
Parallel Application Library for Object Recognition

Bor-Yiing Su

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-199

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-199.html

September 27, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Parallel Application Library for Object Recognition

by

Bor-Yiing Su

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kurt W. Keutzer, Chair
Professor Jitendra Malik
Professor Sara McMains

Fall 2012

Parallel Application Library for Object Recognition

Copyright 2012
by

Bor-Yiing Su

1

Abstract

Parallel Application Library for Object Recognition

by

Bor-Yiing Su

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kurt W. Keutzer, Chair

Computer vision research enables machines to understand the world. Humans usually
interpret and analyze the world through what they see – the objects they capture with their
eyes. Similarly, machines can better understand the world by recognizing objects in images.
Object recognition is therefore a major branch of computer vision. To achieve the highest
accuracy, state-of-the-art object recognition systems must extract features from hundreds
to millions of images, train models with enormous data samples, and deploy those models
on query images. As a result, these systems are computationally-intensive. In order to
make such complicated algorithms practical to apply in real life, we must accelerate them
on modern massively-parallel platforms.

However, parallel programming is complicated and challenging, and takes years to mas-
ter. In order to help object recognition researchers employ parallel platforms more pro-
ductively, we propose a parallel application library for object recognition. Researchers can
simply call the library functions, and need not understand the technical details of paral-
lelization and optimization. To pave the way for such a library, we perform pattern mining
on 31 important object recognition systems, and conclude that 15 application patterns are
necessary to cover the computations in these systems. In other words, if we support these
15 application patterns in our library, we can parallelize all 31 object recognition systems.
In order to optimize any given application pattern in a systematic way, we propose using
patterns and software architectures to explore the design space of algorithms, parallelization
strategies, and platform parameters.

In this dissertation, we exhaustively examine the design space for three application pat-
terns, and achieve significant speedups on these patterns – 280× speedup on the eigensolver
application pattern, 12-33× speedup on the breadth-first-search graph traversal application
pattern, and 5-30× speedup on the contour histogram application pattern. To improve the
portability and flexibility of the proposed library, we also initiate the OpenCL for OpenCV
project. This project aims to provide a collection of autotuners that optimize the perfor-
mance of application patterns on many different parallel platforms. We have developed two
autotuners in this project. clSpMV is an autotuner for sparse matrix vector multiplication
(SpMV) computation – it tunes the representation of a sparse matrix and the corresponding
SpMV kernel, and is 40% faster than the vendor-optimized parallel implementation. clPaDi

2

is an autotuner for the pair-wise distance computation application pattern – it allows users
to customize their own distance functions, and finds the best blocking size for each func-
tion. clPaDi performs 320-650 giga floating point operations per second on modern GPU
platforms. By employing these optimized functions in a state-of-the-art object recognition
system, we have achieved 110-120× speedup compared to the original serial implementation.
Now it takes only three seconds to identify objects in a query image – a much more practical
and useful processing time. Our research makes it possible to deploy complicated object
recognition algorithms in real applications.

With these encouraging results, we are confident that the methodology we illustrate
in this dissertation is applicable to optimizing all application patterns. If we expand the
parallel application library to support all 15 application patterns, the library will be a key
toolkit for both existing and future object recognition systems.

i

To Wei-Hsuan

ii

Contents

List of Figures v

List of Tables viii

List of Abbreviations ix

1 Introduction 1
1.1 Thesis Contributions . 5
1.2 Thesis Outline . 6

2 Background 8
2.1 Object Recognition . 8

2.1.1 Computational Cost of Feature Extraction 9
2.1.2 Computational Cost of Classification 12
2.1.3 Computational Cost of Real Object Recognition Systems 13
2.1.4 Solution to the Bursting Requirements of Computation: Parallel Pro-

gramming . 15
2.2 Challenges in Parallel Programming . 15

2.2.1 Variation of Hardware Platforms . 16
2.2.2 Variation of Programming Models . 16
2.2.3 Finding Parallelism in Algorithms . 17
2.2.4 Memory Optimizations . 18
2.2.5 Scalability and Amdahl’s Law . 19
2.2.6 Load Balancing . 21
2.2.7 Concurrency Bugs . 21

2.3 The Implementation Gap . 22
2.4 Prior Work . 23
2.5 Summary . 24

3 Parallel Application Library for Object Recognition 26
3.1 Parallel Application Library . 26
3.2 Application-Level Software Architecture . 28
3.3 Application Patterns for Object Recognition 30
3.4 Summary . 33

iii

4 Pattern-Oriented Design Space Exploration 34
4.1 Implementation-Level Software Architecture 34

4.1.1 Patterns and Our Pattern Language 35
4.1.2 Architecting Computations Using Patterns 37

4.2 Design Space . 38
4.2.1 The Design Space of Algorithms . 39
4.2.2 The Design Space of Parallelization Strategies 41
4.2.3 The Design Space of Platform Parameters 44

4.3 Design Space Exploration . 45
4.3.1 Exhaustive Search . 45
4.3.2 Autotuning . 46

4.4 Summary . 47

5 Case Studies of the Parallel Application Library for Object Recognition 49
5.1 Eigensolver for the Normalized Cut Algorithm 49

5.1.1 Exploring the Design Space of Algorithms 50
5.1.2 Exploring the Design Space of Parallelization Strategies 54
5.1.3 Experimental Results . 55

5.2 Breadth-First-Search Graph Traversal on Images 57
5.2.1 Exploring the Design Space of Algorithms 57
5.2.2 Exploring the Design Space of Parallelization Strategies 63
5.2.3 Experimental Results . 64

5.3 The Contour Histogram . 67
5.3.1 Exploring the Design Space of Algorithms 67
5.3.2 Exploring the Design Space of Parallelization Strategies 69
5.3.3 Experimental Results . 71

5.4 Summary . 72

6 The OpenCL for OpenCV (OLOV) Library 73
6.1 Overview of OLOV . 74
6.2 OpenCL Programming Model . 76
6.3 The Sparse Matrix Vector Multiplication Autotuner 77

6.3.1 Exploring the Design Space of Algorithms 78
6.3.2 Exploring the Design Space of Parallelization Strategies 91
6.3.3 Exploring the Design Space of Platform Parameters 93
6.3.4 Experimental Results . 94

6.4 The Pair-Wise Distance Computation Autotuner 102
6.4.1 Exploring the Design Space of Algorithms 104
6.4.2 Exploring the Design Space of Parallelization Strategies 108
6.4.3 Exploring the Design Space of Platform Parameters 109
6.4.4 Experimental Results . 110

6.5 Summary . 114

iv

7 Developing Parallel Applications Using the Parallel Application Library 116
7.1 The Region-Based Object Recognition System 116
7.2 Parallelizing the Object Recognition System 118

7.2.1 The Software Architecture of the Object Recognition System 118
7.2.2 Using the Parallel Application Library to Parallelize and Optimize the

Object Recognition System . 121
7.2.3 Experimental Results . 122

7.3 Summary . 124

8 Conclusions and Future Work 126
8.1 Contributions . 126

8.1.1 Application Patterns for Object Recognition 126
8.1.2 Parallelizing and Optimizing Application Patterns 127
8.1.3 Developing a Parallel Object Recognition System Using the Applica-

tion Library . 128
8.2 Future Work . 128
8.3 Summary . 129

Bibliography 130

v

List of Figures

1.1 Processor frequency scaling over years. Data from Danowitz et al. [34]. . . . 3

2.1 Object recognition computation flow. 10
2.2 The peak performance (in GFLOPs) and the memory bandwidth (in GBytes/s)

for Intel mainstream products over the years. 19
2.3 The peak performance (in GFLOPs) and the memory bandwidth (in GBytes/s)

for Nvidia mainstream products over the years. 20
2.4 The implementation gap between application developers and expert parallel

programmers. 22

3.1 The application-level software architecture for an object recognition system. 29

4.1 Organization of Our Pattern Language (OPL). 35
4.2 The computational patterns that cover the object recognition application

patterns. 36
4.3 The implementation-level software architecture of the Euclidean distance

computation. 37
4.4 The implementation-level software architecture and data dependency graph

of a serial prefix sum algorithm. 40
4.5 The implementation-level software architecture and data dependency graph

of a bad parallel prefix sum algorithm. 41
4.6 The implementation-level software architecture and data dependency graph

of a better parallel prefix sum algorithm. 42
4.7 Different parallelization strategies for the parallel prefix sum algorithm. . . . 43

5.1 The Lanczos algorithm. 51
5.2 Example W matrix. 52
5.3 Convergence plot of the smallest 24 Ritz values from different strategies. . . 53
5.4 Two strategies of parallelizing the SpMV computation. 55
5.5 Parallel BFS graph traversal on a distributed graph. 57
5.6 Parallel BFS graph traversal with a parallel task queue. 58
5.7 Mapping BFS graph traversal onto a structured grids computation. 60
5.8 Parallel structured grids computation for BFS graph traversal. 61
5.9 The routine for updating information in each grid point. 62

vi

5.10 Scalability of the proposed parallel BFS graph traversal algorithm. 65
5.11 Runtime of the local minimum extraction algorithm on images with different

maximum traversal distances. 66
5.12 The contour feature used by Gu et al. [61]. 68
5.13 The pixel-based contour histogram algorithm. 69
5.14 The grid-based contour histogram algorithm. 70
5.15 Execution time of different algorithms and parallelization strategies on images

with various region sizes. 71

6.1 The programming model of expressing data parallelism in OpenCL. 76
6.2 The DIA format of matrix B. 80
6.3 The BDIA format of matrix B. 80
6.4 The ELL format of matrix B. 81
6.5 The SELL format of matrix B. 82
6.6 The CSR format of matrix B. 82
6.7 The COO format of matrix B. 83
6.8 The BELL format of matrix C. The block size is 2× 4. 84
6.9 The SBELL representation of matrix C. The block size is 1× 4, and the slice

height is 2. 84
6.10 The BCSR format of matrix C. The block size is 2× 4 85
6.11 SpMV performance benchmarking on the Nvidia GTX 480 platform. 95
6.12 clSpMV performance on the 20 benchmarking matrices on GTX 480. 98
6.13 SpMV performance benchmarking on the AMD Radeon 6970 platform. . . . 100
6.14 clSpMV performance on the 20 benchmarking matrices on Radeon 6970. . . 102
6.15 The naive GEMM algorithm. 105
6.16 The blocked GEMM algorithm. 106
6.17 The blocked PaDi algorithm. 107
6.18 Two strategies for the work assignment of each work item: (a) Contiguous

work assignment, and (b) Interleaved work assignment. 109
6.19 PaDi performance benchmarking on the Nvidia GTX 480 platform. 111
6.20 PaDi performance benchmarking on the AMD Radeon 6970 platform. 112
6.21 Performance of CUBLAS [97], clPaDi with dot product distance, and clPaDi

with χ2 distance on Nvidia GTX 480. 113
6.22 Performance of clAmdBLAS [4], clPaDi with dot product distance, and

clPaDi with χ2 distance on AMD Radeon 6970. 114

7.1 The application-level software architecture of the object recognition system
in [61]. 117

7.2 The software architecture of the gPb contour detection algorithm [81]. 118
7.3 The software architecture of the UCM segmentation algorithm [7]. 120
7.4 The software architecture of the classification step in [61]. 121
7.5 Computations with the corresponding parallel library functions. 122

vii

7.6 (a) The detection rate versus FPPI curve of the original serial implementa-
tion. (b) The detection rate versus FPPI curve of the parallel object recog-
nition system. 124

viii

List of Tables

2.1 Computational costs for state-of-the-art feature extraction algorithms. 11
2.2 Computational costs for state-of-the-art classification algorithms. 13
2.3 Computational cost for real object recognition systems. 15

3.1 Pattern mining from 31 state-of-the-art object recognition papers. 31

5.1 15 important application patterns for object recognition. 49
5.2 Execution times of different reorthogonalization strategies. 56
5.3 Execution times of different implementations. 56
5.4 Comparison between serial algorithms and the proposed parallel algorithms. 64

6.1 Advantages and disadvantages of sparse matrix format categories. 86
6.2 Advantages and disadvantages of diagonal-based formats. 86
6.3 Advantages and disadvantages of flat formats. 87
6.4 Advantages and disadvantages of block-based formats. 87
6.5 Overview of the sparse matrix benchmark. 94
6.6 clSpMV performance on Nvidia GTX 480 for the selected 20 matrices, com-

pared to implementations in [14] and to all the single formats supported by
clSpMV. The highest achieved performance for each matrix is in bold. 96

6.7 Improvement of clSpMV compared to the hybrid format in [14], to the best
implementations in [14], and to the best single-format implementations sup-
ported by clSpMV. 97

6.8 clSpMV performance on the selected 20 matrices, compared to all the single
formats supported by clSpMV on AMD Radeon 6970. The highest achieved
performance for each matrix is in bold. 101

6.9 Using element operators, reduction operators, and post-processing operators
to define common distance functions. 104

6.10 Using element operators, reduction operators, and post-processing operators
to define common SVM kernel functions. 104

7.1 Performance of the parallel object recognition system: deployment stage. . . 123
7.2 Performance of the parallel object recognition system: training stage. 123

ix

List of Abbreviations

API Application Programming Interface

BCSR Blocked Compressed Sparse Row (sparse matrix format)

BDIA Banded Diagonal (sparse matrix format)

BELL Blocked ELLPACK/ITPACK (sparse matrix format)

BFS Breadth-First-Search

CMP Cocktail Matrix Partitioning

COO Coordinate (sparse matrix format)

CSB Compressed Sparse Block

CSR Compressed Sparse Row (sparse matrix format)

CUDA Compute Unified Device Architecture

DIA Diagonal (sparse matrix format)

ELL ELLPACK/ITPACK (sparse matrix format)

FFT Fast Fourier Transform

FLOP FLoating point OPeration

FLOPS FLoating point OPerations per Second

FPPI False Positive Per Image

GB Giga Bytes

GFLOPS Giga FLoating point OPerations per Second

gPb Global Probability

HOG Histogram of Oriented Gradients

HPC High Performance Computing

x

ILSVRC ImageNet Large Scale Visual Recognition Challenge

KCCA Kernel Canonical Correlation Analysis

KKT Karush-Kuhn-Tucker

KNN K-Nearest Neighbor

MRI Magnetic Resonance Imaging

NUMA Non-Uniform Memory Access

OLOV OpenCL for OpenCV

OPL Our Pattern Language

OSKI Optimized Sparse Kernel Interface

PaDi Pair-wise Distance

PCA Principal Component Analysis

SBELL Sliced Blocked ELLPACK/ITPACK (sparse matrix format)

SELL Sliced ELLPACK/ITPACK (sparse matrix format)

SIFT Scale-Invariant Feature Transform

SIMD Single Instruction Multiple Data

SMO Sequential Minimal Optimization

SPMD Single Program Multiple Data

SpMV Sparse Matrix Vector multiplication

SVM Support Vector Machine

TBB Threading Building Blocks

TLB Translation Lookaside Buffer

UMA Uniform Memory Access

VLIW Very Long Instruction Word

xi

Acknowledgments

I would like to acknowledge my sincere appreciation to my advisor, Kurt Keutzer, for
his guidance and support throughout my time in Berkeley. Kurt is always passionate about
demonstrating how parallelism can change the computing industry. Without his insight, I
cannot tightly bind my research with practical problems. I am also grateful for his patience
on coaching me in my presentations. It is Kurt who makes my graduate research successful.
I would also like to thank Prof. Jitendra Malik and Prof. Sara McMains for serving on my
dissertation committee and giving me important feedback.

I had four summer internships that helped me sharpen my parallel programming skills
on a variety of different applications. I would like to thank Tom Spyrou, Tasneem Brutch,
Calin Cascaval and Pradeep Dubey for being my mentors, bringing me challenging problems,
and broadening my experience on different areas.

It is a privilege working with all the members in the PALLAS group. Thanks to Matt
Moskewicz, Nadathar Satish, Jike Chong, Bryan Catanzaro, Narayanan Sundaram, Mark
Murphy, Ekaterina Gonina, Chao-Yue Lai, Michael Anderson, David Sheffield and Patrick Li
for making my research collaborative and interesting. Special thanks to Prof. James Demmel
for his inputs in linear algebra related research. I would also like to thank Pablo Arbeláez,
Michael Maire, Lubomir Bourdev, Subhransu Maji and Chunhui Gu for introducing me
state-of-the-art computer vision applications.

