
connecting to/from cell
networks will be covered by
SettingsLock.set

Automatic

read system log (note: this may
include private information if
companies are careless)

Your personal information: read
sensitive log data

Automatic

accelerometer Automatic
read unique ID; does not need
to be IMEI

Phone calls: read identity will be exposed by WebAPI
but not currently attached to
anything yet

Automatic

see that a call is beginning
(number not visible)

Phone calls: read phone state,
Phone calls: intercept outgoing
calls

Automatic

send call to voicemail Automatic
modify phone state: disconnect
phone calls, mute the phone,
unmute the phone

Phone calls: modify phone state naviga-
tor.TelephonyCall.answer,
naviga-
tor.telephony.TelephonyCall.
hangUp,
navigator.telephony.startTone,
navigator.telephony.stopTone,
etc.

Automatic

mount or unmount an external
hard drive that is connected to
the device

System tools: mount and
unmount filesystems

Automatic

move app resources (files etc.)
from SD card to internal
storage, or vice versa; only
grants ability to move own
resources

Default: Move application
resources

Automatic

Pop-up notifications Automatic

131

Property Android permission Web APIs Granting
mechanism

add notifications to status bar Default: send download
notifications

Automatic

sync System tools: read sync settings,
System tools: read sync statistics

Automatic

reorganize other processes Development tools: limit number
of running processes, System
tools: reorder running
applications

Automatic

Your personal information: read
user defined dictionary

Your personal information: read
user defined dictionary

Automatic

IPC Development tools: send Linux
signals to applications, Network
communication: broadcast data
messages to applications, System
tools: send package removed
broadcast, System tools: send
sticky broadcasts, Your messages:
send SMS-received broadcasts,
Your messages: send
WAP-PUSH-received broadcasts

Automatic

measure application storage
space

System tools: measure
application storage space

Automatic

modify global animation speed System tools: modify global
animation speed

Automatic

install DRM content Default: install DRM content Automatic
use mock location sources for
testing

Your location: mock location
sources for testing

Automatic

enable application debugging Development tools: enable
application debugging

Automatic

read battery statistics Default: modify battery statistics
(this really only allows an app to
READ battery statistics)

Automatic

delete other applications’
caches

Default: delete other applications’
caches, System tools: delete all
application cache data, Default:
access the cache filesystem

Automatic

system debugging information Your personal information:
retrieve system internal state

Automatic

display or hide the full
notifications menu

System tools: expand/collapse
status bar

possibly covered by
SettingsLock.set; still
unspecified in the specs

Automatic for
foreground

delete applications Default: delete applications navigator.mozApps.uninstall Runtime dialog
install applications Default: directly install

applications
navigator.mozApps.install Install-time

warning
see that a call is beginning,
including the number of the call

Install-time
warning

change the number of an
outgoing call

Phone calls: intercept outgoing
calls

Install-time
warning

keylogging other apps (used by
input methods)

Default: read frame buffer,
Default: record what you type
and actions you take, Default:
bind to an an input method

Install-time
warning

insert keystrokes and
keypresses into other
applications

Default: press keys and control
buttons

Install-time
warning

132

Property Android permission Web APIs Granting
mechanism

sync, when roaming System tools: write sync settings Runtime dialog
view nearby SSIDs Network Communication: View

Wi-Fi state
WifiManager.getNetworks,
WifiManager.connected,
WifiManager.signalStrength,
WifiManager.connectTemp
(note that all of these require
knowing the SSIDs);
Connection.bandwidth,
Connection.metered

Runtime dialog

data plan access, including both
pull and push, when roaming

Network Communication: Full
Internet access, Network
Communication: Receive data
from Internet, Network
Communication: Download files
without notification

normal internet connectivity
for websites

Runtime dialog

NFC Network Communication:
Control Near Field
Communication

“The NDEF capabilities are,
for now, restricted to tag
discovery. The tagdiscovered
NfcNdefEvent will be fired
when a new NDEF tag is
discovered.”

