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Abstract

Algorithmic Approaches to Statistical Questions

by

Gregory John Valiant

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christos Papadimitriou, Chair

We live in a probabilistic world—a world full of distributions from which we sample.
Learning, evolution, and much of science, rely on samples furnished by nature. This prompts
the basic question: Given a sample from some unknown distribution, what can one infer? In
even the simplest settings, our understanding of this question is startlingly poor. While this
question is traditionally viewed as lying within the province of statistics and information
theory, at its core it is an algorithmic question. The increasing size of our datasets—and
perhaps more importantly, the increasing complexity of the underlying distributions that we
hope to understand—are exposing issues that seem to demand computational consideration.

In this dissertation, we apply the computational perspective to three basic statistical
questions which underlie and abstract several of the challenges encountered in the analysis
of today’s large datasets.

Estimating Statistical Properties Given a sample drawn from an unknown distribution,
and a specific statistical property of the distribution that we hope to estimate, how should
one compute that estimate, and what sample size is necessary to guarantee that with high
probability, the computed estimate is accurate? We focus on a large and natural class of
properties, which includes the number of distinct elements, entropy, and distance metrics
between pairs of distributions, including total variational distance (also known as statistical
distance or `1 distance). Such properties are easy to estimate if the sample size is large in
comparison to the size or complexity of the underlying distribution, but what can be done
given relatively few samples? Our results can be interpreted via the following three concrete
problems, each defined with respect to an arbitrarily small accuracy parameter ε > 0:

• Distinct Elements: Given access to n buckets, each of which contains one object
that is not necessarily distinct from those in the others buckets, how many buckets
must one inspect in order to estimate the total number of distinct objects to ±εn, with
high probability?

• Entropy Estimation: Given access to a sample obtained by taking independent
draws from a distribution p, of support size at most n, how large does the sample need
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to be to estimate the entropy of the distribution, H(p) := −
∑

x:p(x)>0 p(x) log p(x), to
within ±ε, with high probability?

• Distance: Given access to two samples obtained by taking independent draws from
two distributions, p1, p2 of support size at most n, how large do the samples need to be
to estimate the total variational distance between the distributions (also referred to as
`1 distance or “statistical distance”), Dtv(p1, p2), to within ±ε, with high probability?

We show that sublinear sample estimation is possible: for any constant ε > 0, the

above estimation tasks can be accomplished using O
(

n
logn

)
-sized samples, with probability

of success 1 − o(1). Additionally, we prove some results about the algorithmic structure
of optimal estimators, and provide experimental evidence suggesting that our estimators
perform very well in practice. Complementing these positive results, we prove matching
information theoretic lower bounds, establishing the sample complexity of these tasks up to
constant factors. Previously, no explicit sublinear sample estimators had been described for
any of these tasks, and the best previous information theoretic lower bounds on the required
sample size for any of these problems was n/2Θ(

√
logn) [131].

As a component of the lower bound machinery, we prove two new multivariate central
limit theorems: one for sums of independent (though not necessarily identical) multivariate
random variables in the Wasserstein metric, and the second for “generalized multinomial
distributions” (a class of distributions generalizing binomial, multinomial, and sums of such
distributions) in terms of the stringent `1 distance metric. We suspect these limit theorems
may have broader applications beyond the property estimation setting.

Finding Correlations and Identifying Relevant Variables: Perhaps the most basic
type of structure that can be present in a dataset is correlation. How much computation is
required to find correlated variables? One can certainly brute-force search through all pairs
of variables, and for each pair, the correlation can be estimated very efficiently. But is there
a sub-quadratic time algorithm for finding correlated variables? More generally, suppose one
has a data set where each data sample has a label which is given as some function of a
small number of the variables. If we have n total variables, perhaps there is a small number,
k = 3, 4, 5, . . ., of relevant variables which can be used to predict the labels. Such a function
is termed a k-junta. How quickly can one find this set of k relevant variables? As above,
one could simply perform a brute-force search over all possible subsets of size k, taking time
roughly O(nk). Can one find the set of relevant variables significantly more efficiently?

We show that a planted pair of ρ-correlated variables can be found in a set of n oth-
erwise uniformly random Boolean variables in time n1.6poly(1/ρ). This improves upon the
O(n2−O(ρ)) runtime given by locality sensitive hashing and related approaches. Extensions
of this algorithm yield significantly improved algorithms for several important problems, in-
cluding multiplying matrices whose product is guaranteed to be sparse, learning k-juntas,
learning sparse parity with noise, and computing the approximate closest pair of points, in
both Euclidean and Boolean settings.
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Learning Mixtures of Gaussians A sample from a mixture model (with, for example,
two components) is generated via the following process: for each data point, with some prob-
ability, w1, the point is drawn from one distribution p1, and with the remaining probability
1−w1 the point is drawn from a second distribution p2. Supposing one is given a large sample
from such a mixture of distributions, can one efficiently deduce the components, p1 and p2

of the mixture? Can one accurately cluster the sample points according to the distribution
from which they originated? In the special case in which each component, p1, p2 is a Gaus-
sian distribution, this is the problem of learning a Gaussian mixture model (GMM), and is,
perhaps, the most natural (and practically relevant) starting point for tackling the question
of recovering mixtures of more general families of distributions. We obtain a basic handle
on the sample and computational complexity of this problem, and describe an algorithm
which, given a sample from a GMM with any constant number of components, provably
returns accurate estimates of the components, with runtime and sample size polynomial in
the relevant parameters—the dimension of the space, and the inverse of the desired accuracy
of the recovered components. Previously, no such algorithm was known, even in the special
case of univariate mixtures with just two components.

The questions considered in this dissertation are not new: the question of efficiently find-
ing correlations was introduced to the computer science community over 25 years ago; the
effort to describe accurate estimators for entropy and the other properties that we consider
originated in the statistics community nearly 75 years ago and also received significant atten-
tion from the information theory community; the question of recovering Gaussian mixture
models was originally posed by Karl Pearson in the 1890’s. The progress on these questions
that we describe in this dissertation stems from the observation that these statistical ques-
tions are intrinsically algorithmic and hence may be amenable to the tools, techniques, and
perspectives of theoretical computer science.



i

Acknowledgments

When I arrived at Berkeley’s graduate student visit day, Christos rescued me from the rain
and drove me the final block up the hill to Soda Hall. By the time we had gotten to Soda
Hall, I had chosen which graduate school to attend, and selected an advisor. I could not
have made a better decision. Christos’ raw energy, and passionate belief in computer science
theory as a vantage point from which to survey the world, are both inspiring, and contagious.
I am grateful to Christos for letting me pick my own path, and even more grateful to him for
the abundance of wisdom, encouragement, support, and friendship he offered as I stumbled
down this path. Perhaps most importantly, Christos, thank you for your reminder that we
live in an extraordinarily rich and beautiful world, and that it is best to keep ones eyes open.

I am very grateful to all the students, postdocs, and faculty in the Theory group at
Berkeley, who create the atmosphere that is Berkeley. I may now understand that distant
and teary-eyed look so endemic to Berkeley graduates when they reflect on their student
days. Umesh, thanks for always saying the right things at precisely the right times. Satish,
thank you for optimistically entertaining my ideas and for our many hours of discussions.
Alistair, I consider myself extremely fortunate to have TAed for you—much of what I know
about probability theory, and teaching, is due to you.

I want to thank my fellow students for all the inspiring discussions, fantastic retreats, and
clandestine coffee raids: special thanks to James, Thomas, Piyush, Jonah, Siu Man, Siu On,
Chris, Seung Woo, Tom, Di, Anupam, Anand, Isabelle, George, Raf, Jake, Meromit, Guy and
Mayan; and to the students who served as role models and mentors in the years above me,
Costis, Grant, Alexandra, Alexandre, Alex, Henry, Omid, Lorenzo, and Madhur. Anindya,
Urmila, Ilias, and Yaron, thank you for all your ideas, stories, advice, and friendship.

I am extremely grateful to my collaborators: Ho-Lin Chen, Costis Daskalakis, Ilias Di-
akonikolas, Rafael Frongillo, Georg Gottlob, Adam Kalai, Stephanie Lee, Ankur Moitra,
Noam Nisan, Christos, George Pierrakos, Tim Roughgarden, Michael Schapira, Grant Scho-
enebeck, Rocco Servedio, Paul, and Aviv Zohar. Thank you for sharing your special insights
and unique perspectives with me; I look forward to many more discussions with each of you.

I owe much to Adam Kalai, and Vitaly Feldman for mentoring me during my summer
internships at Microsoft and IBM. Adam, thank you for introducing me to learning theory,
for pushing me to think clearly and deeply, and for all the fun along the way. Vitaly, thank
you for many, many hours of discussing parity with noise, and for the bike rides.

Thank you to Berkeley, the National Science Foundation, and to IBM for funding my
graduate education and giving me the liberty to pursue the research directions of my choos-
ing.

Finally, none of this would have been possible without Paul and Steph and my parents
Leslie and Gayle, who make me who I am and offer their constant support and love.



ii

To Paul and Steph for all the adventures.



iii

Contents

Contents iii

List of Figures vi

1 Data, Computation, Statistics, and Learning 1
1.1 Statistical Property Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Finding Correlations and Relevant Variables . . . . . . . . . . . . . . . . . . 7
1.3 Learning Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Bibliographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

I Estimating Symmetric Properties 19

2 Definitions, and Related Work 20
2.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Historical Background: The Work of Turing, Fisher, and Good . . . . . . . . 23
2.3 Estimating Properties and Estimating Distributions . . . . . . . . . . . . . . 25
2.4 Property Testing, and the Computer Science Perspective . . . . . . . . . . . 29

3 Estimating the Unseen: Sublinear Sample Estimators for Entropy, Sup-
port Size, and Other Properties 32
3.1 An LP–Based Canonical Estimator . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Similar Expected Fingerprints Imply Similar Histograms: A Chebyshev “Bump”

Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Properties of Pairs of Distributions . . . . . . . . . . . . . . . . . . . . . . . 59

4 Two Multivariate Central Limit Theorems 71
4.1 Definitions and Discussion of Results . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Stein’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 A Multivariate Central Limit Theorem via Stein’s Method . . . . . . . . . . 77
4.4 A Central Limit Theorem for Generalized Multinomial Distributions . . . . . 84



iv

5 Lower Bounds for Property Estimation 90
5.1 Technique Overview: Fourier Analysis, Hermite Polynomials, “Fattening”,

and the Laguerre construction . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Linear Combinations of Poisson Functions . . . . . . . . . . . . . . . . . . . 96
5.3 The Laguerre Lower Bound Construction . . . . . . . . . . . . . . . . . . . . 102
5.4 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5 A Lower Bound for the Distinct Elements Problem . . . . . . . . . . . . . . 110
5.6 Lower Bounds for Total Variational Distance . . . . . . . . . . . . . . . . . . 112

6 The Power of Linear Estimators 113
6.1 A Duality of Estimators and Lower Bound Instances . . . . . . . . . . . . . 115
6.2 Constructing Lower Bound Instances . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Constructing Linear Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4 Duality, and Matrix Exponentials . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Explicit Linear Estimators 137
7.1 Constructing Estimators with “Skinny Bumps” . . . . . . . . . . . . . . . . 139
7.2 Linear Estimators for Entropy and Distance to Uniformity . . . . . . . . . . 141
7.3 Missing Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8 Estimating Properties in Practice 152
8.1 A Practical Algorithm for Estimating the “Unseen” . . . . . . . . . . . . . . 153
8.2 Estimating Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.3 Estimating `1 Distance, and the Number of Words in Hamlet . . . . . . . . . 158

II Correlations, Parities, and Juntas 162

9 Finding Correlations and the Closest Pair Problem 163
9.1 Discussion of Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.2 A New Algorithm for the Light Bulb Problem . . . . . . . . . . . . . . . . . 166
9.3 The Chebyshev Embedding, and Closest-Pair Problem . . . . . . . . . . . . 172
9.4 Finding Vectors with Maximal Inner Product . . . . . . . . . . . . . . . . . 175
9.5 The Approximate Closest Pair . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.6 Further Directions: Beyond Fast Matrix Multiplication . . . . . . . . . . . . 187

10 Learning Parities and Juntas 189
10.1 The History of Parity with Noise . . . . . . . . . . . . . . . . . . . . . . . . 190
10.2 Summary of Approach and Results . . . . . . . . . . . . . . . . . . . . . . . 192
10.3 Learning Parity by Adding Bias . . . . . . . . . . . . . . . . . . . . . . . . . 195



v

III Learning Mixtures of Gaussians 205

11 Learning Univariate Mixtures of Gaussians 206
11.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.2 Polynomially Robust Identifiability . . . . . . . . . . . . . . . . . . . . . . . 211
11.3 The Basic Univariate Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.4 Exponential Dependence on k is Inevitable . . . . . . . . . . . . . . . . . . . 224

12 Learning Mixtures of Gaussians in High Dimension 228
12.1 A Simple Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.2 The Full High Dimensional Algorithm . . . . . . . . . . . . . . . . . . . . . . 238
12.3 Proof of Theorem 12.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Bibliography 245

A Basic Properties of Gaussian and Poisson Distributions 255
A.1 Basic Properties of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . 256
A.2 Basic Properties of Poissons . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

B The Reduction of Feldman et al. from Learning Juntas and DNF to
Learning Parities 265
B.1 Learning Juntas and DNF via Sparse Parities . . . . . . . . . . . . . . . . . 266



vi

List of Figures

1.1 A DNA microarray: each row corresponds to a cell sample, each column corre-
sponds to a gene, and the intensity of each entry corresponds to the level of gene
expression. Computationally, how does one efficiently find genes whose expres-
sions are correlated? (Image from L. Liu et al. [82]). . . . . . . . . . . . . . . . . 7

1.2 The Gaussian approximations of the heights of adult women (red) and men (blue).
Can one recover estimates of these Gaussian components given only the aggre-
gate data without gender labels (black)? (Data from the National Health and
Nutrition Examination Surveys [87].) . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 A plot of Corbet’s butterfly data, depicting the number of butterfly species for
which 1, 2, 3, . . . specimens were obtained during a 2 year expedition in Malaysia.
Good and Toulmin showed that the alternating sum of these statistics—in this
case 118− 74 + 44− 24 + . . . ≈ 75—yields an unbiased estimator for the number
of new species that would be discovered over another 2 year period. [55, 60] . . 23

3.1 Three fingerprints (bottom row) derived from samples of size 10,000, together
with the corresponding histograms (top row) of the distributions from which each
sample was drawn. Intuitively, our estimator is solving the inversion problem:
given a fingerprint, it finds a histogram from which the sample could, plausibly,
have been drawn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 A plot of the “skinny” function g2(y) (without the scaling factor). This is the
main ingredient in the Chebyshev bumps construction of Definition 3.17. . . . . 50

4.1 The binomial distribution with p = 0.1 and 50 draws (red bars), compared with
the Gaussian distribution of matching mean and variance (blue curve). Theo-
rem 4.1, implies that the earthmover distance between these distributions is at
most 0.9(2.7 + 0.83 log 50). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



vii

5.1 a) The 10th Laguerre polynomial, multiplied by e−x/2x1/4, illustrating that it
behaves as a · ex/2x−1/4 · sin(b ·

√
x) for much of the relevant range.

b) f(x), representing histograms p+(x), p−(x) respectively above and below the
x-axis.
c) The discrepancy between the first 40 fingerprint expectations of p+, p−; the
first 10 expected fingerprint entries almost exactly match, while the discrepancy
in higher fingerprint expectations is larger, though still bounded by 2 · 10−5. . . 95

8.1 Plots depicting the square root of the mean squared error (RMSE) of each en-
tropy estimator over 500 trials, plotted as a function of the sample size; note
the logarithmic scaling of the x-axis. The samples are drawn from a uniform
distribution Unif [n] (left column), a Zipf distribution Zipf [n] (center column),
and a geometric distribution Geom[n] (right column), for n = 1, 000 (top row),
n = 10, 000 (middle row), and n = 100, 000 (bottom row). . . . . . . . . . . . . 159

8.2 Plots depicting the estimated `1 distance (total variational distance) along with
error bars showing one standard deviation, for samples from two uniform distri-
butions of support 10,000 having distance 0 (left plot), distance 0.5 (center plot),
and distance 1 (right plot) as a function of the sample size. . . . . . . . . . . . . 160

8.3 Estimates of the total number of distinct word forms in Shakespeare’s Hamlet
(excluding stage directions and proper nouns) as a function of the length of the
passage from which the estimate is inferred. The error bars depict one standard
deviation in the estimate over the random choice of each contiguous passage of
the given length. The true number of distinct word forms, 4268, is shown as the
horizontal line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

11.1 A fit of a mixture of two univariate Gaussians to Pearson’s data on Naples
crabs [105]. This density plot was created by P. Macdonald using R [84]. . . . . 208

12.1 Illustration of the high–level approach: 1. project the data onto a series of vectors
and learn the parameters of the resulting one dimensional GMMs, 2. determine
a consistent labeling between the components of the recovered one dimensional
GMMs, and 3. for each component, combine the recovered one dimensional pa-
rameters to reconstruct an estimate of the high dimensional parameters. . . . . 229

12.2 An example of a GMM with three components F1, F2, F3, such that with high
probability over random vectors, the one dimensional projections of F2 and F3

will be very similar, despite Dtv(F2, F3) ≈ 1. . . . . . . . . . . . . . . . . . . . . 239



1

Chapter 1

Data, Computation, Statistics, and
Learning
The large datasets of today are not like the datasets of the 20th century. The hardware used
today to store these datasets is not like that of the 20th century. The software used today
to manipulate these datasets is not like that of the 20th century. And yet, in many cases,
our theoretical understanding of basic statistical tasks is like that of 20th century. Basic
tasks, such as finding correlated variables in a dataset, or estimating the difference between
two distributions, change fundamentally when one starts to consider very large datasets, or
very complicated distributions. Given a dataset with a modest number of variables, a simple
textbook calculation will let one compute the correlations between the variables and find any
correlations that might be present. If one wishes to estimate the difference in distributions
of heights of people in two demographics, one simply takes large samples from each group,
and compares the two empirical distributions.

The story is quite different, however, if we are hoping to find correlations in a dataset
that has millions, or billions of variables, such large genomic datasets in which each position
in the genome might be interpreted as a variable. Instead of estimating the difference in
distributions of heights between groups of people, consider trying to estimate the difference
between the distributions of two human gut “microbiomes”—large and complex distributions
(with a domain consisting of hundreds or thousands of species of bacteria, yeasts, fungi and
protozoa) the majority of which are only present in tiny quantities and thus may be observed
few times, if at all, in a given sample [13, 143]. How does one estimate the difference in these
distributions if much of the domain is unseen in our sample?

The extreme parameters of the datasets and distributions that we are now facing reveal
aspects of these very basic problems that were not apparent in more traditional settings.
In many cases, these newly exposed challenges are fundamentally computational in nature.
Applying algorithmic tools and ideas, and more importantly, viewing these statistical chal-
lenges through a computational lens, seems essential. Further, this is a two-way street.
While these new challenges have significant practical implications, some are also extremely
provoking and elegant mathematical problems. As such, they carry the potential to spawn
a rich array of powerful new theoretical ideas and insights that may find applications in a
range of settings both within theoretical computer science, and more generally.
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1.1 Statistical Property Estimation

What can one infer about an unknown distribution based on a sample? If the distribution in
question is relatively “simple” in comparison to the sample size—for example if we are given
a sample consisting of 1000 independent draws from a distribution supported on 100 distinct
domain elements—then the empirical distribution of the sample will likely be an accurate
representation of the actual distribution. If, on the other hand, we have a relatively small
sample in relation to the size and complexity of the distribution—for example if we have a
sample of size 100 drawn from a distribution supported on 1000 domain elements—then the
empirical distribution may be a poor approximation of the actual distribution. In this case,
can one still extract accurate estimates of various properties of the actual distribution?

Many real–world machine learning and data analysis tasks face this challenge. In this
age of big data, the rapid increase in the size of our datasets has, in many cases, been
accompanied by a realization that the underlying distributions we hope to understand are
far larger and more complex than we may have imagined. Thus despite the enormous size
of some of these datasets, we are only viewing a tiny fraction of the domain of the actual
distribution.

One especially relevant illustration of this point is the discovery that the rapid growth
of the human population over the past 5000 years has resulted in an abundance of very
rare genetic mutations. Two recent independent studies [121, 93] (appearing in Science in
July, 2012) each considered the genetic sequences of over 14,000 individuals, and found that
rare variants are extremely abundant, with over 80% of mutations observed just once in the
sample [121]; the conclusion is that even with huge numbers of sequenced genomes, “rare
[genetic] variant catalogs will be largely incomplete” [93]. Understanding these distributions
of rare mutations provides insight into our evolution and selective pressures, as well as the
potential for genetic screenings for various diseases. Highlighting the difficulty in working
with such sparse data, the paper [80] (also appearing in Science in May, 2012) found that the
discrepancy in rare mutation abundance cited in different demographic modeling studies can
largely be explained by discrepancies in the sample sizes of the respective studies, as opposed
to differences in the actual distributions of rare mutations across demographics. These works
highlight some of the recent struggles of the genetics community to deal with this pervasive
question of how to accurately infer properties of large and complex distributions given a
sample that is “too small”.

Similar challenges are encountered in a variety of other fields, including Biology, Ecology,
Linguistics, Neuroscience, and Physics (see, for example, the discussion and extensive bib-
liographies in [32, 102]). Specific settings in which these problems arise that may be more
familiar to the computer science community include analyzing customer data or web traffic
(many customers or website users are only seen a small number of times), and text analysis
(most of one’s vocabulary is not represented in a given writing sample). Additionally, many
database management tasks employ sampling techniques to optimize query execution; im-
proved estimators would allow for either smaller sample sizes or increased accuracy, leading
to improved efficiency of the database system (see, e.g. [95, 65]).
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But what can one hope to infer about a distribution if we are given such a small sample
that much of the domain of the distribution has not been seen? We can not know which
domain elements we have not seen, but we might still hope to estimate certain properties of
the distribution that depend on this unseen component of the distribution.

To give a simple example, suppose one reaches into a large bag of marbles, and pulls
out a handful consisting of 10 marbles that are each a different color. If none of these 10
marbles are yellow, we certainly should not conjecture that there is a yellow marble in the
bag. Nevertheless, based on this sample of size 10, we might be inclined to suspect that
the bag of marbles contains many colors of marbles that we did not see. Indeed, if the bag
only contained 10 different colors, then the probability that we would see all 10 colors in a
(random) sample of size 10 is very small—less than 1 in 2,500—and we could safely conclude
that the bag likely contained at least 20 colors of marbles, since if this were not the case, the
probability of having drawn 10 distinct colors in our sample of size 10 would be very small
(< 0.1, in fact). We have not made any assumptions on the distribution of marbles—these
conclusions were not made from a Bayesian standpoint—and yet we have used our sample to
infer something about the portion of the distribution from which we have drawn no elements.

In the above example, we were reasoning about the support size of the distribution; this
property of the distribution was amenable to such speculation, in part, because we did not
need to know the labels of the unseen elements in order to reason about their potential
contributions to this property. The class of distribution properties that we consider in this
dissertation is precisely characterized by this independence from the labels of the support of
the distribution. We term such properties symmetric. Formally, a property of a distribution
(or set of distributions) with discrete support is symmetric if the property is invariant to
relabeling the support elements.

Many natural and practically relevant properties are symmetric, including measures of
the amount of structure or diversity of the distribution, such as the support size or entropy
of the distribution. For properties of pairs of distributions, the class of symmetric properties
contains measures of how similar two distributions are, such as total variational distance (and
more generally, `k distance metrics), and KL-divergence. Our results apply to a large subclass
of symmetric properties; for clarity, we summarize our results in terms of the following three
concrete questions, which are parameterized by an arbitrarily small constant error parameter
ε > 0:

• Distinct Elements: Given access to n buckets, each of which contains one object
that is not necessarily distinct from those in the other buckets, how many buckets
must one inspect in order to estimate the total number of distinct objects to ±εn, with
high probability?1

1We phrase our results for estimating the support size of a distribution in terms of this ‘distinct elements’
problem. Slightly more generally, one could also frame this as the problem of estimating the support size of
a distribution given the promise that all domain elements occur with probability at least 1/n. Estimation
is impossible without such a lower bound simply because otherwise, an arbitrarily large number of domain
elements can occupy an arbitrarily small amount of probability mass.
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• Entropy Estimation: Given access to a sample obtained by taking independent
draws from a distribution p, of support size at most n, how large does the sample need
to be to estimate the entropy of the distribution, H(p) := −

∑
x:p(x)>0 p(x) log p(x), to

within ±ε, with high probability?

• Distance: Given access to two samples obtained by taking independent draws from
two distributions, p1, p2 of support size at most n, how large do the samples need to
be to estimate the total variational distance between the distributions (also referred to
as `1 distance or “statistical distance”), Dtv(p1, p2) :=

∑
x:p1(x)+p2(x)>0

1
2
|p1(x)− p2(x)|,

to within ±ε, with high probability?

For all three problems, it is clear that the required sample size will be some increasing
function of n. As described above, if the sample size is much larger than the support size
of the actual distribution, we expect the empirical distribution defined by the sample to
be close to the actual distribution, and thus one can recover an accurate estimate of the
distribution and estimate the property in question by returning the property value of the
empirical distribution defined by the sample. These arguments can be used to show that
given a sample of size O(n/ε2), both entropy and total variational distance can be estimated
to ±ε, with high probability. Of course, for the distinct elements problem, simply looking at
all n buckets will yield the total number of distinct elements. The question is whether one
can improve upon these trivial sample complexities: in particular, can one estimate these
properties using a sublinear sized sample? We show that the answer is “yes”.

For any constant ε > 0, to estimate the number of distinct elements given n
buckets to accuracy ±εn, or estimate the entropy of a distribution of support size
at most n to ±ε, or total variational distance between two distributions of support
size at most n to ±ε, a sample consisting of O( n

logn
) independent draws from the

distribution in question is sufficient (or two such samples in the case of total
variational distance).

Prior to this work, despite a simple nonconstructive argument showing the existence of
an o(n) sample estimator for entropy [102, 101], the best proposed explicit estimators for
any of these properties required Ω(n)-sized samples to produce an estimate with constant
error.

Perhaps not unexpectedly, the crux of our estimators is a new approach to characterizing
the unobserved portion of a distribution—the portion of the distribution from which we have
drawn no examples.

This effort to infer properties of the unseen portion of a distribution is not new; both
Alan Turing and R.A. Fisher, the respective fathers of computer science and statistics,
independently considered aspects of this problem. Working with I.J. Good during WWII to
understand the distribution of the German enigma machine ciphers, Turing was interested in
estimating the total probability mass in the distribution that is composed of domain elements
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that have not been observed. Stated in a different fashion, Turing wanted to predict the
probability that the next element drawn is a new (previously unobserved) element of the
support. This work is now known as the Good–Turing frequency estimation scheme, which
has since been analyzed and extended in a long line of work by both computer scientists and
statisticians [86, 96, 97, 139, 138]. Fisher was interested in a related parameter: the number
of new elements that one expects to discover in a given time period.

In contrast to the work of Fisher and Turing, rather than simply trying to estimate a
single parameter of the unseen portion of the distribution, we try to characterize the entire
shape of the distribution in this region. We can never reconstruct the labels of the unseen
portion of the support of the distribution, but we can hope to recover estimates of the
number of domain elements that occur within various probability ranges. For the purposes
of estimating symmetric properties, this representation of the “shape” of the distribution
contains all the relevant information.

Lower Bounds

Complementary to our positive results, we prove matching information theoretic lower bounds
showing that, up to constant factors, our estimators are optimal; together, this settles the
question of the sample complexities of the distinct elements problem, estimating the entropy
of a distribution, and estimating total variational distance between distributions.

For the distinct elements problem, no algorithm that looks at o( n
logn

) entries can
estimate the number of distinct elements to within ±0.1n, with any probability
greater than 0.51. Similarly, for the problems of entropy and total variational
distance estimation, no algorithm that takes an o( n

logn
)-sized sample can esti-

mate these properties of distributions of support at most n to within ±0.1 with
probability of success greater than 0.51.

The challenge in proving an information theoretic lower bound is that one must argue
about the distribution of a set of independent draws from a distribution. These are complex,
discrete, high dimensional distributions, and there are relatively few tools available to analyze
these distributions. To enable the analysis of our lower bound construction, we develop two
new tools.

We prove two new multivariate central limit theorems, one via Stein’s method in terms
of the Wasserstein (earthmover’s) metric, and one in terms of total variational distance
(the `1 metric). While multivariate central limit theorems are known (for example, [61]),
the Wasserstein metric is an especially useful and natural metric in this setting, and it is
surprising that such a limit theorem was not previously known. Our second limit theorem
is useful both because the bound has a very modest dependence on the dimension (a linear
dependence), and because the characterization is in terms of the stringent `1 metric—two
distributions with small `1 distance are, information theoretically, indistinguishable given a
small sample. Such limit theorems seem especially rare in the multivariate setting. We hope
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(and suspect) that these limit theorems will find applications beyond the property estimation
setting.

The Structure of Estimators

Finally, we consider the structure of estimators as algorithmic objects. Nearly all the es-
timators proposed by the statistics community for the properties that we consider can be
expressed as formulae that map the parameters of a sample in a transparent fashion to an
estimate of the desired property. Our estimators, in sharp contrast, are “canonical” and
extremely algorithmic: the sample is used to formulate a linear program. The set of feasible
points with low objective function values roughly correspond to the set of “shapes” of dis-
tributions from which the sample could plausibly have been drawn. Given a solution to this
linear program, to estimate a specific property, one then simply evaluates the property value
of the distribution represented by that solution. It is worth stressing that the majority of
the algorithmic work is done independently of the specific property one wishes to estimate.

This contrast between our estimators and the long line of proposed estimators from the
statistics community that require significantly larger samples to achieve the same level of
accuracy as our estimators, prompted two questions: 1) Is the full algorithmic power of
linear programming necessary to achieve this level of sample efficiency? 2) Given a specific
property of interest, is there a more direct estimator; namely, is there an estimator that
directly estimates (say) entropy without first estimating the “shape” of the distribution? We
show that there do exist near-optimal linear estimators—estimators that compute the vector
of collision statistics of the sample, F1,F2, . . . , where Fi represents the number of domain
elements seen exactly i times in the sample, and then simply return the dot product between
this vector, and a vector of precomputed coefficients.

Our proof that near-optimal linear estimators exist establishes a correspondence between
the problem of finding worst-case lower bound instances and the problem of finding good
linear estimators. Thus these optimal linear estimators, in a rigorous sense, are tailored to
worst-case distributions. Our linear programming based estimators achieve the same worst-
case performance, yet do not seem to be directly related to any lower bound constructions,
perhaps suggesting that they might perform better than the linear estimators on typical or
“easy” instances.

As a conclusion to the section of this dissertation on estimating symmetric properties,
we implemented practical variants of these estimators, and experimentally evaluated them
against a variety of estimators from the literature on a range of synthetic data, and real text
data. While these experiments should not be construed as a comprehensive evaluation of
these estimators, the performance of our linear programming based estimator is extremely
compelling.
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Figure 1.1: A DNA microarray: each row corresponds to a cell sample, each column corre-
sponds to a gene, and the intensity of each entry corresponds to the level of gene expression.
Computationally, how does one efficiently find genes whose expressions are correlated? (Im-
age from L. Liu et al. [82]).

1.2 Finding Correlations and Relevant Variables

The first section of this dissertation considers the problem of estimating properties of dis-
tributions without any assumption on the structure of the true distribution. The remaining
two sections consider the problem of finding the structure in a distribution, given that such
structure exists. Perhaps the most basic type of structure that might be present is cor-
relation between pairs of variables, or the analogs of correlation for sets of three or more
variables. The algorithmic task of finding such relationships in a database is pervasive, both
as a component within larger data analysis programs, and as an ends in itself.

We begin by describing two concrete problems in biology for which the computational
complexity of finding correlations and sets of related variables has taken center stage. Fig-
ure 1.1 depicts a DNA microarray; the rows of the microarray correspond to cell samples, and
the columns correspond to genes. For each cell sample/gene pair, the corresponding entry of
the microarray depicts the level of gene expression in that cell sample. Typical microarrays
can involve on the order of a hundred samples, and thousands of genes [82]. The most basic
information that biologists hope to glean from such data is an understanding of which pairs
of genes are coregulated (have expressions that are correlated or anti–correlated). To find
such pairs of genes, must one perform a brute-force search over all pairs of columns of the
microarray, or does there exist a significantly faster algorithm?

In many cases, in addition to the microarray, each cell sample has a label: for example,
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suppose that the top half of the samples correspond to healthy cells, whereas the bottom half
of the samples correspond to cells exhibiting some disease. The hope, which often proves well
founded, is that there might be a very small number (k = 2, 3, 4, . . .) of genes from whose
expressions one can glean some indication as to whether the sample is healthy or not. Such
information may help suggest biomarkers of the disease or even possible avenues of disease
control. If one has a microarray with n > 1000 genes, must one search all O(nk) subsets of
k genes to find such small sets of relevant genes? Even for very modest values of k, such a
brute–force search is computationally infeasible.

The recent surge of genome wide association studies (GWAS) provide another compelling
potential application of improved algorithms for finding relevant variables. Such studies
involve datasets consisting of several million SNPs (single-nucleotide polymorphisms, which
account for the portion of the genome that seems likely to account for differences between
humans) that have been sequenced for thousands of people. The task is then to try to
explain the presence or absence of certain traits using the genetic information. Currently,
many of the findings are for single SNPs that correlate with traits. Presumably, there are
many traits for which no single SNP has significant explanatory value, but for which a
pair, or triple of SNPs does have explanatory value. Can one find such sets of relevant SNPs
without performing a brute-force search over the quadratic or cubic number of such potential
hypotheses?

We begin to tackle these questions from the most basic setting in which one can consider
the problem of finding correlations:

Given a set of n d-dimensional Boolean vectors with the promise that the vec-
tors are chosen uniformly at random with the exception of two vectors that have
Pearson–correlation ρ (i.e. each index of the pair of vectors agree with probability
1+ρ

2
), how quickly can one find the correlated pair?

This problem was, apparently, first posed by Leslie Valiant in 1988 as the light bulb
problem [130]. This name owes itself to its original phrasing in terms of n light bulbs that
each blink on and off randomly at each time step, with the exception of a pair of lightbulbs
that are correlated.

In the case that ρ = 1, the pair of correlated vectors is identical. In such a setting,
provided the dimension d is slightly larger than log n, then with high probability the true
correlated pair will be the only pair of vectors that are identical, and one can find such a
pair in near linear time by the following simple approach: consider each length d vector as
a d-digit Boolean number, sort the set of n such numbers, and then perform a single pass
through the sorted list to see if any two adjacent numbers are identical. Such an algorithm
runs in time O(n log n), improving upon the trivial quadratic time brute-force approach. This
algorithm, however, relies crucially on the assumption that the pair of correlated vectors are
identical. For ρ < 1, it is not clear how to obtain such improvements in runtime.

It is worth stressing that the issue for ρ < 1 is computational rather than information
theoretic. The number of indices one requires to information theoretically determine the
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correlated pair decays modestly as a function of ρ. A simple Chernoff bound shows that

as long as d = Ω
(

logn
ρ2

)
, with high probability the pair of vectors that differ in the fewest

locations will be the true correlated pair.
The earliest results for the light bulb problem are due to Paturi et al. [104], and give an

algorithm whose runtime is O(n2−O(ρ)). The Locality Sensitive Hashing approach of Indyk
and Motwani [71], and the Bucketing Codes approach of Dubiner [50] also give algorithms
that run in time O(n2−O(ρ)), with the approach of Dubiner achieving the best constants, with
a runtime of O(n2−2ρ), in the limit as ρ gets small.

In these previous works, because ρ appears in the exponent of n, for small values of ρ
these approaches do not yield appreciable savings over the trivial O(n2 log n) runtime of the
brute-force search. This small-ρ regime is especially relevant in practice because correlations
frequently do degrade with the dimension of the space that one is working in, for the simple
reason that random vectors in high dimensional space will be nearly orthogonal with high
probability. Our first result is a sub-quadratic algorithm that has an inverse polynomial
dependence on the correlation, ρ:

Given n random Boolean vectors in sufficiently large dimension with the promise
that there is a pair of vectors that is ρ-correlated, the correlated pair can be found

in time n
5−ω
4−ω poly(1/ρ) < n1.62poly(1/ρ), where ω < 2.38 is the exponent of matrix

multiplication.

We note that an extension of this algorithm for the light bulb problem can also be viewed
as an improved algorithm for approximating the product of two matrices given the promise
that their product has a small number of large entries.

More generally, the light bulb problem is a special case of the Boolean Approximate
Closest Pair problem: given a set of Boolean vectors, how can one quickly find two vectors
with near-minimal Hamming distance (i.e. that differ in the fewest number of indices)? The
Locality Sensitive Hashing approach of Indyk and Motwani [71] can find a pair of vectors
whose Hamming distance is at most a factor of (1+ε) times that of the distance between the

closest pair, and achieves runtime O(n1+ 1
1+ε ), which tends to O(n2−ε) for small ε. Subsequent

work on Locality Sensitive Hashing improves this dependence for other metrics—specifically,

Andoni and Indyk [10] show that this problem can be solved in time O(n
1+ 1

(1+ε)2 ) ≈ O(n2−2ε)
for `2 distance, as opposed to Hamming distance. The main ideas used in our algorithm for
the light bulb problem can be extended to yield an improved algorithm for the (1 + ε)
approximate closest pair problem in both the Boolean (Hamming) and Euclidean settings:

Given n points in Rd, for any constants ε > 0, with high probability, our algorithm
finds a pair of vectors whose distance is at most a factor of (1 + ε) larger the
distance between the closest pair. Additionally, the runtime is

O(n2−Θ(
√
ε)) + nd · poly(log n).

The best previously proposed algorithms for this problem achieve runtime O(n2−Θ(ε) + nd).
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All previous approaches to the light bulb and closest pair problems take the following
rough approach: first project the vectors into a lower-dimensional space, then try to cleverly
hash or cluster the resulting vectors in such a way that vectors that are close have a higher
probability of being assigned to the same bucket or cluster. In sharp contrast to these
approaches, we perform a metric embedding that carefully projects the vectors to a slightly
higher-dimensional space. This projection has the property that vectors that are correlated
will remain relatively strongly correlated after the projection, however vectors that are very
weakly correlated, will end up projecting to nearly orthogonal vectors. After this projection
step, sets of vectors are aggregated so as to effectively reduce the number of vectors that
must be considered. Finally, we leverage fast matrix multiplication algorithms. Our results
for the light bulb problem use the fact that n×n matrices may be multiplied in time O(nω),
for ω < 3. The best bound on ω is due to Virginia Vassilevska Williams [141], who showed
that ω < 2.372. Our results for the approximate closest pair problem rely on a fact shown
by Coppersmith, that for any ε > 0, for α < 0.29, the product of an n × nα and nα × n
matrix may be computed in time O(n2+ε) [42].

Learning Juntas and Parities

The problem of identifying relevant variables is related to the light bulb problem via the
problem of learning parity with noise, which we now describe. Suppose one is given access
to a sequence of examples (x, y), where x ∈ {−1,+1}n is chosen uniformly at random, and
y ∈ {−1,+1} is set so that y = z

∏
j∈S xi, for some fixed, though unknown set S ⊂ [n],

where z ∈ {−1,+1} is chosen to be −1 independently for each example with probability
η ∈ [0, 1/2). In the case where the noise rate η = 0, the problem of recovering the set S is
easy: given n such examples, with high probability one can recover the set S by Gaussian
elimination—translating this problem into a problem over F2, S is given simply as the
solution to a set of linear equations. From an information theory standpoint, the addition of
some nonzero amount of noise (η > 0) does not change the problem significantly; for constant
η, given O(n) examples, with high probability there will only be one set S ⊂ [n] where the
parities of the corresponding set of indices of the examples are significantly correlated with
the labels. From a computational standpoint, the addition of the noise seems to change
the problem entirely. In contrast to the simple polynomial-time algorithm for the noise-free
case, when given a small constant amount of noise the best known algorithm, due to Blum
et al. [27] takes time 2O( n

logn
), which is a super–polynomial improvement over brute-force

search, though still a far cry from polynomial–time.
This problem of learning parity with noise is, increasingly, understood to be a central

problem in learning theory. Beyond learning theory, this problem reoccurs in various forms
throughout theoretical computer science, including coding theory (as the problem of decoding
random binary linear codes) [85], and cryptography via its relation to the “learning with
errors” problem whose assumed hardness is the basis for many cryptosystems, including the
recent work on fully homomorphic encryption (see e.g. [4, 110, 30]).



CHAPTER 1. DATA, COMPUTATION, STATISTICS, AND LEARNING 11

Our results for learning parities apply to the setting in which the true parity set S is much
smaller than n, say k := |S| = O(log n). This problem of learning k-parities is especially
relevant to learning theory, as was revealed by a series of reductions given in work of Feldman
et al. [54], showing that the problem of learning k-parities (under the uniform distribution,
with random classification noise) is at least as hard as the problems of learning Boolean
functions of k variables (termed k-juntas), learning 2k-term DNF from uniformly random
examples, and the variants of these problems in which the noise is adversarial (rather than
random).

This reduction has a natural interpretation: the problem of learning a parity with noise
is the problem of finding a set of k indices whose parity is correlated with the labels, given
that such a set exists. In other words, it is the problem of finding a heavy Fourier coefficient,
given that one exists. In the case of learning an arbitrary function of just k variables—a
k-junta—basic Fourier analysis shows that there will be at most 2k sets of indices whose
parity is significantly correlated with the label: i.e. there will be at most 2k heavy Fourier
coefficients. Intuitively, the presence of more heavy low-degree Fourier coefficients should, if
anything, facilitate the task of finding such a coefficient.

We show the following result for learning sparse parities with noise:

For any constant ε > 0, the problem of learning parities of size k from uniformly
random length n strings, with noise rate η can solved in time

n
ω+ε

3
kpoly(

1

1/2− η
) < n0.80kpoly(

1

1/2− η
),

where ω is the exponent of matrix multiplication.

All previous algorithms for this problem had a runtime with the noise rate η appearing in
the exponent of n. This result, via the reduction of Feldman et al. [54] yields the following
corollaries for learning k-juntas (identifying sets of k relevant variables):

Given labeled uniformly random binary examples of length n, where the label is
given as a function of k << n of the indices, for any constant ε > 0, the set of
relevant indices can be found in time

O(n
ω+ε

4
k) < O(n0.60k)

Additionally, if an η < 1/2 fraction of the labels are corrupted, the runtime is

n
ω+ε

3
kpoly(

1

1/2− η
) < n0.80kpoly(

1

1/2− η
).

These results improve upon the algorithm of Mossel et al. [92] showing that size k juntas

can be learned (in the absence of noise) in time O(n
ωk
ω+1 ) ≈ O(n0.70k). In the setting with

classification noise η > 0, no algorithm running in time O(nck) for any constant c < 1 was
previously known.



CHAPTER 1. DATA, COMPUTATION, STATISTICS, AND LEARNING 12

1.3 Learning Mixtures of Gaussians

For some datasets, either by assumption or because of knowledge of the underlying process
that generates the data, one can assume, a priori, the family of distributions from which the
data were drawn. The problem then is to estimate which member of the family gave rise to
the data.

To illustrate, perhaps one knows that each data point arises as the aggregate sum of
many independent, nearly identical random variables (such is the case for many data sets
encountered in physics, biology, and the social sciences); in such settings, via the central limit
theorem, one can assume that the data will be roughly distributed according to a Gaussian
distribution. The goal then, would be to estimate the mean and covariance matrix of the
distribution; in the case of a Gaussian distribution, this estimation task is trivial—the mean
and covariance of the data samples will converge quickly to the true mean and covariance
of the actual underlying Gaussian distribution. For many common families of distributions,
however, constructing good algorithms for learning the distributions is much more opaque,
and in many cases we know very little about how the necessary sample size scales with basic
parameters such as the desired accuracy, dimensionality of the space, or the computational
power of the estimator.

Given the ease with which one can estimate Gaussians, it is natural to consider the prob-
lem of learning Gaussian mixture models (GMMs). Gaussian mixture models are one of the
oldest, and most widely used statistical model, and consist of a weighted combination of het-
erogeneous Gaussians, with probability density given as the weighted sum of the densities of
the component Gaussians. To give a simple one–dimensional example, consider the distribu-
tion of the heights of adults; this distribution can be closely modeled as a Gaussian mixture
with two components, one corresponding to the heights of men, and the other corresponding
to the heights of women, as is depicted in Figure 1.3. Can one recover accurate estimates
of the distributions of the heights of men and women given only the aggregate data without
gender labels?

The study of reconstructing the parameters of the Gaussian mixture model dates back
to work from the 1890s of Karl Pearson [105]. More recently, motivated by the need to
analyze large, high-dimensional data sets, the question of learning GMMs has been revisited.
Dasgupta formally introduced the problem of learning GMMs to the theoretical computer
science community in a paper which described a polynomial-time algorithms for learning
GMMs, under the assumption that the component Gaussians are extremely far apart, in
comparison to their covariances [43]. Given such an assumption, the algorithm proceeds by
first trying to consistently cluster the sample points according to which component generated
that data point. Given an accurate such clustering of the sample, estimating the distribution
is easy: one can simply return the empirical mean, covariance, and weight of each cluster.
While the task of accurately clustering the sample is quite easy in one or two dimensions,
in very large dimension, even if the components are sufficiently far apart so as to have
little overlap in their probability density, it is certainly not obvious how to perform such
clustering. In contrast to the low-dimensional setting in which one expects to see many data
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Figure 1.2: The Gaussian approximations of the heights of adult women (red) and men (blue).
Can one recover estimates of these Gaussian components given only the aggregate data
without gender labels (black)? (Data from the National Health and Nutrition Examination
Surveys [87].)

points near the mean of each component, in the high dimensional setting, almost all points
will lie on a thin spherical shell, and hence one will see almost no points near the mean of
each component, significantly complicating the task of clustering. To facilitate clustering,
in Dasgupta’s original paper the separation between components was assumed to be very
large in comparison to the dimension of the points, and additional assumptions were placed
on the components. These conditions were relaxed in a long line of work [3, 12, 31, 76,
134], though any algorithm that proceeds by clustering must assume considerable separation
between components.

Despite considerable attention to this problem of learning GMMs, Pearson’s original
question of learning a one dimensional GMM in which the components might overlap sub-
stancially, remained. In particular, it was not known whether the sample size required to
estimate the parameters to within a desired accuracy increased polynomially with the in-
verse of the desired accuracy, or exponentially. Phrased in the language of statistics, it was
not known whether an optimal estimator of the components had polynomial, or exponential
convergence rate.

Our algorithm takes a sample from a GMM in d dimensional space, and out-
puts approximations of the mixing weights accurate to ±ε and estimates of the
constituent components, accurate to within ±ε in total variational distance (`1

distance). Additionally, the required sample size and runtime are bounded by
poly(d, 1

ε
).

Rather than attempting to first cluster the sample points, our approach is based on the
algebraic structure of the GMM. We returned to Pearson’s original one-dimensional set-
ting, and analyze a variant of the method of moments that he had employed, to show that
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1-dimensional (univariate) GMMs are robustly identifiable. Namely, we show that if the com-
ponents of one mixture differ by ε from those of another mixture, then one of the low-order
moments of the two mixtures must be significantly different—must differ by at least poly(ε).
Such an argument guarantees that if we have accurate estimates of the low-order moments
of the true mixture, then any mixture whose moments closely match the true moments must
have the property that the components of the recovered mixture closely match the compo-
nents of the true mixture. The problem then is to simply come up with such a mixture; this
task can be performed by a simple brute-force search through a polynomially–coarse net of
mixtures.

Given such an algorithm for recovering mixtures in one dimension, we reduce the gen-
eral problem of learning mixtures in high dimension to a series of one-dimensional learning
problems—leveraging the property of Gaussians that the projection of a high-dimensional
Gaussian distribution onto any vector is a one-dimensional Gaussian. While our algorithm
has a super-exponential dependence on the number of mixture components, we prove that
at least an exponential dependence is information theoretically necessary to recover the
components.

1.4 Thesis Organization

Part I: Estimating Statistical Properties

Chapter 2–Definitions, and Related Work. We give an introduction to property esti-
mation, and discuss approaches from both the statistics and computer science communities,
beginning with the early work of Turing, Fisher, and Good on the problem of inferring prop-
erties of distributions given a sample that seems “too small”. We define the concepts and
notation that are used throughout Part I.

Chapter 3–Estimating the Unseen: Sublinear Sample Estimators for Entropy,
Support Size, and Other Properties. We describe an algorithm for accurately esti-
mating the shape of the unseen portion of a distribution given a relatively small sample,
and prove that this algorithm yields sublinear-sample estimators for a class of symmetric
distribution properties. In terms of entropy estimation, we show that for any constant ε > 0,
our algorithm when given a sample consisting of O( n

logn
) independent draws from a discrete

distribution of support size at most n, will output an estimate of the entropy of the distribu-
tion that is accurate to within ±ε, with high probability over the randomness of the sample.
Similarly, given an instance of the distinct elements problem with n buckets, our algorithm
will query O( n

logn
) buckets and return an estimate of the number of distinct elements to

within ±εn, with high probability. Finally, we show that the entire property estimation
approach can be extended to estimate properties of pairs of distributions, including distance
metrics. As an illustration, we describe an estimator that takes as input a pair of samples,
and estimates the `1 distance (total variational distance) between the two distributions from
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which the samples were drawn. We prove that for any constant ε, given O( n
logn

)-sized sam-
ples from each of two distributions of support size at most n, our estimator will return an
estimate of their `1 distance that is accurate to within ±ε, with high probability over the
randomness of the samples. These are the first explicit sublinear-sample estimators for any
of these properties, and the performance of these estimators matches the lower bounds of
Chapter 5, to constant factors.

Chapter 4–Two Multivariate Central Limit Theorems In this chapter, we prove
two new multivariate central limit theorems. Our first limit theorem is very general, and
compares the sum of independent (though not necessarily identical) multivariate random
variables to the Gaussian distribution of corresponding mean and covariance in the Wasser-
stein distance metric (also known as the “Earthmover” metric). We prove this limit theorem
directly via Stein’s method. We leverage this general central limit theorem to prove our
second limit theorem, which is more specific and stronger. Our second limit theorem applies
to “generalized multinomial distributions”—a class of distributions that generalizes bino-
mial and multinomial distributions, and any sums of such distributions. We show that such
distributions are close in total variational distance (`1 distance) to the discretized Gaussian
of corresponding mean and covariance (defined by the process of drawing a point from the
Gaussian and then rounding the point to the nearest point in the integer lattice).

Chapter 5–Lower Bounds for Property Estimation We prove information theoretic
lower bounds on the sample size required to estimate entropy, the number of distinct ele-
ments, and total variational distance between distributions, establishing the optimality of
the estimators of Chapter 3, up to constant factors. For any n, we describe an ensemble of
distributions, half of which are close in variational distance to a uniform distribution over
n/2 elements, and half of which are close to a uniform distribution over n elements, yet
which have the property that given o( n

logn
) independent draws from one of the distributions

of the ensemble, it is information theoretically impossible to distinguish the two cases. Both
the construction, and proof of correctness are rather technical; as a final step in our proof of
correctness, we apply the central limit theorem for “generalized multinomial distributions”
of Chapter 4 to characterize the distribution of summary statistics defined by the process of
drawing a sample of size k from a fixed distribution.

Chapter 6–The Power of Linear Estimators Most proposed estimators for entropy
have the following form: given a sample, the estimators compute the vector F = F1,F2, . . . ,
where Fi is the number of elements that occur exactly i times in the sample, and then output
the dot product of F with some fixed vector of coefficients. We term such estimators linear.
The estimators of Chapter 3 do not take this form, instead of computing a dot product,
they solve a linear program. In this chapter, we consider the question of whether the addi-
tional computational power of linear programming is necessary to effectively estimate these
properties using small samples. We show that for a broad class of symmetric properties,
including entropy, there exist near-optimal linear estimators. Specifically, for the properties



CHAPTER 1. DATA, COMPUTATION, STATISTICS, AND LEARNING 16

in question, we show if there is any algorithm that is capable of obtaining an ε-accurate
estimate with probability at least 0.51 when given a sample of size k (drawn independently)
from a distribution of support size at most n, then there exists a linear estimator that takes
a sample of size 1.01 · k and estimates the property to within accuracy 2ε, and succeeds
with probability 0.99. Our proof is constructive, and exposes a duality between the search
for good lower bound instances and the search for good linear estimators. As our proof is
via duality, unsurprisingly, it does not yield any bounds on the sample complexity of these
estimation tasks, and hence the results of this chapter complement rather than subsume
those of Chapters 3 and 5.

Chapter 7–Explicit Linear Estimators In this chapter we describe machinery for con-
structing and analyzing the performance of explicit linear estimators. We describe a linear
estimator for entropy, which has an inverse linear convergence rate: it estimates the entropy
of a distribution of support size at most n to within error ε using a sample of size O( n

ε logn
),

provided ε > 1/nα for some small constant α. This inverse linear rate of convergence is
rather surprising, and matches the lower bounds of Chapter 5 both in terms of the depen-
dence on the support size n, and the dependence on ε. We also construct an estimator for
“distance to uniformity”, which estimates the total variational distance (`1 distance) to the
closest uniform distribution of support m, for some specified value m, and show that for any
constant error ε, given O( m

logm
)-sized samples from a distribution of any support size, the

distance to the uniform distribution of support m can be estimated to error ε, with high
probability over the randomness of the sample.

Chapter 8–Estimating Properties in Practice In this chapter we describe a practical
adaptation of the estimators of Chapter 3, and experimentally evaluate their performance
on both computer generated and real datasets. For entropy estimation, we compare our
estimator to five estimators from the literature, including both standard, and more recently
proposed estimators; in all settings considered, our estimator performs at least as well as the
best previously proposed estimator that we consider, and significantly outperforms each of
these estimators in some settings.

Part II: Correlations, Parities, and Juntas

Chapter 9–Finding Correlations, and the Closest Pair Problem We begin by de-
scribing an algorithm for finding a pair of correlated variables from among n independent
Boolean random variables. If the correlated pair of variables has Pearson correlation ρ, and
the dimension of the vectors (i.e. the sample size) is sufficiently large, our algorithm runs

in time n
5−ω
4−ω poly(1/ρ) < n1.62poly(1/ρ), where ω < 2.38 is the exponent of fast matrix mul-

tiplication. Previously, no subquadratic time algorithm with a polynomial dependence on ρ
had been described for this problem. We then extend this result to give a subquadratic time
algorithm with a slightly worse exponent for a more general setting, which can be interpreted
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as efficiently computing the product of an n×d and d×n matrix given the promise that the
result has a small number of large entries. Finally, we further extend this approach to the
general (1+ε) approximate closest pair problem, to yield an algorithm that, given n arbitrary
vectors, finds a pair of vectors whose distance is at most a factor of 1 + ε larger than that
of the closest pair of vectors; the runtime of this algorithm is O(n2−Θ(

√
ε)), improving on the

O(n2−O(ε)) runtime given by locality sensitive hashing approaches. This second algorithm
relies on fast rectangular matrix multiplication.

Chapter 10–Learning Parities and Juntas We explain the connection between the
problem of finding correlated variables and the problem of learning parity with noise, and
sketch how the first result of Chapter 9 could be used to obtain an algorithm for learning
sparse parities—parities of at most k bits from examples of size n >> k—with noise rate η <

1/2 in time n
5−ω

2(4−ω)
kpoly( 1

1
2
−η ) ≈ n0.81kpoly( 1

1
2
−η ). We then describe an alternative approach

for this problem, which simulates perturbing the distribution of examples slightly, and yields
the exponent ω

3
k < 0.80k. These are the first algorithms for this problem with a polynomial

dependence on the noise with runtime O(nck) for any c < 1. The polynomial dependence on
the noise rate allows this result to be leveraged to obtain new results for the problems of
learning k-juntas—the problem of identifying the small set of relevant variables from among
many possible variables—both in the presence, and absence of noise. For learning k-juntas
without noise over random length n instances, we obtain a runtime of O(n0.60k), improving
upon the O(n0.70) result of Mossel et al. [92].

Part III: Learning Mixtures of Gaussians

Chapter 11–Learning Univariate Mixtures of Gaussians In this chapter we consider
the problem of recovering the parameters of a one-dimensional Gaussian mixture model
(GMM). For any constant k, we show that a poly(1/ε) runtime and sample size suffice to
recover ε-accurate estimates of the means, variances, and mixing weights of each component
of a GMM with k Gaussian components. We prove this by establishing what we term the
polynomially robust identifiability of GMMs: for any two GMMs whose components differ
significantly, there will be a discrepancy in one of the low order moments of the mixtures
whose magnitude is polynomially related to the discrepancy in the components. The depen-
dence of the runtime and sample size on the number of Gaussian components, k, is severe,
though we also give a lower bound construction proving that at least an exponential depen-
dence on k is information theoretically necessary.

Chapter 12–Learning Mixtures of Gaussians in High Dimension We consider the
problem of learning high dimensional GMMs; we show that the runtime and sample size
required to obtain accurate estimates of the mixture parameters is polynomial in both the
inverse of the desired accuracy, and the dimension, d. Specifically, given a sample (drawn
independently) from a GMM F =

∑k
i=1wiFi, where each Fi is a d-dimensional Gaussian
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distribution, for any ε, δ > 0, with probability at least 1− δ our algorithm returns a mixture

F̂ =
∑k̂

i=1 ŵiF̂i such that the total variational distance (`1 distance) between F and F̂ is
at most ε; additionally, if for all i, wi > ε, and for all i, j the total variational distance
between Fi and Fj is at least ε, then k̂ = k and there exists some permutation π of the
integers [k] = {1, . . . , k} such that for all i, |wi − ˆwπ(i)| < ε, and the total variational

distance between Fi and ˆFπ(i) is at most ε. The algorithm requires runtime and sample size
poly(ε, d, log 1

δ
).
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Part I

Estimating Symmetric Properties
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Chapter 2

Definitions, and Related Work

2.1 Definitions and Examples

The estimation tasks that we consider have been studied by the statistics, information theory,
and computer science communities, and the terminology varies between these communities.
Before discussing the historical background and related work, it will be helpful to establish a
consistent terminology. The definitions we give below will be used in Chapters 3 through 8.

Definition 2.1. A distribution on [n] = {1, . . . , n} is a function p : [n] → [0, 1] satisfying∑
i p(i) = 1. Let Dn denote the set of distributions over domain [n].

We will be dealing exclusively with symmetric properties of distributions with discrete
support. Informally, symmetric properties are those that are invariant to renaming the
domain elements.

Definition 2.2. A property of a distribution is a function π : Dn → R. Additionally, a
property is symmetric if, for all distributions p ∈ Dn, and all permutations σ : [n] → [n],
π(p) = π(p ◦ σ), where p ◦ σ denotes the distribution obtained by permuting the labels of p
according to the permutation σ.

Since symmetric properties cannot depend on the labels of the domain, it will prove
convenient to have a “symmetrized” representation of a distribution. We thus define the
histogram of a distribution:

Definition 2.3. The histogram of a distribution p ∈ Dn is a mapping hp : (0, 1]→ N∪{0},
where hp(x) = |{i : p(i) = x}|. When the distribution in question is clear, we drop the
subscript, and simply refer to the histogram h.

To see the motivation for calling such a representation a “histogram” of a distribution,
consider representing a distribution p by the unordered list of probabilities with which the
domain elements arise: the histogram hp is simply the histogram, in the traditional sense, of
that list.
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Any symmetric property is a function of only the histogram of the distribution. For
example:

• The entropy H(p) of a distribution p ∈ Dn is defined to be

H(p) := −
∑

i:p(i) 6=0

p(i) log p(i) = −
∑

x:hp(x)6=0

hp(x)x log x.

• The support size is the number of domain elements that occur with positive probability:

|{i : p(i) 6= 0}| =
∑

x:hp(x)6=0

hp(x).

Additionally, the total probability mass in the distribution at probability x—namely
the probability of drawing a domain element whose probability is x—is x · h(x) and thus∑

x:h(x)6=0 x · h(x) = 1, as distributions have total probability mass 1.

Throughout, we will use n to denote the size of the domain of the distribution (provided
the distribution in question has finite support size), and k to denote the size of the sample
to which we have access. We assume throughout that each sample consists of independent
draws from a fixed distribution.

In analogy with the histogram of a distribution, we define the fingerprint of a sample:

Definition 2.4. Given a sample S = (s1, . . . , sk), the associated fingerprint, F = (F1,F2, . . .),
is the “histogram of the frequency counts” of the sample. Formally, F is the vector whose
ith component, Fi, is the number of elements that occur exactly i times in S. If the sample
in question is ambiguous, we use a superscript, FS to denote the fingerprint corresponding
to S.

For estimating entropy, or any other symmetric property, the fingerprint of a sample
contains all the relevant information (see [20], for a formal proof of this fact). Throughout,
we will be representing distributions by their histograms, and samples by their fingerprints.
We note that in some of the literature, the fingerprint is alternately termed the pattern,
histogram of the histogram, collision statistics, or partition of the sample.

We provide an example illustrating the above definitions:

Example 2.5. Consider a sequence of fish species, drawn from a certain lake,

S = (trout, salmon, trout, cod, cod, whale, trout, eel, salmon).

We have F = (2, 2, 1), indicating that two species occurred exactly once (whale and eel), two
species occurred exactly twice (salmon and cod), and one species occurred exactly three times
(trout).

Suppose that the true distribution of fish is the following:

Pr(trout) = 1/2, P r(salmon) = 1/4,

P r(cod) = Pr(whale) = Pr(eel) = Pr(shark) = 1/16.
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The associated histogram of this distribution is h : R+ → Z defined by h(1/16) = 4, h(1/4) =
1, h(1/2) = 1, and for all x 6∈ {1/16, 1/4, 1/2}, h(x) = 0.

Poisson Samples

Before proceeding, it will be helpful to have an intuitive understanding of the distribution of
the fingerprint corresponding to a sample of size k drawn from a distribution with histogram
h. This distribution intimately involves the Poisson distribution. Throughout, we use Poi(λ)
to denote the Poisson distribution with expectation λ, and for a nonnegative integer j,

poi(λ, j) :=
λje−λ

j!

denotes the probability that a random variable distributed according to Poi(λ) takes value
j. Additionally, for integers i ≥ 0, we refer to the function poi(x, i), viewed as a function of
the variable x, as the ith Poisson function.

Given a fingerprint corresponding to a sample of size k drawn from a distribution p, the
number of occurrences of any two elements are not independent; however, if instead of taking
k samples, we chose k′ ← Poi(k) according to a Poisson distribution with expectation k and
then take a sample of size k′ from p, the number of occurrences of each domain element i ∈ [n]
will be independent random variables with distributions Poi (k · p(i)) . This independence is
quite helpful when arguing about the structure of the distribution of such fingerprints.

We provide a clarifying example:

Example 2.6. Consider the uniform distribution on [n], which has histogram h such that
h( 1

n
) = n, and h(x) = 0 for x 6= 1

n
. Let k′ ← Poi(5n) be a Poisson-distributed random

number, and let X be the result of drawing a sample of size k′ from the distribution. The
number of occurrences of each element of [n] will be independent, distributed according to
Poi(5). Note that Fi and Fj are not independent (since, for example, if Fi = n then it must
be the case that Fj = 0, for i 6= j). A fingerprint of a typical trial will look roughly like
Fi ≈ n · poi(5, i).

Since k′ ← Poi(k) is closely concentrated around k (see, for example, the standard tail
bounds for Poisson distributions given in Appendix A.2), as one might expect, there is little
difference between considering samples of size exactly k, and Poi(k)-sized samples. Thus we
will be able to prove statements about k-sample fingerprints by considering the structurally
more simple Poi(k)-sample fingerprints.

We conclude this section by considering the distribution of the ith entry of a Poi(k)-
sample fingerprint, Fi. Since the number of occurrences of different domain elements are
independent, Fi is distributed as the sum of n independent 0, 1 random variables Y1, . . . , Yn,
where Pr[Yj = 1] = poi(k · p(j), i) is the probability that the jth domain element occurs
exactly i times in a sample of size k′ ← Poi(k). By linearity of expectation,

E[Fi] =
∑
j∈[n]

poi(k · p(j), i) =
∑

x:h(x)6=0

h(x) · poi(kx, i), (2.1)
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Figure 2.1: A plot of Corbet’s butterfly data, depicting the number of butterfly species for
which 1, 2, 3, . . . specimens were obtained during a 2 year expedition in Malaysia. Good and
Toulmin showed that the alternating sum of these statistics—in this case 118 − 74 + 44 −
24 + . . . ≈ 75—yields an unbiased estimator for the number of new species that would be
discovered over another 2 year period. [55, 60]

and from the independence, we will have Chernoff–style concentration about this expectation.

2.2 Historical Background: The Work of Turing,

Fisher, and Good

The problem of inferring properties of an unknown discrete distribution from “too small”
samples has a very rich history of study in statistics and computer science, with early con-
tributions from both R.A Fisher, and Alan Turing. In the early 1940’s, R. A. Fisher was
approached by a naturalist, Corbet, who had just returned from two years of collecting
butterflies in the Malay peninsula. Corbet presented Fisher with data on his butterfly
collections—specifically, he indicated the number of species for which he had only seen a
single specimen (118 species), the number of species for which he had two specimens (74
species), three specimens (44 species), and so on (see Figure 2.1). Corbet hoped that from
this data, Fisher would be able to deduce some properties of the true distribution of butter-
flies in Malaysia, and in particular, he wanted an estimate of the number of new species he
might discover if he were to return to the Malay jungle for another 2 years.

Fisher approached this problem from a parametric Bayesian standpoint, and assumed
that the distribution of butterfly species could be accurately approximated by a gamma
distribution, and fit the parameters of the gamma distribution to the butterfly data [55]. A
decade later, I.J. Good and Toulmin [60] returned to this problem, and offered a nonpara-
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metric alternate analysis that makes no assumptions on the form of the true distribution
of butterfly species, only relying on the assumptions that the number of butterflies of a
given species, s, that are caught during a specified time period is given by Poi(λs), for some
unknown λs dependent on the species. Given this assumption, the probability that one
discovers species s during the second time period is given by the following expression:

Pr(s not seen in 1st period) · Pr(s seen in 2nd period) = poi(λs, 0) (1− poi(λs, 0)) .

Thus the expected number of species discovered during the second time period is obtained
by simply summing this expression over all species:

∑
s poi(λs, 0) (1− poi(λs, 0)) . Good and

Toulmin then argued that one could expand the second term as a power series, and re-express
this sum in terms of the fingerprint expectations:∑

s

poi(λs, 0) (1− poi(λs, 0)) =
∑
s

e−λs
(
1− e−λs

)
=

∑
s

e−λs
∞∑
i=1

(−1)i+1λis
i!

=
∑
i≥1

(−1)i+1
∑
s

poi(λs, i) =
∑
i≥1

(−1)i+1E[Fi].

Thus the number of new species we expect to discover in the second time period can be
expressed as the alternating sum of the expected fingerprint entries: the number of species
one expects to see once, twice, etc, in any given time period. The crucial observation, as was
argued after Equation 2.1, is that the fingerprint values will be closely concentrated about
their expectations, and thus the data furnished during the first visit provides accurate (and
unbiased) estimates of these fingerprint expectations. In the case of Corbet’s butterfly data,
the alternating sum F1−F2 +F3− . . . = 118− 74 + 44− 24 + . . . ≈ 75 yields the conclusion
that roughly 75 new species would be discovered in a second 2-year expedition to the jungle.
(To the best of my knowledge, Corbet did not conduct another expedition.)

At roughly the same time as Fisher’s work on this problem, at the height of WWII, Alan
Turing and I.J. Good were working on a similar problem in the rather different context of the
pivotal British war–effort to analyze the statistics of the German Enigma Machine ciphers.
Turing and Good were interested in estimating the total probability mass accounted for
by the “unseen” portion of the distribution: what is the probability that the next Enigma
codeword is a previously unseen codeword? This question can be tackled via the same
approach as Corbet’s butterfly question: namely, representing the desired quantity in terms
of the fingerprint expectations. Making the assumption that there is some distribution
over ciphertexts, with each ciphertext s occurring with probability ps, and each observation
yielding an independent draw from this distribution, the number of times ciphertext s is
seen in a sample of size k will be roughly distributed according to Poi(k · ps). Thus the
expected unseen probability mass in the distribution given a sample of size k is simply∑

s ps · poi(k · ps, 0), since each domain element will be unseen with probability poi(k · ps, 0)
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and accounts for ps units of probability mass. We can reexpress this sum in terms of the
expected fingerprints as follows:∑

s

ps · poi(k · ps, 0) =
1

k

∑
s

poi(k · ps, 1) =
E[F1]

k
.

Thus the ratio F1/k provides an estimate of the unseen probability mass.
This result is a component of what is now known as the Good-Turing frequency estimation

scheme, and was published after the war in 1953 by Good [59]. In addition to the many
practical applications of the Good-Turing estimates, there has been considerable recent work
from the computer science community analyzing and extending variants of this estimation
scheme [86, 96, 97, 139, 138].

More broadly, this early work of Fisher, Turing, Good and Toulmin demonstrated that
one could very easily and accurately estimate some specific parameters of the “unseen”
portion of a distribution. The challenge of constructing sublinear-sample estimators for
entropy and other symmetric properties is that such estimators must take into account the
contribution towards the property value of the unseen portion of the distribution; this early
work, in some sense, hinted that sublinear-sample estimators might exist for the properties
we consider in this dissertation.

2.3 Estimating Properties and Estimating

Distributions

In contrast to the parameters that Fisher and Turing were concerned with—the number of
new domain elements that would be seen in a second sample, or the probability that the
next draw is a previously–unseen domain element—for which they devised simple unbiased
estimators with small variance—for entropy and the other properties we study, there are no
unbiased estimators. An arbitrarily small amount of probability mass in a given distribution
can contribute an arbitrarily large amount of entropy, or support size, and thus for any fixed
estimator, one can construct a distribution for which the estimator has an arbitrarily large
bias. This unfortunate state of affairs complicates the problem of designing good estimators,
and opened the door for an enormous body of work, spanning the past 75 years, describing
and analyzing heuristic estimators for these properties that seem to perform well on real-
world data. Below we describe the most commonly used estimators for entropy, and two
more recently proposed estimators.

There is also a large literature on the “unseen species” problem and the closely related
“distinct elements” problems, including the efforts of Efron and Thisted to estimate the
total number of words that Shakespeare knew (though may not have used in his extant
works) [52]. That work employs a heuristic linear programming approach that is related to
our approach, though is designed for the single purpose of estimating the number of words
Shakespeare knew, and is based on heuristics, some of which are specifically tuned to that
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data. Much of the later work on the “unseen elements” problem is also based heavily on
heuristic arguments or strong assumptions on the true distribution from which the sample
is drawn, and thus lies beyond the scope of our work; we refer the reader to [33] and to [32]
for several hundred references on this problem.

Practical Estimators for Entropy

Because of the practical importance of estimating entropy, both as a natural measure of the
“biodiversity” of the distribution, and as the central quantity that must be estimated to
compute the mutual information between two signals, there has been an especially long line
of work focussing on this property. Below, we discuss five estimators for entropy from the
literature. We begin with three classical estimators, which are, perhaps the most commonly
used estimators for entropy [102].

The “naive” estimator: The entropy of the empirical distribution, namely, given a fin-
gerprint F derived from a sample of size k, Hnaive(F) :=

∑
iFi ·

i
k
| log i

k
|.

The Miller-Madow corrected estimator [90]: The naive estimator Hnaive corrected
to try to account for the second derivative of the logarithm function, namely HMM(F) :=

Hnaive(F)+
(
∑
i Fi)−1

2k
, though we note that the numerator of the correction term is sometimes

replaced by various other quantities, see [103].

The jackknifed naive estimator [144, 51]:

HJK(F) := k ·Hnaive(F)− k − 1

k

k∑
j=1

Hnaive(F−j),

where F−j is the fingerprint given by removing the contribution of the jth element of the
sample.

These estimators and their many variants generally perform very well provided that all of
the elements of the support occur with large probability. The problem with these estimators
can be summarized as their inability to appropriately deal with a sample from a distribution
for which a significant portion of the probability mass of the distribution is not represented in
the sample. For example, given a sample of size o(n) drawn from the uniform distribution on
support n, these estimators generally fail. In particular, these estimators make no attempt
to understand the (potentially significant) contribution towards the entropy of the true
distribution that comes from the “unseen” portion of the distribution.

The following estimator, proposed in 2003 by Chao and Shen [36], is specifically designed
to apply to settings in which there is a significant component of the distribution that is
unseen. It is heuristic, though there is some evidence that it performs well in some practical
settings [137].

The coverage adjusted estimator (CAE) [36]: We briefly motivate the definition of
HCAE (see [137] for a more detailed discussion). Consider a domain element α that occurs
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i times in a sample of size k. The naive estimator associates a probability pα = i/k, and
a contribution towards the entropy of −pα log pα. The Good-Turing frequency estimation
scheme [59, 113] provides an (unbiased) estimate of the total “unseen” probability mass
in the distribution, Punseen, and thus it seems intuitive to adjust pα to take this unseen
mass into account, namely to use p̂α := pα(1 − Punseen). Finally, if the true probability
of α were p̂α, the probability that we actually observe α in our sample of size k is only
1− (1− p̂α)k, and thus we might be inclined to believe that for each domain element α that
we observe, there are 1

1−(1−p̂α)k
similar domain elements that we do not observe, and thus

we should multiply the contribution of α by this amount (this approach is recognized as the
Horvitz–Thompson estimator for population totals [68]). This yields the following: Given a
fingerprint F derived from a sample of size k, let Ps := 1−F1/k, represent the Good–Turing
estimate of the probability mass of the “seen” portion of the distribution.

HCAE(F) := −
∑
i

Fi
(i/k)Ps log ((i/k)Ps)

1− (1− (i/k)Ps)
k
.

One weakness of the CAE which arises from its attempt to account for the probability
mass of the unseen portion of the distribution is that in some simple settings, the CAE
overcompensates, leading to disappointing performance. For example, given a sample of size
k from a uniform distribution over k elements, it is not hard to show that the bias of the
CAE is O(log k). This error is not even bounded; for comparison, even the naive estimator
has error bounded by a constant in the limit as k →∞ in this setting.

In a different direction, Paninski gave a simple though non–constructive proof of the
existence of a sublinear sample estimator for additively approximating the entropy to within
a constant; the proof is via a direct application of the Stone–Weierstrass theorem to the set of
Poisson functions [102, 101]. Namely, this work gave a nonconstructive proof of the existence
of a set of coefficients ai, such that the associated linear estimator

∑
i aiFi, performs well.

The “Best Upper Bound” [BUB] estimator of Paninski, briefly discussed below, is a practical
variant of this approach:

The Best Upper Bound estimator [102]: This estimator is obtained by numerically
searching for a minimax linear estimator, with respect to a certain error metric. Roughly,
this estimator seeks to minimize the bias of the estimator while keeping a heuristic sense of
the variance in check. In order to compute such an estimator, the BUB requires, as input,
an upper bound on the support size of the distribution from which the sample is drawn.

Estimating Distributions

Given a property of interest, there are two general approaches to designing an estimator:
the property-specific “direct” approach, and the “canonical” approach. All the estimators
discussed thus far, with the arguable exception of the coverage adjusted estimator for entropy,
take the direct approach, and return an estimate of the property in question without revealing
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any additional insights into the structure of the true distribution beyond the returned value of
the specific property. In the canonical approach, rather than directly estimating the property
in question, one first attempts to recover a distribution that is close, in some metric, to the
true distribution from which the sample was drawn. Given such a distribution, one can
then simply return the property value of that hypothetical distribution. While one cannot
know the labels of the unseen elements of a distribution, one could still hope to reconstruct
an approximation of the histogram of the true distribution—capturing, for each interval
of probability, the approximate number of unseen domain elements whose true probability
lies within that interval. For symmetric properties, such a histogram would contain all the
relevant information to estimate the property.

Orlitsky et al. have been pursuing one approach to reconstructing such a histogram from
a sample [98, 1, 2]. They posed the following question:1

Given a sample of size k with fingerprint F , what distribution maximizes the
likelihood of yielding fingerprint F from a sample of size k?

Such a distribution need not be unique, though the question is well-defined. To illustrate
the distinction between the distribution that maximizes the likelihood of the sample, and
the distribution that maximizes the likelihood of the fingerprint, we give two basic examples:

Example 2.7. Consider the following sample of size k = 3: X = a, b, a, with fingerprint
F = (1, 1, 0, . . .). The maximum likelihood distribution of the sample, pML, assigns prob-
ability 2/3 to a and probability 1/3 to b. The probability that a sample consisting of 3
(independent) draws from pML has fingerprint F is simply the probability that one sees ei-
ther a or b exactly once, and thus is given by 1− pML(a)3− pML(b)3 = 2/3. It is not hard to
show that the distribution that maximizes the likelihood of the fingerprint (1, 1, 0, . . .), is the
uniform distribution over support 2, assigning probability 1/2 to each of two elements. The
probability that 3 draws from such a distribution yield fingerprint F is 3/4, which is optimal.

Example 2.8. Consider a sample of size k with fingerprint F = (k, 0, . . .), that is, each
element is seen only once. The distribution maximizing the likelihood of that fingerprint is
the continuum, with infinite support, and a sample of size k from the continuum will have k
distinct elements with probability 1.

The initial work on this question of Orlitsky focussed on this combinatorially rich likeli-
hood landscape, rather than on property estimation. While it seems unclear how to prove
that such a likelihood maximizing distribution would, necessarily, have similar property val-
ues to the true distribution, at least intuitively one might hope that this is true: since
symmetric properties are invariant to relabeling the support the distribution, it seems natu-
ral to hope that the distribution maximizing the likelihood of the fingerprint of the sample
might yield a better estimate of the property in questions than, say, the distribution maxi-
mizing the likelihood of the sample (i.e. the empirical distribution of the sample). Recently,

1What we term the fingerprint of a sample, Orlitsky et al. term the pattern
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Acharya et al. showed that this maximum likelihood approach could be used to yield a
near-optimal algorithm for deciding whether two samples were drawn from identical (or very
similar) distributions, versus distribution that have large distance [2]

From a computational standpoint, Orlitsky et al. showed that such fingerprint likelihood
maximizing distributions can be found in some specific simple or small settings [1]. The
problem of finding or approximating such distributions for typical fingerprints derived from
large samples, however, seem daunting.

The results, and approach we take in Chapter 3 were directly motivated by this question
of Orlitsky. Rather than attempting to find the distribution maximizing the likelihood of the
fingerprint, we eschewed the computational and analytical difficulties of dealing with this
complicated combinatorial likelihood landscape, and instead analyzed the set of distributions
whose expected fingerprints are close to the given fingerprint F .

2.4 Property Testing, and the Computer Science

Perspective

The interest in property estimation from the computer science community has its roots
in work on property testing. The property-testing framework was originally developed to
provide a rigorous framework for studying the minimum amount of information necessary to
determine, with high probability, whether an object in question possesses a certain property.
This framework was applied in many settings, perhaps most successfully to testing algebraic
properties [29, 115], and testing graph properties [7, 58].

As adapted to the statistical property estimation setting, the framework asks the following
question:

Given a property of a distribution or set of distributions, a desired accuracy
ε, a probability of failure δ, and access to a sample or samples consisting of
independent draws, how large must the samples be in order to guarantee that the
estimate of the property differs from the true value by at most ε, with probability
at least 1− δ?

This framework offers a natural alternative to the standard metrics used by the statistics
community for evaluating property estimators. The literature on property estimation from
the statistics community almost exclusively analyzes the asymptotic rate of convergence of
the estimator in question (given a fixed distribution, how does the expected deviation be-
tween the true property value and estimate decrease as the sample size goes to infinity).
The obvious shortcoming of such asymptotic analysis is that it says little about the many
settings in which one does not have sufficiently large samples for the asymptotic behavior
to be relevant. In particular, such analysis does not inform our understanding of the perfor-
mance of estimators in the regime in which large portions of the distribution are unseen in
the sample.
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In contrast to the classical asymptotic analysis, the property testing framework allows
one to quantitatively formulate the question of the existence of estimators achieving certain
performance guarantees given a fixed (finite) sample size. Beginning with pioneering work of
Rubinfeld, who was one of the first to adapt the property testing framework to the statistical
property setting, the theoretical computer science community began tackling these questions
in the early 2000’s. This work had an eye both towards describing estimators, and proving
information theoretic lower bounds on the performance of any estimator.

One of the first problems considered was the problem of identity testing (also referred to
as closeness testing): Given access to samples from two distribution, A and B, how large
must the samples be in order to accurately distinguish the case that A and B are identical
or nearly identical, from the case that A and B are far apart (have total variational distance
Dtv(A,B) > ε)? As for the problems we consider, the difficulty of this decision task is
parameterized by n, an upper bound on the support size of the distributions. In 2000, Batu
et al. showed that this task can be accomplished using Õ(n2/3)-sized sample, for constant
ε > 0 [20]. This result matches the lower bound, of P. Valiant [131, 132], to logarithmic
factors. In contrast, determining (with high probability) whether a sample was drawn from
some explicitly described distribution of support [n], versus a distribution that has constant
`1 distance from the described distribution requires a sample of size Θ̃(n1/2) [19].

For the problem of estimating entropy. Batu et al. [18, 21, 22], Guha et al. [63], and
Valiant [131, 132] considered the problem of multiplicatively estimating the entropy of a
distribution; in all these works, the estimation algorithm has the following basic form: given
a sample, discard the species that occur infrequently and return the entropy of the empirical
distribution of the frequently–occurring elements, adjusted by some function of the amount
of missing probability mass. In particular, no attempt is made to understand the portion
of the true distribution consisting of infrequently occurring elements—the unseen, or little–
seen, portion. To achieve constant additive error, these estimators all require O(n)-sized
samples.

