
Minimizing communication in all-pairs shortest-paths

Edgar Solomonik
Aydin Buluc
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-19

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-19.html

February 1, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Minimizing communication in all-pairs shortest-paths
(Regular Submission)

Edgar Solomonik
UC Berkeley

solomon@eecs.berkeley.edu

Aydın Buluç
Lawrence Berkeley Nat. Lab.

abuluc@lbl.gov

James Demmel
UC Berkeley

demmel@cs.berkeley.edu

Abstract

We consider distributed memory algorithms for the all-pairs shortest paths (APSP) problem. Scaling
the APSP problem to high concurrencies requires both minimizing inter-processor communication as
well as maximizing temporal data locality. Our 2.5D APSP algorithm, which is based on the divide-
and-conquer paradigm, satisfies both of these requirements: it can utilize the extra available memory to
perform asymptotically less communication, and it is rich in semiring matrix multiplications, which have
high temporal locality. We start by introducing a block-cyclic 2D (minimal memory) APSP algorithm.
With a careful choice of block-size, this algorithm achieves known communication lower-bounds on
latency and bandwidth. We extend this 2D block-cyclic algorithm to a 2.5D algorithm, which can use
c extra copies of data to reduce the bandwidth cost by a factor of c1/2, compared to its 2D counterpart.
However, the 2.5D algorithm increases the latency cost by c1/2. We provide a tighter lower bound on
latency, which dictates that the latency overhead is necessary to reduce bandwidth along the critical
path of execution. Our implementation achieves impressive performance and scaling to 24,576 cores
of a Cray XE6 supercomputer by utilizing well-tuned intra-node kernels within the distributed memory
algorithm.

Keywords: semiring matrix multiplication, 2.5D algorithms, minimizing communication, all-pairs shortest-paths

1 Introduction

The all-pairs shortest paths (APSP) is a fundamental graph problem with many applications in urban plan-
ning and simulation [17], datacenter network design [9], metric nearness problem [7], and traffic routing. In
fact, APSP and the decrease-only metric nearness problem are equivalent. APSP is also used as a subroutine
in other graph algorithms, such as Ullman and Yannakakis’s breadth-first search algorithm [25], which is
suitable for high diameter graphs.

Given a directed graph G = (V,E) with n vertices V = {v1, v2, ..., vn} and m edges E = {e1, e2, ..., em},
the distance version of the algorithm computes the length of the shortest path from vi to vj for all (vi, vj)
pairs. The full version also returns the actual paths in the form of a predecessor matrix. Henceforth, we will
call the distance-only version as all-pairs shortest distances (APSD) to avoid confusion.

The classical dynamic programming algorithm for APSP is due to Floyd [10] and Warshall [27]. Serial
blocked versions of the Floyd-Warshall algorithm have been formulated [21] to increase data locality. The
algorithm can also be recast into semiring algebra over vectors and matrices. This vectorized algorithm,
attributed to Kleene, is rich in matrix multiplications over the (min,+) semiring. Several theoretical im-
provements have been made, resulting in subcubic algorithms for the APSD problem. In practice though,
these algorithms are not competitive with simpler cubic algorithms.

Variants of the Floyd-Warshall algorithm are most suitable for dense graphs. Johnson’s algorithm [15],
which is based on repeated application of Dijkstra’s single-source shortest path algorithm (SSSP), is theoret-
ically faster than the Floyd-Warshall variants on sufficiently sparse graphs. However, the data dependency
structure of this algorithm (and Dijkstra’s algorithm in general) make scalable parallelization difficult. SSSP
algorithms based on ∆-stepping [20] scale better in practice but their performance is input dependent and
scales with O(m + d · L · log n), where d is the maximum vertex degree and L is the maximum shortest
path weight from the source. Consequently, it is likely that a Floyd-Warshall based approach would be
competitive even for sparse graphs, as realized on graphical processing units [8].

Given the Θ(n2) output of the algorithm, large instances can not be solved on a single node due to mem-
ory limitations. Further, a distributed memory approach is favorable over an out-of-core method, because
of the high computational complexity of the problem. In this paper, we are concerned with obtaining high
performance in a practical implementation by reducing communication cost and increasing data locality
through optimized matrix multiplication over semirings.

Communication-avoiding ‘2.5D’ algorithms take advantage of the extra available memory and reduce
the bandwidth cost of many algorithms in numerical linear algebra. Generally, 2.5D algorithms can use a
factor of c more memory to reduce the bandwidth cost by a factor of

√
c [24]. The theoretical communica-

tion reduction translates to a significant improvement in strong-scalability (scaling processor count with a
constant total problem size) on large supercomputers [23].

Our main contributions in this work are:

1. A block-cyclic 2D version of the divide-and-conquer APSP algorithm, which minimizes latency and
bandwidth given minimal memory.

2. A 2.5D generalization of the 2D APSP algorithm, which sends a minimal number of messages and
words of data given any amount of available memory.

3. A distributed memory implementation with highly tuned intra-node kernels, achieving impressive
performance in the highest concurrencies reported in literature (24,576 cores of the Hopper Cray
XE6 [1]).

Our algorithms can simultaneously construct the paths themselves, at the expense of doubling the cost, by
maintaining a predecessor matrix as classical iterative Floyd-Warshall does. Our divide-and-conquer algo-

1

rithm essentially performs the same path computation as Floyd-Warshall except with a different schedule.
The experiments only report on the distance version to allow easier comparison with prior literature.