Runtime dialog

read browser history,
bookmarks, and RSS feeds

Your personal information: read
browser’s history and bookmarks,
System tools: read subscribed
feeds

Runtime dialog

read location Your location: coarse
(network-based) location, Your
location: fine (GPS) location

Runtime dialog

read call history Phone calls: read phone state,
Phone calls: intercept outgoing
calls

navigator.telephony.calls, also
can put a handler on each
incoming call and see who
it’s with

Runtime dialog

read SMS messages (both sent
and received)

Your messages: read SMS or
MMS, Your messages: receive
MMS, Your messages: receive
SMS, Your messages: receive
WAP

navigator.sms.getMessage,
navigator.sms.getMessages

Runtime dialog

send premium SMS messages Services that cost you money:
send SMS messages

navigator.sms.send Runtime dialog

turn phone off or reboot phone Default: power device on or off,
Device: force device reboot

Trusted UI

edit bookmarks/RSS feeds Your personal information: write
browser’s history and bookmarks,
System tools: write subscribed
feeds

Trusted UI - Action
review

send calendar invitations Your personal information: send
emails to [calendar] guests

Trusted UI - Action
review

add, delete, or edit contacts Your personal information: write
contact data

ContactManager.clear,
ContactManager.safe,
ContactManager.remove

Trusted UI - Action
review

view photos currently assumed that photos
will be accessed via the
DeviceStorage API, no
specific photos API

Trusted UI -
Chooser

access audio files that other
apps recorded

Default: audio file access Trusted UI -
Chooser

133

Property Android permission Web APIs Granting
mechanism

read contacts Your personal information: read
contact data

ContactsManager.find Trusted UI -
Chooser

read other applications files Storage: modify/delete USB
Storage contents modify/delete
SD card contents (READ),
Default: access DRM content

DeviceStorage API is one
folder for the whole storage
system; but also localStorage

Trusted UI -
Chooser

write, change, or delete other
applications files

Storage: modify/delete USB
Storage contents modify/delete
SD card contents (WRITE),
System tools: format external
storage, Default: delete other
applications’ data

DeviceStorage API is one
folder for the whole storage
system; but also localStorage

Trusted UI -
Chooser

see other accounts (includes
e-mail addresses and logins);
can be useful if you use other
services for login/auth

Your accounts: discover known
accounts, Your accounts: view
configured accounts, Default:
discover known accounts

Trusted UI -
Chooser

record with the microphone Hardware controls: record audio will be part of the
VideoConferencing API

Trusted UI - magic
button

use the camera (either front or
rear)

Hardware controls: take pictures
and videos (note that windows
phone separates front and rear
facing cameras)

will be part of the
VideoConferencing API

Trusted UI - Magic
button

full screen Default: disable or modify status
bar

Trusted UI - Magic
button

send non-premium SMS
messages

Services that cost you money:
send SMS messages

navigator.sms.send Trusted UI - Magic
button

place phone calls Services that cost you money:
directly call phone numbers

navigator.telephony.dial Trusted UI - Magic
button

write to the calendar Your personal information: add or
modify calendar events

Trusted UI -Action
review

134

Appendix D

Research Ethics and Safety

The studies described within this paper received approval from the Institutional Review Board
(IRB) at the University of California, Berkeley, prior to the commencement of the research. The
studies were approved as part of “User Preferences for Application Permissions” (2011-04-3106),
“The Effect of Android User Interface Elements on User Behavior” (2011-07-3405), “Testing New
Browser Permission Dialogs” (2012-03-4121), and “Mobile App Survey” (2011-10-3677).

We obtained consent from all study participants to share their responses anonymously. All
Internet survey data was collected anonymously, and the IP address logs were deleted once re-
sponses had been de-duplicated. Laboratory study and focus group participants were not inter-
viewed anonymously, but all data was coded so that only the lead researcher could connect names
to participant data. We gave laboratory study and focus group participants an opportunity to ask
clarifying questions about the study after their interviews.

135

Bibliography

[1] “Application fundamentals,” Android developer documentation. [Online]. Available:
http://developer.android.com/guide/components/fundamentals.html

[2] “Broadcast Intent when network state has changed,” Stack
Overflow. [Online]. Available: http://stackoverflow.com/questions/2676044/
broadcast-intent-when-network-state-has-changend

[3] “Capabilities,” S60 5th Edition C++ Developer’s Library v2.1. [On-
line]. Available: http://library.developer.nokia.com/index.jsp?topic=/S60 5th Edition Cpp
Developers Library/GUID-6971B0A2-F79B-4E05-8AF3-BB1FC1932A22.html

[4] “Content Security Policy (CSP),” Google Chrome Extension Documentation. [Online].
Available: http://code.google.com/chrome/extensions/trunk/contentSecurityPolicy.html

[5] “Cross-Origin XMLHttpRequest,” Google Chrome Extension Documentation. [Online].
Available: http://code.google.com/chrome/extensions/xhr.html

[6] “Intents and Intent Filters,” Android developer documentation. [Online]. Available:
http://developer.android.com/guide/components/intents-filters.html

[7] “Manifest.permission,” Android developer documentation. [Online]. Available: http:
//developer.android.com/reference/android/Manifest.permission.html

[8] “Npapi plugins,” Google Chrome Extension Documentation. [Online]. Available:
http://code.google.com/chrome/extensions/npapi.html