For the problem of estimating the support size of a distribution in which all elements occur
with probability at least 1/n, or the distinct elements problem, tight multiplicative bounds
of Θ(n/α2) on the sample size required to approximate the number of distinct elements to
a multiplicative factor of α (given a total number of n buckets) are given in [15, 37] though
they are somewhat unsatisfying as the worst-case instance is distinguishing the case that
there is one distinct element, from the case that there are α2. For additively estimating the
number of distinct elements to within ±(1

2
− ε)n, to the best of our knowledge there were no

improvements upon the trivial Ω(n) algorithm for any constant ε > 0.

Lower Bounds

Prior to the results of this dissertation, the best lower bound for additively estimating the
support size or entropy of a distribution was due to P. Valiant, who showed that for any
constant ε > 0, any estimator that obtains additive error at most (1/2− ε)n for the number
of distinct elements (or constant error in entropy estimation) with probability of success at
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least .51 requires a sample of size at least n/2Θ(
√

logn) [131, 132]. This bound improved upon
the slightly weaker bound of n/2Θ(

√
logn·log logn) of Rashodnikova et al. [107].

The difficulty in constructing lower bounds on the sample size required to estimate sym-
metric properties, is that one must argue that there are two distribution with quite different
property values, but for which the distribution of fingerprints derived from a samples of size
k are indistinguishable, with high probability. This condition of indistinguishability is very
stringent. The distribution over fingerprints defined by the process of drawing a sample of
size k from a fixed distribution, is a high dimensional distribution supported on the integer
lattice. The condition of indistinguishability means that one must show that two such dis-
tributions are close in the `1 metric; such characterizations of high-dimensional distributions
are rare.

The lower bounds of [131, 132] characterized this distribution over fingerprints via a
theorem of Roos [114] that essentially characterized these distributions in terms of the vector
of fingerprint expectations. To obtain the tighter lower bounds of this dissertation, we instead
characterize these distributions in terms of both the expectations as well as the covariance
matrix, via a new central limit theorem that we prove in Chapter 4. While we go on to
show that the second moments of the distribution of fingerprints can be inferred from the
expectations, and thus considering only the expectations suffices, the improvement of our
lower bounds over the previous lower bounds, in some sense, stems from the fact that our
central limit theorem uses both the first and second moments of the distribution, as opposed
to only the first moments, as in the theorem of Roos.

The Streaming Setting

The problems of estimating the support size (and the general problem of estimating frequency
moments) and estimating the entropy, have also been considered by the computer science
community in the setting of streaming. In the streaming setting, one has access to the entire
distribution (as represented by a very large database), though one has very little memory,
and can only perform a single (or several) passes over the database [5, 16, 25, 35, 66, 72, 75,
142].

One might hope that the streaming setting could be tackled by filling the limited memory
with a small (random) sample of the database, then applying the estimation techniques of
this dissertation, for example. Unsurprisingly, this approach is very far from optimal—if one
has access to the entire distribution, even if one has limited memory and can only perform
a single pass, one can obtain far better estimates than if one only considers a small sample.
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Chapter 3

Estimating the Unseen: Sublinear
Sample Estimators for Entropy,
Support Size, and Other Properties

We introduce a new approach to characterizing the unobserved portion of a distribution,
which provides sublinear–sample additive estimators for a class of properties that includes
entropy and distribution support size. Additionally, we demonstrate that this approach can
be extended to estimate properties of pairs of distributions, such as estimating the total
variational distance (`1 distance) between a pair of distributions, based on samples drawn
from each distribution. Together with the lower bounds presented in Chapter 5, this settles
the longstanding open questions of the sample complexities of these estimation problems
(up to constant factors). Our algorithms estimate these properties up to an arbitrarily
small additive constant, using a sample of size O(n/ log n), and can be made to run in
in time linear in the sample size. Our lower bounds show that no algorithm that uses a
sample of size o(n/ log n) can achieve this. In the case of estimating entropy and estimating
total variational distance between pairs of distributions, n is a bound on the support size
of the distributions, and is a natural parameterization of the difficulty of these task. For
the problem of estimating the distribution support size, as is standard, we assume that all
elements in the support occur with probability at least 1/n, since without such a lower bound
it is impossible to estimate support size.1

For statistical properties of a single distribution, our algorithm can estimate any prop-
erty that is symmetric (invariant to relabeling the domain) and sufficiently smooth. Rather
than directly trying to estimate a specific property of the distribution, we instead take the
canonical approach and return to the basic question “what can we infer about the true dis-
tribution?” given a sublinear sample size? Our algorithm returns a distribution that is, with
high probability, “close,” in a particular metric, to the true distribution. Specifically, we re-

1This setting is a strict generalization of the “distinct elements” problem, which is equivalent to the
problem of estimating the support size of a distribution under the condition that each element in the support
occurs with probability j/n, for some positive integer j.
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turn a distribution p̂ with the property that if we had taken our sample from the hypothetical
p̂ instead of from the unknown true distribution, then with high probability the fingerprint
of the sample (the number of domain elements seen once, twice, etc.) will closely match
the corresponding parameters of the actual sample. How does one find such a distribution?
Via linear programming, the computer scientist’s battle-axe—bringing this powerful tool to
bear on these problems opens up results that withstood previous approaches to constructing
such estimators. The fingerprint of the sample is used to formulate a linear program, whose
feasible points correspond to histograms of distributions, and whose objective function at
feasible point v captures the degree to which the fingerprint of the sample deviates from
the expected fingerprint had the sample been drawn from a distribution corresponding to
v. Given the distribution p̂ corresponding to a solution to the linear program, to obtain an
estimate of some property, we may simply evaluate the property on p̂. Unsurprisingly, this
yields a very good estimate; surprisingly, one can actually prove this.

Our proof decomposes into two main parts. In the first part we argue that with high
probability over the randomness of the sample, the actual distribution from which the sam-
ple was drawn, minimally modified, corresponds to a feasible point for the linear program
with small objective function value. This part, though slightly tedious, is technically and
intuitively straight forward. The second part of the proof argues that any pair of feasible
points that have small objective function values must correspond to distributions with sim-
ilar values of entropy, support size, etc. This second part of the proof is the main technical
challenge, and it relies on a Chebyshev polynomial construction. It is worth pointing out
that there seems to be no intuitive explanation for the O(n/ log n) sample complexity that
we achieve (and hence it is unsurprising that such a sample complexity had not been pre-
viously conjectured). The log n factor comes from our Chebyshev polynomial construction;
roughly, we are able to use Chebyshev polynomials up to degree O(log n) (above which the
coefficients of the polynomials become too large for our purposes) and the degree O(log n)
polynomials yield an O(log n) factor tighter analysis than the O(n) sample complexity that
could be argued via more basic approaches.

Definitions

In addition to the basic definitions of the histogram of a distribution and the fingerprint of
a sample (Definitions 2.3 and 2.4) given in Chapter 2, we require two additional definitions
in order to express our main theorem.

We start by defining what it means for two distributions to be “close”; because the values
of symmetric properties depend only upon the histograms of the distributions, we must be
careful in defining this distance metric so as to ensure that it will be well–behaved with
respect to the properties we are considering. In particular, “close” distributions should have
similar values of entropy and support size.

Definition 3.1. For two distributions p1, p2 with respective histograms h1, h2, we define the
relative earthmover distance between them, R(p1, p2) := R(h1, h2), as the minimum over all
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schemes of moving the probability mass of the first histogram to yield the second histogram, of
the cost of moving that mass, where the per-unit mass cost of moving mass from probability
x to y is | log(x/y)|. Formally, for x, y ∈ (0, 1], the cost of moving x · h(x) units of mass
from probability x to y is x · h(x)| log x

y
|.

One can also define the relative earthmover distance via the following dual formulation
(given by the Kantorovich-Rubinstein theorem [77], which yields exactly what one would
expect from linear programming duality):

R(h1, h2) = sup
f∈R

∑
x:h1(x)+h2(x)6=0

f(x) · x (h1(x)− h2(x)) ,

where R is the set of differentiable functions f : (0, 1]→ R, s.t. | d
dx
f(x)| ≤ 1

x
.

We provide two examples:

Example 3.2. Letting Unif(q) denotes the uniform distribution supported on q elements,

R (Unif(m), Unif(`)) = | logm− log `|,

since all of the probability mass in the first histogram at probability 1
m

must be moved to
probability 1

`
, at a per-unit-mass cost of | log m

`
| = | logm− log `|.

Example 3.3. Consider the following distribution of fish species in a given lake:

Pr(trout) = 1/2, P r(salmon) = 1/4,

P r(cod) = Pr(whale) = Pr(eel) = Pr(shark) = 1/16.

The associated histogram of this distribution is h : R+ → Z defined by h(1/16) = 4, h(1/4) =
1, h(1/2) = 1, and for all x 6∈ {1/16, 1/4, 1/2}, h(x) = 0. If we now consider a second
distribution over {a, b, c} defined by the probabilities Pr(a) = 1/2, P r(b) = 1/4, P r(c) =
1/4, and let h′ be its associated histogram, then the relative earthmover distance R(h, h′) =
1
4
| log 1/4

1/16
|, since we must take all the mass that lies at probability 1/16 and move it to

probability 1/4 in order to turn the first distribution into one that yields a histogram identical
to h′.

In this chapter we will restrict our attention to properties that satisfy a weak notion of
continuity, defined via the relative earthmover distance.

Definition 3.4. A symmetric distribution property π is (ε, δ)-continuous if for all dis-
tributions p1, p2 with respective histograms h1, h2 satisfying R(h1, h2) ≤ δ it follows that
|π(p1)− π(p2)| ≤ ε.

We note that both entropy and support size are easily seen to be continuous with respect
to the relative earthmover distance.
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Fact 3.5. For a distribution p ∈ Dn, and δ > 0

• The entropy, H(p) := −
∑

i p(i)·log p(i) is (δ, δ)-continuous, with respect to the relative
earthmover distance.

• The support size S(p) := |{i : p(i) > 0}| is (nδ, δ)-continuous, with respect to the
relative earthmover distance, over the set of distributions which have no probabilities
in the interval (0, 1

n
).

Summary of Results

The main theorem of the chapter is the following:

Theorem 3.1. For sufficiently large n, and any c ∈ [1, log n], given a sample of c n
logn

independent draws from a distribution p ∈ Dn, with probability at least 1 − e−nΩ(1)
over the

randomness in the draws of the sample, our algorithm returns a distribution p̂ such that the
relative-earthmover distance between p and p̂ satisfies

R(p, p̂) ≤ O

(
1√
c

)
.

For entropy and support size, Theorem 3.1 together with Fact 3.5 yields:

Corollary 3.6. There exists a constant b such that for any ε ∈ [ 1√
logn

, 1] and sufficiently

large n, given b
ε2

n
logn

independent draws from distribution p ∈ Dn, our estimator will output

a pair of real numbers (Ĥ, ŝ) such that with probability 1− e−nΩ(1)
,

• Ĥ is within ε of the entropy of p, and

• ŝ is within nε of the support size of p, provided none of the probabilities in p lie in
(0, 1

n
).

This estimator has the optimal dependence on n, up to constant factors; in Chapter 5
we show the following lower bound:

Theorem 5.1. For any positive constant φ < 1
4
, there exists a pair of distributions p+, p−

that are O(φ| log φ|)-close in the relative earthmover distance, respectively, to the uniform
distributions on n and n

2
elements, but which are information theoretically indistinguishable

for any constant probability greater than 1/2 when given fingerprints derived from samples
of size k = φ

32
· n

logn
.

Specifically, estimating entropy to any constant error less than log 2
2

requires a sample of
size Θ( n

logn
), as does estimating support size to any error that is a constant factor less than

n
4
.
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Phrased differently, letting Ĥ : [n]k → R denote an estimator that takes as input a
sample of size k, and outputs an estimate of the entropy of the distribution from which the
sample was drawn, and letting S ←

k
p denote a sample of size k consisting of independent

draws from distribution p ∈ Dn, we have the following: there exists a constant b′ such that
for k = b′ n

logn
,

inf
Ĥ

sup
p∈Dn

Pr
S←
k
p

[
|Ĥ(S)−H(p)| > 0.3

]
> 0.49,

where the infimum is taken over all possible estimators.

Further, by choosing a positive ε < 1 and then constructing the distributions p+
ε , p

−
ε that,

with probability ε draw an element according to p+, p− respectively and otherwise return
another symbol, ⊥, the entropy gap between p+

ε and p−ε is an ε fraction of what it was
originally, and further, distinguishing them requires a factor 1

ε
larger sample. That is,

Corollary 3.7. For large enough n and small enough ε, the sample complexity of estimating
entropy to within ε grows as Ω( n

ε logn
).

While the positive results of Theorem 3.1 match these lower bounds in their dependence
on n, there is a gap in the dependence on the desired accuracy, ε, with a 1

ε
dependence in the

lower bounds and a 1
ε2

dependence in the upper bound. This prompts the following question,
which we resolve in Chapter 6:

For an optimal entropy estimator, as the sample size increases, does the error
decay linearly, or with the square root of the sample size?

In Section 3.3, we generalize our entire framework to estimate properties of pairs of
distributions. As in the setting described above for properties of a single distribution, given a
pair of samples drawn from two (different) distributions, we can characterize the performance
of our estimators in terms of returning a representation of the pair of distributions. For
clarity, we state our performance guarantees for estimating total variational distance (`1

distance); see Theorem 3.3 in Section 3.3 for the more general formulation.

Theorem 3.2. There exists a constant b such that for any positive ε < 1 and sufficiently
large n, given a pair of samples of size b

ε2
n

logn
drawn, respectively, from p, q ∈ Dn, our

estimator will output a real number, d̂, such that with probability 1− e−nΩ(1)

|d̂−Dtv(p, q)| ≤ ε,

where Dtv(p, q) =
∑

i
1
2
|p(i)− q(i)| is the `1 distance between distributions p and q.

This estimator has the optimal dependence on n, up to constant factors; in Chapter 5
we also extend our lower bounds for estimating properties of single distributions to lower
bounds for estimating properties of pairs of distributions:
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Theorem 5.2. For any constants 0 < a < b < 1
2
, and probability of failure δ < 1/2,

for sufficiently large n, given samples from a pair of distributions of support at most n,
distinguishing whether their total variational distance (`1 distance) is less than a or greater
than b with probability of success at least 1− δ, requires samples of size O( n

logn
).

3.1 An LP–Based Canonical Estimator

Given the fingerprint F of a sample of size k drawn from a distribution with histogram h, the
high-level approach is to use linear programming to find a histogram ĥ that has the property
that if one were to take k samples from a distribution with histogram ĥ, the fingerprint of
the resulting samples would be similar to the observed fingerprint F . Thus in some sense ĥ
“could plausibly have generated” F . The hope is then that h and ĥ will be similar, and, in
particular, have similar entropies, support sizes, etc.

For general fingerprints, how does one obtain the histogram that could have “most plau-
sibly” generated the fingerprint, in a principled fashion? The intuition will come from first
understanding the structure of the map from histograms to fingerprints, as this is the map
that we are effectively inverting. See Figure 3.1 for several examples of histograms and a
typical fingerprint of a sample drawn from the corresponding distribution.

Given a distribution p, and some domain element j occurring with probability x = p(j),
the probability that it will be drawn exactly i times in a sample of size k drawn from p is
Pr[Binomial(k, x) = i]. By linearity of expectation, the expected ith fingerprint entry will
be

E[Fi] =
∑

x:hp(x)6=0

hp(x)Pr[Binomial(k, x) = i]. (3.1)

As an illustration of our approach, consider a sample of size k = 500 drawn from the
uniform distribution on 1000 elements. The expected fingerprint of this sample would be
E[Fi] = 1000 · Pr[Binomial(k, 1

1000
) = i] ≈ (303.5, 75.8, 12.6, 1.6, . . .). Thus if we are given

a sample of size k = 500, with fingerprint F = (301, 78, 13, 1, 0, 0, . . .), one might note
that the uniform distribution on 1000 elements could plausibly have generated the observed
fingerprint, and thus, although the observed sample only contained 391 unique domain ele-
ments, we might be justified in concluding that the true distribution from which the sample
was drawn is “close” to Unif [1000], and, for example, guess that the entropy of the true
distribution is close to H(Unif(1000)) = log 1000.

Our approach rests on the following two observations: 1) the mapping (described by
Equation 3.1) between histograms and expected fingerprints is linear in the histogram entries,
with coefficients given by the binomial probabilities. 2) fingerprint entries will be tightly
concentrated about their expected value. These observations motivate a “first moment”
approach. We will describe a linear program that inverts the “roughly linear” map from
histograms to fingerprint entries, to yield a map from observed fingerprints, to plausible
histograms ĥ. Namely, we use linear programming to find the generalized histogram ĥ
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Figure 3.1: Three fingerprints (bottom row) derived from samples of size 10,000, together
with the corresponding histograms (top row) of the distributions from which each sample
was drawn. Intuitively, our estimator is solving the inversion problem: given a fingerprint,
it finds a histogram from which the sample could, plausibly, have been drawn.

that minimizes the discrepancy between the observed fingerprint values and the expected
fingerprint values if the sample had been drawn from ĥ, given by Equation 3.1.

To make the linear programs finite, we consider a fine mesh of values x1, . . . , x` ∈ (0, 1]
that between them discretely approximate the potential support of a histogram. The vari-
ables of the linear program, vx1 , . . . , vx` will correspond to the histogram values at these
mesh points, with variable vxi representing the number of domain elements that occur with

probability xi, namely ĥ(xi).
As it turns out, we will only solve the linear program on the “infrequently occurring”

portion of the distribution—that is, the mesh {x1, . . . , x`} of variables for the linear program
will stop considerably before 1. This linear programming approach is specifically designed
to tackle the regime in which many domain elements occur infrequently; for the “frequently
occurring” region of the distribution, the empirical distribution of the sample does an ade-
quate job of capturing the shape of the distribution (i.e. if some domain element is seen k/2
times, it is likely that this domain element has probability ≈ 1/2). Thus our estimator will
use the linear program to recover the “infrequently occurring” portion of the distribution,
and then simply append the empirical distribution of the frequently occurring portion. To
avoid the issues which may arise near the threshold between the “low probability” and “high
probability” regimes , we choose the location of this threshold so as to have relatively little
probability mass in the nearby region. We note that a unified approach is possible, though,
computationally, it is certainly preferable to only apply the linear programming approach
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to the portion of the fingerprint for which the naive empirical estimates fail. Finally, to
simplify the analysis, we replace the binomial probabilities, with the corresponding Poisson
approximation: Pr[Binomial[k, x] = i] ≈ poi(kx, i).

We now formally define our algorithm. In the first step, we pick a cutoff value c which
serves as the threshold between the linear program regime, and the regime for which we
use the empirical distribution. For clarity of exposition, we state the algorithm in terms of
three positive constants, B, C, and D, which can be defined arbitrarily provided B > C > B

2
,

B
2
> D, and 0.8 + B +D < 1.

Algorithm 3.8. Estimate Unseen
Input: k-sample fingerprint F, upper bound on the support size, n:
Output: Generalized histogram gLP .

• Let c := min{i : i ∈ [kB, 2 · kB] and
∑i+kC

j=i jFj ≤ k1−B+C}.

• Let v = (vx1 , vx2 , . . .) be the solution to Linear Program 3.9, on input F , c, and n.

• Let gLP be the generalized histogram formed by setting gLP (xi) = vxi for all i,
and then for each integer j ≥ c+ kC, incrementing gLP ( jk ) by Fj.

Linear Program 3.9.
Given a k-sample fingerprint F, integer c, and upper bound n on the support size:

• Define the set X := { 1
nk ,

2
nk ,

3
nk , . . . ,

c+kC/2
k }.

• For each x ∈ X, define the associated LP variable vx.

The linear program is defined as follows:

Minimize

c∑
i=1

∣∣∣∣∣Fi −∑
x∈X

poi(kx, i)vx

∣∣∣∣∣ ,
Subject to:

•
∑
x∈X x · vx +

∑k
i=c+kC

i
kFi = 1 (total prob. mass = 1.)

•
∑
x∈X vx ≤ n+ k (support size is not too big)

• ∀x ∈ X, vx ≥ 0 (histogram entries are non-negative)

The following restatement of Theorem 3.1 describes the performance of the above algo-
rithm.
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Theorem. For sufficiently large n and any c ∈ [1, log n], given a sample of size c n
logn

consist-

ing of independent draws from a distribution p ∈ Dn, with probability at least 1−e−nΩ(1)
over

the randomness in the selection of the sample, Algorithm 3.8 returns a generalized histogram
gLP such that

R(p, gLP ) ≤ O

(
1√
c

)
.

We stress that the above formulation of the linear program and algorithm were chosen
to provide the simplest analysis. While the proof of the above theorem requires consid-
erable technical machinery, the machinery can, at the expense of clarity, be adapted to
prove analogous results for a number of variants of Linear Program 3.9. In particular,
analogous results hold for various natural rescalings of the objective function, including∑

i
i
k
|Fi −

∑
x poi(kx, i)vx| , or

∑
i

1√
Fi+1
|Fi −

∑
x poi(kx, i)vx| . This latter objective func-

tion is particularly natural, as
√
Fi is a reasonable approximation for the standard deviation

of the distribution of Fi. In Chapter 8, we use this scaling in the linear program that we
employ in our experimental tests. In a different direction, we note that the mesh X of vari-
ables for which we solve the linear program can also be varied considerably, while preserving
the guarantees of the above theorem. In particular, one could employ a coarser quadrat-
ically spaced mesh, e.g. X = 1

k1.1{12, 22, 32, . . . , k0.2}, which would reduce the number of
variables in the linear program to k0.1, in which case the linear program can be solved (using
Karmarkar’s algorithm [78]) in time linear in the sample size, k. We provide details of this
modification in Section 3.2. A number of other aspects of Linear Program 3.9 can also be
varied, including the selection of the cutoff, c, between the “high” and “low” probability
regimes (and the mechanics of the transition region), and, of course, the constants.

We note that Algorithm 3.8 returns a generalized histogram; specifically, the histogram
values will not be integral, as is the case for an actual histogram corresponding to a distribu-
tion. For the purpose of estimating relative-earthmover continuous properties, a generalized
histogram suffices. For example, in the case of entropy, given a generalized histogram g,
one can compute H(g) :=

∑
x:g(x)6=0 g(x) ·x| log x|, irrespective of whether g(x) is an integer.

Nevertheless, if one desires an actual distribution corresponding to a histogram (as opposed
to a generalized histogram), the following algorithm and lemma characterizing its perfor-
mance, show one way to easily round the generalized histogram to obtain a histogram that
is close in relative earthmover distance.
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Algorithm 3.10. Round to Histogram
Input: Generalized histogram g.
Output: Histogram h.

• Initialize h′ to be identically 0, let x1, x2, . . . , xm be the support of g, and set

the variable diff := 0.

• Define α = max (xi : g(xi) 6∈ N ∪ {0}) .

• For each i = 1, . . . ,m s.t. xi ≤ α, do the following:

– If diff < 0 set h′(xi) = dg(xi)e, otherwise, if diff ≥ 0 set h′(xi) = bg(xi)c.
– Increment diff by xi (h(xi)− g(xi)) .

• For each i s.t. xi > α, set h′(xi) = g(xi).

• Define histogram h by setting h( xi
1+diff ) = h′(xi).

Lemma 3.11. Let h be the output of running Algorithm 3.10 on generalized histogram g.
The following conditions hold:

• For all x, h(x) ∈ N ∪ {0}, and
∑

x:h(x)6=0 xh(x) = 1, hence h is a histogram of a
distribution.

• R(h, g) ≤ 5α |log min(x : g(x) 6= 0)| . where α := max(x : g(x) 6∈ N ∪ {0}).

Proof. Let h′ be as defined in Algorithm 3.10, and note that for any y,∑
x≤y:g(x)6=0

x(h′(x)− h(x)) ∈ [−y, y],

and thus at the termination of the algorithm, |diff | ≤ α. Intuitively, the lemma follows
from observing that aside from at most |diff | probability mass that we might need to move
anywhere, at a cost of log min(x : g(x) + h(x) 6= 0), we can smear the probability mass in g
to yield h by only moving mass locally, at a total cost of roughly α.

To make this intuition rigorous, will explicitly describe an earthmoving scheme, in two
stages. In the first stage, consider the generalized histogram h′′ that is defined to be h′ aug-
mented by adjusting diff probability mass (without altering the support) so that h′′ has total
probability mass 1. We first show that R(h, h′′) ≤ 2α| log min(x : h(x) 6= 0)|. Consider the
earthmoving scheme that, for all i, moves xih

′′(xi) units of probability mass from xi to xi
1+diff

.

Such an earthmoving scheme has cost at most | log(1 + diff)| ≤ α, and the generalized his-
togram h′′′ resulting from such a scheme has the property that

∑
x:h(x) 6=0 |x(h(x)−h′′′(x))| ≤

|diff |, and hence this discrepancy can be removed by moving at most |diff | units of prob-
ability mass, at a total cost of |diff | · | log min(x : h(x) 6= 0)| ≤ α| log min(x : h(x) 6= 0)|.

We now bound R(g, h′′), from which the lemma will follow from the triangle inequality.
Let X = {x1, x2, . . .} denote the support of g. Consider the following earthmoving scheme
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that yields h′′ from g : begin by defining g′ to be identical to g, and move x1(g(x1)−h′′(x1))
units of probability mass from x1 to x2, . . . , xj, in such a way that for all j′ < j, g′(xj′) =
h′′(xj′), and h′′(xj) > g(xj). Continue iteratively: for i ≥ 2, if h′′(xi) < g(xi) then move
xi(g

′(xi) − h′′(xi)) units of probability mass to xi+1, . . . , xj, in such a way that for all j′ <
j, g′(xj′) = h′′(xj′), and h′′(xj) > g(xj); if h′′(xi) > g(xi) then move xi(g

′(xi)− h′′(xi)) units
of probability mass from xi+1, . . . , xj, in such a way that for all j′ < j, g′(xj′) = h′′(xj′), and
h′′(xj) < g(xj).

By construction, the above process will yield g′ = h′′. We now analyze the cost of the
scheme. Define the set

Y := {xi : sign

(∑
j<i

xj(g(xj)− h′(xj))

)
6= sign

(∑
j≤i

xj(g(xj)− h′(xj))

)
},

and denote the elements of Y by y1, . . . , ym, with yi < yi+1. The cost of the above scheme is
bounded by

α| log ym|+
m∑
i=1

yi log(
yi+1

yi
),

where the first term is the contribution from performing the scheme for xi ∈ [ym, α], and
the second term is the cost of the remaining portion of the scheme. To simplify the above
expression, consider the following:

yi log
yi+1

yi
= yi

∫ yi+1

yi

1

x
dx

≤
∫ yi+1

yi

x
1

x
dx (since x ≥ yi for x ∈ [yi, yi+1])

= yi+1 − yi.

Hence we have
R(g, h′′) ≤ α| log ym|.

Putting together the pieces, we have:

R(g, h) ≤ R(g, h′′) +R(h′′, h)

≤ α| log ym|+ α + α + α| log min(x : h(x) 6= 0)|
≤ 2α + α| log min(x : g(x) 6= 0)|(2 + α)

≤ 5α| log min(x : h(x) 6= 0)|.

The following condition defines what it means for a sample from a distribution to be
“faithful”; roughly a sample is “faithful” if it is representative of a typical sample from the
distribution—no domain element occurs too much more frequently than one would expect,
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and the fingerprint entries are reasonably close to their expected values. To prove Theo-
rem 3.1, we first show that a sample consisting of random draws from a fixed distribution is
“faithful” with probability 1−e−kΩ(1)

. This will follow easily from basic tail bounds on Poisson
random variables (see Appendix A.2), and Chernoff bounds. Having thus compartmental-
ized the probabilistic component of our theorem, we will then argue that our algorithm will
be successful whenever it receives a faithful sample as input.

Definition 3.12. A sample of size k with fingerprint F , drawn from a distribution p with
histogram h, is said to be faithful if the following conditions hold:

• For all i, ∣∣∣∣∣∣Fi −
∑

x:h(x)6=0

h(x) · poi(kx, i)

∣∣∣∣∣∣ ≤ k
1
2

+D.

• For all domain elements i whose true probability p(i) ≥ k−1+B, the number of times i

occurs differs from its expectation of k · p(i) by at most (k · p(i))
1
2

+D .

• Defining c = min{i : i ∈ [kB, 2 · kB] and
∑i+kC

j=i jFj ≤ k1−B+C}, as in Algorithm 3.8,∑
x∈
[
c
k
, c+k

C
k

]x · h(x) ≤ 4kC−B.

• Additionally, ∑
i≥c+kC

i

k
Fi +

∑
x≤ c+k

C/2
k

:h(x)6=0

x · h(x) ≤ 1 + k−
1
2

+D.

Lemma 3.13. There is a constant γ > 0 such that for sufficiently large k, the probability
that a sample of size k consisting of independent draws from a fixed distribution is “faithful”
is at least 1− e−kγ .

Proof. We first analyze the case of a Poi(k)-sized sample drawn from a distribution with
histogram h. Thus

E[Fi] =
∑

x:h(x)6=0

h(x)poi(kx, i).

Additionally, the number of times each domain element occurs is independent of the number
of times the other domain elements occur, and thus each fingerprint entry Fi is the sum
of independent random 0/1 variables, representing whether each domain element occurred
exactly i times in the sample (i.e. contributing 1 towards Fi). By independence, Chernoff
bounds apply, showing that for any i,

Pr
[
|Fi − E[Fi]| ≥ k

1
2

+D
]
≤ 2e

− k
1+2D

3E[Fi] ≤ 2e−
k2D

3 .
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A union bound over the first k fingerprints shows that the probability that any of the first

k fingerprints exceed their expectations by this amount is at most k · 2e− k
2D
3 ≤ e−k

Ω(1).
For the second condition of “faithful”, by basic tail bounds for the Poisson distribution,

we have Pr[|Poi(x)−x| > x
1
2

+D] ≤ e−x
Ω(1)

), hence for x > kB, the probability is bounded by

e−k
Ω(1)

.
We now show that the third condition is implied by the first. For any x ∈ [ c

k
, c+k

C

k
],

E[I[c,c+kC ] (Poi(x))] ≥ x
2
− o(1), where I[c,c+kC ](y) is the function that is equal to y if y ∈

[c, c + kC], and is 0 otherwise. Specifically, assuming for the sake of contradiction that∑
x∈
[
c
k
, c+k

C
k

] xh(x) > 4kC−B, then
∑c+kC

i=c E[Fi] > 2k1+C−B − o(1). On the other hand∑c+kC

i=c Fi ≤ k1+C−B, yet the disparity between these kC fingerprints and expected finger-

prints, by the first condition, is bounded by kCk
1
2

+D, yielding the claimed condition.
We now consider the final condition. By a union bound over tail bounds on Poissons,

with probability 1 − e−k
Ω(1)

every domain element with true probability less than c+kC/2
k

will occur fewer than c + kC times. Given that this happens, such domain elements will
not contribute to the

∑
i≥c+kC

i
k
Fi term in the statement of the fourth condition; thus if

the fourth condition is violated, then the total empirical probability mass of these domain
elements must exceed its expectation by at least k−

1
2

+D. The probability this occurs is
bounded by Pr[Poi[k] > k + k

1
2

+D] ≤ e−k
Ω(1)

.
Thus we have shown that provided we are considering a sample of size Poi(k), the proba-

bility that the conditions hold is at least 1−e−kΩ(1)
. To conclude, note that Pr[Poi(k) = k] >

1
3
√
k
, and hence the probability that the conditions do not hold for a sample of size exactly

k (namely, the probability that they do not hold for a sample of size Poi(k), conditioned on
the sample size being exactly k), is at most a factor of 3

√
k larger, and hence this probability

of failure is still e−k
Ω(1)

, as desired.

Lemma 3.14. Given a distribution of support size at most n with histogram h, and a “faith-
ful” sample of size k with fingerprint F , if c is chosen as prescribed in Algorithm 3.8 then
Linear Program 3.9 has a feasible point v′ with objective value at most O(k

1
2

+B+D). Addi-
tionally,

R(h, hv′) ≤ O(k−B+C + k−B( 1
2
−D) = O(

1

kΩ(1)
),

where hv′ is the histogram that would be returned by Algorithm 3.8 if v′ were used in place
of the solution to the linear program, v.

Recall that the linear program aims to find distributions that “could reasonably have
generated” the observed fingerprint F . Following this intuition, we will show that provided
the sample is faithful, the true distribution, h, minimally modified, will in fact be the desired
feasible point v′.

Roughly, v′ will be defined by taking the portion of h with probabilities at most c+kD/2
k

and rounding the support of h to the closest multiple of 1/nk, so as to be supported at
points in the set X = {1/nk, 2/nk, . . .}. We will then need to adjust the total probability
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mass accounted for in v′ so as to ensure that the first condition of the linear program is
satisfied; this adjusting of mass must be accomplished while ensuring that the fingerprint
expectations do not change significantly.

To argue that the linear program objective function value of v′ is small, we note that
the mesh X is sufficiently fine so as to guarantee that the rounding of the mass to integer
multiples of 1/nk does not greatly change the expected fingerprints, and hence the expected
fingerprint entries associated with v′ will be close to those of h. Our definition of “faithful”
guarantees that all fingerprint entries are close to their expectations, and hence the objective
function value will be small.

To bound the relative earthmover distance between the true histogram h and the his-
togram hv′ associated to v′, we first note that the portion of hv′ corresponding to probabilities

below c+kC/2
k

will be extremely similar to h, because it was created from h. By our choice
of c, and the definition of “faithful”, there is little mass in either the empirical or actual
histograms between probabilities c

k
and c+kC

k
, and hence the discrepancy in this region will

not contribute significantly to the cost of an earthmoving scheme. Finally, for probabili-

ties above c+kC/2
k

, hv′ and h will be similar because these frequently-occurring elements will
appear close to their expected number of times, by the second condition of “faithful”, and
hence the relative earthmover distance between the empirical histogram and the true his-
togram in this frequently-occurring region will also be small. Below we make the details of
this argument rigorous.

Proof of Lemma 3.14. We explicitly define v′ as a function of the true histogram h and
fingerprint of the sample, F , as follows:

• Define h′ such that h′(x) = h(x) for all x ≤ c+kC/2
k

, and h′(x) = 0 for all x > c+kC/2
k

,
where c is as defined in Algorithm 3.8.

• Initialize v′ to be 0, and for each x ≥ 1/nk s.t. h′(x) 6= 0 increment v′y by h′(x),
where y = max(z ∈ X : z ≤ x) is x rounded down to the closest point in set X =
{1/nk, 2/nk, . . .}.

• Let m :=
∑

x∈X xv
′
x + mF , where mF :=

∑
i≥ c+kC

k

i
k
Fi. If m < 1, increment v′y by

(1−m)/y, where y = c+kC/2
k

. Otherwise, if m ≥ 1, decrease v′ arbitrarily until the total
probability mass mF +

∑
x∈X xv

′
x = 1.

We first note that the above procedure is well-defined, since mF ≤ 1, and hence the prob-
ability mass in v′ can always be modified so as to result in the total mass mF+

∑
x∈X xv

′
x = 1,

while keeping all entries of v′ nonnegative.
To see that v′ is a feasible point of the linear program, note that by construction, the

first and third conditions of the linear program are trivially satisfied. The second condition
of the linear program is satisfied because the true distribution has support at most n, and,
crudely, in the final step of the construction of v′, we increment v′y by less than k.
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We now consider the objective function value of v′. Note that
∑

i≤c poi(c + kC/2, i) =

o(1/k), so the fact that we are truncating h at probability c+kC/2
k

in the first step in our
construction of v′, has little effect on the first c “expected fingerprints”: specifically, for all
such i, ∑

x:h(x)6=0

(h′(x)− h(x)) poi(kx, i) = o(1).

Together with the first condition of the definition of faithful, by the triangle inequality, for
each i ≤ c, ∣∣∣∣∣∣Fi −

∑
x:h′(x)6=0

h′(x)poi(kx, i)

∣∣∣∣∣∣ ≤ k
1
2

+D + o(1).

We now bound the contribution of the discretization to the objective function value. To this

order, note that
∣∣∣d poi(kx,i)d x

∣∣∣ ≤ k, and hence we have∣∣∣∣∣∣
∑

x:h′(x)6=0

h′(x)poi(kx, i)−
∑
x∈X

v′xpoi(kx, i)

∣∣∣∣∣∣ ≤ n
k

kn
= 1.

In the case that m ≤ 1, where m is the amount of mass in v′ before the final adjustment

(as defined in the final step in the construction of v′), mass is added to v′y, where y = c+kC/2
k

,
and thus since

∑
i≤c poi(ky, i) = o(1/k), this added mass alters

∑
x∈X v

′
xpoi(kx, i) by at

most o(1). In the case that m ≥ 1, by the fourth condition of “faithful”, and the fact that
h′ is generated from h by rounding the support down, which only decreases the amount of
probability mass, m ≤ 1 + k−

1
2

+D, and hence the removal of this extra probability mass
from v′ will decrease the expected fingerprints, in total, by at most k · k− 1

2
+D = k

1
2

+D. Thus
in both the cases that m ≤ 1 and m > 1 the objective function value associated to v′ is
bounded by

c
(
k

1
2

+D + 1 + o(1)
)

+ k
1
2

+D ≤ 3k
1
2

+B+D,

for sufficiently large k.
We now turn to analyzing the relative earthmover distance R(h, hv′). Let g denote the

generalized histogram defined by g(x) = v′x for all x ∈ X, and g( i
k
) = Fi for all i ≥ c + kC;

in particular, hv′ is the result of applying Algorithm 3.10 to the generalized histogram g. By
Lemma 3.11, R(hv′ , g) ≤ 5(2kB−1) log nk. We now bound R(g, h), from which our claim will
follow by the triangle inequality.

We proceed in two steps. Let p denote the true distribution, with p(i) representing the
true probability with which domain element i occurs. Consider the following earthmoving
scheme that will yield generalized histogram t from the true histogram h: first, for each

x ∈ [ 1
nk
, c+k

C/2
k

] for which h(x) > 0, move yh(x) units of probability mass from probability x
to probability y, where y = max(z ∈ X : z ≤ x). Next, for each domain element i, for which

p(i) ≥ c+kC/2
k

and for which element i appears j ≥ c+kC times in the sample, move j
k

units of
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probability mass from probability p(i) to probability j
k
. We now argue that the generalized

histogram t, yielded by this process satisfies R(t, h) ≤ 2k−B(1/2−D) + 2
k
: To bound the cost of

the first step of the scheme, note that since the support size is bounded by n, and the total
probability mass in the distribution is at most 1, we have that the relative earthmover cost
incurred by the first step of the above scheme is at most

max
x≥1/nk

(
min(nx log

x

bnkxc/nk
, log

x

bnkxc/nk
)

)
<

2

k
.

To bound the second phase of this earthmoving scheme, by the second condition of “faithful”,
each domain element with true probability p(i) ≥ k−1+B will occur j times, where |j−kp(i)| ≤
(kp(i))

1
2

+D, and hence the total cost of this portion of the scheme is bounded by

log
k−1+B

k−1+B − k−1+B( 1
2

+D)
≤ 2k−B(1/2−D).

To complete our proof, we now argue that R(t, g) is small. Indeed, the portions of g

and t above probability c+kC

k
are identical. The portions of these generalized histograms

corresponding to probabilities in the interval [1/nk, c+k
C/2
k

) would also be identical, except
for the possible decreasing of the probability mass in the final step of constructing v′. By
the fourth condition of “faithful”, this removal step modifies at most k−1/2+D units of mass,
and hence the relative earthmover cost of moving this mass to any probability above 1/nk is
bounded by k−1/2+D log nk. The probability mass in t below probability 1/nk can be moved
to any probability above 1/nk incurring a cost of at most maxx≤1/nk nx| log x| ≤ 1

k
log nk,

(since the support is bounded by n.) Finally, the remainder of the discrepancy between t

and g in due to the discrepancy in the range of probabilities [ c+k
C/2
k

, c+k
C

k
]. By the third

condition of“faithful”, the mass in this region of t is bounded by 4kC−B; putting together
these bounds, we have

R(t, g) ≤
(
k−1/2+D +

1

k
+ kC−B

)
log nk.

Thus we have:

R(h, hv′) ≤ R(hv′ , g) +R(g, t) +R(t, h)

≤ O(kB−1 log k) +O
(
(k−1/2+D + kC−B) log k

)
+O(k−B(1/2−D)).

3.2 Similar Expected Fingerprints Imply Similar

Histograms: A Chebyshev “Bump” Scheme

In this section we argue that if two histograms, h1, h2 corresponding to distributions with
support size at most O(n) have the property that their expected fingerprints derived from
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Poi(k)-sized samples are very similar, then R(h1, h2) must be small. This will guarantee that
any two feasible points of Linear Program 3.9 that both have small objective function values
correspond to histograms that are close in relative earthmover distance. The previous section
established the existence of a feasible point with small objective function value that is close
to the true histogram, hence by the triangle inequality, all such feasible points must be close
to the true histogram; in particular, the optimal point—the solution to the linear program—
will correspond to a histogram that is close to the true histogram of the distribution from
which the sample was drawn, completing our proof of Theorem 3.1.

We define a class of earthmoving schemes, which will allow us to directly relate the relative
earthmover cost of two distributions to the discrepancy in Poi(k)-sized sample fingerprint
expectations corresponding to the two distributions. Our main technical tool is a Chebyshev
polynomial construction.

Definition 3.15. For a given k, a β-bump earthmoving scheme is defined by a sequence of
positive real numbers {ci}, the bump centers, and a sequence of functions {fi} : (0, 1] → R
such that

∑∞
i=0 fi(x) = 1 for each x, and each function fi may be expressed as a linear

combination of Poisson functions, fi(x) =
∑∞

j=0 aijpoi(kx, j), such that
∑∞

j=0 |aij| ≤ β.
Given a generalized histogram h, the scheme works as follows: for each x such that

h(x) 6= 0, and each integer i ≥ 0, move xh(x) · fi(x) units of probability mass from x to ci.
We denote the histogram resulting from this scheme by (c, f)(h).

Definition 3.16. A bump earthmoving scheme (c, f) is ε-good if for any generalized his-
togram h, the relative earthmover distance between h and (c, f)(h) is at most ε.

The crux of the proof of correctness of our estimator is the explicit construction of a
surprisingly good earthmoving scheme. We will show that for any k and n = δk log k for
some δ ∈ [1, log k], there exists an O(

√
δ)-good k0.3-bump earthmoving scheme. In fact, we

will construct a single scheme for all δ. Before describing our earthmoving scheme, we define
a very simple scheme that provides some intuition as to how one can create a scheme whose
cost is related to fingerprint expectations.

Perhaps the most natural bump earthmoving scheme is where fi(x) = poi(kx, i) and
ci = i

k
. For i = 0, we may, for example, set c0 = 1

2k
so as to avoid a logarithm of 0 when

evaluating relative earthmover distance. This is clearly a valid earthmoving scheme since∑∞
i=0 fi(x) = 1 for any x.
The motivation for this construction is the fact that, for any i, the amount of probability

mass that ends up at ci in (c, f)(h) is exactly ci times the expectation of the ith fingerprint
in a Poi(k)-sample from h; namely∑

x:h(x)6=0

h(x)x · poi(kx, i) =
∑

x:h(x) 6=0

h(x) · poi(kx, i+ 1)
i+ 1

k
.

Thus if we apply this earthmover scheme to two histograms h, g derived from solutions to the
linear program, their fingerprint expectations will closely match, and the result of applying
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the earthmoving scheme to h, g will result in a pair of generalized histograms h′, g′, supported
at the bump centers ci, such that R(h′, g′) is small.

The problem with this “Poisson bump” earthmoving scheme is that it incurs a very large
relative earthmover cost, particularly for small probabilities. This is due to the fact that most
of the mass that starts at a probability below 1

k
will end up in the zeroth bump, no matter

if it has probability nearly 1
k
, or the rather lower 1

n
. Phrased differently, the problem with

this scheme is that the first few “bumps” are extremely fat. The situation gets significantly
better for higher Poisson functions: most of the mass of Poi(i) lies within relative distance
O( 1√

i
) of i, and hence the scheme is relatively cheap for larger probabilities x >> 1

k
. We

will therefore construct a scheme that uses Poisson functions poi(kx, i) for i ≥ O(log k), but
takes great care to construct “skinnier” bumps below this region.

The main tool of this construction is the Chebyshev polynomials. For each integer i ≥
0, the ith Chebyshev polynomial, denoted Ti(x), is the polynomial of degree i such that
Ti(cos(y)) = cos(i · y). Thus, up to a change of variables, any linear combination of cosine
functions up to frequency s may be re-expressed as the same linear combination of the first s
Chebyshev polynomials. Given this, constructing a frugal earth-moving scheme is an exercise
in trigonometric constructions.

Before formally defining our bump earthmoving scheme, we give a rough sketch of the
key features. We define the scheme with respect to a paramter s = O(log k). For i > s,
we use the fat Poisson bumps: that is, we define the bump centers ci = i

k
and functions

fi = poi(kx, i). For i ≤ s, we will use skinnier “Chebyshev bumps”; these bumps will
have roughly quadratically spaced bump centers ci ≈ i2

k log k
, with the width of the ith bump

roughly i
k log k

. At a high level, the log n factor in our O( n
logn

) bound on the sample size
necessary to achieve accurate estimation, arises because the first few Chebyshev bumps have
width O( 1

k log k
), in contrast to the first Poisson bump, poi(kx, 1), which has width O( 1

k
).

Definition 3.17. The Chebyshev bumps are defined in terms of k as follows. Let s =
0.2 log k. Define g1(y) =

∑s−1
j=−s cos(jy). Define

g2(y) =
1

16s

(
g1(y − 3π

2s
) + 3g1(y − π

2s
) + 3g1(y +

π

2s
) + g1(y +

3π

2s
)

)
,

and, for i ∈ {1, . . . , s − 1} define gi3(y) := g2(y − iπ
s

) + g2(y + iπ
s

), and g0
3 = g2(y), and

gs3 = g2(y + π). Let ti(x) be the linear combination of Chebyshev polynomials so that
ti(cos(y)) = gi3(y). We thus define s + 1 functions, the “skinny bumps”, to be Bi(x) =
ti(1 − xk

2s
)
∑s−1

j=0 poi(xk, j), for i ∈ {0, . . . , s}. That is, Bi(x) is related to gi3(y) by the coor-

dinate transformation x = 2s
k

(1− cos(y)), and scaling by
∑s−1

j=0 poi(xk, j).

See Figure 3.2 for a plot of g2(y), illustrating, up to coordinate transformations, a “skinny
Chebyshev bump.” The Chebyshev bumps of Definition 3.17 are “third order”; if, instead,
we had considered the analogous less skinny “second order” bumps by defining g2(y) :=
1
8s

(
g1(y − π

s
) + 2g1(y) + g1(y + π

s
)
)
, then the results would still hold, though the proofs are

slightly more cumbersome.
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Figure 3.2: A plot of the “skinny” function g2(y) (without the scaling factor). This is the
main ingredient in the Chebyshev bumps construction of Definition 3.17.

Definition 3.18. The Chebyshev earthmoving scheme is defined in terms of k as follows:
as in Definition 3.17, let s = 0.2 log k. For i ≥ s + 1, define the ith bump function fi(x) =
poi(kx, i− 1) and associated bump center ci = i−1

k
. For i ∈ {0, . . . , s} let fi(x) = Bi(x), and

for i ∈ {1, . . . , s}, define their associated bump centers ci = 2s
k

(1− cos( iπ
s

)), and let c0 := c1.

The following two lemmas, together, show that the Chebyshev earthmoving scheme is a
2k0.3-bump earthmoving scheme.

Lemma 3.19. Each Bi(x) may be expressed as
∑∞

j=0 aijpoi(kx, j) for aij satisfying

∞∑
j=0

|aij| ≤ 2k0.3.

Proof. Consider decomposing gi3(y) into a linear combination of cos(jy), for j ∈ {0, . . . , s}.
Since cos(−jy) = cos(jy), g1(y) consists of one copy of cos(sy), two copies of cos(jy) for
each j between 0 and s, and one copy of cos(0y); g2(y) consists of 8 copies of g1(y), with
some shifted so as to introduce sine components, but these are canceled out in the formation
of gi3(y), which is a symmetric function for each i. Thus, together with the normalization
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by 1/16s, each gi3(y) may be regarded as a linear combination
∑s

j=0 cos(yj)bij where the sth
term has coefficient at most 1/s, and all the remaining terms have coefficients at most 2/s.

Next, under the coordinate transformation x = 2s
k

(1 − cos(y)), the function cos(yj)
becomes the Chebyshev polynomial Tj(1 − xk

2s
). We note that each term α`(xk)` from this

polynomial will ultimately be multiplied by
∑s−1

m=0 poi(xk,m). We reexpress this as

x`
s−1∑
m=0

xme−x

m!
=

s+`−1∑
m=`

poi(xk,m)
m!

(m− `)!
.

We have thus expressed our function as a linear combination of Poisson functions. As we
aim to bound the sum of the coefficients of these Poisson functions, we consider this now:∑s+`−1

m=`
m!

(m−`)! which we note equals 1
l+1

(s+`)!
s!

since, in general,
∑j

m=i

(
m
i

)
=
(
j+1
i+1

)
. Expressing

Tj(z) as
∑j

i=0 βijz
i, we note that, since we evaluate Chebyshev polynomials at 1 − xk

2s
,

a term βijz
i becomes βij

∑i
`=0

(
i
`

)
1

(2s)`
x`, which, by the previous calculation, contributes

βij
∑i

`=0

(
i
`

)
1

(2s)`
1
l+1

(s+`)!
s!

to the total Poisson coefficients. Since ` ≤ i ≤ s, we have s+` ≤ 2s,

from which we see 1
(2s)`

(s+`)!
s!
≤ 1. We thus bound βij

∑i
`=0

(
i
`

)
1

(2s)`
1
l+1

(s+`)!
s!
≤ βij

∑i
`=0

(
i
`

)
=

βij2
i.
We thus desire, for any j ≤ s, to bound

∑j
i=0 βij2

i, where βij are the coefficients of the
jth Chebyshev polynomial. Chebyshev polynomials have coefficients whose signs repeat in
the pattern (+, 0,−, 0), thus we can evaluate this sum exactly as |Tj(2i)|, for i =

√
−1.

Explicitly,

|Tj(2i)| = 1

2

[
(2−

√
5)j + (2 +

√
5)j
]
≤ (2 +

√
5)j.

Since, as we showed above, in each gi3(y) the coefficient of each cos(jy) term is at most 2/s,

and thus our final bound on the sum of Poisson coefficients is at most 2(2 +
√

5)s < 2e
3
2
s =

2k0.3.

Lemma 3.20. For any x

s∑
i=−s+1

g2(x+
πi

s
) = 1, and

∞∑
i=0

fi(x) = 1.

Proof. g2(y) is a linear combination of cosines at integer frequencies j, for j = 0, . . . , s,
shifted by ±π/2s and ±3π/s2. Since

∑s
i=−s+1 g2(x+ πi

s
) sums these cosines over all possible

multiples of π/s, we note that all but the frequency 0 terms will cancel. The cos(0y) = 1
term will show up once in each g1 term, and thus 1 + 3 + 3 + 1 = 8 times in each g2 term,
and thus 8 · 2s times in the sum in question. Together with the normalizing factor of 16s,
the total sum is thus 1, as claimed.
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For the second part of the claim,

∞∑
i=0

fi(x) =

(
s∑

j=−s+1

g2(cos−1

(
xk

2s
− 1

)
+
πj

s
)

)
s−1∑
j=1

poi(xk, j) +
∑
j≥s

poi(xk, j)

= 1 ·
s−1∑
j=1

poi(xk, j) +
∑
j≥s

poi(xk, j) = 1.

We now turn to the main thrust of the argument, showing that the scheme is O(
√
δ)-

good, where n = δk log k, and δ ≥ 1
log k

; the following lemma, quantifying the “skinnyness”
of the Chebyshev bumps is the cornerstone of this argument.

Lemma 3.21. |g2(y)| ≤ 285
y4s4

for y ∈ [−π, π] \ (−3π/s, 3π/s), and |g2(y)| ≤ 1/2 everywhere.

Proof. Since g1(y) =
∑s−1

j=−s cos jy = sin(sy) cot(y/2), and since sin(α + π) = − sin(α), we
have the following:

g2(y) =
1

16s

(
g1(y − 3π

2s
) + 3g1(y − π

2s
) + 3g1(y +

π

2s
) + g1(y +

3π

2s
)

)
=

1

16s

(
sin(ys+ π/2)

(
cot(

y

2
− 3π

4s
)− 3 cot(

y

2
− π

4s
)

+3 cot(
y

2
+
π

4s
)− cot(

y

2
+

3π

4s
)

))
.

Note that
(
cot(y

2
− 3π

4s
)− 3 cot(y

2
− π

4s
) + 3 cot(y

2
+ π

4s
)− cot(y

2
+ 3π

4s
)
)

is bounded in magni-

tude by (π/2s)3 times the maximum magnitude of d3

dx3 cot(x/2) in the range x ∈ [y−3π/2s, y+
3π/2s]. Since the magnitude of this third derivative is decreasing for x ∈ (0, 2π), we can sim-
ply evaluate the magnitude of this derivative at y − 3π/2s. We thus have d3

dx3 cot(x/2) =
−(2+cos(x))

4 sin4(x/2)
, whose magnitude is at most 3

4(x/π)4 for x ∈ (0, π]. For y ∈ [3π/s, π], we trivially

have that y/2 ≤ y − 3π/2s, and thus we have the following bound:

| cot(
y

2
− 3π

4s
)− 3 cot(

y

2
− π

4s
) + 3 cot(

y

2
+
π

4s
)− cot(

y

2
+

3π

4s
)| ≤

( π
2s

)3 3

4(y/2π)4
≤ 3π7

2y4s3
.

Since g2(y) is a symmetric function, the same bound holds for y ∈ [−π,−3π/s]. Thus
|g2(y)| ≤ 3π7

16s·2y4s3
< 285

y4s4
for y ∈ [−π, π]\(−3π/s, 3π/s). To conclude, note that g2(y) attains a

global maximum at y = 0, with g2(0) = 1
16s

(6 cot(π/4s)− 2 cot(3π/4s)) ≤ 1
16s

24s
π
< 1/2.

Lemma 3.22. The Chebyshev earthmoving scheme of Definition 3.18 is O(
√
δ)-good, where

n = δk log k, and δ ≥ 1
log k

.
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Proof. We split this proof into two parts: first we will consider the cost of the portion of the
scheme associated with all but the first s + 1 bumps, and then we consider the cost of the
skinny bumps fi with i ∈ {0, . . . , s}.

For the first part, we consider the cost of bumps fi for i ≥ s + 1; that is the relative
earthmover cost of moving poi(xk, i) mass from x to i

k
, summed over i ≥ s. By definition of

relative earthmover distance, the cost of moving mass from x to i
k

is | log xk
i
|, which, since

log y ≤ y− 1, we bound by xk
i
− 1 when i < xk and i

xk
− 1 otherwise. We thus split the sum

into two parts.
For i ≥ dxke we have poi(xk, i)( i

xk
− 1) = poi(xk, i − 1) − poi(xk, i). This expression

telescopes when summed over i ≥ max{s, dxke} to yield poi(xk,max{s, dxke}−1) = O( 1√
s
).

For i ≤ dxke−1 we have, since i ≥ s, that poi(xk, i)(xk
i
−1) ≤ poi(xk, i)((1+ 1

s
) xk
i+1
−1) =

(1 + 1
s
)poi(xk, i+ 1)− poi(xk, i). The 1

s
term sums to at most 1

s
, and the rest telescopes to

poi(xk, dxke)− poi(xk, s) = O( 1√
s
). Thus in total, fi for i ≥ s+ 1 contributes O( 1√

s
) to the

relative earthmover cost, per unit of weight moved.

We now turn to the skinny bumps fi(x) for i ≤ s. The simplest case is when x is outside
the region that corresponds to the cosine of a real number — that is, when xk ≥ 4s. It is
straightforward to show that fi(x) is very small in this region. We note the general expression
for Chebyshev polynomials: Tj(x) = 1

2

[
(x−

√
x2 − 1)j + (x+

√
x2 − 1)j

]
, whose magnitude

we bound by |2x|j. Further, since 2x ≤ 2
e
ex, we bound this by (2

e
)je|x|j, which we apply when

|x| > 1. Recall the definition fi(x) = ti(1 − xk
2s

)
∑s−1

j=0 poi(xk, j), where ti is the polynomial

defined so that ti(cos(y)) = gi3(y), that is, ti is a linear combination of Chebyshev polynomials
of degree at most s and with coefficients summing in magnitude to at most 2, as was shown
in the proof of Lemma 3.19. Since xk > s, we may bound

∑s−1
j=0 poi(xk, j) ≤ s · poi(xk, s).

Further, since z ≤ ez−1 for all z, letting z = x
4s

yields x ≤ 4s · e x
4s
−1, from which we may

bound poi(xk, s) = (xk)se−xk

s!
≤ e−xk

s!
(4s·exk4s−1)s = 4sss

es·e3xk/4s! ≤ 4se−3xk/4. We combine this with

the above bound on the magnitude of Chebyshev polynomials, Tj(z) ≤ (2
e
)je|z|j ≤ (2

e
)se|z|s,

where z = (1 − xk
2s

) yields Tj(z) ≤ ( 2
e2

)se
xk
2 . Thus fi(x) ≤ poly(s)4se−3xk/4( 2

e2
)se

xk
2 =

poly(s)( 8
e2

)se−
xk
4 . Since xk

4
≥ s in this case, fi is exponentially small in both x and s; the

total cost of this earthmoving scheme, per unit of mass above 4s
k

is obtained by multiplying
this by the logarithmic relative distance the mass has to move, and summing over the s+ 1
values of i ≤ s, and thus remains exponentially small, and is thus trivially bounded by
O( 1√

s
).

To bound the cost in the remaining case, when xk ≤ 4s and i ≤ s, we work with the
trigonometric functions gi3, instead of ti directly. For y ∈ (0, π], we seek to bound the per-
unit-mass relative earthmover cost of, for each i ≥ 0, moving gi3(y) mass from 2s

k
(1− cos(y))

to ci. For i ≥ 1, this contribution is at most

s∑
i=1

|gi3(y)(log(1− cos(y))− log(1− cos(
iπ

s
))|.
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To simplify the analysis, we compare log(1−cos(y)) with 2 log y when y ∈ (0, π], noting that

their derivatives respectively are sin(y)
1−cos(y)

and 2
y
, and we claim that the second expression is

always greater. To compare the two expressions, cross-multiply and take the difference, to
yield y sin y − 2 + 2 cos y, which we show is always at most 0 by noting that it is 0 when
y = 0 and has derivative y cos y − sin y, which is negative since cot y ≤ 1

y
. Thus we have

that | log(1− cos(y))− log(1− cos( iπ
s

))| ≤ 2| log y − log iπ
s
|; we use this bound in all but the

last step of the analysis. Additionally, we ignore the
∑s−1

j=0 poi(xk, j) term as it is always at
most 1.
Case 1: y ≥ π

s
.

Not that for such y, the contribution of f0, c0 to the relative earthmover cost is bounded
by the contribution of f1, c1, thus it suffices to bound

∑s
i=1 |gi3(y)(log y − log iπ

s
)|. For i

such that y ∈ ( (i−3)π
s

, (i+3)π
s

), by the second bounds on |g2| in the statement of Lemma 3.21,
gi3(y) < 1, and for such i, |(log y − log iπ

s
)| < 1

sy
, to yield a bound of 1

sy
.

For the contribution from i such that y ≤ (i−3)π
s

or y ≥ (i−3)π
s

, the first bound of
Lemma 3.21 yields |gi3(y)| = O( 1

(ys−iπ)4 ). We split up our sum over i ∈ [s] \ [ys
π
− 3, ys

π
+ 3]

into two parts according to whether i > ys/π:

s∑
i≥ ys

π
+3

1

(ys− iπ)4
|(log y − log

iπ

s
)| ≤

∞∑
i≥ ys

π
+3

π4

(ys
π
− i)4

(log i− log
ys

π
)

≤ π4

∫ ∞
w= ys

π
+2

1

(ys
π
− w)4

(logw − log
ys

π
). (3.2)

Since the antiderivative of 1
(α−w)4 (logw − logα) with respect to w is

−2w(w2 − 3wα + 3α2) logw + 2(w − α)3 log(w − α) + α(2w2 − 5wα + 3α2 + 2α2 logα)

6(w − α)3α3
,

the quantity in Equation 3.2 is equal to the above expression evaluated with α = ys
π

, and
w = α + 2, to yield

O(
1

ys
)− log

ys

π
+ log(2 +

ys

π
) = O(

1

ys
).

A nearly identical argument applies to the portion of the sum for i ≤ ys
π

+ 3, yielding the
same asymptotic bound of O( 1

ys
).

Case 2: ys
π
< 1.

The per-unit mass contribution from the 0th bump is trivially at most |g0
3(y)(log ys

π
−

log 1)| ≤ log ys
π
. The remaining relative earthmover cost is

∑s
i=1 |gi3(y)(log ys

π
− log i)|. To

bound this sum, we note that log i ≥ 0, and log ys
π
≤ 0 in this region, and thus split the

above sum into the corresponding two parts, and bound them separately. By Lemma 3.21,
we have:

s∑
i=1

gi3(y) log i ≤ O

(
1 +

∞∑
i=3

log i

π4(i− 1)4

)
= O(1).
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s∑
i=1

gi3(y) log
ys

π
≤ O (log ys) ≤ O(

1

ys
),

since for ys ≤ π, we have | log ys| < 4/ys.

Having concluded the case analysis, recall that we have been using the change of variables
x = 2s

k
(1− cos(y)). Since 1− cos(y) = O(y2), we have xk = O(sy2). Thus the case analysis

yielded a bound of O( 1
ys

), which we may thus express as O( 1√
sxk

).
For a distribution with histogram h, the cost of moving earth on this region, for bumps

fi where i ≤ s is thus O(
∑

x:h(x) 6=0 h(x) · x · 1√
sxk

). Because 1
z

is a decreasing function, for

x ≥ 1
n

= 1
5δsk

we have that minx≥1/n

(
1√
sxk

)
=
√

5δsk
sk

= O(
√
δ). Since

∑
x:h(x)6=0 h(x) · x = 1,

the total relative earthmover cost from the mass of the histogram for x ≥ 1/n is thus bounded
by O(

√
δ), as desired. We now consider the portion of the cost from histogram entries h(x)

for x ≤ 1/n. While the per-unit mass cost of this region goes to infinity as x→ 0, the bound
on the histogram support allows one to still bound this contribution. Formally, since x · 1√

sxk

is an increasing function, it is maximized when x = 1
n
. Since the remaining term, h(x), sums

to at most n, by assumption, we thus have∑
x≤ 1

n
:h(x) 6=0

h(x) · x · 1√
sxk
≤ n

1

n
· n√

sk
= O(

√
δ),

as above. As we have already bounded the relative earthmover cost for bumps fi for i > s
at least this tightly, this concludes the proof.

We are now equipped to prove Theorem 3.1.

Proof of Theorem 3.1. Let h, g be two generalized histograms corresponding to feasible points
of Linear Program 3.9 that each have objective function value at most α. Specifically, h, g are
obtained by appending the empirical distribution of the fingerprint to feasible points of the
LP. Let h′, g′ be the generalized histograms that result from applying the Chebyshev earth-
moving scheme of Definition 3.18 to h and g, respectively. By Lemma 3.22, R(h, h′) = O(

√
δ),

and R(g, g′) = O(
√
δ). We now consider the discrepancy between h′ and g′.

By definition, h′, g′ are generalized histograms supported at the bump centers ci. Since
all but the first s + 1 bumps are simply the standard Poisson bumps fi(x) = poi(xk, i), for
i > s, we have

|h′(ci)− g′(ci)| =

∣∣∣∣∣∣
∑

x:h(x)+g(x)6=0

(h(x)− g(x))xpoi(kx, i− 1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

x:h(x)+g(x)6=0

(h(x)− g(x))poi(kx, i)
i

k

∣∣∣∣∣∣ .
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Since h(x) = g(x) for all x > c+kC/2
k

, by the tail bounds for Poissons, the total relative
earthmover cost of equalizing h′ and g′ for all bump centers ci with i > c + kC is trivially
bounded by o( log k

k
).

Next, we consider the contribution of the discrepancies in the Poisson bumps with centers
ci for i ∈ [s + 1, c + kC]. Since

∑
i≤c poi(kx, i) = o(1/k) for x > c+kC

k
, the fact the empirical

fingerprints are appended to the LP points has negligible effect on these fingerprints, and
hence the assumption on the LP objective function values corresponding to h, g imply that

for i ≤ c,
∣∣∣∑x:h(x)+g(x)6=0(h(x)− g(x))poi(kx, i) i

k

∣∣∣ ≤ α c
k
. We now argue that the contribution

from the bump centers in the intermediate range i ∈ [c, c + kC] is also small, by virtue of
there being little probability mass in this region in the empirical fingerprints. Again, because∑

i≥c+ 3
4
kC poi(kx, i) = o(1/k) if x ≤ c+kC/2

k
, and thus since h(x) = g(x) for all such x, the

discrepancy in fingerprints for i ≥ c + 3
4
kC is negligible, contributing o(1/k) to the relative

earthmover distance between h′ and g′. We now argue that∑
i∈[c,c+ 3

4
kC ]

∑
x:h(x)6=0

h(x)ipoi(xk, i) ≤ 2k1−B+C,

and similarly for g. Indeed, if this were not the case, then

∑
i≤c

iFi − ∑
x:h(x)6=0

h(x)ipoi(xk, i)

 ≥ k1−B+C − o(1),

contradicting the assumption that the objective value corresponding to h is at most α <
k1−B+C − o(1). The analogous statement holds for g. Hence the relative earthmover cost
associated with bump centers in the range [c, c+ kC] is at most O(k−B+C log k).

Finally, we consider the contribution of the discrepancies in the first s + 1 = O(log k)
centers, corresponding to the skinny Chebyshev bumps. Note that for such centers, ci, by
definition the corresponding functions fi(x) =

∑
j≥0 aijpoi(xk, j), for some coefficients aij,

where
∑

j≥0 αij ≤ β. Thus we have the following, where
∑

x is shorthand for
∑

x:h(x)+g(x)6=0:

|h′(ci)− g′(ci)| =

∣∣∣∣∣∑
x

(h(x)− g(x))xfi(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x

(h(x)− g(x))x
∑
j≥0

aijpoi(xk, j)

∣∣∣∣∣
=

∣∣∣∣∣∑
j≥0

aij
∑
x

(h(x)− g(x))xpoi(xk, j)

∣∣∣∣∣
=

∣∣∣∣∣∑
j≥1

aij
j

k

∑
x

(h(x)− g(x))poi(xk, j)

∣∣∣∣∣ .
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Since aij = 0 for j > log k, since each Chebyshev bump is a linear combination of only
the first 2s < log k Poisson functions, the total cost of equalizing h′ and g′ at each of these
Chebyshev bump centers is bounded by

β

∣∣∣∣∣
log k∑
i=1

i

k

∑
x

(h(x)− g(x))poi(xk, j)

∣∣∣∣∣ | log c0| log k ≤ βα
polylog k

k

where the | log c0| term is a crude upper bound on the per-unit mass relative earthmover cost
of moving the mass to a probability above c0, and the final factor of log k is because there
are at most s < log k centers corresponding to “skinny” bumps.

We now plug in the bound of β = O(k0.3) of Lemma 3.19, and the bound on the objective

function value α = O(k
1
2

+B+D) given by the feasible point v′ constructed in Lemma 3.14
whose corresponding generalized histogram hv′ is close to the true distribution from which
the sample was drawn. Trivially, this upper bounds the objective function value of the actual
solution to the linear program used by Algorithm 3.8 to construct the returned generalized
histogram, gLP . Letting g′LP , h

′
v′ denote the generalized histograms resulting from applying

the Chebyshev earthmoving scheme to gLP and hv′ , respectively, we thus have

R(g′LP , h
′
v′) = O(k0.3k

1
2

+B+Dpolylog k

k
) = O(

1

kΩ(1)
).

Hence, by the triangle inequality, letting h denote the histogram of the distribution of support
at most n = δk log k, from which the sample was drawn, we have

R(gLP , h) ≤ R(h, hv′) +R(gLP , g
′
LP ) +R(hv′ , h

′
v′) +R(g′LP , h

′
v′)

= O(
√
δ +

1

kΩ(1)
) = O(

√
δ),

since, by assumption, δ > 1
log k

.

Reducing the Runtime

In this section we briefly outline the modifications required to reduce the number of variables
and constraints in the linear program to O(k0.1). Given so few variables and constraints, we
could then use Karmarkar’s algorithm which solves linear programs with m variables and L
bits of input in time O(n3.5L2polylogL) [78]. Thus the total runtime of our algorithm will
be linear in the sample size, k. This shows that our estimators are essentially optimal in
both their sample complexity and computational complexity.

To decrease the number of variables in the linear programming, we must create a more
coarse mesh than the extremely fine set X = { 1

nk
, 2
nk
, . . .} employed above. The only step in

the above proof that depends crucially on the size of this mesh, is the construction of the
feasible point of Linear Program 3.9 with low objective function, described in Lemma 3.14.
Recall that in this construction, we started with the true histogram, h, and obtained the
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feasible point of the linear program by taking the “low probability” region of h, and rounding
each nonzero histogram entry to the closest point in the mesh of probabilities X. We then
argued that because the mesh is sufficiently fine, this rounding of the support of h does not
alter the expected fingerprint entries, and hence the objective function value will be small
whenever the fingerprint is “faithful” (i.e. close to the expected fingerprint values of the
actual distribution).

In order to make similar guarantees with a significantly more coarse set of grid-points,
we will choose the locations of the points more delicately, and perform a tighter analysis.
In particular, we will choose the set X to be a quadratically spaced mesh of points X =
{x1, . . . , xk0.1}, where xi := i2

k1.1 . Rather than constructing our feasible point of low objective
function value by simply rounding the support of the histogram h to the closest point in
X as was done in the proof of Lemma 3.14, we instead linearly partition the mass at h(y)
between the points xi, xi+1 ∈ X such that xi ≤ y ≤ xi+1.

Formally, the feasible point v′ of the linear program corresponding to Linear Program 3.9
in which the variables are indexed by the coarser mesh X is defined as follows, as a function
of the true histogram h and fingerprint of the sample, F :

• Define h′ such that h′(x) = h(x) for all x ≤ c+kC/2
k

, and h′(x) = 0 for all x > c+kC/2
k

,
where c is chosen appropriately.

• Initialize v′ to be 0, and for each y s.t. h′(y) 6= 0 choose i such that xi ≤ y ≤ xi+1 for
xi, xi+1 ∈ X. If y < x1, we consider an x0 = 0 and let i = 0 (though we do not return
any v′0 associated to x0.)

• Modify v′ by increasing v′xi ← v′xi+h(y) xi+1−y
xi+1−xi , and increasing v′i+1 ← v′i+1+h(y) y−xi

xi+1−xi .

• Let m :=
∑

x∈X xv
′
x + mF , where mF :=

∑
i≥ c+kC

k

i
k
Fi. If m < 1, increment v′y by

(1−m)/y, where y = c+kC/2
k

. Otherwise, if m ≥ 1, decrease v′ arbitrarily until the total
probability mass mF +

∑
x∈X xv

′
x = 1.

We now argue that the above interpolative discretization of the support of h does
not significantly alter the expected fingerprints, and thus for i ≤ c,

∑
x poi(kx, i)h(x) ≈∑

x∈X poi(kx, i)v
′
x. Consider v′ as it is at the end of the third step: for each y such that h(y) >

0, we have “replaced” value h(y) at probability y with the pair of values h(y) xi+1−y
xi+1−xi , h(y) y−xi

xi+1−xi
respectively at the corresponding discretized probabilities xi and xi+1, and we aim to bound

h(y)

∣∣∣∣( xi+1 − y
xi+1 − xi

poi(xik, j) +
y − xi
xi+1 − xi

poi(xi+1k, j)

)
− poi(yk, j)

∣∣∣∣ (3.3)

We note the basic calculus fact that for an arbitrary twice-differentiable function g : R→ R
and real numbers a < y < b, the linear interpolation b−y

b−ag(a) + y−a
b−ag(b) approximates

g(y) to within 1
8
(b − a)2 maxz∈[a,b] |g′′(z)|. Thus Equation 3.3 is bounded by h(y)1

8
(xi+1 −
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xi)
2 maxz∈[xi,xi+1]

∣∣∣ d2

dz2poi(zk, j)
∣∣∣. By Proposition A.18 we see that

∣∣∣ d2

dz2poi(zk, j)
∣∣∣ ≤ 2k2 min{1, 1

zk
},

yielding a bound on Equation 3.3 of

h(y)
k2

4
(xi+1 − xi)2 min{1, 1

xik
}.

Thus we have

max
i:xi≤1/k

(
k2

4
(xi+1 − xi)2 min{1, 1

xik
}
)

= max
i:xi≤1/k

(
k2

4
(xi+1 − xi)2

)
≤ k2

4
(
2k0.05 + 1

k1.1
)2

≤ 2k−0.1.

Similarly,

max
i:xi≥1/k

(
k2

4
(xi+1 − xi)2 min{1, 1

xik
}
)

= max
i:xi≥1/k

(
k2

4xi
(xi+1 − xi)2

)
≤ k−0.1(2i+ 1)2

4i2

≤ 2k−0.1.

The remainder of the proof of Theorem 3.1 will proceed as in the previous two sections,
with the very minor modification that one will need to pick the constants B, C and D such
that B < k0.1 which ensures that the number of linear program constraints is also at most
2kB = O(k0.1), and also that the objective function value of v′ is at most O(kBk−0.1) =
O( 1

kΩ(1) ),

3.3 Properties of Pairs of Distributions

Perhaps unsurprisingly, our general approach for constructing constant-factor optimal esti-
mators for symmetric properties of distributions can also be extended to yield constant-factor
optimal estimators for symmetric properties of pairs of distributions, including total varia-
tional distance (`1 distance).

For properties of pairs of distributions, one is given as input two samples, one drawn
from the first distribution, and one drawn from the second distribution. In analogy with
the analysis of estimators for properties of a single distribution, we begin by extending our
definitions of fingerprints and histograms to this two-distribution setting.

Definition 3.23. The fingerprint F of a sample of size k1 from distribution p1 and a sample
of size k2 from distribution p2 is a k1×k2 matrix, whose entry F(i, j) is given by the number
of domain elements that are seen exactly i times in the sample from p1 and exactly j times
in the sample from p2.
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Definition 3.24. The histogram hp1,p2 : [0, 1]2 \ {(0, 0)} → N ∪ 0 of a pair of distributions
p1, p2 is defined by letting hp1,p2(x, y) be the number of domain elements that occur with
probability x in distribution p1 and probability y in distribution p2.

Thus in any two-dimensional histogram h corresponding to a pair of distributions, we
have ∑

x,y:h(x,y) 6=0

x · h(x, y) =
∑

x,y:h(x,y)6=0

y · h(x, y) = 1.

In our analysis, it will prove convenient to also consider “generalized histograms” in which
the entries need not be integral, and for which the “probability masses”

∑
x,y:h(x,y)6=0 x·h(x, y)

and
∑

x,y:h(x,y) 6=0 y · h(x, y) do not necessarily equal 1.
As in the case with symmetric properties of single distributions, symmetric properties of

pairs of distributions are functions of only the histogram of the pair of distributions, and
given any estimator that takes as input the actual pair of samples, there is an estimator of
equivalent performance that takes as input the fingerprint F derived from such a pair of
samples.

Many distance metrics, including total variational distance and Kullback–Leibler diver-
gence are symmetric properties of pairs of distributions:

Example 3.25. Consider pair of distributions p1, p2 with histogram h:

• The total variational distance (`1 distance) is given by

Dtv(p1, p2) =
1

2

∑
(x,y):h(x,y)6=0

h(x, y) · |x− y|.

• The Kullback–Leibler divergence is given by

DKL(p1||p2) =
∑

(x,y):h(x,y) 6=0

h(x, y) · x log
x

y
.

We will use the following two-dimensional earthmover metric on the set of two-dimensional
generalized histograms. Note that it does not make sense to define a strict analog of the
relative earthmover distance of Definition 3.1, since a given histogram entry h(x, y) does not
correspond to a single quantity of probability mass—it corresponds to xh(x, y) mass in one
distribution, and yh(x, y) mass in the other distribution. Thus the following metric is in
terms of moving histogram entries rather than probability mass.

Definition 3.26. Given two two-dimensional generalized histograms h1, h2, their histogram
distance, denoted W (h1, h2), is defined to be the minimum over all schemes of moving the
histogram values in h1 to yield h2, where the cost of moving histogram value c at location
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x, y to location x′, y′ is c (|x− x′|+ |y − y′|) . To ensure that such a scheme always exists, in
the case that

∑
x,y:x+y>0 h1(x, y) <

∑
x,y:x+y>0 h2(x, y), one proceeds as if

h1(0, 0) =
∑

x,y:x+y>0

h2(x, y)−
∑

x,y:x+y>0

h1(x, y),

and analogously for the case in which h2 contains fewer histogram entries.

We provide an example of the above definitions:

Example 3.27. Define distributions p1 = Unif [n], and p2 = Unif [n/2], where the n/2
support elements of distribution p2 are contained in the support of n. The corresponding
histogram hp1,p2 , is defined as hp1,p2( 1

n
, 2
n
) = n

2
, hp1,p2( 1

n
, 0) = n

2
, and hp1,p2(x, y) = 0 for all

other values of x, y.
Considering a second pair of distribution, q1 = q2 = Unif [n/4], with histogram hq1,q2( 4

n
, 4
n
) =

n
4
, we have

W (hp1,p2 , hq1,q2) =
n

4
(| 1
n
− 4

n
|+ | 2

n
− 4

n
|) +

n

4
(| 1
n
− 0|+ | 2

n
− 0|)

+
n

2
(| 1
n
− 0|+ |0− 0|)

=
5

2
,

since the optimal scheme is to move n/4 histogram entries in hp1,p2 from (1/n, 2/n) to location
(4/n, 4/n), and all the remaining histogram entries must be moved to (0, 0) to yield histogram
hq1,q2 .

We note that `1 distance is 1-Lipschitz with respect to the above distance metric:

Fact 3.28. For any pair of two-dimensional generalized histograms, h, h′

W (h, h′) ≥

∣∣∣∣∣∣
∑

x,y:h(x,y)6=0

h(x, y)|x− y| −
∑

x,y:h′(x,y)6=0

h′(x, y)|x− y|

∣∣∣∣∣∣ .
Hence if h = hp1,p2 and h′ = hq1,q2 are histograms corresponding to pairs of distributions,
W (hp1,p2 , hq1,q2) ≥ |Dtv(p1, p2)−Dtv(q1, q2)|.

We now formally define our algorithm. Both our algorithm, and its analysis closely
parallel their analogs in the previous section. For simplicity, we restrict our attention to
the setting in which one obtains samples of size k from both distributions—this approach
extends in the obvious fashion to the setting in which one obtains samples of different sizes
from the two distributions. As in the above section, we state the algorithm in terms of
three positive constants, B, C, and D, which can be defined arbitrarily provided B > C > B

2
,

B
2
> D, and 0.8 + 2B +D < 1.
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Algorithm 3.29. Estimate Unseen–Two Distributions
Input: Two-dimensional fingerprint F, derived from two samples of size k, an upper

bound on the support sizes of the two distributions, n:
Output: Generalized two-dimensional histogram gLP .

• Let c1 := min{i : i ∈ [kB, 2 · kB] and
∑i+kC

j=i

∑
`≥0(j + `)F(j, `) ≤ 2k1−B+C}.

• Let c2 := min{i : i ∈ [kB, 2 · kB] and
∑i+kC

j=i

∑
`≥0(j + `)F(`, j) ≤ 2k1−B+C}.

• Let v = (. . . , vxi,yj , . . .) be the solution to Linear Program 3.9, on input F , c1, c2,
and n.

• Let gLP be the generalized histogram formed by setting gLP (xi, yj) = vxi,yj for all

i, j, and then for all pairs i, j with either i ≥ c1 + kC or j ≥ c2 + kC, incrementing

gLP ( ik ,
j
k ) by F(i, j).

Linear Program 3.30.
Given a two-dimensional fingerprint F, derived from two samples of size k, an upper

bound on the support sizes of the two distributions, n, and two integers c1, c2:

• Define the sets

X := {0, 1

nk
,

2

nk
, . . . ,

c1 + kC/2

k
}, and Y := {0, 1

nk
,

2

nk
, . . . ,

c2 + kC/2

k
}.

• For each pair (x, y) 6= (0, 0) with x ∈ X and y ∈ Y define the associated LP

variable vx,y.

The linear program is defined as follows:

Minimize
∑

i∈[c1],j∈[c2]:i+j 6=0

∣∣∣∣∣∣F(i, j)−
∑

x∈X,y∈Y
poi(kx, i)poi(ky, j)vx,y

∣∣∣∣∣∣ ,
Subject to:

•
∑
x∈X,y∈Y x · vx,y +

∑k
i=c1+kC

∑
j≥0

i
kF(i, j) = 1 (prob. mass = 1.)

•
∑
x∈X,y∈Y y · vx,y +

∑k
j=c2+kC

∑
i≥0

j
kF(i, j) = 1 (prob. mass = 1.)

•
∑
x∈X,y∈Y vx,y ≤ 2(n+ k) (support size is not too big)

• ∀x ∈ X, y ∈ Y, vx,y ≥ 0 (histogram entries are non-negative)

The following theorem describes the performance of the above algorithm. Together with
Fact 3.28, this implies Theorem 3.2.

Theorem 3.3. For any constant c, for sufficiently large n, given a sample of size c n
logn

consisting of independent draws from two distributions, p, q ∈ Dn with two-dimensional
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histogram hp,q, with probability at least 1 − e−nΩ(1)
over the randomness in the selection of

the sample, Algorithm 3.29 returns a two-dimensional generalized histogram gLP such that

W (gLP , hp,q) ≤ O

(
1√
c

)
.