Most importantly, I would like to thank my wife Wei-Hsuan Hsiung for her full support
and understanding when I am pursuing my Ph.D. degree. I cannot concentrate on my
research without her sacrifice and tolerance. Finally, I would like to thank my family: my
parents Mu-Huan Su and Su-Cin Gao, and my sisters Ying-Ke Su and Huei-Ke Su. Their
confidence and encouragement motivated me to study hard and work hard.

1

Chapter 1

Introduction

Computer vision is a research field that enables machines to see, understand, and analyze
the real world. One straightforward usage of this technology is in robotics – if the robots
have the same views and the same interpretations as human beings, then they can behave
more like human beings. Another important application for this research is to search the
world. As long as the machines can understand visual data, we can collect data about the
world and ask machines to analyze and find objects in which we are interested. The easiest
way for machines to get “snapshots” of the real world is by collecting images and videos.
Therefore, most computer vision research focuses on image and video analysis.

When given an image or video, one way that human beings understand the context is by
identifying objects inside the scenes. Similarly, if machines are able to recognize objects in
scenes, they might be able to understand the contexts as well. Therefore, object recognition
is a major branch of computer vision research.

Human beings are not born with the ability to recognize objects – we establish the
ability to recognize objects by learning. Similarly, machines need to learn before they can
identify objects. The object recognition problem is therefore solved in two stages: a training
stage that trains machines to be familiar with objects, and a deployment stage that asks
machines to recognize objects from images or videos. In the training stage, for each object, a
collection of example images or videos is provided containing instances of the object. Special
features are extracted from the example images or videos to represent the characteristics of
the object instances. Based on the features of the example object instances, a model is built
to recognize the object. In the deployment stage, the features are extracted and plugged
into that model. The model can then decide whether instances of the object are found in a
given image or video.

A sense of the computational challenge at the training stage can be conveyed by con-
sidering the following example based on some reasonable assumptions: we are interested
in only 1000 objects; 1000 instances of example images are enough to build an accurate
model of each object; each example image is only 1 mega-pixel in size; we need only 1000
floating point operations (FLOPs) to extract the features on each pixel that summarizes
the contents of the image; the dimension of the feature vector is 100; and 10000 FLOPs
per feature vector element are enough to build the recognition model of the example in-

2

stances of an object. The computational cost for the feature extraction for this example
is thus 1000(objects)×1000(examples)×1000000(pixels)×1000(FLOPs)= 1015 FLOPs. The
computational cost for the model building is 1000(objects)×1000(examples)×100(vector
dimension)×10000(FLOPs)= 1012 FLOPs. The total computational cost for the training
stage is therefore about 1015 FLOPs. On a 1GHz CPU, this computation takes at least 106

seconds – 11.5 days.
Regarding the computational challenge at the deployment stage, object recognition tech-

nology is deployed in two different scenarios: the service provider (the cloud), and the end
user (the client). The cost of feature extraction is similar to that in the training stage.
Assume the classification computation takes 1000 FLOPs per feature vector element. For
the first scenario, the YouTube team (for example) wants to recognize whether the videos
uploaded in one minute contain any of the 1000 objects of interest. According to offi-
cial YouTube statistics [109], 60 hours of videos are uploaded every minute. Assuming a
frame-rate per second of 30, the cost of feature extraction is 60×60×60(seconds)×30(frames)
×1000000(pixels)×1000(FLOPs) = 6.48 × 1015 FLOPs. The cost of feature extraction is
60×60×60(seconds)×30(frames)×100(vector dimension)×1000(FLOPs)= 6.48×1011 FLOPs.
The total computational cost is therefore about 6×1015 FLOPs. On a 1GHz CPU, this would
take at least 70 days. For the second scenario, an end user might deploy the technology
on a single image. The computational cost is 1000000(pixels)×1000(FLOPs)+100(vector
dimension)×1000(FLOPs) = 1.0001 × 109. On a 1GHz CPU, this takes at least 1 second.
On a less powerful mobile platform, it might take more than 20 seconds.

Clearly, the computational costs of both the training stage and the deployment stage are
enormous. With the desire to improve recognition quality, analyze more images and videos,
or process images and videos with higher resolution, the computational challenge becomes
even larger.

Historically, application developers generally expect that computational challenges can
be solved by CPU frequency scaling. According to Moore’s Law [93], the number of tran-
sistors on a single chip doubles every 18 months. This prediction is based on the idea of
reducing the dimension of transistors by 30% every generation. This decrease in transistor
dimensions results in reducing the delay by 30%. Thus, the operating frequency can be 1.4×
higher, and the number of computations performed in the same amount of time increases.
This steady improvement is the low-hanging fruit that application developers can get with-
out any coding effort. According to Figure 1.1, this expectation has been quite true from
1985 to 2004. During this period, CPU frequency scaled at an exponential rate. However,
in 2004 the frequency scaling line stopped at around 3GHz, and since then has not exceeded
that upper-bound. Moore’s Law [93] still scales as expected, but we cannot find enough
power to operate all transistors at a higher frequency. This is called the Power Wall [9].

The power wall puts a hard limit on uniprocessor performance. This restriction has
driven the computer industry towards the parallel era. Moore’s Law [93] still acts as the
highest principle for processor manufacturers; however, instead of reducing the latency of
the processor, hardware architects put multiple processors on a single chip to increase overall
throughput. Although the frequency scaling trend comes to an end, the parallelism scaling
trend begins.

3

10

100

1000

10000

1984 1990 1995 2001 2006 2012

C
lo

ck
 F

re
q

u
e

n
cy

 (
M

H
z)

Year

Intel

AMD

IBM

Sun

Figure 1.1: Processor frequency scaling over years. Data from Danowitz et al. [34].

A new hope for solving the computational challenge of the object recognition problem
is to parallelize the algorithms and execute them on modern parallel platforms. However,
parallel programming is totally different from serial programming. Without proper training,
it is very hard to write correct, fast, and scalable parallel programs. As a result, there is an
enormous gap between application developers and expert parallel programmers. Application
developers are familiar with the algorithms used in the applications, but they lack the
knowledge of parallelizing the algorithms on parallel platforms. On the other hand, expert
parallel programmers are familiar with optimizing programs on parallel platforms, but do
not know what computations are important for developing the applications. This is called
the implementation gap [102, 28, 25], and will be further discussed in Section 2.3.

In order to bridge the implementation gap, we propose using patterns to architect the
applications. Patterns capture recurring computations in applications; by identifying ap-
plication patterns, we can identify the most important computations in the application.
An architecture of an application is a hierarchical composition of patterns, and describes
the organization of the application. Once the patterns are available, we can compose an
application by enforcing a control flow following the software architecture. The implemen-

4

tation gap can be bridged by having a pattern list of the target application. The expert
parallel programmers can then focus on parallelizing and optimizing this pattern list, and
the application developers can compose the patterns following their software architectures.

The task of parallelizing and optimizing an application pattern on a parallel platform
is not trivial. We must understand the algorithms used in the application pattern, and the
underlying parallel hardware platform. To parallelize and optimize the selected application
patterns, we propose using patterns to guide the process of design space exploration. There
are three layers of design space to explore when parallelizing and optimizing an application
pattern. The first is the algorithm layer. Sometimes an application pattern can be computed
by different algorithms. The second layer is the parallelization strategy layer. Given an
algorithm, there might be different ways to parallelize the algorithm. The third layer is the
platform parameter layer. Given a parallelization strategy, sometimes we need to adjust the
parameters to find the best mapping to the underlying hardware platform. By identifying
patterns in the algorithm and parallelization strategy layers, we can develop initial insight
based on the trade-offs among different patterns. This will help reduce the design space
at an early stage. The remaining design space can be explored by an autotuner. Any
application pattern can be parallelized and optimized with this approach. Gries et al. uses
a similar strategy to explore the design space of developing application-specific instruction-
set processors [59].

To bridge the implementation gap between object recognition application developers and
expert parallel programmers, we have performed pattern mining on object recognition ap-
plications, and summarize a pattern list for object recognition in Section 3.3. A library with
all the listed application patterns can be used to compose many different object recognition
applications.

When parallelizing and optimizing application patterns on one kind of platform, explor-
ing the design space of algorithm and parallelization strategy is usually more important
than the design space of platform parameters. Because variations in the underlying plat-
form are limited, the platform parameter space is restricted. In such a case, an exhaustive
search is enough for exploring the design space of algorithm and parallelization strategy.
We parallelize and optimize three application patterns on Nvidia GPUs, achieving 195×
speedup on the Eigensolver pattern [26], 5.7× speedup on the Breadth-First-Search Graph
Traversal pattern [110], and 28.6× speedup on the contour histogram pattern [111]. This
design space exploration experience is described in Chapter 5.

However, when parallelizing and optimizing application patterns across different plat-
forms, exploring the design space of platform parameters becomes important. Different plat-
forms have different strengths, and favor different kinds of parallelism. To develop a portable
and optimized library, it is necessary to apply autotuning technology when installing the
library in order to tune library performance according to the hardware specialties. We pro-
pose the OpenCL for OpenCV (OLOV) project to achieve this goal. OpenCL [116] is a
cross-platform programming model that is supported by many different parallel platforms.
OpenCV [21] is an open source library with many computer vision algorithms. By extend-
ing the OpenCV library with the application patterns we discovered using OpenCL, we can
provide the building blocks to compose many object recognition systems on many different

5

hardware platforms. We develop two cross-platform autotuners in the OLOV project; these
two autotuners and their performance on different platforms are introduced in Chapter 6.
We plan to implement more autotuners in the future.

In order to show how the library can be used to develop an object recognition applica-
tion, we pick one state-of-the-art object recognition system, analyze it, devise a software
architecture of the system, and then integrate the parallel application patterns following
the software architecture. We are able to achieve 119× speedup for the training stage, and
115× speedup for the deployment stage [111]. This proves the effectiveness of the parallel
library we have developed.

The main contribution of this thesis is to propose a systematic way to bridge the im-
plementation gap, and to parallelize and optimize all kinds of different computations using
patterns. This proposed approach is supported by a case study of object recognition appli-
cations. We find the most important application patterns of object recognition applications.
We choose a subset of the application patterns and explore the design space to parallelize and
optimize them. We achieve significant speedup in each application pattern. By integrating
the application patterns together, we have developed a near-real-time object recognition sys-
tem. This approach is very effective, and we can expect similar success in other application
domains.

1.1 Thesis Contributions

The main contributions of this thesis are as follows:

• We propose architecting applications using application patterns. These application
patterns capture recurring computations in the application domain. The application
architectures provide a high-level abstraction over how application patterns can be
used to develop applications. By providing a library covering all application patterns,
an application can be designed by composing the application patterns following a
pre-defined software architecture.

• We propose architecting computations using patterns in Our Pattern Language (OPL)
[73]. A software architecture offers a coarse-to-fine-grained abstraction of a given
computation. Based on these abstractions, we can define the design space to be
explored in order to optimize the computations on a targeting hardware platform.

• We propose exploring the design space in three layers: the algorithm layer, the paral-
lelization strategy layer, and the platform parameter layer. By systematically explor-
ing the design space of these three layers, we can optimize any computation on any
hardware platform.

• We perform pattern-mining on state-of-the-art object recognition systems, arriving
at a pattern list of the most frequent computations in object recognition systems.
By providing a highly optimized library covering the patterns in the list, we should
be able to develop state-of-the-art object recognition systems, and accelerate these
systems significantly on the targeted hardware platforms.

6

• We perform exhaustive analyses on three kernels for important patterns in this list
– the eigensolver, BFS graph traversal, and contour histogram. We optimize these
kernels on GPUs.

• We propose the OpenCL for OpenCV (OLOV) project, which extends the OpenCV
library with a set of autotuners for computationally intensive kernels at GPU plat-
forms.

• We propose the Cocktail Format to represent sparse matrices. This format is able to
represent specialized submatrices of the input matrix using specialized formats.

• We develop the clSpMV autotuner to automatically tune the sparse matrix vector
multiplication kernel on GPU platforms. This is the first autotuner in the OLOV
project.

• We develop the clPaDi autotuner to automatically tune the pair-wise distance kernel
on GPU platforms. This is the second autotuner in the OLOV project.

• We develop a highly optimized parallel object recognition system by using all functions
we have developed in the parallel library.

1.2 Thesis Outline

This thesis is presented as follows:

• Chapter 2 summarizes the necessary background of this thesis. It quantifies the com-
putational costs of object recognition applications, and explains the need for paral-
lelizing applications. The challenges of parallel programming are then discussed. A
major challenge is that the expertise for application development and for parallel pro-
gramming are totally different. It is very rare for people to master both areas, so
an implementation gap appears between application developers and expert parallel
programmers. Previous work on bridging this gap is also introduced.

• Chapter 3 describes our proposal for bridging the implementation gap for object recog-
nition applications: to develop a parallel application library for these applications. Key
application patterns are mined from state-of-the-art object recognition applications.
These key application patterns define the functions that the parallel application li-
brary should support. Expert parallel programmers can then focus on parallelizing
and optimizing these key application patterns. At the same time, application devel-
opers can design their applications by defining a software architecture and deploying
the application patterns in that software architecture.

• Chapter 4 discusses our proposed approach for implementing and optimizing any com-
putation on any hardware platform. The idea is to architect the computation using
patterns, then define the design space based on the software architectures, and finally
explore that design space.

7

• Chapter 5 describes our experiences with optimizing a subset of object recognition pat-
terns by using an exhaustive search strategy on the design space. Case studies include
the Lanczos eigensolver, BFS graph traversal, and contour histogram accumulation.

• Chapter 6 introduces our OpenCL for OpenCV (OLOV) project. The goal of the
project is to develop a cross-platform highly optimized library based on the object
recognition application patterns. We also provide a detailed description of the two
developed library kernels: the sparse matrix vector multiplication kernel and the pair-
wise distance computation kernel.

• Chapter 7 presents how we can employ the library to develop parallel applications,
using an object recognition system as a case study. The target object recognition
system is introduced, architected using patterns, and parallelized using the optimized
library.

• Chapter 8 concludes this thesis and describes future work.

8

Chapter 2

Background

In this chapter, we discuss the background and motivation for this thesis. We first
analyze the computational costs for object recognition applications, and explain why par-
allelism is necessary to support the computational need. Second, we show the challenges
of parallel programming. Because the expertise required for application development and
parallel programming is totally different, a gap exists between the two . We call this as the
implementation gap [102, 28, 25]. Finally, we introduce prior research on bridging this
implementation gap.

2.1 Object Recognition

Object recognition is a major branch in the field of computer vision. The ultimate
goal of computer vision research is to make machines understand the real world via visual
data. The most common visual data, which anyone can create and collect, are images and
videos. If we can make machines understand the contents inside images and videos, it will
be a significant advance in computer vision. In order to do this, we need to analyze how
human beings understand the contents of images and videos. Humans usually identify the
individual objects in the images and videos, and then reason about the overall contents
through the interactions among the objects. The first step of making machines understand
the contents of images and videos is therefore to make machines recognize the objects inside
the images and videos.

In addition to its application in robotics, object recognition technology can improve
our daily lives as well. There are two different scenarios for applying object recognition
technology: the cloud and the client. For the cloud usage scenario, service providers own
a database of multimedia content either loaded by users or prepared by content providers.
These files are usually searched or categorized by text-based tags. If the tags are missing
or misleading, it is very difficult for service providers to correctly respond to user queries.
However, with the help of object recognition, the contents can be used to identify files and
improve the robustness of search results.

For the client usage scenario, object recognition technology can be used in personal as-
sistant services. With the high availability of digital cameras, people often have a large

9

collection of photographs. With the help of object recognition, we can search the contents
of photos directly to help users find the photos they seek. Similarly, in augmented reality,
when an object is recognized, we can provide additional information that helps the user to
understand the object. With object recognition, we can also improve positioning applica-
tions by identifying specific landmarks and signs. With the appearance of smart phones,
object recognition technology is used in many mobile applications as well. Vuforia [103] is
the standard development toolkit that Qualcomm created to enable augmented reality on
mobile platforms. Leafsnap [94] is an application that helps people to recognize trees by the
leaves. Google Goggles [55] is a mobile application that recognizes text, landmarks, books,
contact info, artwork, wine, and logos. Overall, object recognition is getting more and more
attention on both the cloud and client sides.