[9] “Permissions reference,” Facebook Developers. [Online]. Available: https://developers.
facebook.com/docs/authentication/permissions/

[10] “SELinux Project Wiki.” [Online]. Available: http://selinuxproject.org/page/Main Page

[11] “Tabs,” Google Chrome Extension Documentation. [Online]. Available: http://code.google.
com/chrome/extensions/tabs.html

[12] “The Add-on Review Process and You,” Mozilla Add-ons Blog. [Online]. Available:
http://blog.mozilla.com/addons/2010/02/15/the-add-on-review-process-and-you

136

[13] “Why is using JavaScript eval function a bad idea?” Stack
Overflow. [Online]. Available: http://stackoverflow.com/questions/86513/
why-is-using-javascript-eval-function-a-bad-idea

[14] “Trusted computer system evaluation criteria (orange book),” Department of Defense, Tech.
Rep. DOD 5200.28-STD, December 1985.

[15] “Device APIs Requirements: W3C Working Group Note 15 October 2009,” W3C
Working Group Notes, 2009. [Online]. Available: http://www.w3.org/TR/2009/
NOTE-dap-api-reqs-20091015/

[16] “How Consumers Interact with Mobile App Advertising,” Harris Interactive Survey,
December 2011. [Online]. Available: http://www.pontiflex.com/download/harrisinteractive.
pdf

[17] “US Smartphone Owners by Age,” comScore Data Mine, June 2011. [Online]. Available:
http://www.comscoredatamine.com/2011/06/us-smartphone-owners-by-age

[18] M. Ackerman, L. Cranor, and J. Reagle, “Privacy in e-commerce: examining user scenarios
and privacy preferences,” in Proceedings of the ACM Conference on Electronic Commerce,
1999.

[19] L. Adamski, “Security severity ratings,” MozillaWiki. [Online]. Available: https:
//wiki.mozilla.org/Security Severity Ratings

[20] B. Adida, A. Barth, and C. Jackson, “Rootkits for JavaScript Environments,” in Proceedings
of the Workshop on Web 2.0 Security and Privacy (W2SP), 2009.

[21] A.-R. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe, “Efficient and language-
independent mobile programs,” in Proceedings of the ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, 1996.

[22] AdMob, “AdMob Mobile Metrics Report,” 2010. [Online]. Available: http://metrics.
admob.com/wp-content/uploads/2010/02/AdMob-Mobile-Metrics-Jan-10.pdf

[23] D. Akhawe, P. Saxena, and D. Song, “Privilege Separation for HTML5 Applications,” in
Proceedings of the USENIX Security Symposium, 2012.

[24] Android Open Source Project, “Android Security Overview,” 2012. [Online]. Available:
http://source.android.com/tech/security/index.html

[25] D. Anthony, D. Kotz, and T. Henderson, “Privacy in location-aware computing environ-
ments,” IEEE Pervasive Computing, vol. 6, no. 4, 2007.

[26] S. Artzi, M. Ernst, A. Kiezun, C. Pacheco, and J. Perkins, “Finding the needles in the
haystack: Generating legal test inputs for object-oriented programs,” in Proceedings of the
Workshop on Model-Based Testing and Object-Oriented Systems, 2006.

137

[27] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “VEX: Vetting Browser Ex-
tensions For Security Vulnerabilities,” in Proceedings of the USENIX Security Symposium,
2010.

[28] L. Barkhuus, “Privacy in location-based services, concern vs. coolness,” in Proceedings of
the Workshop on Location System Privacy and Control at MobileHCI, 2004.

[29] L. Barkhuus and A. Dey, “Location-based services for mobile telephony: a study of users’
privacy concerns,” in Proceedings of the IFIP TC13 International Conference on Human-
Computer Interaction (INTERACT), 2003.

[30] D. Barrera, H. Kayacik, P. van Oorschot, and A. Somayaji, “A methodology for empirical
analysis of permission-based security models and its application to Android,” in Proceed-
ings of the ACM Conference on Computer and Communications Security (CCS), 2010.

[31] A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting Browsers from Extension
Vulnerabilities,” in Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2010.

[32] A. Barth, “More secure extensions, by default,” Chromium Blog, February 2012. [Online].
Available: http://blog.chromium.org/2012/02/more-secure-extensions-by-default.html

[33] A. Berman, V. Bourassa, and E. Selberg, “TRON: process-specific file protection for the
UNIX operating system,” in Proceedings of the USENIX Technical Conference Proceedings,
1995.