The structure of the proof of the above theorem is identical to that of its one-distribution
analog, Theorem 3.1. The details differ slightly, as we will need to define two-dimensional
analogs of the Chebyshev bumps of Definition 3.18, though we can reuse much of the same
machinery. The second difference between the above theorem, and Theorem 3.1 is in terms
of the distance metric. In the one-distribution setting, we used relative earthmover distance,
and in this setting we are using a histogram-moving metric. We note that provided we employ
a Poisson-function based earthmover or histogram-mover scheme, there are not significant
differences in the arithmetic of analyzing the cost of moving the probability mass in a one
dimensional histogram, x ·h(x), versus moving the corresponding histogram entry h(x), since
xh(x)poi(kx, i) = h(x)poi(kx, i+ 1) i+1

k
.

As in the previous section, we begin our proof by compartmentalizing the probabilistic
component of our theorem by defining a “faithful” pair of samples:

Definition 3.31. A pair of samples of size k drawn, respectively, from distributions p, q with
histogram h = hp,q, with two-dimensional fingerprint F , is said to be faithful if the following
conditions hold:

• For all i, j, ∣∣∣∣∣∣F(i, j)−
∑

x,y:h(x,y)6=0

h(x, y) · poi(kx, i)poi(xy, j)

∣∣∣∣∣∣ ≤ k
1
2

+D.

• For all domain elements i, the number of times i occurs in the sample from p differs
from its expectation of k · p(i) by at most

max
{

(k · p(i))
1
2

+D , kB( 1
2

+D)
}
.

Analogously for the number of times i occurs in the sample from q.

• Defining c1, c2 as in Algorithm 3.29,∑
x∈
[
c1
k
,
c1+kC
k

]
,y≥0

x · h(x, y) ≤ 4kC−B, and
∑

x≥0,y∈
[
c2
k
,
c2+kC
k

]y · h(x, y) ≤ 4kC−B.

• Additionally,

1−
∑

i<c1+kC ,j<c2+kC

i

k
F(i, j) +

∑
x≤ c1+kC/2

k
,y≤ c2+kC/2

k

x · h(x, y) ≤ 1 + k−
1
2

+D,
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and

1−
∑

i<c1+kC ,j<c2+kC

j

k
F(i, j) +

∑
x≤ c1+kC/2

k
,y≤ c2+kC/2

k

y · h(x, y) ≤ 1 + k−
1
2

+D,

The proof of the following lemma follows from basic tail bounds on Poisson random
variables, and Chernoff bounds, and is analogous to that of Lemma 3.13.

Lemma 3.32. There is a constant γ > 0 such that for sufficiently large k, the probability
that a pair of samples of size k consisting of independent draws from two fixed distribution
is “faithful” is at least 1− e−kγ .

Lemma 3.33. Given two distributions of support size at most n with histogram h, and
a “faithful” pair of samples of k with fingerprint F , if c1, c2 are chosen as prescribed in
Algorithm 3.29 then Linear Program 3.30 has a feasible point v′ with objective value at most
O(k

1
2

+2B+D). Additionally,

W (h, hv′) ≤ O(k−
B
2

+D + k−B+C)

where hv′ is the generalized histogram that would be returned by Algorithm 3.29 if v′ were
used in place of the solution to the linear program, v.

Proof. We explicitly define v′ as a function of the true histogram h and fingerprint of the
sample, F , as follows:

• Define h′ such that h′(x, y) = h(x, y) for all x, y satisfying x ≤ c1+kC/2
k

and y ≤ c2+kC/2
k

,
and for all other x, y set h′(x, y) = 0, where c1, c2 are as defined in Algorithm 3.29.

• Initialize v′ to be identically 0, and for each pair x, y with either x ≥ 1/nk or y ≥ 1/nk
such that h′(x, y) 6= 0 increment v′x′,y′ by h′(x, y), where x′, y′ are defined to be x, y
rounded down to the closest elements of the set X = {0, 1/nk, 2/nk, . . .}.

• Let m1 :=
∑

x,y∈X xv
′
x,y +m1,F and m2 :=

∑
x,y∈X yv

′
x,y +m2,F , where

m1,F := 1−
∑

i<c1+kC ,j<c2+kC

i

k
F(i, j) and m2,F := 1−

∑
i<c1+kC ,j<c2+kC

j

k
F(i, j).

Assume without loss of generality that m1 > m2. If m1 > 1, decrease the entries of v′

arbitrarily until m1 = 1. If the (recalculated) m2 < 1, increase v′0,y by (1−m2)/y, where

y = c2+kC/2
k

. Otherwise, if m1,m2 < 1, increase v′x,0 by (1−m1)/x, where x = c1+kC/2
k

,

and increase v′0,y by (1−m2)/y, where y = c2+kC/2
k

.

To see that v′ is a feasible point of the linear program, note that by construction, the
first, second, and fourth conditions of the linear program are satisfied. The third condition
of the linear program is satisfied because each of the true distributions has support at most
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n, and, crudely, in the final step of the construction of v′, we increment v′ by less than 2k—
with one k corresponding to the increment we make for each of the two distributions.

We now consider the objective function value of v′. Note that
∑

i≤ci poi(c1 + kC/2, i) =
o(1/k), and analogously with c2, hence the fact that we are truncating h(x, y) at probability

x ≤ c1+kC/2
k

and y ≤ c2+kC/2
k

in the first step in our construction of v′, has little effect on the
“expected fingerprints” F(i, j) for i ≤ c1, j ≤ c2: specifically, for all such i, j,∑

x,y:h(x,y)6=0

(h′(x, y)− h(x, y)) poi(kx, i)poi(ky, j) = o(1).

Together with the first condition of the definition of faithful, by the triangle inequality,
for each such i, j∣∣∣∣∣∣F(i, j)−

∑
x,y:h′(x,y)6=0

h′(x, y)poi(kx, i)poi(ky, j)

∣∣∣∣∣∣ ≤ k
1
2

+D + o(1).

We now bound the contribution of the discretization to the objective function value. As in

the proof of Lemma 3.14,
∣∣∣d poi(kx,i)d x

∣∣∣ ≤ k, and hence we have∣∣∣∣∣∣
∑

x,y:h′(x,y 6=0)

h′(x, y)poi(kx, i)poi(ky, j)−
∑
x,y∈X

v′x,ypoi(kx, i)poi(ky, j)

∣∣∣∣∣∣ ≤ 4n
k

kn
,

where the factor of 4 arises because the sum of the histogram entries is at most 2n, and
hence discretizing the support in two stages, by first discretizing the x component, and then
discretizing the y component, each yields a contribution of at most 2n k

kn
.

In the final adjustment of mass in the final step of the creation of v′, if any mass is added
to v′ again because

∑
i≤ci poi(ci + kC/2, i) = o(1/k), this added mass alters the objective

function value by at most o(1). In the case that mass must be removed, by the fourth
condition of “faithful”, and the fact that h′ is generated from h by rounding the support
down, which only decreases the amount of probability mass, the removal of this mass will
decrease the expected fingerprints by at most 2k · k− 1

2
+D = 2k

1
2

+D. Thus, putting together
the above pieces, the objective function value associated to v′ is bounded by

c1c2

(
k

1
2

+D + 4 + o(1)
)

+ 2k
1
2

+D ≤ 7k
1
2

+2B+D,

for sufficiently large k.
We now turn to analyzing the distance W (h, hv′), where hv′ is the generalized histogram

obtained by appending the empirical fingerprint entries F(i, j) for i ≥ c1 + kC or j ≥ c2 + kC

to v′. Our scheme for moving the histogram entries of hv′ to yield h will have three stages. In
the first stage, we consider the portion of hv′ consisting of the empirical fingerprint—namely,
hv′(

i
k
, j
k
), where either i ≥ c1 + kC or j ≥ c2 + kC. In the second stage, we consider the
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portions corresponding to probability x ≤ c1
k
, y ≤ c2

k
, and in the third stage we consider the

intermediate region (corresponding to the region of the fingerprint in which there are few
entries).

For the first stage, for each domain element α contributing to histogram entry hv′(
i
k
, j
k
),

we move one histogram entry to location (x, y), where x, y are the true probabilities with
which α occurs in the two distributions. Considering the case that i ≥ j, by the second
condition of “faithful”,

| i
k
− x|+ | j

k
− y| ≤ 2

k
(kx)

1
2

+D,

and there can be at most 1/x such domain elements. Since x > kB

k
, as it must contribute to

the empirical fingerprint portion of hv′ , the total cost is at most

2
1

kB/k

2

k
(kB)

1
2

+D ≤ 4k−
B
2

+D.

where the first factor of 2 is the contribution from the setting in which j ≥ i.
For the second stage, note that the rounding of h to yield hv′ has a cost, per histogram

entry of at most 1
nk
. There are at most 2n histogram entries, thus the total cost, neglecting

the extra mass that might be added or removed in the final step of constructing v′, is at
most 2

k
. By the fourth condition of “faithful”, in the final step of creating v′ in which the

total amount of mass is adjusted, at most k−
1
2

+D units of mass will be removed from each
distribution, which alters the above cost by at most 4k

−1
2

+D, as the removal of a histogram
element at (x, y) can contribute x+y towards the cost, and max(x, y) towards the probability
mass of one of the distributions.

Thus after the first two histogram-moving stages, h(x, y) and hv′(x, y) are equal every-

where, except for (x, y) such that x ≤ c1+kC

k
and y ≤ c2+kC

k
and either x ≥ c1+kC/2

k
or

y ≥ c2+kC/2
k

. By the third condition of “faithful”, there are at most 8k1−2B+C histogram
entries of h in this intermediate region. These can be moved so as to equalize the histogram
entries in this region to those of hv′ at a per-histogram entry cost of at most 4k

B

k
, where the

factor of 4 is because x, y ≤ 2kB, and the cost is at most x+y, as these histogram entries will
be sent to (0, 0). Hence the contribution towards the cost is at most 4k

B

k
·8k1−2B+C = 32k−B+C.

Summing these bounds yields the lemma.

We now define the two-dimensional analog of the earthmover schemes of Section 3.2.
As we are working with a distance metric between two-dimensional generalized histograms
that is in terms of the histogram entries, rather than the probability mass, our scheme will
describe a manner of moving histogram entries. We repurpose much of the “Chebyshev
bump” machinery of Section 3.2.

Definition 3.34. For a given k, a β-bump histogram-moving scheme is defined by a sequence
of pairs of positive real numbers {(ri, ri)}, the bump centers, and a sequence of corresponding
functions {fi} : [0, 1]2 → R such that

∑∞
i=0 fi(x, y) = 1 for all x, y, and each function



CHAPTER 3. ESTIMATING THE UNSEEN: SUBLINEAR SAMPLE ESTIMATORS
FOR ENTROPY, SUPPORT SIZE, AND OTHER PROPERTIES 67

fi may be expressed as a linear combination of products of Poisson functions, fi(x, y) =∑∞
j,`=0 aij`poi(kx, j)poi(kx, `), such that

∑∞
j,`=0 |aij`| ≤ β.

Given a generalized histogram h, the scheme works as follows: for each x, y such that
h(x, y) 6= 0, and each integer i ≥ 0, move h(x, y) · fi(x, y) histogram entries from (x, y) to
the corresponding bump center (ri, ri). We denote the histogram resulting from this scheme
by (r, f)(h).

Definition 3.35. A bump histogram-moving scheme (r, f) is ε-good if for any generalized
histogram h, the histogram distance W (h, (r, f)(h)) ≤ ε.

The histogram-moving scheme we describe will use a rectangular mesh of bump centers,
and thus it will prove convenient to index the bump centers, and corresponding functions via
two subscripts. Thus a bump center will be denoted (ri, rj), and the corresponding function
will be denoted fij.

Definition 3.36. Let s = 0.1 log k, and let Bi(x) denote the (one dimensional) Chebyshev
bumps of Definition 3.17, corresponding to s = 0.1 log k (as opposed to 0.2 log k as in Defi-
nition 3.17). We define functions fij for i, j ∈ [s− 1] ∪ {0}, by

fij(x, y) = Bi(x)Bj(y).

Definition 3.37. The Chebyshev histogram-moving scheme is defined in terms of k as fol-
lows: let s = 0.1 log k. For i ≥ s or j ≥ s, define the i, jth bump function fij(x, y) =
poi(kx, i)poi(ky, j) and associated bump center (ri, rj) = ( i

k
, j
k
). For i, j < s let fi,j(x, y) =

Bi(x)Bj(y) and define their associated bump centers (ri, rj) =
(

2s
k

(1− cos( iπ
s

)), 2s
k

(1− cos( jπ
s

))
)
.

The following lemma follows relatively easily from the corresponding lemmas in the one-
dimensional setting (Lemmas 3.19 and 3.20), and shows that the above bump scheme is a
4k0.3-bump histogram-moving scheme.

Lemma 3.38. Each fij(x, y) may be expressed as

fij(x, y) =
∞∑

`,m=0

aij,`,mpoi(kx, `)poi(ky,m)

for coefficients satisfying
∑∞

`,m=0 |aij,`,m| ≤ 4k0.3. Additionally, for any x, y∑
i,j≥0

fij(x, y) = 1.

Proof. To prove the first claim, in the proof of Lemma 3.19, we showed thatBi =
∑∞

j=0 aijpoi(kx, j)

with
∑

j≥0 |aij ≤ 2e
3
2
s. Thus in our setting, as s = 0.1k, we have that

∑∞
`,m=0 |aij,`,m| ≤

(2e
3
2
s)2 = 4k0.3, as desired.
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To prove the second claim, by Lemma 3.20, we have the following: for i ≥ s, we have∑
j≥0 fij(x, y) = poi(kx, i)

∑
j≥0 poi(ky, j) = poi(kx, i). For i < s,∑

j≥0

fij(x, y) =
∑
j<s

fij(x, y) +
∑
j≥s

fij(x, y)

= Bi(x)
s−1∑
j=0

poi(ky, j) + poi(kx, i)
∑
j≥s

poi(ky, j).

Hence

∑
i,j≥0

fij =

(
s−1∑
i=0

poi(kx, i)

)(
s−1∑
j=0

poi(ky, j)

)

+

(
s−1∑
i=0

poi(kx, i)

)(∑
j≥s

poi(ky, j)

)
+
∑
i≥s

poi(kx, i)

=
∑
i<s

poi(kx, i) +
∑
i≥s

poi(kx, i) = 1.

We now show that the scheme is O(
√
δ)-good, where n = δk log k, and δ ≥ 1

log k
. As in

the one-distribution setting, the proof relies on the “skinnyness” of the Chebyshev bumps,
as shown in Lemma 3.21, together with the bound on the support size.

Lemma 3.39. The Chebyshev histogram-moving scheme of Definition 3.37 is O(
√
δ)-good,

where n = δk log k, and δ ≥ 1
log k

.

Proof. We begin by analyzing the contribution towards the cost of h(x, y) for x, y ≤ s
k
. Note

that we can decompose the cost of moving the histogram entry at (x, y) to the bump centers
(ri, rj) into the component due to the movement in each direction. For the skinny bumps, the
per-histogram entry cost of movement in the x direction is simply given by

∑s−1
i=0 Bi(x)|x−ri|,

which from Lemma 3.21 as employed in the proof of Lemma 3.22, is bounded by O(
√

x
ks

). As

n = δk log k, and h(x, y) ≤ min( 1
x
, 1
y
, 2n), the total cost of the skinny bumps is thus bounded

by O(n ·
√

1/n
ks

) = O( 1√
δ
). For the wide bumps, the per-histogram entry cost is bounded by

the following telescoping sum∑
i≥s

poi(kx, i)(| i
k
− x|) =

∑
i≥s

poi(kx, i)
i

k
−
∑
i≥s

poi(kx, i+ 1)
i+ 1

k
= poi(kx, s)

s

k
.

And hence the total cost is at most supx≤s/k
(

1
x
poi(kx, s) s

k

)
= O(1/

√
s).
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For (x, y) such that either x > s
k

or y > s
k
, by the analysis of the skinny bumps above,

the contribution to the cost from the skinny bumps is trivially seen to be O(1/
√
s). For the

wider bumps, as above we have the following telescoping sum

∑
i≥kx

poi(kx, i)(| i
k
− x|) =

∞∑
i≥kx

poi(kx, i)
i

k
−

∞∑
i≥kx

poi(kx, i+ 1)
i+ 1

k

= poi(kx, dkxe)dkxe
k

.

Similarly, ∑
i<kx

poi(kx, i)(| i
k
− x|) = poi(kx, bkxc)bkxc

k
.

Thus the cost of the wide bumps, per histogram entry, is at most O(
√
x/k). From our lower

bounds on either x or y, the histogram entry at (x, y) can be at most k/s, and hence the
total cost of this portion of the histogram moving scheme is at most O(k

s

√
s/k2) = O(1/

√
s),

as desired.

We are now equipped to assemble the pieces, and prove the performance guarantee of
our `1 distance estimator. The proof mirrors that of Theorem 3.1; we leverage the fact that
each Chebyshev bump can be expressed as a low-weight linear combination of Poisson func-
tions, and hence given two generalized histograms corresponding to feasible points of Linear
Program 3.30 that have low objective function, after applying the Chebyshev histogram-
moving scheme, the resulting generalized histograms will be extremely similar. Together
with Lemma 3.33 showing the existence of a feasible point that is close to the true his-
togram, all generalized histograms corresponding to solutions to the linear program (with
low objective function) will be close to the true histogram, and in particular, will have similar
`1 distance.

Proof of Theorem 3.3. Let h denote the generalized histogram of the pair of distributions
from which the samples were drawn. Let g1 denote the generalized histogram whose exis-
tence is guaranteed by Lemma 3.33, satisfying W (g1, h) ≤ O(k−

B
2

+D+k−B+C), corresponding
to a feasible point of the linear program with objective function at most α. Let g2 denote
the generalized histogram output by Algorithm 3.29, and hence corresponds to a solution
to the linear program with objective function at most α. Let g′1, g

′
2 denote the generalized

histograms that result from applying the Chebyshev histogram-moving scheme of Defini-
tion 3.37 to g1 and g2, respectively. By Lemma 3.39, W (gi, g

′
i) = O(

√
δ). We now show that

W (g′1, g
′
2) = O(k−B+C).

The proof is nearly identical to that of Theorem 3.1, and we simply summarize the
contributions to the distance from each region of bump centers, and the arguments are
analogous to those of the one-distribution setting: the contribution to W (g′1, g

′
2) from the

bump centers (ri, rj) for i, j ≤ s is bounded by O(s2αk0.3 s
k
). The additional contribution

from bump centers (ri, rj) with i ≤ c1, and j ≤ c2, not including the already counted bumps
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with i, j ≤ s is bounded by O(c1c2α
c1+c2
k

) = O(k3β−1α). The contribution from (ri, rj) for
either i ≥ c1 + 3

4
kC or j ≥ c2 + 3

4
kC is o(1/k), as h and g are identical in this region. The

remaining contribution, from the intermediate zone corresponding to bump centers (ri, rj)
with i ∈ [c1, c1 + 3

4
kC] and j ≤ c2 + 3

4
kC, or with j ∈ [c2, c2 + 3

4
kC] and i ≤ c1 + 3

4
kC, contributes

at most O(k1−2B+C kB
k

) = O(k−B+C).
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Chapter 4

Two Multivariate Central Limit
Theorems

Our information theoretic lower bounds on the sample size required to accurately estimate
entropy, support size, and variational distance will rely on a characterization of the distri-
butions of the “fingerprint” derived from a sample consisting of k independent draws from
a discrete distribution. Our characterization of these distributions of fingerprints—high di-
mensional discrete distributions—will rely on two new multivariate central limit theorems.
We devote a separate chapter to these central limit theorems, as we suspect that these limit
theorems will have many applications beyond property estimation, and may be of broader
interest to the computer science, information theory, and statistics communities.

Despite the increasing understanding of the various settings for which central limit the-
orems apply, most of the attention has been on univariate formulations. And as one might
expect, the number of useful formulations of the central limit theorem seems to grow with
the dimension; it is, perhaps, not surprising that the particularly natural and useful versions
we prove here are absent from the statistics literature [38].

Our first central limit theorem relates the sum of independent random variables to the
multivariate Gaussian of corresponding mean and covariance. As with the Berry-Esseen
bound, and the classic multivariate central limit theorem of Götze[61], our bound is in terms
of what may be considered the third moments of the distribution, under a suitable change
of basis. We note that our bounds have an extra logarithmic term, though we suspect this
could be removed with a tighter analysis.

The Berry-Esseen theorem bounds convergence to the Gaussian in terms of the maximum
discrepancy between their respective cumulative distribution functions. Multiplying by two,
this metric may be seen as a stand-in for the following: the maximum, over all intervals in
R, of the discrepancy between the probabilities of that interval under the two distributions.
Götze’s limit theorem can be thought of as generalizing this notion in the natural way to
higher dimensions: convergence is shown relative to the discrepancy between the probabil-
ities of any convex set ([61], and see [26] for discussion). Applying this result, intuitively,
seems to require decomposing some high-dimensional set into small convex pieces, which,
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unfortunately, tends to weaken the result by exponential factors. It is perhaps for this reason
that, despite much enthusiasm for Götze’s result, there is a surprising absence of applications
in the literature, beyond small constant dimension.

For our purposes, and, we suspect, many others, convergence with respect to a more
versatile distance metric is desired. The bound in our first central limit theorem is in terms
of (Euclidean) earthmover distance (also known as the Wasserstein metric). Our proof of
this central limit theorem is via Stein’s method—a robust and elegant approach to proving
central limit theorems—to which we provide a brief introduction in Section 4.2.

In Section 4.4 we then leverage this earthmover central limit theorem to prove a stronger
but more specific central limit theorem for “generalized multinomial” distributions—a large
class of discrete distributions (supported on the points of the integer lattice), parameterized
by matrices, that generalize binomial and multinomial distributions and describe many dis-
tributions encountered in computer science (for example, the distributions considered in [47,
48, 114, 131]). We show that such distributions are close in total variational distance (`1

distance) to the Gaussian of corresponding mean and covariance that has been discretized so
as to be supported on the integer lattice. This second central limit theorem, in terms of the
extremely stringent `1 metric, will be one of the keystones of the proof of our lower bounds
for property estimation given in Chapter 5.

4.1 Definitions and Discussion of Results

Our first central limit theorem, proved directly via Stein’s method, applies to the general
setting of sums of multivariate independent random variables. Given a random variable Sn
that is the sum of n independent random variables X1, . . . , Xn in Rk, we aim to bound the
earthmover distance (also known as the Wasserstein distance) between the distribution of
Sn and the multivariate Gaussian G, which we will denote as dW (Sn, G). Intuitively, this
distance dW (A,B) is defined as “the minimum, over all schemes of moving the probability
mass of A to make B, of the cost of moving this mass, where the per-unit cost of moving
mass from point x to point y is simply the (Euclidian) distance between x and y.” It is
often easier to define and work with the dual formulation of earthmover distance (this is
the Kantorovich-Rubinstein theorem, [77], and may be intuitively seen as what one would
expect from linear programming duality):

Definition 4.1. Given two distributions A,B in Rk, then, letting Lip(Rk, 1) denote the set
of functions h : Rk → R with Lipschitz constant 1, that is, where for any x, y ∈ Rk we have
|h(x)− h(y)| ≤ ||x− y||, then the earthmover distance between A and B is defined as

dW (A,B) = sup
h∈Lip(Rk,1)

E[h(A)]− E[h(B)].

Our first central limit theorem is the following:
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Figure 4.1: The binomial distribution with p = 0.1 and 50 draws (red bars), compared with
the Gaussian distribution of matching mean and variance (blue curve). Theorem 4.1, implies
that the earthmover distance between these distributions is at most 0.9(2.7 + 0.83 log 50).

Theorem 4.1. Given n independent distributions {Zi} of mean 0 in Rk and a bound β such
||Zi|| < β for any i and any sample, then the earthmover distance between

∑n
i=1 Zi and the

normal distribution of corresponding mean (0) and covariance is at most βk(2.7+0.83 log n).

Figure 4.1 provides a simple illustration of Theorem 4.1, in the univariate setting (k = 1);
of course, in the univariate setting, such central limit theorems are standard (see [17]).

We note the parameters of Theorem 4.1: as more and more random variables are added
in, the performance of the approximation only gets very mildly worse, increasing with the
logarithm of the number of random variables, n. In fact, we strongly suspect that, in
analogy with univariate results, there should be no dependence on n in the theorem. The
linear dependence on k, the dimension, is more fundamental; it is not hard to show that
this dependence must be of order at least

√
k, so one might conjecture a tight form of the

theorem’s bound to be Θ(β
√
k).

We note that it is somewhat more standard for central limit theorems of this type to
be stated in terms of third moments, instead of a bound β on each random variable, and
our approach can obtain such bounds, though we favor the clarity of Theorem 4.1, which is
sufficient for our applications.

To provide algorithmic lower-bounds, we must work with a much more stringent distance
metric than earthmover distance. In our second central limit theorem, we work with total
variational distance (sometimes referred to as “statistical distance” or `1 distance). Funda-
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mentally, if distributions A and B have total variational distance 0.1, then any algorithm
taking an input drawn from A must behave identically at least 90% of the time to the
algorithm run on an input drawn from B.

We first note that the conditions of Theorem 4.1 are not strong enough to imply any
sort of total variational distance bound: the discrete distribution illustrated in Figure 4.1
has (maximal) total variational distance 1 from its Gaussian approximation. However, the
intuition for our second central limit theorem is the observation that the total variational
distance between the two distributions of Figure 4.1 is in fact very small if we first round
the Gaussian distribution to be supported on the lattice points. We now define the class of
distributions to which our second limit theorem will apply.

Definition 4.2. The generalized multinomial distribution parameterized by a nonnegative
matrix ρ each of whose rows sum to at most 1, is denoted Mρ, and is defined by the following
random process: for each row ρ(i, ·) of matrix ρ, interpret it as a probability distribution over
the columns of ρ—including, if

∑k
j=1 ρ(i, j) < 1, an “invisible” column 0—and draw a column

index from this distribution; return a row vector recording the column sums (i.e. the ith index
is the total number of rows that selected the ith column).

The “invisible” column is used for the same reason that the binomial distribution is taken
to be a univariate distribution; while one could consider it a bivariate distribution, counting
heads and tails separately, it is convenient to consider tails “invisible”, as they are implied
by the number of heads.

Definition 4.3. The k-dimensional discretized Gaussian distribution, with mean µ and
covariance matrix Σ, denoted N disc(µ,Σ), is the distribution with support Zk obtained by
picking a sample according to the Gaussian N (µ,Σ), then rounding each coordinate to the
nearest integer.

Our second central limit theorem, that we leverage for our property estimation lower
bounds in Chapter 5, is the following:

Theorem 4.2. Given a generalized multinomial distribution Mρ, with k dimensions and n
rows, let µ denote its mean and Σ denote its covariance matrix, then

Dtv

(
Mρ,N disc(µ,Σ)

)
≤ k4/3

σ1/3
· 2.2 · (3.1 + 0.83 log n)2/3,

where σ2 is the minimum eigenvalue of Σ.

The above theorem implies that if σ2 = ω(k8 log4 n) then the multinomial distribution is
well-approximated by the natural discrete Gaussian approximation.

We overview some of the key ideas of the proof. Note that even among distributions
over the lattice points, bounds on the earthmoving distance do not necessarily translate into
bounds on total variational distance—consider a distribution supported on the even integers,
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versus one supported only on the odd integers, or some much worse high-dimensional ana-
logue. However, one elementary and completely general way to convert earthmover distance
bounds, such as those of Theorem 4.1, into total variational distance bounds is to convolve
the distributions by a smooth distribution that is ”wide enough”.

Thus the total variational distance between convolved versions of these distributions is
small. We must, however, “deconvolve” to achieve the desired result. Deconvolution, in
general, is very poorly behaved and can blow up badly. The saving grace in our setting
is the fact that any multinomial distribution is in fact unimodal in each coordinate direc-
tion. (Intuitively, at least for the one-dimensional case, unimodality is what prevents one
distribution from being supported on, say, only the even integers.) Specifically, we prove a
“deconvolution lemma” that has good bounds when the result of deconvolution is unimodal.

While binomial distributions are trivially unimodal, the analysis rapidly becomes com-
plicated. The general result for the univariate case is known as Newton’s inequalities. The
multivariate case, which we rely on in our proof of Theorem 4.2, was proven only recently in
a 2008 work of Gurvits—see Fact 1.10:2 of [64].

4.2 Stein’s Method

Since Stein’s seminal paper [118], presented in 1970, describing an alternative proof approach—
what became known as “Stein’s method”— for proving Berry-Esseen-style central limit the-
orems, there has been a blossoming realization of its applicability to different settings. In
particular, there have been several successful applications of Stein’s method in multivariate
settings [39, 61, 111]. To prove our first central limit theorem, we closely follow the treatment
for the multivariate limit theorem given in Bhattacharya and Holmes’ exposition (and slight
correction) of the result of Götze [26, 61] . For a more general introduction to Stein’s method,
see [40]. In the remainder of this section, we provide a very basic overview of Stein’s method,
and illustrate its application by proving a very simple univariate central limit theorem.

The goal of central limit theorems is to argue that some peculiar distribution X (perhaps
a sum of independent random variables), is close, with respect to some specified metric, to a
“nice” distribution, G (typically a Gaussian). In its most general form, the basic approach
of Stein’s method is to consider some transformation T whose unique fixed point is the
distribution G; thus if one applies T to the distribution X, and finds that T (X) = X, one
can conclude that X is, in fact, identical to G. Intuitively, it is tempting to hope that if
T (X) is very similar to X, then X should be close to G (in some metric), and that if T (X)
is drastically different than X, X must be very far from the fixed point of the map T , and
thus X and G will be far apart. Thus the hope is that rather than needing to compare
the distribution X directly to the distribution G, it will suffice to simply compare X to the
transformed distribution T (X). Conveniently, rather than even comparing X to T (X), at
least in the case of the Gaussian, we will be able to simulate performing the transformation
T while only altering the set of “test functions”. To summarize, rather than comparing X
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to G, it will suffice to compare X to T (X), and furthermore, we will be able to perform that
comparison by only altering the set of test functions.

In the case where the target distribution, G, is a Gaussian with isotropic covariance,
the corresponding transformation T is known as the Ornstein–Uhlenbeck process, and corre-
sponds to the procedure of adding a small amount of random noise to the distribution, and
then scaling the distribution back towards the origin in such a manner so as to preserve the
variance of the distribution (by compensating for the increase in variance effected by adding
the small amount of random noise). The unique fixed point of such a transformation is the
Gaussian, and it is not hard to see that after repeated applications of such a transformation,
the resulting distribution will tend to a Gaussian.

Stein’s method is especially suited to the Wasserstein metric because the Ornstein–
Uhlenbeck process is a continuous transformation, and thus will interact best with a set
of continuous test function. For the reminder of this section, we will take H to be the set of
smooth functions with Lipschitz constant 1.

Let us now consider the effect that the Ornstein–Uhlenbeck process will have on E[f(X)],
for some function f ∈ H. It is not hard to see that the addition of some small amount of
random noise to X will increase E[f(X)] in proportion to the second derivative E[f ′′(X)]; the
rescaling of X towards the origin will decrease E[f(X)] in proportion to E[Xf ′(X)]. If our
reasoning is correct, for the Gaussian distribution G, we should have E[f ′′(G)−Gf ′(G)] = 0,
for any smooth function f with bounded derivative. A simple integration shows that this
identity holds; letting g(x) = f ′(x), integration by parts yields:

E[g′(G)] =

∫
x∈R

g′(x)e−x
2/2dx

=
[
g(x)e−x

2/2
]∞
−∞

+

∫
x∈R

xg(x)e−x
2/2dx

=

∫
x∈R

xg(x)e−x
2/2dx = E[Gg(G)].

Thus if X is a gaussian, E[g′(X)−Xg(X)] = 0. We now show that the degree to which
this expectation deviates from zero is related to how far X is from the Gaussian. A variant
of the above integration can also be used to show the following identity:

E[g(X)]− E[g(G)] = E[h′g(X)−Xhg(X)],

where the functions g and hg are related by hg(x) := ex
2/2
∫ x
−∞ (g(t)− E[g(G)]) e−t

2/2dt.
It is not hard to show that for well-behaved functions g, hg will also be well-behaved. In
particular, it is not hard to show that ||h′′g || ≤ ||g′||. Given this identity, we now prove a
simple univariate central limit theorem.

Let X = 1√
n

∑n
i=1 Xi, where the Xi are identical and independent random variables with

expectation 0, and unit variance, and thus X has mean 0 and unit variance. We wish to prove
a central limit theorem in terms of Wasserstein distance, thus we will take H = Lip(R, 1). By
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the above identity DW (X,G) = supg∈H |E[g(X)]−E[g(G)]| = supg∈H |E[h′g(X)−Xhg(X)]|.
We first evaluate the second term on the right, and then evaluate the first term. Since Xi, Xj

are identical, E[Xhg(X)] = nE[X1√
n
hg(X)]. Letting X ′ = 1√

n

∑n
i=2, and Taylor expanding

hg(X) about X ′ yields the following:

E[Xhg(X)] =
√
nE[X1hg(X)]

=
√
nE[X1(hg(X

′) +
X1√
n
h′g(X

′))] + α, for some α with |α| ≤ 1

2
√
n
||h′′g ||E[|X3

1 |]

= E[h′g(X
′)] + α,

where the last line followed by using the facts that Xi, Xj are independent for i 6= j and the
fact that E[Xi] = 0. To conclude, we evaluate E[h′g(X)] by Taylor expanding h′g(X) about
X ′, to yield E[h′g(X)] = E[h′g(X

′)] + β, for |β| ≤ 1√
n
||h′′g ||E[|X1|]. Thus, recalling that for

g ∈ Lip(1), ||h′′g || ≤ 2, we obtain the usual third moment bound, with the correct factor of
1√
n
:

DW (X,G) = sup
g∈H
|E[h′g(X)−Xhg(X)]| ≤ 2 + E[|X1|3]√

n
.

While the analysis becomes considerably more involved in the multivariate case, the basic
framework and intuition of Stein’s method remains the same.

4.3 A Multivariate Central Limit Theorem via Stein’s

Method

We now begin our proof of Theorem 4.1. We prove this as a consequence of the following
theorem, which is somewhat tighter though more unwieldy. As it turns out, if the variance
of
∑n

i=1 Zi is much larger in a certain direction than in others, then the earthmover bound
is more forgiving of draws from Zi that are large in that direction.

Theorem 4.3. Given n independent distributions {Zi} in Rk, each having mean 0, and
having total covariance equal to k × k matrix Σ, let T be the Cholesky factorization of Σ—
that is, a k × k matrix such that TT ᵀ = Σ, making T−1

∑n
i=1 Zi have covariance equal to

the k × k identity matrix. Then the earthmover distance between
∑n

i=1 Zi and the normal
distribution of mean 0 and covariance Σ is at most

n∑
i=1

1.16E
[
||Zi|| · ||T−1Zi||

]
·E
[
||T−1Zi|| log

(
1 +

2.76

||T−1Zi||

)]
+ 0.49E

[
||Zi|| · ||T−1Zi||2 · log

(
1 +

9.41

||T−1Zi||

)]
. (4.1)

We prove this theorem using an adaptation of Stein’s method as implemented for the
multivariate case in [61]. (See also [26].) Before proving Theorem 4.3, we first show that it
implies the more simple limit theorem of Theorem 4.1.
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Proof of Theorem 4.1. We prove this from Theorem 4.3. In Equation 4.1 we note that both
the first and second term have exactly one factor of ||Zi||, which we may upper-bound by β.
Further, since the function f(x) = x log(1+ 1

x
) is increasing for positive x, the rearrangement

inequality implies that the first term is bounded by the corresponding expression with all
parts put inside a single expectation. Thus Equation 4.1 is bounded by

β

n∑
i=1

E

[
||T−1Zi||2

(
1.16 log

(
1 +

2.76

||T−1Zi||

)
+ 0.49 log

(
1 +

9.41

||T−1Zi||

))]
(4.2)

Define a new distribution Y such that for every vector x,

Pr[Y = x] =
1

c
||x||

n∑
i=1

Pr[T−1Zi = x],

where c =
∑n

i=1E[||T−1Zi||] is chosen so that Y is a valid distribution (that is, having total
probability mass 1). (If the Zi are continuous random variables, we define the distribution
Y correspondingly.) We note that, letting g(x) = x · (1.16 log(1 + 2.76

x
) + 0.49 log(1 + 9.41

x
)),

we have that Equation 4.2 equals βc · E[g(||Y ||)]. The concavity of f implies the concav-
ity of g, which implies by Jensen’s inequality that E[g(||Y ||)] ≤ g(E[||Y ||]). We have that
E[||Y ||] = 1

c

∑n
i=1E[||T−1Zi||2] = E [||T−1

∑n
i=1 Zi||] = k

c
, since covariance adds for inde-

pendent distributions, and T is the matrix that transforms
∑n

i=1 Zi to have covariance the
identity matrix.

Thus the earthmover distance is bounded by βk(1.16 log(1 + 2.76c
k

) + 0.49 log(1 + 9.41c
k

)).
As this is an increasing function of c, it remains to bound c. We can crudely bound c by
defining the distribution W that uniformly picks i ∈ {1, . . . , n} and then draws a sample
from T−1Zi; we note that c = n · E[||W ||]. We bound c by observing that E[||W ||2] = k

n
,

from which, by the convexity of the squaring function and Jensen’s inequality, we have that
c = nE[||W ||] ≤ n

√
E[||W ||2] =

√
nk ≤ k

√
n. Thus the earthmover distance is bounded by

βk(1.16 log(1 + 2.76
√
n) + 0.49 log(1 + 9.41

√
n)), which, for n ≥ 1 is easily seen to be less

than the desired bound of βk(2.7 + 0.83 log n).

We now begin our proof of Theorem 4.3. It will be convenient for us to assume that our
test functions, h, in addition to being Lipschitz continuous, are also differentiable. We note
that even restricting the test functions to be smooth does not affect the distance defined with
respect to such a class of functions, as, for any Lipschitz-continuous function h, letting hε be
the convolution of h with a Gaussian of radius ε for any ε > 0, we note that hε is smooth,
and |h(x)− hε(x)| ≤ ε

√
k; thus for any random variables A, limε→0E[hε(A)] = E[h(A)], and

the earthmover distance definition remains unaltered.

Proof of Theorem 4.3. We let Xi = T−1Zi and work with Xi instead of Zi throughout. While
the earthmover distance in the original basis is defined via the supremum over differentiable
test functions in Lip(Rk, 1), when we work with Xi, the test functions instead range over
T ◦ Lip(Rk, 1), that is, for ` ∈ Lip(Rk, 1), we take h(x) = `(Tx).
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The heart of Stein’s method consists of constructing a simple transformation h → fh
that takes test functions h ∈ T ◦ Lip(Rk, 1) and transforms them to appropriate functions
fh such that for any distribution Sn, we have

E[h(Sn)]− E[h(Φ)] = E[Sn · ∇fh(Sn)−4fh(Sn)], (4.3)

where 4fh represents the Laplacian of fh and ∇fh the gradient of fh. When one takes
Taylor expansions of each of the two terms on the right hand side, one can arrange to have
a pair of terms that have second-order dependence on Sn cancel, leaving only third-order
terms remaining, which is what will yield the third-order dependence in the theorem.

We cite [26] for the result that Equation 4.3 is satisfied when, letting φr(x) , (2πr2)−k/2e−
||x||
2r2

be the k-dimensional Gaussian of mean 0 and radius r, we define

fh(x) ,
∫ ∞

0

(h ∗ φ√1−e−2s)(e−sx)− E[h(Φ)] ds, (4.4)

where we consider h ∗ φ0 = h.
We take Sn =

∑n
i=1Xi, and let S−i denote Sn −Xi, that is, the sum of samples from all

but one of the distributions; by definition S−i is independent of Xi. We use the first-order
expansion f(x+y) = f(x)+

∫ 1

0
y ·∇f(x+ty) dt, where y ·∇f(x+ty) is simply the directional

derivative of f in the direction y evaluated at x+ ty. In coordinates, this is

f(x+ y) = f(x) +

∫ 1

0

k∑
a=1

y(a)Daf(x+ ty) dt,

where we use Da to denote the partial derivative in the ath coordinate. Similarly, the
second-order expansion is

f(x+ y) = f(x) + y · ∇f(x) +

∫ 1

0

(1− t)
k∑

a,b=1

y(a)y(b)Dabf(x+ ty) dt,

where as above,
∑k

a,b=1 y(a)y(b)Dabf(x + ty) is just the “directional second derivative” of
f , in the direction y, evaluated at x + ty. Thus we may expand Sn · ∇f(Sn) =

∑n
i=1Xi ·

∇f(S−i +Xi) =
∑n

i=1

∑k
a=1Xi(a)Daf(S−i +Xi) to second order as

n∑
i=1

k∑
a=1

Xi(a)

(
Daf(S−i) +

(
k∑
b=1

Xi(b)Dabf(S−i)

)

+

(∫ 1

0

(1− t)
k∑

b,c=1

Xi(b)Xi(c)Dabcf(S−i + t ·Xi) dt

))
. (4.5)

We note that since Xi has mean 0 and is independent of S−i, the first term has expec-
tation 0. We now aim to cancel the expectation of the second term against an expansion of
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4f(Sn). Note that the expected value of the factor Xi(a)Xi(b) in the second term is just the
(a, b)th component of the covariance matrix of Xi, which we write as Cov(Xi)(a, b). Since
by assumption, the sum over i of the covariance matrices Cov(Xi) equals the identity ma-
trix, we may rewrite 4f(Sn) =

∑k
(a=b)=1 Dabf(Sn) =

∑n
i=1

∑k
a,b=1 Cov(Xi)(a, b)Dabf(Sn).

Expanding the ith term of this to first order centered at S−i, for each i, yields

n∑
i=1

k∑
a,b=1

Cov(Xi)(a, b)

(
Dabf(S−i) +

∫ 1

0

k∑
c=1

Xi(c)Dabcf(S−i + t ·Xi) dt

)
, (4.6)

where the expectation of the first term above is seen to be exactly the expectation of the
second term of Equation 4.5, and thus the difference between the expectations of Equations
4.5 and 4.6, which for f = fh equals E[h(Sn)] − E[h(Φ)] by construction, will consist only
of the last, third-order terms from each expression.

Let ζi denote the expectation of the last term of Equation 4.5 for the corresponding i, and
ηi denote the expectation of the last term of Equation 4.6 for the corresponding i. By the
above, dW (Sn,Φ) is thus bounded by the supremum over h ∈ T ◦Lip(Rk, 1) of

∑n
i=1 |ζi|+ |ηi|.

We thus turn to bounding ζi, ηi. We assume throughout that Xi 6= 0, as, when Xi = 0 the
corresponding terms of Equations 4.5 and 4.6 are trivially seen to be 0.

Defining gs(x) = h(e−sx), we note that we may reexpress the first term in the definition

of fh as (h ∗ φ√1−e−2s)(e−sx) = (gs ∗ φ√e2s−1)(x). Letting X̃i denote an independent sample
from the distribution Xi, we note that we may replace Cov(Xi)(a, b) in Equation 4.6 by

E[X̃i(a)X̃i(b)], thus yielding that ηi equals the expectation of∫ ∞
0

∫ 1

0

k∑
a,b,c=1

X̃i(a)X̃i(b)Xi(c)Dabc(gs ∗ φ√e2s−1)(Si + t ·Xi) dt ds,

where we note that the final term E[h(Φ)] of Equation 4.4 is constant, and hence its third
derivative does not contribute to ηi, and is thus omitted in the above equation.

We note that the expression
∑k

a,b,c=1 X̃i(a)X̃i(b)Xi(c)Dabc is just a third directional

derivative, with two differentiations in the direction of the vector X̃i and one in the direction
Xi, which we may denote as DX̃i

DX̃i
DXi . Since convolution commutes with differentiation,

ηi thus equals the expectation of∫ ∞
0

∫ 1

0

(DX̃i
gs ∗DX̃i

DXiφ
√
e2s−1)(Si + t ·Xi) dt ds

=

∫ ∞
0

∫ 1

0

∫
Rk
DX̃i

gs(x)DX̃i
DXiφ

√
e2s−1(Si + t ·Xi − x) dx dt ds

=

∫ ∞
0

∫
Rk
DX̃i

gs(x)

∫ 1

0

DX̃i
DXiφ

√
e2s−1(Si + t ·Xi − x) dt dx ds

Because h, by definition, is the composition of matrix T with a differentiable function of
Lipschitz constant 1, gs is the composition of T with a function of Lipschitz constant e−s
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and thus we can bound the absolute value of this last expression by∫ ∞
0

||TX̃i||e−s
∫
Rk

∣∣∣∣∫ 1

0

DX̃i
DXiφ

√
e2s−1(t ·Xi + x) dt

∣∣∣∣ dx ds, (4.7)

where we have made the substitution Si − x → x. We bound the integral over Rk in two
ways. First, since a univariate Gaussian of variance r2 is unimodal, the integral of the
absolute value of its derivative is simply twice its maximum, namely 2 · 1√

2πr2
. Since φr

can be expressed as the product of k univariate Gaussians along orthogonal basis directions,

each of variance r2, and having integral 1, we have that
∫
Rk |DX̃i

φ√e2s−1| dx = 2||X̃i||√
2π(e2s−1)

, just

the corresponding univariate expression in the basis direction X̃i
||X̃i||

. Since integration is the

inverse of differentiation, we have that
∫ 1

0
DX̃i

DXiφ
√
e2s−1(t ·Xi + x) dt = DX̃i

φ√e2s−1(Xi +

x) − DX̃i
φ√e2s−1(x), and by the triangle inequality we may thus bound the Rk integral of

Equation 4.7 as twice what we just computed: 4||X̃i||√
2π(e2s−1)

.

For large s, however, this bound is not effective, and in this case we instead take∫
Rk

∣∣∣∣∫ 1

0

DX̃i
DXiφ

√
e2s−1(t ·Xi + x) dt

∣∣∣∣ dx ≤ ∫
Rk

∫ 1

0

∣∣DX̃i
DXiφ

√
e2s−1(t ·Xi + x)

∣∣ dt dx
=

∫
Rk

∣∣DX̃i
DXiφ

√
e2s−1(x)

∣∣ dx
Letting yi = Xi

||Xi|| denote the unit vector in the Xi direction, and zi denote an orthogonal

unit vector such that, for real numbers u, v we have X̃i = u · yi + v · zi, we thus have
DX̃i

DXi = ||Xi||(u ·D2
yi

+ v ·DziDyi), and by the triangle inequality we may bound∫
Rk

∣∣DX̃i
DXiφ

√
e2s−1(x)

∣∣ dx ≤ ||Xi||
∫
Rk

∣∣u ·D2
yi
φ√e2s−1(x)

∣∣+
∣∣v ·DyiDziφ

√
e2s−1(x)

∣∣ dx,
(4.8)

where we may now leverage the orthogonality of yi and zi.
As above, we note that since the Gaussian can be expressed as the product of one-

dimensional Gaussians along any orthogonal basis, and since yi and zi are orthogonal unit

vectors, we have that
∫
Rk |DyiDziφ

√
e2s−1(x)| dx =

(
2√

2π(e2s−1)

)2

= 2
π(e2s−1)

, just the square

of the univariate case we computed above. Similarly,
∫
Rk |D

2
yi
φ√e2s−1(x)| dx equals the corre-

sponding expression for a univariate Gaussian, the integral of the absolute value of its second
derivative, which by definition is the total variation of its first derivative. As the derivative
of a univariate Gaussian of variance r2 takes maximum and minimum values at ±r, at which
locations it has values respectively ∓ e−1/2

r2
√

2π
, and has no other local optima, its total variation

is just four times this, which, for r2 = e2s − 1 gives us
∫
Rk |D

2
yi
φ√e2s−1(x)| ds = 4e−1/2

(e2s−1)
√

2π
.
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Thus, since |u|2 + |v|2 = ||X̃i||2, we bound Equation 4.8 as ||Xi||
e2s−1

times |u|4e−1/2
√

2π
+ |v| 2

π
. We

bound this last expression by the Cauchy-Schwarz inequality as ||X̃i||
√(

4e−1/2
√

2π

)2

+
(

2
π

)2
=

||X̃i|| 2π
√

1 + 2πe−1. Equation 4.8 is thus bounded by ||Xi|| · ||X̃i|| 1
e2s−1

2
π

√
1 + 2πe−1. Com-

bining this bound with the bound computed above yields

|ηi| ≤ E

[
||TX̃i|| · ||X̃i||

∫ ∞
0

e−s min

{
4√

2π(e2s − 1)
,
||Xi||
e2s − 1

2

π

√
1 + 2πe−1

}
ds

]
(4.9)

Because the expression for ζi will be similar, we derive a general bound for∫ ∞
0

e−s min{ 1√
e2s − 1

,
α

e2s − 1
}ds.

Note that the first term is less than the second term when
√
e2s − 1 < α, namely, when

s < log
√
α2 + 1. Further, it is straightforward to check that

∫
e−s√
e2s−1

ds = e−s
√
e2s − 1, and∫

e−s

e2s−1
ds = e−s − log es+1√

e2s−1
. Thus we evaluate

∫ ∞
0

e−s min{ 1√
e2s − 1

,
α

e2s − 1
}ds =

∫ log
√
α2+1

0

e−s√
e2s − 1

ds+ α

∫ ∞
log
√
α2+1

e−s

e2s − 1
ds

=
α√
α2 + 1

+ α

[
log

√
α2 + 1 + 1

α
− 1√

α2 + 1

]

= α log

√
α2 + 1 + 1

α
≤ α log

(
1 +

2

α

)
(4.10)

We may thus bound |ηi| from Equations 4.9 and 4.10 by setting α = 1√
2π
||Xi||

√
1 + 2πe−1.

Since 2
π

√
1 + 2πe−1 < 1.16 and 2 · 4√

2π
/( 2

π

√
1 + 2πe−1) < 2.76, we have that

|ηi| < 1.16E

[
||TX̃i|| · ||X̃i||||Xi|| log

(
1 +

2.76

||Xi||

)]
= 1.16E [||TXi|| · ||Xi||]E

[
||Xi|| log

(
1 +

2.76

||Xi||

)]
(4.11)

We now turn to bounding the last term of Equation 4.5, whose expectation we have



CHAPTER 4. TWO MULTIVARIATE CENTRAL LIMIT THEOREMS 83

denoted as ζi. Similarly to above, we have

k∑
a,b,c=1

∫ 1

0

(1− t)Xi(a)Xi(b)Xi(c)Dabcfh(S−i + t ·Xi) dt

=

∫ 1

0

(1− t)D3
Xi
fh(S−i + t ·Xi) dt

=

∫ ∞
0

∫ 1

0

(1− t)D3
Xi

(gs ∗ φ√e2s−1)(S−i + t ·Xi) dt ds

=

∫ ∞
0

∫ 1

0

(1− t)(DXigs ∗D2
Xi
φ√e2s−1)(S−i + t ·Xi) dt ds

=

∫ ∞
0

∫
Rk
DXigs(x)

∫ 1

0

(1− t)D2
Xi
φ√e2s−1(S−i + t ·Xi − x) dt dx ds

≤ ||TXi||e−s
∫ ∞

0

∫
Rk

∣∣∣∣∫ 1

0

(1− t)D2
Xi
φ√e2s−1(t ·Xi + x) dt

∣∣∣∣ dx ds
As above, if we take an orthonormal basis that includes a vector in the direction of Xi

then we can decompose D2
Xi
φ√e2s−1 into the product of the corresponding expression for a

univariate Gaussian in the direction of Xi, and univariate Gaussians along all the other basis

directions. Thus, if we let φ̄r denote the univariate version of φr, namely, φ̄r(x) = 1
r·
√

2π
e−

x2

2r2 ,

then the above integral over Rk equals exactly

||Xi||2
∫ ∞
−∞

∣∣∣∣∫ 1

0

(1− t)φ̄′′√
e2s−1

(x+ ||Xi||t) dt
∣∣∣∣ dx (4.12)

As above, we bound this expression in two ways. First, we bound it by moving the
absolute values inside the integral, swapping the order of integration, and then making the
substitution y = x+ ||Xi||t to yield

||Xi||2
∫ 1

0

∫ ∞
−∞

∣∣∣(1− t)φ̄′′√e2s−1
(y)
∣∣∣ dy dt

The integral may thus be expressed as the product of separate integrals over t and y:
since

∫ 1

0
1 − t dt = 1

2
, and as we computed above,

∫∞
−∞ |φ̄

′′√
e2s−1

(y)| dy = 4e−1/2

(e2s−1)
√

2π
, we have

that Equation 4.12 is at most ||Xi||2 2e−1/2

(e2s−1)
√

2π
.

For the second bound, we first note that we may simplify slightly by replacing (1− t) by
t in Equation 4.12 (this is the change of variables t → (1 − t), x → −x − ||Xi||, relying on
the fact that φ̄′′ is symmetric about 0). It will be convenient to consider the inner integral
as being over R instead of just [0, 1], and we thus introduce the notation (t)[0,1] to represent
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t if t ∈ [0, 1] and 0 otherwise. Thus we bound Equation 4.12 as

||Xi||2
∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

(t)[0,1]φ̄
′′√
e2s−1

(x+ ||Xi||t) dt
∣∣∣∣ dx

= ||Xi||2
∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

(
(t)[0,1] −

(
− x

||Xi||

)
[0,1]

)
φ̄′′√

e2s−1
(x+ ||Xi||t) dt

∣∣∣∣∣ dx
≤ ||Xi||2

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣
(

(t)[0,1] −
(
− x

||Xi||

)
[0,1]

)
φ̄′′√

e2s−1
(x+ ||Xi||t)

∣∣∣∣∣ dx dt
= ||Xi||2

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣
(

(t)[0,1] −
(
t− y

||Xi||

)
[0,1]

)
φ̄′′√

e2s−1
(y)

∣∣∣∣∣ dy dt
= ||Xi||2

∫ ∞
−∞

∣∣∣φ̄′′√e2s−1
(y)
∣∣∣ ∫ ∞
−∞

∣∣∣∣∣(t)[0,1] −
(
t− y

||Xi||

)
[0,1]

∣∣∣∣∣ dt dy
where the first equality holds since φ′′ has integral 0, and hence we can add any multiple
of it (independent of t) to the inner integral; the second equality is just the substitution
x→ y − ||Xi||t.

To bound this integral, we note the general fact that, if a function f has total vari-
ation a, then

∫∞
−∞ |f(x) − f(x − b)| dx ≤ a|b|. Thus since the function (t)[0,1] has total

variation 2, the inner integral is bounded by 2 y
||Xi|| . Since φ̄′′r crosses 0 at ±r, and in-

tegration by parts yields
∫
yφ̄′′r(y) dy = yφ̄′r(y) −

∫
φ̄′r(y) dy = −φ̄r(y)(1 + y2

r2 ) and hence∫∞
−∞ |yφ̄

′′
r(y)| dy = −2

∫ r
0
yφ̄′′r(y) dy+2

∫∞
r
yφ̄′′r(y) = −2φ̄r(0)+8φ̄r(r) = 8e−1/2−2

r·
√

2π
we may thus

bound Equation 4.12 by ||Xi|| 16e−1/2−4√
2π(e2s−1)

.

Thus, similarly to above, we have

|ζi| ≤ ||TXi|| · ||Xi||
∫ ∞

0

e−s min

{
16e−1/2 − 4√
2π(e2s − 1)

,
||Xi|| · 2e−1/2

(e2s − 1)
√

2π

}
ds.

Since 2e−1/2
√

2π
< 0.49 and 2 · 16e−1/2−4√

2π
/2e−1/2
√

2π
< 9.41, we have from Equation 4.10 that

|ζi| < 0.49 · E[||TXi|| · ||Xi||2 log(1 + 9.41
||Xi||)]. Combining this and Equation 4.11 yields the

theorem.

4.4 A Central Limit Theorem for Generalized

Multinomial Distributions

In this section we leverage the central limit theorem of Theorem 4.1 to show our second
central limit theorem that bounds the total variational distance, denoted by Dtv between
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generalized multinomial distributions and (discretized) Gaussian distributions. While The-
orem 4.1 certainly applies to generalized multinomial distributions, the goal of this section
is to derive a bound in terms of the rather more stringent total variational distance. The
main hurdle is relating the “smooth” nature of the Gaussian distribution and earthmover
distance metric to the “discrete” setting imposed by a total variational distance comparison
with the discrete generalized multinomial distribution.

The analysis to compare a Gaussian to a generalized multinomial distribution proceeds in
two steps. Given the earthmover distance bound provided by Theorem 4.1, we first smooth
both sides via convolution with a suitably high-variance distribution to convert this bound
into a total variational distance bound, albeit not between the original two distributions
but between convolved versions of them. The second step is via a “deconvolution” lemma
(Lemma 4.6) that relies on the unimodality in each coordinate of generalized multinomial
distributions.

We begin by showing this unimodality via a result about homogeneous polynomials that
generalizes the classic Newton inequalities.

Given a polynomial p in k variables, and a nonnegative integer vector v ∈ Zk, we denote
by p(v) the coefficient of the term x

v(1)
1 x

v(2)
2 · . . . · xv(k)

k in p.

Fact: Multivariate Newton Inequalities (Fact 1.10:2 of [64]). Given a homogeneous
polynomial p of degree n in k variables, with nonnegative coefficients, if it is the case that for
any complex x1, . . . , xk with strictly positive real parts, p(x1, . . . , xk) 6= 0, then for any non-
negative integer vector v and letting ∆ = (1,−1, 0, . . . , 0) ∈ Zk, we have p2

(v) ≥ p(v+∆)p(v−∆).

(We note that the actual result from [64], in analogy with Newton’s inequalities, is tighter

by a factor
∏

i v(i)!2/
∏

i(v + ∆)(i)!(v −∆)(i)! = v(1)v(2)
(1+v(1))(1+v(2))

, though for our purposes we

need only the simpler bound.)

Definition 4.4. A function f : Z → R+ is log-concave if its support is an interval, and
∀i ∈ Z, f(i)2 ≥ f(i− 1)f(i+ 1).

The logarithm of a log-concave function is concave (interpreting log 0 as −∞); thus any
log-concave function is unimodal (i.e., monotonically increasing to the left of some point,
and monotonically decreasing to the right). We note that we consider “unimodal” in the
non-strict sense, so that, for example, the constant function is unimodal.

Lemma 4.5. Generalized multinomial distributions are log-concave, and hence unimodal, in
any coordinate.

Proof. Given a generalized multinomial distribution parameterized by ρ, where ρ has n rows
and k columns, we define ρ̄ to be the matrix whose columns are indexed 0 through k, and
which consists of ρ extended so that for each i ∈ {1, . . . n},

∑k
j=0 ρ̄(i, j) = 1.

Let p be the homogeneous polynomial of degree n in k variables defined as p(x1, . . . , xk) =∏n
i=1(ρ̄(i, 0)x0+. . .+ρ̄(i, k)xk). We note that for any nonnegative integer vector v, the coeffi-

cient p(v) equals, by definition, the probability of drawing v from the multinomial distribution
(ignoring the implicit “0th coordinate”).
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We invoke the multivariate Newton inequalities (with the coordinates renumbered as nec-
essary) by noting that, first, p clearly has nonnegative coefficients, and second, if x0, . . . , xk
are complex numbers with strictly positive real parts, then each term (ρ̄(i, 0)x0 + . . . +
ρ̄(i, k)xk) will have strictly positive real part, and hence be nonzero, which implies that
p(x0, . . . , xk) 6= 0. Thus the multivariate Newton inequalities imply that the multinomial
distribution (with its “0th coordinate” ignored) is log-concave in its first coordinate; by
symmetry, it is log-concave in every coordinate.

Given this general structural result about the distributions at hand, we now construct
the second ingredient of our proof, the “deconvolution” lemma. What this shows is that,
given a convolution f ∗ g that closely approximates a third function h, we can leverage the
unimodality of f under certain conditions to “deconvolve” by g and relate f and h directly.
We will apply this univariate result in the proof of the central limit theorem by applying it
inductively along lines in each of the k coordinate directions.

Lemma 4.6. Given an integer ` > 0, a unimodal function f : Z → R+, a function g :
{−`,−`+ 1 . . . , `− 1, `} → R+ with

∑
i g(i) = 1, and an arbitrary bounded function h : Z→

R+ then, letting f ∗ g denote the convolution of f and g, we have

∞∑
i=−∞

|f(i)− h(i)| ≤ 10`

(
sup
i
h(i)

)
+

∞∑
i=−∞

|(f ∗ g)(i)− h(i)|.

Proof. Assume that we have scaled f and h so that supi h(i) = 1. Let f− denote the function
that is the (pointwise) minimum of f and 1, and let f+ denote f − f−. We note that f+

and f− are unimodal. For the following inequality, we let [[0, j]] denote the set of integers
{0, . . . , j−1} when j > 0, the set {j, . . . ,−1} when j < 0, and the empty set when j = 0: by
the definition of convolution, two applications of the triangle inequality, and a rearrangement
of terms we have

∞∑
i=−∞

|f−(i)− (f− ∗ g)(i)| =
∞∑

i=−∞

∣∣∣∣∣∑̀
j=−`

g(j)(f−(i)− f−(i− j))

∣∣∣∣∣
≤

∞∑
i=−∞

∑̀
j=−`

g(j)|f−(i)− f−(i− j)|

≤
∞∑

i=−∞

∑̀
j=−`

∑
k∈[[0,j]]

g(j)|f−(i− k)− f−(i− k + 1)|

=

(∑̀
j=−`

g(j)|j|

)
∞∑

i=−∞

|f−(i)− f−(i+ 1)|

≤ `
∞∑

i=−∞

|f−(i)− f−(i+ 1)|.
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Since f− is unimodal and bounded between 0 and 1,
∑

i |f−(i)−f−(i+ 1)| ≤ 2, and we thus
bound the above inequality by 2`.

We note that since f is unimodal, it exceeds 1 on a contiguous (possibly empty) interval,
which we denote [u, v]. Since f ∗ g = f− ∗ g + f+ ∗ g, we have the triangle inequality
|(f ∗ g)(i) − h(i)| ≤ |(f+ ∗ g)(i)| + |(f− ∗ g)(i) − h(i)|. Since f− ∗ g = 1 on the interval
[u + `, v − `], and f+ ∗ g is confined to the interval [u − `, v + `], then we actually have
equality everywhere except the intervals [u − `, u + ` − 1] and [v − ` + 1, v + `]. On these
intervals, we consider the reverse inequality (another triangle inequality) |(f ∗ g)(i)−h(i)| ≥
|(f+ ∗ g)(i)| − |(f− ∗ g)(i)− h(i)| which, since (f− ∗ g)(i) ∈ [0, 1], we bound as being at least
|(f+ ∗ g)(i)|+ |(f− ∗ g)(i)− h(i)| − 2 on these intervals. Thus

∞∑
i=−∞

|(f ∗ g)(i)− h(i)| ≥
∞∑

i=−∞

|(f+ ∗ g)(i)|+
∞∑

i=−∞

|(f− ∗ g)(i)− h(i)|+
u+`−1∑
i=u−`

(−2)

+
v+∑̀

i=v−`+1

(−2)

= −8`+
∞∑

i=−∞

|f+(i)|+
∞∑

i=−∞

|(f− ∗ g)(i)− h(i)|

≥ −10`+
∞∑

i=−∞

|f+(i)|+
∞∑

i=−∞

|f−(i)− h(i)|

= −10`+
∞∑

i=−∞

|f(i)− h(i)|,

where the last inequality is what we proved above, and the last equality is true term-by-term
since the region where f+ is nonzero is exactly the region where f−(i) = 1 ≥ h(i), and thus
we have the lemma.

We are now equipped to assemble the components and prove the central limit theo-
rem. Our central limit theorem related the generalized multinomial distribution to the
“discretized” version of the Gaussian distribution of identical mean and covariance (see Def-
inition 4.3). For convenience, we restate the theorem below:

Theorem 4.2 Given a generalized multinomial distribution Mρ, with k dimensions and n
rows, let µ denote its mean and Σ denote its covariance matrix, then

Dtv

(
Mρ,N disc(µ,Σ)

)
≤ k4/3

σ1/3
· 2.2 · (3.1 + 0.83 log n)2/3,

where σ2 is the minimum eigenvalue of Σ.

Proof. Adopting the notation of Theorem 4.1, we let Zi denote the distribution induced
by the ith row of ρ, that is, a distribution over (0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,
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(0, . . . , 0, 1), where Mρ is thus distributed as
∑n

i=1 Zi. Since the range of Zi has diameter
√

2,
each sample from Zi is within

√
2 of its mean. Theorem 4.1 implies that dW (Mρ,N (µ,Σ)) <

k
√

2(2.7 + 0.83 log n).
For notational convenience, let φ = N (µ,Σ), and let φdisc = N disc(µ,Σ) denote the

corresponding discretized Gaussian of Definition 4.3. We note that, since every point in

Rk is within distance
√
k

2
from a lattice point, dW (φ, φdisc) ≤

√
k

2
≤ k

2
. Thus the triangle

inequality yields dW (Mρ, φdisc) < k
√

2(3.1 + 0.83 log n).
Given positive integers d, `, let Rd,` denote the distribution over Zk where the first d

coordinates are each independent draws from the binomial distribution B(2`, 1
2
), shifted by

−` so as to lie in {−`, . . . , `} and the rest of the coordinates are 0.
The binomial distribution B(2`, 1

2
) is unimodal, with the probability of hitting its mode

bounded by 1√
π`

, which implies that the total variational distance between B(2`, 1
2
) and a

version shifted by an integer c is at most c√
π`

; thus the same holds for shifting Rk,` by c

along any coordinate axis, since each coordinate is distributed as an independent (shifted)
copy of B(2`, 1

2
). By the triangle inequality, if we shift by an integer vector x, then the

total variational distance is at most 1√
π`

∑k
i=1 |x(i)|. The Cauchy-Schwarz inequality yields∑k

i=1 |x(i)| ≤
√
k||x||, yielding a bound on the total variational distance of

√
k√
π`
||x||.

We are now prepared to make the key transformation from stating our central limit the-
orem in terms of earthmover distance, to stating a central limit theorem for total variational
distance.

Consider a particular component of a “scheme to move earth” from Mρ to φdisc; for
example, “move probability mass m from x to y”. The bound of the previous paragraph
implies that the total variational distance between copies of Rk,` centered at x, and at

y, respectively, is at most
√
k√
π`
||x − y||. Thus, in this sense, convolution by Rk,` converts

earthmover bounds to total variational distance bounds, losing a factor of
√
k√
π`

. We conclude
that

dTV (Mρ ∗Rk,`, φ
disc ∗Rk,`) ≤

√
2k · k√
π`

(3.1 + 0.83 log n). (4.13)

Were it not for the convolution by Rk,` in the above expression, we could conclude here. We
now consider how to “remove” these convolutions.

Consider φ (not φdisc) shifted by a vector x. Since φ has variance at least σ2 in every
direction, then, when restricted to any line in the direction of x, φ will be a univariate normal
distribution of variance at least σ2. We may thus bound the total variational distance of φ and
its shifted version by the corresponding univariate bound. Note that the univariate Gaussian
is unimodal, and thus the total variational distance between itself and a version shifted ||x|| is
at most ||x|| times the pdf at its mode, which is at most 1

σ
√

2π
. Applying this bound for each

x drawn from Rk,`, where for each such x, ||x|| ≤ `
√
k we have dTV (φ, φ∗Rk,`) ≤ `

√
k

σ
√

2π
. Since

Rk,` is a distribution on the lattice points, taking φ∗Rk,` and rounding samples to the nearest

integer is distributed identically to φdisc ∗Rk,`. Thus we have dTV (φdisc, φdisc ∗Rk,`) ≤ `
√
k

σ
√

2π
,
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yielding, by the triangle inequality, dTV (Mρ ∗Rk,`, φ
disc) ≤

√
2k·k√
π`

(3.1 + 0.83 log n) + `
√
k

σ
√

2π
Having “removed” the second convolution by Rk,` in Equation 4.13, we now turn to

the first. Recalling that Ri,` is the distribution whose first i coordinates are distributed as
(shifted) versions of the binomial distribution B(2`, 1

2
) where the remaining k− i coordinates

are 0, we aim to “deconvolve” by this binomial, coordinate-by-coordinate, so that when i
reaches 0 we will have the desired central limit theorem. Our tool is Lemma 4.6, which we
will use to show by induction that for every i ∈ {0, . . . , k} we have

dTV (Mρ ∗Ri,`, φ
disc) ≤ (k − i) 5`

σ
√

2π
+

`
√
k

σ
√

2π
+

√
2k · k√
π`

(3.1 + 0.83 log n) (4.14)

Letting i = 0 and ` = 1
62/3σ

2/3k1/3(3.1 + 0.83 log n)2/3 yields the theorem.
To prove Equation 4.14, we assume as our induction hypothesis that it holds for some

i > 0 and will derive it for i − 1. Consider Mρ ∗ Ri,`, M
ρ ∗ Ri−1,`, and φdisc restricted to

a line L in the ith coordinate direction. We note that the pdf of φ restricted to this line
will be a multiple of a univariate normal distribution of variance at least σ2, and thus has
the property that its maximum is at most 1

σ
√

2π
times its integral; as this is true for every

such line, it is also true in expectation for a distribution of lines, and is thus true for the
distribution of lines that will be rounded to L. Thus φdisc restricted to the line L has the
property that its maximum is at most 1

σ
√

2π
times its total. With a view towards applying

Lemma 4.6, we note that Ri−1,` is itself a generalized multinomial distribution, and hence so
is Mρ ∗ Ri−1,`, from which we invoke Lemma 4.5 to see that Mρ ∗ Ri−1,` is unimodal along
L. We thus apply Lemma 4.6 with f equal to the restriction of Mρ ∗ Ri−1,` to L, g equal
to the binomial B(2`, 1

2
) shifted so as to have support on {−`, . . . , `}, and h equal to the

restriction of φdisc to L. Since f ∗ g is the restriction of Mρ ∗Ri,` to L, we conclude that,∑
x∈L

|(Mρ ∗Ri−1,`)(x)− φdisc(x)| ≤ 10`

(
max
x∈L

φdisc(x)

)
+
∑
x∈L

|(Mρ ∗Ri,`)(x)− φdisc(x)|

≤ 10`

σ
√

2π

∑
x∈L

φdisc(x) +
∑
x∈L

|(Mρ ∗Ri,`)(x)− φdisc(x)|

Summing over all such lines L yields the induction (since total variational distance has a
normalizing factor of 1

2
).
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Chapter 5

Lower Bounds for Property
Estimation

In this chapter we leverage the central limit theorem for “generalized multinomial distribu-
tions”, Theorem 4.2, to prove an information theoretic lower bound for property estimation
which shows that the estimators for entropy, distinct elements/support size, and total varia-
tional distance described in Chapter 3 are optimal, up to constant factors for any sufficiently
small constant error.

The connection between our central limit theorem for generalized multinomial distribu-
tions, and estimating symmetric properties of distributions, such as entropy and support
size, is that generalized multinomial distributions capture the distribution of fingerprints,
(F1,F2, . . .), where Fi is the number of domain elements for which we see i representatives
in a sample. To see why, recall that we may assume that we draw k′ ← Poi(k) and then
draw a sample of size k′. In such a setting, the number of times each domain element is
observed is independent of the number of times each other domain element is observed.
Thus the distribution of Poi(k)-sample fingerprints is given as the generalized multinomial
distribution (see Definition 4.2) defined by the matrix M , where there is one row of M for
each domain element, and entry Mi,j is the probability that the ith domain element occurs
exactly j times in a Poi(k)–sized sample.

Our central limit theorem allows us to cleanly reason about the total variational distance
between these distributions of fingerprints. Specifically, this will allow us to argue that there
are pairs of very different distributions p, p′—different in terms of entropy, or support size,
for example—such that there is small total variational distance between the distribution of
fingerprints derived from samples of size k drawn from p and the distribution of fingerprints
derived from samples of size k drawn from p′.

Such a pair of distributions is not, by itself, a lower bound instance; the labels of the
data points (which are not represented in the fingerprints) will be helpful in distinguishing
whether the sample was drawn from p or p′. We can, however, easily construct a lower bound
instance from the pair of distributions, p, p′. Let n be an upper bound on the support size
of distributions, and without loss of generality assume that p and p′ are distributions over
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[2n]. Consider the ensemble of distributions T defined by the following process: select a
random permutation π of [2n], and with probability 1/2 output pπ, and with the remaining
probability output p′π, where pπ is defined to be the distribution obtained by permuting the
labels of distribution p according to permutation π, and analogously for p′π. The lower bound
instance derived from the pair of distributions p, p′ will simply be the task of estimating the
property value of a distribution drawn from the ensemble T . In the case of entropy, for
example, to show that no algorithm on samples of size k samples can estimate the entropy
of a distribution to within error ε = |H(p)−H(p′)|

2
with probability of success at least 1− δ, it

suffices to show that no algorithm when given a sample of size k from a distribution drawn
from T can distinguish whether the sample was drawn from a distribution pπ obtained from
p versus a distribution p′π obtained from p′ with probability more than 1 − δ. As we are
permuting the supports via a random permutation, the labels are meaningless, and the only
useful information from the samples is the fingerprint, to which we may then apply our
central limit theorem.

Our information theoretic lower bound is the following:

Theorem 5.1. For any positive constant φ < 1
4
, there exists a pair of distributions p+, p−

that are O(φ| log φ|)-close in the relative earthmover distance, respectively, to the uniform
distributions on n and n

2
elements, but whose fingerprints derived from k = φ

32
· n

logn
-sized

samples cannot be distinguished with any constant probability greater than 1/2.

Because of the continuity of entropy, and support size (of a distribution all of whose
domain elements occur with probability at least 1/n) with respect to relative earthmover
distance (Fact 3.5), the above theorem yields the following corollary:

Corollary 5.1. For any constant probability of failure δ < 1/2, for sufficiently large n the
following hold:

• For any constant ε < log 2
2
, any algorithm that estimates the entropy of distributions of

support at most n to within additive error ε with probability of success at least 1 − δ
requires a sample of size Ω( n

logn
).

• For any constant ε < 1
4
, any algorithm that estimates the support size of distributions

all of whose domain elements occur with probability at least 1/n to within additive error
εn with probability of success at least 1− δ requires a sample of size Ω( n

logn
).

Further, by choosing a positive ε < 1 and then constructing the distributions p+
ε , p

−
ε

that, with probability ε draw samples from p+, p− respectively and otherwise return another
symbol, ⊥, we note that the entropy gap between p+

ε and p−ε is an ε fraction of what it was
originally, and further that distinguishing them requires a factor 1

ε
larger sample. That is,

Corollary 5.2. For large enough n and small enough ε, the sample complexity of estimating
entropy to within ε grows as Ω( n

ε logn
).
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For the task of estimating total variational distance between a pair of distributions, in
Section 5.6 we leverage Theorem 5.1 to show the following lower bound:

Theorem 5.2. For any constants 0 < a < b < 1
2
, and probability of failure δ < 1/2, for

sufficiently large n, given two samples, drawn from a pair of distributions of support at most
n, distinguishing whether their total variational distance (`1 distance) is less than a or greater
than b with probability of success at least 1− δ, requires samples of size Ω( n

logn
).

Both these lower bounds improve upon the previous best lower bound of n/2O(
√

logn)

shown by P. Valiant [131].
We will construct the p+, p− of Theorem 5.1 explicitly, via Laguerre polynomials. The

key intuition to the construction is that the most naive way to try to distinguish samples
from p+ versus from p− is via their fingerprint expectations. So the first step to construct-
ing indistinguishable distributions is to ensure that the corresponding vectors of fingerprint
expectations are approximately equal. As we show, this is essentially the only step, though
proving that the construction is this “easy” requires considerable work.

5.1 Technique Overview: Fourier Analysis, Hermite

Polynomials, “Fattening”, and the Laguerre

construction

As introduced in Definition 4.2, generalized multinomial distributions capture the distribu-
tion of fingerprints induced by drawing a Poi(k)–sample from a given distribution. And thus
the final step of the proof that p+ and p− are indistinguishable in Poi(k)-samples will be to
apply the central limit theorem for generalized multinomial distributions (Theorem 4.2) to
the distributions of fingerprints of p+, p− respectively, approximating each as a discretized
Gaussian. This will be sufficient provided a) the Gaussians are sufficiently similar, and b) the
total variational distance bound when Theorem 4.2 is applied is suitably small. We consider
each part in turn, and conclude with the intuition behind the Laguerre construction of the
lower bound distributions p+, p−. Throughout we admit the slight abuse of notation and use
p+, p− to refer both to the distributions, as well as to the histograms of the distributions.

Similar Expectations Induce Similar Covariances

For two Gaussians to be statistically close, three things should hold: the Gaussians have
similar expectations; the Gaussians have similar covariances; and the minimum eigenvalue of
the covariance matrix must be large. We begin by describing the intuition for the somewhat
surprising fact that, in the present setting, similar expectations induce similar covariances.

Recall the effect of a single element of probability x on the distribution of fingerprints:
for each integer i > 0, with probability poi(xk, i), that element will occur i times in the
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sample and hence end up incrementing the ith fingerprint entry by 1. Thus the contribution
of this element to the expectation of the ith fingerprint entry equals poi(xk, i).

Similarly, since covariance adds for sums of independent distributions, we may compute
the contribution of an element of probability x to the (i, j)th entry of the fingerprint covari-
ance matrix, which we compute here for the case i 6= j. The covariance of random variables
X, Y is E[XY ]−E[X]E[Y ]; since in our case X represents the indicator random variable for
the event that the element is sampled i times, and Y represents the indicator for the event
that it is sampled j times, E[XY ] = 0 as they can never both occur. Thus the contribution
to the covariance is

−poi(xk, i)poi(xk, j) = −(xk)i+j

e2xki!j!
= −

(
i+j
i

)
2(i+j)

poi(2xk, i+ j).

Our claim that similar expectations imply similar covariances may now be rephrased
as: each “skinny Poisson” function poi(2xk, `) can be approximated as a linear combination
of “regular Poisson” functions

∑
i αi,`poi(xk, i), with small coefficients. Specifically, the

coefficients αi,` allow one to approximate the fingerprint covariances as a linear function of the
fingerprint expectations; thus if two distributions have similar fingerprint expectations, then
they must also have similar fingerprint covariances, since the covariances can be expressed
as functions of the expectations.

We show that one can approximate such a “skinny Poisson” to within ε as a sum of regular
Poissons using coefficients of total magnitude (roughly) no more than 1

ε
. Intuitively, this is

true for exactly the same reasons that the analogous claim holds for Gaussians. However, as
opposed to the relatively simple case of Gaussians, proving this claim is perhaps the most
technical part of this chapter, making heavy use of Hermite polynomials in Fourier space.

CLT Performance

If we apply Theorem 4.2 to the distribution of the first m fingerprint entries, and the covari-
ance matrix of the distribution of these fingerprint entries has minimum eigenvalue σ2, then
the resulting bound on the total variational distance is m4/3

σ1/3 times logarithmic factors. Since
σ2 is never going to exceed O(k), we clearly cannot use m = k. That is, we must apply the
central limit theorem to only a small subset of the fingerprints entries. Additionally, we must
ensure that σ2 is big for this portion—intuitively that the distribution of these fingerprints
is “fat in every direction”.

Set m = log k. We assume that p+ and p− are constructed so as to be supported on
probabilities at most log k

8k
, and have similar fingerprint expectations and covariances. This

bound of log k
8k

ensures that we will almost never see any element of p+ or p− more than log k
times; that is, the portion of the fingerprint below m “captures the whole story”. However,
if we were to try to apply the central limit theorem at this stage, the bound would be
horrendous because the variance in the higher fingerprints (say the mth), is tiny. Thus we
“fatten” the distributions of fingerprints by smearing a small (1/polylog(k)) amount of the
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probability mass in p+ and p− uniformly among probabilities, up to m/k. Because we fatten
p+ and p− identically, their fingerprint expectations and covariances still closely match.
Given the fattened pair of distributions, we can now obtain satisfactory bounds from our
central limit theorem. To complete the argument, we make use of the natural coupling of
the portions of the fingerprints above m, stemming from the identical fattened portions of
the distributions p+, p−.

Thus the Hermite polynomial argument guarantees matching covariances; “fattening” in
conjunction with our central limit theorem for generalized multinomial distributions guaran-
tees all the rest. What remains is to construct p+, p− with matching fingerprint expectations.

The Laguerre Construction

We will construct the pair of histograms, p+, p− explicitly, via Laguerre polynomials. We
begin by letting p+, p− be the uniform distributions over support n and n/2, respectively.
We then modify p+, p− by transferring some of the probability mass to make elements with
higher probabilities, so as to ensure that the fingerprint expectations of Poi(k) sized samples
from p+ and p− roughly agree.

The condition that the expected ith fingerprint entries of p+ and p− agree is simply
that

∑
x:p+(x)6=0 p

+(x)poi(kx, i) =
∑

x:p−(x)6=0 p
−(x)poi(kx, i). Equivalently, define the func-

tion f(x) : [0, 1] → R by f(x) = p+(x) − p−(x). The condition that p+ and p− have the
same expected first j fingerprints can be expressed as

∑
x:f(x) 6=0 f(x)poi(kx, i) = 0, for all

integers i ≤ j. Since poi(kx, i) := e−kxkixi

i!
, this condition is equivalent to the function

g(x) := f(x)e−kx being orthogonal to polynomials of degree at most j. The following easy
fact (proved in Section 5.3) outlines an approach to creating such a function.

Fact. Given a polynomial P of degree j + 2 whose roots {xi} are real and distinct, letting

P ′ be the derivative of P , then for any ` ≤ j we have
∑j+2

i=1
x`i

P ′(xi)
= 0.

To construct f(x), choose a polynomial P (x) = (x−1/n)(x−2/n)
∏j

i=1(x−ri), for some
set of j distinct values ri, with 2/n < ri < 1, then let g(x) be the function that is supported
at the roots of P , and takes value 1/P ′(x) for the j + 2 values of x for which P (x) = 0. To
obtain f(x), simply set f(x) = g(x)ekx.

If we interpret the positive portion of f(x) as p+ and the negative portion as p−, we
will, by the above fact, have two histograms whose first j fingerprint expectations agree.
Additionally, p+ will have some probability mass at probability 1/n, and p− will have some
probability mass at 2/n.