2 Previous work

Jenq and Sahni [14] were the first to give a 2D distributed memory algorithm for the APSP problem, based
on the original Floyd-Warshall schedule. Since the algorithm does not employ blocking, it has to perform n
global synchronizations, resulting in a latency lower bound of Ω(n). This SUMMA-like algorithm [26] is
improved further by Kumar and Singh [16] by using pipelining to avoid global synchronizations. Although
they reduced the synchronization costs, both of these algorithms have low data reuse: each processor per-
forms n rank-1 updates on its local submatrix. Obtaining high-performance in practice requires increasing
temporal locality and is achieved by the blocked divide-and-conquer algorithms we consider in this work.

The main idea behind the divide-and-conquer (DC) algorithm is based on a proof by Aho et al. [3] that
shows that costs of semiring matrix multiplication and APSP are asymptotically equivalent in the random
access machine (RAM) model of computation. Actual algorithms based on this proof are given by various
researchers, with minor differences. Our decision to use the DC algorithm as our starting point is inspired by
its demonstrated better cache reuse on CPUs [21], and its impressive performance attained on the many-core
graphical processor units [8].

Previously known communication bounds [4, 12, 13] for ‘classical’ (triple-nested loop) matrix multipli-
cation also apply to our algorithm, because Aho et al.’s proof shows how to get the semiring matrix product
for free, given an algorithm to compute the APSP. These lower bounds, however, are not necessarily tight
because the converse of their proof (to compute APSP given matrix multiplication) relies on the cost of
matrix multiplication being Ω(n2), which is true for its RAM complexity but not true for its bandwidth and
latency costs. In Section 4, we show that a tighter bound exist for latency, one similar to the latency lower
bound of LU decomposition [24].

Seidel [22] showed a way to use fast matrix multiplication algorithms, such as Strassen’s algorithm, for
the solution of the APSP problem by embedding the (min,+) semiring into a ring. However, his method
only works for undirected and unweighted graphs. We cannot, therefore, utilize the recently discovered
communication-optimal Strassen based algorithms [4] directly for the general problem.

Habbal et al. [11] gave a parallel APSP algorithm for the Connection Machine CM-2 that proceeds in
three stages. Given a decomposition of the graph, the first step constructs SSSP trees from all the ‘cutset’
(separator) vertices, the second step runs the classical Floyd-Warshall algorithm for each partition indepen-
dently, and the last step combines these results using ‘minisummation’ operations that is essentially semiring
matrix multiplication. The algorithm’s performance depends on the size of separators for balanced parti-
tions. Without good sublinear (say, O(

√
n)) separators, the algorithm degenerates into Johnson’s algorithm.

Good separators do not exist in almost all graphs [18], including those from social networks. Note that the
number of partitions are independent (and generally much less) from the number of active processors. The
algorithm sends Θ(n) messages and moves Θ(n2) words for the 5-point stencil (2-D grid).

Brickell et al. [7] came up with a linear programming formulation for the APSP problem, by exploiting
its equivalence to the decrease-only version of the metric nearness problem (DOMN). Their algorithm runs
in O(n3) time using a Fibonacci heap, and the dual problem can be used to obtain the actual paths. Unfortu-
nately, heaps are inherently sequential data structures that limit parallelism. Since the equivalence between
APSP and DOMN goes both ways, our algorithm provides a highly parallel solution to the DOMN problem
as well.

2

3 Divide-and-Conquer APSP

The all-pairs shortest-paths problem corresponds to finding the matrix closure on the tropical (min,+) semir-
ing. Algorithm 1 gives the high-level structure of the divide-and-conquer all-pairs-shortest-path algorithm
(DC-APSP). The correctness of this algorithm has been proved by many researchers [3, 8, 21] using various
methods. Edge weights can be arbitrary, including negative numbers, but we assume that the graph is free
of negative cycles. Compared to the classical matrix multiplication over the ring of real numbers, in our
semiring-matrix-matrix-multiplication, each multiply operation is replaced with an addition (to calculate
the length of a larger path from smaller paths or edges) and each add operation is replaced with a minimum
operation (to get the minimum in the presence of multiple paths).

Algorithm 1: DC-APSP(A, n)
Input: n× n matrix A, representing the adjacency matrix of a graph G.
Output: n× n matrix A, representing the APSP distance matrix of graph G.
if n = 1 then

return.
end

Partition A =

[
A11 A12

A21 A22

]
, where all Aij are n/2-by-n/2

A11 ←DC-APSP(A11, n/2)
/* Operation · denotes Semiring-Matrix-Matrix-Multiply */
A12 = A11 ·A12

A21 = A21 ·A11

A22 = min(A22, A21 ·A12)
A22 ←DC-APSP(A22, n/2)
A21 = A22 ·A21

A12 = A12 ·A22

A11 = min(A11, A12 ·A21)

For simplicity, we formulate our algorithms and give results only for adjacency matrices of power-of-two
dimension. Extending the algorithms and analysis to general adjacency matrices is straight-forward.

Each semiring-matrix-matrix-multiplication performs O(n3) additions and O(n2) minimum (min) op-
erations. If we count each addition and min operation as O(1) flops, the total computation cost of DC-APSP,
F , is given by a recurrence

F (n) = 2 · F (n/2) + O(n3)

F (n) = O(n3).

4 Communication lower bounds

A good parallel algorithm has as little inter-processor communication as possible. In this section, we prove
lower bounds on the inter-processor communication required to compute DC-APSP in parallel. All of our
lower bounds are extensions of dense linear algebra communication lower bounds.