[34] D. J. Bernstein, “The qmail security guarantee.” [Online]. Available: http://cr.yp.to/qmail/
guarantee.html

[35] A. Besmer and H. R. Lipford, “Users’ (mis)conceptions of social applications,” in Proceed-
ings of Graphics Interface, 2010.

[36] J. R. Bettman, An Information Processing Theory of Consumer Choice. Addison-Wesley
Publishing Company, 1979.

[37] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: splitting applications into
reduced-privilege compartments,” in Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2008.

[38] N. J. Blunch, “Position Bias in Multiple-Choice Questions,” Journal of Marketing Research,
1984.

[39] E. Bodden, A. Sewe, J. Sinschek, and M. Mezini, “Taming reflection: Static analysis in the
presence of reflection and custom class loaders,” CASED, Tech. Rep. TUD-CS-2010-0066,
Mar. 2010. [Online]. Available: http://www.bodden.de/pubs/TUD-CS-2010-0066.pdf

[40] R. Böhme and J. Grossklags, “The Security Cost of Cheap User Interaction,” in Proceedings
of the New Security Paradigms Workshop (NSPW), 2011.

138

[41] R. Böhme and S. Köpsell, “Trained to accept? A field experiment on consent dialogs,” in
Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI), 2010.

[42] C. Bonnington, “Apple Says Grabbing Address Book Data Is an iOS Policy
Violation,” Wired: Gadget Lab, February 15 2012. [Online]. Available: http:
//www.wired.com/gadgetlab/2012/02/apple-responds-to-path/

[43] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing based on Java predi-
cates,” in Proceedings of the ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2002.

[44] A. Braunstein, L. Granka, and J. Staddon, “Indirect Content Privacy Surveys: Measuring
Privacy Without Asking About It,” in Proceedings of the Symposium on Usable Privacy and
Security (SOUPS), 2011.

[45] T. Buchanan, C. Paine, A. N. Joinson, and U.-D. Reips, “Development of measures of online
privacy concern and protection for use on the Internet,” Journal of the American Society for
Information Science and Technology, 2007.

[46] B. Chess, Y. T. O’Neil, and J. West, “JavaScript Hijacking,” Fortify, Tech. Rep., 2007.

[47] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing Inter-Application Com-
munication in Android,” in Proceedings of the Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys), 2011.

[48] G. Cluley, “Windows Mobile Terdial Trojan makes expensive phone calls,” naked
security by Sophos. [Online]. Available: http://www.sophos.com/blogs/gc/g/2010/04/10/
windows-mobile-terdial-trojan-expensive-phone-calls/

[49] F. Coker, “Writing SE Linux policy HOWTO,” 2004. [Online]. Available: http:
//www.lurking-grue.org/writingselinuxpolicyHOWTO.html

[50] S. Consolvo, I. E. Smith, T. Matthews, A. LaMarca, J. Tabert, and P. Powledge, “Location
disclosure to social relations: why, when, & what people want to share,” in Proceedings of
the ACM CHI Conference on Human Factors in Computing Systems, 2005.

[51] L. F. Cranor, “A framework for reasoning about the human in the loop,” in Proceedings of
the USENIX Conference on Usability, Psychology, and Security, 2008.

[52] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic robustness tester for Java,” Soft-
ware: Practice and Experience, vol. 34, no. 11, 2004.

[53] B. Darwell, “Facebook platform supports more than 42 million pages and 9 million apps,”
Inside Facebook, April 2012. [Online]. Available: http://www.insidefacebook.com/2012/
04/27/facebook-platform-supports-more-than-42-million-pages-and-9-million-apps/

[54] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2006.

139

[55] J. Drake, P. Mehta, C. Miller, S. Moyer, R. Smith, and C. Valasek, “Browser Security Com-
parison: A Quantitative Approach,” Accuvant Labs, Tech. Rep., 2011.

[56] S. Egelman, J. Tsai, L. F. Cranor, and A. Acquisti, “Timing is everything? the effects
of timing and placement of online privacy indicators,” in Proceedings of the ACM CHI
Conference on Human Factors in Computing Systems, 2009.

[57] S. Egelman, L. F. Cranor, and J. Hong, “You’ve Been Warned: An empirical study of the ef-
fectiveness of web browser phishing warnings,” in Proceedings of the ACM CHI Conference
on Human Factors in Computing Systems, 2008.

[58] S. Egelman, A. P. Felt, and D. Wagner, “Choice Architecture and Smartphone Privacy:
There’s A Price For That,” in Workshop on the Economics of Information Security (WEIS),
2012.

[59] M. Eichin and J. Rochlis, “With microscope and tweezers: an analysis of the Internet virus
of November 1988,” May 1989.