The computation flow of most object recognition applications is summarized in Figure
2.1. This flow simulates the process through which human beings recognize objects. Humans
are not born with the ability to recognize objects. Rather, people learn about objects from
real examples as they grow up, and then recognize objects based on what they have learned.
Similarly, a training stage allows machines learn about objects from example images, and
then a deployment stage lets machines apply what they have learned on query images. In
the training stage, a set of training images is used as input, which contains many example
images for each object. The number of example images per object is a trade-off between
recognition accuracy and total computation – more example images for each object lead to
better recognition accuracy, but also require more computation. A feature extraction step is
used to summarize representative features from the objects in the training image set. Based
on the features collected from the objects, a model is built to differentiate different objects,
and to identify each object. The output of this training stage is the model for all objects.
In the deployment stage, a set of query images is given. Features are extracted from the
query images, and then the objects are recognized by plugging the extracted features into
the model built at the training stage.

In the following sections, we quantitatively analyze the computational costs for object
recognition applications.

2.1.1 Computational Cost of Feature Extraction

Features are used to capture the distinctive characteristics of each object, and usually
many image processing algorithms are involved in extracting features from a given image.
In order to understand the computational costs for the feature extraction computations, we
have selected three state-of-the-art feature descriptors and analyze the associated algorithms.

The Scale-Invariant-Feature-Transform (SIFT) [80] is the most famous feature in general-
purpose object recognition applications. The SIFT feature is good at collecting key points
in the object that are invariant under scaling and rotation. This is important because the
same object may have different appearances in different images. The algorithm used in
SIFT has four steps. (1) Finding extreme points such as corners in the scale space. This
is the major bottleneck in the SIFT feature computation. The approximate number of
floating point operations (FLOPs) per pixel for this step is 20,000 FLOPs. (2) Performing

10

Feature
Extraction

Model
Building

Training
Images

Query Images

Object Models

Feature
Extraction

Classification Object Models

Identified
Objects

Training Stage Deployment Stage

Figure 2.1: Object recognition computation flow.

key point localization to fit the extreme points to the nearby data for location, scale, and
curvature. Extreme points that have low contrast or poorly locate on edges will be elimi-
nated. (3) Assigning an orientation value to the key points. Both steps two and three are
computationally-cheap compared to step one, because the number of key points is many
magnitudes smaller than the number of pixels in the image. (4) Computing a distinctive
descriptor for each key point. It serves as the unique signature of the corresponding key
point. When a descriptor is computed, the orientation and location information of neighbor-
ing pixels around the key point are included. On average, a window of 60× 60 neighboring
pixels is used per key point. The large number of neighboring pixels involved makes this
step expensive. Given an M ×M image, assuming the number of key points extracted from
the image is M/30×M/30 – a key point for every 30× 30 window – then the approximate
FLOPs per pixel of this step is about 1,000. As a result, the approximate number of FLOPs
per pixel for the SIFT algorithm is about 21,000 FLOPs per pixel.

The Histogram of Oriented Gradients (HOG) descriptor [33] achieves the best perfor-
mance on human detection applications. Given a detection window, the HOG descriptor
summarizes the spatial locality and gradient orientations of all pixels within the detection
window. In order to detect humans with different scales, usually the HOG descriptor is
applied on a pyramid of images with different scales. The image sizes decrease from lower

11

layer to higher layer in the image pyramid. The scaling factor in the image pyramid is
a trade-off between detection accuracy and the total amount of computation. A smaller
scaling factor creates more images in the pyramid and can detect humans on more scales,
but also increases the total number of computations. To estimate the total computation for
the HOG descriptor, we assume the scaling factor to be 1.1 – that the width and height of
an image in the pyramid are divided by 1.1× from the lower layer image. This scaling fac-
tor is used in the state-of-the-art human detection application, the poselet [20]. The HOG
algorithm has three steps. (1) Normalizing the color channels of the image, and compute
the maximum gradient value among the color channels on each pixel. The cost of this step
is about 700 FLOPs per pixel. (2) Computing the weight of the gradient on every pixel,
and accumulate the value to the proper histogram bin. The cost of this step is about 4,400
FLOPs per pixel. (3) Normalizing the histogram bins. This is a cheap step compared to
the first two steps. Therefore, the approximate number of FLOPs per pixel for the HOG
algorithm is 5,100.

Contour features describe the shapes of objects. The region based object detection
algorithm proposed by Gu et al. [61] employs contour features to detect objects with
special shapes. Among all existing contour detection algorithms, the global probability
(gPb) algorithm [81] achieves the best results. The gPb algorithm has three steps. (1)
Computing local contours using brightness, color, and texture cues [88]. Because there are
four channels (one brightness channel, two color channels, and one texture channel), and
each channel has three cues of different scales, 4 × 3 = 12 local cues are collected in this
step. This is an expensive step, and costs about 77,600 FLOPs per pixel. (2) Computing
the global contour using the normalized cut algorithm [108]. Spectral graph theory can be
used to transform the normalized cut algorithm into an eigen-decomposition problem. We
then need to find the eigenvectors of an affinity matrix that describes the similarity between
each pair of pixels in the image. The Lanczos algorithm [12] is a good fit for this. Assuming
that we need only 500 iterations to converge to the necessary eigenvalues, the cost of this
step is 81,000 FLOPs per pixel. (3) Performing a linear combination on the local and global
contours. This is a cheap step. As a result, the total cost of the gPb algorithm is about
158,600 FLOPs per pixel.

The computational costs for state-of-the-art feature extraction algorithms are summa-
rized in Table 2.1. However, this is only a simplified approximation – we skip the index
algebra and other cheap steps. As such, the actual cost is higher than these numbers. Even
the smallest cost in Table 2.1 is still on the order of several thousand FLOPs per pixel.
Therefore, when considering images with more than one megapixel, the total computational
cost will be tens to hundreds of gigaFLOPs or more.

Table 2.1: Computational costs for state-of-the-art feature extraction algorithms.

Image Feature SIFT [80] HOG [33] gPb [81]
Approximate FLOPs per pixel 21,000 5,100 158,600

12

2.1.2 Computational Cost of Classification

After the image features are extracted, they are represented by feature vectors, which
are collections of numbers. However, these numbers do not directly tell us any information
about objects. What we need to do is build a model to evaluate whether a feature vector
corresponds to an object. In order to do so, we need a training stage to build the model and
then apply the model on the query feature vectors. Machine learning algorithms are usually
used in classification. To understand the computational costs of classification algorithms,
we analyze two state-of-the-art classification algorithms using FLOPs per vector element as
the measuring unit. A vector element is a number in the feature vector.

The Support Vector Machine (SVM) algorithm [31] is one of the machine learning algo-
rithms that achieves the highest accuracy on the classification problem. Given a set of points
that are a mixture of instances from two different categories, the training stage of the SVM
algorithm finds a maximum-margin hyperplane that separates the points into the different
categories. The hyperplane cuts the sample space into two halves, each corresponding to one
category. The deployment stage of the SVM algorithm evaluates the category of the query
vector by checking which half it locates. For simplicity, we estimate the computational cost
of linear SVM. For a more complicated SVM kernel, the required computation is larger. At
the training stage we need to solve a quadratic programming problem. One famous way
of solving the problem is to apply the Sequential Minimal Optimization (SMO) algorithm
[101]. This algorithm iteratively selects two vectors and adjusts their weights until con-
vergence. Many different heuristics have been proposed to select the two vectors in each
iteration. One famous heuristic is the second order heuristic [45]. This heuristic first finds
the vector that largely violates the Karush-Kuhn-Tucker (KKT) constraints, then finds the
paired second vector that most improves the objective function. The computational cost
of the training stage is proportional to the number of iterations in the SMO algorithm.
Because the SMO algorithm updates the weights of two vectors in an iteration, the total
number of iteration is usually in the order of the number of the training points. Most of the
machine learning benchmarks have more than a thousand training points, so the estimated
FLOPs per vector element is 15,000 FLOPs in the training stage. The deployment stage is
conducted by performing kernel functions between the query vector and the support vectors,
which are a subset of the training vectors. Assuming that the number of support vectors is
500, the estimated FLOPs per vector element is 1,000.

K-Nearest Neighbor (KNN) [8] is also a famous approach for classification. There is
no training needed in the KNN algorithm – all computation happens at the deployment
stage. Given a query vector, the KNN algorithm finds the k closest neighbors from the
training examples, and lets the k nearest neighbors vote on the query vector’s category. For
a training set of 1,000 vectors, the computational cost per vector element at the deployment
stage is 3,000 FLOPs based on the L2 distance. However, a naive KNN algorithm is error
prone. People usually apply other techniques to improve the results. The region-based
object recognition application developed by Gu et al. [61] is an example of this: both the
training and deployment stages use the nearest neighbor concept. In the training stage,
the distances between similar and different object parts are computed. The weights of all
object parts are then computed by the importance of the object parts. An “important part”

13

means that it reappears in similar object examples (small distance), and is distinguishable
from other different objects (large distance). The computational cost of the training stage is
3,000 FLOPs per vector element. In the deployment stage, only object parts with non-zero
weights are considered. Assuming that we have only 200 important parts from the 1,000
total parts, the computational cost of the deployment stage is then 600 FLOPs.

The computational costs for state-of-the-art classification algorithms are summarized in
Table 2.2. Again, this is a simplified approximation. We do not include the index algebra
and other cheap steps, so the actual cost is higher.

Table 2.2: Computational costs for state-of-the-art classification algorithms.

Classification Algorithm SVM [31] KNN [8] Gu et al. [61]
Training: Approximate FLOPs per vector element 15,000 0 3,000

Deployment: Approximate FLOPs per vector element 1,000 3,000 600

2.1.3 Computational Cost of Real Object Recognition Systems

At this point, we have estimated the computational cost of feature extraction and classi-
fication algorithms. By plugging in these numbers, we can analyze the total computational
cost of real object recognition systems. We use the region-based object recognition de-
veloped by Gu et al. [61] as our case study. It uses the gPb contour feature and the
nearest-neighbor-based classification algorithm.

In the training stage, we analyze the computational cost of the object recognition system
on three different benchmarks: the ETHZ shape benchmark [50], the PASCAL VOC bench-
mark [44], and the ImageNet benchmark [39]. The ETHZ shape benchmark has five object
categories. The number of training images is 127. The average size of each image is about 0.2
megapixels. The feature extraction cost is 127(images)×200, 000(pixels)×158, 600(FLOPs
per pixel) = 4 teraFLOPs. In the model-building step, each region in each image corre-
sponds to a training sample. The average number of regions per image is approximately
200. The dimension of the feature vector is 128. Because the model building cost is propor-
tional to the number of samples in the training set, the estimated FLOPs per vector element
is now 127(images)×200(regions)×3(FLOPs) = 76, 200 FLOPs. The model building cost
is 127(images)×200(regions)×128(vector dimension) ×76, 200(FLOPs) = 248 gigaFLOPs.
The total cost is therefore 4.25 teraFLOPs. The PASCAL VOC benchmark has 20 object
categories, and the number of training images is 5,011. The average size of the images is 0.18
megapixels. The feature extraction cost is 5, 011×180, 000×158, 600 = 143 teraFLOPs. The
model-building cost is 5, 011×200×128×5, 011×200×3 = 386 teraFLOPs. The total cost
is therefore 529 teraFLOPs. The ImageNet database has more than 10 million images on
more than 10 thousand object categories. It hosts the annual ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) to encourage progress in the large-scale object recognition
problem. ILSVRC uses a subset of the ImageNet images. It has 1,000 object categories,
and the number of training images is 1.2 million. The average size of the images is 0.18
megapixels. The feature extraction cost is 1, 200, 000×180, 000×158, 600 = 34 petaFLOPs.

14

The model-building cost is 1, 200, 000× 200× 128× 1, 200, 000× 200× 3 = 22 exaFLOPs.
The total cost is therefore 22 exaFLOPs.

In the deployment stage, we can discuss the computational costs under three different
scenarios:

• Object Recognition on Benchmarks: This scenario reflects the computational
cost required for object recognition research. The ETHZ shape benchmark [50] has
128 test images, the average size of which is 0.2 megapixels. The feature extrac-
tion cost is 128 × 20, 0000 × 158, 600 = 4 teraFLOPs. For the classification step, we
need only to find whether the important object regions show up in the query im-
ages. The average number of important object regions per image is 12. Because we
need to compute the distance between the important object parts in the training im-
ages with the query regions, the estimated FLOPs per vector element is 127(training
images)×12(regions)×3(FLOPs) = 4, 572 FLOPs. The computational cost of the
classification step is 128(testing images)×200(regions per testing image)×128 (vector
dimension)×4, 572(FLOPs) = 15 gigaFLOPs. The total cost is therefore 4.02 ter-
aFLOPs. The PASCAL VOC benchmark [44] has 4,952 testing images. The feature
extraction cost is 4, 952 × 180, 000 × 158, 600 = 141 teraFLOPs. The classification
cost is 4, 952× 200× 128× 5, 011× 12× 3 = 23 teraFLOPs. The total computational
cost is therefore 164 teraFLOPs. The ILSVRC benchmark has 100,000 testing images.
The feature extraction cost is 100, 000× 180, 000× 158, 600 = 2.85 petaFLOPs. The
classification cost is 100, 000× 200× 128× 1, 200, 000× 12× 3 = 111 petaFLOPs. The
total computational cost is therefore 114 petaFLOPs.

• Object Recognition in One Image: This scenario reflects the computational cost
when an user wants to identify objects from a photo. In real applications, the ca-
pability of finding objects from 1,000 categories is far more useful than from 5 or
20 categories. Therefore, we assume that the classification model is based on the
ImageNet benchmark, which has 1,000 categories. Regarding the dimensions of the
photo, we use an iPhone 4S camera setting, which is 8 megapixels. Based on such a
resolution, the feature extraction cost is 8, 000, 000 × 158, 600 = 1.3 teraFLOPs, and
the classification cost is 200 × 128 × 120, 000 × 12 × 3 = 111 gigaFLOPs. The total
computational cost is therefore 1.4 teraFLOPs.

• Object Recognition on YouTube Videos: This scenario reflects the computa-
tional cost when a service provider wants to analyze videos that users upload. Ac-
cording to the official YouTube statistics [109], 60 hours of video are uploaded every
minute. Assuming that the resolution is 480p, or 850×480 = 408, 000 pixels, that the
frame rate is 30 fps, and that we apply the object recognition system on every frame,
the feature extraction cost is 60×60×60×30×408, 000×158, 600 = 420 petaFLOPs.
The classification cost is 60 × 60 × 60 × 30 × 200 × 128 × 120, 000 × 12 × 3 = 717
petaFLOPs. The total computational cost is therefore 1137 petaFLOPs.

The computational costs of applying the region based object recognition algorithm de-
veloped by Gu et al. [61] on different scenarios are summarized in Table 2.3

15

Table 2.3: Computational cost for real object recognition systems.

Feature Extraction Classification Total
FLOPs FLOPs FLOPs

Training
ETHZ [50] 4 tera 248 giga 4.25 tera

PASCAL VOC [44] 143 tera 386 tera 529 tera
ILSVRC [39] 34 peta 22 exa 22 exa

Deployment

ETHZ [50] 4 tera 15 giga 4.02 tera
PASCAL VOC [44] 141 tera 23 tera 164 tera

ILSVRC [39] 2.85 peta 111 peta 114 peta
One Image 1.3 tera 111 giga 1.4 tera

YouTube Video 420 peta 717 peta 1137 peta

2.1.4 Solution to the Bursting Requirements of Computation:
Parallel Programming

According to Table 2.3, the computational costs of applying this state-of-the art object
recognition system to real-world problems are enormous. Even classifying a single image
requires 1.4 teraFLOPs. On a 3.0 GHz single-core desktop CPU, this can take 8 minutes to
process. On a less powerful mobile platform, it can take up to 160 minutes. This delay makes
it impossible to turn object recognition technology into a practical mobile application. On
the cloud side, the problem is no easier. To analyze YouTube videos that users upload in
one minute, we would need to compute 1137 petaFLOPs. On a 3.0 GHz single-core desktop
CPU, this would take 12 years to process.