The tricky part, however, is in picking the ri so as to ensure that most of the probability
mass of p+ is on probability 1/n, and most of the mass of p− is on probability 2/n. If
this is not the case, then p+ and p− will not be close (in relative–earthmover distance) to
the uniform distributions over n and n/2 elements, respectively and thus may have similar
entropies, or support sizes, failing us as a lower bound. Further complicating this task, is
that whatever weight is at x > 2/n in g(x), ends up being multiplied by ekx. To offset this
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Figure 5.1: a) The 10th Laguerre polynomial, multiplied by e−x/2x1/4, illustrating that it
behaves as a · ex/2x−1/4 · sin(b ·

√
x) for much of the relevant range.

b) f(x), representing histograms p+(x), p−(x) respectively above and below the x-axis.
c) The discrepancy between the first 40 fingerprint expectations of p+, p−; the first 10 ex-
pected fingerprint entries almost exactly match, while the discrepancy in higher fingerprint
expectations is larger, though still bounded by 2 · 10−5.
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exponential increase, we should carefully choose the polynomial P so that the inverses of its
derivatives, 1/P ′(x), decay exponentially when evaluated at roots x of P . Such polynomials
are hard to come by; fortunately, the Laguerre polynomials have precisely this property. See
Figure 5.1 for a plot of our lower bound construction, and some insight into the structure of
Laguerrre polynomials that may prove helpful.

In the remainder of this chapter, we make the above outline of the proof of Theorem 5.1
rigorous. We begin by showing that the covariance of the fingerprint entries can be expressed
as a low-weight sum of the expectations of the fingerprint entries.

5.2 Linear Combinations of Poisson Functions

Our central limit theorem for generalized multinomial distributions is in terms of the first
and second moments. Our lower bound construction will be a pair of distributions that have
similar fingerprint expectations—i.e. similar first moments. In this section, we show the
convenient fact that for fingerprints, “similar expectations” imply “similar covariances”.

For a histogram h, the ith fingerprint expectation is
∑

x:h(x)6=0 h(x)· poi(xk, i). Since, for

random variables X, Y , their covariance equals E[XY ]−E[X]E[Y ], and covariance sums for
independent distributions, we have that the covariance of the ith and jth fingerprint entries,
for i 6= j, equals −

∑
x:h(x)6=0 h(x)poi(xk, i)poi(xk, j). We simplify this product,

poi(xk, i)poi(xk, j) =
(xk)i+je−2xk

i!j!
= 2−(i+j)

(
i+ j

i

)
poi(2xk, i+ j),

to reveal a scaled version of a “squashed” version of the usual Poisson—that is, with 2xk
instead of xk as the argument. The variance of the ith fingerprint entry may similarly be com-
puted as

∑
x:h(x)6=0 h(x)· (poi(xk, i)− poi(xk, i)2), where poi(xk, i)2 = 2−2i

(
2i
i

)
poi(2xk, 2i).

The point of the next result is that one may express “squashed” Poisson functions
poi(2xk, i) as linear combinations of Poisson functions poi(xk, j); thus, since the expectations
relative to (regular) Poisson functions poi(xk, j) match for pF+

log k,φ and pF−log k,φ, the same will
hold true (though with greater error) for the expectations relative to the “squashed” Poisson
functions poi(2xk, i), and hence the variances and covariances will also approximately match.
We note that the Stone-Weierstrass theorem of Analysis trivially implies the convergence of
this type of approximation; however, we require much stronger bounds on the relationship
between the approximation factor and the coefficient sizes.

Lemma 5.3. For any ε > 0 and integer i ≥ 0, one may approximate poi(2x, i) as a linear
combination

∑∞
j=0 α(j)poi(x, j) such that

1. For all x ≥ 0, |poi(2x, i)−
∑∞

j=0 α(j)poi(x, j)| ≤ ε; and

2.
∑∞

j=0 |α(j)| ≤ 1
ε
· 200 max{ 4

√
i, 24 log3/2 1

ε
}.
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We prove these strong bounds via a Fourier analysis approach relying on properties of
Hermite polynomials.

To see the intuition both behind the result, and our approach, consider the above problem
but with Poisson functions replaced by Gaussians, and all errors evaluated in the L2 sense:
for each ε > 0 there exists a function Kε of L2 norm 1

ε
that when convolved with N (0, 1)

approximates N (0, 1
2
) to within ε, in the L2 sense. Let K̂ε be the ratio of the Fourier trans-

forms of the pdfs of N (0, 1) and N (0, 1
2
) respectively, restricted to be 0 outside the interval

[−2
√

log 1
ε
, 2
√

log 1
ε
] and let Kε be the inverse Fourier transform of K̂ε. By Parseval’s theo-

rem, we may bound the L2 norm of Kε and the L2 norm of the error ||N (0, 1
2
), Kε∗N (0, 1)||2,

as the L2 norms of their corresponding Fourier transforms. As the Fourier transform of Kε is

K̂ε, which grows as ex
2/4 but is zero outside the interval [−2

√
log 1

ε
, 2
√

log 1
ε
], its L2 norm is

roughly 1
ε
. Further, the Fourier transform of Kε ∗N (0, 1) equals K̂ε · N (0, 1), which by con-

struction is exactly the Fourier transform of N (0, 1
2
) within the interval [−2

√
log 1

ε
, 2
√

log 1
ε
],

and zero outside this interval. Since the Fourier transform of N (0, 1
2
) decays as e−x

2/4, the
L2 norm of the portion outside this interval is thus roughly ε, the desired bound.

Our proof of Lemma 5.3 relies on the substitution x→ x2 to make the Poisson functions
“look like” Gaussians, where the relationship between the transformed Poisson functions and
Gaussians is controlled by properties of Hermite polynomials. Additionally, since we require
an L1 bound on the coefficients, as opposed to the L2 bound that comes more naturally (via
Parseval’s theorem), instead of a sharp cutoff outside a designated interval (as we had done
in the previous paragraph in our construction of Kε), we must use a smooth cutoff function
T , constructed as the convolution of the indicator function of an interval with a Gaussian of
carefully chosen width.

Proof of Lemma 5.3. Let gk(x) := poi(x2/2, k) = e−x
2/2x2k

2kk!
. We consider the Fourier trans-

form of gk(x), using the facts that the Fourier transform of f(x) = e−x
2/2 is f̂(w) = e−w

2/2,
and that if f(x) is differentiable with Fourier transform f̂(w), then the Fourier transform of
d
dx
f(x) is −iwf̂(w) :

ĝk(w) = (−i)2k d
2k

dw2k

(
e−w

2/2
)
· 1

2kk!

=
(−1)ke−w

2/2H2k(w)

2kk!
,

where Hj(x) := (−1)jex
2/2 dj

dxj
e−x

2/2, is the jth Hermite polynomial. Since Hermite polyno-

mials form an orthogonal basis with respect to the Gaussian measure e−w
2/2, and the even

numbered Hermite polynomials are even functions while the odd numbered Hermite poly-
nomials are odd functions, we have that the even numbered Hermite polynomials form an
orthogonal basis with respect to the Gaussian measure e−w

2/2 for the set of even functions. In-
corporating the (square root) of the normalizing function e−w

2/2 into the basis yields that the
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set of functions ĝk(w)ew
2/4 form an orthogonal basis for the set of even functions with respect

to the uniform measure. In particular, since the set of functions e−w
2/4H2k(w)/

√
(2k)!

√
2π,

sometimes known as the Hermite functions, are orthonormal, we define the orthonormal
basis for even functions Gk(w) = ĝk(w)ew

2/4 2kk!√
(2k)!

√
2π

.

Define hi(x) = gi(x
√

2). Recall our goal of approximating hi as a linear combination of
{gj}. We work in Fourier space, and more specifically, to compute a linear combination of

{ĝj} which approximates ĥi, we multiply both sides by ew
2/4 so that we may make use of

the orthonormal basis {Gj}. Explicitly, defining Tr,c(w) = I[−r,r](w) ∗ e−cw2
√
c√
π
, where I[−r,r]

denotes the indicator function of the interval [−r, r], for constants c and r to be specified
later, and “∗” denotes convolution, we use the basis {Gj} to express Tr,c(w) · ew2/4 · ĥi(w).
Since {Gj} is orthonormal, the coefficient of Gj is exactly the inner product of Gj with this
expression. That is, defining

βi,r,c(j) :=

∫ ∞
−∞

Tr,c(w) ·ew2/4 · ĥi(w)Gj(w)dw =
2jj!√

(2j)!
√

2π

∫ ∞
−∞

Tr,c(w) ·ew2/2 · ĥi(w)ĝj(w)dw

we have expressed Tr,c(w) · ew2/4 · ĥi(w) =
∑∞

j=0 βi,r,c(j) · Gj(w). Invoking the definition of Gj
and dividing both sides by ew

2/4, we see that if we define

αi,r,c(j) :=
2jj!√

(2j)!
√

2π
βi,r,c(j) =

22j(j!)2

(2j)!
√

2π

∫ ∞
−∞

Tr,c(w) · ew2/2 · ĥi(w)ĝj(w)dw, (5.1)

then we have expressed

Tr,c(w) · ĥi(w) =
∞∑
j=0

αi,r,c(j) · ĝj(w). (5.2)

We bound |αi,r,c(j)| in two ways from Equation 5.1.
We first note that since for a real number a 6= 0, the Fourier transform of a function

s(x) = f(a · x) is ŝ(w) = 1
a
f̂(w/a), we have ĥi(w) = 1√

2
ĝi(

w√
2
). Further, we recall the basic

fact that |Gj(w)| is maximized, over all j and w, when j = w = 0 (see [119] p. 190). Thus

by definition of Gj(w), we bound |ew2/4ĝj(w)| ≤
√

(2j)!
√

2π

2jj!
G0(0) =

√
(2j)!

2jj!
, and thus since

ĥi(w) = 1√
2
ĝi(

w√
2
), we have |ew2/8ĥi(w)| ≤

√
(2i)!

2ii!
√

2
. Thus we may bound

|αi,r,c(j)| ≤
2jj!√
(2j)!2π

√
(2i)!

2ii!
√

2

∫ ∞
−∞

Tr,c(w) · ew2/8dw
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To evaluate this integral, we use a trick which we will use twice more below: we “complete
the square” and make the substitution (in this case) s = t c

c−1/8
, yielding

Tr,c(w) · ew2/8 :=

√
c√
π

∫ r

−r
ew

2/8e−c(w−t)
2

dt

=

√
c√
π

∫ r

−r
e−(w
√
c−1/8−tc/

√
c−1/8)2

et
2 c

8(c−1/8)dt

=
c− 1

8√
cπ

∫ rc/(c−1/8)

−rc/(c−1/8)

e−(w−s)2·(c−1/8)es
2· c−1/8

8c ds

=
c− 1

8√
cπ

[
I[−r c

c− 1
8

,r c

c− 1
8

](w) · e
c−1/8

8c
·w2

]
∗ e−(c− 1

8
)w2

.

We may thus integrate this over R as the product of the integrals of the terms on each

side of the convolution, that is:
c− 1

8√
cπ
·
√

8πc√
c−1/8

erfi

(
r
√

c
8(c− 1

8
)

)
·
√
π√

c−1/8
=
√

8πerfi

(
r
√

c
8(c− 1

8
)

)
,

where erfi is the imaginary error function, defined as erfi(x) := 2√
pi

∫ x
0
ey

2
dy. Noting the

bound that erfi(x) ≤ 3
4

1
x
ex

2
(which can be derived by differentiating), we have

|αi,r,c(j)| ≤
2jj!√
(2j)!2π

√
(2i)!

2ii!
√

2

√
8π

3

4

√
8

r

√
c− 1

8

c
e
r2

8
c

c−1/8 =
2jj!√
(2j)!

√
(2i)!

2ii!

3

r

√
c− 1

8

c
e
r2

8
c

c−1/8

(5.3)
To bound αi,r,c(j) a second way, we first note that a second application of “completing

the square” allows us to reexpress part of Equation 5.1 as

Tr,c(w) · ew2/2 =
c− 1

2√
cπ

[
I[−r c

c− 1
2

,r c

c− 1
2

](w) · e
c−1/2

2c
·w2

]
∗ e−(c− 1

2
)w2

.

Let fr,c(x) be the inverse Fourier transform of I[−r c

c− 1
2

,r c

c− 1
2

](w)·e
c−1/2

2c
·w2

. We thus evaluate

Equation 5.1 by noting that inner products are preserved under Fourier transform, that the

(inverse) Fourier transform of e−(c− 1
2

)w2
equals 1√

2(c− 1
2

)
e−

1
4(c−1/2)

x2

, and that multiplication

and convolution swap roles under the Fourier transform, we have that

αi,r,c(j) =
22j(j!)2

(2j)!
√

2π

√
c− 1

2√
2cπ

∫ ∞
−∞

[(
fr,c(x) · e−

1
4(c−1/2)

x2
)
∗ hi(x)

]
· gj(x)dx (5.4)

By definition of the Fourier transform, for any function f , we have ||f ||∞ ≤ 1√
2π
||f̂ ||1.

Thus we may bound the maximum value of |fr,c| by 1√
2π

times the L1 norm of its Fourier
transform, that is,

|fr,c(x)| ≤ 1√
2π

∫ r c

c− 1
2

−r c

c− 1
2

e
c−1/2

2c
w2

dw =

√
c

c− 1
2

erfi

(
r√
2

√
c

c− 1
2

)
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We now bound gj(x) = e−x
2/2x2j

2jj!
, the final term of Equation 5.4, by noting that, since

x ≤ ex−1 always, and replacing x by x/y yields x ≤ ex/y−1y, we set y =
√

2j and raise both
sides to the power 2j to yield that, for positive x,

gj(x) =
e−x

2/2x2j

2jj!
≤ e−x

2/2+x
√

2j−2jjj

j!
= e−

1
2

(x−
√

2j)2 e−jjj

j!

Thus by definition of hi(x) = gi(x
√

2) we have hi(x) ≤ e−(x−
√
i)2 e−iii

i!
for positive x.

Generally, we may see that hi(x) ≤
(
e−(x−

√
i)2

+ e−(x+
√
i)2
)
e−iii

i!
for all x. We may thus

bound Equation 5.4 as

|αi,r,c(j)| ≤
22j(j!)2

(2j)!2π
erfi

(
r√
2

√
c

c− 1
2

)
e−iii

i!

e−jjj

j!

∑
±,±

∫ ∞
−∞

[
e−

1
4(c−1/2)

x2

∗ e−(x±
√
i)2
]
·e−

1
2

(x±
√

2j)2

dx,

where the summation is over the four possible combinations of the two choices of “±”. We
note that the integral is equal to the convolution of the three terms inside of it, evaluated

at x = 0, namely

√
8(c− 1

2
)

4c+1
e−

1
4c+1

(x±
√
i±
√

2j)2

∣∣∣∣
x=0

, since the denominators in the exponents of

Gaussians add under convolution. Thus we bound

|αi,r,c(j)| ≤
22j(j!)2

(2j)!2π
erfi

(
r√
2

√
c

c− 1
2

)
e−iii

i!

e−jjj

j!

√
8(c− 1

2
)

4c+ 1
· 4 · e−

1
4c+1

|
√
i−
√

2j|2

Since, as noted above, erfi(x) ≤ 3
4

1
x
ex

2
, we have

|αi,r,c(j)| ≤
22je−jjjj!

(2j)!2π

e−iii

i!

4(c− 1
2
)√

c(4c+ 1)
· 3

r
· e

r2

2
c

c−1/2
− 1

4c+1
|
√
i−
√

2j|2

We bound 22je−jjjj!
(2j)!

≤ 1 as a combination of Stirling’s formula, e−jjj ≤ j!√
2πj

, and the

bound on the middle binomial coefficient
(

2j
j

)
≥ 22j
√

2πj
. A second application of Stirling’s

formula yields that e−iii

i!
≤ 1√

2πi
, and we trivially bound

4(c− 1
2

)√
c(4c+1)

≤ 2 to yield

|αi,r,c(j)| ≤
3

πr
√

2πi
· e

r2

2
c

c−1/2
− 1

4c+1
|
√
i−
√

2j|2 (5.5)

Having thus derived two bounds on |αi,r,c(j)|, that of Equation 5.3 and that of Equa-
tion 5.5, we now aim to bound

∑
j≥0 |αi,r,c(j)| via a combination of these bounds: using

Equation 5.3 when 2j is near i, and using Equation 5.5 otherwise.
Let c = r2, and consider two cases.

Case 1: i ≤ 2c2.
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We first bound
∑

j≥4c2 |αi,r,c(j)| from Equation 5.5. Specifically, consider
∑

j≥4c2 e
− 1

4c+1
|
√
i−
√

2j|2 .

We note that the first term of the sum is at most e−
2c2

4c+1 ≤ e−
c
2 e

1
8 . To bound the ra-

tio between successive terms, we note that d
dj

(
√
i −
√

2j)2 = 2(1 −
√
i√

2j
) ≥ 1, which im-

plies
∑

j≥4c2 e
− 1

4c+1
|
√
i−
√

2j|2 ≤ e−
c
2 e

1
8

∑
`≥0 e

− 1
4c+1

` = e−
c
2 e

1
8

1
1−e−1/(4c+1) . We note the gen-

eral inequality ea ≥ 1 + a, or equivalently, e1/a ≥ 1 + 1
a
, which may be rearranged to

1
1−e−1/a ≤ a + 1, yielding a bound of (4c + 2)e−

c
2 e

1
8 on the sum. To bound the sum of

Equation 5.5, we note that for c ≥ 1, we have r2

2
c

c−1/2
≤ c

2
+ 1

2
, leading to a bound of∑

j≥4c2 |αi,r,c(j)| ≤
3

π
√

2πic
(4c+ 2)e5/8 < 5

√
c
i

To bound |αi,r,c(j)| for small j we instead use Equation 5.3. We note for ` ≥ 1 the
bounds on the middle binomial coefficient of 1√

2π`
≤ 2−2`

(
2`
`

)
≤ 1. Further, for c ≥ 1 we

have r2

8
c

c−1/8
≤ c

8
+ 1

56
, yielding that

∑
j<4c2 |αi,r,c(j)| ≤ 4c2 4

√
2π · 4c2 3

r
e1/56ec/8 < 28c2ec/8.

Combining this with the result of the previous paragraph yields
∑∞

j=0 |αi,r,c(j)| ≤ 32c2ec/8.

Case 2: i > 2c2.
We use the bound of Equation 5.3 when j ∈ ( i

2
− 2c
√
i, i

2
+ 3c
√
i), and Equation 5.5

otherwise.
Consider

∑
j≥ i

2
+3c
√
i |αi,r,c(j)|. Invoking Equation 5.5, we analyze

∑
j≥ i

2
+3c
√
i e
− 1

4c+1
|
√
i−
√

2j|2 .

We aim for |
√
i −
√

2j| ≥
√

2c, and show this by considering (
√
i +
√

2c)2 = i + 2
√

2
√
ic +

2c2 < i + 3
√

2
√
ic < 2j, as desired. Thus the first term of this sum is at most e−

2c2

4c+1 ≤
e−

c
2 e

1
8 . As above, we bound the ratio of successive terms by noting that d

dj
(
√
i −
√

2j)2 =

2(1 −
√
i√

2j
) ≥ c

√
2√
i

, which implies that
∑

j≥ i
2

+3c
√
i e
− 1

4c+1
|
√
i−
√

2j|2 ≤ e−
c
2 e

1
8

∑
`≥0 e

− c
√

2
(4c+1)

√
i =

e−
c
2 e

1
8

1

1−e−c
√

2/((4c+1)
√
i)

, which, as analyzed in the previous case, yields a bound of e−
c
2 e

1
8 ( (4c+1)

√
i

c
√

2
+

1) ≤ 4
√
ie−

c
2 on

∑
j≥ i

2
+3c
√
i e
− 1

4c+1
|
√
i−
√

2j|2 .

We now bound the small terms of the sum,
∑

j≤ i
2
−2c
√
i e
− 1

4c+1
|
√
i−
√

2j|2 . As above, we

show that
√
i −
√

2j ≥
√

2c for such j by noting that (
√
i −
√

2c)2 = i − 2
√

2
√
i + 2c2 >

2j. Thus the last term in the sum is at most e−
2c2

4c+1 ≤ e−
c
2 e

1
8 . As above, we bound the

ratio of successive terms, this time as j decreases, by noting d
dj

(
√
i −
√

2j)2 = 2√
2j

(
√

2j −
√
i), which since 2j < i, has magnitude at least 2

√
2c√
i

. Thus the bound of the previous

paragraph holds, yielding
∑

j≤ i
2
−2c
√
i e
− 1

4c+1
|
√
i−
√

2j|2 ≤ 4
√
ie−

c
2 . As shown in Case 1, the

remaining part of Equation 5.5 is bounded as 3
πr
√

2πi
· e

r2

2
c

c−1/2 ≤ 3
πr
√

2πi
ec/2e1/2, yielding∑

j /∈( i
2
−2c
√
i, i

2
+3c
√
i) |αi,r,c(j)| ≤ 8

√
i 3
πr
√

2πi
e1/2 < 6.

For intermediate j ∈ ( i
2
− 2c
√
i, i

2
+ 3c
√
i) we bound |αi,r,c(j)| from Equation 5.3. From

the fact that i! lies between its Stirling estimate and 1.1 times its Stirling estimate, we have

that 2jj!√
(2j)!
∈ ( 4
√
πj, 1.1 4

√
πj). Thus, since j < 6i, we have 2jj!√

(2j)!

√
(2i)!

2ii!
≤ 1.1 4

√
6 < 2, and

we thus bound Equation 5.3 as |αi,r,c(j)| ≤ 23
r
e1/56ec/8, and the sum of the 5c

√
i of these
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terms as at most 31
√
ciec/8. Combining this result with that of the previous paragraph yields∑∞

j=0 |αi,r,c(j)| ≤ 32
√
ciec/8.

Having bounded
∑∞

j=0 |αi,r,c(j)|, namely the second claim of the lemma, we now turn
to bounding the first claim of the lemma—showing that the error of our approximation is
small. As above, our expressions will involve the parameter c; as the final step of the proof,
we choose c appropriately to obtain the claimed bounds.

Taking the inverse Fourier transform of both sides of Equation 5.2 yields that the dif-
ference between hi(w) and

∑∞
j=0 αi,r,c(j) · gj(w) equals the inverse Fourier transform of

(1 − Tr,c(w))ĥi(w); we thus aim to bound the absolute value of this, pointwise. We note

that from the definition of the Fourier transform, for a function f , ||f ||∞ ≤ 1√
2π
||f̂ ||1, so thus

the maximum error of our approximation is bounded by 1√
2π

∫∞
−∞(1 − Tr,c(w))|ĥi(w)|dw ≤√

(2i)!

2ii!2
√
π

∫∞
−∞(1− Tr,c(w))e−w

2/8dw. Again using the “completing the square” trick yields that

this integral equals
√

8πerfc

(
r
√

c
8(c+ 1

8
)

)
≤
√

8πerfc(
√
c√
8
), where erfc = 1−erf is the comple-

mentary error function. Noting the general bound that erfc(x) ≤ e−x
2

x
√
π

, and from the above

bound that 2jj!√
(2j)!
≥ 4
√
πj, the maximum error of our approximation is seen to be at most

8
4√πi
√
c
e−c/8.

We have thus shown that
∑∞

j=0 αi,r,c(j)poi(x, j) approximates poi(2x, i) to within 8
4√πi
√
c
e−c/8,

pointwise, while
∑∞

j=0 |αi,r,c(j)| is at most 32ec/8 max{c2,
√
ci}, where c is arbitrary. Thus

for desired error ε, we may choose c ≤ 8| log ε| so as to make 8
4√πi
√
c
e−c/8 = ε, yielding that

∞∑
j=0

|αi,r,c(j)| ≤ 32ec/8 max{c2,
√
ci} =

1

ε
· 200 max{ 4

√
i,
c
√
c

4
√
i
} ≤ 1

ε
· 200 max{ 4

√
i, 24 log3/2 1

ε
},

as desired.

5.3 The Laguerre Lower Bound Construction

We will construct the p+, p− of Theorem 5.1 explicitly, via Laguerre polynomials. We now
state the properties of these polynomials that we will use.

Let Lj(x) denote the jth Laguerre polynomial, defined as Lj(x) = ex

j!
dj

dxj
(e−xxj).

Fact 5.4. For each integer j ≥ 0,

1. For x ∈ [0, 1
j
], Lj(x) ∈ [1− jx, 1];

2. Lj has j real roots, all lying in [1
j
, 4j];

3. Letting xi denote the ith root of Lj, for i ∈ {1, . . . , j}, we have xi ≥ i2

3j
;
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4. For i < j/2, |dLj(x)

dx
(xi)| ≥ exi/2j1/4

2x
3/4
i

and for any i, |dLj(x)

dx
(xi)| ≥ exi/2√

πx
3/4
i

.

Proof. Since Lj is a polynomial of degree j with j positive real roots, none of the inflection
points lie below the smallest root. Since Lj(0) = 1, L′j(0) = −j, and L′′j (0) > 0, we have
that Lj(x) ≥ 1 − jx for x less than or equal to the smallest root of Lj. Thus the smallest
root of Lj must be at most 1

j
, and Lj(x) ≥ 1− jx for x ≤ 1

j
. The fact that the largest root

is at most 4j follows from [119], Theorem 6.32. The third fact appears in [119], p. 129, and
the fourth fact follows from [119] p. 100.

Definition 5.5. Given real number φ ∈ (0, 1
4
) and letting j = log k, consider the degree j+2

polynomial Mj,φ(x) := −(x − φ1
j
)(x − 2φ1

j
)Lj(x). Let v(x) be the function that takes value

1/M ′
j,φ(x) for every x where Mj,φ(x) = 0, and is 0 otherwise, where M ′ is the derivative of

M . Define the distributions p+
j,φ, p

−
j,φ such that for each x where v(x) > 0, the corresponding

histogram p+
j,φ contains v(x)ex/32 probability mass at probability 1

32k
x, and for each x where

v(x) < 0 the histogram p−j,φ contains |v(x)|ex/32 probability mass at probability 1
32k
x, where

each distribution is then normalized to have total probability mass 1.

We note that since each element in the support of either p+
log k,φ or p−log k,φ is defined to

have probability at least φ
32k log k

, both distributions have support at most 32
φ
k log k, which

we take as n, in the context of both the entropy and the support size problems.

Lemma 5.6. Distributions p+
log k,φ and p−log k,φ are O(φ| log φ|)-close, respectively, in the rel-

ative earthmover distance to the uniform distributions on 32
φ
k log k and 16

φ
k log k elements.

Proof. Letting j = log k, consider the values of d
dx
Mj,φ(x) at its zeros. We first consider the

two zeros at φ
j

and 2φ
j
. Note that − d

dx
(x − φ1

j
)(x − 2φ1

j
) = −2x + 3φ1

j
, having values ±φ1

j

respectively at these two points. By the product rule for differentiation and the first part of
Fact 5.4, | d

dx
Mj,φ(x)| ≤ φ1

j
at these points.

Let xi denote the ith zero of Lj. We note that since by definition, φ < 1
4
, and from

Fact 5.4, each xi ≥ 1
j
, we have (xi − φ1

j
)(xi − 2φ1

j
) ≥ 3

8
x2
i . At each xi, we may thus

bound | d
dx
Mj,φ(x)| = |(x− φ1

j
)(x− 2φ1

j
) d
dx
Lj(x)| ≥ 3

8
x2 ex/2j1/4

2x3/4 for i < j/2 and by 3
8
x2 ex/2√

πx3/4

otherwise, which we will denote as 3
8
ex/2x5/4

(
j1/4

2
[i < j/2] + 1√

π
[i ≥ j/2]

)
.

Consider the unnormalized versions of p+
j,φ, p

−
j,φ, that is, containing probability mass

|1/ d
dx
Mj,φ(x)|ex/32 at each probability 1

32k
x where d

dx
Mj,φ(x) is positive or negative respec-

tively (without scaling so as to make total probability mass be 1). Let c1, c2 respectively
be the constants that p+

j,φ, p
−
j,φ respectively must be multiplied by to normalize them. Recall

from above that | d
dx
Mj,φ(x)| ≤ φ1

j
for the point x = φ1

j
in the support of p+

j,φ and the point

x = 2φ1
j

in the support of p−j,φ, which implies that the probability mass at each of these

points is at least eφ
1
j
/32 j

φ
≥ j

φ
. From these point masses alone we conclude c1, c2 ≤ φ

j
.

We now consider the earthmover cost of moving all the weight of the unnormalized version
of p+

j,φ to x = φ1
j

or all the weight of the unnormalized version of p−j,φ to x = 2φ1
j
, which
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we will then multiply by c1, c2 respectively to yield upper bounds on the relative earthmover
distances for the normalized distributions. The per-unit-weight relative earthmover cost of
moving weight from an xi to either x = φ1

j
or x = 2φ1

j
is at most log |φ|+log(jxi). As we have

bounded the weight at xi (for either p+
j,φ or p−j,φ) as 8

3
e−15xi/32x

−5/4
i

(
2

j1/4
[i < j

2
] +
√
π[i ≥ j

2
]
)

,

and since, from Fact 5.4, xi ≥ i2

3j
, we may thus bound the relative earthmover distance by

substituting this into the preceding expression, multiplying by the cost | log φ|+log(jxi) and
our bound c1, c2 ≤ φ

j
, and summing over i:

j∑
i=1

φ

j
(| log φ|+ 2 log i)

8

3
e−

5i2

32j

(
i2

3j

)−5/4(
2

j1/4
[i < j/2] +

√
π[i ≥ j/2]

)
= O(φ| log φ|)

as desired.

We note the following general fact that we will use to bound the discrepancy in the
fingerprint expectations of p+

j,φ and p−j,φ.

Fact 5.7. Given a polynomial P of degree j whose roots {xi} are real and distinct, letting

P ′ be the derivative of P , then for any ` ≤ j − 2 we have
∑j

i=1
x`i

P ′(xi)
= 0.

Proof. We assume, without loss of generality, that P is monic.
To prove this, consider the general prescription for constructing a degree j−1 polynomial

through j given points (xi, yi): f(x) =
∑j

i=1 yi

(∏
m6=i(x− xm)

)/(∏
m6=i(xi − xm)

)
. We

note that the coefficient of xj−1 in this polynomial is f(x) =
∑j

i=1 yi

(∏
m6=i(xi − xm)

)−1

,

where for each i, the expression
(∏

m 6=i(xi − xm)
)−1

is exactly 1/P ′(xi). Thus since poly-

nomial interpolation is unique,
∑j

i=1
x`i

P ′(xi)
computes the xj−1 coefficient in the polynomial

x`, which, for ` ≤ j − 2 equals 0, as desired.

The following lemma is the cornerstone of the proof of correctness of our lower bound
construction, and guarantees that the expected fingerprints of the lower bound pair closely
match.

Lemma 5.8. For any i, the ith fingerprint expectations for distributions p+
j,φ, p

−
j,φ are equal

to within o(1).

Proof. Consider, as in the proof of Lemma 5.6, the unnormalized versions of p+
j,φ, p

−
j,φ, that

is, containing weight |1/ d
dx
Mj,φ(x)|ex/32 at each probability 1

32k
x where d

dx
Mj,φ(x) is positive

or negative respectively (without scaling so as to make total probability mass be 1), and
let c1, c2 respectively be the constants that p+

j,φ, p
−
j,φ respectively must be multiplied by to

normalize them.
Fact 5.7 directly implies that for any i ≤ j, the ith fingerprint expectations for (unnor-

malized) p+
j,φ and p−j,φ are identical. The proof of the lemma will follow from the following
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two steps: first, we will show that the normalizing factors c1, c2 are nearly identical, and
thus after normalizing, the ith fingerprint expectations for i ≤ j continue to be very close.
In the second step, we show that by construction, and the second part of Fact 5.4, p+

j,φ and

p−j,φ consist of elements with probability at most 4j 1
32k

= log k
8k

, and thus the discrepancy in
the expected ith fingerprint entries for i > j = log k will be tiny, as the absolute values of
these expectations are tiny. We begin by making the first point rigorous.

We note that

∞∑
i=1

i · poi(xk, i) =
∞∑
i=1

xk
(xk)i−1e−xk

(i− 1)!
= xk

∞∑
i=0

poi(xk, i) = xk,

and thus for any generalized histogram h,

∑
x:h(x)6=0

∞∑
i=1

h(x)i · poi(kx, i) = k
∑

x:h(x)6=0

h(x)x.

In particular, the sum over all i of i times the ith fingerprint expectations is exactly k times
the probability mass of the unnormalized distribution we started with. We thus compare
these sums for histograms p+

j,φ, p
−
j,φ to show that they have similar probability masses.

As noted above, by construction, p+
j,φ and p−j,φ consist of elements with probability at

most log k
8k

. Thus, for x ≤ log k
8k

, we bound
∑∞

i=1+log k i · poi(xk, i). We note that i · poi(xk, i) =

xk · poi(xk, i − 1), yielding, from Fact A.19 a bound xk
∑∞

i=log k poi(
1
8

log k, i) ≤ 7
8
xk ·

poi(1
8

log k, log k). We compare this to poi(log k, log k) ≤ 1 by noting that, in general,
poi(y/8,y)
poi(y,y)

= e7y/8

8y
≤ 3.3−y, yielding a bound of 7

8
xk · 3.3− log k < x

k1/6 . That is, for an ele-
ment of the distribution with probability x, its total contribution to the expected fingerprint
entries with index greater than log k is at most x

k1/6 ; summing over all x yields 1
k1/6 for the

sum of these fingerprint expectations.
As noted above, the sum over all fingerprint entries equals k multiplied by the total

mass of the corresponding generalized histogram. As noted in the proof of Lemma 5.6,
c1, c2 ≤ φ

j
< 1, and thus

∑
x:p+

j,φ(x) 6=0

∞∑
i=1

p+
j,φ(x)i · poi(kx, i) ≥ k,

and similarly for the corresponding expression with p−j,φ. Yet, as we just showed, the con-

tribution towards this sum from fingerprints i > j is at most 1
k1/6 . Thus the unnormalized

mass of p−j,φ and p−j,φ are at least 1, and the discrepancy in mass is at most 1
k
· 1
k1/6 , since the

first j expected fingerprints agree exactly, and thus the normalizing constants c1, c2 differ by
a factor of at most 1± 1

k7/6 .
To conclude, since the unnormalized distributions had identical expected fingerprints for

i ≤ j = log k, for the normalized distributions these expected fingerprints differing by a
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factor of 1 ± 1/k7/6, and thus differ in magnitude by at most 1/k1/6 = o(1) as desired.
Further, as shown above, the expected sum of expected fingerprint entries above log k is
bounded by ci/k

1/6 ≤ 1/k1/6 = o(1), yielding that the corresponding expectations for p+
j,φ

and p−j,φ match to within this bound.

Our goal now is to mould p+
j,φ and p−j,φ into distributions with the property that the

distributions of their respective fingerprints are “close”, respectively, to two very similar
multivariate Gaussian distributions. As fingerprints are integer-valued vectors, while Gaus-
sian distributions are continuous, we instead consider Gaussian distributions rounded to the
nearest lattice point. Discreteness is still an obstacle, however, and the central limit theorem
we use (Theorem 4.2) yields better bounds as the variance of the distributions in each di-
rection increases. With this motivation in mind, we introduce the next construction which
will modify p+

j,φ and p−j,φ very little in the relative earthmover metric, while making the dis-
tributions of their histograms suitably “fat” so as to be amenable to applying our central
limit theorem. Additionally, for the sake of rigor, in this step we also round so as to ensure
that the histograms are integer-valued, and thus correspond to actual distributions. This
rounding moves very little mass, and changes the fingerprint expectations little, though we
must still round rather delicately.

Definition 5.9. Define the fattening operator F that, given a histogram p, constructs a new
histogram pF as follows:

• Set q :=
∑log k

i=1
i
k
d k

log3 k
e.

• Provisionally set pF (x) = b(1− q) · p(x)c for each x, let x∗ = max(x : pF (x) ≥ 1) and
decrement pF (x∗) by 1.

• Set m :=
∑

x:pF (x)6=0 xp
F (x), and increment pF

(
1−q−m
d2+log ke

)
by d2 + log ke.

• For each integer i ∈ {1, . . . , log k}, increment pF ( i
k
)← pF ( i

k
) + d k

log3 k
e

Lemma 5.10. Let pF+
j,φ and pF−j,φ denote the results of applying Definition 5.9 to histograms

p+
j,φ, p

−
j,φ, respectively, as constructed in Definition 5.5. Then pF+

j,φ and pF−j,φ satisfy the follow-
ing conditions:

• The histograms take integral values and have total probability mass 1 (and thus corre-
spond to actual distributions).

• There is no probability mass on probabilities below φ
32k log k

.

• The discrepancy in fingerprint expectations of Poi(k)-sample fingerprints from pF+
j,φ and

pF−j,φ is at most 3 log k.
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• The relative earthmover distances between the fattened and original version of p+
j,φ and

p−j,φ respectively are both O( | log φ|+log log k
log k

).

Proof. First, observe that given a generalized histogram with total probability mass 1, fatten-
ing returns a distribution, since all histogram entries of the fattened histogram take integer
values, and the total probability mass is 1, since the total mass after the second step is m,
the third step adds 1− q −m mass, and q mass is added in the final step.

By Fact 5.4, x∗ ∈ [ logk
3·32k

, log k
8k

], and since these histograms will be supported on j + 2 =
log k + 2 values which each can get rounded, and thus we crudly bound the amount of mass
that was lost in the rounding and decrementing of pF (x∗) by 1− q−m ∈ [ log k

3·32k
, log k(2+log k)

8k
],

and thus the location at which the extra 1− q−m units of mass are added in the third step
is in the range [ 1

6·32k
, log k

8k
], provided k is sufficiently large. In particular, for the sake of our

bounds on support size, no elements are added below probability O( 1
k
), so that pF+

j,φ and pF−j,φ
retain the lower bound of φ

32k log k
on the probability of each domain element.

We now argue that the fingerprint expectations of the pair pF+
j,φ or pF−j,φ will still be

close. If we had simply set pF (x) = (1 − q) · p(x), and then performed the fourth step, the
discrepancy in fingerprint expectations could only decrease, as the modification of the fourth
step is performed identically in each histogram, and the scaling factor 1− q < 1. Now, note
that the actual histograms output by the procedure differ from this in only the second and
third steps, that decreases at most 2 + log k histogram values by at most 2, and then adds
at most 3 + log k histogram entries. These modification can alter the expected fingerprints
by at most their sum, and thus from Lemma 5.8, the total discrepancy in the fingerprint
expectations of pF+

j,φ and pF−j,φ is at most 2 + log k + 3 + log k + o(1) < 3 log k..

All the probabilities of p+
j,φ and p−j,φ and their fattened versions are between φ

32k log k
and

log k
k

, incurring a per-unit-mass relative earthmover cost of at most O(| log φ| + log log k).
Since q+m = O( 1

log k
), the relative earthmover cost is thus trivially bounded by the product

of these terms:
1

log k
·O(| log φ|+ log log k) = O(

| log φ|+ log log k

log k
),

as claimed.

We next show that for any fattened distribution, the variance of the distribution of the
fingerprint is large in any direction. Specifically, for any unit vector v ∈ Rlog k, we find an
integer i such that elements of probability i

k
—such as those added in Definition 5.9—have

high-variance fingerprints along the direction v. Instead of proving this result only for pF+
j,φ

and pF−j,φ , we prove it more generally, so that we may more easily invoke our central limit
theorem.

Lemma 5.11. For any vector unit vector v ∈ Rm with v(0) = 0, there exists an integer
i ∈ {1, . . . ,m} such that, drawing ` ← Poi(i) conditioned on ` ≤ m, the variance of v(`) is
at least 1

12m7/2 .
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Proof. We note the crucial stipulation that v(0) = 0, for otherwise, a uniform vector would
trivially have zero variance.

Given a unit vector v, there exists i ∈ {1, . . . ,m} such that |v(i)− v(i− 1)| ≥ 1
m3/2 , since

otherwise (since v(0) = 0) we would have |v(i)| ≤ i
m3/2 , implying

∑m
i=1 v(i)2 < 1. Consider

such an i.
Since in general, i! ≤ ii

ei
3
√
i, we have that poi(i, i − 1) = poi(i, i) = iie−i

i!
≥ 1

3
√
i
, which

implies that, just the two possibilities Poi(i) = i or Poi(i) = i−1 alone are enough to induce
variance in v(`) of the product of our bound on their total probability mass, 1

3
√
i
≥ 1

3
√
m

and

the square of half |v(i)− v(i− 1)| ≥ 1
m3/2 , yielding 1

12m7/2 .

5.4 Proof of Theorem 5.1

We now assemble the pieces of the main result of this chapter.

Proposition 5.12. For a positive constant φ < 1/4, the total variational distance (`1 dis-
tance) between the distribution of Poi(k)-sample fingerprints from pF+

log k,φ and pF−log k,φ goes to
0 as k goes to infinity.

Proof. Since both p+
log k,φ and p−log k,φ consist of elements with probabilities at most 1

8
log k,

tail bounds (see the proof of Lemma 5.8 for the calculations) show that the probability that
any such element occurs more than log k times is o(1). We thus assume for the rest of this
proof that all such domain elements are seen at most log k times.

Consider, for either fattened distribution, pF+
log k,φ or pF−log k,φ, the portion of the fingerprint

above log k, which we denote F>log k. Since by assumption, only the “fattened” portion of
either distribution contributes to F>log k, and since these portions are identical, we have that
the probability of a given F>log k occurring from pF+

log k,φ equals its probability of occurring from

pF−log k,φ. We complete the proof by comparing, for each F>log k, the conditional distributions
of the fingerprints at or below log k conditioned on the value F>log k and which elements of
the distribution contributed to F>log k.

The fattening process introduces k
log3 k

elements to the distribution at probability i
k

for

each i ∈ {1, . . . , log k}. Since the number of occurrences of one of these elements is dis-
tributed as Poi(i), for i ≤ log k, in expectation no more than half of these elements will
be sampled more than log k times. Since the number of times each element is sampled is
independent (as we are taking a Poisson-distributed sample size), Chernoff bounds imply
that the number of elements sampled more than log k times will be at most 3

4
k

log3 k
with

probability 1 − ek
Θ(1)

, for each i. By a union bound over i ≤ log k, with probability at
least 1− o(1), conditioning on which elements contribute to F>log k will leave at least 1

4
k

log3 k

elements at each probability i
k

that are not fixed by the conditioning.
By Lemma 5.11, for each unit vector v ∈ Rlog k, there is an index i such that each element

of probability i
k

contributes 1

12 log7/2 k
to the (conditional) fingerprint variance in the direction
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of v. As the previous paragraph showed that there are at least 1
4

k
log3 k

elements with this

property that are disjoint from the elements comprising F>log k. Thus the fingerprint variance
is at least σ2 := k

48 log13/2 k
, in any direction v.

We thus apply our central limit theorem, Theorem 4.2, to the distributions of the first
log k fingerprint entries corresponding to drawing Poi(k)-sized samples from pF+

log k,φ and

pF−log k,φ, conditioned on F>log k. Each such distribution is a generalized multinomial distribu-

tion (see Definition 4.2) with log k columns and at most n = 32
φ
k log k rows. We invoke the

central limit theorem, to conclude that each such distribution may be approximated by the
multivariate Gaussian distribution of the same mean and covariance, rounded to the nearest

lattice points, to within total variational distance log4/3 k
σ1/3 · 2.2 · (3.1 + 0.83 log n)2/3, which is

o(1) since the k in the numerator of σ2 = k

48 log13/2 k
dominates the logarithmic terms.

For a given F>log k, let µ+, µ− denote respectively the vectors of conditional fingerprint
expectations, for pF+

log k,φ and pF−log k,φ respectively; let Σ+,Σ− denote respectively the corre-
sponding covariance matrices. As we have just shown that the conditional distributions
of fingerprints are statistically close to the multivariate Gaussian distributions N (µ+,Σ+),
N (µ−,Σ−), respectively, each rounded to the nearest lattice point, it remains to compare the
total variational distance of these distributions. We note immediately that rounding to the
nearest lattice point can only decrease the total variational distance. We thus must bound
Dtv(N (µ+,Σ+),N (µ−,Σ−)), which we will do with Proposition A.13 once we have analyzed
the disparities between the means and covariances.

Lemma 5.10 showed that the fingerprint expectations of pF+
log k,φ and pF−log k,φ match to within

O(log k). Since the conditioning applies only to the identical fattened region, it remains true
that |µ+(i)− µ−(i)| = o(1) for each i.

As we noted in the discussion preceding this result, approximating Poisson functions
poi(2xk, i) as linear combinations of Poisson functions poi(xk, j) means that we can ap-
proximate each entry of the covariance matrix Σ by a linear combination of entries of the
expectation vector µ. We thus invoke Lemma 5.3 for ε = 1√

k
to see that, indeed, there

exist constants αi(j) with
∑∞

j=0 |αi(j)| ≤
√
k · 200 max{ 4

√
i, 24 log3/2

√
k} = O(

√
k log3/2 k)

such that we may approximate entries Σ(`,m) via coefficients α`+m(j), where the error con-
tributed by each domain element is at most ε. As there are at most n = 32

φ
k log k domain

elements, this approximation error is at most 32
φ

√
k log k. Thus by the triangle inequality,

the discrepancy |Σ+(`,m)−Σ−(`,m)| for each element of the covariance matrix is bounded
by twice this, plus the discrepancy due to |αi(j)| times the difference |µ+(i) − µ−(i)|. We
combine the bounds we have just derived to yield

|Σ+(`,m)− Σ−(`,m)| = O(

√
k

φ
log5/2 k).

The two Gaussians N (µ+,Σ+) and N (µ−,Σ−) thus have means that are component-wise
within O(log k) and thus within Euclidean distance O(log3/2 k), covariance matrices within

O(
√
k
φ

log5/2 k), and variances at least σ2 = k

48 log13/2 k
in each direction—which thus lower-
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bounds the magnitude of the smallest eigenvalues of Σ+,Σ− respectively. For any positive
constant φ, as k gets large, Proposition A.13 implies that Dtv(N (µ+,Σ+),N (µ−,Σ−)) =
o(1), as the k terms dominate the logarithmic terms, as claimed.

We now prove our main theorem:

Proof of Theorem 5.1. Let k be such that n = 32
φ
k log k. Construct p+ = pF+

log k,φ and p− =

pF−log k,φ according to Definition 5.5 followed by Definition 5.9. Lemma 5.6 and Lemma 5.10
imply that p+, p− that are O(φ| log φ|)-close in the relative earthmover metric, respectively, to
the uniform distributions on n and n

2
elements. Proposition 5.12 shows that the distribution

of fingerprints derived from Poi(k) sized samples have statistical distance o(1). Thus, if
one were presented with a fingerprint derived from a Poi(k)-sized sample that was either
drawn from p+ or p− (with probability 1/2 each), then no algorithm can distinguish the
case that the fingerprint was drawn from p+ versus p− with any constant probability greater
than 1/2. The same claim holds for fingerprints derived from a sample of size exactly k,
since Pr[Poi(k) ≤ k] > 1/2, and thus if such an algorithm existed achieving probability of
success 1/2 + α, then it could be used to give correct answers with probability of success
at least 1/2 + α/2 in the case of k′ ← Poi(k) sized samples by simply guessing randomly if
k′ < k, and otherwise running the algorithm of k-sized samples on a random subsample of
size k ≤ k′.

5.5 A Lower Bound for the Distinct Elements

Problem

In this section, we explain how extend our lower bound of Theorem 5.1 to show a lower
bound for the distinct elements problem. For clarity, we briefly restate the distinct elements
problem:

Definition 5.13. Given access to n buckets, each of which contains one object that is not
necessarily distinct from those in the other buckets, how many buckets must one inspect in
order to estimate the total number of distinct objects to ±εn, with high probability?

Theorem 5.3. For constant δ < 1/2, any algorithm for the distinct elements problem with n
buckets that estimates the number of distinct elements to within additive error n

8
with failure

probability at most δ, must look in at least Ω( n
logn

) buckets.

There are two differences between the distinct elements setting, and the more general
problem of estimating the support size of a distribution which could, conceivably, make the
former problem easier. The first difference is simply that in the distinct elements setting,
one is essentially sampling elements from the distribution described by the contents of the
buckets without replacement, whereas in the general setting, a sample is drawn from the
distribution (with replacement). Note that nothing can be gained in the distinct elements
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setting by specifying which bucket to examine next, as an adversary can always re-shuffle
the buckets, and thus each bucket that is revealed is equivalent to a randomly selected
unexamined bucket. (See Lemma 3.1 of [107], for example.)

The second, and more significant difference between the distinct elements setting and
the general setting is that the histogram corresponding to the distinct elements setting is
supported at probabilities that are integer multiples of 1/n, since an element either occurs in
0, 1, 2, . . . of the buckets. The lower bound instance constructed in our proof of Theorem 5.1
did not have this property—its histogram is supported at the roots of a Laguerre polynomial.
This construction was rather delicate, and we relied fundamentally on the properties of the
Laguerre polynomials.1

Fortunately, we eschew having to deal with either of these issues directly, by showing
that any algorithm for the distinct elements problem can be adapted to yield an algorithm
with comparable (though slightly worse) performance on the general problem of estimating
support size. The following simple lemma is adapted from Lemma 3.3 of [107], and implies
Theorem 5.3 by plugging in α = 3.

Lemma 5.14. [Based on Lemma 3.3 of [107]] For any constant α ≥ 1, given an algorithm
A for the distinct elements problem that looks in k(m) buckets when presented with a total
of m buckets, and estimates the number of distinct elements to within additive error εm
with probability of failure δ, we show how to use it to estimate the support size of a general
distribution D (all of whose elements occur with probability ≥ 1/n) with probability of failure
δ + o(1), using a sample of size k(αn), and achieving error (ε+ 2e−α)n.

Proof. The simple procedure is described below:

• Draw k′ ← Poi(αn), and set m := k′.

• Select a sample of size km from D, and give them as input to algorithm A, and return
the output of algorithm A.

We now prove the correctness of the above procedure. Given a distribution D all of whose
domain elements occur with probability at least 1/n, let Dm denote the empirical distribution
of a sample of size m drawn from D. While D and Dm might be quite different distributions,
we note that with high probability, their support sizes will be similar. Trivially, the support
of Dm is at most that of D. Furthermore, the probability that a given domain element does
not occur in Dm is at most poi(α, 0) = e−α, and by the independence of the number of
occurrences of different domain elements, with probability 1−o(1), the discrepancy between
the support sizes of D and Dm is at most 2ne−α.

To conclude the proof of correctness, simply note that a set of km ≤ m draws without
replacement from the distribution Dm is distributed identically to a set of k draws taken with

1The lower bound construction of Definition 5.5 is extremely delicate: while the roots of the Laguerre
polynomials are roughly quadratically spaced, constructing a lower bound instance by using the polynomial
whose roots are exactly quadratically spaced does not seem to allow our analysis to go through.
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replacement from distribution D, and thus the input to the algorithm A is indistinguishable
from a sample of size km drawn from the distinct elements instance defined by the empirical
distribution Dm.

5.6 Lower Bounds for Total Variational Distance

In this section, we leverage Theorem 5.1 to prove a lower bound for the task of estimating
the total variational distance (`1 distance) between a pair of distributions. For convenience,
we restate the theorem:

Theorem 5.2. For any constants 0 < a < b < 1
2
, and probability of failure δ < 1/2,

for sufficiently large n, given samples from a pair of distributions of support at most n,
distinguishing whether their total variational distance (`1 distance) is less than a or greater
than b with probability of success at least 1− δ, requires samples of size Ω( n

logn
).

Proof. Theorem 5.1 shows that we can construct, for any sufficiently small constant α, a pair
of distributions, pn, pn/2 on support n such that they are α-close in the relative earthmover—
and hence also in `1 distance—to uniform distributions, respectively, on n and n

2
elements,

yet whose fingerprints are indistinguishable given samples of size less than O( n
logn

). For our

`1 lower bound, construct such distributions for α <
min{a, 1

2
−b}

2
. Consider now the task

of distinguishing, for random permutations σ1, σ2, the pair of distributions (σ1(pn), σ2(pn))
from the pair (σ1(pn/2), σ2(pn)), where we consider that the application of a permutation
relabels its elements.

Assume for the sake of contradiction that these pairs are distinguishable with probability
δ > 1/2 given k = o( n

logn
) sized samples from each. We could thus construct an algorithm

that distinguishes k-sample fingerprints from pn from those from pn/2 with probability δ by
simulating the application of this hypothetical algorithm on the two samples consisting of
the given k-sample, and a k-sample constructed ad hoc from a random permutation of pn.
If the hypothetical algorithm returned that the `1 distance is smaller than a we could return
“pn”, and if the hypothetical algorithm returned that the `1 distance is at least b, we could
return “pn/2”.

Thus we have the desired contradiction and no such algorithm can exist.



113

Chapter 6

The Power of Linear Estimators

Our algorithmic toolbox is large. Given independent draws from a distribution, one might
imagine a wide gamut of algorithmic strategies for recovering information about the under-
lying distribution. When limited by data instead of computational resources, a brute-force
search through hypotheses might be the best option. More specifically, one might be guided
by a Bayesian heuristic, or otherwise try to optimize “likelihood”. More firmly in the realm
of polynomial-time algorithms, convex programming is a powerful tool for rapidly traversing
a sufficiently structured search space. At the far extreme of simplicity, are linear estimators.
Given the fingerprint vectors of the sample, a linear estimator multiplies each entry by a
fixed, position-dependent constant and returns the sum.

For the broad class of “symmetric” distribution properties, despite the plethora of al-
gorithmic options and a rich history of study by both the statistics and computer science
communities, nearly all the proposed estimators are these algorithmically-hollow linear esti-
mators.

Because of, or perhaps despite, their rather pedestrian nature, linear estimators have
many features to recommend: they are easy to use, easy to describe, and, because of the
especially transparent fashion in which they use the data, generally easy to analyze. These
niceties, though, make it even more urgent to resolve the question: “How good are linear
estimators?”

Despite much effort constructing linear estimators during the past century, and perhaps
even more effort analyzing these estimators, for many symmetric distribution properties
the best known linear estimators require much larger samples than necessary to achieve a
desired accuracy of estimation. Specifically, to achieve constant additive error (with high
probability) for any of the following properties: entropy, distinct elements, `1 distance and
KL-divergence, previously proposed linear estimators require Θ(n) sized samples, where, as
throughout, n is a bound on the support size of the distributions being sampled, and is a
natural parametrization of the sample complexities of these estimation problems. Corre-
sponding statements hold for estimating support size and distance to uniformity, for which
the sample complexities are parameterized slightly differently.1

1As in the previous chapter, the problem of estimating support size is parameterized in terms of a lower
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In Chapter 3, we applied the algorithmic power of linear programming to these estimation
tasks, yielding estimators for entropy and support size that require only O(n/ log n) sized
samples. This intriguing state of affairs provokes the question:

What richness of algorithmic machinery is needed to effectively estimate these
properties?

Answers to this question could serve to guide future endeavors to construct and analyze esti-
mators. Additionally, questions of this nature lie at the philosophical core of the theoretical
approach to computing.

The main result of this chapter is the near-optimality of linear estimators for additively
estimating a subclass of symmetric distribution properties that includes entropy, variants of
distance to uniformity, and support size (which may be viewed as a version of the distinct
elements problem). Our proof is constructive, in that we give a polynomial-time algorithm
that is practically viable which, on input n, k, and the property in question, outputs a
linear estimator which, on input k independent draws from a distribution of support at most
n, will with high probability return an ε-accurate approximation of the property value; this
estimator is near-optimal in the sense that there exist k′ = k(1−o(1)), and ε′ = ε(1−o(1)) and
two sets of distributions of support at most n where the property values of the distributions
in one set differ from those in the other set by ε′, yet no algorithm when given a k′-sized
sample from one of the distributions can distinguish whether the sample was drawn from a
distribution in the first set from being drawn from a distribution in the second set, with any
fixed probability greater than 1/2.

While our result shows that linear estimators are near-optimal, the proof does not yield
any bounds on the sample complexity. The proof is constructive, and gives an algorithm
for constructing these estimators, yet it does not reveal the sample size necessary to achieve
a desired estimation accuracy. In this sense, the results of this chapter complement the
results of Chapters 3 and 5. In Chapter 7, inspired by numerical solutions to the algorithm
of this chapter, we are able to describe and analyze the performance of some explicit linear
estimators for several properties. This analysis reveals the surprising inverse linear rate of
convergence of optimal estimators for entropy (as opposed to error decreasing as the inverse
of the square root of the sample size, as one might expect), and allows us to establish the
sample complexity of estimating the `1 distance to the closest uniform distribution over a
specified number of elements.

bound, 1/n on the probability of any domain element. The problem of estimating the distance to the uniform
distribution on m elements is parameterized by m.
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6.1 A Duality of Estimators and Lower Bound

Instances

The main result of this chapter—the near-optimality of linear estimators—hinges on a new
connection between constructing “good” lower bounds, and “good” linear estimators.

The canonical approach to creating lower bounds for estimating symmetric properties
consists of finding a pair of distributions, A+, A− with rather different property values, such
that given only the fingerprint of a sample, one cannot distinguish whether the sample was
drawn from A+ or A−.2 This condition of indistinguishability is very stringent, and requires
showing that the distribution of fingerprints derived from a sample drawn from A+ is close in
total variation (`1) distance to the corresponding distribution for a sample drawn from A−.
The central limit theorems of Chapter 4 and lower bound tools of Chapter 5 suggest and
enable a principled approach to constructing lower bounds for property estimation. Here, we
show the perhaps surprising result that despite the effort required to assemble the required
tools, the condition of indistinguishability in this framework can be roughly expressed via
an intuitive set of linear constraints.

Turning, for a moment, to the side of constructing linear estimators, a natural and
popular approach is to represent the “characteristic function” of the property in question as
a linear combination of “Poisson functions” poi(x, i) := e−xxi

i!
; see [34, 90, 102, 101, 123, 136].

Indeed, in [102, 101], Paninski showed the existence of a sublinear-sample linear estimator
for entropy via a simple nonconstructive proof that applies the Stone-Weierstrass theorem
to approximate the logarithm function (the characteristic function of entropy) via the set of
Poisson functions. We show that the task of constructing such a representation of a given
accuracy can also be framed as a set of linear constraints.

Thus general techniques for proving property estimation upper and lower bounds can both
be characterized by linear constraints. One may then ask how the performance of the best
such lower bound compares to the performance of the best such upper bound. Optimizing
each notion of performance relative to the corresponding linear constraints can be expressed
as a linear program. Amazingly (though in retrospect not unexpectedly) these two linear
programs—one for constructing good lower bound example pairs, and one for constructing
good linear estimators, are dual to each other.

The fundamental complication, however, is that the range of parameters for which the
lower bound program will be pertinent, and those for which the estimator program will be
pertinent, are non-intersecting. Intuitively, it is clear that these parameter ranges must be
disjoint, as one would not expect the exact correspondence between optimal lower bounds
of this form, and optimal linear estimators, as would be implied if these programs were

2Specifically, as described in Chapter 5, distributions A+, A− will not themselves be indistinguishable, but
rather, the ensembles that arise from considering a random permutation of the domain elements of A+, A−

respectively will be indistinguishable. Because we are considering symmetric properties of distributions, such
permutations do not affect the property value and thus are benign. The purpose of these permutations is to
remove any useful information from the sample except the fingerprint.
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dual for pertinent parameters. Thus the main technical challenge is relating optimal values
of the lower bound program to optimal values of the estimator program corresponding to
slightly different parameters. Establishing this relation traverses some nice math involving
the exponentials of infinite “Poisson-matrices”.

Definitions

We begin with some definitions that will be used in this chapter. We refer the reader to
Chapter 3 for the basic definitions related to property estimation, including the definitions
of fingerprints and histograms.

Definition 6.1. A k-sample linear estimator α is defined by a set of at least k coefficients,
α = (α1, . . . , αk). The estimator is defined as the dot product between the fingerprint vector
F of a sample of size k, and the vector α, namely Sk(F) :=

∑k
i=1 αiFi.

Recall that any symmetric property is a function of only the histogram of a distribution.
Additionally, a symmetric property is linear, if the property value is a linear function of the
histogram:

Definition 6.2. A symmetric property π is linear if there exists some function fπ : (0, 1]→
R which we term the characteristic function of π, such that for any distribution A with
histogram h,

π(A) =
∑

x:h(x)6=0

h(x)fπ(x).

As the following examples illustrate, most of the properties that we have been dealing
with are linear. (In the following, Dn denotes the set of distributions over support [n] =
{1, . . . , n}.)

Example 6.3. The entropy of a discrete distribution p ∈ Dn with histogram h is given by
H(h) :=

∑n
i=1 p(i)| log p(i)| =

∑
x:h(x)6=0 h(x)f(x), for the function f(x) := x| log x|.

Example 6.4. The support size of a discrete distribution p ∈ Dn with histogram h is given
by
∑

x:h(x)6=0 h(x)f(x), for the function f(x) := 1.

Example 6.5. The total variational distance between a discrete distribution p ∈ Dn with
histogram h and the closest uniform distribution on s elements can be approximated to within
a factor of 2 as

∑
x:h(x) 6=0 h(x)f(x), for the function

f(x) :=

{
x for x ≤ 1

2s

|x− 1
s
| for x > 1

2s
.
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Summary of Results

The main theorem of this chapter shows that linear estimators are near-optimal for additively
estimating the class of linear symmetric distribution properties, provided that they satisfy a
mild continuity condition:

Theorem 6.1. Let π be a symmetric linear property that is δ(k)-relative earthmover continu-
ous on distributions of support n(k). If for some constant c > 0 and parameter ε(k) = δ/ko(1),
any distributions of support n whose π values differ by at least ε are distinguishable with prob-
ability at least 1

2
+ c using a sample of size k, then for each k there exists a linear estimator

that estimates π on distributions of support n to within error (1 + o(1))ε using a sample of
size (1+o(1))k, and which has probability of success 1−o( 1

poly(k)
). Additionally, such a linear

estimator is given as the solution to a polynomial-sized linear program.

To clarify, the above theorem trivially implies the following corollary:

Corollary 6.6. Given a symmetric linear property π that is 1-relative earthmover continuous
(such as entropy), if there exists an estimator which on input k independent draws from any
distribution A of support n outputs a value v such that |v − π(A)| < ε with probability .51,
then there exists a linear estimator which, given a sample of size 1.01k, outputs a value v′

such that |v′−π(A)| ≤ 2.01ε, with probability > .99, provided ε ≥ 1
log100 k

and k is sufficiently

large.

Given that the proof of Theorem 6.1 is via duality, unsurprisingly, it does not give any
bounds on the sample complexities of these estimation tasks. Nevertheless, as mentioned
above, in Chapter 7 we leverage the insights provided by Theorem 6.1 to give explicit con-
structions of near-optimal linear estimators for entropy, distance to uniformity, and `1 dis-
tance between pairs of distributions, establishing new bounds on the sample complexities of
these tasks that seem inaccessible to the machinery and analysis techniques of Chapter 3.

6.2 Constructing Lower Bound Instances

Given a property π, a sample size k, and an upper bound n on the support size of the
distributions in question, we wish to construct lower-bound instances via a principled—and
in some sense mechanical—approach. Specifically, we would like to find two distributions
A+, A− (of support at most n) which are extremal in the sense that they maximize δ =
π(A+) − π(A−) while having the property that the distributions over fingerprints derived
from sets of k independent draws from A+, A− respectively are indistinguishable with high
probability. Given such a pair of distributions, if one defines D to be the distribution
over distributions that assigns probability 1/2n! to each of the n! distributions obtained
from A+ via a permutation of the domain, and assigns probability 1/2n! to each of the n!
distributions obtained from A− via a permutation of the domain, then no algorithm, on



CHAPTER 6. THE POWER OF LINEAR ESTIMATORS 118

input k independent draws from a distribution chosen according to D can estimate property
π to within ±δ/2.

At least intuitively, the distribution in fingerprints derived from samples of size k drawn
from A+ and A− will be difficult to distinguish if their fingerprint expectations are very sim-
ilar (relative to the size of the covariance of the distribution of fingerprints). The machinery
of Chapter 5 makes this intuition rigorous; specifically, Lemma 5.3 shows that similar expec-
tations imply similar fingerprint covariances, and the central limit theorem for “generalized
multinomial distributions”, Theorem 4.2, implies that if the first and second moments match,
then the distributions are similar in total variational distance (`1 distance).

Since these fingerprint expectations are simply linear functions of the histograms, this
constraint that the fingerprints of A+ and A− should be indistinguishable can be charac-
terized by a set of linear constraints on the histograms of A+ and A−. Additionally, the
constraint that A+ and A− have support size at most n is a linear constraint on the his-
tograms:

∑
x:hA(x)6=0 hA(x) ≤ n. Since we are concerned with a symmetric linear property,

π, which is given as π(A) :=
∑

x:hA(x) 6=0 hA(x)fπ(x), for some function fπ, our aim of max-

imizing the discrepancy in property values, π(A+) − π(A−), is just the task of optimizing
a linear function of the histograms. Thus, at least intuitively, we can represent the task of
constructing an optimal lower-bound instance (A+, A−), as a semi-infinite linear program
whose variables are hA+(x), hA−(x), for x ∈ (0, 1].

Before writing the linear program, there are a few details we should specify. First, to
avoid the messiness that comes with semi-infinite linear programs, we will restrict ourselves
to a finite set of variables, corresponding to x values in some set X ⊂ (0, k

c1

2k
) that consists of

a polynomially-fine mesh of points, the details of which are largely irrelevant. Rather than
solving for histogram values hA+(x), it will be more convenient to solve for variables y+

x ,
which are related to histogram values by y+

x := hA+(x) · x. Thus y+
x represents the amount

of probability mass accounted for by hA+(x). Thus
∑

x y
+
x = 1 for any distribution A+.

Additionally, we have∑
x

yxpoi(kx, i) =
∑
x

h(x)x
e−kx(kx)i

i!
=

k

i+ 1

∑
x

h(x)poi(kx, i+ 1).

Thus
∑

x yxpoi(kx, i) is the expected i + 1st fingerprint scaled by k/(i + 1), given a sample
of size Poi(k) drawn from a distribution with histogram given by h(x) = yx

x
.

Finally, we will restrict ourselves to the “infrequently-occurring” portion of the histogram:
namely, we will only be concerned with fingerprint indices up to kc1 , for a parameter c1 ∈
(0, 1), and will only solve for histogram entries corresponding to probabilities x ≤ 1

2
kc1
k
.
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Linear Program 6.7. Lower Bound LP
The Lower Bound LP corresponding to parameters k, c1, c2, X, and property π satisfying

π(A) :=
∑
x:h(x)6=0 hA(x)fπ(x), is the following:

Maximize:
∑
x∈X

fπ(x)

x

(
y+x − y−x

)
Subject to:

∀i ∈ [kc1 ] ∪ {0},
∑
x

(
y+x − y−x

)
· poi(xk, i) ≤ k−c2

∀i ∈ [kc1 ] ∪ {0},
∑
x

(
y+x − y−x

)
· poi(xk, i) ≥ −k−c2∑

x∈X
y+x + y−x ≤ 2

∑
x∈X

y+x
x
≤ n and

∑
x∈X

y−x
x
≤ n

∀x ∈ X, y+x ≥ 0, y−x ≥ 0

In words, this linear program maximizes the discrepancy in property values of the dis-
tributions corresponding to y+ and y− subject to the following conditions: the first two
constraints ensure that the fingerprint expectations of the two distributions are similar, the
third condition ensures that y+ and y− together represent at most 2 units of probability
mass, the fourth condition ensures that the two distributions have support at most n, and
the last condition ensures that all elements of the support are assigned nonnegative proba-
bility values.

We now argue that the intuition for the above linear program is well founded. For
any reasonably well-behaved property π, given a solution to the above linear program y+, y−

that has objective function value v, we will construct distributions A+, A− whose fingerprints
derived from samples of size k are indistinguishable, and A+, A− satisfy π(A+)−π(A−) ≥ v−ε
for some tiny ε. As shifting a property by a constant, π → π+C does not affect the property
estimation problem, for the sake of convenience we assume that the property takes value 0
on the trivial distribution with support 1, though the following proposition remains true for
rather extreme (though not unbounded) shifts away from this.

Proposition 6.8. Let π be a δ-relative earthmover continuous property that takes value
0 on the trivial distribution. Given any feasible point y+, y− to the Lower Bound LP of
Linear Program 6.7 that has objective function value v, then, provided kc1 ∈ [log2 k, k1/32]
and c2 ≥ 1

2
+ 6c1, there exists a pair of distributions A+, A− of support at most n such that:

• π(A+)− π(A−) > v · (1− o(1))−O(δ · k−c1 log k),

• no algorithm, when given a fingerprint derived from a sample of size Poi(k) can distin-
guish whether the sample was drawn from A+ versus from A− with probability 1−Θ(1).
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To construct A+, A− from the solution y+, y−, there are three hurdles. First, y+
x , y

−
x must

be rounded so as to be integer multiples of 1/x, since the corresponding histograms must be
integral. Next, we must ensure that A+, A− have total probability mass 1. Most importantly,
we must ensure that the fingerprints derived from A+, A− are actually indistinguishable—
i.e. that we can successfully apply the central limit theorem, Theorem 4.2—a more stringent
condition than simply having similar fingerprint expectations. These three tasks must be
accomplished in a delicate fashion so as to ensure that π(A+)− π(A−) ≈ v.

These three hurdles exactly correspond to the modifications that needed to be made to
the Laguerre polynomial construction of Chapter 5 in order to yield a lower bound instance.
In fact, the Lower Bound LP (Linear Program 6.7) can be seen as mechanizing the approach
of Chapter 5. Whereas in that chapter there was a single explicit pair of distributions for
which the goal was an indistinguishability result, the analysis there, while quite involved,
essentially relied on nothing beyond the conditions of our Lower Bound LP. We refer the
reader to Section 5.1 for a discussion of the intuition behind these modifications.

Proof of Proposition 6.8

In this section we show that a solution y+, y− to the Lower Bound LP (Linear Pro-
gram 6.7), for appropriate parameters, corresponds to a pair of distributions p+, p− of sup-
port n whose property values differ by roughly the objective value of the linear program and
which are indistinguishable given Poi(k) sized samples.

The essential approach is: 1) round y+ and y− to distributions p+, p− where the con-
straints of the linear program imply that p+ and p− will have almost identical expected
fingerprints; 2) invoke Lemma 5.3 as summarized in Corollary 6.9 below to argue that the
fingerprint distributions will thus also have almost identical covariances; 3) invoke the central
limit theorem (Theorem 4.2) to conclude that the distributions of fingerprints are essentially
multivariate Gaussian distributions of almost matching expectation and covariance, and
hence indistinguishable.

Corollary 6.9. Given two distributions p+, p− such that when taking Poi(k) sized samples
from p+, p− respectively the expectations of the fingerprints match to within kε, element-by-
element, for some ε > 0, then the i, jth entry of the covariance matrices of the fingerprints
match to within O(k

√
ε| log ε|(i+ j)1/4).

Proof of Proposition 6.8. We prove the lemma for the case δ = 1, as otherwise, we may
divide the property by δ, and only the objective of the linear program will be affected, and
thus both sides of the first claim of the proposition are proportional to δ, and nothing else
is affected.

We note that 1-relative earthmover continuity implies that |fπ(x)
x
| ≤ | log x| for any x.

Further, for the range under consideration, x ∈ X = (0, k
c1

2k
), this implies |fπ(x)| ≤ x| log x| <

kc1
2k

log k. For the case when n < k1−2c1 , we thus have the LP constraint
∑

x∈X
y+
x

x
≤ n implies
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that the corresponding portion of the objective function is bounded as
∣∣∣∑x∈X

fπ(x)
x
y+
x

∣∣∣ ≤
nk

c1

2k
log k ≤ 1

2
k−c1 log k, implying that the objective value of the LP is at most twice this, and

thus that the proposition may be trivially satisfied by the pair consisting of any distribution
and itself.

The other trivial case is when (for n ≥ klog k) there exists some x ≥ 1
n

for which |fπ(x)
x
| ≥

log2 k. Let x+ be the number in the interval [ 1
n
, 1
k3 ] that maximizes fπ(x)

x
, and let x− be the

number that minimizes this. It is straightforward to see that relative earthmover continuity

implies that, for the optimum (y+
x , y

−
x ) of the linear program,

∑
x∈X

fπ(x)
x
y+
x ≤

fπ(x+)
x+ +3 log k

and
∑

x∈X
fπ(x)
x
y−x ≥

fπ(x−)
x−
− 3 log k, implying that fπ(x+)

x+ − fπ(x−)
x−

≥ v · (1 − o(1)). Thus
the uniform distributions on, respectively, 1/x+ and 1/x− elements will have property values
that differ by v · (1− o(1)), and further, will have indistinguishable fingerprint distributions
(statistical distance O(1/k) from each other), as in either case, no element will be seen more
than once in a sample of size Poi(k), except with O(1/k) probability.

Otherwise, if neither of the above two cases apply, then we derive the distributions p+, p−

directly from the linear program solution (y+, y−), via “fattening and rounding”, applying
Corollary 6.9 and then the central limit theorem, Theorem 4.2 to prove indistinguishability.

We first analyze what corresponds to “total probability mass” in each of y+, y−. Note
that for any positive λ,

∑∞
i=0 poi(λ, i) = 1. Consider combining the first two LP constraints

into, for each i ∈ {0, . . . kc1},
∣∣∑

x∈X(y+
x − y−x ) · poi(xk, i)

∣∣ ≤ k−c2 , and then summing over
i < kc1 to yield

∣∣∑
x∈X(y+

x − y−x )
(∑

i<kc1 poi(xk, i)
)∣∣ ≤ kc1k−c2 . Since X consists only of

elements less than kc1
2k

, and by assumption, kc1 ≥ log2 k, Poisson tail inequalities yield that
for any such x, we have 1 >

∑
i<kc1 poi(xk, i) > 1− o( 1

poly(k)
). Thus

∑
x∈X y

+
x and

∑
x∈X y

−
x

differ by at most 2kc1k−c2 + o( 1
poly(k)

). Our first modification to y+, y− is to take whichever
one has the higher sum and decrease its entries arbitrarily until the two sums are equal. Since
poi(xk, i) ≤ 1 in general, this will affect each constraint by at most 2kc1k−c2 + o( 1

poly(k)
), and

will affect the objective function by at most O(kc1k−c2 log2 k). Next, multiply each of the
entries in y+, y− by the largest number less than 1 that would make

∑
x∈X y

+
x ≤ 1 − k−2c1

and
∑

x∈X
y+
x

x
≤ n − k1−3c1 − 1, along with the corresponding statements for y−. We note

that the LP constraints imply this scaling is by 1 − o(1). Since before this scaling we had
for each i ≤ kc1 that |

∑
x(y

+
x − y−x ) · poi(xk, i)| ≤ 3kc1k−c2 , after scaling both y+, y− by the

same number less than 1, this will remain true.
The final steps of the transformation are to round each of y+, y− into histograms h+, h−

with integral entries, though which will not have total probability mass 1; fatten: for each
i ∈ [kc1 ] increment h+

i/k and h−i/k by φ = k1−4c1 ; to make each histogram have total probability

mass 1, let m be the probability mass that must be added to each (which will be the same for
each, by construction), and increment both h+

m and h−m by 1. (There are some details involved
in rounding appropriately, but the analysis is straightforward, and neither the objective value
term nor the constraint terms corresponding to the difference in expected fingerprints will
be affected by more than o(kc1k−c2).)

Thus h+, h− are now histograms of distributions, each having support at most n. Since
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poi(xk, i) = i+1
xk
· poi(xk, i + 1), we have, since h+

x , h
−
x correspond to rounded versions of

y+
x

x
, y
−
x

x
, that the LP constraints for a certain i yield bounds on the i+ 1st fingerprint entries,

specifically, the fact that |
∑

x(y
+
x − y−x ) · poi(xk, i)| ≤ 3kc1k−c2 implies that the expected

fingerprint entries up to kc1 must match to within 3k1+c1−c2 . Corollary 6.9 yields that the

fingerprint covariances must thus match to within O(k1− c2
2

+
3c1
4 log k).

Further, since there are at least φ = k1−4c1 elements in each distribution at each proba-
bility i

k
for i < kc1 , Lemma 5.11 implies that each such element contributes at least 1

12k7c1/2

towards the minimum covariance of either fingerprint distribution, in any direction, and thus
this minimum covariance in any direction is at least Ω(k1−15c1/2). Thus Theorem 4.2 yields
that the total variational distance of each fingerprint distribution from the Gaussian of cor-
responding mean and covariance is O( k4c1/3

k(1−17c1/2)/6 log n) < O(k
3c1
6√
k

log n). While we cannot

bound n directly, distribution h+ is indistinguishable (statistical distance O( 1
k
) from a dis-

tribution obtained by modifying it so that no probabilities lie below 1
k3 . Thus if we modify

both h+, h− in this fashion before applying the central limit theorem, effectively making
n ≤ k3, and thus, for c1 ≤ 1

20
we have O(k

3c1
6√
k

log k3) = o(1).

We have thus shown that h+, h− are indistinguishable from Gaussians of corresponding
mean and covariance. Comparing multivariate Gaussians is straightforward—Proposition A.13
shows that two Gaussians are indistinguishable when the smallest covariance in any direc-
tion is ω(1) times larger than both the square of the distance between their means, and the
product of the dimension (kc1) and the largest pairwise discrepancy between any entries of
the two covariance matrices. The smallest covariance has been bounded by Ω(k1−15c1/2); the
element-wise difference between the means is at most O(k1+c1−c2) implying that the square
of their Euclidean distances is at most O(k2+3c1−2c2). To ensure that the squared distance
between the means is o(1) times the smallest covariance, it is enough to let c2 ≥ 1

2
+ 6c1.

Finally, the pairwise discrepancy between the two covariance matrices was bounded above
by O(k1−c2/2+3c1/4 log k), which, plugging in our bound for c2 yields O(k3/4−5c1/2 log k; the
condition that this times the dimension (kc1) is o(1) times the minimum covariance in any
direction yields that we may set c1 <

1
25

(since by assumption kc1 ≥ log2 k), yielding the
desired indistinguishability.

6.3 Constructing Linear Estimators

Perhaps the most natural approach to constructing estimators for linear properties, dating
back at least to the 1950’s, [90] and, implicitly, far longer, is to approximate the characteristic
function of the desired linear property as a linear combination of Poisson functions. To see the
intuition for this, consider a property π such that π(A) :=

∑
x:hA(x) 6=0 hA(x)fπ(x), and assume

that there exist coefficients β = β1, β2, . . . such that, for all x ∈ (0, 1],
∑∞

i=1 βipoi(xk, i) =
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fπ(x). Thus for a distribution with histogram h, we have∑
x:h(x)6=0

h(x)fπ(x) =
∑

x:h(x)6=0

h(x)
∑
i≥1

βipoi(kx, i)

=
∑
i≥1

βi
∑

x:h(x)6=0

h(x)poi(kx, i)

=
∑
i≥1

βiE[F(i)],

where E[F(i)] is the expected ith fingerprint entry derived from Poi(k) independent draws.
By linearity of expectation, this quantity is precisely the expected value of the linear estima-
tor given by the coefficients β, and thus such an estimator would have zero bias. Additionally,
since we expect the fingerprint entries to be closely concentrated about their expectations,
such an estimator would also have relatively small variance, provided that the magnitudes
of the coefficients |βi| are small relative to 1/

√
k. (Roughly, the contribution to the variance

of the estimator from the ith fingerprint entry is the product of |βi|2 and the variance of the
ith fingerprint entry which can be as high as k.)

For several reasons which will become apparent, instead of approximating the function
fπ(x) as

∑∞
i=1 βipoi(kx, i), we instead approximate the function fπ(x)

x
as the 0-indexed sum∑∞

i=0 zipoi(kx, i). These two approaches are formally identical by setting βi = i
k
· zi−1, since

x · poi(kx, i) = poi(kx, i+ 1) i+1
k
.

The following proposition formalizes this intuition, establishing the requisite relationship
between the magnitudes of the coefficients, error in approximating the function fπ(x)

x
, and

the performance of the derived estimator.

Proposition 6.10. Let π be a linear symmetric property with characteristic function fπ,
and define the function r : (0, 1] → R by r(x) := fπ(x)

x
. Given integers k, n, and a set of

coefficients z0, z1, . . . define the function err : (0, 1]→ R by

r(x) = err(x) +
∑
i≥0

zipoi(xk, i).

If, for positive real numbers a, b, c, the following conditions hold,

1. |err(x)| < a+ b
x
,

2. for all j ≥ 1 let βj = j
k
· zj−1 with β0 = 0, then for any j, ` such that |j − `| ≤

√
j log k

we have |βj − β`| ≤ c
√
j√
k

Then the linear estimator given by coefficients β1, . . . , βk, when given a fingerprint derived
from a set of k independent draws chosen from a distribution of support at most n will
estimate the property value with error at most a + bn + c log k, with probability of failure
o(1/poly(k)).



CHAPTER 6. THE POWER OF LINEAR ESTIMATORS 124

The condition on the magnitude of the error of approximation: |err(x)| < a + b
x
, is

designed to take into account the inevitable increase in this error as x→ 0. Intuitively, this
increase in error is offset by the bound on support size: for a distribution of support at most
n, the amount of probability mass at probability x is bounded by nx, and thus provided that
the error at x is bounded by b

x
, the error of the derived estimator will be at most nx b

x
= nb.

Before proving Proposition 6.10, we first show that the task of finding these coefficients
zi, can be expressed as a linear program:

Linear Program 6.11. Linear Estimator LP
The Linear Estimator LP corresponding to parameters k, c1, c2, X, and property π with

characteristic function fπ is the following:

Minimize: 2za + n · (zb+ + zb−) + k−c2
kc1∑
i=0

(z+i + z−i )

Subject to:

∀x ∈ X,
kc1∑
i=0

poi(xk, i)(z+i − z
−
i ) ≥ fπ(x)

x
− (za +

zb−

x
)

∀x ∈ X,
kc1∑
i=0

poi(xk, i)(z+i − z
−
i ) ≤ fπ(x)

x
+ za +

zb+

x

∀i ∈ [kc1 ], z+i ≥ 0, z−i ≥ 0,

za ≥ 0, zb+ ≥ 0, zb− ≥ 0.