[60] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of Android application secu-
rity,” in Proceedings of the USENIX Security Symposium, 2011.

[61] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application certifi-
cation,” in Proceedings of the ACM Conference on Computer and Communication Security
(CCS), 2009.

[62] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth, “Taint-
Droid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smart-
phones,” in Proceedings of the Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2010.

[63] “Enhanced JUnit.” [Online]. Available: http://www.silvermark.com/Product/java/
enhancedjunit/index.html

[64] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A Survey of Mobile Malware in
the Wild,” in Proceedings of the ACM Workshop on Security and Privacy in Mobile Devices
(SPSM), 2011.

[65] A. P. Felt, M. Finifter, J. Weinberger, and D. Wagner, “Diesel: Applying Privilege Separa-
tion to Database Access,” in Proceedings of the ACM Symposium on Information, Computer
and Communications Security (AsiaCCS), 2011.

[66] A. P. Felt, “Issue 54006: Security: Extension history permission does not generate a
warning,” August 2010. [Online]. Available: http://code.google.com/p/chromium/issues/
detail?id=54006

[67] T. Fraser, “LOMAC: Low Water-Mark Integrity Protection for COTS Environments,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2000.

140

[68] A. Fuchs, A. Chaudhuri, and J. Foster, “SCanDroid: Automated Security Certification of
Android Applications,” University of Maryland, Tech. Rep., 2009.

[69] G. J. Gaeth and J. Shanteau, “Reducing the Influence of Irrelevant Information on Experi-
enced Decision Makers,” Organizational Behavior and Human Performance, vol. 33, 1984.

[70] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: A Delegating Architecture for Secure
System Call Interposition,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2004.

[71] M. Gargenta, “Using Camera API,” Marakana. [Online]. Available: http://marakana.com/
forums/android/examples/39.html

[72] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Detecting Privacy Leaks
in Android Applications,” UC Davis, Tech. Rep., 2011.

[73] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure environment for untrusted
helper applications: Confining the wily hacker,” in Proceedings of the USENIX Security
Symposium, 1996.

[74] J. Golson, “Apple requires user permission before apps can access personal data
in iOS 6,” MacRumors. [Online]. Available: http://www.macrumors.com/2012/06/14/
apple-requires-user-permission-before-apps-can-access-personal-data-in-ios-6/

[75] N. Good, R. Dhamija, J. Grossklags, S. Aronovitz, D. Thaw, D. Mulligan, and J. Konstan,
“Stopping spyware at the gate: A user study of privacy, notice and spyware,” in Proceedings
of the Symposium On Usable Privacy and Security (SOUPS), 2005.

[76] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy, “Verified security for browser exten-
sions,” in Proceedings of the IEEE Symposium on Security and Privacy, 2011.

[77] D. Hackborn, “Re: List of private / hidden / system APIs?” [Online]. Available:
http://groups.google.com/group/android-developers/msg/a9248b18cba59f5a

[78] S. E. Hallyn, “POSIX file capabilities: Parceling the power of root,” 2007. [Online].
Available: http://www.ibm.com/developerworks/linux/library/l-posixcap/index.html

[79] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These aren’t the droids you’re
looking for: retrofitting android to protect data from imperious applications,” in Proceedings
of the ACM Conference on Computer and Communications Security (CCS), 2011.

[80] J. Howell and S. Schechter, “What you see is what they get: Protecting users from unwanted
use of microphones, cameras, and other sensors,” in Proceedings of the Web 2.0 Security and
Privacy Workshop (W2SP), 2010.

[81] S. Ibrahim, “Universal 1-Click Root App for Android De-
vices,” August 2010. [Online]. Available: http://androidspin.com/2010/08/10/
universal-1-click-root-app-for-android-devices/

141

[82] C. Jackson, “Block chrome-extension:// pages from importing script over non-https
connections.” [Online]. Available: http://code.google.com/p/chromium/issues/detail?id=
29112

[83] A. Jakl, “Platform security,” Symbian Resources, 2009. [Online]. Available: http:
//www.symbianresources.com/tutorials/general.php#security

[84] C. Jensen, C. Potts, and C. Jensen, “Privacy practices of Internet users: Self-reports ver-
sus observed behavior,” in Proceedings of the International Journal of Human-Computer
Studies, 2005.

[85] Ka-Ping Yee, “Secure Interaction Design and The Principle of Least Authority,” in Proceed-
ings of the CHI Workshop on Human-Computer Interaction and Security Systems, 2003.

[86] P. A. Karger, U. Roger, and R. Schell, “Multics security evaluation: Vulner-
ability analysis,” HQ Electronic Systems Division: Hanscom AFB, MA. URL:
http://csrc.nist.gov/publications/history/karg74.pdf, Tech. Rep., 1974.