Further, to make the object recognition application realistic, we would need far more
than 1,000 object categories. And, to ensure good quality of a classification model, we would
need many training images for each object category. With the advancement of camera
and storage technologies, the resolution of images and videos will keep growing. With
the high availability of smart phones, people will upload more images and videos to the
cloud. Therefore, the amount of data we need to analyze is exploding, and so is the number
of required computations. Because of the power wall [9], CPU frequency does not scale
over 4 GHz. Therefore, it is impossible to solve the computational challenge of object
recognition algorithms on single-core processors. We need to parallelize the algorithms and
take advantage of these parallel platforms.

2.2 Challenges in Parallel Programming

Even though parallelizing object recognition algorithms and executing them on parallel
platforms can solve the computational challenge, it is not a trivial solution. Parallel pro-
gramming is difficult, and it takes considerable effort and expertise to parallelize an existing
algorithm on a parallel platform. We summarize the challenges of parallel programming in
the following seven sections.

16

2.2.1 Variation of Hardware Platforms

The computing industry as a whole is moving towards parallel computing. One of the
driving forces comes from hardware designers, who are aware of the power wall and are on
the frontier of exploring parallel hardware platforms. However, parallel architecture does
not have a standard, and researchers keep proposing new computer architectures to explore
parallelism on hardware platforms. As a result, there are a wide variety of different parallel
hardware platforms available in the market. For example, core level parallelism inte-
grates many stand-alone processors on a single die. Thread level parallelism launches
many threads on a single core. Superscalar processors [71] execute multiple instructions in
parallel. Out-of-order execution [65] rearranges the ordering of instructions to execute
independent instructions in parallel. Very Long Instruction Word (VLIW) [51] bundles
several operations into a single instruction, and performs all the operations in parallel.
Single Instruction Multiple Data (SIMD) [65] fetches a single instruction and then
applies that instruction on multiple data operands in parallel.

In addition to the different architectural designs in the execution units, the memory
hierarchies of different hardware platforms also vary. There are Uniform Memory Access

(UMA) [65] machines, for which all the processors share physical memory uniformly. There
are also Non-Uniform Memory Access (NUMA) [65] machines, for which physical memory
is partitioned into several pieces, and the cost of accessing data in a piece is related to
the distance between the processor and the memory chunk. The CPU family usually has
a memory hierarchy of DRAM, Translation Lookaside Buffer (TLB) cache, L3 cache, L2
cache, L1 cache, and registers. The GPU family usually has a memory hierarchy of DRAM,
L2 cache, L1 cache, software manageable scratchpad, texture cache, and constant memory.
Heterogeneous CPU-GPU hybrid designs usually let multiple CPUs and one GPU share the
L3 cache, and all the CPUs and GPU have their own internal memory hierarchy as well.

These variations in the capabilities of hardware platforms make parallel programming
difficult. If we do not want to spend time evaluating the performance on all available
platforms, then we must choose a single platform, and optimize our software for it. Without
expertise in computer architecture, it is very difficult to determine which platform to choose,
and how to optimize it. If portability is a major concern, then addressing the huge space
of hardware platforms is a significant challenge. All the varieties in the hardware platforms
make parallel programming difficult.

2.2.2 Variation of Programming Models

Instead of coding in assembly language, it is more common to use a programming lan-
guage that has a higher abstraction level. Similarly, when programming on parallel hardware
platforms, instead of specifically coding parallel instructions, programmers usually employ
models that generate parallel instructions automatically. Again, because there is no stan-
dard parallel programming model, programming language researchers have created many
parallel languages for different programming models. OpenMP [99] is a parallel Application
Programming Interface (API) that relies on the fork-join programming model. It creates
parallel sections in the code. When entering the parallel sections, many threads are forked;

17

when exiting the parallel sections, the created threads are joined. Threading Building

Blocks (TBB) [114] is a parallel API that relies on the workpile programming model. A
thread pool is maintained, and a scheduler assigns tasks to idle threads. POSIX Threads

(pthreads) [24] is a parallel API that relies on the Single Program Multiple Data (SPMD)
model. Many threads are created, and the same program is executed by all threads, but
different threads can access different data sets according to their thread indices. Compute

Unified Device Architecture (CUDA) [96] is a parallel API that relies on the kernel par-
allelism programming model. Many thread blocks are created, and scheduled to be executed
on processors with wide SIMD units. OpenCL [116] is a parallel API that mixes kernel par-
allelism and task queues. In this programming model, a task queue is created, and many
kernels are enqueued. Within a kernel, many work groups are created and scheduled to
available SIMD units.

Different programming models have different assumptions and different overhead. CUDA,
for example, assumes that all thread blocks are independent; only threads within a thread
block can communicate with one another. The kernel launch introduces overhead, and
branching in the execution path within a thread block also introduces overhead. In order
to achieve the correct results, we need to be aware of the assumptions. In order to optimize
the parallel code, we need to reduce the overhead, which is best understood by knowing
how the programming model is mapped to the underlying hardware platform. This requires
a background in computer architecture.

Given an algorithm that we want to parallelize and a specific parallel hardware platform
that we want to use, we need to understand the trade-offs among all parallel programming
models that are applicable on the parallel hardware platform. Then we must choose the best
programming model for the purpose. The knowledge and experience required to understand
all of these parallel programming models makes parallel programming difficult.

2.2.3 Finding Parallelism in Algorithms

Not all algorithms have parallelism to explore – some are naturally serial. For example,
algorithms that enforce a strict ordering on the data to be processed are serial. Huffman
encoding and Dijkstra’s shortest path [30] are in this category: they rely on a priority queue,
and always extract one element with the highest priority from the queue. If multiple ele-
ments are extracted from the priority queue and processed, the results might be suboptimal.
Algorithms that enforce specific dependency on every step are also serial – iterative methods
such as conjugate gradient and gradient descent are in this category. Because every iteration
is dependent on the previous one, there is no way to parallelize across the iterations.

Some algorithms can be parallelized, but do not always have enough parallelism to
be explored. For example, the Breadth-First-Search (BFS) graph traversal algorithm [30]
can be parallelized because all the frontier nodes are independent and can be processed in
parallel; however, the number of frontier nodes per level is graph dependent. If the graph is
a single path, all the BFS levels have only one frontier, so the algorithm ends up with serial
execution.

Different algorithms have different assumptions and different properties. In order to find

18

parallelism in an algorithm, we must perform a dependency check on the procedure and
identify independent steps. If the number of independent steps is not sufficient to saturate
all processing units, we need clever algorithmic improvement to remove the dependency.
Otherwise, performance will be bounded by the number of independent steps. As a result,
identifying sufficient parallelism in a given algorithm makes parallel programming difficult.

2.2.4 Memory Optimizations

Hardware vendors continue to increase the number of processing units on a single die, so
the peak theoretical number of FLOPs scales nicely over time. However, memory bandwidth
cannot keep up with the pace of computing power. We collect the peak performance and
memory bandwidth numbers for Intel and Nvidia mainstream products from year 2004 to
2010, and summarize these in Figure 2.2 and Figure 2.3. The left y-axis corresponds to
the peak performance in gigaFLOPs, and the right y-axis to the memory bandwidth in
gigabytes per second. Assuming we read two single precision floating point numbers (eight
bytes in total) and perform eight floating point operations on these two numbers. Then in
average we perform one floating point operation per byte we read from memory. Under this
condition, the measuring unit of both right and left y-axises are the same. According to the
plots, the peak performance of both the Intel and Nvidia products is significantly greater
than the available memory bandwidth, and the gap is growing with time. It is very fast to
issue instructions when data are in registers, but it is very slow to read data from memory
to registers. Very likely, there will be many computing units available, but the data will
not have arrived yet. As a result, optimizing memory operations is essential for parallel
programs.

Again, a background in computer architecture is necessary to understand the memory
hierarchy of the underlying hardware platform. Memory optimizations are highly related to
the underlying memory system. Some common memory optimization strategies include the
following:

• Compaction [42]: The granularity of a single memory transaction is the size of a cache
line. Usually the cache line is 64 to 128 bytes. If the operands are located in multiple
cache lines, many memory transactions are needed to collect all operands and then
to perform the operations. Compaction optimization groups operands into the same
cache line, reducing the number of necessary memory transactions.

• Alignment [42]: Even if the operands are grouped consecutively, they might be stored
across the cache line boundaries. Extra memory transactions are then needed to
load all the operands. Alignment optimization aligns the operands with cache line
boundaries, reducing the total number of memory transactions.

• Blocking [42]: This strategy takes advantage of the temporal locality of the data.
The data are grouped into blocks that fit into caches, and blocked data are reused as
many times as possible. If a hierarchy of caches is available, we can have a hierarchy
of blocks that fit into different levels of the caches.

19

Figure 2.2: The peak performance (in GFLOPs) and the memory bandwidth (in GBytes/s)
for Intel mainstream products over the years.

• Prefetching [42]: This strategy takes advantage of the spatial locality of the data.
After a cache line is loaded, we can predict the next cache line and start fetching it
before the program queries. If the program queries that exact cache line later on,
memory latency is reduced.

Although these memory optimizations can be performed in serial programs, the parallel
paradigm is considerably more complicated. For example, on a NUMA machine, the physical
memory is partitioned into several pieces, and the memory latencies of accessing different
pieces are different. Given a computation, we need to block the operations in a way such
that we spend more time on accessing data from low-latency piece and spend less time on
accessing data from high-latency piece. As such, the need of memory optimization makes
parallel programming difficult.

2.2.5 Scalability and Amdahl’s Law

Parallel programs have overhead. For example, creating/scheduling/terminating threads
and processes incurs overhead. Communication/synchronization across multiple threads/
processes/cores also introduces overhead. The more parallelism we explore, the more over-
head we might encounter. This overhead can put an upper-bound on the maximum amount

20

Figure 2.3: The peak performance (in GFLOPs) and the memory bandwidth (in GBytes/s)
for Nvidia mainstream products over the years.

of parallelism we can explore. Because of the overhead, the more parallelism we express,
possibly the less performance we can achieve with it. It is also possible that such perfor-
mance would even be worse than a serial implementation. Moreover, according to Amdahl’s
Law [5], the maximum benefit we can achieve by parallelizing an algorithm is bounded by
the serial fraction. Assuming that the fraction of the serial part of the algorithm is s, the
parallel part is 1 − s. Let t be the execution time of the serial algorithm, and let t′ be the
execution time after we have parallelized the parallel portion using p processing units. The
maximum speedup we can get from parallelism is then computed as follows:

t

t′
=

1

s+ 1−s
p

. (2.1)

Even if we have an infinite number of processing units available, the ultimate speedup
is bounded:

lim
p→∞

1

s+ 1−s
p

=
1

s
. (2.2)

As a result, the benefit from parallelizing the algorithm is bounded by the parallel
overhead and the serial fraction of the algorithm. In order to scale our parallel algorithm to

21

as many processing units as we want, we must reduce the overhead and the serial portion
of the algorithm. In order to do this, we need a deep understanding of the hardware
architecture, the programming model, and the algorithm. This scalability concern makes
parallel programming difficult.

2.2.6 Load Balancing

Some algorithms have a massive number of independent tasks, but the amount of work
in each task is irregular. In this situation, some processing units perform more operations,
while others are idle. This load balance problem deteriorates the performance of the parallel
algorithm. Sparse matrix vector multiplication is an example of this. One way to parallelize
the computation is to assign different matrix rows to different processing units. The amount
of work per row is proportional to the number of non-zeros per row. If the first row of the
matrix has n non-zeros while all other rows have 1 non-zero, then the execution time for
the first processing unit is proportional to n, while the execution times for other processing
units are constant. The overall execution time is dominated by the first processor, while all
other processors are idle most of the time.

In order to solve the load balance problem, we must find the proper granularity of the
tasks, and schedule them evenly across all available processing units. More aggressively, we
can dynamically adjust the work loads of all processing units. These complicated concerns
regarding the load balance problem make parallel programming difficult.

2.2.7 Concurrency Bugs

In parallel programming, many resources are shared among different processing units.
This has the potential to introduce concurrency bugs that do not happen in serial programs.
Some well-known concurrency bugs include in the following:

• Race Condition [100]: A race condition happens when a thread is writing data to a
memory address, and another thread is reading or writing to the same memory address.
Under this situation, the execution ordering of the two threads affects the results. If
the reading happens before the writing operation, it gets the old data instead of the
new.

• Deadlock [100]: Deadlock happens while a thread stalls forever. For example, if two
threads lock two different resources, but each waits for the other to release the resource,
then both will stall forever.

• Livelock [100]: Livelock happens while a thread performs operations but the over-
all algorithm never progresses. For example, if two threads both need the same two
resources to make progress, and each owns one resource, then they may continue releas-
ing and exchanging that resource for the other. Although the threads are performing
operations, neither has both resources at any time, so the overall algorithm does not
progress.

22

• Starvation [100]: Starvation happens when a task is never processed. This can
happen if the task scheduler uses a priority queue to schedule tasks. Before a low
priority task is scheduled, there are always higher priority tasks inserted into the
queue, so that the low priority task is never scheduled and processed.

In order to achieve correct results and ensure that the program terminates, we must
avoid these concurrency bugs. These bugs make parallel programming difficult.

2.3 The Implementation Gap

We can classify programmers into two categories according to their expertise: application
developers and expert parallel programmers. As shown in Figure 2.4, the application devel-
opers know the application very well, but do not know much about parallel programming.
On the other hand, expert parallel programmers are well trained for parallel implementa-
tions, but are not familiar with the computations that the application needs. The special
expertise needed for either end creates the implementation gap.

Target
Application End User

HW Platform

Hardware Architect

Application
Developer

Application domain experts make
design trade-offs without full view of

parallel performance implications

Expert
Parallel

Programmer

Expert parallel programmer with
limited knowledge of application

design trade-offs

Application

Platform

S
W

 I
n

fr
a

s
tr

u
c
tu

re

Figure 2.4: The implementation gap between application developers and expert parallel
programmers.

From the perspective of application developers, the implementation gap appears because
developers want their applications to run quickly and efficiently. If there is no such need,
developers can rely on their naive serial implementation, and the implementation gap does

23

not exist. However, this is not true for all applications. As discussed in Section 2.1, object
recognition applications require an enormous number of computations, and there is no hope
of performing all of them on a single processor. An alternative method to reduce the
implementation gap would be to make application developers learn parallel programming.
However, as discussed in Section 2.2, parallel programming is very difficult, and it takes
years to master. If portability is a major concern it might take even longer, because different
hardware platforms require different optimization approaches.

Conversely, expert parallel programmers have years of experience with parallelizing al-
gorithms on different parallel hardware platforms, but do not have the application domain
knowledge. Regarding object recognition applications, for example, they do not know how
to define and extract features from images, how to build effective and highly accurate mod-
els, and how to apply the models to classify query images. When many features and models
are available, expert parallel programmers do not understand which one is better under
what circumstances. It would take years for the expert parallel programmers to master the
application domain.

From both the application developer end and the expert parallel programmer end, the
implementation gap is difficult to close. Therefore, we need intermediate layers between the
two to bridge the gap.

2.4 Prior Work

Researchers and programmers are aware of the implementation gap, and have tried differ-
ent ways to bridge it. Chong proposes using pattern-oriented application frameworks to help
speech recognition application developers to efficiently develop parallel speech recognition
systems [28]. The proposed application frameworks are very productive, and application de-
velopers need to make only some customization decisions – all other implementation details
are covered by the frameworks. However, Chong’s frameworks are not very flexible, support-
ing only a set of pre-defined plug-ins. Catanzaro proposes using compiler transformation
algorithms to parallelize python source code automatically [25]. This idea can be general-
ized to many data-parallelism based computations, and can be applied to many different
applications. However, it is too general, and does not take advantage of domain-specific
knowledge. DeVito el al. propose using domain-specific languages to build portable parallel
mesh-based partial differential equation solvers [41]. This approach is general enough for
application developers, and also takes advantage of domain-specific knowledge. However,
application developers need to learn the new language. Like these, different methods for
bridging the implementation gap have different advantages and disadvantages – typically
trade-offs among efficiency, productivity, portability, and flexibility.