4.1 Bandwidth lower bound

We measure the bandwidth cost as the number of words (bytes) sent or received by any processor along the
critical path of execution. Semiring matrix multiplication has the same computational dependency structure

3

k₁

k₀

k₂

k₃

k₄

k

A₀₀

A₂₂

A₃₃

A₄₄

A

n

n

critical path

d-1,d-1d-1

A₁₁

Figure 1: DC-APSP diagonal block dependency path. These blocks must be computed in order and com-
munication is required between each block.

as classical matrix multiplication. The same communication cost analysis applies because only the scalar
multiply and add operations are different. Our analysis will assume no data is replicated at the start and that
the computational work is load-balanced.

The lower bound on bandwidth cost of matrix multiplication is due to Hong and Kung [12]. Ballard
et al. [5] extended those lower bounds to other traditional numerical linear algebra algorithms. For a local
memory of size M , matrix multiplication requires

W (M) = Ω

(
n3

p
√
M

)
(1)

words to be sent by some processor. Further, for a memory of any size, matrix multiplication requires

W = Ω

(
n2

p2/3

)
words to be sent [2, 24]. These bounds apply directly to semiring matrix multiplication and consequently to
DC-APSP, which performs many semiring matrix multiplications.

4.2 Latency lower bound

The first bandwidth lower-bound in the previous section (Equation 1), provides a latency lower-bound on
semiring-matrix multiplication. Since no message can be larger than the local memory on a given processor,

S(M) = Ω

(
n2

p ·M3/2

)
messages must be sent by some processor. This latency lower-bound applies for classical and semiring
matrix multiplication, as well as DC-APSP.

However, we can obtain a tighter lower-bound for DC-APSP by considering the dependency structure of
the algorithm. As it turns out, we can use the same argument as presented in [24] for 2.5D LU factorization.
Figure 1 considers how the distance matrix A is blocked along its diagonal. Some blocking along the diag-
onal always exists, since some processor must compute the diagonal element of the distance matrix. Each

4

block of dimension b requires Ω(1) message to be sent, Ω(b2) words to be sent and Ω(b3) computational
operations. The requirements are the same as 2.5D LU and yield a lower bound on the latency cost. If we
desire a bandwidth cost of

W = O
(
n2/
√
cp
)
,

for some c, the blocking must have a latency cost of

S = Ω(
√
cp).

5 Parallelization of DC-APSP

In this section, we introduce techniques for parallelization of the divide-and-conquer all-pairs-shortest-path
algorithm (DC-APSP). Our first approach uses a 2D block-cyclic parallelization. We demonstrate that a
careful choice of block-size can minimize both latency and bandwidth costs simultaneously. Our second
approach utilizes a 2.5D decomposition [23, 24]. Our cost analysis shows that the 2.5D algorithm reduces
the bandwidth cost and improves strong scalability.

5.1 2D Divide-and-Conquer APSP

We start by deriving a parallel DC-APSP algorithm that operates on a square 2D processor grid and consider
cyclic and blocked variants.

5.1.1 2D Semiring-Matrix-Matrix-Multiply

Algorithm 2: [C] = 2D-SMMM(A, B, C, Λ, n)
Input: n-by-n matrix A, n-by-n matrix B, each spread over a square processor grid Λ
Output: n-by-n matrix C, such that C = min(C,A ·B), and C is spread over a square processor

grid Λ
/* These updates can be blocked or pipelined */
pipelined for t = 1 to t = n do

Replicate A[:, t] on columns of Λ[:, :] /* Broadcast a column of A */
Replicate B[t, :] on rows of Λ[:, :] /* Broadcast a row of B */
/* Perform Semiring-Matrix-Matrix-Multiply */
C[:, :] := min(C[:, :], A[:, t] + B[t, :])

end

Algorithm 2 describes an algorithm for performing Semiring-Matrix-Matrix-Multiply (SMMM) on a 2D
processor grid. Since the data dependency structure of SMMM is identical to traditional matrix multiply,
we employ the popular SUMMA algorithm [26]. The algorithm is formulated in terms of distributed rank-1
updates. These updates are associative and commutative so they can be pipelined or blocked. To achieve
optimal communication performance, the matrices should be laid out in a blocked fashion, and each row and
column of processors should broadcast its block-row and block-column in turn. Given p processors, each
processor would then receive O(

√
p) messages of size O(n2/p), giving a bandwidth cost of O(n2/

√
p). We

note that any different classical distributed matrix multiplication algorithm (e.g. Cannon’s algorithm) can
be used here in place of SUMMA.

5

Algorithm 3: BLOCKED-DC-APSP(A, Λ, n, p)
Input: n× n matrix A, spread over

√
p-by-

√
p processor grid Λ, representing the adjacency matrix

of a graph G.
Output: n× n matrix A, spread over

√
p-by-

√
p processor grid Λ, representing the APSP distance

matrix of graph G.
if p = 1 then

A←DC-APSP(A, n)
else

Partition A =

[
A11 A12

A21 A22

]
, where all Aij are n/2-by-n/2

Partition Λ =

[
Λ11 Λ12

Λ21 Λ22

]
, where all Λij are

√
p/2-by-

√
p/2

A11 ←BLOCKED-DC-APSP(A11, Λ11, n/2, p/4)
Λ11[:, :] sends A11 to Λ12[:, :].
A12 ←2D-SMMM(A11, A12, A12, Λ12, n/2)
Λ11[:, :] sends A11 to Λ21[:, :].
A21 ←2D-SMMM(A21, A11, A21, Λ21, n/2)
Λ12[:, :] sends A12 to Λ22[:, :].
Λ21[:, :] sends A21 to Λ22[:, :].
A22 ←2D-SMMM(A21, A12, A22, Λ22, n/2)
A11 ←BLOCKED-DC-APSP(A22, Λ22 n/2, p/4)
Λ22[:, :] sends A22 to Λ21[:, :].
A21 ←2D-SMMM(A22, A21, A21, Λ21, n/2)
Λ22[:, :] sends A22 to Λ12[:, :].
A12 ←2D-SMMM(A12, A22, A12, Λ12, n/2)
Λ21[:, :] sends A21 to Λ11[:, :].
Λ12[:, :] sends A12 to Λ11[:, :].
A22 ←2D-SMMM(A12, A21, A11, Λ11, n/2)

end

5.1.2 2D blocked Divide-and-Conquer APSP

Algorithm 3 gives a parallel 2D blocked version of the DC-APSP algorithm. In this algorithm, each SMMM
is computed on the quadrant of the processor grid on which the result belongs. The operands, A and B,
must be sent to the processor grid quadrant on which C is distributed. At each recursive step, the algorithm
proceeds with one quadrant of the processor grid.