[87] P. A. Karger and R. R. Schell, “Thirty years later: Lessons from the multics security evalu-
ation,” in Annual Computer Security Applications Conference (ACSAC, 2002.

[88] R. Karim, M. Dhawan, V. Ganapathy, and C. chiech Shan, “An Analysis of the Mozilla
Jetpack Extension Framework,” in Proceedings of the 26th European Conference on Object-
Oriented Programming (ECOOP), 2012.

[89] P. G. Kelley, M. Benisch, L. F. Cranor, and N. Sadeh, “When are users comfortable shar-
ing locations with advertisers?” in Proceedings of the Conference on Human Factors in
Computing Systems (CHI), 2011.

[90] P. G. Kelley, S. Consolovo, L. F. Cranor, J. Jung, N. Sadeh, and D. Wetherall, “A Conundrum
of Permissions: Installing Applications on an Android Smartphone,” in Proceedings of the
Workshop on Usable Security (USEC), 2012.

[91] J. King, A. Lampinen, and A. Smolen, “Privacy: Is There An App for That?” in Proceedings
of the Symposium on Usable Privacy and Security (SOUPS), 2011.

[92] J. F. Koegel, R. M. Koegel, Z. Li, and D. T. Miruke, “A security analysis of VAX VMS,” in
Proceedings of the ACM annual conference on The range of computing : mid-80’s perspec-
tive: mid-80’s perspective, ser. ACM ’85. ACM, 1985, pp. 381–386.

[93] A. Krishnamurthy, A. Mettler, and D. Wagner, “Fine-grained privilege separation for web
applications,” in Proceedings of the International Conference on World Wide Web (WWW),
2010.

[94] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek, E. Kohler, D. Mazières, R. Morris,
M. Osborne, S. VanDeBogart, and D. Ziegler, “Make Least Privilege a Right (Not a Privi-
lege),” in Proceedings of the Conference on Hot Topics in Operating Systems, 2005.

142

[95] J. Krosnick and D. Alwin, “An evaluation of a cognitive theory of response-order effects in
survey measurement,” Public Opinion Quarterly, vol. 51, no. 2, Summer 1987.

[96] I. Krstic, “System Security on the One Laptop Per Child’s XO Laptop: The Bitfrost
security problem.” [Online]. Available: http://dev.laptop.org/git/security/tree/bitfrost.txt

[97] P. Kumaraguru and L. F. Cranor, “Privacy Indexes: A Survey of Westin’s Studies,” Carnegie
Mellon University CMU-ISRI-5-138, Tech. Rep., 2015.

[98] S. Lederer, J. Mankoff, and A. K. Dey, “Who wants to know what when? privacy preference
determinants in ubiquitous computing,” in Proceedings of the ACM CHI extended abstracts
on Human factors in computing systems, 2003.

[99] W.-M. Lee, “SMS messaging in Android,” MobiForge. [Online]. Available: http:
//mobiforge.com/developing/story/sms-messaging-android

[100] R. Leung, L. Findlater, J. McGrenere, P. Graf, and J. Yang, “Multi-Layered Interfaces to
Improve Older Adults’ Initial Learnability of Mobile Applications,” ACM Transactions on
Accessible Computing (TACCESS), 2010.

[101] H. M. Levy, Capability-Based Computer Systems. Digital Press, 1984. [Online]. Available:
http://www.cs.washington.edu/homes/levy/capabook/

[102] P. Lewis, “An introduction to shaders,” HTML5 Rocks Tutorials. [Online]. Available:
http://www.html5rocks.com/en/tutorials/webgl/shaders/

[103] L. Liu, X. Zhang, G. Yan, and S. Chen, “Chrome Extensions: Threat Analysis and Coun-
termeasures,” in Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2012.

[104] R. S. Liverani and N. Freeman, “Abusing Firefox Extensions,” Defcon17.

[105] B. Livshits, J. Whaley, and M. S. Lam, “Reflection Analysis for Java,” in Proceedings of the
Asian Symposium on Programming Languages and Systems, 2005.

[106] I. Lunden, “Google Play About To Pass 15 Billion App Downloads?”
Tech Crunch, May 2012. [Online]. Available: http://techcrunch.com/2012/05/07/
google-play-about-to-pass-15-billion-downloads-pssht-it-did-that-weeks-ago/

[107] W. A. Magat, W. K. Viscusi, and J. Huber, “Consumer Processing of Hazard Warning Infor-
mation,” Journal of Risk and Uncertainty, vol. 1, 1988.