There is also research that tries to bridge the implementation gap for computer vision
applications. OpenCV [21] is an open-source computer vision library with a large collection
of functions related to computer vision applications. From the perspective of object recog-
nition applications, it provides many image processing and machine learning routines. The
initial implementation is serial, focusing on improving the productivity of computer vision
application developers. Because developers of the OpenCV project are aware of the com-

24

putational challenges of computer vision applications, they are gradually providing some
parallel routines. However, since productivity and portability are their major concerns, the
efficiency of these parallel routines is not very satisfying. Fung et al. propose the Open-
VIDIA project [53] to solve the problem. The OpenVIDIA is a collection of computer vision
related computations optimized on GPUs. It is an ongoing project, so only a limited number
of functions are provided, including image processing, optical flow, and feature tracking. It
relies heavily on the CUDA programming model, and cannot be ported to GPUs from other
vendors. The GpuCV project proposed by Allusse et al. [1] is similar to the OpenVIDIA
project. However, instead of using the CUDA programming models, it employs OpenGL
and OpenGL Shading Language [105] to provide a set of image processing routines. The
API design follows the OpenCV library. If an application relies on a function in OpenCV
and that function is also supported by GpuCV, then the application developer can easily
switch to the accelerated version.

In summary, the OpenCV library is the most famous intermediate layer that bridges the
implementation gap, and covers a very large portion of the computations in computer vision
applications. However, productivity and portability are a higher priority, so performance is
sacrificed. Other projects focus instead on efficiency, and provide optimized implementation
on GPU platforms. However, these are ongoing projects – they cover only a very restricted
portion of the overall computations, and can be executed on only a restricted number of
platforms.

2.5 Summary

Object recognition applications usually are composed of two stages: the training stage
of building a model based on training examples, and the deployment stage of applying the
model to query images. The computations required for both stages include image processing
and machine learning. The image processing computations are used to summarize the
important features from the images, while the machine learning computations are used to
develop a model to identify objects from the feature vectors. We have estimated the number
of FLOPs required for both the feature extraction and machine learning computations.
State-of-the-art computations are very expensive, and the total number of computations on
an object recognition system is proportional to the size of the images, the size of the training
image set, and the size of the query image set. A realistic object recognition system needs
to identify thousands of different object categories, and in order to accurately identify an
object, many examples are needed. By putting all these requirements together, the total
computational cost of the training stage is enormous. Further, with the advancement of
camera technologies, the size of images are increasing. With the spread of smart phones,
users upload a huge number of images and videos to service providers. These factors cause
an exploding computational cost at the deployment stage. Because frequency scaling stalls,
the performance of single processor cannot scale up any more. The only hope for resolving
this computational challenge is to parallelize object recognition applications.

Parallel programming is difficult. Many different parallel platforms are available, and
it requires lengthy training to understand all of them. Similarly, many different parallel

25

programming models are available, it is difficult to master all of them. Sometimes it is
a challenge just to find sufficient parallelism in the existing algorithms. Because memory
bandwidth scales much more slowly than computation capability, memory optimization is
necessary for parallel programs. Parallel programs have overhead, so it is also difficult
to make performance scale linearly to the number of available processing units. Even if an
algorithm has massive parallelism, we must also find a good scheduling algorithm to balance
the work load among all available processing units. Finally, parallel programming is subject
to new classes of bugs that do not happen in serial programs.

Application developers have expertise in application domain knowledge, but usually do
not know how to write parallel programs. Conversely, expert parallel programmers have
expertise in optimizing computations on many parallel hardware platforms, but do not
know how to make design decisions for applications. It is very rare for any programmer to
master both the application domain and parallel programming. As a result, an enormous
gap exists between application developers and expert parallel programmers. This is the
implementation gap.

Researchers are aware of the implementation gap, and many different methods have
been proposed to bridge the gap. These different methods have their own advantages and
disadvantages – usually trade-offs among efficiency, productivity, flexibility, and portability.
In the following chapters, we introduce our own approach to bridging the implementation
gap, and offer case studies to evaluate the effectiveness of the proposed approach.

26

Chapter 3

Parallel Application Library for
Object Recognition

This chapter introduces our proposal for bridging the implementation gap between object
recognition application developers and expert parallel programmers described in Figure 2.4.
We propose using a parallel application library as an intermediate layer. In order to deploy
the library in a systematic way, we propose architecting the application using application
patterns. Finally, we perform pattern mining in state-of-the-art object recognition systems.
These application patterns define the functions that the parallel application library should
support.

3.1 Parallel Application Library

We propose using a parallel application library to bridge the implementation gap between
object recognition developers and expert parallel programmers. A library is a collection of
functions, each of which has an implementation and an interface. The interfaces of the
functions are simple and exposed to library users, who need to know only the capabilities
of the functions. When users need a specific capability, they can call the function using the
pre-defined interface. This is simple and straightforward. On the other hand, the imple-
mentations of the functions are complicated, and hidden from library users. Library users
do not need to know how the capability of the function is achieved; only the library devel-
opers need to know the details of the function implementations. As a result, the parallel
application library nicely separates the expertise required for application developers and ex-
pert parallel programmers. Application developers can focus on designing their application
using function interfaces without worrying about how to parallelize the functions. Similarly,
expert parallel programmers can focus on optimizing the functions supported by the library
without worrying about how the functions are used in real applications.

Every solution to the implementation gap has its advantages and disadvantages – usually
trade-offs among efficiency, productivity, portability, and flexibility. As such, we discuss our
proposed parallel application library from these four perspectives:

• Efficiency: Efficiency measures how well the library is parallelized and optimized.

27

Execution time is the most common way to quantify efficiency. Because the com-
putational cost of object recognition applications is enormous, efficiency is our top
priority. We propose a systematic method of parallelizing and optimizing computa-
tions in Chapter 4. In Chapters 5 and 6, following our proposal, we extensively explore
the design space to determine the best implementations of certain library functions.

• Productivity: Productivity measures the programming effort needed to develop the
application. It includes background for the application, knowledge for the program-
ming environment, and time required for finishing the implementation. It is hard to
quantify the required background and knowledge, so researchers only use implementa-
tion time to reflect the programming effort of developing an application [72]. A rough
estimate of implementation time is lines of code. The fewer the lines of code, the better
the productivity. Productivity is enabled by providing abstractions over the applica-
tion, and these abstractions can be hierarchical. Higher level abstractions encapsulate
more concepts, and provide high productivity. Lower level abstractions expose more
details, but provide lower productivity. We propose using application-level software
architectures to realize this hierarchical design. That is, the productivity of the paral-
lel application library is defined by the software architectures. These application-level
software architectures are discussed in Section 3.2.

• Portability: Portability measures how many computing platforms the library can
be installed and executed on. As described in Section 2.2.1, there are many parallel
hardware platforms available today, and these have different computer architectures.
There is no one-size-fits-all solution. If we want portability, either we must provide
different implementations for each platform, or we do not rely on the special features
supported by the underlying platform. The first approach is doable, but requires sig-
nificant programming effort. Although the interfaces of the library functions are the
same, we require different implementations that are optimized for different platforms.
Because the optimization strategies on different platforms differ considerably, the re-
quired programming effort is roughly linearly proportional to the number of platforms.
The second approach instead uses only features that are compatible for all available
platforms, but as a result, the code is not optimized for any platform. Because our top
priority is efficiency, we sacrifice portability and focus on a subset of parallel hardware
platforms.

• Flexibility: Flexibility measures how much customization an end user can perform.
Turing completeness [29] is the flexibility level that all conventional general purpose
programming languages achieve. Under such a flexibility level, an end user can perform
any operation as long as it can be performed by a Turing machine. Fixed functionality
is the least flexible case – an end user cannot perform any customization. We do
not propose designing a programming language to bridge the implementation gap.
Instead, we propose using a library to bridge it. Therefore, the flexibility we provide
is restricted. The functions optimized in Chapter 5 are all fixed, and do not support
user customization. The functions optimized in Chapter 6 are more flexible – users

28

can customize the sparse matrix format for the clSpMV autotuner, and the distance
function for the clPaDi autotuner.

These factors define the scope of the parallel application library. Efficiency is our top pri-
ority, productivity is achieved by using application-level software architectures, portability
is not a major concern, and flexibility is very restricted. Because flexibility is restricted, in
order to make the library applicable to all major state-of-the-art object recognition systems,
we must cover most computations used by these object recognition systems. An application
can be refined by a hierarchy of different abstraction levels. In Section 3.2, we introduce
our application-level software architecture, and discuss the abstraction level of the proposed
parallel library. In Section 3.3, we perform pattern mining in state-of-the-art object recog-
nition systems, and summarize the application patterns that we want to support in the
parallel application library.

3.2 Application-Level Software Architecture

A software architecture describes the organization of a given application, and has two
essential components: computations and control flow. Each software architecture typically
includes many computations, which tell us what they are capable of but not how they
achieve the goal. They serve as black boxes in the software architecture. Therefore, the
computations provide an abstraction level to describe the application. Conversely, each soft-
ware architecture has only one control flow. The control flow tells us how the computations
relate to one another. The software architecture of an application can be hierarchical. The
topmost level of the hierarchy describes the application in the most abstract way. If we want
to know more about a computation, we can refine the computation into the lower hierarchy.
This procedure continues until we are satisfied with the details we want to know about the
application.

Application-level software architecture is the level where the refinement procedure ter-
minates at the domain specific terminologies. The computations corresponding to the do-
main specific terminologies can be further refined, but the implementation details of these
computations do not influence the output quality of the application. For example, the
eigen-decomposition computation can be used in contour detection. From the viewpoint of
application developers, as long as we can determine the eigenvalue and eigenvector pairs, we
do not need details of the eigen-decomposition computation. Therefore, the application-level
software architecture stops at the eigen-decomposition computation, and does not further
refine into any lower layer hierarchies.

Figure 3.1 shows an example of the software architecture of an object recognition system.
The topmost level of this hierarchy is shown in Figure 3.1(a). In this level of hierarchy, there
is only one computation, which takes input images and summarizes the detected objects from
the images. To know more about how the objects are detected, we proceed down to the next
finer level of the hierarchy. The object recognition computation is refined in Figure 3.1(b).
There are two computations in this level of hierarchy: feature extraction and classification.
The control flow tells us that the features are extracted, and then the classification uses the

29

features to recognize the objects. Again, if we want to know more about how the features
are extracted, we can go down the hierarchy to the third level. There are many features to
extract from an image, Figure 3.1(c) shows the software architecture of extracting contour
features for each image region. In this level of hierarchy, we have three computations:
contour detection, segmentation, and contour feature extraction. The control flow describes
that we need to detect contours from images, use contours to segment image into regions,
and then compute the contour features for each image region. The refinement procedure
can continue until we are satisfied with the details explained by the software architecture.

Feature
Extraction

Classification

Query Images

Object
Recognition

Identified
Objects

Contour
Detection

Segmentation

Contour
Feature

Extraction

(a) (b) (c)

Figure 3.1: The application-level software architecture for an object recognition system.

The software architecture for an application is not unique. Depending on how we want
to describe an application, we can have software architectures with different hierarchies,
different computations, and different control flows. This flexibility is very useful when de-
veloping applications. For example, in Figure 3.1, in the second level of hierarchy the object
recognition computation is refined into feature extraction and classification. When refining
the feature extraction computation to the next level of hierarchy, we can propose different
software architectures for our application. One software architecture uses SIFT [80], another
uses HOG [33], and another uses contour features. Based on these different software archi-
tectures, the application developer can use domain knowledge to choose the one that best
satisfies the application’s purpose. If discussion is needed before making the final decision,
the software architectures of different choices can help application developers to communi-
cate and reason regarding the advantages and disadvantages of different implementations.

30

Different hierarchies in the software architecture define different abstraction levels – up-
per hierarchies are more abstract, while lower hierarchies describe more details. For our
proposed parallel application library, the functions we support correspond to the compu-
tations, and the application developer follows the control flow in the software architecture
to bind the computations together. The abstraction level in the library is a trade-off be-
tween productivity and flexibility. The higher the abstraction level, the simpler the control
flow. The application developers can build the application more quickly, but do not have
much flexibility to manipulate the application. The lower the abstraction level, the more
complicated the control flow. The application developers will need more time to build the
application, but are able to adjust for more detailed computations. For object recogni-
tion applications, there is no one dominating algorithm – researchers are exploring different
features and different classification models. Therefore, flexibility is more important than
productivity. As a result, the functions in the proposed parallel application library follow
the finest application-level software architecture. That is, these functions are the ones whose
detailed implementations do not influence the quality of object recognition systems, and so
application developers would rather use them as black boxes.

3.3 Application Patterns for Object Recognition

An application pattern is a generalizable solution to a commonly occurring application
computation. In order to understand the key application computations in state-of-the-art
object recognition systems, we performed pattern mining [104] on 31 state-of-the-art papers.
These papers have been selected from CVPR 2007 to CVPR 2011, in the object recognition
track with oral presentations. The application patterns from these 31 papers are summarized
in Table 3.1, in decreasing order according to their appearance frequency in the 31 papers.
The object recognition systems of these 31 papers can be developed by composing these 15
application patterns together.

• Convolution: The convolution pattern updates the value of a pixel according to
nearby pixels. One common computation is to apply a filter to the image. The
value of a pixel is updated by a weighted sum over nearby pixels. The weights and
the neighboring pixels are defined by the filter. Convolution can be used to perform
Gaussian smoothing, compute gradients, and compute Hessians [113]. Almost all
feature descriptors rely on this computation, including SIFT [80], HOG [33], and
contour [81]. Another common computation is non-max suppression, in which a pixel
is suppressed if it is not a local maximum. Whether a pixel is a local maximum or not
can be detected by checking nearby pixels – if it has a neighbor with a larger value,
then it is not a local maximum. This computation is used in segmentation-related
computations [7, 61].

• Histogram Accumulation: The histogram accumulation pattern updates the value
of a set of histogram bins according to input vectors. This computation is widely
employed in many feature descriptors, including SIFT [80], HOG [33], and contour

31

Table 3.1: Pattern mining from 31 state-of-the-art object recognition papers.

Application Pattern Number of Papers
Convolution 30

Histogram Accumulation 29
Vector Distance 22

Quadratic Optimization 15
Graph Traversal 9

Eigen Decomposition 6
K-means Clustering 6
Hough Transform 4

Nonlinear Optimization 4
Meanshift Clustering 2

Fast Fourier Transform 1
Singular Value Decomposition 1

Convex Optimization 1
K-medoids Clustering 1

Agglomerative Clustering 1

[81]. The primary motivation for using a histogram is fault tolerance. The same object
can have different appearances in different images – the brightness can be different
because light sources are different; the shape can be different because the object has
moved. If we use an exact value to identify objects, it is too strict to find exact
matches. However, if we discretize the values into histogram bins, the computation
can tolerate slight differences and be more robust.

• Vector Distance: The vector distance pattern computes the distance between two
vectors of the same dimension. This is usually used in model-building and classifica-
tion computations. For example, the k-nearest neighbor [8] algorithm computes the
distances between query vectors and exemplar vectors. Another common usage is for
Support Vector Machine (SVM) classification [31], when we compute a kernel function
between the query vector and the support vectors. If the distance function is defined as
the kernel function, the SVM classification can be described as computing a weighted
sum over the distances between the query vector and support vectors. Because SVM
and nearest neighbor approaches are very common in machine learning algorithms,
many object recognition systems use this computation [95, 129, 130].

• Graph Traversal: The graph traversal pattern traverses a graph, and can be used in
a number of ways. One way is to apply graph traversal on images. An image graph
is constructed by making every pixel a node and adding edges between nearby pixels.
The image graph traversal pattern is commonly employed in segmentation and region
related computations [7, 61, 38]. Another way is to apply graph traversal on graphical
models. If the classification model is built based on graphical models, we must traverse
the graph to update the probability at each node. Some object recognition systems

32

use graphical models, and thus apply graph traversal on the model [6]. Another way
is to use a graph to represent the relationships among parts of an object [74].