To see the relation between the above definition and Proposition 6.10, we let the co-
efficients zi = z+

i − z−i . The parameter a in the proposition corresponds to za in the LP,
and the parameter b in the proposition corresponds to max(zb+, zb−). The first two sets of
constraints ensure that za, zb+, zb− capture the bias of the estimator. The objective function
then minimizes this bias, while also penalizing unduly large coefficients.

Proof of Proposition 6.10

Proof of Proposition 6.10. To start, consider that instead of a sample of size k, we are given
k′ ← Poi(k) draws from the distribution. Trivially, if we prove the proposition in this
setting, then, because k′ = k with probability at least 1

O(
√
k)

, and our probability of failure

is o(1/poly(k)), the conditional probability of failure given exactly k draws must also be
o(1/poly(k)). Thus, for the remainder of the proof, assume we are given a sample of size
k′ ← Poi(k).

The proof consists of two parts, we first argue that the first condition of the proposition
guarantees that the expected value of the estimator is within a + bn of the true property
value—thus the resulting estimator has small bias. We then argue that the second condition
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of the proposition implies, via basic tail bounds, that the value of the estimator will be
closely concentrated about its expectation.

For a histogram h corresponding to a distribution of support at most n, we have the
following:

r(h) =
∑

x:h(x)6=0

h(x)x · r(x)

=
∑

x:h(x)6=0

h(x)x

(
err(x) +

∑
i≥0

zipoi(xk, i)

)

=

∑
i≥0

βi+1
k

i+ 1

∑
x:h(x)6=0

h(x)x · poi(xk, i)

+
∑

x:h(x)6=0

h(x) · x · err(x) . (6.1)

We start by bounding the magnitude of the second term (the error term). Since
∑

x h(x) ≤
n, and

∑
x h(x)x = 1, we have∑
x:h(x)6=0

h(x)x · err(x) ≤
∑

x:h(x) 6=0

h(x)x · a+
∑

x:h(x)6=0

h(x)x · b
x
≤ a+ nb.

We now turn to the first term in Equation 6.1. Observe that

x · poi(xk, i) = x
(xk)ie−xk

i!
=

(xk)i+1e−xk

(i+ 1)!

i+ 1

k
= poi(xk, i+ 1)

i+ 1

k
.

Additionally,
∑

x:h(x)6=0 h(x)poi(xk, j) is simply E[Fj], the expected jth fingerprint entry

given Poi(k) draws from h. Thus the first term in Equation 6.1 becomes:∑
i≥0

βi+1
k

i+ 1

∑
x:h(x) 6=0

h(x)x · poi(xk, i) =
∑
i≥0

βi+1

∑
x:h(x)6=0

h(x)poi(xk, i+ 1) =
∑
i≥1

βiE[Fi],

which is the expected value of our estimator. Thus the bias of the estimator is at most
a+ bn, as desired.

We now argue that with high probability the error will be tightly concentrated about this
bias. Tail bounds for Poisson distributions (Fact A.19) shows that for λ ≥ 1, the probability
of a Poisson distribution Poi(λ) taking a value outside the range λ±

√
λ log k decays super-

polynomially fast with k. Thus letting j = bλc, we thus also have that Poi(λ) will lie outside
j±
√
j log k with o(1/poly(k)) probability. Thus, with all but o(1/poly(k)) probability, each

element in the support of the distribution that occurs with probability p(i) ≥ 1/k will
be sampled a number of times that lies in the interval j ±

√
j log k, for j = bk · p(i)c.

Thus from the second condition of the proposition, each such element will contribute to

the property estimate a number in an interval of radius c
√
j√
k
≤ c

√
k·p(i)
√
k

= c
√
p(i) and
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hence diameter at most 2c
√
p(i). With a view towards applying Hoeffding’s inequality, we

bound the sum of the squares of the diameters of these intervals:
∑

i:p(i)≥1/k 4c2 · p(i) ≤ 4c2.
Thus Hoeffding’s inequality yields that the contribution of the elements of probability at
least 1/k to the estimate will be within

√
4c2 log k

4
= c log k

2
of its expectation, except with

2 · e− log2 k
8 = o(1/poly(k)) probability.

Next we consider those elements for which p(i) < 1
k
. We note that for λ < 1 and ` ≥ 1 we

have poi(λ, `) = λ`e−λ

`!
≤ λ

`!
. Thus the total probability that any element of probability less

than 1/k appears more than log k times is at most
(∑

`>log k
1
`!

)∑
i k · p(i). The first term is

o(1/poly(k)), and the second term equals k, leading to a total bound of o(1/poly(k)). Similar
to above, we may use the bound from the second condition of the proposition, for j = 1 to
say that, except with this negligible probability, each such element with p(i) < 1

k
contributes

to the property estimate a value in an interval of radius c√
k
. We further bound the variance

of each such contribution: since an element of probability p(i) < 1
k

will likely be seen 0 times,
and in fact will be seen a nonzero number of times only with probability less than k ·p(i), the
variance of each such contribution will be at most k ·p(i) ·(2 c√

k
)2 = 4c2 ·p(i), which must thus

sum to at most 4c2. Thus we have a sum of independent random variables each in an interval
of diameter 2c√

k
and having total variance at most 4c2. Bennett’s inequality says that in such

a case, with a sum of independent random variables of total variance σ2, each bounded to be
within m of its mean, then the probability that the sum is more than t away from its mean
is at most 2 exp(− σ2

m2 ·φ(mt
σ2 )) where the function φ is defined as φ(x) = (1+x) log(1+x)−x.

In our present case, we consider the probability that the contribution to the estimate from
the small distribution elements deviates from its mean by more than c log k

2
, yielding a bound

of 2 exp(−k ·φ( log k

4
√
k
). Since for x ≤ 1, φ(x) > x2

3
, our bound becomes 2 exp(− log2 k

48
), which is

negligible.
Thus in either case, the probability of deviating from the expectation by more than c log k

2

is negligible in k, so thus the total estimate will never deviate by more than c log k from
its expectation, except with probability o(1/poly(k)). Thus the error of our estimator is at
most a+ bn+ c log k, with probability 1− o(1/poly(k)).

6.4 Duality, and Matrix Exponentials

The impetus for our main result is the observation that the Lower Bound LP (Linear
Program 6.7) and the Linear Estimator LP (Linear Program 6.11) are dual linear programs.
Complications arise, however, when one considers the allowable settings of the parameters.
Intuitively, the Lower Bound LP only begins to make sense when c2 > 1/2—namely, when
the discrepancy in fingerprint expectations of the implicitly described pair of distributions is
less than k1/2, since the standard deviation in fingerprint entries can never exceed this value.
Conversely, the Linear Estimator LP yields reasonable estimators only when c2 < 1/2, since
this corresponds to coefficients at most 1/k1/2, which, coupled with the variance in fingerprint
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entries of up to k, would lead to an estimator having constant variance.
As our goal is to find a linear estimator of near–optimal performance, we start with a

solution to the Lower Bound LP with objective value v, which, provided c2 >
1
2

is suitably
chosen, yields a lower bound of ≈ v

2
, on the accuracy of estimating (via any algorithm)

the desired property given a sample of size k. We invoke duality to yield a k-sample linear
estimator with coefficients described by the vector z, and with objective value also v in the
Linear Estimator LP, with parameter c2 >

1
2

as above. The issue is that the entries of z may
be unsuitably large, as the only bound we have on them is that of the objective function
of the Linear Estimator LP, which yields that their sum is at most v · kc2 . Since c2 >

1
2
,

the entries may be bigger than
√
k, which corresponds to an estimator with inadmissibly

super-constant variance.
We now show how to transform a solution to the Linear Estimator LP with c2 > 1/2 into

a related estimator that: 1) has smaller coefficients; 2) takes a slightly larger sample; and
3) has almost unchanged bias. Intuitively, we have a vector of Poisson coefficients, z, whose
magnitudes exceed

√
k, yet whose linear combination, the function g : [0,∞)→ R defined as

g(x) =
∑∞

i=0 z(i)·poi(xk, i) closely approximates fπ(x)
x

, and thus, despite its huge coefficients,
the resulting function is small and well-behaved. The task is to transform this into a different
linear combination that has smaller coefficients and is almost equally well-behaved. The
principal tool we may leverage is the increased sample size. While poi(xk, i) captures the
Poisson functions corresponding to taking samples of size k, if we instead take samples of size
k
α

for α < 1, then the corresponding functions are poi(xk
α
, i), which are “thinner” than the

original Poisson functions. To phrase the intuition differently, if the target function fπ(x)
x

is
so finely structured that approximating it with “fat” Poisson functions requires coefficients
exceeding

√
k, we might hope that using “thinner” Poisson functions will lower the required

coefficients.
It is straightforward to re-express a linear combination of Poisson functions in terms of

“thinner” Poisson functions. Intuitively, this is the process of simulating a Poi(k)-sample
estimator using Poi( k

α
)-sized samples, and corresponds to subsampling. We let zα denote the

vector of coefficients induced from subsampling by α—that is, zα(`) =
∑`

i=0 z(i)Pr[Bin(`, α) =
i], where Bin(`, α) represents the binomial distribution taking ` trials each with success prob-
ability α. The question becomes: how does the magnitude of zα decrease with α?

We show that the square of the L2 norm of the vector zα is a quadratic form in z,
defined by an infinite matrix Mα. We are able to analyze these norms because of the
fortuitous form of its matrix logarithm: there exists an infinite tri-diagonal matrix A such
that for all α ∈ (0, 1), Mα = 1

α
e(1−α)A. We show this via the Gauss relations for contiguous

hypergeometric functions. Our main result, Theorem 6.1, then follows from the fact that
the quadratic form ||zα||22 = zeαXzᵀ is a log-convex function of α, for arbitrary z and X, and
thus we can bound the size of the entries of the coefficient vector zα, for α in the interval
(0, 1), by interpolating between the values of its L2 norm at the endpoints. We now make
this high-level approach is rigorous.
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Matrix Exponentials of Poisson Matrices

Given a vector of Poisson coefficients, z, indexed from 0 through ∞, we may associate it
with the real function g : [0,∞) → R defined as g(x) =

∑∞
i=0 z(i) · poi(x, i). The input

of the function g will typically by scaled by the sample size, as in g(xk). Consider the
task we call “resampling”, that is, given coefficients z and a constant α, finding a vector
zα that yields a corresponding gα such that g(αx) = gα(x) for all x ≥ 0. That is, if z is
the vector of coefficients for a k-sample estimator, zα will be a vector of coefficients for a k

α

sample estimator that has identical expected estimates. (See Proposition 6.10.) Constructing
such an estimator for α < 1 is straightforward—intuitively, taking a larger sample can
never hurt. More specifically, given a Poisson process Poi( x

α
) that returns an integer `,

namely, “` Poisson events have occurred”, we may simulate a Poisson process Poi(x) by, for
each “event”, accepting it with probability α and otherwise ignoring it; that is, when the
Poisson process Poi( x

α
) returns `, our simulation of Poi(x) returns i ≤ ` with probability

αi(1−α)`−i
(
`
i

)
, that is, the probability that a binomial distribution with parameter α returns

i heads out of ` draws. Symbolically, poi(x, i) =
∑∞

`=i poi(
x
α
, `)αi(1 − α)`−i

(
`
i

)
. To ensure∑∞

i=0 z(i) · poi(x, i) =
∑∞

`=0 zα(`) · poi( x
α
, `) for all x, we expand and then change the order

of summation:

∞∑
i=0

z(i) · poi(x, i) =
∞∑
i=0

∞∑
`=i

z(i)poi(
x

α
, `)αi(1− α)`−i

(
`

i

)

=
∞∑
`=0

poi(
x

α
, `)
∑̀
i=0

z(i)αi(1− α)`−i
(
`

i

)

which implies that we should set zα(`) =
∑`

i=0 z(i)αi(1− α)`−i
(
`
i

)
, as we do in the following

construction.

Construction 6.12 (Resampling). Given a vector z, indexed from 0 through ∞, let zα be
the resampled version of z, defined as zα(`) =

∑`
i=0 z(i)αi(1− α)`−i

(
`
i

)
. We define z1 := z.

Lemma 6.13. Resampling a vector z by factor α to yield zα satisfies
∑∞

i=0 z(i) · poi(x, i) =∑∞
`=0 zα(`) · poi( x

α
, `) for all x ≥ 0.

To bound the size of the coefficients as α decreases, we prove the following general
structural result, which is central to this section.

Proposition 6.14. For an arbitrary vector z of finite support and for α ∈ (0, 1], let zα be the
α-resampled version of z, and let || · ||2 denote the L2 norm. Then

√
α||zα||2 is log-convex in

α. Further, letting g denote the function represented by z, that is, g(x) =
∑∞

i=0 z(i)·poi(x, i),
then the limit as α approaches 0 of

√
α||zα||2 equals the L2 norm of g.

We first set up some preliminaries that will help us characterizes the behavior of ||zα||2.
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Definition 6.15. Define the matrix Mα for α ∈ (0, 1) by Mα(i, j) =
∑∞

`=0

(
`
i

)(
`
j

)
αi+j(1 −

α)2`−i−j, and the matrix A such that A(i, i) = 1 − 2i, A(i, i + 1) = A(i + 1, i) = i + 1 for
all i ≥ 0, and with all other entries set to zero, where both matrices are indexed by the
nonnegative integers.

The matrix Mα is chosen so that, trivially, ||zα||22 = zMαz
ᵀ. We relate Mα to the much

simpler matrix A by the following lemma, in terms of matrix exponentiation.

Lemma 6.16. Mα = 1
α
e(1−α)A.

Proof. Note that d
dα

1
α
e(1−α)A = −A 1

α
e(1−α)A − 1

α2 e
(1−α)A, so we prove the result by showing

that d
dα
Mα = −AMα − 1

α
Mα, and noting that when α = 1 we have that 1

α
e(1−α)A equals

the identity matrix, which is easily seen to equal limα→1Mα. We treat this as our initial
condition.

We first evaluate Mα(i, j). Assume for the moment that i ≤ j. Thus the sum that defines
Mα(i, j) only has nonzero terms for ` ≥ j, so we may substitute m = ` − j and sum over
m going from 0 to infinity instead. We aim to represent the terms using rising factorial
notation, namely, for a number x, let (x)m denote x(x+ 1)(x+ 2) · . . . · (x+m− 1). Further,
aiming to use only an argument of m in the rising factorial notation for the mth component
of the sum, we note that

(
`
j

)
=
(
m+j
j

)
= (j+1)m

m!
and

(
`
i

)
=
(
m+j
i

)
=

(i+1)m+j−i
(m+j−i)! = (j+1)m

(j−i+1)m

(
j
i

)
.

Thus Mα(i, j) = αi+j(1 − α)j−i
(
j
i

)∑∞
m=0

(j+1)m(j+1)m
(j−i+1)mm!

(1 − α)2m, where we may immediately

read off the sum as the hypergeometric function 2F1(j + 1, j + 1, j − i + 1; (1 − α)2). Thus
for i ≤ j,

Mα(i, j) = αi+j(1− α)j−i
(
j

i

)
2F1(j + 1, j + 1, j − i+ 1; (1− α)2).

We now turn to the claim, that AMα + 1
α
Mα + d

dα
Mα = 0. Because of the structure of

A, the (i, j)th entry of AMα equals iMα(i − 1, j) + (1 − 2i)Mα(i, j) + (i + 1)Mα(i + 1, j).
Further, to evaluate the derivative of Mα, we note that in general, we have the Gauss rela-
tion d

dt2
F1(x, y, z; t) = z−1

t
(2F1(x, y, z − 1; t)− 2F1(x, y, z; t)). Combining everything yields

a linear combination of the hypergeometric functions 2F1(j+ 1, j+ 1, j− i; (1−α)2), 2F1(j+
1, j+1, j− i+1; (1−α)2), and 2F1(j+1, j+1, j− i+2; (1−α)2) which equals zero because of
the corresponding Gauss relation between these three contiguous hypergeometric functions.
(A slightly different linear combination arises for the border case where i = j, but again, the
Gauss relations are sufficient.)

We now prove our main proposition.

Proof of Proposition 6.14. Since by construction, ||zα||22 = zMαz
ᵀ, and by Lemma 6.16Mα =

1
α
e(1−α)A, we have that (

√
α||zα||2)2 = ze(1−α)Azᵀ. Substituting 1 − α → α yields that this

is a log-convex function of α provided zeαAzᵀ is. Denote f(α) = zeαAzᵀ. We note that

since the second derivative of the logarithm of a positive function f equals f ′′·f−f ′2
f2 , we
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have that f is log-convex provided f · f ′′ ≥ f ′2. Since the vectors z are constant, we may
differentiate eαA and post- and pre-multiply by z. By definition, d

dα
eαA = AeαA, and thus

further d2

dα2 e
αA = A2eαA. We note that the power series representation eX :=

∑∞
i=0

Xi

i!
implies,

since A is symmetric, that A commutes with eαA. Since the square of e
1
2
αA equals eαA, we

may thus reexpress the first derivative of f as ze
1
2
αAAe

1
2
αAzᵀ, and the second derivative as

ze
1
2
αAA2e

1
2
αAzᵀ. Letting vα := ze

1
2
αA, since all the matrices are symmetric, we thus have

that f(α) = vvᵀ, f ′(α) = vAvᵀ, and f ′′(α) = vA2vᵀ, and the desired relation f · f ′′ ≥ f ′2

is simply the Cauchy-Schwarz inequality: f ′(α)2 = (vAvᵀ)2 ≤ |vA|2|v|2 = (vAAvᵀ)(vvᵀ) =
f ′′(α) · f(α).

Finally, we show that for g(x) =
∑∞

i=0 z(i) · poi(x, i), we have limα→0

√
α||zα||2 = ||g||2.

Note that zα(`) =
∑`

i=0 z(i)Bin(`, α, i), where Bin(`, α, i) denotes the probability that a
binomial distribution with parameter α will draw i heads from ` trials. Recall that as α
approaches 0, the binomial distribution becomes very well approximated by the Poisson pro-
cess of parameter α`, yielding zα(`) ≈

∑
i z(i)poi(α`, i) = g(α`). Thus limα→0 α ·

∑
` zα(`)2 =∫

g(x)2dx = ||g||22, yielding the claim.

We have thus shown that
√
α||zα||2 varies log-concavely with α; to complete the analysis

of its behavior for α ∈ (0, 1) we need to understand its behavior at the endpoints. The Linear
Estimator LP provides us, in rough form, with bounds on both the size of the coefficients z(i),
and the size of the function the coefficients represent, g(x) =

∑∞
i=0 z(i) · poi(x, i)—that is,

intuitively, bounds for the α = 1 and α = 0 cases respectively. However, we must eliminate
one odd possibility before proceeding: for very small x, the linear program essentially bounds
the linear combination of poisson functions as a multiple of 1/x. The function 1/x, however,
has infinite L2 norm, so a 1/x blowup would in fact be unworkable. Fortunately, this kind of
blowup is in fact overly pessimistic: a linear combination of Poisson functions with bounded
coefficients cannot “blowup” like 1/x at the origin; the following lemma characterizes this.

Lemma 6.17. Given a vector z of coefficients that induces a function g(x) =
∑∞

i=0 z(i) ·
poi(x, i), where for each i, |z(i)| is at most some bound b, and |g(x)| ≤ 1

x
, then the L2 norm

of g is O(log b).

Proof. We note that
∫∞

1
g(x)2dx ≤ 1, so we need only bound the blowup as x approaches

0. We reexpress g(x)2 as a sum of “thin” Poisson functions, g(x)2 =
∑∞

`=0 ω(`)poi(2x, `) via
poi(x, i) ·poi(x, j) = poi(2x, i+j)2−(i+j)

(
i+j
i

)
, and note that the new coefficients are bounded

by b2 since for any index `, we have ω(`) =
∑`

i=0 2−`
(
`
i

)
z(i)z(`− i), and

∑`
i=0 2−`

(
`
i

)
= 1.

We may further alter g(x)2 so that it is still expressible by Poisson functions as: g(x)2e−2x =∑∞
`=0 ω(`)poi(2x, `)e−2x =

∑∞
`=0 ω(`)2−`poi(4x, `). Since |ω(`)| ≤ b2, we may cut off this sum

at ` = 2 log2 b without altering its value by more than 1. Define h(x) =
∑2 log2 b

`=0 ω(`)2−`poi(4x, `).
We note that the integral of h differs from the integral of g(x)2e−2x by less than 1, since∫∞

0
poi(4x, `)dx = 1

4
, and thus the integral of the `th term of the sum is bounded by 1

4
b22−`,

so the terms beyond 2 log2 b will contribute at most 1
4

to the integral.
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We express h as e−4xP (x) where P is some polynomial of degree 2 log2 b. We may thus

approximate
∫ 1

0
h(x)2 to within factor e4 by

∫ 1

0
P (x)dx. Gauss-Legendre quadrature trivially

implies that if a polynomial of degree d is bounded on the interval [ 1
d2 , 1], then its integral

over [0, 1] is bounded identically. Since by assumption, |h(x)| ≤ e−2x 1
x2 + 1, where the

final 1 captures the error from truncating at 2 log2 b, setting d = 2 log2 b yields the desired
result.

Finally, we assemble the pieces to transform a solution to the linear program into a near-
optimal estimator, using Proposition 6.10 for the final step. The following construction will
yield a vector of “Poisson coefficients,” in terms of a parameter α and a solution to the
linear estimator LP, that will yield, under Proposition 6.10, a k

α
-sample estimator whose

performance—when α converges to 1 suitably—will be good enough to yield Theorem 6.1.

Construction 6.18. Given a solution z = z+−z− to the linear estimator LP for a property
represented as fπ, letting ε = 2 log k

kc1
, for parameter α ∈ (0, 1), construct the α-scaled estimator

as follows: Attenuate the coefficients, defining z̃(i) := z(i) · (1 − ε)i. Resample z̃ by α
to yield z̃α, as in Construction 6.12. Finally, construct the Poisson coefficients zE(i) :=

z̃α(i) + (1− e−εαi)fπ( (i+1)α
k

) k
(i+1)α

for i ≤ k.

For the next proposition, it will simplify the analysis to scale the property π under
consideration so that it is 1-relative earthmover continuous, and shift it so that it takes
value 0 on the trivial distribution with support 1: π(“1”) = 0. Clearly such a transform will
not affect the behavior of linear estimators that are correspondingly transformed.

Proposition 6.19. Let z = z+−z− be a solution to the linear estimator LP that has objective
value v for a property π that is 1-relative earthmover continuous and takes value 0 on the
trivial distribution, where kc1 ∈ [log2 k, k1/4] and c2 < 1. Then Proposition 6.10 when applied
to the results of Construction 6.18 for α ∈ (1

2
, 1) will yield a k

α
-sample estimator with error

v · (1 + o(1)) + O(kαc2+(3/2−α)c1−1/2 log4 k + k−c1/2 log2 k) and probability of failure o( 1
poly(k)

)

provided v ≤ log2 k; if v > log2 k then the “estimator” that returns 0 always will have error
at most v · (1 + o(1)).

Proof. Defining the linear combination of Poissons g(x) :=
∑kc1

i=0 poi(xk, i)z(i), we first note
that if we attenuate the coefficients, as in the construction, letting z̃(i) := z(i) · (1− ε)i and
consider the corresponding linear combination of Poissons, g̃(x), then g and g̃ are related as

g̃(x) :=
∑kc1

i=0 z(i)(1− ε)i e
−xk(xk)i

i!
= g(x · (1− ε))e−εkx. We then resample this vector by α to

yield z̃α. Our first task is to bound the coefficients here. We do this using the log-convexity of
the resampling operation, as shown by Proposition 6.14. Explicitly, Proposition 6.14 implies√
α||z̃α||2 ≤ ||z̃||α2 · ||g̃||1−α2 . We must bound each term on the right hand side. For the

first term, we note that because each term in the objective function of the linear program
is non-negative, the objective value v thus bounds the portion of the objective function
k−c2

∑kc1

i=0 |z(i)|. Thus the `1 norm of z is at most v · kc2 , which hence also bounds the `1
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norm of the attenuated coefficients, z̃; further, the `1 norm of a vector bounds its L2 norm,
so we have ||z̃||2 ≤ v · kc2 .

Bounding the second term, ||g̃||2 takes a bit more work. Consider the characteristic func-
tion of the property, fπ. By assumption, f(1) = 0. Further, relative-earthmover continuity
imposes the condition |fπ(x)/x− fπ(y)/y| ≤ | log x

y
|; letting y = 1 yields |fπ(x)|/x ≤ | log x|.

We note that for the range of x considered in the linear program, x ∈ (0, k
c1

2k
), we may

crudely bound | log x| < kc1
kx

log k. For each such x, the linear program bounds the pos-

itive error of the Poisson approximation by za + zb+

x
and the negative error by za + zb−

x
,

where the objective function penalizes large za, zb+, zb− via the term 2za + n · (zb+ + zb−).
We consider two cases. For n < k1−c1 we note that if we replace the triple (za, zb+, zb−) by
(0, zb+ + za

n
, zb−+ za

n
) then the objective function remains unchanged, and further, each of the

linear program constraints becomes looser, as, since x < 1
n
, we have za + zb+

x
≤ 0 + zb++za/n

x

with the corresponding statement for zb−. Thus at optimum, we may assume za = 0. Since
as noted above, |fπ(x)

x
| < kc1

kx
log k, we have that letting zb+ = zb− = kc1

k
log k and all the other

variables being 0 is a feasible point of the linear program with objective value n(zb+ + zb−)
and thus the since all variables of the linear program are restricted to be nonnegative, the
sum zb+ + zb− = 2k

c1

k
log k bounds both zb+ and zb− at the optimum of the linear program.

Thus at optimum, the bound in each constraint of the linear program may be bounded as
za + zb±

x
≤ 2k

c1

xk
log k. We analyze this in a moment.

For the other case, when n ≥ k1−c1 , we note that the bound in each constraint of the

linear program may be bounded as za + zb±

x
≤ 2za + zb++zb−

x
n

k1−c1 ≤
2za+n·(zb++zb−)

xk1−c1 ≤ v
xk1−c1 .

Thus for both cases we have the bound za + zb±

x
≤ kc1

xk
max{2 log k, v}. Adding this to the

above bound |fπ
x
| ≤ kc1

xk
log k yields a bound on the right hand sides of each constraint in the

linear program, namely a bound on g, the left hand side of the linear program constraints,
of |g(x)| ≤ kc1

xk
(v + 3 log k) for x ∈ (0, k

c1

2k
). To bound |g(x)| for x ≥ kc1

2k
we note that g is a

linear combination of Poissons with coefficients as high as v ·kc2 , and may thus reach as high
as v · kc2 . We note, however, that we are dealing with the attenuated version of g, namely,
as derived above, g̃(x) = g(x · (1− ε))e−εkx where ε = 2 log k

kc1
. Thus at x = kc1

2k
the attenuation

is already e− log k = 1
k
, and will clearly decay at least as fast as 1

x
beyond this. Thus, for all

x, we have g̃(x) ≤ 2k
c1

xk
(v + 3 log k), where the 2 is a crude bound on 1

1−ε . Thus if we scale g̃

by 1
2kc1 (v+3 log k)

so that it is bounded by 1
kx

and apply Lemma 6.17 to g̃(xk)
2kc1 (v+3 log k)

, we thus

have a bound on the L2 norm of g̃ of ||g̃||2 = O(2kc1(v + 3 log k) log(v · kc2)) = O(kc1 log3 k)
for v < log2 k.

Thus, as discussed at the beginning of the proof, we may combine this bound and the
bound ||z̃||2 ≤ v · kc2 via log-convexity to yield a bound on the L2 norm of the resampled
coefficients:

√
α||z̃α||2 = O(kαc2+(1−α)c1 · log3 k). We will consider cases where α ∈ (1

2
, 1), so

we may drop the
√
α term from the left hand side while preserving the asymptotic expression.

As each element of z̃α must be at most the L2 norm of the whole, we have the element-by
element bound of |z̃α(i)| = O(kαc2+(1−α)c1 log3 k). We are now in a position to analyze the

application of Proposition 6.10 to the coefficients zE(i) = z̃α(i) + (1 − eαεi)fπ( (i+1)α
k

) k
(i+1)α

,
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where for i > k we extend this definition by letting zE(i) = zE(k).
We first analyze the second condition of Proposition 6.10, where we separately bound

the contributions from z̃α and from the remaining term. We have just derived the bound
|z̃α(i)| = O(kαc2+(1−α)c1 log3 k), and we use this for i ≤ 2kc1 . Our aim is to find a bound c

such that for all j, ` between 1 and 2kc1 such that |j− `| ≤
√
j log k we have c >

√
k√
j
| j
k
z̃α(j−

1) − `
k
z̃α(` − 1)|. We note that j√

j
= O(kc1/2), and that √̀

j
≤ j+

√
j log k√
j

= O(kc1/2), which

implies that we may set c to be O(kc1/2) times our just-derived bound on |z̃α(i)|, namely,
c = O(kαc2+(3/2−α)c1−1/2 log3 k).

For the case where one of j, ` is greater than 2kc1 we now derive a bound on how z̃α(i)
decays for large i. As each original coefficient z(i) is bounded by v · kc2 , each attenuated
coefficient is bounded as |z̃(i)| ≤ v · kc2(1− ε)i. Assume for the moment that each coefficient
equals exactly this. The corresponding linear combination of Poissons is hence g̃(x) =
v · kc2e−εkx; resampling by α factor replaces x with αx, which has the effect of replacing
ε by αε, yielding coefficients v · kc2(1 − αε)i. Since resampling involves a positive linear
combination of the coefficients, we thus have the bound |z̃α(i)| ≤ v · kc2(1 − αε)i. As

v < log2 k and (1 − αε)i < e−αεi = e−
2αi log k
kc1 , then for α ≥ 1

2
, c2 < 1, and i > kc1 we have

|z̃α(i)| < log2 k and decaying by another factor of k for each addition of kc1 to i. Thus,
trivially, the c from above applies to this region.

We now examine the contribution to the second condition of Proposition 6.10 from the
remaining term of zE, namely (1− e−αεi)fπ( (i+1)α

k
) k

(i+1)α
. As above, we desire a bound c′ >

√
k

α
√
j
|(1−e−αε(j−1))fπ( jα

k
)−(1−e−αε(`−1))fπ( `α

k
)| for pairs j, ` ≥ 1 such that |j−`| ≤

√
j log k.

For the case that j ≤
√
k, we use the bound fπ(x) ≤ x| log x|, the trivial bound (1− ey) < 1

for any y, and the triangle inequality to yield a bound of c′ = O(k−1/4 log k). For j >
√
k,

we note that e−αε(j−1) and e−αε(`−1) are both negligible in k, and thus it is sufficient to

bound
√
k

α
√
j
|fπ( jα

k
) − fπ( `α

k
)|. To bound this change in fπ, recall that for general x, y we

have |fπ(x)/x − fπ(y)/y| ≤ | log x
y
|, yielding |fπ( jα

k
) − j

`
fπ( `α

k
)| = O( jα

k
| log `

j
| = O(

√
j log k
k

).

We add this to the bound | `−j
`
fπ( `α

k
)| = O(

√
j log2 k
k

). Combining, yields a bound of c′ =
√
k

α
√
j
O(
√
j log2 k
k

) = O( log2 k√
k

). We note that, since α ∈ (1
2
, 1) and c2 >

1
2
, the bound derived

earlier of c = O(kαc2+(3/2−α)c1−1/2 log3 k) is at least O(k−1/4 log3 k), which thus subsumes

the two just derived bounds of respectively O(k−1/4 log k) and O( log2 k√
k

). Thus we take c =

O(kαc2+(3/2−α)c1−1/2 log3 k) for the bound on the second condition of Proposition 6.10.
We now turn to the first condition of Proposition 6.10, essentially examining the bias of

the estimator. We must compare fπ(x)
x

to the linear combination of Poissons
∑

i≥0 zE(i) ·
poi(xk

α
, i). We consider each of the two terms of zE separately, and start by comparing the

fraction of our target (1 − e−εkx)fπ(x)
x

to the combination of Poissons corresponding to the

second term of zE, namely
∑

i≥0(1−e−αεi)fπ( (i+1)α
k

) k
(i+1)α

·poi(xk
α
, i). Since

∑
i≥0 poi(

xk
α
, i) =
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1, we may thus bound∑
i≥0

∣∣∣∣(1− e−αεi)fπ ((i+ 1)α

k

)
k

(i+ 1)α
− (1− e−εkx)fπ(x)

x

∣∣∣∣ · poi(xkα , i)

≤

(∑
i≥0

∣∣e−αεi − e−εkx∣∣ fπ(x)

x
· poi(xk

α
, i)

)

+

(∑
i≥0

(1− e−αεi)poi(xk
α
, i)

∣∣∣∣fπ ((i+ 1)α

k

)
k

(i+ 1)α
− fπ(x)

x

∣∣∣∣
)

We bound each of the sums separately, noting throughout that α ∈ (1
2
, 1). Recalling that

ε = 2 log k
kc1

, we bound the first sum for x ≤ 1
εk

by noting that since e−y has derivative at most

1 for positive inputs, we have |e−αεi−e−εkx| ≤ αε|i− kx
α
|. Since

∣∣∣fπ(x)
x

∣∣∣ ≤ | log x|, the first sum

is thus bounded by αε| log x| times the expected distance of Poi(xk
α

) from its mean, which is

bounded by the square root of its variance, namely
√

kx
α

, yielding a bound on the first sum

of O(ε
√
kx| log x|). We apply this bound for x ≤ 1

εk
; since |x log x| is an increasing function

of x for x < e−1, we evaluate this bound by plugging in x = 1
εk

to yield O(k−c1/2 log3/2 k).
For x > 1

εk
, we note that poi(xk

α
, i) is negligible unless i is within a factor of 2 of xk

α
. Thus

for εi ≥ εkx
2a

we bound |e−αεi − e−εkx| ≤ αε|i − kx
α
|e−εkx/2, and thus, corresponding to the

above bound on the first sum, we now have a bound of O(ε
√
kx| log x|e−εkx/2). Because of

the exponential term, this expression is maximized for x = O( 1
εk

), and as above we may

bound the first sum as O(k−c1/2 log3/2 k).

For the second sum, consider x > 1
k
√
ε
. We note that |fπ(y)

y
− fπ(x)

x
| ≤ | log x

y
|, which, when

y is within a factor of two of x is bounded as 2 |y−x|
x

. Since with all but negligible probability,

when i is drawn from Poi(xk
α

) we will have (i+1)α
k

within a factor of 2 of x, we have a bound

for this case of
∣∣∣fπ ( (i+1)α

k

)
k

(i+1)α
− fπ(x)

x

∣∣∣ ≤ 2 |(i+1)α/k−x|
x

= 2 |(i+1)−xk/α|
xk/α

. Further, 1− e−αεi ≤

αεi ≤ 2xk
α

, and is also at most 1. Thus we can bound the second term by O(min{1,εkx}
xk

times the expected distance of Poi(xk
α

) from its mean; this latter quantity is bounded by

O(
√
xk), yielding a bound on the second sum of O(min{1,εkx}√

xk
). The expression inside the

asymptotic notation is maximized when x = 1
εk

, yielding a bound on the second sum of

O(
√
ε) = O(k−c1/2 log1/2 k) for x > 1

k
√
ε
. Otherwise, for x ≤ 1

k
√
ε

we analyze the second sum

in two parts, noting that, since i ≥ 0, we have (i+1)α
k
≥ α

k
, yielding that

∣∣∣fπ ( (i+1)α
k

)
k

(i+1)α

∣∣∣ ≤
| log α

k
| < 1 + log k. Since (1 − e−αεi) ≤ αεi, we have

∑
i≥0(1 − e−αεi)

∣∣∣fπ ( (i+1)α
k

)
k

(i+1)α

∣∣∣ ·
poi(xk

α
, i) ≤ (1 + log k)αε · E[Poi(xk

α
)] = εxk(1 + log k). For x < 1

k
√
ε

this is O(
√
ε log k) =

O(k−c1/2 log3/2 k). The remaining part of the second sum we easily bound as
∑

i≥0(1 −
e−αεi)

∣∣∣fπ(x)
x

∣∣∣ · poi(xkα , i) ≤ αε
∣∣∣fπ(x)

x

∣∣∣∑i≥0 i · poi(
xk
α
, i) = εxk

∣∣∣fπ(x)
x

∣∣∣ ≤ εxk| log x|. This last
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expression is increasing in x, and hence we have a bound for x ≤ 1
k
√
ε

of O(
√
ε log k) =

O(k−c1/2 log3/2 k). Thus we have shown that the portion of zE other than z̃α contributes to the

linear combination of Poissons a function that is within O(k−c1/2 log3/2 k) of (1− e−εkx)fπ(x)
x

.

It remains to compare the remaining portion of zE with the remaining fraction of fπ(x)
x

,

namely, compare
∑

i≥0 z̃α(i) · poi(xk
α
, i) to e−εkx fπ(x)

x
. We start the analysis by consider-

ing the vector z returned by the linear program, which, for positive numbers a, b satisfies∣∣∣fπ(x)
x
−
∑

i≥0 z(i) · poi(xk, i)
∣∣∣ ≤ a+ b

x
, for x ∈ [0, k

c1

2k
], where the objective value of the linear

program, v, is guaranteed by the linear program to be at least as large as a+ bn.
As argued above, attenuating z to form z̃(i) := z(i) · (1 − ε)i transforms the linear

combination of Poissons g(x) :=
∑kc1

i=0 poi(xk, i)z(i) into g̃(x) = g(x · (1 − ε))e−εkx. Thus

g̃(x) is within a+ b
x(1−ε) of e−εkx fπ(x(1−ε))

x(1−ε) , where fπ(x(1−ε))
x(1−ε) is within | log(1−ε)| of fπ(x)

x
. By the

triangle inequality, g̃(x) is thus within a+O(ε) + b·(1+O(ε))
x

of e−εkx fπ(x)
x

, provided x(1− ε) ∈
[0, k

c1

2k
]. Otherwise, we have x > kc1

2k
, implying e−εkx ≤ e− log k = 1

k
, which is small enough

to wipe out any discrepancy that may occur in this region. Specifically: since the Poisson
coefficients sum to at most kc2v ≤ k log2 k, and since any Poisson distribution of parameter
λ has each probability bounded by O( 1√

λ
), we have that for x > kc1

2k
, the linear combination

of Poissons g(x) must be at most O(k1−c1/2 log2 k), implying g̃(x) = O(k−c1/2 log2 k) in this

range. Trivially, e−εkx fπ(x)
x

= O( log k
x

). Thus for arbitrary positive x we have that g̃(x) is

within a+O(k−c1/2 log2 k) + b·(1+O(k−c1 log k))
x

of e−εkx fπ(x)
x

. Resampling z̃ to z̃α is exact, with
g̃(x) =

∑
i≥0 z̃α(i) · poi(xk

α
, i), so thus these bounds apply to

∑
i≥0 z̃α(i) · poi(xk

α
, i) as well, as

desired.
We thus invoke Proposition 6.10. For the first condition, we have shown that

∑
i≥0 zE(i) ·

poi(xk
α
, i) approximates fπ(x)

x
to within a+O(k−c1/2 log2 k)+ b·(1+O(k−c1 log k))

x
, where a+bn ≤ v.

We have shown that the second condition applies for c = O(kαc2+(3/2−α)c1−1/2 log3 k). Thus
Proposition 6.10 yields that: the linear estimator zE estimates the property π to within
error v · (1 + o(1)) + O(kαc2+(3/2−α)c1−1/2 log4 k + k−c1/2 log2 k) using k

α
-sized samples, with

probability of failure o( 1
poly(k)

), provided v ≤ log2 k.
The proof will be complete upon analyzing the unusual but essentially trivial case of

v > log2 k. Note that any distribution of support at most n must have relative earthmover
distance from the trivial distribution (support on 1 element) at most log n, and thus property
value between ± log n. Thus if n < v · k3 then the “estimator” that always returns 0 will
always have error at most log v+3 log k = v ·(1+o(1)). We consider the case when n ≥ v ·k3.

Let π+, π− denote respectively the maximum and minimum value of fπ(x)
x

for x ∈ [ k
n
, 1
vk2 ],

with x+, x− denoting respectively the values at which π+, π− are attained. For this range of
x, the Poisson functions take very limited values: poi(xk, 0) = e−xk ∈ [1 − 1

vk
, 1], and thus

the remaining Poissons sum up to at most 1
vk

. Thus since the coefficients of the vector z are
at most v · kc2 ≤ vk, we may use the triangle inequality to bound the difference between the
expected estimates returned in the “+” and “−” case:

∑
i≥0 z(i)·|poi(x+k, i)− poi(x+k, i)| ≤

4. Letting e+ be the expected estimate returned in the “+” case, we consider the constraints
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corresponding to x+ and x− from the linear program: |π+ − e+| ≤ za + max{zb+,zb−}
x+ and

|π− − e+| ≤ 4 + za + max{zb+,zb−}
x−

. Since v = 2za + n · (zb+ + zb−), we note that x ≥ k
n

implies zb++zb−

x±
≤ v

k
, and we have, letting π± denote either π+ or π− that |π± − e+| ≤

v
2

+ v
k

+ 4. Thus by the triangle inequality we have |π+ − π−| ≤ v + 2v
k

+ 8. Consider
the relative earthmover cost of taking an arbitrary distribution of support at most n, and
making all its probabilities lie in the interval [ k

n
, 1
vk2 ]. We note that trivially, this is at most

max{log k, log vk2} = log v + 2 log k. Thus the interval encompassing all possible values π
might take has diameter at most v + 2v

k
+ 8 + 2(log v + 2 log k) and contains 0. Hence the

“estimator” that always returns 0, without looking at the sample, will be accurate to within
v · (1 + o(1)) for v = ω(log k), as desired.

Theorem 6.1 Let π be a symmetric linear property that is δ(k)-relative earthmover continu-
ous on distributions of support n(k). If for some constant c > 0 and parameter ε(k) = δ/ko(1),
any distributions of support n whose π values differ by at least ε are distinguishable with prob-
ability at least 1

2
+ c given samples of size k, then for each k there exists a linear estimator

that estimates π on distributions of support n to within error (1 + o(1))ε using a sample of
size (1 + o(1))k, and which has probability of failure o( 1

poly(k)
).

Proof of Theorem 6.1. Without loss of generality, we assume δ = 1, as we may replace π, ε, δ
by π

δ
, ε
δ
, 1 respectively, and scaling the property by 1

δ
simply scales the estimation error

correspondingly. Further, without loss of generality, we assume that the property has value
0 on the trivial distribution of support 1, as the property estimation problem is unaffected
by constant shifts.

Let c1, as a function of k, be such that it converges to 0 as k increases, yet large enough
that k−c1/2 log2 k = o(min{ε, 1}). Let c2 = 1

2
+ 6c1. Consider k large enough so that c1 ≤ 1

25
.

Proposition 6.8 implies that, for these parameters, any solution to the Lower Bound LP with
objective value v induces a pair of indistinguishable distributions whose property values differ
by at least v · (1− o(1))−O(k−c1 log k), which must thus be smaller than than ε, as defined
by the theorem. Thus v ≤ ε · (1 + o(1)).

We then apply Proposition 6.19 to conclude that, for any α ∈ (1
2
, 1) there exists a

k
α

-sample estimator that has o( 1
poly(k)

) probability of failure, and error at most v · (1 +

o(1)) + O(kαc2+(3/2−α)c1−1/2 log4 k + k−c1/2 log2 k). As already noted, v ≤ ε · (1 + o(1)), and
by assumption, k−c1/2 log2 k = o(ε). For the remaining (middle) term, we note that since
c2 = 1

2
+ 6c1 we have αc2 + (3/2− α)c1− 1/2 ≤ 1

2
(α− 1) + 13

2
c1. Setting α = 1− 15c1 yields

that this expression is at most −c1, yielding that kαc2+(3/2−α)c1−1/2 log4 k ≤ k−c1 log4 k. By
assumption, this is o(min{ε, 1}2) = o(ε). Thus, the estimator guaranteed by Proposition 6.19
has total error at most ε · (1 + o(1)), as desired. Since α = 1 − o(1), the estimator uses a
sample of size k · (1 + o(1)).
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Chapter 7

Explicit Linear Estimators

In this chapter we describe machinery for constructing and analyzing the performance of
explicit linear estimators for symmetric linear properties, such as entropy. The main result
of Chapter 6, Theorem 6.1, shows that for such properties, there exist linear estimators whose
performance is essentially optimal among the class of all possible estimators; additionally,
the proof of Theorem 6.1 is constructive in that it gives an algorithm for generating such
near-optimal linear estimators. Unfortunately, the proof does not allow one to extract any
bounds on the performance of these estimators—the guarantee is that they are essentially
optimal, yet the proof does not reveal what sample size is required to yield an estimator
with a desired accuracy.

The tools we develop in this chapter are robust and general, and allow us to both con-
struct and analyze linear estimators for several properties, revealing tight bounds on the
sample complexities of the corresponding estimation tasks that were not accessible using the
approach of estimating the unseen of Chapter 3. The approach of Chapter 3 was to first
recover an approximation of the histogram of the distribution from which the sample was
drawn, and then simply return the property value of the returned histogram.

The canonical nature of that approach (in that the reconstruction of the histogram does
not depend on the specific property in question), has benefits and downsides. The obvious
benefit is that the returned histogram gives more information than a single property value.
Nevertheless, some properties might be easy to estimate, requiring far smaller sample sizes
than would be necessary to accurately estimate the histogram of the true distribution. The
machinery of this chapter allows us to create estimators that are tailor-made to a specific
property.

The main results of this chapter are summarized below:

Theorem 7.1. For any ε > 1
n0.02 , the estimator described in Construction 7.4, when given

a sample of size Ω( n
ε logn

) (consisting of independent draws) from a distribution of support
at most n will compute an estimate of the entropy of the distribution, accurate to within ε,
with probability of failure o(1/poly(n)).
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The performance of this estimator, up to constant factors, matches the lower bounds of
Corollary 3.6, both in terms of the dependence on n and the dependence on ε. In particular,
this resolves the question as to whether the sample complexity increases linearly with 1/ε,
or the much slower quadratic sample complexity shown in Theorem 3.1.

This inverse linear rate of convergence is rather surprising; given a coin with probability of
landing heads p, estimating p to within ±ε requires O(1/ε2) coin tosses, and thus estimating
the entropy of this distribution of support {heads, tails} to within ±ε also requires O(1/ε2)
draws. Indeed, this example shows that the asymptotic rate of convergence of any entropy
estimator is O(1/

√
k), where k is the sample size. Our theorem, however, specifies that for

the critical range of parameters when O(1) ≤ ε > 1/n0.02, our estimator converges at the
much faster inverse linear rate.

This theorem largely completes the picture of the sample complexity of estimating en-
tropy: given a sample of size k drawn from a distribution of support size at most n, if
k = o( n

logn
), accurate estimation is impossible. For k = θ( n

logn
), the optimal estimator can

achieve constant error, and as k increases, the error decreases very quickly—inverse linearly
with the sample size. Then, when k = Ω(nα), for some α ≥ 1.03, the rate of convergence
slows, eventually tending towards the asymptotic rate of Θ(1/

√
k).

Closely following the form of our linear estimator for entropy, we construct a linear
estimator for the distance to uniformity :

Definition 7.1. Given a distribution p, the distance to the uniform distribution of support
m, D(p, Unif(m)), is the `1 distance between p, and the “closest” uniform distribution of
support m. Formally, for all i ≥ 1, letting xi ≥ 0 denote the probability with which the ith
most frequently occurring element arises, we have

D (p, Unif(m)) :=
m∑
i=1

|xi −
1

m
|+
∑
i>m

xi.

The following theorem describes the performance of our estimator for estimating distance
to uniformity:

Theorem 7.2. For any ε > 1
4 logm

, there is an explicit linear estimator that, when given a

sample of size Ω
(

1
ε2
· m

logm

)
drawn from a distribution of any support, will compute the `1

distance to Unif(m) to within accuracy ε, with probability of failure o(1/poly(m)).

This is the first o(m)-sized sample estimator for distance to uniformity, and the lower
bounds of Theorem 5.1 proved in Chapter 5 imply that for any constant error ε, this estimator
is optimal, to constant factor. This tight bound of Θ(m/ logm) on the sample size required
to yield constant error contrasts with the tight bound of Θ(m1/2) shown in [19, 57] for the
related problem of distinguishing a uniform distribution on m samples from one that has
constant distance from such a distribution.
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It is worth stressing that the sample complexity expressed in the above theorem is in
terms of m, and is independent of the support size of the distribution from which the sample
was drawn. This makes intuitive sense, and also explains why such a result would be difficult
to obtain via the approach of Chapter 3 which relies crucially on an upper bound on the
support size of the distribution from which the sample was drawn.

7.1 Constructing Estimators with “Skinny Bumps”

We consider a symmetric linear property π with characteristic function fπ—that is, the
property value of a distribution with histogram h is given by

π(h) =
∑

x:h(x)6=0

fπ(x)h(x).

As discussed in Section 6.3 of Chapter 6, the challenge of constructing a good linear estimator
for π is the task of accurately approximating fπ(x) in the basis of Poisson functions, poi(kx, i).

The key technical tool that we use to construct good linear estimators is the “Chebyshev
bump” construction (Definition 3.17) that we defined in Chapter 3 and used as a component
of an earthmoving scheme. Here, we use this Chebyshev bump construction to turn the
basis of Poisson functions into a more adroit basis of “skinny” bumps, which are, in a
very rough sense, like the Poisson functions compressed by a factor of log k towards the
origin. Intuitively, this super-constant factor is what allows us to construct sublinear-sample
estimators.

Perhaps the most simplistic attempt to represent the characteristic function fπ as a
sum of Poisson functions is to simply set the coefficient of poi(xk, i) equal to fπ( i

k
). This

estimator is the “naive” or “plug-in” estimator, and simply returns the property value of the
empirical distribution of the sample. For most properties, such as entropy, this estimator
should be good for the high-probability region. Note that rather than approximating fπ(x) as∑∞

i=1 poi(kx, i), we will instead approximate fπ(x)
x

by the zero-indexed sum
∑∞

i=0 poi(kx, i).
These two tasks are formally equivalent, as x · poi(kx, i) = i+1

k
poik(x, i + 1). The following

lemma, which we will use later, characterizes the performance of any “plug-in” estimator.
The relatively straight-froward proof of this lemma is deferred to Section 7.3.

Lemma 7.2. Given a function f : R → R whose fourth derivative at x is bounded in
magnitude by α

x4 for x ≥ 1 and by α for x ≤ 1, and whose third derivative at x is bounded
by α

x3 , then for any real x,
∑∞

i=0 f(i) · poi(x, i) is within O( α
x2 ) of f(x) + 1

2
xf ′′(x).

To interpret this lemma, consider the case of entropy estimation; this lemma implies that

log x−
∞∑
i=0

log(i/k)poi(kx, i) =
1

2kx
+O(

1

k2x2
).
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In some regimes this error is satisfactorily small (and this estimator is in fact widely used in
practice). However, for x = 1/k the error is constant, and for smaller x the error increases.
Given this analysis, it is clear why the naive estimator performs poorly on, say, a uniform
distribution of support larger than k.

How can one improve this estimator? The obvious correction is to account for the second-
derivative term of Lemma 7.2, corresponding to the term 1

2kx
in the above expression for the

bias for the naive estimator for entropy. This yields the “Miller-Madow Corrected Estimator”
for entropy. Nevertheless, the error term is still constant for x = 1/k, making sublinear-
sample estimation impossible. Such error is, in some sense, to be expected: the first few
Poisson functions poi(kx, i) have “width” O(1/k).

A “plug-in” estimator in terms of a “skinnier” basis than the Poisson functions would
make the estimate correspondingly more accurate. The crux of our estimator is to employ
the skinny Chebyshev bumps of Definition 3.17 in place of the fat Poisson functions to get
correspondingly better estimators. As we proved in Chapter 3, each of these skinny bumps
can be expressed a low-weight linear combinations of Poisson functions, and thus, ultimately,
we will still end up with an approximation of the desired characteristic function in the basis
of Poisson functions.

For convenience, we restate the definition of the Chebyshev bumps, and the key lemmas
proved in Chapter 3 that we will reuse. Recall that the jth Chebyshev polynomial Tj is
defined so as to satisfy Tj(cos(y)) = cos(j · y).

Definition 3.17. The Chebyshev bumps are defined in terms of k as follows. Let s =
0.2 log k. Define g1(y) =

∑s−1
j=−s cos(jy). Define

g2(y) =
1

16s

(
g1(y − 3π

2s
) + 3g1(y − π

2s
) + 3g1(y +

π

2s
) + g1(y +

3π

2s
)

)
,

and, for i ∈ {1, . . . , s − 1} define gi3(y) := g2(y − iπ
s

) + g2(y + iπ
s

), and g0
3 = g2(y), and

gs3 = g2(y + π). Let ti(x) be the linear combination of Chebyshev polynomials so that
ti(cos(y)) = gi3(y). We thus define s + 1 functions, the “skinny bumps”, to be Bi(x) =
ti(1 − xk

2s
)
∑s−1

j=0 poi(xk, j), for i ∈ {0, . . . , s}. That is, Bi(x) is related to gi3(y) by the coor-

dinate transformation x = 2s
k

(1− cos(y)), and scaling by
∑s−1

j=0 poi(xk, j).

The following lemma showed that each of the Chebyshev bumps defined above can be
expressed as a low-weight linear combination of the Poisson functions.

Lemma 3.19. Each Bi(x) may be expressed as
∑∞

j=0 aijpoi(kx, j) for aij satisfying
∑∞

j=0 |aij| ≤
k0.3

The above lemma will allow us to attempt to approximate the characteristic function of
the property in question with Poisson functions by directly approximating the characteristic
function via these conveniently-skinny bumps. The bound k0.3 on the coefficients is crucial,
as the coefficients of our estimator must be somewhat less than

√
k in order for our k-sample

estimator to have sub-constant variance. As the coefficients of Chebyshev polynomials grow
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exponentially in their degree, this is what limits us to the first s = O(log k) Chebyshev poly-
nomials. Thus our approximation of the characteristic function via the Chebyshev bumps
will only apply to the very low-probability region—but this is acceptable, since above this
region, the more crude approximation via the Poisson functions, using Lemma 7.2, will
suffice.

The quality of the estimators we construct in this chapter rests on the following lemma,
which is the Chebyshev bump analog of Lemma 7.2, and shows that if one constructs the
naive “plug-in” approximation using the skinny Chebyshev bumps, instead of the Poisson
functions, the approximation is very good. While the proof of this lemma is somewhat labo-
rious, the guiding intuition is simply that the Chebyshev bumps are reasonably symmetric
and skinny. The proof of this lemma is deferred to Section 7.3.

Lemma 7.3. Given α ≤ β and a twice-differentiable function f(x) : [0, s
2k

] → R satisfying

|f(x)| ≤ γ, |f ′(x)| ≤ α
x
, and |f ′′(x)| ≤ β

x2 , then f(x) can be approximated as
∑

iwiBi(x)
for weights wi = f(ci) for ci = 2s

k
(1 − cos iπ

s
), with error of approximation at x bounded in

magnitude by

O(
γ

(xks)3/2
) +O(

β

xks
) +O(

α

(xks)3/2
) + e−s/7.

7.2 Linear Estimators for Entropy and Distance to

Uniformity

We now define explicit linear estimators for entropy, and “distance to uniformity”. The ap-
proach will be to use the plug-in estimator with the Poisson functions in the high-probability
part of the distribution x > s/k, and will use the skinny Chebyshev bumps in the small-
probability regime (x < s/k). Additionally, we will need a smooth cutoff between these
regimes, as the bounds of Lemmas 7.2 and 7.3 depend on the derivates of the function we
are trying to approximate in the Poisson basis, and hence an abrupt cutoff would yield a
poor bound. As a final step in our proofs of the performance guarantees of our estimators,
we will apply Proposition 6.10, which argues that if the characteristic function is sufficiently
accurately approximated, and the coefficients of our linear estimator are sufficiently small,
then the estimator performs well.

As we are hoping to achieve an inverse linear convergence rate for our entropy estimator,
our construction and analysis for entropy will be significantly more delicate than that of our
estimator of distance to uniformity.

Entropy

The following construction defines a set of coefficients {zi} such that
∑

i≥0 zi · poi(xk, i) ≈
log x.
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Construction 7.4. As in Definition 3.17, let s := (0.2) log k. Define the interpolation
function I : R→ R such that I(y) = 0 for y ≤ s

4
, I(y) = 1 for y ≥ s

2
, and I(y) is continuous,

and four-times differentiable, where for i ∈ 1, . . . , 4, the magnitude of the ith derivative is at
most c/si, for some fixed constant c. (Such a function I can trivially be constructed.)

Consider the function f(y) := I(y)
[

1
2y

+ log y − log k
]
, and provisionally set zi := f(i).

Note that by Lemma 7.2 we have accurately represented the logarithm function via the Poisson
bumps in the interval [ s

2k
, 1].

We will now use the skinny Chebyshev bumps to approximate the function v(x) defined
as

v(x) :=

{
log x− I(2kx) ·

∑∞
i=0 poi(xk, i)f(i) for x ≥ 1

ks

log( 1
ks

)− 1 + xsk for x ≤ 1
ks

Thus v(x) is twice differentiable for x > 0, v(x) ≈ 0 for x > s
2k
, v(x) = log x for x ∈

(1/ks, s
8k

), and v(x) is a linear approximation to log x for x < 1/ks.
Define the coefficient bi of the ith Chebyshev bump Bi, with “center” ci = 2s

k

(
1− cos

(
iπ
s

))
,

to be v(ci). To conclude the construction, letting the ith Chebyshev bump Bi be represented
as a sum of Poisson functions, as guaranteed by Lemma 3.19: Bi(x) =

∑
j ai,jpoi(xk, j), for

each i ∈ {0, . . . , s}, increment zj by
∑

i ai,jv(ci).
Define the linear estimator given by coefficients β1, . . . , βk, where βi := zi−1 · ik .

Theorem 7.1, which we restate here for convenience, describes the performance of the
above estimator. The proof is given in Section 7.3.

Theorem 7.1. For any ε > 1
n0.02 , the estimator described in Construction 7.4, when given

a sample of size Ω( n
ε logn

) (consisting of independent draws) from a distribution of support
at most n will compute an estimate of the entropy of the distribution, accurate to within ε,
with probability of failure o(1/poly(n)).

The bound that ε > 1
n0.02 can be relaxed slightly, though we prove this with the exponent

0.02 for ease of exposition.

Distance to Uniformity

We now describe our linear estimation for distance to uniformity. While distance to unifor-
mity is not a linear property, it can be 2-approximated by a linear property:

Fact 7.5. The total variational distance between a discrete distribution p ∈ Dn with his-
togram h and a uniform distribution on m elements, denoted by D(h, Unif(m)), can be
approximated to within a factor of 2 as

∑
x:h(x)6=0 h(x)fu(x), for the function

fu(x) :=

{
x for x ≤ 1

2m

|x− 1
m
| for x > 1

2m
.
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Proof. From Definition 7.1, to compute the distance between a distribution p and the uniform
distribution onm elements, one takes them elements pi of h that have the highest probability,
and computes the cost of changing each of their probability masses to 1

m
, namely |pi − 1

m
|,

and then adds to this the cost of changing every other mass pi to 0, namely |pi|. This is
lower-bounded and 2-approximated by the cost of sending every element that is below 1

2m

down to 0, and sending every element above 1
2m

to 1
m

, as defined in Fact 7.5.

As for estimating entropy, we will use the Chebyshev bump construction of Definition 3.17
to help approximate the function fu(x)

x
via a sum of Poisson functions, then apply Proposi-

tion 6.10.

Construction 7.6. Let s = (0.3) log k. Define the interpolation function I : R → R such
that I(x) = 0 for x ≤ s

4
, I(x) = 1 for x ≥ s

2
, and I(x) is continuous, and four-times

differentiable, where for i ∈ 1, . . . , 4, the magnitude of the ith derivative is at most c/si, for
some fixed constant c. Such a function I can be easily constructed.

Consider the function g(x) := I(kx)fu(x)
x

, and provisionally set zi := g( i
k
). We will now

use the skinny Chebyshev bumps to approximate the function v(x) = (1− I(kx))fu(x)
x

.
Define the coefficient of the ith Chebyshev bump Bi, with “center” ci = 2s

k

(
1− cos

(
iπ
s

))
,

to be v(ci). To conclude the construction, letting the ith Chebyshev bump Bi be represented
as a sum of Poisson functions, as guaranteed by Lemma 3.19: Bi(x) =

∑
j ai,jpoi(xk, j), for

each i ∈ {0, . . . , s}, increment zj by
∑

i ai,jv(ci).
Define the linear estimator given by coefficients β1, . . . , βk, where βi := zi−1 · ik .

The following theorem asserts the quality of our estimator:

Theorem 7.2. For any ε > 1
4 logm

, there is an explicit linear estimator that, when given

Ω
(

1
ε2
· m

logm

)
independent draws from a distribution of any support, will compute the `1

distance to Unif(m) to within accuracy ε, with probability of failure o(1/poly(m)).

The lower-bound construction of Theorem 5.1 of Chapter 5 shows that this is tight for
constant ε; in particular, for any constant ε > 0, there is a constant c such that for sufficiently
large m, there exist two distributions A,A′ such that D(A,Unif(m)) < ε, D(A′, Unif(m)) >
0.49, but distributions A,A′ are indistinguishable (with any constant probability greater than
1/2) given c m

logm
-sized samples.

In contrast to the estimator for entropy, the estimator for distance to uniformity does not
need any assumption on the support size of the distribution being sampled. Additionally,
the convergence rate is as the inverse of the square root of the sample size, as opposed to
the much faster inverse linear relationship of the estimator for entropy. Intuitively, this is
because the function fu(y) has a kink at probability y = 1/m, as opposed to the smooth
logarithm function.

The proof of Theorem 7.2 is considerably easier than for our estimator of entropy:

Proof of Theorem 7.2. Consider setting m = ε2k log k, for some ε > 4
logm

, and thus the

portion of fu(x)/x approximated exclusively by the Poisson bumps (i.e. x > s
2k

) corresponds
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to x > 1
m
, and in this range fu(x)/x = 1 − 1

xm
. In particular, the function fu(x/k)

x/k
has

jth derivative bounded in magnitude by O( k
mxj+1 ), for constant j, and thus satisfies the

conditions of Lemma 7.2 with α = O( k
ms

), and thus the approximation in this regime is
accurate to O( k

msx2 ) + O(x
2

k
mx3 ) = O( k

mx2 ), which is maximized by minimizing x, in which
case the error is O( k

ms2
) = O( 1

ε2 log3 k
), which is at most O(ε), as in the case that ε = 1/ log k.

We now consider the error in approximation from the skinny bumps (i.e. for x < s
2k

).
In this regime, the function fu(x)/x is O( 1

mx2 )-Lipschitz for x > 1/2m. By Lemma 3.21
(arguing that the functions gi3 decay super quadratically), Lemma 7.11, and the change

of coordinates, the width of the Chebyshev bumps centered at x are O(
√
xk log k
k log k

); thus the
error of approximation is the product of this width and the Lipschitz constant, yielding
O( 1

ε2(xk log k)3/2 ). This is maximized by minimizing x, and thus taking x = O(1/m) yields error

O(ε), as desired. Since fu(x)/x = 1 is constant for x < 1/2m, the error in this small regime
is o(ε). Thus the error of approximating the function fu(x)/x is O(ε). To conclude, since the
coefficients of the approximation are sufficiently small (at most k0.3, by Lemma 3.19), we
may now apply Proposition 6.10 to yield the claim.

7.3 Missing Proofs

Proof of Lemma 7.2. Consider the Taylor expansion of f to third order around x, f(i) ≈
a + b · (i − x) + c · (i − x)2 + d · (i − x)3 + e(i), for a = f(x), b = f ′(x), c = 1

2
f ′′(x), and

d = 1
6
f ′′′(x), where the error, e, is a function which we will analyze later. By assumption,

d ≤ α
6x3 . We bound

∑∞
i=β f(i) · poi(x, i) by thus decomposing f(i). We note that we may

take the lower limit of the sum to be 0, since f(i) equals zero for i < β. We evaluate the first
four terms by noting, respectively, that the Poisson distribution of parameter x has total
probability mass 1, has mean x, has variance x, and has third moment about its mean x,
leading to

∑∞
i=0 a ·poi(x, i) = a = f(x),

∑∞
i=0 b(i−x) ·poi(x, i) = 0,

∑∞
i=0 c(i−x)2 ·poi(x, i) =

cx = 1
2
xf ′′(x), and

∑∞
i=0 d(i− x)3 · poi(x, i) = dx ≤ α

6x2 .
We now analyze the error function e(i). By construction, it and its first three derivatives

are 0 at i = x, while its fourth derivative is everywhere equal to the fourth derivative of
f , which by assumption is bounded by α

i4
. Thus for i ≥ x, the fourth derivative of e(i) is

bounded by α
x4 implying a bound of |e(i)| ≤ α

24x4 (i−x)4 for i ≥ x. Similarly, for i ∈ [x
2
, x] we

have that the fourth derivative of f is bounded by 16α
x4 , yielding a bound of |e(i)| ≤ 2α

3x4 (i−x)4

for i ∈ [x
2
, x]. For general i < x, we bound e by repeated integration. Since |e′′′′(i)| ≤ α

i4
and

e′′′(x) = 0 we may integrate from i to x to yield |e′′′(i)| ≤ 1
4
α( 1

i3
− 1
x3 ), which we crudely bound

by 1
4
α
i3

. We repeat this process, since e′′(x) = e′(x) = 0, to yield, successively, |e′′(i)| ≤ 1
12

α
i2

,
and |e′(i)| ≤ 1

24
α
i
. We integrate once more, though without discarding the constant term, to

yield |e(i)| ≤ 1
24
α(log x− log i), again, valid for i ≤ x. Instead of using this bound directly,
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we sum from 1 to x:
x∑
i=1

|e(i)| ≤ 1

24
α

x∑
i=1

(log x− log i) ≤ α

24

∫ x

0

| log x− log i| di =
α

24
x.

We now bound e(0). If x < 1 then, directly, since e′′′′ ≤ α, we have |e(0)| ≤ α
24
x4 ≤

α
24
x. Otherwise if x ≥ 1, note from above that |e(1)| ≤ α log x

24
, |e′(1)| ≤ α

24
, |e′′(1)| ≤ α

12
,

|e′′′(1)| ≤ α
4
, and for all i ∈ [0, 1], e′′′′(i) ≤ α. This immediately yields a bound that

|e(0)| ≤ α
[

log x
24

+ 1
24

+ 1
24

+ 1
24

]
. Since 3 + log x ≤ 2 + x ≤ 3x for x ≥ 1, we have that∑x

i=0 |e(i)| ≤
α
6
x.

Trivially, we use this bound to bound the sum over half the domain:
∑x/2

i=0 |e(i)| ≤
α
6
x.

In sum, we will use the bound |e(i)| ≤ 2α
3x4 (i− x)4 for i ≥ x

2
, and

∑x/2
i=0 |e(i)| ≤

α
6
x otherwise.

To complete the proof, we note the basic fact that the Poisson distribution dies off super-
polynomially fast away from its mean, relative to its standard deviation. That is, for any
positive integer—we choose 6 here—there is a constant γ such that for all i, x, we have

poi(x, i) ≤ γ√
x

∣∣∣ i−x√x ∣∣∣−6

.

We thus bound
∑∞

i=0 e(i)poi(x, i) piecewise. For i ∈ [x−
√
x, x+

√
x], we have that since

poi(x, i) is a distribution over i, it sums to at most 1 here; since we have the bound here that
|e(i)| ≤ 2α

3x4 (i− x)4, we note that when |i− x| ≤
√
x we have |e(i)| ≤ 2α

3x2 , which is thus also

a bound on
∣∣∣∑x+

√
x

i=x−
√
x
e(i)poi(x, i)

∣∣∣. For i > x+
√
x we use the bound poi(x, i) ≤ γ√

x

∣∣∣ i−x√x ∣∣∣−6

to see that∣∣∣∣∣∣
∑

i>x+
√
x

e(i)poi(x, i)

∣∣∣∣∣∣ ≤
∑

i>x+
√
x

2α

3x4
(i− x)4 · γ√

x

∣∣∣∣i− x√x
∣∣∣∣−6

=
2αγ

3x3/2

∑
i>x+

√
x

1

(i− x)2
= O(

α

x2
).

The same argument yields the same bound for the sum over i ∈ [x
2
, x −

√
x]. To bound

the remaining region, when i ≤ x
2
, we note that for this region poi(x, i) ≤ 64γ

x7/2 , and since, as

noted,
∑x/2

i=0 |e(i)| ≤
α
6
x we have that

∑x/2
i=1 |e(i)|poi(x, i) = o( α

x2 ). Combining all the bounds
yields that |

∑∞
i=1 e(i)poi(x, i)| = O( α

x2 ), and combining this with the bounds from the power
series expansion of f yields

∑∞
i=0 f(i)poi(x, i) equals f(x) + 1

2
xf ′′(x) to within O( α

x2 ), as
desired.

Proof of Lemma 7.3

Before tackling the proof of Lemma 7.3, we prove several helpful lemmas that establish
properties of the Chebyshev bump basis.

Lemma 7.7. For y ∈ [−π/s, π/s], sufficiently large s, and positive integers a, b ≤ s,

|
b∑

i=−a

(y + πi/s) · g2(y + πi/s)| ≤ 12

s

(
1

a2
+

1

b2

)
.
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Proof. We will first show that

|
s−1∑
i=−s

(
sin(y + πi/s) +

sin3(y + πi/s)

6

)
· g2(y + πi/s)| = 0,

and then will use the fact that sin(x) + sin3(x)/6 ≈ x near zero, and that g2(x) decays
quickly away from zero to yield the claim. To begin, note that g2(x) is an even function,
and can be written as a weighted sum of cos(jx), for integers j at most s − 1. Since
cos(jx) sin(x) = 1

2
sin((j + 1)x) − 1

2
sin((j − 1)x), and

∑s−1
i=−s sin(j(x + iπ

s
)) = 0, for any

integer j ≤ 2s− 1, we have

s−1∑
i=−s

sin(y + πi/s) · g2(y + πi/s) = 0.

Additionally, sin3(x) = 3 sin(x)−sin(3x)
4

, and by the above, cos(jx) sin(3x) = 1
2

sin((j + 3)x) −
1
2

sin((j − 3)x), and thus for s > 3, by the above,

s−1∑
i=−s

sin3(y + πi/s) · g2(y + πi/s) = 0.

Next, note that |x− sin(x)− sin3(x)/6| ≤ 3x5/40, and thus from the above,

|
s−1∑
i=−s

(y + πi/s) · g2(y + πi/s)| ≤
s−1∑
i=−s

|g2(y + πi/s)| · |3(y + πi/s)5/40|.

We now leverage the bounds on |g2(y)| from Lemma 3.21. For the at most 5 terms in the
above sum for which y + πi/s ∈ (−3π/s, 3π/s), since g2(y) ≤ 1/2, we get a contribution of
at most 5

2
35π5

40s5
≤ 4700

s5
. For the remaining terms, we have |g2(x+πi/s)| ≤ 285

(x+πi/s)4s4
, and thus

the contribution of the remaining terms, since |y| < π/s, is at most 2
∑s

i=2
855(πi/s)

40s4
≤ 43 log s

s5
.

Thus for sufficiently large s,

|
s−1∑
i=−s

(y + πi/s) · g2(y + πi/s)| ≤ 1

s4
.

To conclude, the claim clearly holds for a = 1 or 2, and for a ≥ 3 we have

s∑
i=a

|(y + πi/s) · g2(y + πi/s)| ≤
s∑
i=a

(y + πi/s)
285

(y + πi/s)4s4

≤ 285

π3s

s∑
i=a−1

1

i3
<

23

2a2s
.
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Lemma 7.8. For y ∈ [−π/s, π/s], sufficiently large s, and positive integer a ≤ s,

|
a∑
i=0

(y + πi/s)2 · g2(y + πi/s)| = O(
1

s2
).

Proof. From our bounds on g2 given in Lemma 3.21, have the following:

|
a∑
i=0

(y + πi/s)2 · g2(y + πi/s)| ≤ 3 · 1

2
· 32π2

s2
+

a∑
i=3

(y + iπ/s)2 285

(y + iπ/s)4s4

≤ O(
1

s2
) +

285

π2s2

∞∑
i=3

1

(i− 1)2
≤ O(

1

s2
).

Lemma 7.9. For y ∈ [−π/s, π/s], sufficiently large s, and positive integers a, b, c, d such
that c ≤ a ≤ s and d ≤ b ≤ s, and a twice-differentiable function f : [−aπ

s
, bπ
s

]→ R satisfying
|f ′(0)| ≤ α, maxy∈[−cπ/s,dπ/s] |f ′′(y)| ≤ β, and maxy |f(y)| ≤ γ,

|
b∑

i=−a

g2(y +
iπ

s
)f(y +

iπ

s
)− f(0)| ≤ O

(
γ

(
1

c3
+

1

d3

)
+
α

s

(
1

c2
+

1

d2

)
+
β

s2

)
.

Proof. We first bound the contribution of the terms with i ∈ −a, . . . ,−c, d, . . . , b. Using the
bounds on |g2| from Lemma 3.21, we have

|
∑

i∈−a,...,−c,d,...,b

g2(x+
iπ

s
)f(x+

iπ

s
)| ≤ γ

285

π4

(
∞∑
i=c

1

(i− 1)4
+
∞∑
i=d

1

(i− 1)4

)
≤ O(γ(1/c3+1/d3)).

We now consider
∑d

i=−c g2(y+ iπ
s

)f(y+ iπ
s

). We express each f(y+ iπ
s

) in terms of the first
order Taylor expansion about 0, and note that |f(y+ iπ

s
)−(f(0)+(y+ iπ

s
)f ′(0))| ≤ (y+ iπ

s
)2β.

Thus we have the following:

|
d∑

i=−c

g2(y +
iπ

s
)f(y +

iπ

s
)−

d∑
i=−c

g2(y +
iπ

s
)

(
f(0) + (y +

iπ

s
)f ′(0)

)
|

≤ β
d∑

i=−c

g2(y +
iπ

s
)(y +

iπ

s
)2

= O(β/s2) from Lemma 7.8.

We now turn to analyzing the term involving the Taylor approximation:

d∑
i=−c

g2(y +
iπ

s
)

(
f(0) + (y +

iπ

s
)f ′(0)

)
=

d∑
i=−c

g2(y +
iπ

s
)f(0) + f ′(0)

d∑
i=−c

g2(y +
iπ

s
)(y +

iπ

s
).
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To analyze the first term above, by Lemma 3.20,
∑s

i=−s gs(y+ iπ
s

)f(0) = f(0). Additionally,

by Lemma 3.21,
∑s−1

d+1 gs(y + iπ
s

) ≤
∑∞

d
285
π4i4
≤ 2

d3 , and analogously,
∑−c−1
−s gs(x + iπ

s
) ≤ 2

c3
.

Thus

|f(0)−
d∑

i=−c

g2(y +
iπ

s
)f(0)| ≤ 2f(0)(

1

c3
+

1

d3
).

To analyze the second term, by Lemma 7.7,

|
d∑

i=−c

(y +
iπ

s
)f ′(0)g2(y +

iπ

s
)| ≤ O

(
1

s
f ′(0)

(
1

c2
+

1

d2

))
.

The desired statement now follows from adding up the above bounds.

Lemma 7.10. For y ∈ [0, π/2], sufficiently large s, and twice-differentiable function f sat-
isfying |f(y)| ≤ γ, |f ′(y)| ≤ α

y
and |f ′′(y)| ≤ β

y2 ,

|f(y)−
s∑
i=0

gi3(y)f(
iπ

s
)| ≤ O

(
γ

y3s3
+

β

y2s2
+

α

y3s3

)
.

Proof. From Lemma 3.21, we have g0
3(y)f(0) + gs3(y)f(π) ≤ O( γ

y4s4
).

Next, define iy := bys
π
c, and let δy := y − iyπ

s
. Thus δy ∈ [0, π/s]. For any j ∈ {−iy + 1,

. . . , s− iy − 1}, we have

g
iy+j
3 (y) = g2(y − (iy + j)π

s
) + g2(y +

(iy + j)π

s
)

= g2(δy −
jπ

s
) + g2(δy +

(2iy + j)π

s
).

Defining the function ry(w) = f(y − w), we have the following:

s−1∑
i=1

gi3(y)f(
iπ

s
) =

s−1∑
i=1

(
g2(y − iπ

s
) + g2(y +

iπ

s
)

)
ry

(
−(
iπ

s
− y)

)

=
s−1∑
i=1

(
g2(δy +

(iy − i)π
s

) + g2(y +
iπ

s
)

)
ry

(
δy +

(iy − i)π
s

)

=

iy−1∑
j=−s+iy+1

g2(δy +
jπ

s
)ry(δy +

jπ

s
) +

s−1∑
i=1

g2(y +
iπ

s
)ry

(
δy +

(iy − i)π
s

)
.

The idea now is that Lemma 7.9 guarantees that the first term above is roughly ry(0) =
f(y), and it is easy to show that the second term above will be very small. We start by
bounding the magnitude of the second term, using the bound on g2 given in Lemma 3.21:

s−1∑
i=1

g2(y +
iπ

s
)ry

(
δ +

(iy − i)π
s

)
≤ γ/i3y.
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We now consider the first term above, and apply Lemma 7.9 with a = c = | − s+ iy + 1|,
d = biy/2c, and b = iy − 1 to yield:

|f(y)−
iy−1∑

j=−s+iy+1

g2(δy +
jπ

s
)ry(δy +

jπ

s
)| ≤ O

(
γ
i3y

+ 1
s2

β
y2 + 1

si2y

α
y

)
,

from which the desired claim follows.

Lemma 7.11. For x ≤ s
2k
, 1−

∑s−1
i=0 poi(xk, i) ≤ e−s/6.

Proof. This discrepancy is maximized at x = s
2k
, and by tail bounds of Poissons and

Fact A.19, this is at most

∞∑
i=s

poi(s/2, i) ≤ 2poi(s/2, s) ≤ e−s/6.

Proof of Lemma 7.3. Recall from Definition 3.17 that Bi(x) is related to gi3(y) by the coor-
dinate transformation x = 2s

k
(1 − cos(y)), and scaling by

∑s−1
j=0 poi(xk, j). By Lemma 7.11

we can ignore the scaling factor for x ≤ s
2k

and lose only s · (1 + log ks) · e−s/6 < e−s/7 in
approximation, since there are s skinny bumps, and in Construction 7.4 each skinny bump
has a coefficient of magnitude at most maxx |v(x)| = 1 + log ks + e−s/7. To represent f(x)
as a linear combination of Bi(x)’s, we will represent r(y) as a linear combination of gi3(y)’s,
where r is chosen so that r(y) = f(2s

k
(1− cos(y))). Note that

|r′(y)| ≤ |f ′(2s

k
(1− cos(y)))

2s

k
sin(y)|

≤ αk

2s(y2/3)

2s

k
y since for y ∈ [0, π/2], 1− cos(y) ≥ y2/3, and sin(y) ≤ y.

=
3α

y
.

Similarly,

|r′′(y)| ≤ |f ′′(2s

k
(1− cos(y)))(

2s

k
sin(y))2 + f ′(

2s

k
(1− cos(y)))(

2s

k
cos(y))|

≤ 9β

y2
+ α ≤ 30β

y2
.

Thus by Lemma 7.10, we can approximate r(y) as a linear combination of gi3(y) to within
error O( γ

y3s3
)+O( β

y2s2
)+O( α

y3s3
)+e−s/7. For y ∈ [0, π/2], note that (1−cos(y)) ∈ [y2/3, y2/2]
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and thus the error in the corresponding approximation of f(x) via the linear combination of
Bi(x)’s will have error at most

O(
γ

(
√

3xk
2s

)3s3

) +O(
β

(
√

3xk
2s

)2s2

) +O(
α

(
√

3xk
2s

)3s3

) + e−s/7,

= O(
γ

(xks)3/2
+O(

β

xks
) +O(

α

(xks)3/2
) + e−s/7,

as desired.
We now turn to bounding the approximation of f(x) for small x ≤ 1/ks, which thus

equates to bounding the approximation of r(y) via the gi3(y)’s for y < 2/s. The desired
lemma now follows from noting that the approximation of r(y) for such values of y is a
convex combination of r(iπ/s) for i ∈ 0, 1, 2, . . . , where the weight on r(0) is trivially seen
to be at least .1, and the contribution to the approximation from gj3 for j ≥ 100 is bounded
by
∑

j≥101 g
j
3(y)r(iπ/s) ≤ .1, from Lemma 3.21 and the assumption that |f(x)| ≤ 1/x.5.

Proof of Theorem 7.1

Proof of Theorem 7.1. Consider the function f(x) := I(x)
[
log x− log k + 1

2x

]
, and note

that it satisfies the conditions of Lemma 7.2, with α = O(1), and thus

|
∞∑
i=0

f(i) · poi(x, i)−
(
f(x) +

1

2
xf ′′(x)

)
| ≤ O(1/x2).

For x > s/2, we have I(x) = 1 and thus for such x

f(x) +
1

2
xf ′′(x) = log x− log k +O(

1

x2
).

Thus via the change of variables y = x
k
, we have that for y ∈ [ s

2k
,∞],

| log y −
∞∑
i=0

poi(yk, i)f(i)| ≤ O(
1

k2y2
).

Thus we have accurately represented the logarithm function via the Poisson bumps in the
interval [ s

2k
, 1].

We now consider the Chebyshev-bump approximation of the function v(y) defined in
Construction 7.4 as

v(y) :=

{
log y − I(2ky) ·

∑∞
i=0 poi(yk, i)f(i) for y ≥ 1

ks

log( 1
ks

)− 1 + ysk for y ≤ 1
ks
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Note that v(y) satisfies the conditions of Lemma 7.10 with γ < log(sk) + 2 and α, β =
O(1). Thus v(y) can be accurately represented by

∑
iBi(y)v(ci), yielding that for sufficiently

large k,

|
s∑
i=1

Bi(y)v(ci) +
∞∑
i=1

poi(yk, i)f(i)− log(y)| ≤

{
O( 1

yks
) + e−s/7 for y ∈ ( 1

ks
, s

2k
)

O( 1
k2y2 ) for y ≥ s

2k
.