This blocked algorithm has a clear flaw, in that at most a quarter of the processors are active at any
point in the algorithm. We will alleviate this load-imbalance by introducing a block-cyclic version of the
algorithm.

5.1.3 2D block-cyclic Divide-and-Conquer APSP

Algorithm 4 gives the full 2D block-cyclic DC-APSP algorithm. This block-cyclic algorithm operates by
performing cyclic-steps until a given block-size, then proceeding with blocked-steps by calling the blocked
algorithm as a subroutine. At each cyclic-step, each processor operates on sub-blocks of its local matrix
block, while at each blocked-step a sub-grid of processors operate on their full matrix blocks. These two
steps are demonstrated in sequence in Figure 2 on a 4x4 processor grid.

6

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

P11 P12

P21 P22

Cyclic step Blocked step

n

n

n/2

n/2

n/4

n/4

Figure 2: Our block-cyclic 2D APSP algorithm performs cyclic-steps until a given block-size, then performs
blocked-steps as shown in this diagram.

We note that no redistribution of data is required to use a block-cyclic layout. Traditionally, (e.g. in
ScaLAPACK [6]) using a block-cyclic layout requires that each processor own a block-cyclic portion of the
starting matrix. However, the APSP problem is invariant to permutation (permuting the numbering of the
node labels does not change the answer). We exploit permutation invariance by assigning each process the
same sub-block of the adjacency and distance matrices, no matter how many blocked or cyclic steps are
taken.

As derived in Appendix A, if the block size is picked as b = O(n/ log(p)) (execute O(log log(p)) cyclic
recursive steps), the bandwidth cost is

Wbc-2D(n, p) = O(n2/
√
p),

and the latency cost is
Sbc-2D(p) = O(

√
p log2(p)).

These costs are optimal (modulo the polylog latency term) when the memory size is M = O(n2/p). The
costs are measured along the critical path of the algorithm, showing that both the computation and commu-
nication are load balanced throughout execution.

5.2 2.5D DC-APSP

In order to construct a communication-optimal DC-APSP algorithm, we utilize 2.5D-SMMM. Transforming
2D SUMMA (Algorithm 2) to a 2.5D algorithm can be done simply by performing a different subset of
updates on each one of c processor layers. Algorithm 5 details 2.5D SUMMA, modified to perform
SMMM. Giving a replication factor c ∈ [1, p1/3], the blocked 2.5D-SMMM algorithm moves O(n2/

√
cp)

words and sends O(
√

p/c3) messages.
Algorithm 6 gives the blocked version of the 2.5D DC-APSP algorithm. The blocked algorithm executes

multiplies and recurses on octants of the processor grid (rather than quadrants in the 2D version). The
algorithm recurses until c = 1, which must occur while p ≥ 1, since c ≤ p1/3. The algorithm then calls the
2D block-cyclic algorithm on the remaining 2D sub-partition.

The 2.5D blocked algorithm suffers from load-imbalance. In fact, the top half of the processor grid does
no work. We can fix this by constructing a block-cyclic version of the algorithm, which performs cyclic
steps with the entire 3D processor grid, until the block-size is small enough to switch to the blocked version.
Algorithm 7 gives the 2.5D block-cyclic DC-APSP algorithm.

7

Algorithm 4: BLOCK-CYCLIC-DC-APSP(A, Λ, n, p, b)
Input: n× n matrix A, spread over square processor grid Λ, representing the adjacency matrix of a

graph G.
Output: n× n matrix A, spread over square processor grid Λ, representing the APSP distance

matrix of graph G.

Partition A =

[
A11 A12

A21 A22

]
, where all Aij are n/2-by-n/2

if n > b then
A11 ←BLOCK-CYCLIC-DC-APSP(A11, Λ, n/2, p, b)
A12 ←2D-SMMM(A11, A12, A12, Λ, n/2)
A21 ←2D-SMMM(A21, A11, A21, Λ, n/2)
A22 ←2D-SMMM(A21, A12, A22, Λ, n/2)
A11 ←BLOCK-CYCLIC-DC-APSP(A22, Λ, n/2, p, b)
A21 ←2D-SMMM(A22, A21, A21, Λ, n/2)
A12 ←2D-SMMM(A12, A22, A12, Λ, n/2)
A22 ←2D-SMMM(A12, A21, A11, Λ, n/2)

else
A←BLOCKED-DC-APSP(A, Λ, n, p)

end

As derived in Appendix B, if the 2.5D block size is picked as b1 = O(n/c) (execute O(log(c)) 2.5D
cyclic recursive steps), the bandwidth cost is

Wbc-2.5D(n, p) = O(n2/
√
cp),

and the latency cost is
Sbc-2.5D(p) = O(

√
cp log2(p)).

These costs are optimal for any memory size (modulo the polylog latency term).