[108] L. Magid, “It pays to read license agreements,” 2005. [Online]. Available: http:
//www.pcpitstop.com/spycheck/eula.asp

[109] G. McCluskey, “Using Java Reflection,” Sun Developer Network, 1998. [Online].
Available: http://java.sun.com/developer/technicalArticles/ALT/Reflection/

143

[110] A. Mikhailovsky, K. V. Gavrilenko, and A. Vladimirov, “The Frame of Deception: Wireless
Man-in-the-Middle Attacks and Rogue Access Points Deployment,” InformIT, 2004.
[Online]. Available: http://www.informit.com/articles/article.aspx?p=353735&seqNum=7

[111] S. Motiee, K. Hawkey, and K. Beznosov, “Do Windows Users Follow the Principle of Least
Privilege? Investigating User Account Control Practices,” in Proceedings of the Symposium
on Usable Privacy and Security (SOUPS), 2010.

[112] K. Mueller and K. Butler, “Flex-P: Flexible Android Permissions,” IEEE Symposium on
Security and Privacy, Poster Session, 2011.

[113] D. Murray and S. Hand, “Privilege separation made easy: trusting small libraries not big pro-
cesses,” in Proceedings of the European Workshop on System Security (EUROSEC), 2008.

[114] I. Muslukhov, Y. Boshmaf, C. Kuo, J. Lester, and K. Beznosov, “Understanding Users’
Requirements for Data Protection in Smartphones,” in Proceedings of the ICDE Workshop
on Secure Data Management on Smartphones and Mobiles, 2012.

[115] E. Nasi, “Exploiting capabilities: Parcel root power, the dark side of capabilities,” 2010.

[116] M. Nauman, S. Khan, M. Alam, and X. Zhang, “Apex: Extending Android Permission
Model and Enforcement with User-defined Runtime Constraints,” in Proceedings of the
ACM Symposium on Information, Computer and Communications Security (ASIACCS),
2010.

[117] C. Pacheco and M. Ernst, “Eclat: Automatic generation and classification of test inputs,”
European Conference on Object-Oriented Programming (ECOOP), 2005.

[118] C. Pacheco, S. Lahiri, M. Ernst, and T. Ball, “Feedback-directed random test generation,”
in Proceedings of the International Conference on Software Engineering (ICSE), 2007.

[119] C. Pacheco and M. Ernst, “Randoop.” [Online]. Available: http://code.google.com/p/
randoop/

[120] G. Paller, “Dedexer,” http://dedexer.sourceforge.net.

[121] N. Provos, “Improving Host Security with System Call Policies,” in Proceedings of the
USENIX Security Symposium, 2003.

[122] N. Provos, M. Friedl, and P. Honeyman, “Preventing Privilege Escalation,” in Proceedings
of the USENIX Security Symposium, 2003.

[123] G. Richards, C.Hammer, B. Burg, and J. Vivek, “The Eval that Men Do: A Large-scale
Study of the Use of Eval in JavaScript Applications,” in Proceedings of the European Con-
ference on Object-Oriented Programming, 2012.

[124] D. M. Ritchie and K. Thompson, “The UNIX time-sharing system,” Commun. ACM, vol. 17,
no. 7, pp. 365–375, 1974.

144

[125] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan, “User-driven ac-
cess control: Rethinking permission granting in modern operating systems,” in Proceedings
of the 33rd IEEE Symposium on Security and Privacy, 2012.

[126] A. Sacco, “How to Manage BlackBerry Application Permissions,” 2011. [Online].
Available: http://www.cio.com/article/684233/How to Manage BlackBerry Application
Permissions

[127] J. Saltzer and M. D. Schroeder, “The Protection of Information in Computer Systems,” in
Proceedings of the IEEE, vol. 63, 1975.

[128] J. H. Saltzer, “Protection and the control of information sharing in Multics,” Commun. ACM,
vol. 17, no. 7, pp. 388–402, July 1974.

[129] R. Saltzman and A. Sharabani, “Active Man in the Middle Attacks: A Security Advisory,”
IBM, Tech. Rep., 2009.

[130] J. Sawin and A. Rountev, “Improving static resolution of dynamic class loading in Java
using dynamically gathered environment information,” Automated Software Eng., vol. 16,
pp. 357–381, June.

[131] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The Emperor’s New Security
Indicators,” in Proceedings of the IEEE Symposium on Security and Privacy, 2007.

[132] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C. DuVarney, “Model-carrying
code: a practical approach for safe execution of untrusted applications,” in Proceedings of
the ACM Symposium on Operating Systems Principles, 2003.

[133] S. Sen and D. Lerman, “Why are you telling me this? An examination into negative con-
sumer reviews on the web,” Journal of Interactive Marketing, vol. 21, 2007.