• Optimization: The Quadratic Optimization, Nonlinear Optimization, and Convex

Optimization patterns are all related to optimizations. When designing a model to
recognize objects based on features, the goal is to maximize the probability that the ob-
jects are successfully detected. Therefore, the modeling problem is usually formulated
as an optimization problem. If the objective function is quadratic, it is a quadratic
optimization problem. If the objective function is convex, it is a convex optimization
problem. If the objective function is nonlinear, it is a nonlinear optimization problem.
For example, the SVM training procedure is formulated as a quadratic optimization
problem [31].

• Clustering: The K-means Clustering, Meanshift Clustering, K-medoids Clustering,
and Agglomerative Clustering patterns are all clustering algorithms. Clustering al-
gorithms group sample points into clusters, and different clustering algorithms can be
used in different situations. Both k-means clustering and k-medoids clustering patterns
partition the data set into k clusters. K-means uses center of mass as the centroids
of the clusters, while k-medoids uses sample points as the centroids of the clusters.
Meanshift clustering does not require the user to specify the number of clusters – it
iteratively groups nearby sample points together until convergence. Agglomerative
clustering uses a greedy approach to group sets with the highest similarity together.
Such clustering patterns are frequently employed to find visual words or codebooks for
images [125, 76]. Clustering patterns can also be used to identify textons in images
[81, 77].

• Hough Transform: The Hough transform pattern finds objects from images via a
voting procedure among possible candidates. This pattern is commonly used to iden-
tify objects using parts of the object. In this case, every recognized part refers to a
possible candidate. The more parts we recognize, the more likely an object appears
in the image. This pattern is used in many region-based object recognition systems
[61, 54, 13].

• Eigen Decomposition: The eigen-decomposition pattern finds eigenvalue and eigen-
vector pairs of a given matrix. The most well-known image segmentation work is the
normalized graph cuts algorithm proposed by Shi and Malik [108]. Such an algorithm
transforms the graph cuts problem into an eigen-decomposition problem. As a result,
many segmentation-based object recognition systems use the eigen-decomposition pat-
tern [38, 61].

• Singular Value Decomposition: The singular value decomposition pattern finds the
unitary matrices and singular values of a given matrix. It is used in the Principal Com-
ponent Analysis (PCA) algorithm to find the components with the largest variances –
the larger the singular value, the larger the variance. The PCA algorithm can reduce

33

a high-dimensional data space to a low-dimensional data space. Guillaumin et al. [62]
use this pattern to perform PCA in their image classification system.

• Fast Fourier Transform: The fast Fourier transform pattern is used to convert the
original basis to the frequency domain. Because the convolution in the time domain
is equivalent to multiplication in the frequency domain, this pattern can be used to
accelerate convolution computations [40].

These 15 application patterns cover the design space of the 31 papers we collected. Be-
cause these papers describe cutting-edge object recognition systems, they represent existing
state-of-the-art research. Therefore, we propose using this set of 15 application patterns in
our parallel application library. By supporting the functions of these application patterns,
we can develop many highly accurate object recognition systems.

3.4 Summary

In this chapter, we propose our solution to bridge the implementation gap between object
recognition application developers and expert parallel programmers. We propose to design
a parallel application library as an intermediate layer. Expert parallel programmers can
then focus on optimizing the functions supported in the library, while object recognition
application developers can develop their applications by using the library functions.

When designing the parallel application library, efficiency is our major concern. We want
to provide a library that is highly efficient on the underlying parallel hardware platforms.
Productivity is defined by the abstraction level we provide. Portability has lower priority,
because different hardware platforms favor different parallelization strategies, and it is time
consuming to optimize the same function across many different platforms. Flexibility is
restricted – there are few customizations an user can perform on the functions. The goal is
to enable users to develop parallel object recognition systems, not enable them to perform
general purpose programming.

The abstraction level of the proposed parallel application library is decided according to
application-level software architecture. A software architecture is a hierarchical description
of the organization of an application using domain-specific terminologies. We use the lowest
hierarchy of the application software architecture as the abstraction level in the parallel
application library. The computations at this level of the hierarchy do not influence the
quality of the object recognition systems, and therefore the application developers would
rather use them as black box function calls.

Finally, in order to understand the functions we need to support in the parallel ap-
plication library, we performed application pattern mining on 31 state-of-the-art object
recognition papers. The result is the 15 application patterns in Table 3.1. By supporting
these 15 application patterns, we can develop the object recognition systems in the 31 papers
by composing these patterns together. Therefore, we propose to use these 15 application
patterns in our parallel application library.

34

Chapter 4

Pattern-Oriented Design Space
Exploration

In Chapter 3, we proposed using a parallel application library to bridge the implementa-
tion gap. As expert parallel programmers, we can focus on optimizing functions supported
by the library. However, as discussed in Section 2.2, parallel programming can be very
challenging – there is no one-size-fits-all solution to parallelize and optimize all application
computations on all parallel platforms. Instead, we must explore the design space, find
different ways to parallelize and optimize the application computations, evaluate the merits
of different strategies, and make our final implementation decisions. In this chapter, we
present a systematic method of exploring that design space using software architectures and
patterns.

4.1 Implementation-Level Software Architecture

As introduced in Section 3.2, a software architecture describes the organization of an
application. This can be hierarchical: a higher level of a hierarchy is more abstract, and
a lower level of hierarchy explains more details. Every level of the hierarchy is composed
of many computations and a control flow. A computation provides an abstraction over the
capability of a black box, while a control flow describes how the computations relate to one
another. Application-level software architectures are used by application developers, and
the computations in these architectures correspond to domain-specific terminologies. These
terms form the language that application developers use on a daily basis to communicate
and to make design decisions for applications. On the other hand, implementation-level
software architectures are used by expert parallel programmers, and reflect how an appli-
cation computation is implemented and parallelized on a parallel hardware platform. If
necessary, the architecture can be refined to instruction-level, meaning that every black box
is an instruction.

35

4.1.1 Patterns and Our Pattern Language

Application developers use application patterns to communicate and make design deci-
sions. Similarly, expert parallel programmers need a language for communication and im-
plementation decisions. Further, if we want to support any arbitrary application, we need a
language that is general enough to describe all kinds of different workloads in applications.
Keutzer and Mattson [73] propose Our Pattern Language (OPL), which decomposes all
computer science workloads into a collection of patterns. This perfectly matches our goal;
therefore, we use OPL to describe implementation-level software architectures.

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism

Divide and Conquer
Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

Speculation

SPMD

Kernel-Parllelism
Fork/Join

Actors

Vector-Parllelism

Distributed-Array

Shared-Data

Shared-Queue

Shared-Map

Parallel Graph Traversal

Coordinating Processes

Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structure Program structure

Loop-Parllelism

Workpile

Task Decomposition

Data Decomposition

Ordered task groups

Data sharing

Design Evaluation

Finding Concurrency Patterns

Figure 4.1: Organization of Our Pattern Language (OPL).

Our Pattern Language (OPL) is summarized in Figure 4.1. The topmost level of OPL
is composed of structural and computational patterns. We use these two categories of
patterns to describe the implementation-level software architectures of application compu-
tations. The structural patterns describe control flows in software architectures, while the
computational patterns describe the workloads. Every level of the hierarchy be defined by
connecting computational patterns using structural patterns.

The computational patterns in OPL summarize all kinds of workloads in computer sci-
ence. Therefore, we can use these patterns to categorize the fundamental ideas of the
application patterns. The 15 application patterns for object recognition described in Sec-

36

Dense and Sparse Linear Algebra

Structured Grids

Graph
Algorithms

Spectral
Methods

K-means

K-medoids
Agglomerative

Clustering

Vector Distance

Convolution

Graph Traversal

Fourier
Transform

Histogram
Accumulation

Eigen
Decomposition

Quadratic
Optimization Hough Transform

Meanshift

Convex
Optimization

Nonlinear
Optimization

Singular Value
Decomposition

Figure 4.2: The computational patterns that cover the object recognition application
patterns.

tion 3.3 can be categorized as in Figure 4.2. We can cover all 15 application patterns with
only five computational patterns (Dense Linear Algebra and Sparse Linear Algebra are two
computational patterns). Basically, the clustering, Hough transform, vector distance, sin-
gular value decomposition, eigen decomposition, and optimization patterns can be solved
by linear algebra operations. If the input data is dense, we apply dense linear algebra oper-
ations; if the input data is sparse, we apply sparse linear algebra operations. Agglomerative
clustering and graph traversal can be solved by graph algorithms. The fast Fourier trans-
formation pattern is a subset of the spectral methods pattern, and the convolution pattern
can be solved by the structured grids method. These five computational patterns are widely
used in the high performance computing (HPC) field. As a result, we can take advantage
of the existing literature on these patterns to optimize and parallelize our own application
patterns.

Below the structural and computational patterns are many layers of other patterns.
These patterns do not explicitly appear in software architectures – they are instead used
primarily for helping expert parallel programmers understand application computations
and parallel hardware platforms. With the information captured by these patterns, expert
parallel programmers can design better software architectures that cleanly map application
computations to underlying parallel hardware platforms. Finding concurrency patterns can
provide a guideline for identifying parallelism in workloads. For example, we can decompose
the workloads by task, by data, or by both. Our decision at this level brings us to the parallel
algorithm strategy patterns. If we decompose the workloads by data, for example, then very
likely we would like to express data parallelism in the workloads. Implementation strategy
patterns summarize the programming models and data structures we can use to express the
parallelism. For example, if we need to perform the same instruction on every element of a

37

vector, we can apply the vector parallelism programming model on the shared data. Parallel
execution patterns summarize the parallel hardware supports that enable the programming
models. Readers are referred to Mattson et al. [89] for more details about these lower-layer
patterns.

4.1.2 Architecting Computations Using Patterns

By using structural patterns to describe software organization and computational pat-
terns to describe workload, we can design implementation-level software architectures for all
kinds of computations. Figure 4.3 shows an example of designing the implementation-level
software architecture of the Euclidean distance computation. Given vectors a = [a1a2 . . . an]
and b = [b1b2 . . . bn], the Euclidean distance d between vector a and b is defined as the
following:

d =

√√√√ n∑
i=1

(ai − bi)2 (4.1)

Sum over
squares of
differences

(Dense Linear
Algebra)

Find squared
root

(Dense Linear
Algebra)

Vector a, b

Euclidean
Distance

(Dense Linear
Algebra)

Vector
Distance

(a) (b) (c)

a1-b1 an-bn

Square Square

Sum

a2-b2

Square

Pipe-and-Filter
Structural Pattern

Map-Reduce
Structural Pattern

...

Figure 4.3: The implementation-level software architecture of the Euclidean distance
computation.

38

Before explaining the software architecture of the Euclidean distance computation, we
must introduce the patterns used in the architecture.

• Pipe-and-Filter Structural Pattern: This computation is organized by a se-
quence of filters. Each filter takes input data from the preceding filters, operates
on the input data, and then passes the output to other filters.

• Map-Reduce Structural Pattern: This computation is organized in two phases, a
map phase following by a reduction phase. The map phase includes a collection of
independent computations, and the reduction phase summarizes the results generated
from the map phase.

• Dense Linear Algebra Computational Pattern: This is a union of computations
that can be described by performing arithmetic operations on dense arrays of data.

The topmost level of hierarchy of the Euclidean distance software architecture is shown
in Figure 4.3(a), represented by a single computational pattern: dense linear algebra. This
can be further decomposed to Figure 4.3(b), where the pipe-and-filter structural pattern
is used to describe the relationship between two computations. We must compute the
summation over the squares of differences, then compute the square root of this value.
These two computations can be identified as dense linear algebra workloads. The first
computation can be further refined into Figure 4.3(c), where we have many independent
(ai, bi) pairs. We compute the difference of each pair, the square of the difference, and add
the results from all pairs together. This computation flow can be described by the map-
reduce structural pattern. Again, every computation in this level of hierarchy is a dense
linear algebra computation.

By analyzing the structure of the software architecture, we can understand the depen-
dency of the computations and hence the parallelism in the architecture. In Figure 4.3(b),
the second computation is dependent on the first computation, so we cannot express par-
allelism at this level. In Figure 4.3(c), every pair is independent, and we can express
parallelism across the pairs.

In summary, an implementation-level software architecture is defined by hierarchically
decomposing a computation using structural and computational patterns. Different hier-
archies of the architecture reveal different opportunities for parallelizing the computation.
Using patterns to architect computations gives us a systematic way of describing, analyzing,
and parallelizing computations.

4.2 Design Space

A software architecture describes the implementation of a computation; however, usually
a computation can have many different implementations. The only explicit components of a
computation are inputs and outputs. An implementation is valid as long as the intermediate
steps correctly convert the inputs to outputs. When a computation is complicated enough,
there will be many valid implementations to accomplish the conversion procedure. The

39

superset of all valid implementations forms the design space of a computation. Different im-
plementations have different characteristics, such as computational complexity, dependency,
granularity of parallelism, memory access behavior, and so forth. In order to optimize and
parallelize the implementation of a computation, we must evaluate all of these different
implementations to find one that best performs on the underlying platform. As a result,
it is essential to understand the design space when analyzing the strengths and weaknesses
of different implementations. An explorable design space can be divided into three layers:
algorithms, parallelization strategies, and platform parameters. These layers are introduced
in the following sections.

4.2.1 The Design Space of Algorithms

The algorithm layer explores different procedures for correctly converting inputs to out-
puts, and is the most important layer of the three. There is considerable variety among
algorithms. Some have strict data dependency, and are naturally serial; others have many
independent tasks, and can be parallelized. Some algorithms have poor data access patterns,
and achieve very low memory bandwidth; others have regular data access patterns, and can
saturate available memory bandwidth. Some algorithms have higher computational com-
plexity; others have lower computational complexity. Without exploring the design space
of algorithms and choosing a proper algorithm, we cannot get any significant benefit from
exploring the design space of parallelization strategies and the design space of platform
parameters.

We use the prefix sum computation as an example of the design space of algorithms.
Given an input array a = [a1, a2, . . . , an] with n elements, the prefix sum of a is an array of n
elements, b = [b1, b2, . . . , bn], such that bi =

∑i
k=1 ak. This is a simple computation, but still

many different algorithms can achieve the same goal. In addition to the patterns introduced
in Section 4.1.2, we now need one additional pattern to explain the software architectures
used in the algorithms:

• Iterative-Refinement Structural Pattern: The computation is organized by per-
forming a set of operations repeatedly until a predefined termination condition is
reached.

A naive algorithm for the prefix sum computation is shown in Figure 4.4. Figure 4.4(a)
shows the implementation-level software architecture, while Figure 4.4(b) shows the data de-
pendency graph of the algorithm. The software architecture is simple – we use the iterative-
refinement structural pattern to go over each element in array b in a serial fashion. Each
element is computed by adding its predecessor to one element in array a. The computational
complexity is O(n), but the algorithm is serial. The strict dependency on array b forbids us
from parallelizing the algorithm.

An algorithm with massive parallelism is shown in Figure 4.5. The software architecture
of this algorithm uses the map-reduce structural pattern to map the computation of each
element in array b independently. The amount of parallelism is at least the size of array
b. However, the computational complexity increases to O(n2). Moreover, the workloads are

40

b[i] = b[i-1] + a[i]
(Dense Linear

Algebra)

(a)

b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8]

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8]

(b)

Iterative Refinement Structural Pattern

Figure 4.4: The implementation-level software architecture and data dependency graph of
a serial prefix sum algorithm.

extremely unbalanced. For b[1], only an assignment operation is necessary. Conversely, we
need to sum over a[1] to a[n] to compute the value of b[n]. Even if we are able to distribute
workloads evenly to all available processing units, we still require more than n processing
units to make the parallel algorithm faster than the serial algorithm. This is definitely not
a scalable approach, as data size is typically orders of magnitude larger than the processor
number.