6 Experiments

In this section, we show that the distributed APSP algorithms do not just lower the theoretical communi-
cation cost, but actually improve performance on large supercomputers. We implement the 2D and 2.5D
variants of DC-APSP recursively, as described in the previous section.

6.1 Implementation

The dominant sequential computational work of the DC-APSP algorithm is the Semiring-Matrix-Matrix-
Multiplies (SMMM) called at every step of recursion. Our implementation of SMMM uses two-level cache-
blocking (L1, L3), register blocking, explicit SIMD intrinsics, and loop unrolling. We implement threading
by assigning L1-cache blocks of C to different threads.

Our 2.5D DC-APSP implementation generalizes the following algorithms: 2D cyclic, 2D blocked, 2D
block-cyclic, 2.5D blocked, 2.5D cyclic, and 2.5D block-cyclic. Block sizes b1 and b2 control how many
2.5D and 2D cyclic and blocked steps are taken. These block-sizes are set at run-time and require no
modification to the algorithm input or distribution.

8

Algorithm 5: [C] = 2.5D-SMMM(A, B, C, Π, n, p, c)
Input: n-by-n matrices A, B, C, each spread over

√
p/c-by-

√
p/c processor grid Π[:, :, 1].

Output: n-by-n matrix C, such that C = min(C,A ·B), and C is spread over
√

p/c-by-
√

p/c
processor grid Π[:, :, 1].

/* Do with each processor in parallel */

for all i, j ∈ [1,
√
p/c], k ∈ [1, c] do

Replicate A[i, j], B[i, j] on all layers Π[i, j, :]
if k > 1 then

Initialize C[:, :, k] =∞
end
pipelined for t = (k − 1) · n/c to t = k · n/c do

Replicate A[:, t] on columns of Λ[:, :]
Replicate B[t, :] on rows of Λ[:, :]

/* Perform Semiring-Matrix-Matrix-Multiply */
C[:, :, k] := min(C[:, :], A[:, t] + B[t, :])

end
C[:, :, 1] := min(C[:, :, :]) /* min-reduce C across layers */

end

We compiled our codes with the GNU C/C++ compilers (v4.6) with the -O3 flag. We use Cray’s MPI
implementation, which is based on MPICH2. We run 4 MPI processes per node, and use 6-way intra-
node threading with the GNU OpenMP library. The input is an adjacency matrix with entries representing
edge-weights in double-precision floating-point numbers.

6.2 Performance

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 4 16 64 256 1024

G
Fl

op
s

Number of compute nodes (p)

Strong scaling of DC-APSP on Hopper

2.5D n=32,768
2D n=32,768
2.5D n=8,192

2D n=8,192

(a) DC-APSP strong scaling

 5

 10

 15

 20

 25

 30

 35

 40

1 4 16 64 256 1024

G
Fl

op
s/

no
de

Number of compute nodes (p)

Weak scaling of DC-APSP on Hopper

2D (c=1), n/sqrt(p)=4,096
2.5D (c=4), n/sqrt(p)=2,048

2D (c=1), n/sqrt(p)=2,048

(b) DC-APSP weak scaling

Figure 3: Scaling of 2D and 2.5D block-cyclic DC-APSP on Hopper (Cray XE6)

Our experimental platform is ‘Hopper’, which is a Cray XE6 supercomputer, built from dual-socket
12-core “Magny-Cours” Opteron compute nodes. Each node can be viewed as a four-chip compute configu-
ration due to NUMA domains. Each of these four chips have six super-scalar, out-of-order cores running at
2.1 GHz with private 64 KB L1 and 512 KB L2 caches. The six cores on a chip share a 6 MB L3 cache and
dual DDR3-1333 memory controllers capable of providing an average stream [19] bandwidth of 12 GB/s

9

Algorithm 6: 2.5D-BLOCKED-DC-APSP(A, Π, n, p, c, b)
Input: n× n matrix A, spread over

√
p/c-by-

√
p/c processor grid Π[:, :, 1], representing the

adjacency matrix of a graph G.
Output: n× n matrix A, spread over

√
p/c-by-

√
p/c processor grid Π[:, :, 1], representing the

APSP distance matrix of graph G.
if c = 1 then

A←BLOCK-CYCLIC-DC-APSP(A, Π, n, p, b)
else

Partition A =

[
A11 A12

A21 A22

]
, where all Aij are n/2-by-n/2

Partition Π into 8 cubic block Πijk, for i, j, k ∈ 1, 2, where all Πijk are√
p/c/2-by-

√
p/c/2-by-c/2.

A11 ←2.5D-BLOCKED-DC-APSP(A11, Π111, n/2, p/8, c/2)
Π111[:, :, 1] sends A11 to Π121[:, :, 1].
A12 ←2.5D-SMMM(A11, A12, A12, Π121, n/2, p/8, c/2)
Π111[:, :, 1] sends A11 to Π211[:, :, 1].
A21 ←2.5D-SMMM(A21, A11, A21, Π211, n/2, p/8, c/2)
Π121[:, :, 1] sends A12 to Π221[:, :, 1].
Π211[:, :, 1] sends A21 to Π221[:, :, 1].
A22 ←2.5D-SMMM(A21, A12, A22, Π221, n/2, p/8, c/2)
A11 ←2.5D-BLOCKED-DC-APSP(A22, Π221 n/2, p/8, c/2)
Π221[:, :, 1] sends A22 to Π211[:, :, 1].
A21 ←2.5D-SMMM(A22, A21, A21, Π211, n/2, p/8, c/2)
Π221[:, :, 1] sends A22 to Π121[:, :, 1].
A12 ←2.5D-SMMM(A12, A22, A12, Π121, n/2, p/8, c/2)
Π211[:, :, 1] sends A21 to Π111[:, :, 1].
Π121[:, :, 1] sends A12 to Π111[:, :, 1].
A22 ←2.5D-SMMM(A12, A21, A11, Π111, n/2, p/8, c/2)

end

per chip. Nodes are connected through Cray’s ‘Gemini’ network, which has a 3D torus topology. Each
Gemini chip, which is shared by two Hopper nodes, is capable of 9.8 GB/s bandwidth.