Finally, we have the trivial crude bound for the extremely small region:

|
s∑
i=1

Bi(y)v(ci) +
∞∑
i=1

poi(yk, i)f(i)− log(y)| ≤ log(y) + log(ks) +O(1) for y ≤ 1

ks
.

We will now apply Proposition 6.10 with a = O(ε), b = O(ε/n), and c = k−0.1. Note that
by Lemma 3.19, the coefficients are sufficiently small and vary sufficiently slowly, satisfying
the second condition of Proposition 6.10. For the first condition of Proposition 6.10, it
suffices to show that err(y) ≤ ε for y ≥ 1

n
, and err(y) ≤ ε

yn
for y ≤ 1

n
. To show this, consider

setting n = εks. For y ≤ 1/ks, since y < 1/n, we have

(ny) (log(y) + log(ks) +O(1)) ≤ (εksy) (log(ksy) +O(1))

≤ ε (log(ksy)ksy +O(1)ksy)

≤ εO(1),

and thus the error in this region is good enough to yield an O(ε) estimator. For y ∈ ( 1
ks
, s

2k
),

e−s/7 = O(k−
0.2
7 ) = o(ε), and for y > 1/n, we have error of approximation of the logarithm

function at most O(n/ks) = O(ε), and if y < 1/n = 1/εks, we have ny · O(1/yks) = O(ε),
which is sufficient to yield an O(ε) estimator. Finally, in the region y ≥ s

2k
, if y > 1/n, which

implies that ε > 1/yks, we have error O(1/k2y2) = O(1/yks) · s
yk
. Because of our bound on

y, s/yk ≤ 2, and thus this error is O(1/yks) = O(ε). In the case that y ≤ 1/n, we have
ny · O(1/k2y2) ≤ εksO(1/k2y) = O(εs/ky) ≤ O(ε), again because of our bound on y. Thus
the above approximation scheme of the logarithm function is sufficiently accurate to yield
O(ε)-error estimators of entropy for distributions of support at most O(εk log k).
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Chapter 8

Estimating Properties in Practice

In Chapters 3, 6, and 7, we described three approaches to estimating symmetric properties
that yield sublinear sample estimators achieving near-optimal performance on worst-case
instances. In Chapters 4 and 5, we developed techniques for proving information theoretic
lower bounds on the sample size required to obtain accurate estimates of symmetric proper-
ties; in the process, we developed insights into the mapping between distributions, and the
distribution of fingerprints obtained from a sample consisting of independent draws from the
distribution. Much of the analysis in the previous four chapters is asymptotic, and some of
the constants involved are daunting: a direct implementation of the estimators to which our
theorems apply would be impractical, and would likely yield disappointing results on all but
truly enormous datasets. Nevertheless, in this chapter we propose a heuristic adaptation of
the “unseen” approach of Chapter 3, and demonstrate via simulations that it performs ex-
ceptionally well for a variety of estimation tasks (estimating entropy, the number of distinct
elements, and `1 distance), on a variety of natural distributions, for a wide range of param-
eters. We compare this estimator with previously proposed estimators from the literature:
for all settings considered, our estimator performs at least as well as the best previously
proposed estimator that we consider, and significantly outperforms all these estimators in
some settings.

While our experiments do not form a comprehensive evaluation of our estimators, they
provide strong evidence that this theoretically principled approach yields robust and general
estimators that seem to perform very well in practice. We expect (and hope) that the
estimator described in this section may be fruitfully used in practice, both directly, and as
a component within larger machine learning and data analysis systems.

In Section 8.1 we describe the practical adaption of the estimator of Chapter 3. In
Section 8.2 we describe our experimental setup for evaluating the quality of this approach
for estimating entropy; our experimental setup is based on that used in [137] to compare
various entropy estimators. In Section 8.3 we apply this approach to estimate the total
variational distance (`1 distance) between pairs of distribution. Finally, we demonstrate the
versatility of our estimator, and show that it can be adapted to estimate the total number of
distinct words that appear in Shakespeare’s Hamlet based on the word counts of surprisingly
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short passages.

8.1 A Practical Algorithm for Estimating the

“Unseen”

In Chapters 3, 6, and 7, we described three approaches to estimating symmetric properties.
While these three approaches all yield provably constant-factor optimal estimators, from
a practical viewpoint, they are not equivalent. The estimators of Chapters 6 and 7 are,
in a rigorous sense, tailored specifically towards optimizing the performance on worst-case
instances—the estimators of Chapter 6 are described as the dual to a linear program that
explicitly searches for optimal worst-case (lower bound) instances, and the tradeoff between
the magnitude of the coefficients and bias of the estimators of Chapter 7 was chosen to
optimize the performance on worst-case instances. In contrast, the estimators of Chapter 3
achieve the same worst-case performance, yet are not tailored to worst-case instances in
any sense; thus one might suspect that their performance on “typical” instances may be
superior. For the remainder of this section on experimental performance, we will focus on
these estimators.

Given the fingerprint F of a sample of size k, consisting of independent draws from a
distribution with histogram h, the high-level approach of the estimator of Chapter 3 is to
find a histogram ĥ that has the property that if one were to draw a sample of size k from
a distribution with histogram h′, the fingerprint of the resulting sample would be similar to
the observed fingerprint F . The hope is then that h and ĥ will be similar, and, in particular,
have similar entropies, support sizes, etc.

For general fingerprints, how does one obtain a “plausible” histogram from a fingerprint
in a principled fashion? The approach of Chapter 3 is based on the observation that, given
a distribution p, and some domain element α occurring with probability x = p(α), the
probability that it will be drawn exactly i times in a sample of size k drawn from p is
Pr[Binomial(k, x) = i] ≈ poi(kx, i). By linearity of expectation, the expected ith fingerprint
entry will roughly satisfy

E[Fi] ≈
∑

x:hp(x)6=0

h(x)poi(kx, i). (8.1)

This mapping between histograms and expected fingerprints is linear in the histogram, with
coefficients given by the Poisson probabilities. Additionally, V ar[Fi] ≤ E[Fi], and thus
the fingerprint is tightly concentrated about its expected value. This motivated the “first
moment” approach of Chapter 3. The new central limit theorem for generalized multinomial
distributions of Chapter 4 (Theorem 4.2) and Lemma 5.3 of Chapter 5 showing that the
fingerprint expectations actually determine the fingerprint covariance, together imply that
the distribution of fingerprint entries is robustly determined by its vector of first moments—
thus there would be little gained by attempting to match higher-order moments.
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The most significant difference between our practical estimators and those of Chapter 3 is
that the practical ones do not need an upper bound on the true support size of the distribu-
tion. Without such an upper bound on the support size, the space of “plausible” histograms
can be very large. To illustrate, suppose we obtain fingerprint F = (10, 0, 0, 0, . . .), and
consider the two histograms given by the uniform distributions with respective support sizes
10,000, and 100,000. Given either distribution, the probability of obtaining the observed
fingerprint from a sample of size 10 is > .99, yet these distributions are quite different and
have very different entropy values and support sizes. They are both very plausible–which
distribution should we return if we are not provided with an upper bound on the support
size?

To resolve this question in a principled fashion, we strengthen the initial goal of our linear
program of finding a histogram that could have plausibly generated the observed fingerprint:
we instead return the simplest histogram that could have plausibly generated the observed
fingerprint of the sample. There are many potential implementations of this Occam’s razor:
we return the plausible distribution of minimal support size.

Thus we pose this problem of finding the simplest plausible histogram as a pair of
linear programs. The first linear program is based on Linear Program 3.9 of Chapter 3
and returns a histogram ĥ that minimizes the distance between its expected fingerprint
and the observed fingerprint, where we penalize the discrepancy between Fi and E[F ĥi ] =∑

x:ĥ(x)6=0 ĥ(x)poi(kx, i) in proportion to the inverse of the standard deviation of Fi, which we

estimate as 1/
√

1 + Fi. The second linear program will then find the histogram ĝ of minimal
support size, subject to the constraint that the distance between its expected fingerprint,
and the observed fingerprint, is not much worse than that of the histogram found by the
first linear program.

As with the estimators of Chapter 3, we will only apply the linear programs to the “rare
events” regime, and will simply use the trivial empirical estimate for the regime in which
the fingerprint entries are sparse, and represent a few domain elements that are seen often.
Algorithm 8.1 describes a simple and crude procedure for separating these two regimes,
which performs well in practice.1

1A unified approach is possible, using an earthmover distance metric as part of the linear programs to
cleanly circumvent these issues. However, the experimental results this yielded were indistinguishable from
those presented here, and thus do not seem to justify the additional computational expense.
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Algorithm 8.1. Estimate Unseen
Input: Fingerprint F = F1,F2, . . . ,Fm, derived from a sample of size k,

vector x = x1, . . . , x` with 0 < xi ≤ 1, and error parameter α > 0.
Output: List of pairs (y1, ĥy1), (y2, ĥy2), . . . , with yi ∈ (0, 1], and ĥyi ≥ 0.

• Initialize the output list of pairs to be empty, and initialize a vector F ′ to
be equal to F.

• For i = 1 to k,

– If
∑
j∈{i−d

√
ie,...,i+d

√
ie} Fj ≤ 2

√
i [i.e. if the fingerprint is ‘‘sparse’’

at index i]
Set F ′i = 0, and append the pair (i/k,Fi) to the output list.

• Let vopt be the objective function value returned by running Linear Program 8.2

on input F ′, x.

• Let v = (vx1
, . . .) be the vector returned by running Linear Program 8.3 on input

F ′, x, vopt, α.

• For all i s.t. vxi > 0, append the pair (xi, vxi) to the output list.

Linear Program 8.2. Find Plausible Histogram
Input: Fingerprint F = F1, . . . ,Fm, k, and vector x = x1, . . . , x` consisting of a fine

mesh of points in the interval (0, 1].
Output: vector v = (vx1

, . . . , vx`), and objective value vopt ∈ R.

Let vx1 , . . . , vx` and vopt be, respectively, the solution assignment, and corresponding

objective function value of the solution of the following linear program, with

variables vx1
, . . . , vx`:

Minimize:

m∑
i=1

1√
1 + Fi

∣∣∣∣∣∣Fi −
∑̀
j=1

vxj · poi(kxj , i)

∣∣∣∣∣∣
Subject to:

∑`
j=1 xjvxj =

∑
i≥1 iFi
k , and ∀j, vxj ≥ 0.
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Linear Program 8.3. Find Simplest Plausible Histogram
Input: Fingerprint F = F1, . . . ,Fm, k, and vector x = x1, . . . , x` consisting of a fine

mesh of points in the interval (0, 1], optimal objective function value vopt from Linear

Program 8.2, and error parameter α > 0.
Output: vector v = (vx1

, . . . , vx`).
Let vx1

, . . . , vx` be the solution assignment of the following linear program, with

variables vx1
, . . . , vx`:

Minimize:
∑`
j=1 vxj

Subject to:∑m
i=1

1√
1+Fi

∣∣∣Fi −∑`
j=1 vxj · poi(kxj , i)

∣∣∣ ≤ vopt + α,∑`
j=1 xjvxj =

∑
i≥1 iFi
k , and ∀j, vxj ≥ 0.

8.2 Estimating Entropy

In this section we demonstrate that Algorithm 8.1 can be used to very accurately estimate
the entropy of a distribution. Before describing our experimental setup and results, we list
the five estimators for entropy that we use for comparison. The first three are standard,
and are, perhaps, the most commonly used estimators [102]. The final two estimators were
proposed more recently, and have been shown to perform well in some practical settings [137].
For a more detailed discussion of these estimators, see Section 2.3.

The “naive” estimator: The entropy of the empirical distribution, namely, given a fin-
gerprint F derived from a sample of size k, Hnaive(F) :=

∑
iFi

i
k
| log i

k
|.

The Miller-Madow corrected estimator [90]: The naive estimator Hnaive corrected to
try to account for the second derivative of the logarithm function, namely HMM(F) :=

Hnaive(F) +
(
∑
i Fi)−1

2k
.

The jackknifed naive estimator [144, 51]:

HJK(F) := k ·Hnaive(F)− k − 1

k

k∑
j=1

Hnaive(F−j),

where F−j is the fingerprint given by removing the contribution of the jth sample point.

The coverage adjusted estimator (CAE) [36]: Chao and Shen proposed the CAE,
which is specifically designed to apply to settings in which there is a significant component
of the distribution that is unseen, and was shown to perform well in practice in [137].2 Given

2One curious weakness of the CAE, is that its performance is exceptionally poor on some simple large
instances. For example, given a sample of size k drawn from a uniform distribution over k elements, it is not
hard to show that the bias of the CAE is O(log k). This error is not even bounded! For comparison, even
the naive estimator has error bounded by a constant in the limit as k →∞ in this setting. This bias of the
CAE is easily observed in our experiments as the “hump” in the left plot of Figure 8.1.
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a fingerprint F derived from a sample of size k , let Ps := 1−F1/k, representing the Good–
Turing estimate of the probability mass of the “seen” portion of the distribution [59]. The
CAE adjust the empirical probabilities according to Ps, then applies the Horvitz–Thompson
estimator for population totals [68] to take into account the probability that the elements
were seen. This yields:

HCAE(F) := −
∑
i

Fi
(i/k)Ps log ((i/k)Ps)

1− (1− (i/k)Ps)
k
.

The Best Upper Bound estimator [102]: The final estimator to which we compare
ours, is the Best Upper Bound (BUB) estimator of Paninski. This estimator is obtained
by searching for a minimax linear estimator, with respect to a certain error metric. The
linear estimators of Chapter 6 can be viewed as a variant of this estimator with provable
performance bounds.3 The difficulty in using the BUB estimator is that it requires, as input,
an upper bound on the support size of the distribution from which the sample was drawn.
In many settings, such an upper bound is either unknown, or nonexistent; and if the bound
provided to the estimator is inaccurate, the performance degrades considerably, as was also
remarked in [137]). In our experiments, for the distributions with finite support, we gave
the true support size as input, and thus we are arguably comparing our estimator to the
best–case performance of the BUB estimator.

Experimental setup

We performed a comparison of our estimator with the above five estimators for a variety
of sample sizes and distributions. We considered three classes of distributions, the uniform
distribution, Unif [n] that assigns probability pi = 1/n for i = 1, 2, . . . , n; the Zipf distribu-

tion Zipf [n] that assigns probability pi = i/n∑n
j=1 j/n

for i = 1, 2, . . . , n and is commonly used

to model naturally occurring “power law” distributions, particularly in natural language
processing; and the geometric distribution Geom[n] which has infinite support, and assigns
probability pi = (1/n)(1− 1/n)i, for i = 1, 2 . . . . For each distribution, we considered three
settings of the parameter n, 1000, 10000, and 100000, and for each setting, we considered
drawing a sample of size k, for k ranging from n0.6 to n1.25. For each setting of the parame-
ters, 500 trials were run: each trial consisted of drawing a sample of size k, then evaluating
each of the estimators on the resulting sample.

All experiments were run in Matlab. The error parameter α in Algorithm 8.1 was set
to be 0.1 for all trials, and the vector x = x1, x2, . . . used as the support of the returned
histogram was chosen to be a coarse geometric mesh, with x1 = 1/(200n), and xi = 1.1xi−1.
The experimental results are essentially unchanged if the error parameter is varied within
the range [0.01, 0.5], or if x1 is decreased, or if the mesh is made more fine. We used

3We also implemented the linear estimators of Chapter 6 though found that the BUB estimator performed
better.
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Paninski’s implementation of the BUB estimator (publicly available on his website), with
default parameters. This estimator requires a parameter upper-bounding the support size of
the distribution, which we set to be n for the three cases considered here (Unif [n], Zipf [n],
and Geom[n]).

Results and Discussion

The performance of our Algorithm 8.1 for estimating entropy is evaluated and compared
with that of the five other estimators in Figure 8.1. We plot the root-mean-square error of
each estimator for each of the three distributions (Unif [n], Zipf [n], and Geom[n]), param-
eterized by each of the three values n = 1, 000, n = 10, 000, and n = 100, 000. Our “unseen”
estimator performs well in both the super-linear and sub-linear regime, matching or ex-
ceeding the performance of all the other estimators in all cases. Further, each of the other
estimators seems to have quirks that drastically limit their performance in certain regimes,
while our estimator performs robustly throughout. Each of the standard three entropy
estimators—the naive estimator, the Miller-Madow corrected estimator, and the jackknifed
estimator—performs well only in the super-linear regime, where the sample size is larger than
n, though their performance improves smoothly, with the jackknifed estimator performing
better than the Miller-Madow estimator, which performs better than the naive estimator.
The Coverage-Adjusted estimator performs virtually identically to the unseen estimator on
the uniform distribution in the sublinear regime, suggesting that perhaps the CAE estimator
was specifically designed for this case. In other cases, however, the CAE estimator performs
disappointingly; even in the super-linear regime for the uniform distributions, when all the
other estimators are converging rapidly, the CAE has a “hump”, which in fact grows with
n. The BUB estimator, as noted above, has a free parameter representing an upper bound
on the support size, which we set to be equal to n to yield a “best-possible” performance for
the uniform and Zipf distributions; this performance may not be representative of the BUB
estimator in general.

8.3 Estimating `1 Distance, and the Number of

Words in Hamlet

The other two properties that we consider do not have such widely-accepted estimators
as entropy, and thus our evaluation of the unseen estimator will be more qualitative. We
include these two examples here because they are of a substantially different flavor from
entropy estimation, and highlight the robustness and versatility of our approach.

In Figure 8.2 we show the results of estimating the total variation distance (`1 distance)
between two uniform distributions A,B on n = 10, 000 points, in three cases: the two
distributions are identical (left plot, d = 0), the two distribution supports overlap on half
their elements (center plot, d = 0.5), and the two distributions have disjoint supports (right
plot, d = 1). The estimate of the statistical distance is plotted, along with error bars at
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Figure 8.1: Plots depicting the square root of the mean squared error (RMSE) of each entropy
estimator over 500 trials, plotted as a function of the sample size; note the logarithmic scaling
of the x-axis. The samples are drawn from a uniform distribution Unif [n] (left column),
a Zipf distribution Zipf [n] (center column), and a geometric distribution Geom[n] (right
column), for n = 1, 000 (top row), n = 10, 000 (middle row), and n = 100, 000 (bottom row).
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Figure 8.2: Plots depicting the estimated `1 distance (total variational distance) along with
error bars showing one standard deviation, for samples from two uniform distributions of
support 10,000 having distance 0 (left plot), distance 0.5 (center plot), and distance 1 (right
plot) as a function of the sample size.

plus and minus one standard deviation; our results are compared with those for the naive
estimator. The naive estimator, of course, returns the total variation distance between
the empirical distributions observed, and thus in the third plot, when the distributions are
disjoint, the naive estimator will perform perfectly ; in the other cases, when the sample size
is rather small, the two empirical distributions will be essentially disjoint, so the distance
estimate of the naive estimate starts near 1 in all cases, and only gradually converges for
super-linear sample sizes. Meanwhile, our unseen estimator can be seen to reliably distinguish
between the d = 0, d = 1

2
, and d = 1 cases even for samples of size as few as several hundred.

Because total variation distance is a property of two distributions instead of one, finger-
prints and histograms are two-dimensional objects in this setting (see Section 3.3 of Chap-
ter 3), and Algorithm 8.1 and the linear programs are extended accordingly, replacing single
indices by pairs of indices, and Poisson coefficients by corresponding products of Poisson
coefficients.

Estimating the number of distinct words in Hamlet

Finally, in contrast to the synthetic tests above, we also evaluated our estimator on a real-
data problem which may be seen as emblematic of the challenges in a wide gamut of natural
language processing problems: given a (contiguous) fragment of Shakespeare’s Hamlet, esti-
mate the number of distinct words in the whole play. We use this example to showcase the
flexibility of our linear programming approach—our estimator can be customized to partic-
ular domains in powerful and principled ways by adding or modifying the constraints of the
linear program. To estimate the histogram of word frequencies in Hamlet, since the play is of
length ≈25, 000 , the minimum probability with which any word can occur is 1

25,000
. Thus in

contrast to our previous approach of using Linear Program 8.3 to bound the support of the
returned histogram, we instead simply modify the input vector x of Linear Program 8.2 to
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contain only values ≥ 1
25,000

, and forgo running Linear Program 2.4 The results are plotted
in Figure 8.3. The estimates converge towards the true value of 4268 distinct word forms
extremely rapidly, and are slightly negatively biased, perhaps reflecting the fact that words
appearing close together are correlated.

In contrast to Hamlet’s charge that “there are more things in heaven and earth...than
are dreamt of in your philosophy,” we can say that there are almost exactly as many things
in Hamlet as can be dreamt of from 10% of Hamlet.
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Figure 8.3: Estimates of the total number of distinct word forms in Shakespeare’s Hamlet
(excluding stage directions and proper nouns) as a function of the length of the passage from
which the estimate is inferred. The error bars depict one standard deviation in the estimate
over the random choice of each contiguous passage of the given length. The true number of
distinct word forms, 4268, is shown as the horizontal line.

4A passage of text should be regarded as a sample without replacement from the set of words in the work;
thus rather than applying our estimator to the fingerprint of the word counts of a passage, we first apply
the natural transformation from a sample taken without replacement, to a sample taken with replacement,
and then apply our estimator to the fingerprint of the resulting modified set of word counts.
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Part II

Correlations, Parities, and Juntas
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Chapter 9

Finding Correlations and the Closest
Pair Problem

One of the most basic statistical tasks is the problem of finding correlations in data. In
some settings, the data is gathered with the specific goal of ascertaining the set of correlated
variables; in many other settings, the identification of correlated features is used repeatedly
as a key data analysis primitive within the context of more complex algorithms.

From a theoretical perspective, this problem of finding correlations is extremely rich.
Most of the theoretical work has focussed on the closely related problem of finding a pair of
vectors with minimal distance from among some set of vectors, also known as the “closest pair
problem”. To see the relation between these problems, recall that the Pearson–correlation
of two vectors with mean zero and unit length is defined to be their inner product; and the
pair of unit-length vectors with maximal inner product will also be the pair with minimal
Euclidean distance.

9.1 Discussion of Previous Work

Historically, the first line of work on finding close pairs of vectors focussed on the “nearest
neighbor search”: given a set of vectors how can one preprocess them such that given a new
vector, one can efficiently find the vector in the set that is closest of the new vector (with
respect to some metric–typically Euclidean distance, or Hamming distance in the Boolean
setting)? For such problems, there are typically two parameters of interest: the amount of
space required to store the preprocessed set of vectors, and the amount of time required to
perform a single query.

The earliest work on this question considered the case in which the n points lie in very low
dimensional space, d = 1, 2, 3, . . . . In the case that d = 1, each point is a real number, and
one can simply sort the list of numbers, and store the sorted list. Given a new number, one
can perform a binary search over the sorted list to find the closest number. Thus the storage
space is linear in the size of the input, and each query requires O(log n) comparisons. For
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d ≥ 2, the analogous scheme corresponds to partitioning the space into n regions, indexed
by the points in the set, where the region corresponding to the ith point xi consists of those
points that are closer to xi than to any of the other n− 1 points in the set.

In the case of d = 2, such a partition of the plane is known as the Voronoi diagram of
the set of n points, and yields space bounds and query time analogous to the d = 1 setting.
Unfortunately, such schemes suffer a curse of dimensionality and do not generalize well to
higher dimensions; while the query time remains polynomial in d log n, the space required to
store such partitions scales as O(ndd/2e) [41], and quickly cease to be preferable to performing
the brute-force comparisons (see, for example, [89, 140]). On the practical side, there
has been considerable work in developing reasonable data structures to partition slightly
higher dimensional Euclidean spaces (d < 20), starting with the notion of k-dimensional
trees (kd–trees), introduced by Bentley [24] (see [116] for a summary including more recent
developments).

In an effort to overcome some of the difficulties of returning the exact closest point,
starting in the late 1990’s, significant effort was spent considering the c–approximate nearest
neighbor problem in which the goal of returning the closest point is relaxed to the more
modest goal of returning a point whose distance is at most a multiplicative factor of c =
1 + ε larger than that of the closest point. Additionally, a small probability of failure is
allowed. In many practical settings, such a relaxation is essentially equivalent to the exact
nearest neighbor problem. Starting with the results of Kushilevitz et al. [81] and Indyk and
Motwani [71], algorithms requiring space that is polynomial in n and d, with query time
polynomial in d log n were given (for constant ε > 0).

Introduced in work of Indyk and Motwani [71], the concept of locality sensitive hashing
offered both sublinear query time, as well as subquadratic space, thereby yielding nontrivial
algorithms for the approximate closest pair problem. Specifically, they gave an algorithm

with query time O(n
1

1+ε ) and space O(n1+ 1
1+ε ). (Throughout, we ignore log n factors, and

the additive dn term in the space.) The basic idea was to use a series of hashing functions
that all have the property that close points have a higher probability of hashing to the same
bucket. To perform a given query, one simply hashes the query point, and then checks the
subset of the n data points that have also been hashed to those buckets. Since the original
paper, there have been a number of improvements in the parameters, and generalizations
from Hamming and Euclidean distance to other `p metrics [49, 100, 10]. The current state
of the art for the 1 + ε nearest neighbor problem under the Euclidean metric is given in
Andoni and Indyk [10], achieving query time and space O(dnα), O(n1+α), respectively, for
α = 1

(1+ε)2 + o(1). These results were recently shown to be essentially tight in the sense

that for any scheme based on locality sensitive hashing, the exponent α ≥ 1
(1+ε)2 − o(1) [94].

(See [9] for a survey on locality sensitive hashing.)
For the problem of finding a pair of points whose distance is at most a factor of 1 + ε

further than that of the closest pair of points, by simply running the nearest–neighbor

search n times—once for each vector—one obtains algorithms with runtimes O(n1+ 1
1+ε ),

and O(n
1+ 1

(1+ε)2 ), respectively in the Hamming and Euclidean settings which are the best



CHAPTER 9. FINDING CORRELATIONS AND THE CLOSEST PAIR PROBLEM 165

previously known algorithms for these problems. For small ε, these runtimes are roughly
O(n2−ε), and O(n2−2ε), respectively.

The Light Bulb Problem

For completeness, we restate the definition of the light bulb problem:

Definition 9.1. Given a set of n vectors in {−1,+1}d, with the promise that the vectors are
chosen uniformly at random with the exception of two vectors that have Pearson–correlation
ρ (Hamming distance d · 1−ρ

2
), the light bulb problem with parameters n, d, ρ is the problem

of recovering the true correlated pair of vectors.

The light bulb problem is easily seen to be a special case of the approximate closest pair
problem. To see the correspondence in parameters, for sufficiently large dimension, d, the
Hamming distance between the correlated vectors will be at most 1−ρ

2
d whereas, with high

probability, the Hamming distance between any other pair of vectors will be close to d
2
. Thus

solving the 1+ ε approximate closest pair problem for 1+ ε ≈ 1
1−ρ will, with high probability,

return the correlated pair of vectors.
The light bulb problem has received much less attention than the nearest-neighbor prob-

lem; the early work on locality sensitive hashing seemed unaware that somewhat similar
ideas had appeared nearly a decade earlier in the work of Paturi et al. [104], which gave

an algorithm for the light bulb problem with runtime O(n1+
log

ρ+1
2

log 1/2 ), which is slightly better
than that given by the application of locality sensitive hashing for the Hamming cube given
in [71]. More recently, Dubiner introduced the “Bucketing Codes” approach [50], which is
similar in spirit to the approach of Andoni and Indyk [10], and yields an algorithm for the

light bulb problem with a runtime of O(n
2
ρ+1 ).

For small values of ρ, all these approaches yield runtimes of n2−O(ρ), with [50] achieving
the best asymptotic runtime of O(n2−2ρ), in the limit as ρ→ 0.

For our results on the light bulb problem, and closest pair problem, we will perform some
metric embeddings: the hope is to construct some embedding f : Rd → Rm with the property
that if 〈u, v〉 is large, then the inner product of the images of u and v, 〈f(u), f(v)〉 will also be
large, and if the inner product is small, the inner product of the images is tiny. For the light
bulb problem, we will be able to choose the embedding f to be a simple “XOR”/“tensor”
embedding, which sets each coordinate of f(u) to be the product of entries of u. Such an
embedding has appeared previously in several contexts, and was used by Lyubashevsky [83]
to show that given few examples from an instance of learning parity with noise, one can
generate new “simulated” examples, that can be used in place of actual examples.

Our results for the approximate closest pair problem will require a more sophisticated
embedding. In fact, it seems unlikely that we would be able to construct a single embedding f
with the desired properties (see the comments in Section 9.3 on Schoenberg’s characterization
of what is achievable via a single embedding). Instead of using a single embedding, we will
construct a pair of embeddings, f, g : Rd → Rm with the property that 〈f(u), g(v)〉 is large
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[small] if 〈u, v〉 is large [small]. This observation that a pair of embeddings can be more
versatile than a single embedding was first fruitfully leveraged by Alon and Naor in their
work on approximating the cut norm of a matrix [6].

9.2 A New Algorithm for the Light Bulb Problem

We begin by presenting our new approach to the light bulb problem; our improved algorithm
for finding the closest pair of vectors in the general setting will build upon this approach.
There are two essential features of the light bulb problem which we exploit:

• With the exception of the correlated pair of vectors, the Hamming distance between
pairs of vectors is tightly concentrated around a single value, d/2.

• One need not iteratively solve n nearest neighbor search problems, one for each vector;
instead, one can effectively perform many such searches simultaneously.

We now provide an intuitive overview of how we exploit these features. We begin by assuming
that we can choose the dimension of the vectors, d.

Given a d× n matrix X with entries in {−1,+1} whose columns are uniformly random,
with the exception of two ρ-correlated columns, one naive approach to finding the correlated
columns is to simply compute W = X tX, the matrix whose i, jth entry is the inner product
between the ith and jth columns of matrix X. With overwhelming probability, the largest
off-diagonal entry of W will correspond to the correlated columns, as that entry will have
value roughly dρ, whereas all the other off-diagonal entries have expected value 0, and will
be tightly concentrated around 0, with standard deviation O(

√
d). The obvious issue with

this approach is that W has n2 entries, precluding a sub–quadratic runtime. This remains
an issue even if the number of rows, d is taken to be near the information theoretic limit of
O( logn

ρ2 ).
Our approach is motivated by the simple observation that if two columns of X are highly

correlated, then we can compress X, by simply aggregating sets of columns. If one randomly
partitions the n columns into, say, n2/3 sets, each of size n1/3, and then replaces each set of
columns by a single vector, each of whose entries is given by the sum (over the real numbers)
of the corresponding entries of the columns in the set, then we have shrunk the size of the
matrix from m × n, to an m × n2/3 matrix, Z (that now has integer entries in the range
[−n1/3, n1/3]). It is still the case that most pairs of columns of Z will be uncorrelated. If,
in the likely event that the two original correlated columns are assigned to distinct sets, the
two columns of Z to which the two correlated columns contribute, will be slightly correlated.
Trivially, the expected inner product of these two columns of Z is O(ρm), whereas the inner
product between any two other columns of Z has expected value 0, and variance O(n2/3m).

Thus provided ρm >>
√
n2/3m, and hence m >> n2/3/ρ2, there should be enough data to

pick out the correlated columns of matrix Z, by computing W ′ = ZtZ, and then finding
the largest off-diagonal element. This computation of the product of an n2/3 × n2/3/ρ2
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matrix with its transpose, via fast matrix multiplication, is relatively cheap, taking time
n2ω/3poly(1/ρ) < n1.6 · poly(1/ρ), where ω is the exponent of matrix multiplication.

Once one knows which two columns of Z contain the original correlated columns of W ,
one can simply brute-force check the inner products between all pairs of columns of W that
contribute to the two correlated columns of Z, which takes time dn2/3. (One could also
recursively apply the algorithm on the two relevant sets of n1/3 columns, though this would
not improve the asymptotic running time.) The computation, now, is dominated by the size
of the initial n2/3/ρ2 × n > n1.66 matrix! It is also clear that the runtime of this algorithm
will depend only inverse polynomially on the correlation–in particular, ρ will not appear in
the exponent of n. Optimizing the tradeoff between the size of the initial matrix, and the
time spent computing the product, yields an exponent of (5− ω)/(4− ω) < 1.62.

In the rest of this section we formally describe the algorithm, and give the proof of
correctness.

Algorithm 9.2. Vector Aggregation
Input: An m× n matrix X with entries xi,j ∈ {−1,+1}, and constant α ∈ (0, 1].
Output: A pair of indices, c1, c2 ∈ [n].

• Randomly partition [n] into n1−α disjoint subsets, each of size nα, denoting the

sets S1, . . . , Sn1−α , and form the m × n1−α matrix Z with entries zi,j =
∑
k∈Sj xi,k,

where the sum is taken over the reals.

• Let W = ZtZ, and denote the largest off-diagonal entry by wi,j .

• Using a brute-force search, taking time O(mn2α), find and output the pair

(c1, c2) := argmaxc1∈Si,c2∈Sj

m∑
k=1

xk,c1xk,c2

.

The following proposition describes the performance of the above algorithm:

Proposition 9.3. For any constant ε > 0, setting α = 1
2(4−ω)

the algorithm Vector-
Aggregation, when given as input the value α as above and the matrix X whose columns
consist of the vectors given in an n, d, ρ instance of the light bulb problem with d = n2α+ε

ρ2 ,

will output the true pair of correlated columns with probability 1− o(1), and will run in time

O

(
n

5−ω
4−ω+ε

ρ2ω

)
< n1.62 · poly(1/ρ),

where ω < 2.38 is the exponent of matrix multiplication.

Proof. We first verify the runtime of the algorithm. The input matrix X has size dn =
n1+2α+ε/ρ2, and the creation of the matrix Z takes time linear in this size. The only remaining
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bottleneck is the computation of W = ZtZ, which is the product of a n1−α × d matrix with

its transpose, and hence can be computed in time max (dω, (n1−α/d)2dω) < n
5−ω
4−ω /ρ2ω, where

the second argument to the max operation is the case that d < n1−α.
We now verify the correctness of the algorithm. Assume without loss of generality that the

true correlated columns are the first and second columns, and that they contribute to distinct
sets (which happens with probability > 1−1/nα), and denote those sets S1, S2, respectively.
By a union bound over Chernoff bounds, with probability 1 − o(1), for all i, j, |zi,j| ≤
nα/2 log2 n. Additionally, aside from the first and second columns of Z, which correspond
to the sets S1, S2, all columns are independent, with each value zi,j having expectation 0,
and thus by another union bound over Chernoff bounds, with probability 1− o(1) each off-
diagonal entry of W aside from w1,2 and w2,1 will have magnitude at most |zi,j|2 ·

√
d log2 n ≤

n2α+ε/2

ρ
polylog n.

We now argue that w1,2 will be significantly larger than this value. Indeed, w1,2 =∑
i∈S1,j∈S2

〈Xi, Xj〉, where Xi denotes the ith column of matrix X, and by the above calcu-
lation, the magnitude of the contribution to this sum from all terms other than 〈X1, X2〉
will be at most n2α+ε/2

ρ
polylog n, with probability 1− o(1). To conclude, the expected value

of 〈X1, X2〉 = ρd, and with probability 1 − o(1), 〈X1, X2〉 ≥ ρd
2

= n2α+ε

2ρ
, which dominates

n2α+ε/2

ρ
polylog n for any constant ε > 0 and sufficiently large n, and thus w1,2 or w2,1 will be

the largest off-diagonal entries of W with probability 1 − o(1), in which case the algorithm
outputs the correct indices.

Projecting Up

The algorithm described above shows how to solve the light bulb problem provided that

the points have dimension d ≥ n
1

4−ω+ε/ρ2 ≈ n0.62/ρ2. What happens if d is quite small?
Information theoretically, one should still be able to recover the correlated pair even for
d = O(log n/ρ2). How can one adapt the Vector-Aggregation approach to the case
when d is near this information theoretic boundary? We shall carefully project the vectors
into a larger space in such a way so as to guarantee that the projected vectors act like vectors
corresponding to an n, d′, ρ′ instance of the light bulb problem for some d′ > d, and ρ′ < ρ,
with the property that d′ is sufficiently large so as ensure that the approach of the previous
section succeeds. We rely crucially on the fact that ρ does not appear in the exponent of n
in the runtime, since this transformation will yield ρ′ << ρ.

Consider randomly selecting a small set of the rows of the matrix, and producing a new
row by component–wise multiplication. We term such a process of generating new examples
(rows) as “XORing together a set of rows”, and we claim that the new row of data thus
produced is reasonably faithful. In particular, if two columns are completely correlated,
then the result of XORing together a number of rows will produce a row for which the values
in the two correlated columns will still be identical. If the correlation is not 1, but instead
ρ, after combining q rows, the corresponding columns will only be ρq correlated, as XORing
degrades the correlation. Recall, however, that the algorithm of the previous section was
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extremely noise robust, and thus we can afford to degrade the correlation considerably. For
constant ρ, we can certainly take q = o(log n) without increasing the exponent of n in the
runtime.

Note that as we are viewing the vectors as having entries in {−1, 1}, this XORing of sets
of rows is simply component-wise multiplication of the rows. Equivalently, it can be seen as
replacing each column with a sample of the entries of the qth tensor power of the column.

In the context of learning parity with noise, this expansion approach was used by Lyuba-
shevsky [83] to show that given few examples from an instance of learning parity with noise,
one can generate new “simulated” examples, that can be used in place of actual examples.
In contrast to the current setting, the challenge in that work was arguing that the new
instances are actually information theoretically indistinguishable from new examples (with
higher noise rate). To prove this strong indistinguishability, Lyubashevsky employed the
“Leftover Hash Lemma” of Impagliazzo and Zuckerman [70].

In our setting, we do not need any such strong information theoretic guarantees, and
hence our results will apply more generally than the random setting of the Light Bulb
problem. Our approach only requires some guarantee on the inner products of pairs of
columns, which can be given by inductively applying the following trivial lemma:

Lemma 9.4. Given vectors u, v, w, z ∈ Rd with 〈u, v〉 = ρ1d and 〈w, z〉 = ρ2d, for i, j chosen
uniformly at random from [d],

E[(uiwj) · (vizj)] = ρ1ρ2.

Phrased differently, letting x ∈ Rd2
be the vector whose entries are given by the d2

entries of the outer-product uwt, and y is given by the entries of vzt, then 〈x, y〉 = ρ1ρ2d
2.

Elementary concentration bounds show that provided one samples sufficiently many indices
of this outer product, the inner product between the sampled vectors will be close to this
expected value (normalized by the dimension).

Proof. The proof follows from the independence of i, j, the facts that E[uivi] = ρ1, E[wjzj] =
ρ2, and the basic fact that the expectation of the product of independent random variables
is the product of their expectations.

We now state our theorem, which applies more generally than the Light Bulb problem,
and can alternately be viewed as a result on the complexity of approximating the product of
two matrices, under the assumption that the product has only a moderate number of large
entries.

Theorem 9.1. Consider a set of n vectors in {−1, 1}d and constants ρ, τ ∈ [0, 1] such that
the following condition holds:

• For all but at most n
3
4
ω− 1

2 ≈ n1.3 pairs u, v of distinct vectors, |〈u, v〉| ≤ τd.
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There is an algorithm that, with probability 1 − o(1), will output all pairs of vectors whose
inner product is least ρd. Additionally, the runtime of the algorithm is

dn
3ω
4 · n4 log ρ

log τ polylog n ≤ O(dn1.79+4 log ρ
log τ ),

where ω < 2.38 is the exponent of matrix multiplication.

Algorithm 9.5. Expand and Aggregate
Input: An m × n matrix X with entries xi,j ∈ {−1,+1}, ε ∈ (0, 1), and ρ, τ ∈ (0, 1), with
ρ > τ
Output: Two indices c1, c2 ∈ [n].

• Let m′ = n
3
4+2 log ρ

log τ log5 n, and q = logn
− log τ .

• If m′ ≥ n, do the O(mn2) time brute-force search.

• Otherwise, we create an m′ × n matrix Y with entries in {−1,+1}:

– For each of the m′ rows of Y , select a list t1, . . . , tq with each ti
selected uniformly at random from [m], and set the jth component of the

corresponding row to be
∏q
i=1 xti,j .

• Let c1, c2 be the output of algorithm Vector-Aggregation on input Y with the

parameter α = 1
4, where the algorithm is modified to brute-force-search for each

of the top n
3
4ω−

1
2 entries of W.

The intuition of the above algorithm is that the matrix Y resulting from the XOR expan-
sion step has the property that the expected inner product between any two “bad” columns
is bounded in magnitude by m′τ q = m′ 1

n
, and the expected inner product of a “good” pair

of vectors will be m′ρq = m′n−
log ρ
log τ >> m′ 1

n
. We now hope to argue that the inner products

of the “bad” vectors are closely concentrated about their expectations, in which case the
Vector Aggregation step of the algorithm will find a “good” pair of vectors. The minor
technical issue is that the entries of matrix Y resulting from the XOR expansion step are
not independent. Even if we start with an instance of the Light Bulb problem—while the
expansion step, intuitively, can be thought of allowing us to pretend that we were given
much more data than we were, the added dimensions are far from independent. This lack of
independence harms the exponent slightly—we leverage the randomness of the partitioning
of the Vector Aggregation algorithm to obtain slightly worse concentration than we would
obtain in the truly random setting. This results in a worse exponent of ≈ 1.79 instead of
≈ 1.62 as in Proposition 9.3, though this discrepancy can, perhaps, be removed via a tighter
analysis.

Before proving Theorem 9.1, we state a simple corollary that applies to the light bulb
problem in the setting in which the dimension, d, is near the information theoretic limit
of O( logn

ρ2 ). This corollary results immediately from applying Theorem 9.1 together with
elementary Chernoff bounds.
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Corollary 9.6. For any constant ρ, ε > 0, there exists a constant cε dependent on ε such
that for sufficiently large n, given an instance of the Light Bulb problem with parameters
n, d, ρ with d ≥ cε

logn
ρ2 , with probability 1 − o(1), the pair of correlated vectors can be found

in time O(dn
3ω
4

+ε) ≤ O(dn1.79).

Before proving Theorem 9.1, we establish a simple concentration result for the sum of
the entries of a random submatrix of a specified size:

Lemma 9.7. Given an s× s matrix X, with entries bounded in magnitude by b, let S1, S2 ⊂
[s] be two sets of size h chosen uniformly at random. Define the random variable y :=∑

i∈S1,j∈S2
Xi,j. Then

Pr
[
|y − E[y]| > b · h3/2 log h

]
= o(1/poly(h)).

Proof. First consider selecting set S1, and then selecting set S2. Let zS1 := E[y|S1] denote
the expected value of y given the choice of S1. We now argue that Pr[|zS1 − E[zS1 ]| ≥
b · h3/2 log h] = o(1/poly(h)). To see this, let pi =

∑s
j=1 xj,i

s
denote the average weight of the

ith column, and thus zS1 = h
∑

i∈S1
pi. The probability of zS1 deviating from its expectation

by more than some value is easily seen to be dominated by the process of choosing the h con-
tributing pi’s with replacement from the set {p1, . . . , ps}, in which case a standard Chernoff
bound applies, yielding that Pr[|zS1 − E[zS1 ]| ≥ b · h3/2 log h] < e−Θ(log2 h) = o(1/poly(h)).

We now argue that, with high probability, the value of y will be closely concentrated
around zS1 . In analogy with the above, fixing a set S1 fixes the average weight of each row of
the restriction of matrix X to the columns indexed by elements of S1. An identical analysis
to the above (over the randomness in the choice of S2 rather than S1) yields the desired
lemma.

We now prove Theorem 9.1.

Proof of Theorem 9.1. The runtime of Expand and Aggregate is dominated by the mul-
tiplication of an n3/4 ×m′ matrix with its transpose, and thus trivially, takes time at most

O
(
n

3ω
4 · ( m′

n3/4 )2
)
.

To verify the correctness of the algorithm, we first proceed under the assumption that
the only pair of columns with inner product greater than τd is the pair with inner product
at least ρd. First observe that for a pair of vectors with inner product bounded in magnitude
by τd, after the degree q XORing expansion, by Lemma 9.4, the magnitude of the expected
inner product is at most m′ ·τ q ≤ m′/n ≤ 1, which is negligible in comparison to the variance
of this quantity. By a union bound over Chernoff bounds, with probability 1− o(1) all such

inner products will have magnitude at most
√
m′ log n < n

3
8

+ log ρ
log τ log7/2 n := β. Since the

inner product of two sums of sets of vectors is simply the sum of the pairwise inner products
between the elements of the sets, by Lemma 9.7, the contribution from these uncorrelated
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columns to each entry of the product of the aggregated matrix and its transpose—matrix
W—calculated in the Vector-Aggregation stage of the algorithm will be bounded by

(n1/4)3/2 log n · β = n
3
4

+ log ρ
log τ log9/2 n

On the other hand, the inner product of the expanded pair of correlated vectors will, with
probability 1− o(1), be at least

1

2
m′ρq =

1

2
m′n−

log ρ
log τ =

1

2
n

3
4

+ log ρ
log τ log5 n,

which dominates the contribution of the uncorrelated vectors for sufficiently large n.
To conclude, we consider the case that there might be at most n

3
4
ω− 1

2 pairs of columns
with inner product > τd. With probability 1−o(1), all the pairwise correlations between the
sets of vectors to which the most correlated pair get grouped will be at most τd. Additionally,
as there are at most n

3
4
ω− 1

2 pairs of vectors whose inner products have magnitude greater

than τd, there will be at most this many entries of W that are larger than n
3
4

+ log ρ
log τ log9/2 n,

with probability 1 − o(1). Thus one could modify the Vector-Aggregation algorithm

by performing the O(dn1/2) time brute-force search for each of the n
3
4
ω− 1

2 largest entries of

the matrix W of the Vector-Aggregation algorithm, taking total time O(dn
3
4
ω). The

probability of success can trivially be boosted by repeating the entire algorithm.

9.3 The Chebyshev Embedding, and Closest-Pair

Problem

We now abstract and refine the main intuitions behind the Expand and Aggregate
algorithm, to yield our algorithm for the general approximate closest pair problem, which will
work in both the Boolean and Euclidean settings. The Vector-Aggregation algorithm
of the previous section relies, crucially, on the tight concentration around 0 of the inner
products of the uncorrelated vectors. In the case of Proposition 9.3, this concentration
came “for free”, because we assumed that the dimensionality of the data was large ≈ n0.6.
To obtain Theorem 9.1, we needed to work to obtain sufficiently tight concentration. In
particular, we performed a metric embedding f : {−1,+1}d → {−1,+1}m, with the crucial
property that for an appropriately chosen integer q, for u, v ∈ {−1,+1}d,

〈f(u), f(v)〉
m

≈
(
〈u, v〉
d

)q
.

The key property of this mapping x → xq is that if one pair of vectors has an inner
product that is a factor of (1 + ε) larger than than that of any other pair, after performing
this mapping, the inner product of the image of the close pair will now be a factor of
(1 + ε)q >> 1 + ε larger than that of the images of any other pair of vectors; thus the “gap”
has been significantly expanded. Of course, we can not take q to be arbitrarily large, as we
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would like to maintain a subquadratic amount of data and thus m << n, and the variance
in the inner products that arises from the subsampling process (choosing which subsets of
the rows to XOR) will be O(m). Thus if q is so large that the O(

√
m) standard deviation in

the inner product dominates the mρq inner product of the images of the closest pair, all the
signal in the data will be lost and the algorithm will fail. (Phrased more generally, if q is
too large, the distortion caused by projecting to a lower dimensional space will swamp the
signal.)

A simple calculation shows that if we try to obtain an algorithm for the (1+ε) approximate
closest pair problem via this Expand and Aggregate approach, we would end up with an
algorithm with runtime n2−O(ε). Can we do any better? To simplify the exposition, assume
that we are told that there is a “good” pair of vectors with inner product at least (1 + ε)d/2,
and that all other pairs of vectors are “bad” and have inner product in the range [−d/2, d/2].
In order to improve upon this runtime of n2−O(ε), we need an improved embedding—one that
damps the magnitudes of the “bad” pairs of vectors as much as possible, while preserving
the inner product between the closest pair. Specifically, we seek a mapping fc : Rd → Rm

with the following properties:

• For all u, v ∈ Rd, if 〈u, v〉 ≥ (1 + ε)d/2, then 〈fc(u), fc(v)〉 ≥ c.

• For all u, v ∈ Rd, if 〈u, v〉 ∈ [−d/2, d/2], then 〈fc(u), fc(v)〉 is as small as possible.

• For all u ∈ Rd, fc(u) can be computed reasonably efficiently.

The dimension of the image, m, is not especially important, as we could always simply
choose a random subset of the dimensions to project onto while roughly preserving the inner
products (provided this can all be computed efficiently). In general, it is not clear what the
optimal such embedding will be, or how extreme a “gap amplification” we can achieve. In
the following section, we show how to construct one family of natural embeddings which
allow us to give an algorithm for the (1 + ε) approximate closest pairs problem with runtime
n2−Ω(

√
ε).

Embedding via Monic Polynomials

For the remainder of the chapter, it will prove convenient to consider vectors with unit
Euclidean norm; hence the boolean vectors will be scaled by a factor of 1/

√
d. Given a monic

degree q polynomial P , with q real roots r1, . . . , rq ∈ (−1, 1) we wish to give a mapping
f : Rd → Rm such that 〈f(u), f(v)〉 ≈ P (〈u, v〉) .

Constructing such a mapping in general is not possible: a classical result of Schoenberg
from the 1940s [117] characterizes the set of functions g : R → R which have the property
that for any d, there exists f : Sd−1 → Rm such that 〈f(u), f(v)〉 = g (〈u, v〉) for all
u, v ∈ Sd−1, where Sd−1 denotes the d-dimensional spherical shell. In particular, he showed
that a necessary and sufficient condition for such functions g is that their Taylor expansion
about 0 has exclusively nonnegative coefficients (and converges uniformly).
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Given that realizing a general polynomial P via a single embedding is impossible, we now
briefly describe how to construct two mappings, f, g : Rd → Rm with the property that

〈f(u), g(v)〉 ≈ P (〈u, v〉) · 1

2q
.

Note that for the purposes of the closest pair problem, such a pair of embeddings are just as
good as a single embedding.

Lemma 9.4 shows that if we can construct such embeddings for the polynomials Q1 and
Q2, then by simply taking the component-wise products of pairs of rows (as in the “XOR”
embedding), we can obtain an embedding for the polynomial Q(x) = Q1(x)Q2(x). Thus
all that remains is showing that we can construct embeddings for the degree-1 polynomials
Q(x) = x−ri

2
for each root ri of the desired polynomial P .

The mappings for Q(x) = x+1
2

is obtained by scaling the vector by 1/
√

2, and then

adding d additional dimensions to each vector, populated with 1/
√

2d’s, thus sending an
inner product of c to an inner product (in 2d-dimensional space) of c

2
+ 1

2
. Generally, for

Q(x) = x−ri
2

, the mapping f will scale the entries by 1/
√

2, and then simply add d additional

dimensions populated by 1/
√

2. The mapping g will scale the entries by 1/
√

2, and then add
d additional dimensions where the first 1−ri

2
d dimensions are populated with 1/

√
2d, and the

remaining 1+ri
2
d dimensions are populated with −1/

√
2d. Given these mappings, an inner

product of c will yield an inner product of c
2

+ 1−ri
4
− 1+ri

4
= c−ri

2
, as desired. Given this

tool, the question is now which polynomials should we use? The following fact suggests an
embedding which, at least among a certain class of embeddings, will be optimal.1

Fact 9.8. (e.g. Thm. 2.37 of [112]) For any x 6∈ [−1, 1],

Tq(x) = max
{
|p(x)| : p ∈ Pq and supy∈[−1,1]|p(y)| ≤ 1

}
,

where Tq is the degree q Chebyshev polynomial (of the first kind), and P denotes the set of
all degree q polynomials with real coefficients.

Perhaps the most surprising aspect of this fact is that a single polynomial, Tq captures
this extremal behavior for all x.

To illustrate the general approach, for the example above in which all the “bad” inner
products of the boolean setting are in the range [−d/2, d/2], which becomes [−1/2, 1/2] after
scaling, we will construct an embedding corresponding to the monic polynomial P (x) =
Tq(2x)/22q−1, where Tq(x) is the qth Chebyshev polynomial (of the first kind). Note that
since Tq(x) has q roots, all in the interval [−1, 1], the polynomial P (x) will also have q real
roots in the interval [−1/2, 1/2]. The corresponding mappings f, g, constructed as described

1We note that better constants would be obtained by replacing Chebyshev polynomials of the first kind,
with Chebyshev polynomials of the second kind, as we want to minimize the `1 norm of the inner products
of the images of the “bad” vectors, rather than the `∞ norm, though the difference is a small constant, and
the analysis is easier in the case of Chebyshev polynomials of the first kind.
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above, will have the property that 〈f(u), g(v)〉 = P (〈u, v〉) /2q. In particular, we will have
the following two properties, the second of which will be the source of the

√
ε term in the

n2−Ω(
√
ε) runtime of our approximate closest pair algorithm:

• For u, v with 〈u, v〉 ∈ [−1/2, 1/2], 〈f(u), f(v)〉 ≤ 1
23q−1 .

• For u, v with 〈u, v〉 ≥ 1
2

+ ε
2
, 〈f(u), f(v)〉 ≥ eq

√
ε

23q−1 .

Our general algorithm for the approximate closest pair problem, which uses this Cheby-
shev embedding, together with the Vector Aggregation algorithm and the fast rectangular
matrix multiplication of Coppersmith [42], yields the theorem given below. Roughly, we
will choosing q = O(log n), and hence the above multiplicative gap of eq

√
ε = nO

√
ε, hence

we will be able to aggregate sets of nO(
√
ε) vectors. We will ensure that the image of the

original vectors have dimension m < n0.29, hence the most computationally expensive step
of our algorithm will be the computation of the product of an n1−O(

√
ε) ×m matrix and an

m × n1−O
√
ε matrix, using fast rectangular matrix multiplication, which will have runtime

O(n1−O(
√
ε)).

The algorithm and proof of correctness are described in the following two sections. In
Section 9.4 we show how to obtain a pair with an additive guarantee on the inner product.
In Section 9.5 we show how to translate this algorithm for obtaining a pair with an additive
guarantee on the inner product into an algorithm with a multiplicative guarantee on the
distance.

Theorem 9.2. Given n vectors in Rd, an approximation parameter ε > 0, and a probability
of failure δ > 0, our algorithm returns a pair of vectors u, v such that with probability at least
1− δ, the Euclidean distance ||u− v|| ≤ (1 + ε)d∗, where d∗ is the Euclidean distance between
the closest pair of vectors. Additionally, the algorithm runs in time(

n2−Ω(
√
ε) + nd

)
poly(log

1

δ
, log n).

9.4 Finding Vectors with Maximal Inner Product

We start by describing an algorithm that takes as input a set of vectors of unit length, and
recovers a pair whose inner product is additively within ε from that of the pair with largest
inner product. In the following section, we describe how to use such an algorithm to yield
an algorithm with the desired 1 + ε multiplicative distance guarantee.

The first step of our algorithm will reduce the dimensionality of the input vectors to
d′ = O(log n/ε2), and will make all entries have value ± 1√

d
. Ensuring that all entries have

comparable magnitudes is critical, as we will require Chernoff–type concentration bounds
in the results of expanding the vectors; even if the entries of the vectors were chosen to be
independent Gaussians (as would be yielded by applying a standard Johnson–Lindenstrauss
transformation) after taking the qth degree XOR (tensor) of the vectors, we would not have
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the desired concentration. Additionally, there is the added convenience that the transformed
vectors will all have identical norm.

Algorithm 9.9. Make Uniform
Input: An m × n matrix X with entries xi,j ∈ R whose columns have unit Euclidean

norm, and δ ∈ (0, 1).
Output: An m′ × n matrix Y with entries yi,j ∈ {± 1√

m′
}, where m′ = 100 logn

δ2 .

• For each i = 1, . . . ,m′, select a random unit vector v ∈ Rm, and let w = vtX. For
all j = 1, . . . , n, set yi,j = sign(wj) · 1√

m′
.

The following basic lemma characterizes the performance of the above algorithm:

Lemma 9.10. Letting Y denote the output of running Algorithm 9.9 on input X, δ, where
X is a matrix whose columns have unit norm, with probability 1−o(1), for all pairs i, j ∈ [n],∣∣∣∣〈Yi, Yj〉 − (1− 2

cos−1(〈Xi, Xj〉)
π

)∣∣∣∣ ≤ δ,

where Xi, Yi denote the ith columns of X and Y , respectively. And thus if 〈Yi, Yj〉 ≥
maxk 6=`〈Yk, Y`〉 − δ, then with probability 1− o(1), 〈Xi, Xj〉 ≥ maxk 6=`〈Xk, X`〉 − 2πδ.

Proof. Letting α denote the angle between Xi and Xj, hence 〈Xi, Xj〉 = cos(α), for any
k ∈ [m′],

Pr[yk,iyk,j = − 1

m′
] = Pr [r ∈ [0, α]] =

α

π
,

where r ← Unif [0, π], is selected uniformly at random from the interval [0, π]. Hence

E[〈Yi, Yj〉] = 1− 2
α

π
.

Since all entries yi,j ∈ ± 1√
m′
, and the different dimensions are chosen independently, a union

bound over n2 Chernoff bounds yields that with probability 1 − o(1), all pairwise inner
products will be within ±δ of their expectations.

The second claim follows from noting that the above guarantees that if 〈Yi, Yj〉 ≥
maxk 6=`〈Yk, Y`〉 − δ, then with the claimed probability the expected inner product of Yi
and Yj is at most 2δ smaller than that of the maximal expected inner product, and hence
the angle between the corresponding columns of X is at most 2πδ smaller than that of the
optimal pair, and hence the inner products of the corresponding columns of X are at most
2πδ smaller than the optimal inner product, since the magnitude of the derivative of the
cosine function is at most 1.
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Algorithm 9.11. Expand and Aggregate (General)
Input: An m × n matrix X with entries xi,j ∈ R whose columns have unit Euclidean

norm, and ε ∈ (0, 1).
Output: Two indices c1, c2 ∈ [n], s.t. with probability > 0.4, 〈Xc1 , Xc2〉 ≥
maxi,j∈n〈Xi, Xj〉 − ε, where Xc denotes the cth column of matrix X.

• Let X ′ denote the m′ × n matrix with m′ = O( logn
ε2 resulting from applying

Algorithm 9.9 to matrix X with input parameter δ = ε/4π.

• Choose n random pairs of distinct columns of X ′, for each pair compute

their inner product, let vmax be the maximum such inner product, and let

b := 2 + log2
2

1+vmax
, and t = 0.27 log2 n

2b .

• Randomly partition the columns of X ′ into two sets of size n/2, forming m′ × n
2

matrices X1 and X2.

• We now iteratively populate the m′′ × n
2 expanded matrices Y1, Y2, where m′′ = n0.28:

• For i = 1 to m′′:

– Construct the list S = (s1, . . . , st), with sj ∈ [m′]∪{−,+} by, independently for

each j ∈ [t], setting sj as follows:

with prob.
1

2
: sj ← Unif([m′])

with prob.
1

2
· 1− rj

2
: sj = ‘+’

with prob.
1

2
· 1 + rj

2
: sj = ‘-’

where rj is defined to be (1 + qj)
vmax+1

2 − 1, where qj is the jth root of the

tth Chebyshev polynomial of the first kind, and thus rj ∈ (−1, vmax).

– We populate the ith row of Y1 as follows: for each column, k ∈ [n/2], the

element at position i, k of Y1 is set to be
∏
j∈[t]X1(sj , k), where X1(+, k) and

X1(−, k) are interpreted as the value 1√
m′

.

– We populate the ith row of Y2 as follows: for each column, k ∈ [n/2], the

element at position i, k of Y2 is set to be
∏
j∈[t]X2(sj , k), where X2(+, k)

is interpreted as the value 1√
m′

, and X2(−, k) is interpreted as the value
−1√
m′

.

• Rescale each entry by
√
m′

t
/
√
m′′. Let Z1, Z2 be the results of applying

Aggregate-Vectors to the respective matrices Y1, Y2, with the compression

parameter α := 0.01
√
ε.

• Compute the product W := Z†1Z2, (using fast rectangular matrix multiplication)

and for each of the n1.1 largest entries of W, compute the pairwise inner

products of all the original columns of X that contributed to that entry

(via the aggregation partition into n1−α sets). If the maximum inner product

discovered in this phase is more than vmaxm, output the corresponding indices,

otherwise output the indices corresponding to the pair of columns whose inner

product was vmax.
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The runtime of the above algorithm is dominated by the computation W = Z†1Z2, where
Zi are n0.28 × n1−Θ(

√
ε) matrices. For any constant ε, this computation can be done in time

O(n2−Θ(
√
ε)), using Coppersmith’s fast rectangular matrix multiplication, whose performance

is summarized below:

Fact 9.12 (Coppersmith [42]). For any positive δ > 0, provided α < .29, the product of an
n× nα with an nα × n matrix can be computed in time O(n2+δ).

The following facts concerning Chebyshev polynomials will be helpful in proving the
correctness of the above algorithm:

Fact 9.13. Letting Tq(x) := (x−
√
x2−1)q+(x+

√
x2−1)q

2
denote the qth Chebyshev polynomial (of

the first kind), the following hold:

• Tq(x) has leading coefficient 2q−1.

• Tq(x) has q distinct real roots, all lying within the interval [−1, 1].

• For x ∈ [−1, 1], |Tq(x)| ≤ 1.

• For δ ∈ (0, 1/2], Tq(1 + δ) ≥ 1
2
eq
√
δ.

Proof. The first 3 properties are standard facts about Chebyshev polynomials (see, e.g. [119]).
To verify the fourth fact, note that for δ in the prescribed range,

√
(1 + δ)2 − 1 ≥

√
2δ, and

we have the following:

Tq(1 + δ) ≥ 1

2
(1 + δ +

√
2δ)q ≥ 1

2
(1 +

√
2δ)q

≥ 1

2
eq
√
δ

Proposition 9.14. Algorithm 9.11, when given as input n unit vectors v1, . . . , vn ∈ Rd

and constants ε, δ > 0 will output a pair of indices, i, j, such that with probability at least
1 − δ, 〈vi, vj〉 ≥ maxk,`〈vk, v`〉 − ε. Additionally the runtime of the algorithm is bounded by
O(n2−Ω

√
ε log 1

δ
+ nd log n).

Proof of Proposition 9.14. We first prove the correctness of the algorithm, and then verify
the runtime. If vmax is within ε from the inner product of the pair with largest inner product,
then, trivially, the algorithm succeeds. If vmax is not within ε from the maximal pairwise
inner product, then we claim that with probability at least .4, the algorithm will find the
pair of columns of X ′ with maximal inner product (henceforth referred to as the maximal
pair. By repeating the algorithm log 1

δ
times, the probability of success can be increased to

1 − δ. By Lemma 9.10, such a pair of columns of X ′ will correspond to a pair of columns
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in the original matrix X with inner product within ε/2 from the maximal inner product, as
desired.

For the remainder of the proof, assume that vmax is at least ε smaller than the maximal
inner product. Additionally, as there can not be more than 1/ε2 vectors that are all more than
ε anti-correlated, we may assume with probability 1 − o(1) that vmax > −.5. Additionally,
assume that one of the members of the maximal pair is assigned to matrix X1, and the other
is assigned to matrix X2, which will occur with probability 1/2. Note that with probability
at least 1 − o(1), there are at most n1.1 pairwise inner products that are larger than vmax,
otherwise we would have seen at least one such example in our initial sample of n out of
the n2 pairwise inner products. Hence, during the Vector-Aggregation stage of the
algorithm, letting R1 ⊂ [n] denote the sets of vectors to which the first member of the
maximal pair is assigned, and R2 is the set of vectors to which the second member of the
maximal pair is assigned, with probability at least 1− o(1) the only pairwise inner product
between vectors in R1 and R2 which does not lie within the range (−1, vmax) is that of the
maximal pair.

All that remains is to verify that with probability 1 − o(1), the value of matrix W
corresponding to the inner product between the aggregated sets R1 and R2 is greater than the
largest value of the matrix W that corresponds to an inner product between the aggregated
sets R′1, R

′
2 for which no pairwise inner product between vectors in R′1 and R′2 lie in the range

[−1, vmax].
Each entry of W, corresponding to the inner product between aggregated sets R′1, R

′
2, is

simply the sum of all pairwise inner products of the transformed vectors that are assigned to
those sets. By Lemma 9.4, and Fact 9.13, the expected value of the inner product between
a pair of transformed vectors whose original inner product lies within [−m, vmaxm] will be
at most 2

2bq
, where q is the degree of the Chebyshev polynomial that is being used. Thus

q = t, as defined in the algorithm description, and hence the expected inner product will be
at most 2

2bt
= 2

n0.27/2 . Since m′′ = n0.28, by a union bound over standard tail bounds, with

probability 1− o(1), all such inner products will be at most 2
n0.27/2 +

√
1
m′′

polylog n < 3
n0.27/2 .

Since sets of n0.01
√
ε are being aggregated, the total magnitude of the sum of all these n0.02

√
ε

such inner products contributing to each entry of W will be at most 3n0.02
√
ε

n0.27/2 . We now consider
the contribution of the inner product corresponding to the maximal pair. By Fact 9.13, and
a Chernoff bound, the expected value of this inner product will be at least

2et
√
ε

2bt
≥ n.03

√
ε

n0.27/2
,

in which case it will dominate the contribution of magnitude at most |3n0.02
√
ε

n0.27/2 | from the other
inner products that contribute to that entry of W, and thus will, with probability 1− o(1),
be in the top n1.1 entries of W , in which case the algorithm will find the maximal pair in the
brute-force search phase of the algorithm.
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Remark 9.15. The above algorithm scales the roots of the Chebyshev polynomial so as
to occupy the range [−1, vmax]. Alternatively, in the second step of the algorithm when we
sampled n pairwise inner products, we could have also recorded the minimal pairwise inner
product, vminm, and then scaled things so that the roots of the Chebyshev polynomial occupied
the range [vmin, vmax]. At the expense of a slightly more tedious analysis, the

√
ε in the runtime

would be replaced by
√

ε
(vmax−vmin) log 1

vmax−vmin
, solidifying the intuition that the runtime of

the algorithm improves as the bulk of the pairwise inner products become concentrated about
some value.

9.5 The Approximate Closest Pair

We now return to the issue of a multiplicative (1 + ε) guarantee on the distance, versus an
additive ε guarantee on the inner product. We first prove the claim in the Boolean setting,
and then consider the Euclidean setting. In both settings, we may assume that we know the
distance between the closest pair, up to a factor of 2, by, for example, running the locality
sensitive hashing algorithm of [71], which returns a (1 + ε′) factor approximate closest pair,
for ε′ = 1.

Algorithm 9.16. (1 + ε) Closest Pair: Boolean Setting
Input: An m× n matrix X with entries xi,j ∈ {−1,+1}, ε, δ ∈ (0, 1).
Output: Two indices c1, c2 ∈ [n].

• Use locality sensitive hashing to obtain α ∈ (0, 1], s.t. with probability

1 − o(1), the Hamming distance between the closest pair of columns of X is in

the interval [αm, 2αm].

• If α ≥ 1/8, then run Algorithm 9.11 on matrix X with target accuracy ε/4.

• Otherwise, we create the m′ × n matrix X ′, with m′ = 100 logn
ε2 as follows:

– Set q := 1
2α , and for each i ∈ [m′], pick s ⊂ [m] to be a randomly selected

subset of [m] of size q, and for each j ∈ [n], set X ′i,j =
∏
k∈sXs,j .

• Run Algorithm 9.11 on matrix X ′ with target accuracy 0.03ε.

• To boost the probability of success to 1 − δ, repeat the above log 1
δ times, and

output the closest pair that was found in the log 1
δ runs.

The following proposition asserts the correctness of the above algorithm.

Proposition 9.17. For any constant ε > 0, Algorithm 9.16, when given as input a set of
n vectors in {−1, 1}d, will output a pair with Hamming distance at most a factor of (1 + ε)
larger than that of the minimal pair, with probability of success at least 1− δ. Additionally,
the runtime is O(n2−Ω(

√
ε) log 1

δ
+ dn log n).
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Proof. In the case that α > 1/8, the correctness follows immediately from the fact that for

vectors u, v ∈ {−1, 1}m, the Hamming distance DH(u, v) = m−〈u,v〉
2

, and hence if the closest
pair has distance at least αm = m

8
, an ε/4 additive approximation of the pair with maximal

inner product will yield a multiplicative approximation of the closest pair.
In the case that α < 1/8, consider the matrix X ′, and assume that the first two columns

are the closest pair of matrix X, and have distance βm for some β ∈ [α, 2α]. By Lemma 9.4,
for each index i ∈ m′,

E[X ′i,1X
′
i,2] =

(
〈X1, X2〉

m

)q
= (1− 2β)q = (1− 2β)

1
2α ∈ [0.05, 0.35].

Additionally, for any pair of columns Xj, Xk for which DH(Xi, Xj) ≥ (1 + ε)βm, we have
that

E[X ′i,jX
′
i,k] ≤ (1− 2(1 + ε)β)

1
2α ≤ (1− ε)(1− 2β)

1
2α .

Since we chose m′ = 100 logn
ε2

, by a union bound over Chernoff bounds, with probability
1−o(1), all pairs of columns of X ′ will have their expected inner products to within ±0.01εm,
and hence if a pair of columns of X ′ has the maximal inner product to with an additive
0.03εm′ they will also have the minimal distance to within a multiplicative factor of (1 + ε).

To conclude, note that the formation of matrix X ′ takes time O(qn log n), and q ≤ d, as
otherwise, the minimum distance would be 0, and the closest pair could simply be found in
near-linear time.

(1 + ε) Multiplicative Closest Pair: Euclidean Setting

We now show how to achieve the analog of Proposition 9.17 in the Euclidean setting. In
the Euclidean setting, the “law of cosines” gives ||v−w||2 = ||v||2 + ||w||2− 2〈v, w〉, relating
the distance to the inner products. This will allow us to very easily translate between
multiplicative bounds on the distance and additive bounds on the inner product provided
that the vectors have roughly unit length, and provided that the closest distance is not too
small. Showing that we may reduce the problem to the case where all vectors lie on the
unit sphere is relatively straightforward, and we accomplish it in two steps (Lemma 9.18 and
Algorithm 9.19).

The second obstacle—the issue of lower bounding the minimum distance—is more te-
dious. In contrast to the Hamming distance setting above, we cannot assume any lower
bound on the minimum possible distance. In particular, in the previous section, we “XORed”
sets of size q = 1

α
, where α lower bounded the minimal distance. If we attempted to do the

same XORing trick here, in the case that q > n, we would end up with n2 runtime sim-
ply computing the new matrix that will be input to the additive approximation algorithm.
Thus we first show how to solve the problem for α > 1

n0.9 . If α ≤ 1
n0.9 , then the closest pair

is extremely close, and, intuitively, we should be able to find it with a divide-and-conquer
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approach, since either there are only a few pairs of points that are very close in which case
we can easily pick them off, or there is a large set of points that are all extremely close in
which case we will be able to subtract off their mean, and rescale that cluster of points;
such a transformation has the property that it effectively increases the minimal distance by
a factor of 1/z, where z is the diameter of the cluster of points.

We begin by showing how to reduce the problem to the case in which all input vectors
have lengths that lie in the interval [1, 2].

Lemma 9.18. For any constant c > 1, given an algorithm with runtime O(nc) for computing
the (1 + ε) approximate closest pair for sets of n vectors v1, . . . , vn having the property that
for all i, ||vi|| ∈ [1, 2], one can obtain an algorithm for the general setting with runtime
O(nc log n).

Proof. Assume without loss of generality that the n vectors v1, . . . , vn have lengths r1 ≤ . . . ≤
rn. We now iteratively define several sets of vectors, S1, S2, . . . : let S1 := {i : ri < r2 + 2r1}.
Given the set Si ⊂ [n], we define Si+1 as follows: let j = min(Si), and let k := min{` :
r` > rj + rj+1}, and define Si+1 := {` : r` ∈ [rk, rk + 2rk+1]}. By the triangle inequality,
the pair of vectors of minimal distance lie within one set, Si; additionally, each vector vj is
contained in at most two sets, Si, Si+1, for some i. Thus given any algorithm for solving the
approximate closest pair problem on a given set of vectors w1, . . . , wm, with ||wi|| ≤ ||wi+1||,
such that ||wm|| ≤ ||w1||+ 2||w2||, one can obtain an algorithm for the (1 + ε) approximate
pair on an arbitrary set of vectors with comparable runtime by computing the above sets Si,
and running the algorithm on each set, and then comparing the outputs of the various runs
(using the fact that we can boost the probability of failure of a given run to 1− 1/n2 at the
expense of a multiplicative factor of O(log n) in the runtime).

Finally, for any set Si, for all j, k ∈ Si, ||rj ||||rk||
≤ 2, except when j = min(Si). Given an

algorithm for solving the approximate closest pair problem on a set of vectors w1, . . . , wm,
with ||wi||/||wj|| < 2 for all i, j, we can obtain an algorithm with comparable runtime for the
setting in which ||wi||/||wj|| < 2 with the exception of a single value of i by simply explicitly
computing the distances ||wi = wj|| for all values of j, and then using the algorithm on the
set of vectors with wi removed.

We now describing a procedure for splitting the problem into a series of problem that
each only involve vectors of unit norm.
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Algorithm 9.19. Standardize
Input: An m × n matrix X with entries xi,j ∈ R, with all columns having norm in the

interval [1, 2], constant ε ∈ (0, 1).
Output: A series of matrices Y1, . . . , Yt, with each column of Yi having unit norm. Yi
is has dimensions m′ × ni for m′ = 100 logn

ε2 , and
∑
i ni ≤ 2n.

• Use locality sensitive hashing to obtain α ∈ (0, 1], s.t. with probability

1 − o(1), the Euclidean distance between the closest pair of columns of X is

in the interval [α, 2α].

• Sort the columns of X in terms of increasing norm. Form sets of columns of X
s.t. the following properties hold:

– For each set, all columns contained in that set have norm that falls

within some interval of length 4α.

– For each column, i, there is some set containing i and all columns whose

norm differ from that of i by at most 2α.

– Each column occurs in at most 2 sets.

(Note that such a collection of sets can be computed in linear time, and that

the closest pair of vectors is contained in one of the sets.)

• We iterate over the sets: For the ith set set, containing ni columns, let Xi

represent the m× ni matrix of columns of one of the sets.

• Choose a random random Gaussian vector of covariance 100
ε2 , and add it to all

vectors in Xi, then perform a Johnson--Lindenstrauss transformation of them into

dimension 100 logn
ε2 , and normalize them so as to have unit norm, to yield matrix

Yi.

The following lemma characterizes the performance of the above algorithm:

Lemma 9.20. Given an algorithm for finding the 1 + ε/2 approximate closest pair for unit
vectors, with runtime O(nc), for some c > 1, there exists an algorithm for finding the 1 + ε
approximate closest pair for arbitrary vectors with runtime O(nc).

Proof. Given an algorithm for finding the 1 + ε approximate closest pair for unit vectors, we
take our set of arbitrary vectors, run Algorithm 9.19 to yield k sets of unit vectors, and then
iterate over all sets: for the ith set, containing ni vectors, if ni < n0.9, then we simply do a
brute-force-search for the closest pair among that set. If ni ≥ n0.9, we run the hypothetical
algorithm for closest pair on these ni unit vectors. We will then output the closest pair from
among the k sets. Since the total number of columns of the sets is at most 2n, the runtime
guarantee follows.

We now guarantee that the (1 + ε) approximate closest pair of a set Xi corresponds to a
(1 + ε) approximate closest pair of the corresponding set of vectors of X. We now explain
the motivation for adding a random Gaussian vector to all vectors, performing a Johnson–
Lindenstrauss transformation, then normalizing the vectors so as to have unit norm. We
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would like to simply normalize the vectors; the difficulty, however, is that there might be
several pairs of vectors that are nearly collinear; the difference in lengths can be as much as
4α, and we are trying to obtain an additive αε approximation of the closest pair, and thus we
cannot afford to simply renormalize the vectors and risk losing an additive α factor. Instead,
we add a random Gaussian of large covariance, O(1/ε2), which has the effect of preserving
distances, while ensuring that with high probability, for every pair of vectors, their difference
is nearly orthogonal to the vectors. Thus when we normalize the vectors, the small distances
are not distorted by much. Specifically, with probability 1 − o(1), the normalizing distorts
the distances between vectors by at most a multiplicative factor of (1 + ε/2).

After reducing the problem to the setting where all vectors have unit norm, we now
describe two algorithms that will apply to two different regimes of the distance of the closest
pair. The first algorithm applies when the minimum distance is at at most 1/n0.9. The second
algorithm applies when the minimum distance can be arbitrarily small.

The first algorithm applies the same XORing approach of Algorithms 9.16. The slight
subtlety is that we need to ensure that the inner products between the columns of the
matrix that results from the XORing will be concentrated about their expectations, hence
we essentially switch to the Boolean setting before XORing. As throughout, we favor clarity
of exposition over optimizing the constants.

Algorithm 9.21. (1 + ε) Closest Pair: Euclidean Setting (large α)
Input: An m× n matrix X with entries xi,j ∈ R, where all columns have unit norm.

Output: Two indices c1, c2 ∈ [n].

• Use locality sensitive hashing to obtain α ∈ (0, 1], s.t. with probability

1 − o(1), the Euclidean distance between the closest pair of columns of X is

in the interval [α, 2α].

• If α < 1/n0.9, run Algorithm 9.23. If α > 0.1, apply Algorithm 9.11.

• Otherwise, perform a Johnson--Lindenstrauss transformation to X to yield a d×n
matrix Y , with d = 1000 logn

ε2 .

• Define the d × n matrix Z as follows: for each i ∈ [d], select a set of q = b π2αc
uniformly random unit vectors v1, . . . , vq and for all j ∈ [n], set

zi,j = sign

(
q∏

k=1

Y tj vk

)
.

• Apply Algorithm 9.11 with error parameter ε/1000 to the matrix Z after scaling

all entries by 1/
√
d so as to make them have unit norm.

The following proposition characterizes the performance of the above algorithm.

Proposition 9.22. For any constant ε > 0, Algorithm 9.21, when given input n unit vectors
in Rm whose closest pair have distance at least ε, will output a pair with Euclidean distance
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at most a factor of (1 + ε) larger than that of the minimal pair, with probability of success
1− o(1). Additionally, the runtime is O(n2−Ω(

√
ε) +mn log n).

Proof. With probability 1−o(1), the initial Johnson–Lindenstrauss step preserves all distance
to within multiplicative factors of 1+ε/100 (see, e.g. [44] for an elementary proof). Assuming
this holds, consider the formation of matrix Z, which takes time at most O(qn log2 n) <
O(n2−Ω(

√
ε)). Consider two columns Yi, Yj that form an angle of β (and hence have distance√

(1− cos β)2 + sin2 β). For each random vector v, we have that E[sign(Y t
i v ·Y t

j v)] = 1−2β
π
,

and since expectations of independent random variables multiply, we have that for each k,

E[zk,izk,j] =

(
1− 2β

π

)q
.

Consider the pair of columns of X with minimal distance δ∗ ∈ [α, 2α], and hence form an
angle β∗ ∈ [α/2, 2α], in which case the expected Hamming distance between the correspond-

ing columns of Z is at most d
(
1− α

π

)π/2α ≤ 0.65d, and is at least d
(
1− 4α

π

)π/2α ≥ 0.1d.
By the same reasoning, the image of any pair of columns of X whose distance was a mul-
tiplicative factor of at least (1 + ε) larger than δ∗ will have expected distance at least a
multiplicative factor of (1 + ε) larger than that of the image of the pair with distance δ∗.
By a union bound over Chernoff bounds, with probability 1− o(1) the distance between any
two columns of Z differs from its expectation by at most dε/100. Hence with probability
1 − o(1), very crudely, any pair of columns of Z whose inner product is within an additive
dε/1000 from that of the maximal inner product, will correspond to a pair of columns of the
original matrix X whose distance is within a multiplicative factor of 1 + ε from the minimal
distance δ∗, and hence the result of applying Algorithm 9.11 to the scaled matrix Z will be
satisfactory.

Finally, we address the setting in which the closest pair might be extremely close, having
distance < 1

n0.9 . Here, the difficulty is that we cannot XOR sufficiently large sets without
spending super-quadratic time on the XORing step. The idea here is that if the minimum
distance is so small, then we can recursively divide the set of points into small clusters, that
are all far apart. If all clusters are small, then we can trivially find the closest pair by brute
force search with each cluster. If we have a large cluster (with tiny diameter), then we can
can simply subtract off the mean of the cluster; after re-normalizing via the Standardization
algorithm, Algorithm 9.19, and the procedure of Lemma 9.18, the resulting points will have
unit norm, and the smallest distance will have increased to at least 1/n0.8, and we can apply
the above algorithm.
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Algorithm 9.23. (1 + ε) Closest Pair: Euclidean Setting (small α)
Input: An m × n matrix X with m = 100 logn

ε2 , and entries xi,j ∈ R, with all columns

having unit norm. Constant ε ∈ (0, 1).
Output: Two indices c1, c2 ∈ [n].

• Let vi denote the ith column of X. Use locality sensitive hashing to obtain

α ∈ (0, 1], s.t. with probability 1 − o(1), the Euclidean distance between the

closest pair of columns of X is in the interval [α, 2α].

• If α > 1/n0.9, run Algorithm 9.21.

• We now recursively split up the vectors:
– Project all vectors onto an m dimensional Gaussian of unit covariance,

sort the resulting projections, x1 ≤ . . . ≤ xn, wlog xi is the proj. of vi.

– We now traverse the list: we ‘‘pause’’ at some xi, if there are fewer than

n0.6 points with projected value in the interval [xi − 2α, xi]. If we have

‘‘paused’’ at xi we do one of two prodecures:

– if |{j : xj < xi}| ≤ n0.9:
∗ Brute force search for the closest pair of points from the set

{vj : xj < xi}. Store the closest pair and their distance, and remove

all points vj (and their projections xj) for which xj ≤ xi − 2α from all

further computations. Continue traversing the list (with those points

removed).