A better parallel algorithm for prefix sum proposed by Hillis and Steele is shown in Figure
4.6 [66]. The first level of the software architecture is an iterative-refinement structural
pattern. We divide the computation into log2(n) levels. In level i, we compute the exact
sum of the first 2i elements in b, and the partial sum of the remaining elements in b. The
computations at each level are described in the second level of hierarchy. We use the map-
reduce structural pattern to map the computation of each element in b independently. In
a level, the operations on each element in b are uniform – we read two values, add them
together, and update the current value. Therefore, it is easy to balance the workloads of the
processing units. The computational complexity of this algorithm is O(n log2 n). As long as
the number of processing units is larger than log2 n, we should see a speedup compared to
the serial algorithm. Even if the data size is 232 (232 is the largest integer on a 32-bit system),
we need only more than 32 processing units to make the parallel prefix sum algorithm faster

41

(a)

(b)

Map-Reduce
Structural Pattern

b[1]

...
b[2] b[n]

a[1] a[1] a[2] a[1] a[2]

b[3]

a[1] a[2] a[3] a[n]
...

b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8]

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8]

Figure 4.5: The implementation-level software architecture and data dependency graph of
a bad parallel prefix sum algorithm.

than the serial algorithm. For example, Harris et al. achieved 10× speedup compared to a
sequential implementation on a CPU by applying the parallel prefix sum algorithm on an
Nvidia Geforce 8800 GTX card [64], which has 128 processing units.

In summary, different algorithms express different dependency on the computations. In
order to parallelize and optimize a computation on a given platform, it is essential to explore
the design space of algorithms. Using software architectures to describe algorithms gives us
a systematic method for analyzing the strengths and weaknesses of the algorithms. Based
on this analysis, we can choose an algorithm that best fits the capabilities of the underlying
hardware platform, and so achieve the best performance.

4.2.2 The Design Space of Parallelization Strategies

The parallelization strategy layer explores the design space of expressing parallelism on
an algorithm. In this layer, we do not change or modify the given algorithm, instead we
only express the parallelism on that algorithm. Different parallelization strategies result in
different utilizations of the underlying hardware platform. In exploring this design space,
we try various parallelization strategies to determine the most efficient method of utilizing
the underlying hardware platform.

Expressing parallelism on an algorithm can be achieved by annotating the corresponding

42

b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8]

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8]

b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8]

b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8]

Level 1

Level 2

Level 3

(a)

(b)

Compute ith level
(Dense Linear

Algebra) b[1]

...
b[2] b[n]

b[1]

b[1-
2i-1]

b[2]

b[2-
2i-1]

b[n]

b[n-
2i-1]

Iterative Refinement
Structural Pattern

Map-Reduce
Structural Pattern

Figure 4.6: The implementation-level software architecture and data dependency graph of
a better parallel prefix sum algorithm.

software architecture. Figure 4.7 shows two parallelization strategies for the parallel prefix
sum algorithm introduced in Figure 4.6. In the parallel prefix sum algorithm, every element
in array b can be computed in parallel. Because the number of available processing units
is usually smaller than the array size, we must assign many tasks to a processing unit.
Moreover, in modern processor architectures, one processing unit usually hosts many threads
to hide memory latency, because memory latency is longer than the instruction execution
time. We therefore annotate the software architecture with thread indices. Figure 4.7(a)
shows the parallelization strategy of dividing the array into two partitions, and assigning
one thread per partition. Figure 4.7(b) shows the strategy of assigning tasks to two threads
in an interleaved manner.

Different platforms have different characteristics, and require different parallelization
strategies. A CPU platform is composed of several big processors, each with its own cache
hierarchy. If the strategy in Figure 4.7(a) is employed, each processor accesses only the data
it needs. Conversely, if the strategy in Figure 4.7(b) is used, because the memory transaction
is managed at the granularity of the cache-line-size, when accessing data in array b, other

43

b[1]

b[1]

b[1-
2i-1]

b[2]

b[2]

b[2-
2i-1]

b[3]

b[3]

b[3-
2i-1]

b[4]

b[4]

b[4-
2i-1]

b[5]

b[5]

b[5-
2i-1]

b[6]

b[6]

b[6-
2i-1]

Thread 1 Thread 2

b[1]

b[1]

b[1-
2i-1]

b[2]

b[2]

b[2-
2i-1]

b[3]

b[3]

b[3-
2i-1]

b[4]

b[4]

b[4-
2i-1]

b[5]

b[5]

b[5-
2i-1]

b[6]

b[6]

b[6-
2i-1]

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2

(a)

(b)

Figure 4.7: Different parallelization strategies for the parallel prefix sum algorithm.

data nearby will loaded as well. To be more specific, if b[1] and b[2] are in the same cache
line, data in b[1] and data in b[2] will be loaded together in the same memory transaction.
As a result, each processor will load redundant data, wasting memory bandwidth. The first
parallelization strategy should be chosen if the execution platform is a CPU.

On the other hand, a GPU platform is composed of many small processors. A group
of processors forms a single instruction multiple data (SIMD) lane. A SIMD lane accesses
consecutive data and performs the same operations on those data. For the strategy in
Figure 4.7(a), the two threads are not accessing consecutive data. Two memory transactions
are needed before the two threads can begin to execute instructions. Conversely, for the
strategy in Figure 4.7(b), the two threads are accessing consecutive data, so only one memory
transaction is required to load the data for the SIMD lane to process. As a result, the second
parallelization strategy should be chosen if the execution platform is a GPU.

In summary, the design space of parallelization strategies covers different ways of ex-
pressing parallelism on an algorithm. In order to optimize the implementation on a given
platform, we must explore this layer and determine the proper strategy based on the capa-

44

bility of the underlying hardware platform.

4.2.3 The Design Space of Platform Parameters

All parallelization strategies are coupled with platform parameters. The platform pa-
rameter layer defines the possible combinations of valid parameter settings on the underlying
hardware platform.

If we want to implement the parallel prefix sum algorithm using the strategy in Figure
4.7(a) on a CPU platform, we can define at least three platform parameters: thread count,
partition size, and loop unrolling factor. Thread count is the number of threads we want
to create. Different CPUs have different numbers of cores, and one core can host one or
more threads. For example, an Intel Core i7 920 has four cores and supports hyperthreading
technology [69], so maximally eight threads can be hosted on that CPU concurrently. Valid
configurations therefore include from one to eight threads. Partition size controls how
the array is partitioned. Partitioning the array evenly is an option. However, because the
memory transaction is at the granularity of the cache-line-size, when reading data at the end
of a partition we might also bring in data that belong to the next partition. These redundant
data waste memory bandwidth. If we can arrange the partition size to ensure that it is a
multiple of the cache-line-size, we can better utilize the available memory bandwidth. The
cache-line-size of different platforms might be different, so we must try out different partition
sizes to find the best fit for our targeting platform. A valid parameter setting will force the
partition size to be multiple of 1 (do not pad the partition at all), 2, 4, 8, 16, 32, 64, or 128
bytes – eight valid configurations. Loop unrolling is an optimization method that reduces
the overhead of loop control. This parameter is set according to how aggressively we want
to unroll the loop. Assuming we are interested in unrolling the loop at most eight times,
then we will have eight valid configurations. The total number of valid configurations of
our implementation is therefore 8(thread count) ×8(partition size) ×8(loop unrolling factor)
= 512.

In the prefix sum example, we have introduced three algorithms, two parallelization
strategies, and 512 platform parameters. The design space of platform parameters is or-
ders of magnitude larger than the other two layers because platform parameters are defined
by numerical values, and there can be many valid numerical values for a given parameter.
When multiplying the configurations of each parameter together, the total number of valid
configurations grows rapidly. Fortunately, unless we want to achieve absolute peak perfor-
mance of the underlying platform, we do not need to thoroughly explore the design space of
platform parameters – reasonable assignments should be sufficient. For the previous exam-
ple, setting the thread count to eight, partition size to a multiple of one byte (do not pad
the partition), and loop unrolling factor to one should work just fine. Eight is the maximum
number of threads that can be hosted on the CPU. The size of the input data is typically
significantly larger than the cache size. When partitioning the input data, only the head
and the tail of the partition might waste the memory bandwidth. Even if we do not pad the
partitions, the overhead is small. Loop unrolling factor reduces the overhead of the loop,
but it does not boost performance significantly. The best possible configuration can likely

45

outperform this setting by several percent, but it will never be several times faster.
In summary, the design space of platform parameters covers the valid configurations of

parallelization strategies. This space is very large, but most of the time we can rely on our
architecture knowledge and experience with the platform to pick reasonable configurations.
Moreover, the performance gain by exploring this layer is smaller compared to the other
two layers.

4.3 Design Space Exploration

Every computation can have many implementations, and different implementations per-
form differently on different hardware platforms. The superset among all valid implemen-
tations forms the design space. For our parallel application library, the goal is to accelerate
object recognition systems. Therefore, the primary objective is execution time. Given a
computation, input data, and a parallel platform, we would like to find an implementation
from the design space such that the total execution time is minimized. In order to find
such optimal implementation, it is essential to explore the design space, compare different
designs, and find the one that outperforms the others.

The termination criteria of design space exploration is arbitrary. It is very hard to
find a theoretical estimate of the minimum execution time. Even if an implementation
completely saturates the underlying hardware platform, it is very difficult to prove that no
other algorithms exist that requires fewer operations and can further reduce the execution
time. Moreover, theoretical bounds might not be always true in practice. Take sorting
algorithms as an example, under the worst case analysis, the computational complexity
of the quick sort algorithm is O(n2), while that of the heap sort algorithm is O(n log n).
However, in practice, the quick sort algorithm usually requires fewer operations and is
faster than the heap sort algorithm [30]. As a result, parallel programmers usually set up
an arbitrary boundary on the design space to explore, and only examine implementations
within this boundary. One common guideline of setting the boundary is based on prior
work. That is, given a computation, compare all published works, and find the most efficient
implementation.

When setting boundary of design space we want to explore, if we only want to compare
different algorithms and parallelization strategies, we can apply an exhaustive search to find
the optimal implementation. However, if we are also interested in platform parameters,
since the numeric values of the parameters can expand the design space with an exponential
rate, we need to explore the design space automatically.

4.3.1 Exhaustive Search

The exhaustive search method tries all valid implementations, and selects the one that
performs best. It is a brute-force approach, but very accurate and effective. When we are
only interested in evaluating different algorithms and parallelization strategies, we can apply
this method to find the best implementation on a given hardware platform. Sometimes we
can also prune the design space before applying an exhaustive search. For example, when

46

one design is obviously worse than other designs, we can ignore it when exploring the
design space. In Section 4.2.1 we introduced three algorithms to implement the prefix sum
computation. The second algorithm shown in Figure 4.5 is obviously worse than the other
two, because the computational complexity is very large. We can therefore remove this
algorithm from consideration and so reduce the size of the design space.

The exhaustive search method is widely employed in high performance computing re-
search. When researchers propose a new parallel algorithm, they compare the performance
with other existing algorithms. When researchers optimize a computation on a platform,
they try out different parallelization strategies and report the best one. Harris et al. opti-
mized the prefix sum computation on an Nvidia Geforce 8800 GTX platform [64]. When
exploring the design space of algorithms, they tried O(n) serial prefix sum, O(n log2 n) par-
allel prefix sum by Hillis and Steele [66], and O(n) parallel prefix sum by Blelloch [17].
When exploring the design space of parallelization strategies, they avoided memory bank
conflicts by padding the arrays. Because of these efforts, they were able to achieve 20×
speedup compared to the serial algorithm. Williams et al. optimized the sparse matrix
vector multiplication computation on four multicore platforms: Intel Clovertown, AMD
Opteron, Sun Niagara2, and STI Cell [123]. In the algorithm layer, they tested the perfor-
mance of different sparse matrix data structures. In the parallelization strategy layer, they
tried SIMD, software pipelining, prefetching, caching, thread assignment, and NUMA-aware
affinity assignment. By extensively exploring the design space, they were able to claim the
best performance on all four platforms.

Often the trade-offs among different algorithms and parallelization strategies are not
obvious. If the size of the design space is not too large, employing the exhaustive search
method to find the best implementation in the design space is both accurate and effective.
We apply this method to the three case studies in the parallel application library in Chapter
5.

4.3.2 Autotuning

When the design space is too large to be manually explored, we must write programs
that explore it automatically. These programs are called autotuners, and the procedure
of automatically exploring a design space is called autotuning. Given a design space, an
autotuner samples the space, evaluates the performance of each sampled point, and reports
the best configuration. It can sample different algorithms, different parallelization strategies,
and different platform parameters.

However, the autotuning procedure is very expensive because an autotuner must consider
hundreds to thousands of sample points in the design space. As a result, researchers usu-
ally develop autotuners only for widely-used and expensive computations. For example, the
matrix matrix multiplication computation has a computational complexity of O(n3), and is
widely used in many linear algebra problems. Thus, it is important to optimize this compu-
tation as much as possible. ATLAS [122] and PHiPAC [16] are autotuners that researchers
have developed to optimize matrix matrix multiplication on all single-core platforms. Go-
toBLAS [56] is an autotuner that optimizes this computation on multicore platforms. The

47

Sparse Matrix Vector multiplication (SpMV) computation is very important in sparse linear
algebra. It has a computational complexity of O(n2), and is a memory-bounded problem.
Im et al. developed the Sparsity autotuner [68] to optimize this computation on single-core
platforms. Fast Fourier Transform (FFT) is used for many signal-processing applications,
and although the computational complexity is O(n log n), the memory movement behavior
is very complicated. FFTW [52] is an autotuner that optimizes the memory access pattern
on single-core platforms.

Employing an autotuner to consider all the sample points in a design space will reveal
the best implementation. However, when the design space is enormous, this strategy might
not be practical. Researchers apply three approaches to accelerate this procedure. First, we
use heuristics to reduce the design space, which requires expertise in architecture. The more
we know about the characteristics of the underlying hardware platform, the better we can
find good heuristics to prune the design space. Second, we can assume that each parameter
is independent, and so search through each parameter independently. Datta et al. used this
approach to autotune stencil computations on multicore and manycore platforms, achieving
good results [36]. Third, machine learning algorithms can be employed to understand the
big picture of the design space through a small subset of sample points. Ganapathi et al.
used the Kernel Canonical Correlation Analysis (KCCA) machine learning algorithm to
autotune stencil computations and significantly reduce autotuning time without sacrificing
the quality of the results.

Overall, autotuners are powerful tools for exploring design spaces and optimizing com-
putations on underlying platforms. Because autotuning is very time-consuming, it should
be employed only on widely-used and expensive computations. We would ideally develop
autotuners for the most commonly used application patterns. The OLOV project fulfills this
goal by collecting autotuners for the key application patterns, and is introduced in Chapter
6.

4.4 Summary

In this chapter, we have proposed a systematic method for optimizing and parallelizing a
computation. An implementation of a computation can be described by an implementation-
level software architecture – a hierarchical composition of structural patterns and computa-
tional patterns, which are defined in Our Pattern Language (OPL) [73]. An implementation-
level software architecture provides an overview of the structure and organization of an
implementation. Based on this architecture, we can easily identify data dependency, and
hence analyze the potential for expressing parallelism in the architecture.

A computation converts inputs to outputs. However, it does not specify how this con-
version is accomplished. As a result, there are many implementations that can perform a
given conversion procedure. The set of all implementations that correctly convert inputs
to outputs forms a design space. Because different implementations perform differently on
different hardware platforms, we must explore the design space to parallelize and optimize
a given computation. The design space itself can be divided into three layers. The algo-
rithm layer covers different steps of transforming inputs to outputs. Given an algorithm, the

48

parallelization strategy layer covers different approaches for expressing parallelism on the
software architecture. Given a parallelization strategy, the platform parameter layer covers
different parameter configurations associated with the strategy.

There are two approaches to exploring a design space. Exhaustive search manually tries
all possible designs in the space and reports the best one. Researchers apply this approach
to compare different algorithms and parallelization strategies when the design space is not
too large. The autotuning approach automatically tries all or a subset of designs in the
space and reports the best design. This is employed when the design space is enormous.
Because the autotuning procedure is expensive, researchers generally develop autotuners
only for widely-used and expensive computations. An autotuner will extensively explore the
design space of algorithms, parallelization strategies, and platform parameters. As a result,
the final implementation is highly optimized and very likely achieves the best performance
available from the underlying hardware platform. We employ both approaches to parallelize
and optimize our proposed parallel application library for object recognition, the details of
which are introduced in Chapters 5 and 6.

49

Chapter 5

Case Studies of the Parallel
Application Library for Object
Recognition

Table 5.1: 15 important application patterns for object recognition.