Our threaded Semiring-Matrix-Matrix-Multiply achieves up to 13.6 GF on 6-cores of Hopper, which is
roughly 25% of theoretical floating-point peak. This is a fairly good fraction in the absence of an equivalent
fused multiply-add operation for our semiring. Our implementation of DC-APSP uses this subroutine to
perform APSP at 17% of peak computational performance on 1 node (24 cores, 4 processes, 6 threads per
process).

Figure 3(a) demonstrates the strong scaling performance of 2D and 2.5D APSP. Strong scaling perfor-
mance is collected by keeping the adjacency matrix size constant and computing APSP with more proces-
sors. The 2.5D performance is given as the best performing variant for any replication factor c (in almost
all cases, c = 4). Strong scaling a problem to a higher core-count lowers the memory usage per proces-
sor, allowing increased replication (increased c). Performing 2.5D style replication improves efficiency
significantly, especially at large scale. On 24,576 cores of Hopper, the 2.5D algorithm improves on the
performance of the 2D APSP algorithm by a factor of 1.8x for n = 8, 192 and 2.0x for n = 32, 768.

Figure 3(b) shows the weak scaling performance of the 2D and 2.5D DC-APSP algorithms. To collect
weak scaling data, we keep the problem size per processor (n/

√
p) constant and grow the number of proces-

10

Algorithm 7: 2.5D-BLOCK-CYCLIC-DC-APSP(A, Π, n, p, c, b1, b2)
Input: n× n matrix A, spread over

√
p/c-by-

√
p/c processor grid Π[:, :, 1], representing the

adjacency matrix of a graph G.
Output: n× n matrix A, spread over

√
p/c-by-

√
p/c processor grid Π[:, :, 1], representing the

APSP distance matrix of graph G.

Partition A =

[
A11 A12

A21 A22

]
, where all Aij are n/2-by-n/2

if n > b1 then
A11 ←2.5D-BLOCK-CYCLIC-DC-APSP(A11, Π, n/2, p, c, b1, b2)
A12 ←2.5D-SMMM(A11, A12, A12, Π, n/2, p, c)
A21 ←2.5D-SMMM(A21, A11, A21, Π, n/2, p, c)
A22 ←2.5D-SMMM(A21, A12, A22, Π, n/2, p, c)
A11 ←2-5D-BLOCK-CYCLIC-DC-APSP(A22, Π, n/2, p, c, b1, b2)
A21 ←2.5D-SMMM(A22, A21, A21, Π, n/2, p, c)
A12 ←2.5D-SMMM(A12, A22, A12, Π, n/2, p, c)
A22 ←2.5D-SMMM(A12, A21, A11, Π, n/2, p, c)

else
A←2.5D-BLOCKED-DC-APSP(A, Λ, n, p, c, b2)

end

sors. Since the memory usage per processor does not decrease with the number of processors during weak
scaling, the replication factor cannot increase. We compare data with n/

√
p = 2048, 4096 for 2D (c = 1)

and with n/
√
p = 2048 for 2.5D (c = 4). The 2.5D DC-APSP algorithm performs almost as well as the 2D

algorithm with a larger problem size and significantly better than the 2D algorithm with the same problem
size.

The overall weak-scaling efficiency is good all the way up to the 24,576 cores (as far as we tested),
where the code achieves an impressive aggregate performance over 12 Teraflops. At this scale, our 2.5D
implementation solves the all-pairs shortest-paths problem for 65,536 vertices in roughly 2 minutes. With
respect to 1-node performance, strong scaling allows us to solve a problem with 8,192 vertices over 30x
faster on 1024 compute nodes. Weak scaling gives us a performance rate up to 380x higher on 1024 compute
nodes than on one node.

Figure 4(a) shows the performance of 2.5D DC-APSP on small matrices. The bars are stacked so the
c = 4 case shows the added performance over the c = 1 case, while the c = 16 case shows the added
performance over the c = 4 case. A replication factor of c = 16 results in a speed-up of 6.2x for the
smallest matrix size n = 4, 096. Overall, we see that 2.5D algorithm hits the scalability limit much later
than the 2D counterpart. Tuning over the block sizes (Figure 4(b)), we also see the benefit of the block-cyclic
layout for the 2D algorithm. The best performance over all block sizes is significantly higher than either the
cyclic (b = 1) or blocked (b = n/

√
p) performance.

7 Conclusion

The divide-and-conquer APSP algorithm is well suited for parallelization in a distributed memory environ-
ment. The algorithm resembles well-studied linear algebra algorithms (e.g. matrix multiply, LU factoriza-
tion). We exploit this resemblance to transfer implementation and optimization techniques from the linear
algebra domain to the graph-theoretic APSP problem. In particular, we use a block-cyclic layout to load-
balance the computation and data movement, while simultaneously minimizing message latency overhead.

11

c=1

 0

 200

 400

 600

 800

 1000

 1200

1 4 16 64 25
6

10
24 1 4 16 64 25
6

10
24

G
Fl

op
s

Number of compute nodes

n=4096

n=8192

c=16
c=4

(a) DC-APSP small matrix performance

 100

 200

 300

 400

 500

 600

 700

1 2 4 8 16 32 64 128 256

G
Fl

op
s

block size (b)

Performance of 2D DC-APSP on 256 nodes of Hopper (n=8,192)

2D DC-APSP

(b) Performance of DC-APSP with respect to block size

Figure 4: Performance of DC-APSP on small matrices

Further, we formulate a 2.5D DC-APSP algorithm, which lowers the bandwidth cost and improves parallel
scalability. Our implementations of these algorithms achieve good scalability at very high concurrency and
confirm the practicality of our analysis.