– if |{j : xj < xi}| > n0.9:

∗ Save set Si := {vj : xj ≤ xi}, and continue traversing the list with all

points vj s.t. xj ≤ xi − 2α removed.

– Having finished traversing the list, if we have not stored any sets Si,
then we can simply compare the stored closest pair distances, and output

the minimum. Otherwise, let S1, . . . , Sk denote the sets that are stored.

For each set S = Si :

∗ Points in S had projections xi in sets of contiguous intervals of

width 2α; each interval had ≥ n.6 points, hence all xi are within 2αn.4.

∗ Choose
√
n random pairs of vectors from S, and compute their distances.

Let µ be the median of these
√
n distances. If µ > αn0.6, then the

fact that these vectors were grouped together is a ‘‘fluke’’, and

recurse the partitioning procedure on this set.

∗ Otherwise, randomly select v ∈ S, sample n0.1 distances between v
and randomly chosen v′ ∈ S; repeat until one has found a v that has

distance at most 2αn0.6 from at least 1/4 of the points in S.

∗ Let 0 = d1 ≤ . . . ≤ d|S| be the distances beween v and all points in S.
Find c ∈ [2αn0.6, 4αn0.6] s.t. |{i : di ∈ [c, c + 2α]}| < n0.1, and construct the

sets T := {vi : di < c + 2α}, and T ′ := {vi : di > c}. Since |T ′| < 3
4 |S|, we

recurse on set T ′.

∗ Subtract v from all vectors in T (and remove v) and run the

standardization procedure of Lemma 9.18 and Algorithm 9.19 on T.
(Since all points in T were distance at most 4αn0.6 from v, after

subtracting off v, and re-standardizing so as to be unit vectors

the distance of the closest pair will have increased by a factor of

Ω( 1
αn0.6 ), and hence will be at least Ω( 1

n0.6 ) >> 1
n0.8 .)

∗ Run Algorithm 9.21 on the standardized version of T.

• Aggregate the closest pairs returned by all branches of the algorithm, and

return the closest.
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Proposition 9.24. In each run of Algorithm 9.23, either the closest pair is output, or
the algorithm recurses, and with probability at least 0.2 the number of points in each set
considered decreases by a factor of at least 1.1.

Proof. Each time that the algorithm “pauses” at a projected value xi, if no set is saved
during that pause, then a brute-force-search is performed on at most n0.9 vectors, which
are then removed from all subsequent computation. If the closest pair involves one of those
points, then we will find it, since our Gaussian projection typically shrinks distances (by a
factor of 1/

√
m), and only inflates distances with probability 1− o(1/n).

If a set S is “saved”, then the vectors correspond to a set of vectors that ended up unusu-
ally close together in the projection. In particular, we expect O(αn

√
m) < n0.2 projections

in each interval of length 2α, yet each interval that contributed to S contained at least n0.6

projections.
If this is deemed a “fluke”: i.e. a random sample of

√
n pairwise distances have median

at least αn0.6, then with probability 1 − o(1/n), at least 1/3 of the |S|2 pairwise distances
are larger than Ω(αn0.6

√
m), in which case in the random Gaussian projection performed

in the next round of the algorithm, with probability at least 1/5, more than 1/6 of these
projected pairwise distances will be at least Ω(αn0.5), and each such pair of points must end
up in disjoint sets in the partitioning algorithm, as there will be one index “paused” on in an
interval between their projections (otherwise there would be > n1.1 total points). Hence with
probability at least 1/5, the set will end up being partitioned into smaller sets, as claimed.

If the set S is not deemed a fluke: i.e. a random sample of
√
n pairwise distances have

median at most αn0.6, then with probability 1− o(1/n), the attempt to find a vector v that
has distance at most 2αn0.6 from at least a quarter of the points in S will be successful,
and will take time O(|S|). Since all points in T were distance at most 4αn0.6 from v, after
subtracting off v, and re-standardizing so as to be unit vectors the distance of the closest pair
will have increased by a factor of Ω( 1

αn0.6 ), and hence will be at least least 1
n0.9 , and hence we

can apply Algorithm 9.21 to yield a (1+ε) multiplicative factor approximate closest pair.

9.6 Further Directions: Beyond Fast Matrix

Multiplication

Beyond the more obvious open questions posed by these improved algorithms, one very rel-
evant direction for future work is to give algorithms with subquadratic asymptotic runtimes
that improve over the brute-force search in practice for modest-sized datasets. For instance:

Does there exist an algorithm for finding a pair of 0.05-correlated Boolean vectors
from among n = 100, 000 uniformly random Boolean vectors that significantly
beats brute-force-search, in practice?

There are two natural approaches to this question. The first is to try to improve practical
fast matrix multiplication implementations. While the algorithms of this chapter (as well as
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the next chapter) rely on fast matrix multiplication, they do not require an especially accurate
multiplication. In particular, our algorithms would still succeed if they used a noisy matrix
multiplication, or even an algorithm that ”misplaced” a constant fraction of the cross-terms.
(For example, for n×n matrices A,B,C, in computing AB = C, the entry ci,j should be the
sum of n cross terms ai,k · bk,j; our algorithms would be fine if only, say, half of these cross
terms ended up contributing to ci,j.) Tolerating such “sloppiness” seems unlikely to allow
for faster asymptotic bounds on the runtime (at least within the Coppersmith–Winograd
framework), though it may significantly reduce the overhead on some of the more practically
expensive components of the Coppersmith-Winograd framework.

The second approach to yielding a practical algorithm would be to avoid fast matrix mul-
tiplication entirely. Our Expand and Aggregate algorithm seems natural (if many pairwise
inner products are extremely small, we should “bucket” them in such a way that we can pro-
cess them in bulk, yet still be able to detect which bucket contains the large inner product).
Nevertheless, if one replaces the fast matrix multiplication step with the naive quadratic-time
multiplication, one gets no improvement over the quadratic brute-force search. It seems that
no clever bucketing schemes (in the “aggregation” step, one need not simply add the vectors
over the reals. . . ), or fancy embeddings can remove the need for fast matrix multiplication.

One intuitive explanation for the difficulty of avoiding fast matrix multiplication is via
the connection between finding correlations, and learning parity with noise. The statistical
query (SQ) lower bound of Blum et al. [28], informally, implies that any algorithm that will
beat brute-force-search must be highly non-SQ; in particular, it must perform nontrivial
operations that intertwine at least log n rows of the matrix whose columns are the given
vectors. Fast matrix multiplication is clearly such an algorithm.

Given this intuitive need for a non-SQ algorithm, perhaps the most likely candidate for
an off-the-shelf algorithm that might replace fast matrix multiplication, is the Fast Fourier
Transform. In a recent paper, Pagh gives an extremely clean (and practically viable) algo-
rithm for computing [or approximating] the product of two matrices given the promise that
their product is sparse [or has small Frobenius norm after one removes a small number of
large entries] [99]. The algorithmic core of Pagh’s approach is the computation of a Fourier
transform. Perplexingly, despite the fact that Pagh’s results specifically apply to the type
of matrix products that we require for our algorithms that find correlations and parities, it
does not seem possible to improve on the trivial brute-force search runtimes by using Pagh’s
matrix multiplication algorithm.
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Chapter 10

Learning Parities and Juntas

An example (x, y) from an (n, k, η)-instance of parity with noise, consists of x ∈ {−1,+1}n,
chosen uniformly at random, together with a label y ∈ {−1,+1} defined by y = z ·

∏
i∈S xi,

where z ∈ {−1,+1} is chosen independently of x to be −1 with probability η ∈ [0, 1/2),
for some fixed set S ⊂ [n] with |S| = k. The problem of learning parity with noise is the
problem of recovering the set S from a set of examples. One reason for considering this
specific noisy recovery problem is that it seems to be the most difficult, in the following
sense: Given any set S ′ 6⊃ S, the distribution of the values indexed by elements of S ′ and
the label will be uniformly random elements of {−1, 1}|S′|+1. Additionally, given any set
S ′ 6= S, the corresponding Fourier coefficient—the expected correlation between the label
and

∏
i∈S′ xi, will be zero. Thus this problem of recovering S is the epitome of a needle-

in-a-haystack problem: if one finds the needle, it is obvious that one has found the needle,
but it is not clear whether one can glean any sense of whether a guess is “close” to the
right answer. While this problem of finding a needle in a seemingly structureless haystack
should be reminiscent of many of the classical “hard” problems of computer science, it seems
difficult to show that this problem is NP-hard, at least in part because the randomness of
the examples render every instance equally difficult.

In the case that the noise rate η = 0, by translating the entries of the examples from
being in {−1, 1} to being elements of F2, this problem of recovering the set S is simply the
task of solving a linear system of equations over F2, since the dot product (over F2) of each
example with the indicator of S will yield the label. Such a linear system can trivially be
solved in time O(n3) via Gaussian elimination, irrespective of k = |S|.

In contrast to the setting of solving systems of noisy linear equations over the real num-
bers, there is no easy least squares regression algorithm over finite fields. For even a small
positive noise rate, η > 0, the complexity of this problem seems to change drastically; al-
gorithms such as Gaussian elimination will no longer work, as they proceed by adding and
subtracting examples from other examples, and the noise in the labels of the corrupted ex-
amples will thereby be spread throughout the set of examples until there is essentially no
signal left in the final output of the algorithm.

It is worth stressing that the difficulty of this problem is strictly computational. From an
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information theoretic standpoint, the addition of a small amount of noise does not change the
problem significantly—given O(n) examples, Chernoff bounds yield that with overwhelming
probability, the true parity set S will be the only set for which the product of the corre-
sponding indices correlates significantly with the labels.

10.1 The History of Parity with Noise

Interest in the problem of learning parity with noise was sparked by the results of Blum
et al. [27], who first showed that there exists a class of functions that can be learned in
polynomial-time with a constant amount of random classification noise, but which, provably,
cannot be learned in the statistical query (SQ) learning model. The SQ learning framework,
introduced by Kearns in 1993 [79], sought to abstract and formalize the restricted manner in
which many types of learning algorithms interact with data. Specifically, given a distribution
over labelled examples, an SQ algorithm interacts with the data via the following protocol:
it describes a function, f1 from an example/label pair to {0, 1}, and then receives the average
value of that function over the examples, with the addition of a small amount of (potentially
adversarial) noise. The algorithm then produces a second query, f2, and receives a perturbed
expectation of that function, and so on. This framework captures many learning algorithms:
stochastic gradient descent, the perceptron algorithm, etc. The salient feature of all SQ
algorithms, is that because they only interact with the data via receiving noisy expectations,
they are robust to modest amounts of random classification noise. Intuitively, the main
limitation of SQ algorithms is that they can not interact directly with the data, precluding
algorithms such as Gaussian elimination which seem to require access to the actual data
points.

Blum et al. [27] showed that parity functions on O(log n log log n) bit strings with con-
stant noise rate can be learned in polynomial time, whereas the earlier results of Blum et
al. [28] imply that any SQ algorithm provably requires a super-polynomial number of queries
(provided the noise rate of each query is at least inverse polynomial). Phrased differently,
they presented an algorithm for learning parity with noise over n bit strings, with runtime

2O( n
logn), whereas any SQ algorithm provably required runtime 2Ω(n).

Their algorithm proceeds by obtaining a huge number of examples, 2O( n
logn), and then

performs a sort of “block” Gaussian elimination in which the vast number of examples
is leveraged to ensure that sets of no more than O(

√
n) examples are added together, as

opposed to O(n) that would occur in typical Gaussian elimination. This reduction in the
number of examples that are added together implies that the level of noise in the output
(which increases geometrically with every additional addition of an example), is significantly
reduced, allowing for a slightly sub-exponential algorithm.

This algorithm prompted several other works, including work by Lyubashevsky [83], who
showed that a similar approach could be applied to a much smaller set of examples (n1+ε) and

still obtain a sub-exponential, though slightly larger, runtime of 2O( n
log logn). The algorithm
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of Blum et al. was also shown to have applications to various lattice problems, including the
shortest lattice vector [4].

The assumption that the noise in each example’s label is determined independently seems
crucial for the hardness of learning parity with noise. In the case in which noise is added in
a structured manner—for example, if examples arrive in sets of three, with the promise that
exactly one out of each set of three examples has an incorrect label, the recovery problem
can be solved in polynomial time, as was shown by Arora and Ge [11].

More recently, with the surge of attention on lattice problems prompted by the develop-
ment of lattice-based cryptosystems, there has been much attention on the related problem
of learning with errors (LWE). The LWE problem, introduced by Regev in 2005 [109], cor-
responds to the problem of learning parity with noise with two modifications: instead of
working over F2 the LWE is over a larger finite field, and every example is perturbed by
adding a small amount of (discrete) Gaussian noise. One of the attractions of basing cryp-
tosystems on the LWE problem is that it has been shown to be as hard as the worst–case
hardness of lattice problems such as GapSVP (the decision variant of the shortest lattice
vector problem), and SIVP (the shortest independent vectors problem) [109, 106]. See [110],
for a relatively recent survey on LWE. There are no known such hardness reductions for
learning parity with noise.

Sparse Parities and Juntas

The results of this thesis will be concerned with the problem of learning sparse parities with
noise. Specifically, this is the problem of learning parities with noise in the special case when
the size of the parity set k = |S| is known to be very small. Such a restriction clearly makes
the problem easier, as one could simply perform a brute-force search over all

(
n
k

)
≈ nk sets

of k indices. In light of the subexponential algorithm of Blum et al. [27] for learning large
parities, it is tempting to hope that analogous savings over the brute-force approach can be
achieved in the sparse setting, perhaps yielding an no(k) algorithm, though no such algorithm
is known, and adapting the approach of Blum et al. to the sparse setting seems problematic.

This problem of learning sparse parities is especially relevant to learning theory, as several
other basic problems in learning theory have been reduced to it. In 2006, Feldman et al. [54],
showed that algorithms for learning k-sparse parities with noise can be used to learn k-
juntas—functions from {0, 1}n → {0, 1} which only depend on the values of k << n of the
indices (see definition 10.1)—and learning 2k-term DNF, from uniformly random examples.

The reductions of Feldman et al. transform instances of k-juntas or 2k-term DNF into
instances of parity with noise, with a parity of size ≤ k, by adding some specially designed
extra noise, which zeros out nearly all the heavy Fourier coefficients of the juntas or DNF.
With some reasonable probability, however, exactly one heavy Fourier coefficient will remain,
in which case this process has created an instance of parity with noise. It is worth stressing
that such a transformation adds a large amount of noise—corresponding to noise rate η =
1
2
− 1

2k
, thus motivating the development of algorithms for sparse parity with noise that are
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very noise robust; for example, algorithms whose runtimes depend only as poly( 1
1/2−η ), as

opposed to having the noise rate in the exponent of n.
For completeness, in Appendix B.1 we include formal statements of the reductions of

Feldman et al. [54], which we use to obtain improved algorithms for learning k-juntas and
DNF from our algorithm for learning parities. We now briefly summarize the previous
algorithmic work on learning sparse parities and k-juntas.

For the problem of learning k-sparse parities with noise, in a recent paper, Grigorescu et
al. [62] adapt the approach of Hopper and Blum [67] to the noisy setting to give an algorithm
that runs in time poly( 1

1−2η
)n(1+2η)2+o(1))k/2. In particular, as the noise rate goes to 0, the

performance of this algorithm tends to O(nk/2), and as the noise rate tends towards 1
2
, the

dependency on n tends towards O(nk).
For the problem of learning juntas over the uniform distribution, Mossel et al. [92]

show that size k juntas can be learned in the absence of noise, in time n
ωk
ω+1poly(2k) ≈

n0.70kpoly(2k). This result leverages a powerful characterization of k-juntas: in particular,
they show that any k-junta either has a nonzero Fourier coefficient of degree at most d, or,
when regarded as a polynomial over F2, the k-junta has degree at most k − d. Their result
follows from balancing a brute-force search for low-degree Fourier coefficients, with solving
a large system of linear equation (using fast matrix multiplication) to find the low-degree
representation over F2 in the case that the brute-force search did not find any heavy Fourier
coefficients. As this approach involves solving a large system of linear equations, the as-
sumption that there is no noise is necessary. In particular, for constant noise η, prior to the
results of this dissertation, no algorithm for learning k-juntas with noise η > 0 running in
time O(nck) for any constant c < 1 was previously known.

For the problem of (ε, δ) PAC-learning s-term DNF under the uniform distribution, the
results of Grigorescu et al. [62] imply a runtime of

poly(log
1

δ
,
1

ε
, s)n(1−Õ(ε/s)+o(1)) log s

ε ,

which improves upon the O(nlog s
ε ) of Verbeurgt [135] from 1990.

10.2 Summary of Approach and Results

The problem of finding a ρ-correlated pair of Boolean vectors from among n random vectors
is easily seen to be equivalent to solving the parity with noise problem, in the special case
that the size of the true parity set is k = 2; the correspondence between the correlation ρ
and noise rate η is given by η = 1/2 − ρ/2. To see one direction of the equivalence, note
that given an instance of such a parity with noise problem, if one removes all examples that
have label 1, one will be left with a set of examples in which the two true parity indices are
correlated. One could thus use the algorithm of Proposition 9.3 to find the pair of parity

indices in time n
5−ω

2(4−ω)
kpoly( 1

1/2−η ) ≈ n1.62poly( 1
1/2−η ), where ω < 2.38 is the exponent of

matrix multiplication.
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In general, given an algorithm for solving the parity with noise problem for parities of
some fixed size c in time O(nα), one may attempt to adapt it to obtain an algorithm for
the parity with noise problem for parities of any value k > c that runs in time O(nk

α
c ) by

performing the following transformation: for each length n example with label `, transform
it into a length N =

(
n
k/c

)
≈ nk/c example with label `, where each index represents the XOR

(or product in the ±1 setting) of some set of k/c of the indices of the original example. If
the original set of examples contained a set of k indices whose XOR is correlated with the
labels, then the transformed examples will contain (several) sets of c indices whose XOR
is correlated with the labels. One can now simply apply the original algorithm for finding
parities of size c to the transformed set of examples, to yield a runtime of O

(
(nk/c)α

)
. The

minor difficulty, of course, is that the transformed examples are no longer uniformly random
bit strings, though most algorithms should be robust to the type of dependencies that are
introduced by this transformation.

The above transformation motivates the search for improved algorithms for finding small
constant–sized parities (k = 2, 3, 4, . . .). Given the existence of a subquadratic time algorithm
for the case k = 2, a natural hope is that one can design better and better algorithms for
larger k, perhaps with the eventual hope of yielding an no(k) algorithm.

While an extension of the algorithm of Proposition 9.3 (corresponding to k = 2) would
yield an algorithm for learning k-sparse parities with runtime

n
5−ω

2(4−ω)
kpoly(

1

1/2− η
) ≈ n0.81kpoly(

1

1/2− η
),

we instead consider the k = 3 case, and obtain an exponent of < 0.80k. While the constant
in the exponent is only 0.02 better than what is yielded from leveraging the k = 2 case
implied by the results of Chapter 9, this alternate approach may be of independent interest.

Theorem 10.1. For any fixed ε > 0, for sufficiently large n and k, given examples from an
(n, k, η) instance of parity with noise, with probability 1 − o(1), our algorithm will correctly
return the true set of k parity bits. Additionally, the algorithm will run in time

n
ω+ε

3
kpoly(

1

1− 2η
) < n0.80kpoly(

1

1− 2η
).

The above theorem has immediate implications for the problems of learning juntas and
DNF:

Definition 10.1. An example (x, y) from a (n, η)-instance of a noisy k-junta consists of
x ∈ {−1,+1}n, chosen uniformly at random, together with a label y ∈ {−1,+1} defined by
y = z · f(xS), where z ∈ {−1,+1} is chosen independently of x to be −1 with probability η,
f is a fixed though unknown function f : {−1,+1}k → {−1,+1}, and xS denotes the indices
of x occurring in a fixed (though unknown) set S ⊂ [n] with |S| = k.

The above theorem together with Theorem B.1 immediately imply the following corollary:



CHAPTER 10. LEARNING PARITIES AND JUNTAS 194

Corollary 10.2. For sufficiently large n and k given access to examples from an (n, η)
instance of a noisy k-junta, with constant probability our algorithm will correctly return
the true set of k′ ≤ k relevant indices, and truth table for the function. Additionally, the
algorithm has runtime, and sample complexity bounded by

n
ω+ε

3
kpoly(

1

1− 2η
) < n0.80kpoly(

1

1− 2η
).

The above theorem together with Corollary B.1 yields the following corollary for learning
juntas without noise, where the exponent is obtained by setting α = 3

4
in the statement of

Corollary B.1 so as to equate the two arguments of the max operation:

Corollary 10.3. For sufficiently large n and k given access to examples from an (n, η)
instance of a noisy k-junta with η = 0, with constant probability our algorithm will correctly
return the true set of k′ ≤ k relevant indices, and truth table for the function. Additionally,
the algorithm has runtime, and sample complexity bounded by

n
ω+ε

4
kpoly(n) < n0.60kpoly(n).

Definition 10.4. An example (x, y) from a r-term DNF over n bits under the uniform
distribution consists of x ∈ {−1,+1}n, chosen uniformly at random, together with a label
y ∈ {−1,+1} given by a fixed (though unknown) r-term DNF applied to x.

The following corollary follows from first arguing that an analog of Theorem 10.1 holds
(Theorem 10.3) in which the sample complexity has been reduced, and then applying The-
orem B.2.

Corollary 10.5. For sufficiently large n and k, there exists an algorithm that (ε, δ)–PAC
learns r-term DNF formulae over n bits from uniformly random examples that runs in time

poly

(
1

δ
,
r

ε

)
n0.80 log2

r
ε .

A Little Bias Goes a Long Way

As with the results in Chapter 9, our k = 3 algorithm uses fast matrix multiplication to find
a pair of correlated vectors. The crux of the approach is that a parity function has reasonably
heavy low-degree Fourier coefficients if one changes from the uniform distribution over the
Boolean hypercube to a slightly biased product distribution. The required bias is very small,
thereby allowing one to efficiently subsample a set of uniformly random examples so as to
produce a set of examples with the desired bias. In the remainder of this section we describe
the main idea behind the algorithm.

Given an example x, y, for x = (x1, . . . , xn) from an (n, 3, η)-instance of parity with noise
(with three parity bits), for any i, Pr[xi = 1|y = 1] = 1/2. Similarly, Pr[xixj = 1|y = 1] = 1/2
for distinct i, j ∈ [n]. The improved algorithm for finding parities rests on the following
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observation about parity sets of size k = 3: if the bits of x are not chosen uniformly at
random, but instead are chosen independently to be 1 with probability 1

2
+α, for some small

bias α, then the above situation no longer holds. In such a setting, it is still the case that
Pr[xi = 1|y = 1] ≈ 1

2
+ α, however

Pr[xixj = 1|y = 1] =

{
1
2

+ Θ(α) if i and j are both in the true parity set,
1
2

+ Θ(α2) if i or j is not in the set of parity bits.

The punchline of the above discrepancy is that very small biases—even a bias of α = 1/
√
n

can be quite helpful. Given such a bias, for any pair i, j ∈ [n], for sufficiently large n, even
n1.01 examples will be sufficient to determine whether i and j are both in the parity set by
simply measuring the correlation between the ith and jth indices for examples with odd
label, namely estimating Pr[xixj = 1|y = 1] based on the examples. How does one compute
these

(
n
2

)
correlations in time o(n3)? By (fast) matrix multiplication. It is worth stressing

that, provided this argument is sound, the resulting algorithm will be extremely noise-robust,
since the discrepancy between Pr[xixj = 1|y = 1] in the cases that i, j are both parity bits
and the case that they are not will degrade linearly as η → 1/2.

It should now be intuitively clear how to extend this approach from the small-biased
setting to the setting in which the examples are generated uniformly at random, since a
bias of 1/

√
n is quite modest. In particular, with constant probability, a random length–

n example will have at least n
2

+
√
n positive indices, thus simply filtering the examples

by removing those with fewer than n/2 positive indices should be sufficient to instill the
necessary bias (at the minor expense of independence).

10.3 Learning Parity by Adding Bias

As in the case of learning a parity of size k = 3, outlined in the previous section, for the
general case of parities of size k a bias of 1/

√
n in the examples will be sufficient. There

are many approaches to achieving this bias; algorithmically, the most simple approach is
to take examples, and reject those which have fewer than n

2
+
√
n positive indices. While

this approach can be made to work, the conditioning on the total weight being large greatly
complicates the analysis. Thus we instead argue that one can filter the examples in such
a way that the distribution of the examples that remain is very close in total variational
distance (`1 distance) to the distribution in which the examples are actually generated by
independently choosing the value of each index with probability 1

2
+ 1√

n
. Thus the result of

applying our algorithm to the filtered examples will, with high probability be identical to
the result of applying the algorithm to a set of examples generated according to the idealized
process which selects the value of each index of each example independently, to be 1 with
probability 1/2 + 1/

√
n, and thus it suffices to perform the analysis of the simpler setting in

which indices are chosen independently.
We first state the simple filtering process, and then prove that the resulting distribution

of examples has the desired property. Throughout, we let Bin[r, p] denote the binomial
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random variable representing the number of heads that occur after flipping r i.i.d. coins that
each land heads with probability p.

Algorithm 10.6. Make Biased Examples
Input: An m × n matrix X with entries xi,j ∈ {−1,+1}, a desired bias α ∈ (0, 12 ), and
t ∈ [n].
Output: an m′ × n matrix Y, for some m′ ≤ m, consisting of a subset of the rows of

X.

• Define r =
Pr[Bin[n, 12 ]>t]

Pr[Bin[n, 12+α]>t]
.

• For each row xi = xi,1, . . . , xi,n of X:

– let si be the number of 1’s in xi.

– If si ≥ t discard row xi.

– Otherwise, if si < t, then include row xi in matrix Y with probability

r ·
Pr[Bin[n, 12 + α] = si]

Pr[Bin[n, 12 ] = si]
(Note that this quantity is always bounded by 1.)

Proposition 10.7. The algorithm make biased examples when given as input an m×n
matrix X chosen with each entry being 1 independently with probability 1/2, α = o(1), and
t > n

2
+
√
n+ αn, will output matrix Y satisfying the two following properties:

• The total variation distance between the distribution from which each row of Y is chosen
and the distribution on rows defined by the process of picking each of the n elements

independently to be 1 with probability 1
2

+ α, is at most 2e−
(n( 1

2 +α)−t)2

(1−2α)n .

• With probability at least 1−e−mr
2

32 , Y has at least mr
4

rows, where r := 1
(1−2α)n−t(1+2α)t

√
n

.

The following lemma will be useful in the proof of the above proposition.

Lemma 10.8. For Bin[n, p] denoting a binomially distributed random variable, for α > 0
with α = o(1) and s >

√
n+ αn,

Pr[Bin[n, 1
2
] > n

2
+ s]

Pr[Bin[n, 1
2

+ α] > n
2

+ s]
≥ (1− 2α)s−

n
2 (1 + 2α)−

n
2
−s

√
n

,

for sufficiently large n.

Proof. We first lowerbound the numerator; trivially, Pr[Bin[n, 1
2
] > n

2
+ s] > Pr[Bin[n, 1

2
] =

n
2

+ s] =
(

n
n
2

+s

)
1

2n
. We now upper bound the denominator. To this order, note that for any
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s′ ≥ s, we have

Pr[Bin[n, 1
2

+ α] = n
2

+ s′ + 1]

Pr[Bin[n, 1
2

+ α] = n
2

+ s′]
=

(
n

n
2

+s′+1

)
(1

2
+ α)(

n
n
2

+s′

)
(1

2
− α)

=
n− 2s′

2 + n+ 2s′
·

1
2

+ α
1
2
− α

≤ n− 2(
√
n+ αn)

2 + n+ 2(
√
n+ αn)

·
1
2

+ α
1
2
− α

= 1− 4
√
n− 4α + 2

(n+ 2
√
n+ 2αn+ 2)(1− 2α)

≤ 1− 1√
n
,

for sufficiently large n. This shows that we may bound
∑n

i=n
2

+s

(
n
i

)
(1/2−α)i(1/2 +α)n−i by

the geometric series(
n

n
2

+ s

)
(1/2− α)

n
2
−s(1/2 + α)

n
2

+s

∞∑
i=0

(1− 1√
n

)i =

(
n

n
2

+ s

)
(1/2− α)

n
2
−s(1/2 + α)

n
2

+s
√
n.

Thus the desired ratio is at least(
n

n
2

+s

)
1

2n(
n

n
2

+s

)
(1/2− α)

n
2
−s(1/2 + α)

n
2

+s
√
n

=
(1− 2α)s−

n
2 (1 + 2α)−

n
2
−s

√
n

.

Proof of Proposition 10.7. Each row of Y is distributed as a length-n string with each bit
equaling 1 independently with probability α, conditioned on the total number of 1’s to be
at most t. This distribution has variation distance at most 2 Pr[Bin[n, 1

2
+ α] > t] from the

corresponding distribution in which no conditioning occurs. By standard Chernoff bounds,

Pr[Bin[n, 1
2

+ α] > t] ≤ e−
(n( 1

2 +α)−t)2

(1−2α)n .
The expected number of rows of Y will be at least m · r · (1− q), where q = Pr[Bin[n, 1

2
+

α] > t], and thus this expectation is trivially at least mr
2

. Since each row of the input X is
inserted into Y independently, with probability at least r

2
, by a Chernoff bound, Pr[|Y | <

mr
4

] < e−
mr2

32 . Using the lower bound on r of Lemma 10.8 yields the claim.

We now state the general algorithm for learning parities of size k. Note that throughout,
we assume that we know the size of the true parity set. This is without loss of generality,
as we can always simply try k = 1, 2, 3, . . ., and lose at most a factor of k in our runtime.
Additionally, we aim to find the parity with some constant probability. Since we can always
verify whether the returned parity set is correct (with all but inverse exponential probability),
by simply repeating the algorithm many times this constant probability of success can become
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probability 1 − δ at an extra multiplicative expense of log 1
δ
. Finally, we assume that k is

divisible by 3. This is without loss of generality, as we can always insert up to two extra
bits in each example and multiply the label by their values so as to yield examples from an
instance of size at most n+ 2 where the size of the parity is actually divisible by 3.

Algorithm 10.9. Learn Parity with Noise
Input: An m× n matrix X with entries xi,j ∈ {−1,+1}, a length m vector v ∈ {−1,+1}m
of labels, a parameter k that is divisible by 3.

Output: a set of k indices S ⊂ [n].

• Let Y be the result of running make biased examples on matrix X, with α = 1√
n

and t = n
2 + k logn

12

√
n.

• Remove all rows from Y whose corresponding label (in vector v) is −1, and

denote the resulting smaller m′ × n matrix Y ′.

• Generate the m′×
(
n
k
3

)
matrix Z by taking each row of Y ′, and generating a row of

Z of length
(
n
k/3

)
, with each position zi,S corresponding to a set S ⊂ [n] of k/3

distinct indices, and setting zi,S =
∏
j∈S y

′
i,j .

• Compute the
(
n
k/3

)
×
(
n
k/3

)
matrix C = ZtZ. For convenient, we regard the elements

of C to be indexed by a pair of sets S, S′ ⊂ n with |S| = k/3, thus cS,S′ is the

entry corresponding to the product of the two columns of Z corresponding to the

sets S and S′.

• For every pair of subsets S, S′ ⊂ [n] with S and S′ each consisting of k/3
distinct elements, if S ∩ S′ 6= ∅, set cS,S′ = 0.

• Let cS1,S′1
, be the largest elements of matrix C. For all sets S ⊂ [n] with

|S| = k/3 satisfying S ∩ (S1 ∪ S′1) 6= ∅, zero out the row and column of C
corresponding to set S. Let cS2,S′2

be the largest element of the resulting

matrix, and return S1 ∪ S′1 ∪ S2.

Theorem 10.2. For any fixed ε > 0, for sufficiently large n and k given m = n
2k
3 (1+ε)

(1−2η)2+ε

examples from an (n, k, η) instance of parity with noise, with probability 1 − o(1/n), the
algorithm Learn Parity with Noise, when given as input the m×n matrix of examples,
and length m vector of labels, will correctly return the true set of k parity bits. Additionally,

the algorithm will run in time O

((
n
k
3 (1+ε)

(1−2η)2+ε

)ω)
.

Given that applying make biased examples to matrix X yields a matrix Y with
suitably biased elements, we must make sure that the matrix Z inherits some bias from Y .
In particular, the fact that each entry of Z is given as the product of k/3 entries of X should
not completely erase the bias. While the bias will decrease, note that the length of the rows
of Z are correspondingly larger, and we are only hoping that the bias of each element of Z
is roughly 1/

√
|Z|. The following basic lemma guarantees this.
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Lemma 10.10. Let z =
∏s

i=1wi, where each wi ∈ {−1,+1} is chosen independently to be
1 with probability 1

2
+ α. Then Pr[z = 1] = 1

2
+ 2s−1αs.

Proof. Letting p = 1
2
− α, we have the following:

Pr[z = 1]− Pr[z = −1] =
s∑
i=0

(−1)ipi(1− p)s−i
(
s

i

)
= ((1− p)− p)s

= (1− 2p)s = 2sαs,

Proof of Theorem 10.2. Proposition 10.7 guarantees that with probability at least 1−o(1/n)
the matrix Y has at least the following number of rows:

m

4(1− 2√
n
)n−t(1 + 2√

n
)t
√
n
≥ m

4(1 + 2√
n
)2(t−n

2
)
√
n

=
m

4(1 + 2√
n
)
√
n

2
(k logn)/3

√
n
≥ m

4nk/3+ 1
2

.

For m as specified in the theorem statement, any constant ε′ < ε, for sufficiently large n and

k, this is at least n
k
3 (1+ε′)

(1−2η)2+ε . Additionally, Proposition 10.7 guarantees that the rows of matrix
Y are τ -far in variation distance from the distribution defined by choosing each element
independently to be 1 with probability 1

2
+ 1√

n
, where

τ ≤ e
− (n2 +

√
n−t)2

2n( 1
2−

1√
n

) ≤ 2e−( k logn
12
−1)2 ≤ n−

k2 logn
200 ,

for sufficiently large k. This variation distance is super constantly smaller than 1/(mn), and
thus with probability 1 − o(1/n), the algorithm will perform identically as in the case that
the elements of matrix Y were actually generated independent with probability of being 1
equal to 1

2
+ 1√

n
. For the remainder of the proof, we argue as if matrix Y is generated in that

fashion.
We now consider the matrix Z. Let zS, zS′ be two element of the row z of Z corresponding

to disjoint sets S, S ′ ⊂ [n], and let ` denote the label corresponding to row z. Let w =∏
j∈S∪S′ yj, denote the random variable representing zSzS′ . For notational convenience, define

F (β, h) =

bh/2c∑
i=0

(
1

2
− β)2i(

1

2
+ β)h−2i

(
h

2i

)
=

1

2

(
1 + 2hβh

)
,

which is the probability that when h identical independent coins that land heads with prob-
ability 1

2
+ β are tossed, an even number of heads occurs. Letting s denotes the number of



CHAPTER 10. LEARNING PARITIES AND JUNTAS 200

parity bits in S ∪ S ′, we have the following, where α = 1√
n
:

Pr[w = 1|` = 1] =
F (α, s)F (α, 2k

3
− s)F (α, k − s)

F (α, k)

+
(1− F (α, s))(1− F (α, 2k

3
− s))(1− F (α, k − s))

F (α, k)

=
1 + (2α)2k/3 + (2α)k + (2α)5k/3−2s

2(1 + (2α)k)
,

where the numerator of first line is computing the probability that w = 1 and ` = 1.
In the case that s = 2k/3, which occurs when both S and S ′ are subsets of the set of

parity bits, then we can lowerbound the above as

Pr[w = 1|` = 1] ≥ 1 + (2α)k/3

2(1 + (2α)k)
≥ 1

2
+

(2α)k/3

2
− (2α)2k/3 ≥ 1

2
+

(2α)k/3

3
,

since α = o(1). In the case that s ≤ 2k/3− 1, we upperbound the quantity as follows:

Pr[w = 1|` = 1] ≤ 1 + 2(2α)k/3+2

2
≤ 1

2
+

(2α)k/3

100
,

since α = o(1).
Putting the pieces together, letting m′ denote the number of rows of matrix Z, which we

showed is at least n
k
3 (1+ε′)

(1−2η)2+ε , in the case that η = 0 (there is no noise in the labels), we have

that for any entry cS,S′ of matrix C corresponding to two disjoint sets S, S ′, where S and S ′

are not both subsets of the parity bits, E[cS,S′ ] ≤ 2
m′(2/

√
n)
k/3

100
. On the other hand, if S, S ′ are

both subsets of the parity bits, then E[cS,S′ ] ≥ 2
m′(2/

√
n)
k/3

3
, and since these quantities have

variance at most m′, for any constant ε, via a union bound over Chernoff bounds, taking
n large yields that with probability 1 − o(1/n), all the entries of C corresponding to pairs
of disjoint sets that are not both subsets of the true parity bits will be smaller than all the
entries that correspond to pairs of subsets of the true parity bits. In the case of η > 0, an
identical argument holds.

Reducing the Sample Complexity

In order to obtain our desired corollary for learning DNF (Corollary 10.5), we must reduce
the number of examples used in our Learn Parity with Noise algorithm. Intuitively,
provided one has a very noise–robust algorithms, such reduction in sample complexity is
very easy; one simply takes a very small number of examples—in fact, n1+ε will suffice—and
then “manufactures” many examples by XORing together small sets of the actual examples.
Provided the initial noise in the labels is η, if we XOR together q examples, then the XOR
of the labels will be the correct label with probability at least 1

2
+ (1−2η)q

2
.
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Algorithm 10.11. Make More Examples
Input: An m× n matrix X with entries xi,j ∈ {−1,+1}, a length m vector v ∈ {−1,+1}m
of labels, a positive integer q < m, an integer m′.
Output: An m′ × n matrix Y , and a length m′ vector w of labels.

• For each i ∈ [m′], randomly choose a set T ⊂ [m], with |T | = q, create row yi of Y ,
by assigning the jth component of yi to be

∏
`∈T x`,j , and letting the ith label be∏

j∈T vj .

Ideally, we would be able to apply the algorithm learn noisy parities in a black-
box fashion to the output of running make more examples on a small number of actual
examples, as was done in [83]. Unfortunately, because the noise in the generated examples
will increase with q in the exponent, we will not be able to take sufficiently large q so as to
yield the necessary claim that the distribution of resulting examples is close in total variation
distance to the desired uniform distribution.

Instead, we argue that the distribution of a small number (namely, k) of the columns
of the generated examples are close to uniform. The idea is that we will argue that the
distribution of the values in the k parity columns are close to uniform, which will let us
apply our Chernoff bound to argue that with very high probability, the “good” entries cS,S′
of the matrix C generated in learn noisy parities, corresponding to S, S ′ subsets of the
true parity set, will be “large”. For all the “bad” entries of C, we will not be able to apply
Chernoff bounds; however, using the fact that the rows are pairwise independent, we will
apply Chebyshev’s inequality to argue that with probability at least 1/2, each “bad” element
will be small. Thus after running the whole algorithm log(

(
n
k/3

)
) times, we can argue that

with high probability, in every run, the “good” coordinates will be large, whereas for a “bad”
element, in each run of the algorithm, it will be small with probability at least 1/2. Thus
after log(

(
n
k/3

)
) runs, with high probability the only elements that were never “small” will

correspond to entries whose row and column correspond to subsets of the true parity set, as
desired. We now make this roadmap rigorous. We begin by defining what it means for a
family of hash functions to be universal, and state the Leftover Hash Lemma.

Definition 10.12. Let H be a family of hash functions from A to B, and let H ∈ H be
chosen uniformly at random. H is a universal family of hash functions if for all distinct
a, a′ ∈ A, Pr[H(a) = H(a′)] ≤ 1

|B| .

Lemma 10.13 (Leftover Hash Lemma [70]). For A ⊂ {0, 1}m, with |A| ≥ 2r, and |B| =
{−1,+1}r−` for some ` > 0, if H is a universal family of hash functions from A to B, then
with probability at least 1−2−`/4, a uniformly random h ∈ H will satisfy Dtv[h(a), Unif(B)] ≤
2−`/4, where a is a random element of A, Unif(B) denotes the uniform distribution on B,
and Dtv is the statistical distance (total variation distance).

The following basic fact will also be useful.
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Fact 10.14. Given a vector v ∈ {−1,+1}m, such that m(1
2

+ p) indices of v are +1, then
for a random set T ⊂ [m], with |T | = q,

Pr[
∏
i∈T

vi = 1] ≥ 1

2

(
1 +

(
2mp− q + 1

m− q + 1

)q)
.

Proposition 10.15. Given an m × n matrix X and vector of labels v consisting of m
examples from an instance of parity with noise with noise rate η, integer q ≤ m(1−2η)

4
, and

integer m′, for any fixed set S ⊂ [n] with |S| = k, with probability at least 1− 2−
q log mq −k

4 , the
algorithm make more examples on input X, v, q,m′, will output a matrix Y such that the
m′ × k submatrix YS defined as the subset of the columns of Y corresponding to indices in

S, will have total variation distance at most m′2−
q log mq −k

4 from the distribution on matrices
given by assigning each element to be ±1 independently with probability 1/2.

Additionally, with probability at least 1 − 2−
(q−1) log m

q−1−k
4 , the distribution of the rows

of YS corresponding to the set of correct labels, will differ from that corresponding to the

set of incorrect labels by statistical distance at most 2m′2−
(q−1) log m

q−1−k
4 . Finally, provided

1− 2η > 4m−0.4, with probability at least 1− o(1/m), the number of correct labels will be at
least m′

(
1
2

+ 1
2

(
1−2η

4

)q)−m′0.6.
Proof. We will first apply the Leftover Hash Lemma (Lemma 10.13). Note that each choice
of matrix X defines a hash function from the set A := {T : T ⊂ [m], |T | = q} to the
set B = {−1,+1}k, via the mapping that considers the columns of X corresponding to
indices in set S, and XORs each coordinate of the rows of X with indices in set T (as
described in the algorithm make more examples). Trivially, this family of hash functions
is universal, since for two sets T 6= T ′, supposing that i ∈ T, i 6∈ T ′, the image of T and
T ′ will differ XORing with a uniformly random string (namely, the ith row of X). Next,
note that |A| =

(
m
q

)
≥ 2q log m

q and thus Lemma 10.13 implies that with probability at least

1− 2−
q log mq −k

4 over the choice of matrix X, we will have that the distance between each row

of Y and the uniform distribution over {−1,+1}k is at most 2−
q logm−2k

8 . A union bound over
our m′ rows yields the desired claim.

We now reason about labels. With probability at least 1−o(1/m), the number of correct

labels in the original vector v of labels will be at least m
2

+ m(1−2η)
2
− m0.6 > m

2
+ m(1−2η)

4
.

Thus by Fact 10.14, with this probability the expected number of correct labels in vector w
will be at least

m′
(

1

2

(
1 +

(
m(1− 2η)/2− q + 1

m− q + 1

)q))
≥ m′

(
1

2
+

1

2

(
1− 2η

4

)q)
,

and thus with probability at least 1− o(1/m) over the initial choice of the v labels, and the
choice of the sets that generate the m′ new examples, at least m′

(
1
2

+ 1
2

(
1−2η

4

)q) −m′0.6 of
the labels w will be correct.
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We now argue that for a given “manufactured” example, the correctness of the label is
essentially independent of the values of the chosen set of k indices. We proceed as in [83],
and note that, assuming there is at least one incorrectly labelled example in v (if not, then
the independence is trivial), letting Xodd, Xeven denote the sets of subsets T ⊂ [m] with
|T | = q for which the number of corresponding label is incorrect (correct). With probability
1−o(1/m), |Xeven| > |Xodd| >

(
m
q−1

)
, and thus (since the correctness of the original labels are

chosen independently of the corresponding example) we may apply Lemma 10.13 as above, to
conclude that the distribution of the values of the k bits is distributed nearly uniformly over

the 2k values. In particular, with probability at least 1− 2−
(q−1) log m

q−1−k
2 , the distribution of

the k bits conditioned on the label being correct will differ from the distribution conditioned

on the label being incorrect by at most statistical distance 1− 2−
(q−1) log m

q−1−k
4 .

We now describe our algorithm for solving instances of parity with noise, that uses few
examples.

Algorithm 10.16. Learn With Few Examples
Input: Positive integers k, r, q,m′ an r ·m×n matrix X with entries xi,j ∈ {−1,+1}, and
a length r ·m vector v ∈ {−1,+1}m of labels.

Output: A set S ⊂ [n] with |S| = k.

• For i = 1 to r

– Let matrix X ′, and labels v′ be the output of running algorithm make

more examples on input Xi, vi, q,m′, where Xi is the m × n submatrix of X
consisting of rows i ·m+ 1 through rows (i+ 1)m, and vi is the corresponding

vector of labels.

– Let matrix Y be the result of running make biased examples on matrix X
with α = 1√

n
and t = n

2 + k logn
12

√
n.

– Remove all rows of Y with labels −1, and denote the resulting smaller

m′′ × n matrix Y ′.

– Generate the m′′ ×
(
n
k/3

)
matrix Z by taking each row of Y ′, and generating a

row of length
(
n
k/3

)
with each position z`,S corresponding to a set S ⊂ [n] of

k/3 (distinct) indices, and setting z`,S =
∏
j∈S y

′
`,j .

– Compute the
(
n
k/3

)
×
(
n
k/3

)
matrix Ci = ZtZ, and let mi := m′′.

• Let the set ParityBits be the union of all pairs of disjoint sets of size k/3,

S, S′, that have the property that ciS,S′ >
mi(2/

√
n)
k/3

3 for each i ∈ [r], where ciS,S′

denotes the index of matrix Ci indexed by the sets S, S′, as in algorithm Learn

Parity with Noise.

• If |ParityBits| 6= k output FAIL, otherwise output the set ParityBits.
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Theorem 10.3. The algorithm Learn With Few Examples, when run on input k,

r := 100k log n, q, m′ := n
2k
3 (1+ε)

(1−2η)3q , and m = 100 · rq n2k/q

(1−2η)6 examples from an (n, k, η) instance

of parity with noise, will return the correct set of k parity bits with probability at least 1−o(1).
Additionally, the number of examples used is m, and the total runtime of the algorithm is
bounded by

poly

(
1

(1− 2η)q
, 2q
)
· n

k
3

(1+ε)ω,

where ω < 2.38 is the matrix multiplication exponent.

Proof. The proof follows from noting first that m′ <
(
m/r
q

).4
, and thus with probability

1 − o(1), in all r runs, no two choices of random subsets of [m] of size q chosen in the
construction of X ′ will be equal, and thus with this probability, the rows of X ′ (and thus
Y and Y ′) will all be pairwise independent. Thus, from the proof of Theorem 10.2 and
Chebyshev’s inequality, for each pair S, S ′ of disjoint sets of size k/3 that are not both

subsets of the true set of parity bits, ciS,S′ ≤
mi(2/

√
n)k/3

3
with probability at least 1/2. Since

each of the r runs are independent, the probability that such a bad pair of sets remains after

all r = 100k log n runs is at most 1
n100k , and thus via a union bound over the at most

(
n
k/3

)2

such pairs of bad sets, with probability 1− o(1), no such bad pairs of sets will appear in the
final output set ParityBits.

By Proposition 10.15, and our choice of parameters, with probability 1 − o(1/n), the
total variation distance between the assignment of the values to the k true parity columns
of matrix X ′ in a given run, and if they were chosen uniformly is at most o(1/n), and thus
with probability 1 − o(1), after the r runs, the algorithm must perform identically to the
performance in the case that these columns were chosen uniformly at random, and thus the
arguments of the proof of Theorem 10.2, and, in particular, the Chernoff bound, guarantees
that with probability 1− o(1) in all r runs, every pair of disjoint sets S, S ′ of size k that are

subsets of the parity bits, will satisfy ciS,S′ >
mi(2/

√
n)k/3

3
, as desired.
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Part III

Learning Mixtures of Gaussians
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Chapter 11

Learning Univariate Mixtures of
Gaussians

The problem of estimating the parameters of a mixture of Gaussians has a long history of
study in statistics and more recently, computer science. Given a sample drawn from a single
Gaussian distribution, it is easy to accurately estimate the mean and covariance of the true
distribution, since the sample mean and covariance converge very quickly to the true mean
and covariance. In contrast, consider the setting in which, for example, half the sample
points are drawn from one Gaussian, and half are drawn from a different Gaussian. How can
one obtain accurate estimates of the means and covariances of these two Gaussians? From a
practical perspective, this problem arises in many settings across a number of fields, including
agriculture, economics, medicine, and genetics [122, 88], and represents one of the most basic
mathematical formulations of the pervasive problem of clustering high dimensional data.

In this chapter we tackle the univariate version of this problem: learning mixtures of
Gaussians in one dimension. In Chapter 12 we leverage the results of this chapter via a
dimension reduction approach to yield an algorithm for the high dimensional analog of this
problem.

Consider a mixture of k different univariate distributions, each with mean µi ∈ R, vari-
ance σ2

i ∈ R+, and mixing weight wi > 0. The mixture is referred to as a Gaussian Mixture
Model (GMM), and if the univariate density of the ith Gaussian component is Fi = N (µi, σ

2
i ),

then the GMM density is,

F =
∑
i

wiFi.

The problem of learning the mixture is that of estimating wi, µi, and σ2
i from a sample

consisting of m independent draws from the GMM.
In this chapter we prove that the parameters wi, µi, σ

2
i can be estimated at an inverse

polynomial rate. Given a desired accuracy ε, we give an algorithm for recovering the pa-
rameters to within this accuracy whose runtime and required sample size is polynomial in
1/ε, under provably minimal assumptions on the GMM, namely that the mixing weights wi
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and the total variational distance between the Gaussian components are all bounded away
from 0. Previously, even in the case of mixtures of just two components, to the best of our
knowledge, no subexponential bounds on the required sample size were known.

The guarantees of the following theorem, which is the main theorem of this chapter,
are in terms of the error of the recovered parameters; we rely on this result on parameter
recovery in Chapter 12 to yield our more general theorem on learning GMMs in arbitrary
dimension with the stronger success guarantee that the recovered components are close in
total variational distance (`1 distance) to the true components.

Theorem 11.1. Suppose we are given access to independent draws from a GMM F of
variance in [1/2, 2], consisting of at most k Gaussian components, F =

∑
iwiN (µi, σ

2
i ),

where for all i, wi ≥ ε, and for all i 6= j, |µi − µj|+ |σ2
i − σ2

j | ≥ ε.
There is an algorithm that for any fixed k, uses a sample of size poly(1

ε
, log 1

δ
) and has

runtime at most poly(1
ε
, log 1

δ
), such that with probability at least 1− δ it will output mixture

parameters ŵi, µ̂i, σ̂i
2, with the property that there is a permutation π : [k]→ [k] such that

|wi − ŵπ(i)| ≤ ε, |µi − µ̂π(i)| ≤ ε, |σ2
i − σ̂2

π(i)| ≤ ε for each i = 1, . . . , k .

Our approach is via the method of moments. We show that noisy estimates of the first
4k− 2 moments of a univariate mixture of k Gaussians suffice to recover accurate estimates
of the mixture parameters, as conjectured by Pearson in 1894 [105] in the case that k = 2,
and that these estimates converge at an inverse polynomial rate.

The correctness of our algorithm rests on what we term the polynomially robust iden-
tifiability of GMMs (Theorem 11.2). The identifiability of GMMs is well known: any two
different GMMs F, F ′ (where the components of F differ from those of F ′) have different
probability distributions [120]. We show that this identifiability is “polynomially robust”; if
the components of F and F ′ differ by ε, then the densities of F and F ′ differ in total variation
distance by at least poly(ε). Our proof of this robust identifiability is based on a series of
convolutions and “deconvolutions”, which could also be interpreted via the univariate heat
equation.

The running time (and sample complexity) of our algorithm is a fixed polynomial in
1
ε

for any constant number of mixture components, k. The dependence on k, however, is
disappointing—the exponent of the polynomial is exponential in k. Nevertheless, in Sec-
tion 11.4 we prove the following proposition demonstrating that a polynomial dependence
on k is information theoretically impossible.

Proposition. There exists mixtures F1, F2 of at most k Gaussians such that all mixing
weights are at least 1/4k, for every pair of components in the same mixture, their total
variational distance is at least 1/4k, one of the mixtures has a component with variance 2,
and the other mixture consists entirely of components with variance 1, yet

Dtv(F1, F2) < e−Θ(k).
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Figure 11.1: A fit of a mixture of two univariate Gaussians to Pearson’s data on Naples
crabs [105]. This density plot was created by P. Macdonald using R [84].

In particular, F, F ′ are mixtures of significantly different Gaussian components, yet the
final condition shows that we cannot hope to distinguish between these two mixtures using
a sample of size poly(k).

A Brief History of GMMs

In the 1890’s, Karl Pearson was given a dataset consisting of the ratio of the length to the
breadth of 1000 crabs found near Naples, and conjectured that the dataset arose as a GMM
of two components, corresponding to two crab species. Pearson then attempted to recover
estimates of the parameters of the two hypothesized species, using the method of moments.
He computed empirical estimates of the first six (raw) moments E[xi] ≈ 1

m

∑m
j=1 x

i
j, for

i = 1, 2, . . . , 6; then, using only the first five moments, he solved a cleverly constructed ninth-
degree polynomial, by hand, from which he derived a set of candidate mixture parameters.
Finally, he heuristically chose the candidate among them whose sixth moment most closely
agreed with the empirical estimate. [105]

The potential problem with this approach, which Pearson acknowledged, was the issue of
robust identifiability. Perhaps there exist two different mixtures, where the components of
one mixture are very different from the components of the other mixture, but nevertheless
the densities and the moments of the two mixtures are extremely similar.

Later work showed that “identifiability” is theoretically possible—if there are two differ-
ent GMMs (i.e. the components of one of the mixtures differ from the components of the
other mixture) then they have different probability densities [120]. The proof of this fact
argued that if the components of the two GMMs of largest variance do not match, then this
disparity will be exposed in the tails of the GMMs. If they do match, one can peel away the
pair of components, and proceed inductively. The issue with this approach is that it sheds
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no light on convergence rates, as it is based on differences in the density of the tails of the
distributions, which would require exponential amounts of data to discern. In particular,
to ε-approximate the Gaussian parameters in the sense that we will soon describe, previous
work left open the possibility that it might require an amount of data that grows exponen-
tially in 1/ε. In Section 11.2 we show that GMMs are polynomially robust, and hence a
polynomial amount of data is sufficient. Our proof of this robustness is via the method of
moments, in some sense validating Pearson’s approach.

Dasgupta introduced the problem of learning GMMs to the theoretical computer science
community in the setting in which the GMM is in high dimensional, and the components are
extremely well separated in comparison with their covariances (essentially non-overlapping
densities) [43]. Dasgupta considered the case where all the components are spherical Gaus-
sians with radii 1, and required that the separation between the components’ center be O(d2),
where d is the dimension of the space. He gave a polynomial time algorithm for learning
the mixture, which proceeded by first accurately clustering the sample points according to
which component they were drawn from. Given such a clustering of the data, one can then
simply return the sample mean and covariance for each cluster.

This work initiated a line of work on polynomial-time algorithms for clustering GMMs in
high dimensions [12, 46, 134, 76, 3, 31]. As this work progressed, the assumptions that the
components be identical and spherical was removed, and the separation assumptions were
relaxed slightly; however, any approach to learning GMMs via clustering must assume that
the components have essentially no overlap.

More recently, a polynomial-time density estimation algorithm was given for axis-aligned
GMMs (i.e. GMMs whose components have diagonal covariance matrices), which did not
require any separation assumption [53]. The problem of density estimation is to return a
GMM whose probability density function is close to that of the true GMM from which the
sample was drawn, as opposed to the potentially more ambitious goal of returning estimates
of each of the constituent components. The results of this chapter, however, imply that any
two GMMs with sufficiently similar densities must also have similar components (provided
the number of components in each GMM is bounded, and the minimum mixing weight is
not too small.)

Independently from this work, using ideas from algebraic geometry, it was recently shown
that the method of moments can be used to provably learn mixture parameters in the more
general context of mixtures of any family of distributions whose moments are given by
polynomials of a finite parameter set [23]. For the case of GMMs, our results of Chapter 12
are stronger than the more general results of [23] in two senses: first, our approach allows
one to obtain explicit bounds on the exponent of the polynomial bounding the required
sample sample, in contrast to the existential results that simply show that the exponent
of the polynomial dependence is finite for any fixed k. Secondly, and more significantly, we
recover components that are accurate in a variational sense (i.e. the recovered components
are close to the true components in `1 distance), and thus our algorithm can be used to
accurately cluster the sample points (up to the statistical overlap in the components) or for
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density estimation. In contrast, the results of [23] are in terms of a different metric which is
not affine-invariant; their algorithm does not yield components that are necessarily close to
the actual components in total variational distance (`1 distance), and hence their approach
does not yield algorithms for clustering or density estimation.

Subsequent to the publication of the work presented in this chapter, there has been
some progress on developing practically viable algorithms for learning GMMs and mixtures
of other distributions, that also use a method of moments [8]. In contrast to our results,
these algorithms only consider third or fourth moments, and have provable guarantees under
certain non-degeneracy assumptions on the geometry of the components.

There is a vast literature on heuristics for learning GMMs, including the popular Expectation-
Maximization and k-means algorithms, which lack provable success guarantees. While these
approaches are effective in practice in some contexts, they can suffer slow convergence rates
or terminate at local optima when run on high-dimensional data (see, e.g. [108]). These
heuristics are orthogonal to our current goal of describing algorithms with provable success
guarantees, and we refer the reader to the two books [122, 88], for a treatment of such
heuristic approaches to learning GMMs.

11.1 Notation and Definitions

We use N (µ, σ2) to denote the univariate Gaussian of mean µ and variance σ2. Corre-
spondingly, we denote the probability density function of such a Gaussian by N (µ, σ2, x) :=

1√
2πσ2

e−
(x−µ)2

2σ2 .

Given two distributions, F, F ′, with probability density functions F (x), F ′(x), we denote
their total variation distance by Dtv(F, F

′) := 1
2

∫
|F (x)−F ′(x)|dx. For a function f : R→ R,

its `2 norm is denoted ||f(x)||2 :=
∫∞
−∞(f(x))2dx, and its `∞ norm is denoted by ||f(x)||∞ :=

supx∈R|f(x)|. We denote the ith-raw moment of a distribution F , as Mi(F ) := EF [xi].
We define the condition number of a GMM, which is a parameter expressing the infor-

mation theoretic difficulty of learning the given mixture:

Definition 11.1. The condition number κ(F ) of GMM F =
∑k

i=1wiFi is defined to be,

κ(F ) =
1

min
(
{w1, w2, . . . , wk} ∪ {Dtv(Fi, Fj) | i 6= j}

) .
Any estimation algorithm requires, at a minimum, a sample size proportional to κ(F ) to

have a constant probability of accurately estimating each component. This is simply because
one requires a sample of size at least 1/wi to have a constant probability of encountering a
single example generated by Fi. Hence, for very small wi, a large sample size is necessary.
Similarly, even if one knows the distributions of two components, F1 and F2, one requires a
sample of size at least 1/Dtv(F1, F2) to have a constant probability of distinguishing between
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the case that all sample points arise from F or all sample points arise from F ′. Thus, at
least a linear dependence on κ(F ) is required; our results will have a polynomial dependence
on κ(F ).

Definition 11.2. The parameter distance between GMMs F (x) =
∑n

i=1wiN (µi, σ
2
i , x), and

F ′(x) =
∑k

i=1 w
′
iN (µ′i, σ

′2
i , x) is defined to be

Dpar(F, F
′) := min

π

∑
i

(
|wi − w′π(i)|+ |µi − µ′π(i)|+ |σ2

i − σ′2π(i)|
)
,

where the minimization is taken over all mappings π : {1, . . . , n} → {1, . . . , k}.

11.2 Polynomially Robust Identifiability

Our main technical result, which we prove in this section, is the following theorem, showing
that GMMs are polynomially robustly identifiable.

Theorem 11.2. There is a constant c > 0 such that, for any any ε < c and any GMMs F, F ′,
of n and k components, respectively with condition numbers κ(F ), κ(F ′) ≤ 1

ε
, if Dpar(F, F

′) ≥
ε, then

max
i≤2(n+k−1)

|Mi(F )−Mi(F
′)| ≥ ε(O(k))k .

Before giving a formal proof of Theorem 11.2, we first sketch the rough intuition. Our
proof will be via induction on max(n, k). We start by considering the constituent Gaussian
of minimal variance in the mixtures. Assume without loss of generality that this minimum
variance component is a component of F, and denote it by N . If there is no component of
F ′ whose mean, variance, and mixing weight very closely match those of N , then we argue
that there is a significant disparity in the low order moments of F and F ′, no matter what
the other Gaussian components are. (This argument is the crux of the proof, and we will
give the high-level sketch in the next paragraph.) If there is a component N ′ of F ′ whose
mean, variance, and mixture weight very closely match those of N , then we argue that we
can remove N from F and N ′ from F ′ with only negligible effect on the discrepancy in
the low-order moments. More formally, let H be the mixture of n − 1 Gaussians obtained
by removing N from F , and rescaling the weights so as to sum to one, and define H ′, a
mixture of k−1 Gaussians derived analogously from F ′. Then, assuming that N and N ′ are
very similar, the disparity in the low-order moments of H and H ′ is almost the same as the
disparity in low-order moments of F and F ′. We can then apply the induction hypothesis
to the mixtures H and H ′.

We now return to the problem of showing that if the smallest variance Gaussian in F
cannot be paired with a component of F ′ with similar mean, variance, and weight, that
there must be a polynomially-significant discrepancy in the low-order moments of F and F ′.
This step relies on “deconvolving” by a Gaussian with an appropriately chosen variance (this
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corresponds to running the heat equation in reverse for a suitable amount of time). We define
the operation of “deconvolving” by a Gaussian of variance α as Jα; applying this operator to
a mixture of Gaussians has a particularly simple effect: subtract α from the variance of each
Gaussian in the mixture (assuming that each constituent Gaussian has variance at least α).
If α is negative, this operation is simply convolution by a Gaussian of variance −α.

Definition 11.3. Let F (x) =
∑n

i=1 wiN (µi, σ
2
i , x) be the probability density function of a

mixture of Gaussian distributions, and for any α < mini σ
2
i , define

Jα(F )(x) =
n∑
i=1

wiN (µi, σ
2
i − α, x).

The key step will be to show that if the smallest variance Gaussian in one of the mixtures
cannot be paired with a nearly identical Gaussian in the other mixture, then there is some α
for which the difference in the probability densities of the resulting mixtures, after applying
the operation Jα, has large `∞ norm. Intuitively, this deconvolution operation allows us
to isolate Gaussians in each mixture and then we can reason about the total variational
distance between the two mixtures locally, without worrying about the other Gaussians in
the mixture.

Given this `∞ distance between the transformed pair of mixtures, we use the fact that
there are relatively few zero-crossings in the difference in probability density functions of
two mixtures of Gaussians (Proposition 11.5) to show that this `∞ distance gives rise to a
discrepancy in at least one of the low-order moments of the pair of transformed distribu-
tions. To complete the argument, we then show that applying this transform to a pair of
distributions, while certainly not preserving total variational distance, roughly preserves the
combined disparity between the low-order moments of the pair of distributions.

We now formalize the above high-level outline of the proof approach. The following
lemma argues that if the smallest variance Gaussian in mixture F can not be matched with
a sufficiently similar component in the mixture F ′, then there is some α, possibly negative,
such that maxx |Jα(F )(x)−Jα(F ′)(x)| is significant. Furthermore, every component in the
transformed mixtures has a variance that is not too small.

Lemma 11.4. Let F, F ′ be GMMs with at most k components and condition numbers
bounded by 1/ε. Suppose without loss of generality that the Gaussian component of minimal
variance is N (µ1, σ

2
1), and that there is some positive γ < ε/8 such that for every i ∈

{1, . . . , k}, at least one of the following holds:

• |µ1 − µ′i| > γ5

• |σ2
1 − σ′2i | > γ5

• |w1 − w′i| > γ.

Then there is some α > −γ4 such that either
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• maxx(|Jα(F )(x) − Jα(F ′)(x)|) ≥ 1
8γ

and the minimum variance in any component of

Jα(F ) and Jα(F ′) is at least γ4,

or

• maxx(|Jα(F )(x) − Jα(F ′)(x)|) ≥ 2
γ5 and the minimum variance in any component of

Jα(F ) and Jα(F ′) is at least γ12.

Proof. We start by considering the case when there is no Gaussian in F ′ that matches both
the mean and variance to within γ5. Consider applying Jσ2

1−γ12 to both mixtures. Observe
that

Jσ2
1−γ12(F )(µ1) ≥ εN (0, γ12, 0) =

ε

γ6
√

2π
≥ 8γ

γ6
√

2π
.

We now argue that Jσ2
1−γ12(F ′)(µ1) cannot be too large, as all of its components must either

have large variance (and hence small maximum value of the probability density function),
or has small variance but a mean that is far from µ1. Corollary A.4, makes this argument
rigorous, showing the following:

Jσ2
1−γ12(F ′)(µ1) ≤ 2

γ5
√

2πe
.

Thus

Jσ2
1−γ12(F )(µ1)− Jσ2

1−γ12(F ′)(µ1) ≥ 8γ

γ6
√

2π
− 2

γ5
√

2πe
≥ 2

γ5
.

Next, consider the case where we have at least one Gaussian component of F ′ that matches
both µ1 and σ2

1 to within γ5, but whose weight differs from w1 by at least γ. By the bounds
on the condition number, there can be at most one such Gaussian component, say the ith.
If w1 ≥ w′i + γ, then Jσ2

1−γ4(F )(µ1)−Jσ2
1−γ4(F ′)(µ1) ≥ 1

γ
√

2π
− 2

ε
√

2πe
, where the second term

is a bound on the contribution of the other Gaussian components to Jσ2
1−γ4(F ′)(µ1), using

the fact that F, F ′ have condition numbers at most 1/ε and Corollary A.4. Since γ < ε/8,
this quantity is at least 3

4γ
√

2π
> 1

8γ
.

If w1 ≤ w′i− γ, then consider applying Jσ2
1−γ4 to the pair of distributions. Using the fact

that 1√
1+x
≥ 1− x/2, and using the fact that σ′2i ≤ σ2

1 + γ5, we have

Jσ2
1−γ4(F ′)(µ′i)− Jσ2

1−γ4(F )(µ′i) ≥
1√

γ4 + γ5
√

2π
(w1 + γ)− 1

γ2
√

2π
w1 −

2

ε
√

2πe

≥ 1− γ/2
γ2
√

2π
(w1 + γ)− 1

γ2
√

2π
w1 −

2

8γ
√

2πe

≥ 1

8γ
.
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The above lemma guarantees that we can pick some α such that Jα(F ) and Jα(F ′) con-
tain Gaussian components whose variances are at least γ12, and whose probability densities
differ significantly in the `∞ norm. We now show that this poly(γ) in the `∞ norm gives
rise to a poly(γ) disparity in one of the first 2(k + n− 1) raw moments of the distributions.
To accomplish this, we first show that there are at most 2(k + n − 1) zero-crossings of the
difference in densities, f(x) = Jα(F )(x) − Jα(F ′)(x), and construct a degree 2(k + n − 1)
polynomial p(x) that always has the same sign as f(x), and when integrated against f(x) is
at least poly(γ). We construct this polynomial so that the coefficients are bounded, and this
implies that there is some raw moment i (at most the degree of the polynomial) for which
the difference between the ith raw moment of Jα(F ) and of Jα(F ′) is large.

We start by showing that the difference in density functions, Jα(F )(x)−Jα(F ′)(x), has
relatively few zeros, for any α.

Proposition 11.5. Given f(x) =
∑m

i=1 aiN (µi, σ
2
i , x), the linear combination of m one-

dimensional Gaussian probability density functions, such that for i 6= j either σ2
i 6= σ2

j or
µi 6= µjand for all i, ai 6= 0, the number of solutions to f(x) = 0 is at most 2(m − 1).
Furthermore, this bounds is tight.

Using only the facts that quotients of probability density functions of Gaussians are
themselves Gaussian density functions and that the number of zeros of a function is at most
one more than the number of zeros of its derivative, one can prove that linear combinations
of m Gaussians have at most 2m zeros (see Lemma 11.8). However, since the number of
zeros dictates the number of moments that we must consider in our univariate estimation
problem, we will use slightly more powerful machinery to prove the tighter bound of 2(m−1)
zeros. Our proof of Proposition 11.5 will hinge upon the following fact:

Fact 11.6 (See, e.g. [69, 14]). Given f(x) : R → R, that is analytic and has n zeros, then
for any σ2 > 0, the function g(x) = f(x) ◦ N (0, σ2, x) has at most n zeros.

The intuition for the above fact is that g(x) is the solution to the following differential
equation (known as the heat equation) for an appropriately chosen value of t:

h(x, 0) = f(x),
d

dt
h(x, t) =

d2

dx2
h(x, t).

Intuitively, the above dynamics imply that local optima get smoothed out, rather than
reinforced; in particular, for any second order zero of h(x, t) (viewed as a function of x),
the dynamics will remove that zero by increasing h(x, t) according to d2

dx2h(x, t), rather than
creating an additional zero.

The following trivial lemma will be helpful in our proof of Proposition 11.5:

Lemma 11.7. Given a linear combination of Gaussians, f(x) :=
∑m

i=1 aiN (µi, σ
2
i , x), with

r zeros, there exists ε > 0 such that at least one of the following holds:
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• For all positive ε′ < ε, the function fε′(x) := (a1− ε′)N (µ1, σ
2
1, x) +

∑m
i=2 aiN (µi, σ

2
i , x)

has at least r zeros, with | d
dx
fε′(x)| > 0 for at least r zeros.

• For all positive ε′ < ε, the function fε′(x) := (a1 + ε′)N (µ1, σ
2
1, x) +

∑m
i=2 aiN (µi, σ

2
i , x)

has at least r zeros, with | d
dx
fε′(x)| > 0 for at least r zeros.

Proof. For any analytic function g(x) that is not identically zero, with zeros at x1, . . . , xr,
there exists δ > 0 such that neither g(x) nor d

dx
g(x) have any zeros within any of the sets

[xi − δ, xi + δ]. Consider the setting in which

|{i : g(x) ≥ 0,∀x ∈ [xi − δ, xi + δ]}| ≥ |{i : g(x) ≤ 0,∀x ∈ [xi − δ, xi + δ]}|,

and set α > 0 such that α ≤ |g(xi±δ)|. For any ε > 0 chosen such that maxx (ε · N (µ1, σ
2
1, x)) <

α, the function g(x) + ε · N (µ1, σ
2
1, x) will have at least r zeros, as the zeros of even mul-

tiplicity that are tangent to the axis from the upper half plane will each become a pair of
zeros. Additionally, the derivative at at least r zeros will be nonzero.

The setting in which

|{i : g(x) ≥ 0,∀x ∈ [xi − δ, xi + δ]}| < |{i : g(x) ≤ 0∀x ∈ [xi − δ, xi + δ]}|

yields the corresponding statement with the function g(x)− ε · N (µ1, σ
2
1, x), from which the

lemma follows.

Before proving Proposition 11.5, it will be helpful to establish that the number of zeros
of a linear combination of Gaussian density functions is bounded.

Lemma 11.8. The function f(x) =
∑m

i=1 aiN (µi, σ
2
i , x) has at most 2m zeros.

Proof. First observe that for σ2
1 < σ2

2, for any µ1, µ2, we have

q(x) :=
N (µ1, σ

2
1, x)

N (µ2, σ2
2, x)

= c · N (µ, σ2, x),

for µ =
σ2

2µ1−σ2
1µ2

σ2
2−σ2

1
, and σ =

σ2
1σ

2
2

σ2
2−σ2

1
, and some constant c.

We begin by proving the lemma in the case that σ2
i > σ2

j for all i < j. We then consider
the case that several components have equal variances. In addition to the above fact about
the quotients of Gaussians, we will use the following two elementary facts:

1. The number of zeros of any analytic function g(x) is at most one more than the number
of zeros of its derivative, d

dx
g(x).

2. For some degree d polynomial p(x),

d

dx
N (µ, σ2, x) · p(x) = N (µ, σ2, x) · q(x),

for some degree d+ 1 polynomial q(x).
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We now iteratively define the functions fj(x), which will have the form

fj(x) =

m−j∑
i=1

N (µj,i, σ
2
j,i, x) · pj,i(x)

for some polynomials pj,i.

• Let f0(x) = f(x) =
∑m

i=1 aiN (µi, σ
2
i , x).

• For j ≥ 1, define

fj :=
dαj+1

dxαj+1

(
fj−1(x)

N (µ, σ2, x)

)
,

where N (µ, σ2, x) is the Gaussian component with maximal variance in the expression
for fj−1, and αj is maxi(deg(pj−1,i)).

By the second item above, pj,i(x) is a polynomial with degree at most αj + 1 more than
the degree of pj−1,i(x), and since α1 = 0, αj ≤ 2j−1. From the first item above, fj(x) has at
most αj + 1 fewer zeros than fj−1(x). Since fm = 0, the number of zeros of f0(x) is bounded
by
∑m

j=1 αj ≤ 2m, as claimed.
To conclude, we consider a linear combination of m Gaussians, f(x), with the property

that σ2
i = σ2

j for some distinct pair i, j. Assume for the sake of contradiction that f(x) has at
least 2m− 1 zeros. Applying Lemma 11.7 yields that there is another linear combination of
at most m Gaussians, g(x), with at least 2m− 1 zeros and nonzero derivative at these zeros.
Since N (0, σ2, x) is continuous in σ2, for any sufficiently small δ > 0 the linear combination
resulting from modifying g(x) by increasing the variance of one of its components by δ will
still have at least 2m − 1 zeros with nonzero derivatives, and thus one can transform g(x)
into a linear combination of m components with distinct variances and having at least 2m−1
zeros, which contradicts the first part of our proof.

Proof of Proposition 11.5. We proceed by induction on m. The base case, where f(x) =
aN (µ, σ2, x) is trivial. The intuition behind the induction step is that we will consider the
linear combination of the m − 1 Gaussians of largest variance, except with all variances
decreased by that of the excluded component, of variance σ2. The addition of this mth
component, as essentially a Dirac delta function will add at most 2 zeros; we can then con-
volve all components by N (0, σ2, x) to obtain the original linear combination f(x); Fact 11.6
guarantees that this final convolution cannot increase the number of zeros. To make this
sketch rigorous, we must be slightly careful, as we cannot actually add a true delta function.

We now prove the induction step. For ease of exposition, we describe the case in which, for
i < m, σ2

i > σ2
m; the general case is identical, except that we will add in all the Gaussians of

variance equal to σ2
m, rather than just the single component. Let f(x) =

∑m
i=1 aiN (µi, σ

2
i , x)

denote the linear combination of m Gaussians. By Lemma 11.8 f(x) has are a finite number
of zeros, and hence we may apply Lemma 11.7 to yield that there is some constant c1 > 0
such that for any ε < c1, the linear combination obtained by decreasing a1 by ε will have
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at least as many zeros as f(x), with nonzero derivative at all zeros (the argument in the
case that a1 is incremented by ε, as in the second case of the statement of the Lemma 11.7
is analogous). Let g(x) := (a1 − c1/2)N (µ1, σ

2
1 − σ2

m, x) +
∑m−1

i=2 aiN (µi, σ
2
i − σ2

m, x); by
our induction hypothesis, g(x) has at most 2(m − 2) zeros. As this number is finite, there
exists some positive c2 < c1/2 such that gc2(x), the linear combination of m− 1 Gaussians,
whose first coefficient is a1 − c1

2
− c2, has nonzero derivative at all its zeros, and for which

gc2(µm) 6= 0, as the zero set of gε is finite, and the location of each zero is a monotone
function of ε within any sufficiently small interval around 0.

Define the function

h(x, ε) := (a1 −
c1

2
− c2)N (µ1, σ

2
1 − σ2

m + ε, x) +
m−1∑
i=2

aiN (µi, σ
2
i − σ2

m + ε, x)

and note that there exists some ε, δ > 0 such that for any positive ε′ < ε, the following
conditions hold:

• The magnitude of the derivative of h(x, ε′) with respect to x within distance δ of any
zero of the function is at least δ.

• The minimum magnitude of h(x, ε′) outside of a δ-ball around any zero of the function
is at least δ.

• For x ∈ [µm − δ, µm + δ], |h(x, ε′)| > 0.

The above three conditions guarantee that for a sufficiently small ε′, the function h(x, ε′)+
amN (µm, ε

′, x) has at most 2 more zeros than h(x, ε′), and hence at most 2(m − 1) zeros.
Consider the linear combination obtained by convolving each Gaussian with N (0, σ2

m−ε′, x);
by Fact 11.6 and the choice of c1, c2, the resulting linear combination has at least as many
zeros as the original linear combination f(x), completing the induction step.

To see that this bound is tight, consider

f(x) := mN (0,m2, x)−
m−1∑
i=1

N (i,
1

100
, x),

which is easily seen to have 2(m− 1) zeros.

Having bounded the number of zeros of the difference in probability densities of two
GMMs, we now argue that we can leverage the `∞ distance between Jα(F ) and Jα(F ′)
guaranteed by Lemma 11.4 into a discrepancy between the low order moments of these two
mixtures.

Lemma 11.9. Let F, F ′ be GMMs of n and k components, respectively, with condition
numbers at most 1/ε, and variances bounded by 2, and consider a positive constant γ ≤
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min
(
ε2, 1

100
, 1

(n+k)2

)
. Suppose without loss of generality that the Gaussian component of min-

imal variance is N (µ1, σ
2
1), and that for every i ∈ {1, . . . , k}, at least one of the following

holds:

• |µ1 − µ′i| > γ5

• |σ2
1 − σ′2i | > γ5

• |w1 − w′i| > γ.

Then there is some choice of α ≥ −γ4 and some moment i ∈ [2(n+ k − 1)] such that

|EJα(F )[x
i]− EJα(F ′)[x

i]| ≥ γ16(n+k)

4(n+ k − 1)
,

and in particular is poly(γ) for fixed n, k.

Proof. For some specific choice of α, define the function f(x) := Jα(F )(x) − Jα(F ′)(x).
We start by briefly sketching the idea of the proof: the proof will follow from applying
Lemma 11.4, which shows that an α can be chosen such that there exists some x∗ for which
|f(x∗)| is large; additionally, no component of f(x) will have variance that is too small, and
hence the magnitude of the derivative of f(x) can be uniformly bounded, and hence the
integral of the absolute value of f(x) will be large. We then apply Proposition 11.5 which
guarantees that f(x) has few zero crossings, and thus there exists a low degree polynomial
p(x) (defined by the zeros of f(x), such that f(x) · p(x) ≥ 0 for all x, allowing us to bound∫∞
−∞ f(x)·p(x). We then note that this integral is some linear combination of the discrepancies

in moments; indeed if p(x) = xj, then this integral would simply be the discrepancy in jth
moments. In order to bound the discrepancy in moments, we must ensure that the coefficients
of p(x) are not too large.

We now make the above sketch rigorous. Define the interval I := [− 2
γ
, 2
γ
], and assume

that there exists x∗ ∈ [− 3
2γ
, 3

2γ
] ⊂ I, constant b > 0, and positive c1 < c2 satisfying:

|f(x∗)| ≥ 1

b · γc1
, and sup

x∈R

∣∣∣∣ ddxf(x)

∣∣∣∣ ≤ 1

γc2
.

Consider the interval J := [x∗ − γc2−c1

2b
, x∗ + γc2−c1

2b
] ⊂ I, and observe that from our

lower bound on |f(x∗)| and our upper bound on the derivative of |f(x)|, the following two
properties must clearly hold:

1. f(x) has no zeros within the interval J ′ := [x∗ − γc2−c1

b
, x∗ + γc2−c1

b
] ⊃ J ,

2. minx∈J |f(x)| ≥ |f(x∗)|
2
≥ 1

2bγc1
,
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Define the polynomial p(x) = ±Πzi(x− zi) for all zeros zi ∈ I. We can then choose the
sign so that p(x)f(x) ≥ 0 for any x ∈ I. Thus∫

I

p(x)f(x)dx ≥
∫
J

p(x)f(x)dx.

From Proposition 11.5, f(x) has at most 2(n+k−1) zero crossings, and thus the polynomial
p(x) has degree at most 2(n + k − 1). Since f(x) has no zeros within J ′, for all x ∈ J,

|p(x)| ≥
(
γc2−c1

2b

)2(n+k−1)

. Combining this with the second fact above yields that

∫
J

p(x)f(x)dx ≥
(
γc2−c1

b

)
1

2bγc1

(
γc2−c1

2b

)2(n+k−1)

≥ γ(c2−c1)2(n+k)

(2b)2(n+k)
.

From the above, and the fact that each coefficient of p(x) is at most 22(n+k−1)(2/γ)2(n+k−1) =
22(n+k−1)

γ2(n+k−1) , we conclude that there is some i ∈ [2(n+ k − 1)] such that

|
∫
I

xif(x)dx| ≥ 1

2(n+ k − 1)
· γ

(c2−c1+1)2(n+k)

8n+kb2(n+k)
. (11.1)

We now consider what values of c1, c2 are implied by Lemma 11.4. Noting that

sup
x
|dN (µ, σ2, x)

dx
(x)| ≤ 1

σ2
√

2πe
≤ 1

2σ2
,

Lemma 11.4 guarantees that α can be chosen so as to either have c1 = 1, c2 = 4, and b = 8,

or c1 = 5, c2 = 12, and b = 1/2. In either case, Equation 11.1 is at least γ16(n+k)

2(n+k−1)
.

Using Corollary A.8 which gives bounds on the contributions of the tails of Gaussians to
the ith moment, since the mixtures F, F ′ have condition numbers at most 1/ε and hence mix-
ing weights at least ε, and have variance at most 2, all component means lie within [−2/ε, 2/ε],

and variances are at most 2/ε, and hence we have that
∫
R\I x

if(x)dx ≤ ·4ii
√
i!γ−2ie

− 1
4γ2 . The

lemma now follows from noting that for γ in the prescribed range this is easily bounded by
γ16(n+k)

4(n+k−1)
.