[134] N. Seriot, “iPhone Privacy,” Black Hat DC, 2010.

[135] B. Shneiderman, “Promoting universal usability with multi-layer interface design,” in Pro-
ceedings of the Conference on Universal Usability (CUU), 2003.

[136] J. H. Simonetti, “How To Use Sky Image Processor (SIP 2.20).” [Online]. Available:
http://www.phys.vt.edu/∼jhs/SIP/howto.html

[137] R. N. Srinivas, Java World, 2000. [Online]. Available: http://www.javaworld.com/
jw-07-2000/jw-0728-security.html

[138] B. Sterne and A. Barth, “Content security policy,” W3C. [Online]. Available:
https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html

[139] D. W. Stewart and I. M. Martin, “Intended and Unintended Consequences of Warning Mes-
sages: A Review and Synthesis of Empirical Research,” Journal of Public Policy Marketing,
vol. 13, no. 1, 1994.

145

[140] M. Stiegler and M. Miller, “A Capability Based Client: The DarpaBrowser,” 2002.
[Online]. Available: http://www.combex.com/papers/darpa-report/html/index.html

[141] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor, “Crying Wolf: An
Empirical Study of SSL Warning Effectiveness,” in Proceedings of the USENIX Security
Symposium, 2009.

[142] H. Taylor, “Most People are “Privacy Pragmatists” Who, While Concerned about Privacy,
Will Sometimes Trade It Off for Other Benefits,” Harris Interactive, March 2003.

[143] The Android Open Source Project, “Dalvik executable format,” 2007. [Online]. Available:
http://source.android.com/tech/dalvik/dex-format.html

[144] S. Thurm and Y. I. Kane, “Your apps are watching you,” 2010. [Online]. Available:
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html

[145] J. Tsai, S. Egelman, L. Cranor, and A. Acquisti, “The effect of online privacy information on
purchasing behavior: An experimental study,” in Workshop on the Economics of Information
Security (WEIS), 2007.

[146] T. Vennon and D. Stroop, “Threat Analysis of the Android Market,” SMobile Systems, Tech.
Rep., 2010.

[147] T. Vidas, N. Christin, and L. Cranor, “Curbing Android Permission Creep,” in Proceedings
of the Workshop on Web 2.0 Security and Privacy (W2SP), 2011.

[148] D. Wagner and D. Tribble, “A Security Analysis of the Combex DarpaBrowser
Architecture,” March 4 2002. [Online]. Available: http://www.combex.com/papers/
darpa-review/security-review.html

[149] S. Wagner, J. Jurgens, C. Koller, and P. Trischberger, “Comparing Bug Finding Tools with
Reviews and Tests,” Lecture Notes in Computer Science, 2005.

[150] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient software-based fault iso-
lation,” in Proceedings of the fourteenth ACM symposium on Operating systems principles,
1993.

[151] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum: practical capabili-
ties for UNIX,” in Proceedings of the USENIX Security Symposium, 2010.

[152] J. Weinberger, A. Barth, and D. Song, “Towards Client-side HTML Security Policies,” in
Proceedings of the Workshop on Hot Topics on Security (HotSec), 2011.

[153] J. Wiese, P. G. Kelley, L. F. Cranor, L. Dabbish, J. I. Hong, and J. Zimmerman, “Are you
close with me? are you nearby?: investigating social groups, closeness, and willingness
to share,” in Proceedings of the International Conference on Ubiquitous Computing (Ubi-
Comp), 2011.

[154] S. Willison, “Understanding the Greasemonkey vulnerability.” [Online]. Available:
http://simonwillison.net/2005/Jul/20/vulnerability/

146

[155] M. S. Wogalter, “Communication-Human Information Processing (C-HIP) Model,” in Pro-
ceedings of the Handbook of Warnings. Lawrence Erlbaum Associates, 2006, pp. 51–61.

[156] ——, “Purpose and scope of warnings,” in Proceedings of the Handbook of Warnings.
Lawrence Erlbaum Associates, 2006.

[157] C. Wuest and E. Florio, “Firefox and Malware: When Browsers Attack,” Symantec, Tech.
Rep., 2009.

[158] Z. E. Ye, S. Smith, and D. Anthony, “Trusted paths for browsers,” ACM Transactions on
Information and System Security (TISSEC), 2005.

[159] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My Market: Detecting
Malicious Apps in Official and Alternative Android Markets,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2012.

[160] F. Zhu and X. Zhang, “Impact of Online Consumer Reviews on Sales: The Moderating Role
of Product and Consumer Characteristics,” Journal of Marketing, vol. 74, 2010.

147