Our techniques for avoiding communication allow for a scalable implementation of the divide-and-
conquer APSP algorithm. The benefit of such optimizations grows with machine size and level of con-
currency. The performance of our implementation can be further improved upon by exploiting locality via
topology-aware mapping. The current Hopper job scheduler does not allocate contiguous partitions but
other supercomputers (e.g. IBM BlueGene) allocate toroidal partitions, well-suited for mapping of 2D and
2.5D algorithms.

References

[1] Hopper, NERSC’s Cray XE6 system. http://www.nersc.gov/users/
computational-systems/hopper/.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs. Theoretical
Computer Science, 71(1):3 – 28, 1990.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman, Boston, MA, USA, 1974.

[4] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and communication costs of fast
matrix multiplication: regular submission. In Proceedings of the 23rd ACM symposium on Parallelism
in algorithms and architectures, SPAA ’11, pages 1–12, New York, NY, USA, 2011. ACM.

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in numerical linear
algebra. SIAM J. Matrix Analysis Applications, 32(3):866–901, 2011.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK user’s guide. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

[7] J. Brickell, I. S. Dhillon, S. Sra, and J. A. Tropp. The metric nearness problem. SIAM J. Matrix Anal.
Appl., 30:375–396, 2008.

12

[8] A. Buluç, J. R. Gilbert, and C. Budak. Solving path problems on the GPU. Parallel Computing,
36(5-6):241 – 253, 2010.

[9] A. R. Curtis, T. Carpenter, M. Elsheikh, A. Lpez-Ortiz, and S. Keshav. REWIRE: an optimization-
based framework for data center network design. In INFOCOM, 2012.

[10] R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5:345–, June 1962.

[11] M. B. Habbal, H. N. Koutsopoulos, and S. R. Lerman. A decomposition algorithm for the all-
pairs shortest path problem on massively parallel computer architectures. Transportation Science,
28(4):292–308, 1994.

[12] J.-W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proceedings of the
thirteenth annual ACM symposium on Theory of computing, STOC ’81, pages 326–333, New York,
NY, USA, 1981. ACM.

[13] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for distributed-memory matrix
multiplication. Journal of Parallel and Distributed Computing, 64(9):1017–1026, 2004.

[14] J. Jenq and S. Sahni. All pairs shortest paths on a hypercube multiprocessor. In ICPP ’87: Proc. of the
Intl. Conf. on Parallel Processing, pages 713–716, 1987.

[15] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 24(1):1–
13, 1977.

[16] V. Kumar and V. Singh. Scalability of parallel algorithms for the all-pairs shortest-path problem. J.
Parallel Distrib. Comput., 13:124–138, 1991.

[17] R. C. Larson and A. R. Odoni. Urban operations research. Prentice-Hall, Englewood Cliffs, NJ, USA,
1981.

[18] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. Numer. Analysis,
16:346–358, 1979.

[19] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers. http:
//www.cs.virginia.edu/stream/.

[20] U. Meyer and P. Sanders. ∆-stepping: a parallelizable shortest path algorithm. J. Algorithms,
49(1):114–152, 2003.

[21] J.-S. Park, M. Penner, and V. K. Prasanna. Optimizing graph algorithms for improved cache perfor-
mance. IEEE Transactions on Parallel and Distributed Systems, 15(9):769–782, 2004.

[22] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Com-
puter and System Sciences, 51(3):400–403, 1995.

[23] E. Solomonik, A. Bhatele, and J. Demmel. Improving communication performance in dense linear
algebra via topology aware collectives. In Supercomputing, Seattle, WA, USA, Nov 2011.

[24] E. Solomonik and J. Demmel. Communication-optimal 2.5D matrix multiplication and LU factoriza-
tion algorithms. In Lecture Notes in Computer Science, Euro-Par, Bordeaux, France, Aug 2011.

[25] J. D. Ullman and M. Yannakakis. High probability parallel transitive-closure algorithms. SIAM Journal
of Computing, 20:100–125, February 1991.

13

[26] R. A. Van De Geijn and J. Watts. SUMMA: scalable universal matrix multiplication algorithm. Con-
currency: Practice and Experience, 9(4):255–274, 1997.

[27] S. Warshall. A theorem on boolean matrices. J. ACM, 9:11–12, January 1962.

8 Appendix A: Derivation of 2D DC-APSP communication costs

We use all processors at every recursive step (up to n =
√
p), in a cyclic layout. We will not consider the

costs for n >
√
p since, typically n2 >> p1. Every processor will do an equal amount of flops in such a

cyclic layout, and no extra flops are done. Therefore, the flops cost is

Fc-2D = O(n3/p)

At each recursive level of the algorithm six SMMM operations are performed. Therefore, if all p pro-
cessors are used at every step (cyclic layout), the bandwidth cost of 2D DC-APSP, Wc-2D, is given by the
recurrence

Wc-2D(n, p) = 2 ·Wc-2D(n/2, p) + 6 ·W (SMMM-2D)

Wc-2D(n, p) = 2 ·Wc-2D(n/2, p) + O(n2/
√
p)

= O(n2/
√
p).

The latency cost of cyclic 2D DC-APSP, Sc-2D, is given by

Sc-2D(n, p) = 2 · Sc-2D(n/2, p) + O(
√
p)

= O(n · √p).