We now consider what effect the transformation Jα has on the distance between a pair of
GMMs. Unfortunately, the transformation Jα does not preserve the total variational distance
between the two distributions. However, we show that it, at least roughly, preserves (up to
a polynomial) the disparity in low-order moments of the distributions.

Lemma 11.10. Given GMMs F, F ′, and some α ≤ 1 that is at most the minimum variance
of any Gaussian component of F or F ′, then

|Mk (Jα(F ))−Mk (Jα(F ′)) | ≤ 2
(k − 1)!

bk/2c!

k∑
i=1

|Mi(F )−Mi(F
′)|,
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The proof of the above lemma follows easily from the observation that the moments of
F and Jα(F ) are related by a simple linear transformation.

Proof. Let X be a random variable with distribution Jα (N (µ, σ2)), and Y a random variable
with distributionN (µ, σ2). From definition 11.3 and the fact that the sum of two independent
Gaussian random variables is also a Gaussian random variable, it follows that Mi(Y ) =
Mi(X + Z), where Z is a random variable, independent from X with distribution N (0, α).
From the independence of X and Z we have that

Mi(Y ) =
i∑

j=0

(
i

j

)
Mi−j(X)Mj(Z).

Since each moment Mi(N (µ, σ2)) is some polynomial of µ, σ2, which we shall denote by
mi(µ, σ

2), and the above equality holds for some interval of parameters, the above equation
relating the moments of Y to those of X and Z is simply a polynomial identity:

mi(µ, σ
2) =

i∑
j=0

(
i

j

)
mi−j(µ, σ

2 − β)mj(0, β).

Given this polynomial identity, if we set β = −α, we can interpret this identity as

Mi(X) =
i∑

j=0

(
i

j

)
Mi−j(Y ) (cjMj(Z)) ,

where cj = ±1 according to whether j is a multiple of 4 or not.
Consider |Mi (Jα(F )) −Mi (Jα(F ′)) |; from above, and by linearity of expectation, we

get

|Mi (Jα(F ))−Mi (Jα(F ′)) | ≤
i∑

j=0

(
i

j

)
(Mi−j(F )−Mi−j(F

′)) cjMj(N (0, α))

≤

(
i∑

j=0

(
i

j

)
|Mi−j(F )−Mi−j(F

′)|

)
max

j∈{0,1,...,k−1}
|Mj(N (0, α))|.

In the above we have used the fact that Mk(N (0, α))) can only appear in the above sum
along with |M0(F ) −M0(F ′)| = 0. Finally, using the facts that

(
i
j

)
< 2j, and expressions

for the raw moments of N (0, α) given by Equation (A.1), the above sum is at most 2k ·
(k−1)!αk/2

2k−1bk/2c!
∑k

i=0 |Mj−i(F )−Mj−i(F
′)|, which completes the proof.

We are now equipped to put the pieces together and begin our induction proof of our
main technical theorem.
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Proof of Theorem 11.2. The base case for our induction is when n = k = 1, and follows from
the fact that given parameters µ, µ′, σ2, σ′2 such that |µ− µ′|+ |σ2 − σ′2| ≥ ε, by definition,
one of the first two moments of N (µ, σ2) differs from that of N (µ′, σ′2) by at least ε/2.

For the induction step, assume the for all pairs of mixtures where one element of the
pair has at most n components, and the other has at most k components, that satisfy the
conditions of the theorem, at least one of the first 2(n + k − 1) moments differ by at least
f(ε, n+k) = O(ε16n+k

), where the hidden constant is a function of n, k and is independent of
ε. Consider mixtures F, F ′, mixtures of n′, k′ Gaussians, respectively, where either n′ = n+1,
or k′ = k + 1, and either n′ = n or k′ = k, and assume they satisfy the conditions of the
theorem. Assume without loss of generality that σ2

1 is the minimal variance in the mixtures,
and that it occurs in mixture F .

We first consider the case that there exists a component of F ′ whose mean, variance,
and weight match µ1, σ

2
1, w1 to within an additive x, where x is chosen so that each of the

first 2(n + k) moments of any pair of Gaussians whose parameters are within x of each
other, differ by at most f(ε/2, n + k − 1)/2. Hence by Lemma A.17,it suffices to choose an
x = O(εn+k−1f(ε/2, n + k − 1)). Since Lemma A.17 requires that σ2

1 ≥
√
x, if this is not

the case, we convolve the pair of mixtures by N (0, ε), which by Lemma 11.10 changes the
disparity in low-order moments by a constant factor (dependent on n, k).

Now, consider the mixtures H,H ′, obtained from F, F ′ by removing the two nearly-
matching Gaussian components, and rescaling the weights so that they still sum to 1. The
pair H,H ′ will now be mixtures of k′ − 1 and n′ − 1 components, and will have condition
numbers at most 1/(ε − ε2), and the discrepancy in their first 2(n′ + k′ − 2) moments is at
most f(ε/2, n+ k − 1)/2 different from the discrepancy in the pair F, F ′. By our induction
hypothesis, there is a discrepancy in one of the first 2(n′ + k′ − 3) moments of at least
f(ε/2, n+ k − 1) and thus the original pair F, F ′ will have discrepancy in moments at least
half of this.

In the case that there is no component of F ′ that matches µ1, σ
2
1, w1, to within the desired

accuracy x, we can apply Lemma 11.4 with γ = x, and thus by Lemma 11.9 there exists
some α such that in the transformed mixtures Jα(F ),Jα(F ′), there is a O(x16(j+k)) disparity
in the first 2(k + n− 1) moments. By Lemma 11.10, this disparity in the first 2(k + n− 1)
moments is related to the disparity in these first 2(k + n − 1) moments of the original pair
of mixtures, by a constant factor (dependent on j, k). Thus, up to constant factors, we must

have f(x,m) < (f(x/2,m− 2))16m , and thus taking f(x,m) = x(O(m))m/2 suffices.

11.3 The Basic Univariate Algorithm

In this section we formally state the Basic Univariate Algorithm, and prove its cor-
rectness. In particular, we will prove the following corollary to the polynomially robust
identifiability of GMMs (Theorem 11.2).

Theorem 11.3. For ε < 1/k, suppose we are given access to independent draws from a
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GMM

F =
k∑
i=1

wiN (µi, σ
2
i )

with condition number κ(F ) ≤ 1
ε
, with variance in [1/2, 2]. The Basic Univariate Algo-

rithm, when run with appropriate parameters will have runtime and sample size bounded by
ε(O(k))k log 1

δ
, and with probability at least 1 − δ will output mixture parameters ŵi, µ̂i, σ̂i

2,
such that there is a permutation π : [k]→ [k] for which

|wi − ŵπ(i)| ≤ ε, |µi − µ̂π(i)| ≤ ε, |σ2
i − σ̂2

π(i)| ≤ ε for each i = 1, . . . , k .

Algorithm 11.11. Basic Univariate Algorithm
Input: k, m, γ, ε, probability of failure δ, and sample oracle SA(F ).

1. Take m draws from SA(F ), and compute the first 4k − 2 sample moments,

m̂1, . . . , ˆm4k−2.

2. Iterate through the entire set of candidate parameter vectors of the form F̃ =
(w̃1, µ̃1, σ̃1

2, . . . , w̃k, µ̃k, σ̃k
2) satisfying:

• All the elements are multiples of γ,

• w̃i ≥ ε/2, and
∑
i w̃i = 1,

• each pair of components has parameter distance at least ε/2.

• |µ̃i|, |σ̃i2| ≤ 2/ε.

3. Compute the first 4k − 2 moments of mixture F̃, m̃1, . . . , ˜m4k−2.

4. If for all i ∈ {1, . . . , 4k − 2}, |m̃i − m̂i| ≤ α, then return F̃ , which will have

the property that each returned parameters will match the corresponding true

parameters to within ε/2, with high probability.

If the above algorithm outputs ε/2-accurate parameters with probability of success >
0.9, to boost the probability of success to 1 − δ, repeat the entire previous algorithm

log 1
δ times; letting F̃i denote the parameter set returned by the ith run, for each

candidate parameter vector (µ, σ2, w) given in a F̃i, output that parameter vector

if there are at least 1
4 log 1

δ runs for which F̃i contains a component whose mean,

variance, and mixing weight all match to within ε/2, and for which no parameters

matching to within ε has previously been output.

Our proof of the above theorem will follow from these three step: first, basic concentration
bounds will show that with high probability, the first 4k − 2 sample moments will be close
to the corresponding true moments. Next, we show that it suffices to perform a brute-
force search over a polynomially–fine mesh of parameters in order to ensure that at least
one point (ŵ1, µ̂1, σ̂1

2, . . . , ŵk, µ̂k, σ̂k
2) in our parameter-mesh will have moments that are

each sufficiently close to those of the true parameters. Finally, we will use Theorem 11.2
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to conclude that the recovered parameter set (µ̂1, σ̂1
2, . . . , µ̂k, σ̂k

2) must be close to the true
parameter set, because the first 4k−2 moments nearly agree. We now formalize these pieces.

Lemma 11.12. Let x1, x2, . . . , xm be independent draws from a univariate GMM F with
variance at most 2, and each of whose components has weight at least ε. With probability
≥ 1− β, ∣∣∣∣∣ 1

m

m∑
i=1

xki − Ex∼F [xk]

∣∣∣∣∣ ≤ 1

mβ2
O(ε−2k),

where the hidden constant in the big-Oh notation is a function of k.

Proof. By Chebyshev’s inequality, with probability at least 1− β,(
1

m

m∑
i=1

xji − Ex∼F [xj]

)2

≤ 1

β
E

( 1

m

m∑
i=1

xji − Ex∼F [xj]

)2
 .

We now bound the right hand side. By definition, Ex1,...,xm

[
1
m

∑m
i=1 x

j
i − Ex∼F [xj]

]
= 0.

Since the variance of a sum of independent random variables is the sum of the variances,

E

( 1

m

m∑
i=1

xji − Ex∼F [xj]

)2
 =

1

m
Ex∼F

[(
xj − Ex∼F [xj]

)2
]

≤ 1

m
Ex∼F [x2j].

To conclude, we give a very crude upper bound on the qth moment of F ; since F has
variance at most 2 and mixing weights at least ε, the mean and variance of each component
has magnitude at most 2/ε. Since the qth moment of a N (µ, σ2) is a polynomial in µ, σ of
total degree at most q, and coefficients given by a function of q (see Claim A.16), Ex∼F [xq]
can be bounded by O((2/ε)q) where the constant in the big-Oh notation hides a function of
q.

We now argue that a polynomially-fine mesh suffices to guarantee that there is some
parameter set in our mesh whose first 4k−2 moments are all close to the corresponding true
moments.

Lemma 11.13. Given a GMM F with k components, whose means and variances are
bounded in magnitude by 2/ε, and weights are least ε, for γ = α · ε4k there exists a GMM F̂
with at most k components, all of whose components’ means, variances, and mixing weights
multiples of γ, such that each of the first 2(2k− 1) moments of F and F̂ differ in magnitude
by at most O(α), where the hidden constant is a function of k.
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Proof. Consider F̂ defined by rounding the means, variances, and weights of the components
of F (ensuring that the weights still sum to 1). As above, the ith moment of each component
is a polynomial in µ, σ of total degree at most i, and coefficients bounded by i!. Thus
changing the mean or variance by at most γ will change the ith moment by at most.

i! · i
(
(2/ε+ γ)i − (2/ε)i

)
≤ ii(2/ε)i

(
(1 + γε/2)i − 1

)
≤ ii(2/ε)i(e2iγε − 1)

≤ (2i/ε)i(4iγε), since ex − 1 < 2x for x < 1/2

Thus if we used the true mixing weights, the error in each moment of the entire mixture
would be at most k times this. To conclude, note that for each mixing weight |wj − ŵj| ≤ γ,
and since, as noted in the proof of the previous lemma, each moment is at most O(ε−i)
(where the hidden constant depends on i), thus the rounding of the weight will contribute
at most an extra O(γε−i). Adding these bounds together, yields the lemma.

We now piece together the above two lemmas to prove Theorem 11.3.

Proof of Theorem 11.3. Given a desired moment accuracy α ≤ ε, by applying a union bound
to Lemma 11.12, O(αε−8kδ−2) examples suffices to guarantee that with probability at least
1−δ, the first 4k−2 sample moments are within α from the true moments. By Lemma 11.13,
setting γ = αεO(k) yields mesh of parameters that are multiples of γ and suffice to recover
a set of parameters (ŵ1, µ̂1, σ̂1

2, . . . , ŵk, µ̂k, σ̂k
2) whose first 4k − 2 sample moments will all

be within α from the sample moments, and hence within 2α from the true moments, with
probability at least 1− δ.

To conclude, note that the pair of mixtures F, F̂ , have condition numbers at most 2/ε, and
thus if their first 4(k− 1) moments agree to within the accuracy specified by Theorem 11.2,
the theorem will guarantees that the recovered parameters must be accurate to within ε;
thus it suffices to set α = ε(O(k))k .

11.4 Exponential Dependence on k is Inevitable

In this section, we present a lower bound, showing that an exponential dependence on the
number of Gaussian components in each mixture is necessary, even for mixtures in just one
dimension. We show this by giving a simple construction of two 1-dimensional GMMs, F1, F2

that are mixtures of at most m Gaussians, have condition numbers at most 2m, and the
parameter distance between the pair of distributions is at least 1/(2m), but nevertheless
Dtv(F1, F2) ≤ e−Θ(m) = e−Θ(κ(F )), for sufficiently large m. The construction hinges on
the inverse exponential (in k ≈

√
m) total variational distance between N (0, 2), and the

mixtures of infinitely many Gaussians of unit variance whose components are centered at
multiples of 1/k, with the weight assigned to the component centered at i/k being given
by N (0, 1, i/k). Verifying that this is true is a straight-forward exercise in Fourier analysis.
The final construction truncates the mixture of infinitely many Gaussians by removing all
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the components with centers a distance greater than k from 0. This truncation clearly has
negligibly small effect on the distribution. Finally, we alter the pair of distributions by adding
to both distributions, Gaussian components of equal weight with centers at −k, (−k2 +
1)/k, (−k2 +2)/k, . . . , k, which ensures that in the final pair of distributions, all components
have significant weight.

Proposition 11.14. There exists a pair F1, F2 of mixtures of at most k2 + 1 Gaussians
with κ(F1), κ(F2) ≤ 4k2 + 2, and parameter distance Dpar(F1, F2) ≥ 1

4k2+2
but for which

Dtv(F1, F2) ≤ 11ke−k
2/24.

The following lemma will be helpful in the proof of correctness of our construction.

Lemma 11.15. Let Hk(x) := ck
∑∞

i=−∞N (0, 1/2, i/k)N (i/k, 1/2, x), where ck is a constant
chosen so as to make Hk a distribution.

||Hk(x),N (0, 1, x)||1 ≤ 10ke−k
2/24.

Proof. The probability density function Hk(x) can be rewritten as

Hk(x) =
(
ckC1/k(x)N (0, 1/2, x)

)
◦ N (0, 1/2, x),

where C1/k(x) denotes the infinite comb function, consisting of delta functions spaced a
distance 1/k apart, and ◦ denotes convolution. Considering the Fourier transform, we see
that

Ĥk(s) = ckk (Ck(s) ◦ N (0, 2, s))N (0, 2, s).

It is now easy to see that why the lemma should be true, since the transformed comb has
delta functions spaced at a distance k apart, and we’re convolving by a Gaussian of variance
2 (essentially yielding nonoverlapping Gaussians with centers at multiples of k), and then
multiplying by a Gaussian of variance 2. The final multiplication will nearly kill off all the
Gaussians except the one centered at 0, yielding a Gaussian with variance 1 centered at the
origin, whose inverse transform will yield a Gaussian of variance 1, as claimed.

To make the details rigorous, observe that the total Fourier mass of Ĥk that ends up
within the interval [−k/2, k/2] contributed by the delta functions aside from the one at the
origin, even before the final multiplication by N (0, 2), is bounded by the following:

2ckk
∞∑
i=1

∫ ∞
(i−1/2)k

N (0, 2, x)dx = 2ckk
∞∑
i=1

∫ ∞
(i−1/2)k/

√
2

N (0, 1, x)dx

≤ 2ckk
∞∑
i=1

1√
π(i− 1/2)k

e−(i−1/2)2k2/2

≤ 4cke
−k2/8 ≤ 4e−k

2/8.
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Additionally, this `1 fourier mass is an upper bound on the `2 Fourier mass. The total `1

Fourier mass (which bounds the `2 mass) outside the interval [−k/2, k/2] contributed by the
delta functions aside from the one at the origin is bounded by

2ck

∫ ∞
k/2

2 max
y

(N (0, 2, y))N (0, 2, x)dx ≤ 4ck

∫ ∞
k/2

N (0, 2, x)dx

≤ 4ck

∫ ∞
k/(2
√

2)

N (0, 1, x)dx

≤ 4ck
2

k
√
π
e−k

2/8 ≤ 4
2

k
√
π
e−k

2/8

Thus we have that

||Ĥk − ckkN (0, 2)N (0, 2)||2 = ||Ĥk − ckk
1

2
√

2π
N (0, 1)||2

≤ 4e−k
2/8 + 4

2

k
√
π
e−k

2/8

From Plancherel’s Theorem: Hk, the inverse transform of Ĥk, is a distribution, whose `2

distance from a single Gaussian (possibly scaled) of variance 1 is at most 8e−k
2/8. To translate

this `2 distance to `1 distance, note that the contributions to the `1 norm from outside the
interval [−k, k] is bounded by 4

∫∞
k
N (0, 1, x)dx ≤ 4 1

k
√

2π
e−k

2/2. Since the magnitude of the

derivative of Hk − ckk 1
2
√

2π
N (0, 1), is at most 2 and the value of Hk(x)− ckk 1

2
√

2π
N (0, 1, x)

is close to 0 at the endpoints of the interval [−k, k], we have(
max

x∈[−k,k]
(|Hk(x)− ckk

1

2
√

2π
N (0, 1, x)|)

)3

/(12) ≤
∫ k

−k
|Hk(x)− ckkN (0, 1, x)|2dx,

which, combined with the above bounds on the `2 distance, yields maxx∈[−k,k](|Hk(x) −
ckk

1
2
√

2π
N (0, 1, x)|) ≤ (72e−k

2/8)1/3. Thus we have

||Hk(x)− ckk
1

2
√

2π
N (0, 1, x)||1 ≤ 4

1

k
√

2π
e−k

2/2 + (2k)(72e−k
2/8)1/3.

The lemma follows from the additional observation that

||N (0, 1)− ckk
1

2
√

2π
N (0, 1)||1 = min

p(x)
(||ckk

1

2
√

2π
N (0, 1)− p(x)||1),

where the minimization is taken to be over all functions that are probability density functions.

Proof of Proposition 11.14. We will construct a pair of GMMs F1, F2, that are mixtures of
k2 + 1 Gaussians, whose total variational distance is inverse exponential in O(k2), yet whose
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condition numbers are O(k2), and parameter distances are at least 1/2k. Let

F1 =
1

2
N (0, 1/2) +

1

2(2k2 + 1)

k2∑
i=−k2

N (i/k, 1/2),

F2 =
1

2
c′k

k2∑
i=−k2

N (0, 1/2, i/k)N (i/k, 1/2) +
1

2(k2 + 1)

k2∑
i=−k2

N (i/k, 1/2),

where c′k is a constant chosen so as to make c′k
∑k2

i=−k2 N (0, 1/2, i/k)N (i/k, 1/2) a distri-
bution. Clearly the pair of distributions has condition number at least 4k2 + 2, since all
weights are at least 1/(4k2 + 2), and the components have means that differ by 1/k. Finally,
the Gaussian component of F1 centered at 0 can not be paired with any component of F2

without having a discrepancy in parameters of at least 1/2k.
We now argue that F1, F2 are close in variational distance. Let

F ′2 = c′k

k2∑
i=−k2

N (0, 1/2, i/k)N (i/k, 1/2).

Note that
∫∞
k
Hk(x)dx ≤

∫∞
k
N (0, 1/2, x)2 maxy(N (0, 1/2, y))dx ≤ 2

√
2

k
√
π
e−k

2 ≤ 2e−k
2
, and

thus ||F ′2 −Hk||1 ≤ 8e−k
2
, and our claim follows from Lemma 11.15.
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Chapter 12

Learning Mixtures of Gaussians in
High Dimension

We describe a polynomial-time GMM learning algorithm—we emphasize that throughout,
we favor clarity of presentation and ease of analysis at the cost of impracticality. The
algorithm is based on the random projection method (see, e.g., [133]). Since the projection
of a multivariate Gaussian onto one dimension is a Gaussian distribution, the projection
of a GMM is a GMM in one dimension. Roughly, our algorithm proceeds by projecting
the data onto a sequence of vectors, solving the associated sequence of one–dimensional
learning problems, and then reconstructing the solution to the original high–dimensional
GMM problem, as depicted in Figure 12.1.

There are several obstacles that must be surmounted to consummate this approach.
First and foremost, is the question of solving the problem in one dimension, which we have
accomplished in Chapter 11. Supposing one has an efficient algorithm for the one dimensional
problem, a second obstacle in our high–level approach is ensuring that the projected data
that are given as inputs to the one–dimensional algorithm are meaningful. Consider, for
example, a GMM that consists of two Gaussian components that have identical covariances,
but different means. If, unluckily, we project the data onto a vector orthogonal to the
difference in the means, then the resulting one–dimensional mixture will have just a single
component. Further complicating this concern is the existence of GMMs, such as that
depicted in Figure 12.2, for which two or more essentially non-overlapping components will,
with very high probability, project to nearly identical Gaussians in a random projection.
How can we hope to disentangle these components if, in nearly every projection, they are
indistinguishable?

We demonstrate that this problem can only arise for mixtures in which some components
are extremely “skinny” (i.e. have small minimum eigenvalue of their covariance matrices), in
comparison with the overall covariance of the mixture. When this condition holds, however,
we show that a clustering-based approach will be successful. Specifically, when this condition
is met, we will be able to partition the sample points into two sets, such that the Gaussian
components from which the sample points in the first set were drawn are (nearly) disjoint
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Figure 12.1: Illustration of the high–level approach: 1. project the data onto a series of
vectors and learn the parameters of the resulting one dimensional GMMs, 2. determine a
consistent labeling between the components of the recovered one dimensional GMMs, and
3. for each component, combine the recovered one dimensional parameters to reconstruct an
estimate of the high dimensional parameters.

from the set of components from which the second set of sample points were drawn. Thus
this partition of the sample corresponds to a partition of the GMM into two sub-mixtures;
we can then apply our algorithm recursively to each of these two sets.

For clarity of exposition, in Section 12.1 we first describe a simplified version of our
algorithm that does not require the clustering and recursion steps, though has slightly weaker
performance guarantees. In Section 12.2, we describe the full algorithm.

Statement of Main Theorem

The input to our algorithm is a sample set of n points in d dimensions, drawn independently
from GMM F =

∑k
i=1wiFi, where each Fi = N (µi,Σi) is a distinct d-dimensional Gaussian

with mean µi ∈ Rd and covariance matrix Σi ∈ Rd×d.
To measure the distance between Gaussians N (µ,Σ) and N (µ′,Σ′), we employ the total

variational distance, as opposed to the discrepancy in parameters as in Chapter 11. The
main strength of total variational distance as a metric is that it measures the information
theoretic similarity of two distributions. As such, total variational distance is scale invariant
and affine invariant. This will prove particularly useful in this chapter, as we will perform
several affine transformations as we peel apart the GMM in question.

Theorem 12.1. For every k ≥ 1, there is a constant, ck, dependent on k, such that the
following holds: for any ε, δ > 0, and d-dimensional GMM F =

∑k′

i=1wiFi with k′ ≤ k
components, and n >

(
d
ε

)ck log 1
δ
, the estimation algorithm when run on a sample consisting
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of n points independently drawn from F, outputs GMM F̂ =
∑k̂

i=1 ŵiF̂i such that, with
probability ≥ 1− δ, the following conditions hold:

• Dtv(F, F̂ ) ≤ ε.

• If, for all i ∈ [k′], wi > ε, and for all i 6= j, Dtv(Fi, Fj) > ε, then k̂ = k′ and there is a
permutation π of [k′] such that for all i ≤ k′:

|wi − ˆwπ(i)| ≤ ε, and Dtv(Fi, ˆFπ(i)) ≤ ε.

Additionally, the runtime of the algorithm is polynomial in the sample size, n.

While our success metric is affine-invariant, our proofs will need to refer to specific dis-
crepancies in parameters. We will often work with the discrepancy in covariance matrices in
terms of the Frobenius distance, which we define below. While the Frobenius norm is clearly
not invariant to scaling, it is invariant to orthonormal changes of basis.

Definition 12.1. The Frobenius norm of a real-valued matrix A is defined as

||A||Fr :=

√∑
i,j

A2
i,j.

Additionally, the Frobenius distance between matrices A,B is defined to be DFr(A,B) :=
||A−B||Fr.

12.1 A Simple Algorithm

We start by describing a simple algorithm that illustrates our approach to learning GMMs.
While the performance guarantees of this algorithm are slightly weaker than those of the full
algorithm, described in Section 12.2, the mechanics of the reduction of the high–dimensional
problem into a series of one–dimensional learning problems is more clear.

The goal is to obtain, for each component in the mixture, an estimate of this compo-
nent’s mean and covariance matrix when projected onto many different directions. For each
component, we can then use these estimates to set up a system of linear constraints on the
high–dimensional mean and covariance matrix of the component. This system can then be
solved, yielding good estimates for these high–dimensional parameters.

We choose a vector v uniformly at random from the unit sphere and d2 perturbations
v1,1 . . . , vd,d of v. For each direction vi,j, we project the mixture onto direction vi,j and
run our one–dimensional learning algorithm. Hence we obtain a set of d2 parameters of
one–dimensional mixtures of k Gaussians. We must now label the components of these d2

mixtures consistently, such that for each i = 1, . . . , k, the ith Gaussian component in one of
the d2 one–dimensional mixtures corresponds to the projection of the same high-dimensional
component as the ith component of all the other one–dimensional mixtures.
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In the general setting to which the full-algorithm of Section 12.2 applies, we will not
always be able to do this consistent labeling. For the purposes of our simple high–dimensional
learning algorithm, we will assume two conditions that will make consistent labeling easy.
Specifically, we assume that all pairs of components differ in total variational distance by
at least ε, and that all components are sufficiently “fat”—the minimum eigenvalue of any
components’ covariance matrix is bounded below. These conditions together imply that the
parameters of each pair of components must differ significantly (by some poly(ε)).

We then show that if each pair of components – say, N (µ,Σ) and N (µ′,Σ′) – has either
||µ−µ′||2 > γ, or ||Σ−Σ′||Fr > γ, then with high probability over a randomly chosen direction
v, the projected means or projected variances will differ by at least poly(γ, 1

d
). Thus we will

be able to run our basic univariate algorithm, Algorithm 11.11, on the projected GMM.
Additionally, this discrepancy in the parameters of the projected mixtures makes consistent
labeling easy. Since these parameters differ in our projection onto v, and each vi,j is a small
perturbation of v, the projection of any high-dimensional component onto v and vi,j will
be similar, and thus we simply need to ensure that with high probability the discrepancy
in the projected components will be significantly larger than the variation in parameters of
components between their projection onto v and vi,j.

For each component in the original mixture, after labeling, we have an estimate of
the component’s mean and variance when projected onto each direction vi,j. The one–
dimensional parameters of the projection of a Gaussian are related to the high–dimensional
parameters by a system of linear equations. We show in Lemma 12.9 that this system is
sufficiently well conditioned so as ensure that if our one–dimensional estimates are suffi-
ciently accurate, we can solve this system to obtain good estimates for the high–dimensional
parameters.
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Algorithm 12.2. The Simple High Dimensional Algorithm
Given a sample from a GMM in d dimensions with at most k components, target accuracy

and probability of failure ε, δ:

Let ε2 =
(
ε
d

)10
, ε3 = (ε2)10.

• Choose a random orthonormal basis (b1, . . . , bd), and let v := 1√
d

∑d
i=1 bi.

• For all pairs i, j ∈ {1, . . . , d}, let vi,j := v + ε2(bi + bj).

• For all pairs i, j, project the sample points onto vi,j , run the Basic Univariate

Algorithm (Algorithm 11.11) on the resulting one--dimensional data with target

accuracy ε3 and probability of failure < ε2, and let Pi,j := ({µ1, σ1, w1}, . . .) be the

returned parameters.

• For each m = 1, 2, . . . , k let µ
(0,0)
m , σ

(0,0)
m , w

(0,0)
m be the recovered parameters of the

mth component of P0,0. For each pair i, j ≥ 1 let µ
(i,j)
m , σ

(i,j)
m , w

(i,j)
m be the recovered

parameters from Pi,j of the component whose parameters are closest, in Euclidean

distance, to (µ
(0,0)
m , σ

(0,0)
m , w

(0,0)
m ).

• For each m = 1, . . . , k, let ŵm = median(w
(i,j)
m ), let µ̂m, Σ̂m be the output of

running Reconstruct (Algorithm 12.3) on input µ
(i,j)
m , σ

(i,j)
m , ε2

• If wi < ε, disregard component i.

If the above algorithm outputs ε/2-accurate parameters with probability of success

> 0.9, to boost the probability of success to 1 − δ, repeat the entire previous

algorithm log 1
δ times; letting F̃i denote the parameter set returned by the ith run,

for each candidate parameter vector (µ,Σ, w) given in a F̃i, output that parameter

vector if there are at least 1
4 log 1

δ runs for which F̃i contains a component whose

mixing weight matches to within ε/2, and that is at most ε/2 far in total variational

distance, and for which no component whose total variational distance is within ε has

previously been output.
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Algorithm 12.3. Reconstruct
Given basis B = (b1, . . . , bd), and for all pairs i, j ∈ [d]∪{(0, 0)}, µ(i,j), σ(i,j) corresponding

to projections onto vectors vi,j := v + ε(bi + bj):

• Define

µ̂ :=
∑
i

µ(i,i) − µ(0,0)

2ε
bi.

• Define Si := 1
d

∑d
j=1 σ

(i,j), and S := 1
d2

∑d
i,j=1 σ

(i,j).

• Define matrix V by setting the i, jth entry to be

Vi,j :=

√
d(S − Si − Sj)
2ε2(ε+

√
d)

− σ(i,i) + σ(j,j)

4ε2(ε+
√
d)
− S

2ε
√
d

+
σ(i,j)

2ε2
.

• Output µ̂, Σ̂, where

Σ̂ := B

(
arg min

M�0
||M − V ||Fr

)
B†,

is obtained by projecting V onto the set of positive semidefinite (symmetric)

matrices and then changing basis from B to the standard basis.

Performance of the Simple Algorithm

The following proposition characterizes the performance of the Simple High Dimensional
Algorithm (Algorithm 12.2).

Proposition 12.4. There exists a constant, ck dependent on k, such that given n indepen-
dent draws from a GMM F =

∑k′

i=1wiFi, with k′ ≤ k components in d dimensions, with
probability at least 1 − δ the simple high dimensional algorithm, when run on inputs k, ε, δ
and the n sample points, will return a GMM F̂ =

∑k′

i=1 ŵiF̂i such that there exists a labeling
of the components such that for all i :

|wi − ŵi| ≤ ε, Dtv(Fi, F̂i) ≤ ε ||µi − µ̂i|| ≤ ε, ||Σi − Σ̂i||Fr < ε,

provided:

• for all i ≤ k′, wi > ε,

• for all i ≤ k′, for Fi = N (µi,Σi), the minimum eigenvalue Σi is at least ε.

• for all i, j ≤ k′, Dtv(Fi, Fj) > ε,

• n >
(
d
ε

)ck log 1
δ
,

• the covariance of the mixture has all eigenvalues in the interval [1/2, 2].
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The runtime of the estimation algorithm is polynomials in the size of the sample.

The performance guarantees of this algorithm differ from those of our more general
algorithm, Algorithm 12.10, in two senses: first, the above algorithm requires that all mixing
weights and pairwise variational distances between components is at least ε, and secondly,
the above algorithm requires a lower bound on the minimum eigenvalue of each component’s
covariance matrix.

Proposition 12.4 follows from the following sequence of lemmas. First, in Lemma 12.5,
we show the basic fact that, given the lower bound on the minimum eigenvalue of each com-
ponent’s covariance, the large total variational distance between components implies that
either the mean or covariance are significantly different. Then, in Fact 12.6 and Lemma 12.7,
we establish that if two multivariate Gaussians have sufficiently different means or covari-
ances, with high probability their projections onto a randomly chosen unit vector will also
have significantly different means and variances, and hence the output of running the basic
univariate algorithm on the projections of the high dimensional data will be accurate. We
then show that the returned set of 1-dimensional parameters corresponding to the projection
of the GMM can be consistently partitioned so that for each high-dimensional component,
we have a list of accurate estimates of the projection of the mean and covariance onto the
d2 +1 vectors. Finally, in Lemma 12.9, we argue that these accurate estimates can be used to
accurately reconstruct the high dimensional mean and covariance for each component. Since,
by assumption, each of the components has a covariance matrix whose minimal eigenvalue
is lower bounded, as Lemma 12.5 shows, if the recovered means and covariances are close in
Euclidean and Frobenius distance, they are also close in total variational distance.

Lemma 12.5. For G1 = N (µ1,Σ1), G2 = N (µ2,Σ2), such that Dtv(G1, G2) > γ, if the
minimum eigenvalue of Σ1 is at least λ∗, then:

||µ1 − µ2|| ≥
√
λ∗√
2
γ, or ||Σ1 − Σ2||Fr ≥

λ∗

8d
γ2.

Proof. By Fact A.15, we have

γ2 ≤ (Dtv(N (µ1,Σ1),N (µ2,Σ2))2 ≤
d∑
i=1

(λi +
1

λi
− 2) + (µ1 − µ2)†Σ−1

1 (µ1 − µ2),

where the λi are the eigenvalues of Σ−1
1 Σ2. If the discrepancy in the means contributes at

least γ2/2 to this quantity, as the minimum eigenvalue of Σ1 is at least λ∗, we have that
||µ1−µ2||2

λ∗
≥ γ2

2
, implying the claimed discrepancy in the means.

If the discrepancy in means contributes less than γ2/2, then the contribution from the
eigenvalues of Σ−1

1 Σ2 must contribute at least γ2/2, and hence trivially there is some eigen-

value λi for which |λi − 1| ≥ γ2

8d
. Thus letting v be the corresponding unit eigenvector,

Σ2v = λiΣ1v, hence ||(Σ2 − Σ1)v|| ≥ λ∗|λi − 1|, since the minimum eigenvalue of Σ1 is
bounded below by λ∗. Hence ||Σ1 − Σ2||Fr ≥ λ∗|λi − 1|, from which the lemma follows.
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The following standard fact about random unit vectors guarantees that if the means of
two components differ significantly, then with high probability, they will also differ in any
projection.

Fact 12.6. (See Lemma 1 of [45]) For any µ1, µ2 ∈ Rd,

Pr
v∈Sd−1

[
|v · (µ1 − µ2)| ≤ δ

||µ1 − µ2||√
d

]
≤ δ.

The following basic lemma is the analogous fact about covariance matrices.

Lemma 12.7. For any d× d symmetric matrix X,

Pr
u∈Sd−1

[
u†Xu ∈ [−β, β]

]
≤ δ, for β :=

||X||Frδ3

27d2
.

Proof. Consider drawing v = (v1, . . . , vd) from the spherical Gaussian, by choosing each
coordinate independently from N (0, 1). Consider vdagXv =

∑
i,j Xi,jvivj, and consider some

pair i, j for which Xi,j = α 6= 0. Fixing the choice of vk for all k 6= i, j, the contribution
of vi, vj to vdagXv is v2

iXi,i + v2
jXj,j + 2αvivj + vi

∑
k 6=i,j vkXi,k + vj

∑
k 6=i,j vkXj,k, whose

derivative, with respect to vi, is

2viXi,i + 2αvj +
∑
k 6=i,j

vkXi,k.

For any choice of vi,

Pr
vj

[
|2viXi,i + 2αvj +

∑
k 6=i,j

vkXi,k| < αδ

]
< δ,

and given such a vj, for any interval I of length αδ2,

Pr
vi

[vdagXv ∈ I] ≤ δ.

The distribution of v is related to a random unit vector simply by scaling, thus let
u := v

||v|| , and hence u†Xu = v†Xv
||v||2 . To conclude, note that, E[||v||2] = d, and very crudely,

Pr
[
||v||2 > d

δ

]
< δ, and hence by a union bound, for any interval I of length αδ3

d
,

Pr[u†Xu ∈ I] < 3δ,

from which the lemma follows.

Putting the above three pieces together, we now guarantee that with high probability,
each of the recovered sets of parameters for the 1-dimensional mixtures obtained by running
the one-dimensional algorithm on the projected data will be accurate.
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Lemma 12.8. With probability 1−ε, the recovered one dimensional parameters, µ
(i,j)
m , σ

(i,j)
m , w

(i,j)
m

of Algorithm 12.2 will all be accurate to within error ε3 of the corresponding true projected
parameters, and

Proof. For each pair of components wiN (µi,Σi), wjN (µj,Σj), by assumption

Dtv (N (µi,Σi),N (µj,Σj)) > ε,

and the minimum eigenvalues of their covariance matrices are bounded below by ε, hence by
Lemma 12.5, either ||µi−µj|| > ε3/2/

√
2, or ||Σi−Σj||Fr > ε3

8d
. By Fact 12.6 and Lemma 12.7,

in either of these cases, with probability at least 1 − γ over random unit vectors v, the
parameters of the projections will differ by at least γ3ε4

(18)3d3 . From the bounds on ||µ|| and the
maximum eigenvalue of Σi imposed by the assumption that the mixing weights are at least
1/ε and the covariance of the mixture has all eigenvalues in the interval [1/2, 2], it follows that
the difference in the discrepancy between projected components in the projection v and the
projection vi,j = v+ ε2(bk + b`) is at most O(ε9), and hence with probability at least 1− ε/2,
in all projections, the projected components will have parameter distance at least Ω( ε

7

d3 ),
in which case the one dimensional algorithm, Algorithm 11.11 when run with probability of
failure at most ε

2d2 , will return estimates of the claimed accuracy with the desired probability.
A union bound assure that the probability of success is at least 1− ε. Given this accuracy,
and the fact that the difference in true parameters between the different projections is at
most O(ε9), the returned 1-dimensional parameters can be consistently partitioned according
to the (high dimensional) components to which they belong.

We now argue that, provided all the recovered parameters of the projected mixtures
are sufficiently accurate, the high dimensional parameters of each component can be accu-
rately reconstructed. Given that the returned means are accurate in Euclidean distance,
and covariances are accurate in the Frobenius norm, then Lemma 12.5 guarantees that the
returned components are close in total variational distance to the actual components, since
the minimum eigenvalue of each covariance matrix is lower bounded, by assumption.

Lemma 12.9. Let µ,Σ be a mean and covariance matrix of a d dimensional Gaussian; as
in Algorithms 12.2 and 12.3, let B = (b1, . . . , bd) be an orthonormal basis, and let vector
v0,0 := v := 1√

d

∑
i bi, and vi,j := v + ε(bi + bj). Assume that µi,i, σ(i,j) satisfy, for all

i, j ∈ [d] ∪ {(0, 0)},

|vi,i · µ− µ(i,i)| < γ, |(vi,j)†Σvi,j − σ(i,j)| < γ,

and define the parameters µ̂, Σ̂ as in Algorithm 12.3:

µ̂ :=
∑
i

µ(i,i) − µ(0,0)

2ε
bi,
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and Σ̂ defined by letting Si := 1
d

∑d
j=1 σ

(i,j), and S := 1
d2

∑d
i,j=1 σ

(i,j), and then defining
matrix V by setting the i, jth entry to be

Vi,j :=

√
d(S − Si − Sj)
2ε2(ε+

√
d)

− σ(i,i) + σ(j,j)

4ε2(ε+
√
d)
− S

2ε
√
d

+
σ(i,j)

2ε2
,

and

Σ̂ := B

(
arg min

M�0
||M − V ||Fr

)
B†.

Then

||µ− µ̂||2 ≤ d
γ2

ε2
, ||Σ− Σ̂||Fr ≤ 6d

γ

ε2
.

Proof. We first analyze the recovered mean:

||µ− µ̂||2 =
d∑
i=1

(bi · µ− bi · µ̂)2

=
d∑
i=1

(
bi · µ−

µ(i,i) − µ(0,0)

2ε

)2

≤
d∑
i=1

(
|bi · µ−

vi,i · µ− v0,0 · µi,i

2ε
|+ 2γ

2ε

)2

=
d∑
i=1

(
2γ

2ε

)2

= d
γ2

ε2
.

We now analyze the covariance estimate. Let 〈x, y〉 := x†Σy, and define the following
quantities which will be the true values corresponding to the above approximations:

T i,j := 〈vi,j, vi,j〉, T i :=
1

d

d∑
j=1

T i,j, T :=
1

d

∑
i

T i.

Expanding T i,j = 〈v, v〉+2ε〈v, bi+bj〉+ε2 (〈bi, bi〉+ 〈bj, bj〉+ 2〈bi, bj〉) , we have the following,
where we use the fact that v = 1√

d

∑
i bi:

T i = 〈v, v〉+ 2ε〈v, bi〉+
2ε

d

∑
k

〈v, bk〉+
2ε2

d

∑
k

〈bi, bk〉+ ε2〈bi, bi〉+
ε2

d

∑
k

〈bk, bk〉

= 〈v, v〉+ 2ε〈v, bi〉+
2ε√
d
〈v, v〉+

2ε2√
d
〈bi, v〉+ ε2〈bi, bi〉+

ε2

d

∑
k

〈bk, bk〉

= 〈v, v〉
(

1 +
2ε√
d

)
+ 2ε〈v, bi〉

(
1 +

ε√
d

)
+ ε2〈bi, bi〉+

ε2

d

∑
k

〈bk, bk〉
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Thus we have:

T = 〈v, v〉
(

1 +
2ε√
d

)
+

2ε

d

(
1 +

ε√
d

)∑
k

〈v, bk〉+
ε2

d

∑
k

〈bk, bk〉+
ε2

d

∑
k

〈bk, bk〉

=

(
1 +

4ε√
d

+
2ε2

d

)
〈v, v〉+

2ε2

d

∑
k

〈bk, bk〉.

Hence:

T − T i − T j =

(
−1 +

2ε2

d

)
〈v, v〉 − 2ε

(
1 +

ε√
d

)
〈v, bi + bj〉 − ε2〈bi, bi〉 − ε2〈bj, bj〉.

Some basic manipulation verifies the following expression for the i, jth entry of the covariance
matrix Σ, when expressed in the basis B:

〈bi, bj〉 =
1

2ε2
T i,j − 1

4ε(2ε+
√
d)

(T i,i + T j,j) +

√
d

2ε2(2ε+
√
d)

(T − T i − T j)− 1

2ε
√
d
T 0,0.

By assumption |T i,j − σ(i,j)| < γ, and hence |T i − Si| < γ, and T − S| < γ, and hence
from the above, we have

|〈bi, bj〉 − Vi,j| < γ

(
1

2ε2
+

2

4ε(2ε
√
d

+
3

2ε2(2ε+
√
d)

+
1

2ε
√
d

)
≤ 3γ

ε2
.

Letting Q denote the covariance matrix Σ in the basis B, Q := B†ΣB, we have shown that
||V −Q||Fr ≤ 3d γ

ε2
, and hence, by the triangle inequality,∣∣∣∣∣∣∣∣arg min

M�0
||V −M ||Fr −Q

∣∣∣∣∣∣∣∣
Fr

≤ 6d
γ

ε2
.

To conclude, note that a change of basis with respect to an orthonormal basis preserves the
symmetry and Frobenius norm of a matrix.

12.2 The Full High Dimensional Algorithm

We now motivate and describe our general algorithm for learning GMMs which, with high
probability, returns a mixture whose components are accurate in terms of variational dis-
tance (`1 distance), without any assumptions on the minimum eigenvalue of the covariance
matrices of the components. To get an intuitive sense for the types of mixtures for which the
simple high–dimensional algorithm fails, consider the mixture of three components depicted
in Figure 12.2. The two narrow components are very similar: both their means, and their
covariance matrices are nearly identical. With overwhelming probability, the projection of
this mixture onto any one–dimensional space will result in these two components becoming
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Figure 12.2: An example of a GMM with three components F1, F2, F3, such that with high
probability over random vectors, the one dimensional projections of F2 and F3 will be very
similar, despite Dtv(F2, F3) ≈ 1.

indistinguishable given any reasonable amount of data. Nevertheless, the variational dis-
tance between these two components is close to one, and thus, information theoretically, we
should be able to distinguish them.

How can we hope to disentangle these two components if, in nearly every one–dimensional
projection, these components are indistinguishable? The intuition for the solution is also
provided in the example: we can cluster out these two components and recurse. In particular,
there is a vector (corresponding to the direction of small variance of these two components)
such that if we project all the data onto this direction, the pair of narrow Gaussians are almost
completely “disentangled” from the third component. Almost all of the data corresponding
to the two narrow components will be contained within a small interval when projected
on this direction, and almost none of the data generated by the third component will be
contained in this interval.

If we are able to successfully perform such a clustering of the original mixture into two
sub-mixtures, we can recursively apply the entire algorithm to each of the two sub-mixtures.
If we consider the sub-mixture corresponding to just the two narrow Gaussians, then we
can re-scale the space by applying an affine transformation so that the resulting mean and
variance are zero and one, respectively, in every direction. This re-scaling has the effect
of stretching out this sub-mixture along the direction of small variance. In the resulting
mixture of two Gaussians, if we project on a randomly chosen direction, the components will
be noticeably different.

Our full algorithm will follow this general plan—in each step, our algorithm either learns
a good estimate and outputs this estimate, or else will cluster the mixture into two proper
sub-mixtures and recurse. The remainder of this section is devoted to explaining how we
can learn a direction of small variance, and hence enable the clustering and recursion step if
we are not able to directly apply the Simple High Dimensional Algorithm (Algorithm 12.2)
to learn good estimates for the GMM components.
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Finding a Skinny Component

How does one find a vector in which direction some of the components have small variance?
Intuitively, finding this direction seems to require knowledge of the true mixture. Our
approach will be to first learn an estimate of the mixture that is close to some partition of
the true components, and thus gain some insight into the general structure of the mixture.

To deal with the issue of the skinny components, suppose we add d-dimensional Gaussian
noise to sample points drawn from the example GMM of Figure 12.2. This would have the
effect of “fattening” each component. After “fattening”, the two narrow components would
have extremely small statistical distance. So we could run our simple learning algorithm on
this “fattened” mixture. Even though this distribution is a mixture of three Gaussians, the
mixture is extremely close in variational distance to a mixture of two Gaussians. Our simple
learning algorithm will return an estimate mixture of two Gaussians with the property that
each component is close to a sub-mixture of the “fattened” distribution.

Thus one of the components in this estimate will correspond to the sub-mixture of the
two narrow components. By examining this component, we notice that it is “skinny” (after
adjusting the covariance matrix to account for the noise that we artificially added). Hence if
we compute the smallest eigenvector of this covariance matrix, we recover a direction which
allows us to cluster the original mixture into two sub-mixtures and recurse.

If the Simple High Dimensional Algorithm is run on a sample from a GMM in which all
components have large minimum eigenvalue (for example, if the sample points have been
“fattened”), then the algorithm, when run with target accuracy ε, will successfully learn the
mixture provided that for each pair of components, either the total variational distance is
at least ε, or at most ε′ << ε, where ε′ = p(ε) for some polynomial p, and similarly, either
each mixing weight is at least ε, or at most ε′. In the case that some set of components all
have pairwise variational distance at most ε′, or mixing weights at most ε′, then with high
probability the outcome of the simple high dimensional algorithm will be indistinguishable
from the case that it was run on input generated from a GMM in which these components
are merged into a single component, and hence will simply return a single component in
place of this set of components, or will be unaware of the existence of the component arising
with negligible mixing weight ε′. The difficulty is when there exists some pair of components
whose variational distance lies within this bad window [p(ε), ε]., or a component whose mixing
weight is in this interval. In such an instance, the Simple High Dimensional Algorithm has
no provable guarantees.

To avoid the potential difficulty of finding a target accuracy ε for which no mixing weights
lie in this inadmissable window, and no pair of components have variational distance within
the associated inadmissable window, one simply runs the high dimensional algorithm with a
range of target accuracies, ε1, . . . , εk2 , with εi < p(εi−1). While we will never know which runs
succeeded, there are at most

(
k
2

)
pairwise variational distances, and each pairwise variational

distance can fall into the inadmissible window of at most one run; similarly for the k mixing
weights. Thus a majority of the runs will be successful. All that remains is to find a set of
at least k2 runs which are consistent: given two sets of parameters returned by runs with
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target accuracies ε1 < ε2, we say they are consistent if there is some surjective mapping of
the components returned by the ε1 run into the components returned by the ε2 run, such
that each component has similar mean and covariance to its image. Thus, one can find such
a chain of at least k2 consistent runs, yielding a set of accurate parameters.

Algorithm 12.10. The Full High Dimensional Algorithm
Given a sample from a GMM in d dimensions with at most k components, target accuracy

ε and probability of failure δ:
Let τ = εc, (for a constant c dependent on k).

• Rescale the set of sample points so as to have mean 0 and covariance the

identity matrix.

• Create a fattened set of sample points: for each of the original sample points

add an independent x← N (0, Id×d/2).

• Define ε1 > . . . > ε2k2 with ε1 = τ and εi = εc
′·i, for a constant c′ (dependent

on k.) Run the Simple High Dimensional Algorithm 2k2 times, with the ith run

having target accuracy εi, and taking 1/εi+1 fattened sample points as input;

this yields 2k2 parameter sets P1, . . . , Pk.

• Find a consistent chain of at least k2 parameter sets; we say Pi is consistent

with Pj for i < j if there exists a mapping of the components of Pi into

the components of Pj such that the total variational distance between each

component of Pi and its image in Pj is at most εi + εj .

• Let P ′ = ({µ1,Σ1, w1}, . . .) be one of these parameter sets in the chain, and let

P = ({µ1,Σ1 − I/2, w1}, {µ2,Σ2 − I/2, w2}, . . .) be the unfattened parameters.

• Let k′ ≤ k be the number of components of P. Let λ be the minimum over

i ∈ {1, . . . , k′}, of the minimum eigenvalue of Σi.

– If λ >
√
τ, output the recovered parameters and return SUCCESS.

– Otherwise, run the Cluster algorithm (Algorithm 12.11) on the original

(non-noisy) sample, the list of returned parameters, and the input

parameter γ ← τ
1
4k ; this algorithm projects the sample onto the eigenvector

corresponding to this minimum eigenvalue, and clusters the sample points

into two clusters, Y, Z with each cluster containing points that nearly

exclusively originated from distinct subsets of the components.

– Recursively apply this entire algorithm to each of the two sets, Y,Z, with

target accuracy ε, and probability of failure ε/2 and number of components

set to be at most k − 1.

If the above algorithm outputs ε/2-accurate parameters with probability of success

> 0.9, to boost the probability of success to 1 − δ, repeat the entire previous

algorithm log 1
δ times; letting F̃i denote the parameter set returned by the ith run,

for each candidate parameter vector (µ,Σ, w) given in a F̃i, output that parameter

vector if there are at least 1
4 log 1

δ runs for which F̃i contains a component whose

total variational distance and mixing weight are within ε/2, and for which no

previously output components has total variational distance within ε.
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Algorithm 12.11. Cluster
Given a sample x1, . . . , xn from a GMM in d dimensions, and k recovered parameter sets,

µi,Σi for i = 1, . . . , k, and a parameter γ:

1. Let λ∗, v∗ be the minimum eigenvalue of any of the covariance matrices, and

corresponding eigenvector. Without loss of generality, assume that it

corresponds to the first component, µi,Σi.

2. If
√
λ∗ > γk then RETURN; otherwise, provisionally set t := γk, and initialize the

set A = {1}.

3. For each component, i 6∈ A, if |v∗ · µi − v∗ · µ1| < t and v∗†Σiv
∗ < t2 :

• update A← A ∪ {i},
• update t← t

γ ,

• return to Step 3.

4. Initialize the sets Y,Z to be empty.

5. For each point xi ∈ X, if |v∗ ·xi−v∗ ·µ1| < t
√
γ then add xi to set Y , otherwise add

xi to set Z.

6. Output sets Y,Z.

12.3 Proof of Theorem 12.1

We start by ensuring that Algorithm 12.10 will make progress in each step of the recursion.
The following lemma guarantees that in any GMM with covariance matrix that is close to
the identity, provided that all pairs of components have total variational distance at least ε,
there is some pair of components N (µi,Σi),N (µj,Σj) for which either ||µi−µj|| or ||Σi−Σj||
is reasonably large, and hence at least two components will be recovered when the Simple
High Dimensional algorithm is run. Hence in the recursion step, each of the sub-mixtures
will have at most k − 1 components.

Lemma 12.12. Given a GMM of at most k components with minimum eigenvalue of its
covariance matrix bounded below by 1/2, provided that the mixing weights are at least ε, and
all pairs of components have total variational distance at least ε, then there exists some pair
of components, N (µi,Σi),N (µj,Σj) for which either ||µi − µj|| > ε

3
or ||Σi − Σj||Fr > ε2

32d
,

Proof. If the minimum eigenvalue of Σ1 is less than 1/4, then there must be another com-
ponent in the mixture, N (µi,Σi) for which ||Σ1 −Σi||Fr > 1/4, since the entire mixture has
variance at least 1/2 in the direction corresponding to the minimum eigenvalue of Σ1, and
hence if we consider the orthonormal change of basis that diagonalizes Σ1, in that basis it
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is clear that there will be some component N (µi,Σi) for which ||Σ1,Σi||Fr > 1/4, and the
Frobenius norm is invariant to orthonormal changes of basis.

In the case that the minimum eigenvalue of Σ1 is at least 1/4, Lemma 12.5 guarantees
that either ||µ1 − µ2|| ≥ ε/

√
8 or ||Σ1 − Σ2||Fr ≥ ε2

32d
, yielding the lemma.

We next argue that if the clustering algorithm, Algorithm 12.11, is run, it will accurately
partition the sample points into two sets corresponding to a partition of the components,
provided the input parameters to the algorithm are sufficiently accurate.

Lemma 12.13. Let A ⊂ [k], Y, Z, v∗, γ be as defined in Algorithm 12.11. Given that the
parameter sets input to the algorithm are at least γk-accurate, for a data point x that was
drawn from the ith component, if i ∈ A, then with probability at least 1 − 2

√
γ, x will be

assigned to Y . Similarly, if i 6∈ A, then with probability at least 1− 2
√
γ, x will be assigned

to Z.

Proof. For any i ∈ A, letting µ := µi · v∗, and σ2 := v∗†Σiv
∗ denote the mean and variance

of the projection of the ith component onto v∗, we have that

Pr
x←N (µi,Σi)

[x assigned to Z] ≤ Pr
y←N (0,1)

[
|y| > 1

2
√
γ

]
≤ e−

1
8γ << 2

√
γ.

For any i 6∈ A, letting µ := µi · v∗, and σ2 := v∗†Σiv
∗ denote the mean and variance of

the projection of the ith component onto v∗, we have that

Pr
x←N (µi,Σi)

[x assigned to Y ] ≤ max
σ2

Pr
y←N (0,σ2)

[y ∈ [1− 2
√
γ, 1 + 2

√
γ]] ≤ 2

√
γ.

We now put the pieces together to establish the correctness of Algorithm 12.10.

Proof of Theorem 12.1. First observe that by elementary Chernoff bounds, the affine trans-
formation computed in the first step of the algorithm, putting the data into isotropic position,
will have the property that all eigenvalues of the projection of the covariance of the actual
GMM will, with the desired probability, lie in the interval [1/2, 3/2], and henceforth assume
this holds.

Since the recovered means and covariances from the successful runs of the Simple High
Dimensional Algorithm are accurate to within τ in Euclidean and Frobenius distance, re-
spectively. Any component parameters output by the algorithm will be computed in some
projection in which the minimum eigenvalue of that component is at least

√
τ2, and thus by

Lemma 12.5, the recovered components will be within total variational distance
√

8dτ 1/4 < ε
from the corresponding actual component. As this metric is affine invariant, after invert-
ing the series of transformations (in each recursive step) that placed the data into isotropic
position, the accuracy of the recovered components in total variational distance still hold.
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We now ensure that the εi = poly(ε) can be set so as yield the claimed performance.
Let p(α, k) denote the sample size required by the Simple High Dimensional Algorithm
(Algorithm 12.2) in order to return α-accurate parameters, with probability of failure at
most ε, when given as input a sample from a GMM with at most k components, in d
dimensions, satisfying the conditions of Proposition 12.4. For two GMMs, F, F ′ satisfying
Dtv(F, F

′) ≤ O(p(α, k)k2/ε), the results of running any algorithm on a sample drawn from
F will be indistinguishable from the results of drawing the sample from F ′ with probability
at least 1 − ε/k2. Thus we will set the ε1, . . . , ε2k2 of Algorithm 12.10 as follows: ε1 = τ,
and εi = 1

p(εi−1,k)
k2/ε. Hence, the ith run of the Simple High Dimensional Algorithm will

certainly perform correctly with the desired probability, when every pair of components of
the input GMM either have total variational distance at least εi−1, or at most εi.

By Lemma 12.12, each run of the Simple High Dimensional Algorithm will output at
least two component sets. As mentioned above, there are only

(
k
2

)
pairwise variational

distances between components, and hence at least half of the k2 executions of the Simple
High Dimensional Algorithm will perform correctly, in which case the consistent chain will
be found, resulting in an accurate set of parameters for at least two components.

If each component (after subtracting the contribution to the covariance of the “fattening”)
has minimum eigenvalue at least,

√
τ , then if each of the true mixing weights is at least ε, by

Lemma 12.5, close approximations of the components in terms of variational distance will
be found. In the case that the pairwise variational distances between components is at least
ε, then all components will be recovered. If the minimum pairwise variational distance, or
minimum mixing weight are less than ε, we still have performed density estimation.

If the minimum eigenvalue of any returned component is less than τ in a given run of the
recursion, then we now argue that the success guarantee of Lemma 12.13 will ensure that
the clustering algorithm partitions the data points sufficiently accurately so that the results
of recursing the algorithm on each of the two data sets Y, Z with k ← k − 1, will be (with
high probability) indistinguishable from the output of running the algorithm on a sample
drawn from each of the sub-mixtures defined by the set A of Algorithm 12.11.

The probability of mis-clustering each data point, by Lemma 12.13 is at most τ
1
2k , and

hence we can pick τ such that τ
1
2k << 1

q(ε,k−1)
, where q(α, k′) is the sample size required to

learn GMMs of at most k′ components to accuracy ε. Hence, by induction on k, using the
fact from Proposition 12.4 that p(α, k) is a polynomial in α for any fixed k, we have that
q(α, k) is a polynomial in α for any fixed k, as desired.
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A.1 Basic Properties of Gaussians

This section contains several basic facts about Gaussians which are used throughout
Parts I and III of the dissertation.

Fact A.1. For ε > 0,

max
x
|N (0, σ2, x)−N (0, σ2 + ε, x)| ≤ ε

2σ3/2
√

2π
≤ ε

5σ3/2
.

Proof. It is easy to verify that the desired quantity is maximized at x = 0, from which the
claim follows by noting that for α, β > 0, 1√

α
− 1√

α+β
≤ β

2α3/2 .

Fact A.2. For ε > 0,

max
x
|N (0, σ2, x)−N (ε, σ2, x)| ≤ ε

σ
√

2πe
≤ ε

4σ
.

Proof. This follows from noting that the maximum magnitude of the derivative ofN (0, σ2, x)
is attained at x = ±σ.

Fact A.3.

max
σ2
N (0, σ2, γ) =

1

γ
√

2πe
.

Proof. It is easy to verify that argmaxσ2N (0, σ2, γ) = γ2, from which the fact follows.

Corollary A.4.

max
µ,σ2:µ+σ2≥γ

N (µ, σ2, 0) ≤ max

(
2

γ
√

2πe
,

1
√
πγ

)
.

Proof. Either µ ≥ γ/2, or σ2 ≥ γ/2. In the first case, using Fact A.3,

max
µ≥γ/2

N (µ, σ2, 0) = max
σ2
N (0, σ2, γ/2) =

2

γ
√

2πe
.

In the second case, we have

max
x,σ2≥γ/2

N (0, σ2, x) = N (0, γ/2, 0) =
1
√
πγ
.

Claim A.5. For i odd:

Hi(x, σ) :=

∫
xie−

x2

2σ2 dx = −xi−1σ2e−
x2

2σ2 − (i− 1)xi−3σ4e−
x2

2σ2

−(i− 1)(i− 3)xi−5σ6e−
x2

2σ2 . . .− (i− 1)!!σi+1e−
x2

2σ2
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Proof. We can check

∂

∂x
Hi(x, σ) = xie−

x2

2σ2 + (i− 1)xi−2σ2e−
x2

2σ2 . . .+ (i− 1)!!xσi−1e−
x2

2σ2

−(i− 1)xi−2σ2e−
x2

2σ2 − (i− 1)(i− 3)xi−4σ4e−
x2

2σ2 . . .− (i− 1)!!xe−
x2

2σ2

= xie−
x2

2σ2

Claim A.6. For i even:

Hi(x, σ) :=

∫
xie−

x2

2σ2 dx = −xi−1σ2e−
x2

2σ2 − (i− 1)xi−3σ4e−
x2

2σ2

−(i− 1)(i− 3)xi−5σ6e−
x2

2σ2 . . .+ (i− 1)!!σi
∫
e−

x2

2σ2 dx

We can apply these identities to get bounds on the contribution of the tails - i.e. |x| ≥ σ
ε

for all finite moments i ≥ 0.

Lemma A.7. For ε ≤ 1,∫
|x|≥σ/ε

|x|iN (0, σ2, x)dx ≤ i(i!)1/2σiε−ie−
1

2ε2 .

Proof. We can immediately apply Claim A.5 and Claim A.6. Note that for constant i, σ2,
this bound is O(e−1/ε).

Corollary A.8. For ε ≤ 1,∫
|x−µ|≥σ/ε

|x|iN (µ, σ2, x)dx ≤ 2ii(i!)1/2 max(σi, 1) max(|µ|, 1

ε
)ie−

1
2ε2 .

Proof. Using Lemma A.7, the above bound follows by a change of variables and expanding
the binomial term.

For completeness, for the univariate normal distribution N (0, σ2), the ith raw moment
is,

Ex∼N (0,σ2)[x
i] =

{
0 if i is odd

(i− 1)!!σi = i!
2i(i/2)!

σi if i is even.
(A.1)
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Bounds on the Distance Between Multivariate Gaussians

This section contains a straightforward analysis of the statistical distance between two mul-
tivariate Gaussians.

Fact A.9. Given independent real-valued random variables W,X, Y, Z the total variation
distance satisfies Dtv ((W,X), (Y, Z)) ≤ Dtv(W,Y ) + Dtv(X,Z), where (W,X) and (Y, Z)
denote joint distributions.

Proof.

Dtv ((W,X), (Y, Z)) =
1

2

∫ ∫
|PW (a)PX(b)− PY (a)PZ(b)|da db

=
1

4

∫ ∫
|(PW (a)− PY (a))(PX(b) + PZ(b))

+(PW (a) + PY (a))(PX(b)− PZ(b))|da db

≤ 1

4

∫ ∫
|(PW (a)− PY (a))(PX(b) + PZ(b))|da db

+
1

4

∫ ∫
(PW (a) + PY (a))(PX(b)− PZ(b))|da db

=
1

2

∫
|(PW (a)− PY (a))|da+

1

2

∫
(PX(b)− PZ(b))|db

= Dtv(W,Y ) +Dtv(X,Z).

Fact A.10. Letting N (µ, σ2) denote the univariate Gaussian distribution,

Dtv(N (µ, 1),N (µ+ α, 1)) ≤ |α|/
√

2π.

Fact A.11. Letting N (µ, σ2) denote the univariate Gaussian distribution,

Dtv(N (µ, 1),N (µ, σ2)) ≤ max(σ2, 1/σ2)− 1√
2πe

.

Fact A.12. Given two Gaussian distributions in m dimensions G1 = N (µ1,Σ1), and G2 =
N (µ2,Σ2), where Σ1 = TT ′, is the Cholesky decomposition of Σ1, then

Dtv(G1, G2) ≤
m∑
i=1

max(λi, 1/λi)− 1√
2πe

+
||T−1(µ1 − µ2)||√

2π
,

where λi is the ith eigenvalue of T−1Σ2T
′−1.
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Proof. Since variational distance is affine-invariant, applying the affine transformation T−1,
we have Dtv(G1, G2) = Dtv (N (0, T−1Σ1T

′−1),N (T−1(µ1 − µ2), T−1Σ2T
′−1)) , where we have

T−1Σ1T
′−1 = I, the m×m identity. Thus, by the triangle inequality, this distance is at most

Dtv

(
N (0, I),N (T−1(µ1 − µ2), I)

)
+Dtv

(
N (0, I),N (0, T−1Σ2T

′−1)
)
.

Viewing N (T−1(µ1−µ2), I) as the joint distribution of m independent univariate Gaussians,
where the first m − 1 distributions are N (0, 1), and the mth distribution is N (||T−1(µ1 −
µ2)||, 1), by Facts A.9 and A.10 we get that

Dtv

(
N (0, I),N (T−1(µ1 − µ2), I)

)
≤ ||T

−1(µ1 − µ2)||√
2π

.

To bound the other component, viewN (0, T−1Σ2T
′−1) as the joint distribution of m indepen-

dent univariate Gaussians, where the ith distribution is N (0, λi), with λi the ith eigenvalue
of T−1Σ2T

′−1, and use facts Facts A.9 and A.11, to yield the claimed result.

Proposition A.13. Given two m-dimensional Gaussians G1 = N (µ1,Σ1), G2 = N (µ2,Σ2)
such that for all i, j ∈ [m], |Σ1(i, j)− Σ2(i, j)| ≤ α, and min(eig(Σ1)) > λ > α,

Dtv(G1, G2) ≤ ||µ1 − µ2||√
2πλ

+
mα√

2πe(λ− α)
.

Proof. Let Σ1 = PDDP ′, where D is a diagonal matrix, and P is a unitary matrix. Note
that the minimum entry on the diagonal of D is

√
λ. We now write Σ2 = Σ1 + A, for

some symmetric matrix A whose entries are bounded in magnitude by α. By Fact A.12, the
contribution to Dtv(G1, G2) from the discrepancy in the means is at most

||D−1P ′(µ1 − µ2)||√
2π

≤ ||µ1 − µ2||√
2πλ

.

We now consider the contribution to Dtv(G1, G2) from the discrepancy in the covariance
matrices. We consider the eigenvalues of D−1P ′Σ2PD

−1 = I + D−1P ′APD−1. We have

maxv
||D−1P ′APD−1v||

||v|| ≤ α
λ
, and thus the maximum eigenvalue of I +D−1P ′APD−1 is at most

1 + α
λ
, and the minimum eigenvalue is at least 1− α

λ
; thus from Fact A.12 we have

Dtv(G1, G2) ≤ ||µ1 − µ2||√
2πλ

+
m
(

1
1−α/λ − 1

)
√

2πe

=
||µ1 − µ2||√

2πλ
+

mα√
2πe(λ− α)

.
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Kullback-Leibler Divergence for Gaussians

Fact A.14. Let G1 = N (µ1,Σ1), G2 = N (µ2,Σ2) be two m dimensional Gaussian distribu-
tions.

KL(G1‖G2) =
1

2

(
log

det(Σ2)

det(Σ1)
+ Tr(Σ−1

2 Σ1) + (µ1 − µ2)TΣ−1
2 (µ1 − µ2)−m

)
.

Total Variance via Kullback-Leibler Divergence

Fact A.15. Let G1 = N (µ1,Σ1) and G2 = N (µ2,Σ2) be two m-dimensional Gaussian
distributions. Let λ1, . . . , λn > 0 be the eigenvalues of Σ−1

1 Σ2. Then the total variational
distance satisfies,

(Dtv(G1, G2))2 ≤
m∑
i=1

(λi +
1

λi
− 2) + (µ1 − µ2)TΣ−1

1 (µ1 − µ2).

Proof. From Fact A.14, The Kullback-Leibler divergence (KL) between two Gaussians is,

KL(G1‖G2) =
1

2

(
Tr(Σ−1

1 Σ2) + ln
det(Σ1)

det(Σ2)
−m+ (µ1 − µ2)TΣ−1

1 (µ1 − µ2)

)
.

Note that det(Σ−1
1 Σ2) = det(Σ2)

det(Σ1)
= λ1 . . . λn, and hence ln det(Σ1)

det(Σ2)
=
∑

ln 1
λi
.Also, Tr(Σ−1

1 Σ2) =

λ1 + . . .+ λn. By Pinsker’s inequality, Dtv(G1, G2) ≤
√

KL(G1‖G2)/2. This gives,

(D(G1, G2))2 ≤
m∑
i=1

(λi + ln
1

λi
− 1) + (µ1 − µ2)TΣ−1

1 (µ1 − µ2).

Using the fact that log x ≤ x− 1, we are done.

Moment Bounds for Univariate Mixtures

Here we prove some basic moment bounds for univariate mixtures of Gaussians, used in
Chapter 11.

Claim A.16. The kth raw moment of a univariate Gaussian, Mk(N (µ, σ2)) =
∑k

i=0 ciµ
iσk−i,

where |ci| ≤ k!, and ci = 0 for odd i.

Proof. Consider the moment generating functionMX(t) = etµ+σ2t2/2, and recall thatMk(N (µ, σ2))

is given by dkMX(t)
dtk

evaluated at t = 0. We will prove that

dkMX(t)

dtk
= MX(t)

∑
i,j≥0 s.t. i+j≤k

c(i,j,k)µ
iσ2jt2j+i−m,
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where the coefficient c(i,j,k) is positive and at most k!
(2j+i−k)!

, from which the claim follows. We
proceed by induction on k. The base case, when k = 1, is clearly valid. For the induction step,

assume the above claim holds for some value k ≥ 1, and consider computing dk+1MX(t)
dtk+1 . To see

that the exponents of µ, σ, and t are as claimed, note that the term MX(t)c(i,j,k)µ
iσ2jt2j+i−m

when differentiated becomes

MX(t)
(
(2j + i− k)c(i,j,k)µ

iσ2jt2j+i−(k+1) + c(i,j,k)µ
i+1σ2jt2j+(i+1)−(k+1)

+ c(i,j,k)µ
iσ2(j+1)t2(j+1)+i−(k+1)

)
,

all of whose terms have the form MX(t)cµi
′
σ2j′t2j

′+i′−(k+1), as desired, and thus the coefficient
of any term with σi for odd i must be zero.

To see that c(i,j,k) ≤ k!
(2j+i−k)!

holds, note that the three terms that contribute to c(i,j,k+1)

are c(i,j,k), c(i−1,j,k), and c(i,j−1,k), where for simplicity we assume that c(i′,j′,k) = 0 if i′ < 0 or
j′ < 0. In particular,

c(i,j,k+1) = c(i,j,k)(2j + i− k) + c(i−1,j,k) + c(i,j−1,k).

By our inductive hypothesis, we have the following:

c(i,j,k+1) = c(i,j,k)(2j + i− k) + c(i−1,j,k) + c(i,j−1,k)

≤ k!

(2j + i− k)!
(2j + i− k) +

k!

(2j + i− k − 1)!
+

k!

(2j + i− k − 2)!

=
k!

(2j + i− k − 1)!
(1 + 1 + (2j + i− k − 1))

≤ (k + 1)!

(2j + i− (k + 1))!
,

as desired.

Lemma A.17. Let Mj(X) denote the jth moment of the random variable X. Given γ, ε,
µ, µ′, σ2, σ′2 such that the following are satisfied:

• |µ|, |µ′|, σ2, σ′2 ≤ 1
ε
,

• |µ− µ′|+ |σ2 − σ′2| ≤ γ < ε,

then for ε < 1/j,

|Mj(N (µ, σ))−Mj(N (µ′, σ′))| ≤ 2(j + 1)!

(
2

ε

)j
γ.

Proof. We prove this by bounding both |Mj(N (µ, σ2))−Mj(N (µ, σ′2))|, and |Mj(N (µ, σ′2))−
Mj(N (µ′, σ′2))|, by (j + 1)!

(
2
ε

)j
γ.



APPENDIX A. BASIC PROPERTIES OF GAUSSIAN AND POISSON
DISTRIBUTIONS 262

From Claim A.16, and our assumption that |σ2 − σ′2| ≤ γ, we have

|Mj(N (µ, σ2))−Mj(N (µ, σ′2))| ≤
j∑
i=0

ciµ
i|σj−i − σ′j−i|

≤
j∑
i=0

ciµ
i
[
(2/ε+ γ)(j−i)/2 − (2/ε)(j−i)/2]

≤
j∑
i=0

ciµ
i
[
(2/ε+ γ)j−i − (2/ε)j−i

]
≤

j∑
i=0

ciµ
i(j − i)(2

ε
)j−iγ.

Where the final inequality above is because 2/ε > j, and thus for k ≤ j, the ith term in
the expansion of (2/ε + γ)k is at most ki(2/ε)k−iγi ≤ (2/ε)kγ. Plugging in the bounds of
ci ≤ j! from Claim A.16 yields the desired bound. The same argument holds for bounding
|Mj(N (µ, σ′2))−Mj(N (µ′, σ′2))|, from which the claim follows.



APPENDIX A. BASIC PROPERTIES OF GAUSSIAN AND POISSON
DISTRIBUTIONS 263

A.2 Basic Properties of Poissons

In this section we collect the useful facts about the Poisson distribution, and the “Poisson
functions,” poi(x, i) := xie−x

i!
that are used in Chapters 3 through 8.

Second Derivative of Poisson Functions

Proposition A.18. Letting poixx(x, j) denote the second derivative of the jth Poisson func-
tion, for all x > 0, j ≥ 0 we have |poixx(x, j)| ≤ min{2, 2

x
}.

Proof. Since poi(x, j) , xje−x

j!
, we have poixx(x, j) = (xj − 2jxj−1 + j(j − 1)xj−2) e

−x

j!
.

Case 1: j = 0 or 1. We have from the above expression that poixx(x, 0) = e−x, which is
easily seen to be less than min{2, 2

x
}. Similarly, for j = 1 we have poixx(x, 1) = (x− 2)e−x,

where, for x ∈ (0, 1) we have that |(x − 2)e−x| ≤ 2e−x ≤ 2. For x ≥ 1, we must show that
|(x − 2)e−x| ≤ 2

x
, or equivalently, |1

2
x2 − x| ≤ ex. Since |1

2
x2 − x| ≤ 1

2
x2 + x, and this last

expression is just two terms from the power series of ex, all of whose terms are positive, it is
thus bounded by ex as desired.
Case 2: x < 1 and j ≥ 2.

In this case we must show |poixx(x, j)| ≤ 2. For j ≥ 2, we note that we may simplify the

above expression for poixx(x, j) to ((x− j)2 − j)xj−2e−x

j!
. Noting that for x ∈ (0, 1) we have

xj−2 ≤ 1 and e−x < 1, we may bound the absolute value of this last expression by |(x−j)
2−j|

j!
.

Since (x− j)2 ≥ 0 and −j ≤ 0, we may bound this expression as max
{

(x−j)2

j!
, j
j!

}
; since we

have j ≥ 2 and x ∈ (0, 1), we note that (x−j)2

j!
≤ j2

j!
≤ 2, and j

j!
≤ 1, as desired.

Case 3: x ≥ 1 and j ≥ 2.
We reexpress |poixx(x, j)| as

∣∣(1− j
x
)2 − j

x2

∣∣ ·poi(x, j), which we may bound by max{(1−
j
x
)2, j

x2} · poi(x, j).
We consider the second term first. For j > x + 1, consider the ratio of the expression

j
x2poi(x, j) for consecutive values of j:

j

j − 1

xj(j − 1)!

xj−1j!
=

x

j − 1

and note that this is always at most 1. Thus j
x2poi(x, j) attains its maximum (over j) for

j ≤ x + 1. We may thus bound j
x2poi(x, j) by taking j ≤ x + 1 and noting that, since

poi(x, j) ≤ 1 we have j
x2poi(x, j) ≤ x+1

x2 ≤ 2
x

as desired.

We now consider the first term, (1− j
x
)2poi(x, j) and show that it attains its maximum

for j in the interval [x − 2
√
x, x + 2

√
x + 1]. Consider the ratio of (1 − j

x
)2poi(x, j) to

(1− j−1
x

)2poi(x, j − 1):

(1− j
x
)2

(1− j−1
x

)2

e−xxj(j − 1)!

e−xxj−1j!
=

(
x− j

x− j + 1

)2
x

j
(A.2)
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We now show that this ratio is at most 1 for j ≥ x + 2
√
x + 1, and at least 1 for j ≤

x − 2
√
x + 1, thereby showing that (1 − j

x
)2poi(x, j) attains its maximum in the interval

j ∈ [x − 2
√
x, x + 2

√
x + 1]. We note that both x−j

x−j+1
and x

j
are decreasing functions of

j, outside the interval [x, x + 1], so it suffices to check the claim for j = x + 2
√
x + 1 and

j = x− 2
√
x+ 1. We have(

x− (x+ 2
√
x+ 1)

x− (x+ 2
√
x+ 1) + 1

)2
x

x+ 2
√
x+ 1

=
(2
√
x+ 1)2

(2
√
x+ 2)2

≤ 1

and (
x− (x− 2

√
x+ 1)

x− (x− 2
√
x+ 1) + 1

)2
x

x− 2
√
x+ 1

=
(2
√
x− 1)2

(2
√
x− 2)2

≥ 1

Thus (1− j
x
)2poi(x, j) attains its maximum for j in the interval [x− 2

√
x, x+ 2

√
x+ 1].

We note that on the sub-interval [x − 2
√
x, x + 2

√
x], we have (1 − j

x
)2 ≤ (2

√
x

x
)2 ≤ 4

x
, and

that, for x ≥ 1, poi(x, j) ≤ 1
e
, implying that (1 − j

x
)2poi(x, j) ≤ 2

x
as desired. Finally, for

the remainder of the interval, we have, since x ≥ 1 that (1 − j
x
)2 ≤ (2

√
x+1)2

x2 ≤ 9
x
. On this

sub-interval j > x + 2
√
x, and thus we have, since x ≥ 1 and j is an integer, that j ≥ 4.

Since poi(x, j) is maximized with respect to x when x = j, this maximum has value jje−j

j!
,

which, by Stirling’s approximation, is at most 1√
2πj

< 2
9

(for j ≥ 4). Combining these two

bounds yields the desired bound of 2
x
.

Tail Bounds for Poisson Distributions

Fact A.19. (From [56]) For λ > 0, and an integer n ≥ 0, if n ≤ λ,

n∑
i=0

poi(λ, i) ≤ poi(λ, n)

1− n/λ
,

and for n ≥ λ,
∞∑
i=n

poi(λ, i) ≤ poi(λ, n)

1− λ/(n+ 1)
.

Corollary A.20. For any constant ε > 0, there exists a constant δε > 0 such that for any
λ ≥ 1, letting X ← Poi(λ)

Pr[|X − λ| > λ
1
2

+ε] ≤ e−λ
δε
.
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B.1 Learning Juntas and DNF via Sparse Parities

We formally state the results of Feldman et al. [54] which reduce the problem of learning
Juntas and DNF to the problem of learning parity with noise. The main intuition, and proof
approach of [54] is that the problem of learning parities with noise is the problem of finding
a heavy Fourier coefficient, given the promise that one exists; in the case of learning a k-
junta, one knows that there will be at most 2k significant Fourier coefficients. The reduction
proceeds by essentially peppering the labels with random XORs, so that after the peppering
process, with some decent probability, exactly one Fourier coefficient will have survived, in
which case the problem has been successfully transformed into the problem of learning a
parity of size k with noise. It is worth stressing that this reduction results in an instance
with a very large noise rate—noise 1

2
− 1

2k
, thus highlighting the importance of considering

the learning noisy parities problem with noise-rates that approach 1/2. We conclude this
section with formal statements of these reductions.

Theorem B.1 (Feldman et al. [54]). Given an algorithm that learns noisy k-parities on
length n strings (under the uniform distribution) with noise rate η ∈ [0, 1

2
) that runs in time

T (n, k, η), there exists an algorithm that learns k-juntas under the uniform distribution with
noise rate η′ that runs in time

O

(
k22k · T (n, k,

1

2
− 1− 2η′

2k
)

)
.

Theorem B.2 (Feldman et al. [54]). Given an algorithm that learns noisy k-parities
on length n strings (under the uniform distribution) with noise rate η ∈ [0, 1

2
) that takes

S(n, k, η) examples and runs in time T (n, k, η), there exists an algorithm that (ε, δ)–PAC
learns r-term DNF formulae under the uniform distribution that runs in time

Õ

(
r4

ε2
· T
(
n, log

(
Õ(r/ε)

)
,
1

2
− Õ(ε/r))

)
· S
(
n, k, log

(
Õ(r/ε)

)
,
1

2
− Õ(ε/r)

)2
)
.

Additionally, as Feldman observed, an improved algorithm for learning noisy k-parities
can be used, via the reduction of Feldman et al. [54] to yield an improvement in runtime of
the approach of Mossel et al [92] for the problem of learning k-juntas without noise. The key
observation of Mossel et al. is that either a k-junta has a heavy Fourier coefficient of degree
at most d, or, when represented as a polynomial over F2, has degree at most k − d. Their
algorithm proceeds by brute force-searching for a heavy Fourier coefficients of order at most
αk for some appropriately chosen α; if none are found, then the junta is found by solving a
linear system over n(1−α)k variables. Given an improved algorithm for learning noisy parities,
using the reduction of Feldman et al., one improve upon the brute-force search component
of the algorithm of Mossel et al. The following corollary quantifies this improvement.

Corollary B.1. Given an algorithm that learns noisy j-parities on length n strings (under
the uniform distribution) with noise rate η ∈ [0, 1

2
) that runs in time T (n, j, η), for any
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α ∈ (0, 1), there exists an algorithm that learns k-juntas without noise under the uniform
distribution in time

max

(
T (n, αk,

1

2
− 1

2αk
), nωk(1−α)

)
poly(n).