If we use a blocked layout, we perform work with fewer processors at each level of recursion. The flops
are no longer balanced among processors. Since n2 >> p, the recursion tree has height log4 (p), making
the base case Fb-2D(n/

√
p, 1) = O(n/

√
p)3. We calculate the computational cost of this blocked layout via

the recurrence

Fb-2D(n, p) = 2 · Fb-2D(n/2, p/4) + O(n3/p)

= O(
n3

p
log(p))

The bandwidth cost of the blocked algorithm is,

Wb-2D(n, p) = 2 ·Wb-2D(n/2, p/4) + O(n2/
√
p)

= O(
n2

√
p

log(p)).

The latency cost of the blocked algorithm is

Sb-2D(n, p) = 2 · Sb-2D(n/2, p/4) + O(
√
p)

= O(
√
p log(p)).

1In a weak scaling study, n would scale with Θ(
√
p) with a constant of 10, 000 (the biggest problem solvable by a typical single

core with 1GB memory)

14

So, the cyclic approach achieves a desirable computational and bandwidth cost, while the blocked ap-
proach achieves a lower latency. We can balance these costs via a block-cyclic decomposition. We set the
block-cyclic factor r = O(log log(p)) so that each processor owns a r-by-r grid of blocks of dimension
n/(
√
p · r). This way, after r levels of recursion, all the processors are still going to be active The costs

of this algorithm can be calculated by plugging in the cost of the blocked algorithm as the base-case of the
cyclic algorithm. The computational cost is

Fbc-2D(n, p) = 2 · Fbc-2D(n/2, p) + O(n3/p)

Fbc-2D(n/2log log(p), p) = Fb-2D(n/2log log(p), p)

Fbc-2D(n, p) = O(n3/p) + O(2log log(p) · ((n/2log log(p))3/p) log(p))

= O(n3/p) + O(log(p) · ((n/ log(p))3/p) log(p))

= O(n3/p) + O((n3/p)/ log(p))

= O(n3/p)

We can calculate the bandwidth and latency costs of the block-cyclic algorithm in a similar fashion. The
bandwidth cost is

Wbc-2D(n, p) = 2 ·Wbc-2D(n/2, p) + O(n2/
√
p)

Wbc-2D(n/2log log(p), p) = Wb-2D(n/2log log(p), p)

Wbc-2D(n, p) = O(n2/
√
p) + O(2log log(p) · ((n/2log log(p))2/

√
p) log(p))

= O(n2/
√
p) + O(log(p) · ((n/ log(p))2/

√
p) log(p))

= O(n2/
√
p) + O(n2/

√
p)

= O(n2/
√
p)

And the latency cost is

Sbc-2D(n, p) = 2 · Sbc-2D(n/2, p) + O(
√
p)

Sbc-2D(n/2log log(p), p) = Sb-2D(n/2log log(p), p)

Sbc-2D(n, p) = O(
√
p log(p)) + O(

√
p log2(p))

= O(
√
p log2(p))

9 Appendix B: Derivation of 2.5D DC-APSP communication costs

The 2.5D block-cyclic DC-APSP algorithm (Algorithm 7) consists of 4-nested DC-APSP algorithms. At
the top level is a block-cyclic 2.5D algorithm, which recursively calls a blocked 2.5D algorithm, which calls
the block-cyclic 2D algorithm. We define two blocking parameters b1 and b2 to determine when to switch
between blocked and cyclic algorithms.

15

If we set b1 = n/c, the bandwidth cost of 2.5D DC-APSP is the following recurrence,

Wbc-2.5D(n > n/c, p, c) = 2Wbc-2.5D(n/2, p, c) + O(n2/
√
pc)

Wbc-2.5D(n < n/c, p, c) = Wb-2.5D(n, p, c)

Wb-2.5D(n, p, c > 1) = 2Wb-2.5D(n/2, p/8, c/2) + O(n2/
√
pc)

Wb-2.5D(n, p, c = 1) = Wbc-2D(n, p)

Wbc-2D(n, p) = O(n2/
√
p)

Wb-2.5D(n, p, c) = c ·Wbc-2D(n/c, p/c3) + O(
√
c · n2/

√
p)

= O(c · (n/c)2/
√
p/c3) + O(

√
c · n2/

√
p)

= O(
√
c · n2/

√
p)

Wbc-2.5D(n, p, c) = c ·Wb-2.5D(n/c, p, c) + O(n2/
√
pc)

= O(c ·
√
c · (n/c)2/√p) + O(n2/

√
pc)

= O(n2/
√
pc)

We can derive the latency cost in a similar fashion,

Sbc-2.5D(n > n/c, p, c) = 2Sbc-2.5D(n/2, p, c) + O(
√
p/c3)

Sbc-2.5D(n < n/c, p, c) = Sb-2.5D(n, p, c)

Sb-2.5D(n, p, c > 1) = 2Sb-2.5D(n/2, p/8, c/2) + O(
√

p/c3)

Sb-2.5D(n, p, c = 1) = Sbc-2D(n, p)

Sbc-2D(n, p) = O(
√
p log2(p))

Sb-2.5D(n, p, c) = c · Sbc-2D(n/c, p/c3, 1) + O(c ·
√
p/c3)

= O(c ·
√
p/c3 log2(p/c3)) + O(

√
p/c)

= O(
√

p/c log2(p/c3))

Sbc-2.5D(n, p, c) = c · Sb-2.5D(n/c, p, c) + O(c ·
√
p/c3)

= O(c ·
√

p/c log2 p/c3) + O(
√
p/c)

= O(
√
pc log2(p/c3))

16