Convolution Histogram Accumulation Vector Distance
Quadratic Optimization Graph Traversal Eigen Decomposition

K-means Clustering Hough Transform Nonlinear Optimization
Meanshift Clustering Fast Fourier Transform Singular Value Decomposition
Convex Optimization K-medoids Clustering Agglomerative Clustering

We summarized the key application patterns in Section 3.3. Table 5.1 shows the 15
important application patterns from our study. A parallel application library that covers
all 15 application patterns can be used to develop most state-of-the-art object recognition
systems. Before focusing on developing the entire library, we would like to showcase how
much performance gain can be achieved by deploying the library in real object recognition
systems. Therefore, in Chapter 7, we choose the object recognition system by Gu et al. [61],
and evaluate the performance of accelerating the system with our library. In order to do so,
we need the library to cover at least application patterns that are bottlenecks of the system.
In this chapter, we introduce three case studies that are major bottlenecks of the system,
and illustrate how we explore the design space to parallelize and optimize these application
patterns.

5.1 Eigensolver for the Normalized Cut Algorithm

Eigen Decomposition is an application pattern in Table 5.1. Given a square matrix
A, the eigen-decomposition problem finds eigenvalue λ and eigenvector v pairs such that
the equation Av = λv is satisfied. An eigenvalue λ with its corresponding eigenvector v

50

forms an eigen-pair (λ, v). If the size of matrix A is n × n, the number of distinct eigen-
pairs ranges from 1 to n. There are two categories of different approaches to solve the
eigen-decomposition problem: direct methods and iterative methods. Direct methods are
employed when we need all or a significant portion of the eigen-pairs, while iterative methods
are used when we require only a small portion of the pairs. Because we are interested in
developing a library for object recognition, not for linear algebra, we can reduce the problem
size by focusing on the eigen-problems in object recognition. Most segmentation-based
object recognition systems rely on the normalized cut algorithm proposed by Shi and Malik
[108]. Therefore, we want to parallelize and optimize the eigen-problem in the normalized
cut algorithm.

An image graph G = (V,E) can be constructed by making every pixel a node and
then connecting neighboring nodes with edges. Partitioning the graph G is equivalent to
segmenting the original image. The normalized cut algorithm defines a metric to measure
the quality of a graph partition. Let the edge weight w(i, j) be the similarity between pixel
i and j. If the graph G is partitioned into disjoint node sets A and B, then the normalized
cut cost of such a partition is defined as follows:

NormalizedCut(A,B) =
Cost(A,B)

Cost(A, V)
+
Cost(A,B)

Cost(B, V)
; (5.1)

Cost(X, Y) =
∑

x∈X,y∈Y

w(x, y). (5.2)

The best segmentation of the original image corresponds to the graph partition with
the minimum normalized cut value. Shi and Malik demonstrated that the NP-hard graph
partitioning problem can be approximated by solving a generalized eigen-system [108]. So,
to be more specific, we must solve the generalized eigen-problem:

(D −W)v = λDv, (5.3)

where W is an affinity matrix with Wij = w(i, j), and D is a diagonal matrix constructed
from W : Dii =

∑
jWij. Only the k + 1 eigenvectors vj with the smallest eigenvalues are

useful in image segmentation and need to be extracted. The smallest eigenvalue of this
system is known to be 0, and its eigenvector is not used in image segmentation, which is
why we extract k+1 eigenvectors. The generalized eigen-problem can be further transformed
into a standard eigen-problem:

Av̄ = λv̄, (5.4)

A = D−
1
2 (D −W)D−

1
2 . (5.5)

5.1.1 Exploring the Design Space of Algorithms

The first step of exploring the algorithm design space is to find a proper eigen-decomposition
algorithm. Matrix A is Hermitian and positive semi-definite, and its eigenvalues are well

51

distributed. Additionally, we need only a few of the eigenvectors, corresponding to the
smallest k + 1 eigenvalues. Considering the issues above, the Lanczos algorithm is a good
fit for this problem [12], and is summarized in Figure 5.1. The complete eigen-problem has
complexity O(n3) where n is the number of pixels in the image, but the Lanczos algorithm
is O(mn) + O(mM(n)), where m is the maximum number of matrix vector products, and
M(n) is the complexity of each matrix vector product – O(n) in our case. Empirically, m

is O(n
1
2) or better for normalized cut problems [108], meaning that this algorithm scales at

approximately O(n
3
2) for our problems.

Algorithm: Lanczos
Input: A (Symmetric Matrix)

v (Initial Vector)
Output: Θ (Ritz Values)

X (Ritz Vectors)
1 Start with r ← v ;
2 β0 ← ‖r‖2 ;
3 for j ← 1, 2, . . . , until convergence
4 vj ← r/βj−1 ;
5 r ← Avj ;
6 r ← r − vj−1βj−1 ;
7 αj ← v∗j r ;
8 r ← r − vjαj ;
9 Reorthogonalize if necessary ;
10 βj ← ‖r‖2 ;
11 Compute Ritz values Tj = SΘS ;
12 Test bounds for convergence ;
13 Compute Ritz vectors X ← VjS ;

Figure 5.1: The Lanczos algorithm.

For a given symmetric matrix A, the Lanczos algorithm proceeds by iteratively building
up a basis V , which is then used to project this matrix A into a tridiagonal matrix T .
The eigenvalues of T are computationally much simpler to extract than those of A, and
converge to the eigenvalues of A as the algorithm proceeds. The eigenvectors of A are then
constructed by projecting the eigenvectors of T against the basis V . More specifically, vj
denotes the Lanczos vector generated by each iteration, Vj is the orthogonal basis formed by
collecting all the Lanczos vectors v1, v2, . . . , vj in column-wise order, and Tj is the symmetric
j × j tridiagonal matrix with diagonal equal to α1, α2, . . . , αj, and upper diagonal equal
to β1, β2, . . . , βj−1. S and Θ form the eigen-decomposition of matrix Tj. Θ contains the
approximation to the eigenvalues of A, while S in conjunction with V approximates the
eigenvectors of A: xj = Vjsj.

52

There are three computational bottlenecks in the Lanczos algorithm, so we need to
explore the algorithm design space for these bottlenecks to optimize the computation.

The first bottleneck is sparse matrix vector multiplication (line 5 in Figure 5.1). Because
the matrix is very large (N × N , where N is the number of pixels in the image), and the
multiplication occurs in each iteration of the Lanczos algorithm, this operation accounts for
approximately 2/3 of the runtime of the serial eigensolver.

Sparse matrix vector multiplication (SpMV) is a well-studied kernel in the domain of
scientific computing, due to its importance in a number of sparse linear algebra algorithms.
A naively-written implementation runs far below the peak throughput of most processors.
This poor performance typically results from low efficiency of memory access to the matrix,
as well as to source and destination vectors.

Figure 5.2: Example W matrix.

The performance of SpMV depends heavily on the structure of the matrix, as the ar-
rangement of non-zeroes within each row determines the pattern of memory accesses. The
matrices W arising from the normalized cut algorithm are all multiply-banded matrices,
since they are derived from a stencil pattern where every pixel is related to a fixed set of
neighboring pixels. Figure 5.2 shows the regular, banded structure of these matrices. The
block pixels are all zero. It is important to note that the structure arises from the pixel-
pixel affinities encoded in the W matrix, but the A matrix arising from the generalized
eigen-problem retains the same structure. Our implementation exploits this structure in a
way that applies to any stencil matrix. We store the non-zero diagonals of the matrix in
consecutive arrays, following the diagonal format introduced by Bell and Garland [14]. In
this diagonal format, we can statically determine the locations of non-zeroes. Thus, we need
not explicitly store the row and column indices, as is traditionally done for general sparse

53

matrices. This algorithm nearly halves the size of the matrix data structure, and so doubles
performance on nearly any platform.

The second bottleneck is reorthogonalization (line 9 in Figure 5.1). In perfect arithmetic,
the basis Vj constructed by the Lanczos algorithm is orthogonal. In practice, however, finite
floating-point precision destroys orthogonality in Vj as the iterations proceed. The most ac-
curate Lanczos algorithm applies the full-orthogonalization strategy, which orthogonalizes
the new Lanczos vector vj against the latest basis Vj−1 in every iteration. More work-efficient
Lanczos algorithms preserve orthogonality by selectively reorthogonalizing new Lanczos vec-
tors when the orthogonality property is worse than a predefined threshold. However, the
computational complexity of orthogonalizing vj against Vj−1 is O(jn). When the number of
iterations grows, this operation can be more expensive than the SpMV operation. An alter-
native is to proceed without reorthogonalization, as proposed by Cullum and Willoughby
[32]. We have found that this alternative offers significant advantages for normalized cut
problems in image segmentation and image contour detection.

Figure 5.3: Convergence plot of the smallest 24 Ritz values from different strategies. (a)
Full-reorthogonalization. (b) Selective-reorthogonalization. (c) No-reorthogonalization.

When Vj is not orthogonal, spurious and duplicate Ritz values will appear in Θ that

must be identified and removed. This can be done by constructing T̂ as the tridiagonal
matrix by deleting the first row and first column of Tj. The spurious eigenvalues of Tj
can then be identified by investigating the eigenvalues of T̂ . An eigenvalue is spurious if it
exists in Tj only once and exists in T̂ as well. For more details, see [32]. Because the lower
eigenvalues of affinity matrices encountered from the normalized cut approach to image
segmentation are well distributed, we can adopt the Cullum-Willoughby test to screen out
spurious eigenvalues. Figure 5.3 shows the convergence plots from three different orthogo-
nalization strategies. The x axis is the number of iterations; the y axis is the Ritz value. A
Ritz value converges if the corresponding line stays flat and does not change. The plots track

54

the convergence paths of the smallest 24 Ritz values. The full-reorthogonalization, selective-
reorthogonalization, and no-reorthogonalization strategies are employed in Figures 5.3(a),
(b), and (c), respectively. As seen in the plots, all 24 Ritz values converge at around 850
iterations using full-reorthogonalization and selective-reorthogonalization strategies. Con-
versely, only 17 Ritz values converge at 1000 iterations using the no-reorthogonalization
strategy. Although the no-reorthogonalization strategy requires significantly more itera-
tions to converge, by getting rid of the expensive orthogonalization operations, this is still
faster than the other two in practice. These results are discussed in Section 5.1.3.

This approach to reorthogonalization can be generally applied to all eigenvalue problems
solved as part of the normalized cut method for image segmentation. In general, the eigen-
values corresponding to the different cuts (segmentations) are well spaced out at the low end
of the eigen-spectrum. For the normalized Laplacian matrices with dimension N , the eigen-
values lie between 0 and N (loose upper bound) as tr[A] =

∑
i λi = N and λi ≥ 0. Since the

number of eigenvalues is equal to the number of pixels in the image, one might think that as
the number of pixels increases, the eigenvalues will be more tightly clustered, complicating
convergence analysis using the Cullum-Willoughby test. However, we have observed that
this clustering is not too severe for the smallest eigenvalues of matrices derived from natural
images, which are the ones needed by the normalized cut algorithm. As justification for
this phenomenon, we observe that very closely spaced eigenvalues at the smaller end of the
eigen-spectrum would imply that several different segmentations with different numbers of
segments are equally important. This is unlikely in natural images where the segmentation,
for a small number of segments, is usually distinct from other segmentations. In practice,
we have observed that this approach works very well for normalized cut image segmentation
computations.

The third bottleneck is eigen-decomposition of the tridiagonal matrix Tj (line 11 in
Figure 5.1). This can be solved by diagonalizing Tj infrequently, as it is necessary to do so
only when checking for convergence, which does not need to occur at every iteration.

5.1.2 Exploring the Design Space of Parallelization Strategies

Based on our design decisions in the algorithm design space, we employ the Lanczos
algorithm with no-reorthogonalization. As a result, every Lanczos iteration is composed of
a SpMV operation with many vector updates. Our targeting hardware platforms are Nvidia
GPUs, so we must explore the design space of parallelization strategies to better utilize the
available resources.

For the vector updates, we employ the CUBLAS library [97] provided by Nvidia. For
the SpMV operation, we store matrix A in the diagonal format introduced by Bell and
Garland [14]. The diagonals of the matrix are stored in consecutive arrays, enabling high-
bandwidth unit-stride accesses. We consider two different parallelization strategies in Figure
5.4. A[j][i] refers to the ith element on the jth diagonal in matrix A. For the first strategy,
we parallelize on the diagonals; for the second, we parallelize on the rows. The amount of
parallelism expressed in the first strategy is m, while the amount expressed in the second
strategy is n. n is orders of magnitudes larger than m. Every thread in the second strategy

55

Algorithm: Parallel SpMV Strategy 1
Input: A (Diagonal Matrix)

b (Vector)
n (Matrix Dimension)
m (Number of Diagonals)
offset (Offsets of the Diagonals)

Output: c (c← Ab)
1 parallel for i← 1, . . . , n
2 c[i]← 0 ;
3 parallel for j ← 1, . . . ,m
4 for i← 1, . . . , n
5 cid← i+ offset[j] ;
6 c[i]← c[i] + A[j][i]× b[cid] ;

Algorithm: Parallel SpMV Strategy 2
Input: A (Diagonal Matrix)

b (Vector)
n (Matrix Dimension)
m (Number of Diagonals)
offset (Offsets of the Diagonals)

Output: c (c← Ab)
1 parallel for i← 1, . . . , n
2 c[i]← 0 ;
3 for j ← 1, . . . ,m
4 cid← i+ offset[j] ;
5 c[i]← c[i] + A[j][i]× b[cid] ;

Figure 5.4: Two strategies of parallelizing the SpMV computation.

is independent, responsible for one element in array c. The threads in the first strategy
require synchronization, because they might update the same element in array c. The
second strategy accesses matrix A, vector b, and vector c in a unit-stride fashion. The
first strategy accesses the matrix and the vectors in an irregular fashion. Based on these
analyses, the second strategy is significantly better than the first.

For the affinity matrix composed from the normalized cut algorithm, we restrict each
pixel to be related to neighboring pixels within a radius of 5. This assumption gives matrix
A 81 diagonals, so the size of the offset array is 81 integers. For such a small array shared
by every thread on the GPU, we can apply an additional optimization to store the offset
array into the shared memory of the GPU. On Nvidia GPUs, a processor is composed of
a set of Single Instruction Multiple Data (SIMD) processing units. The shared memory in
a processor is available to all its SIMD processing units and has shorter latency compared
to the global memory, which is shared by all processors on a GPU. The size of the shared
memory is small, typically 16 KB to 48 KB, but it can certainly store 81 integers.

Based on these optimizations, we have achieved 40 GFLOPS for the SpMV computation
on an Nvidia GTX 280 GPU.

5.1.3 Experimental Results

Here, we implement the parallel Lanczos algorithm in CUDA [96] and perform two ex-
periments to demonstrate the effectiveness of our design space exploration. The input is a
154401×154401 sparse matrix with 81 diagonals composed from a 321×481 image following
the normalized cut algorithm. We must compute the eigenvectors corresponding to the 9
smallest eigenvalues of the matrix. Choosing the no-reorthogonalization method with the

56

Cullum-Willoughby test in the Lanczos algorithm is an important step, so the first experi-
ment compares the performance of our choice with two other common reorthogonalization
strategies. The second experiment compares the parallel eigensolver with state-of-the-art
serial and parallel eigensolvers on CPU platforms.

Eigensolver
Reorthogonalization Full Selective No (C-W)

Runtime (s) 15.83 3.60 0.78
Speedup 20.3 × 4.62 × 1 ×

Table 5.2: Execution times of different reorthogonalization strategies.

Table 5.2 shows the effect of various reorthogonalization strategies. These strategies are
implemented in parallel using CUDA, and executed on an Nvidia GTX 280 platform. Full
reorthogonalization ensures that every new Lanczos vector vj is orthogonal to all previous
vectors. Selective-reorthogonalization monitors the loss of orthogonality in the basis and
performs a full-reorthogonalization only when the loss of orthogonality is numerically sig-
nificant to within machine floating-point tolerance. The strategy we employ, as outlined
earlier, is to forgo reorthogonalization, and use the Cullum-Willoughby test to remove spu-
rious eigenvalues due to loss of orthogonality. As shown in Table 5.2, this approach provides
a 20× gain in efficiency.

Eigensolver MATLAB TRLan [126] Parallel MATLAB No (C-W)

Runtime (s) 227 170 151.2 0.78
Speedup 291 × 218 × 194 × 1 ×

Table 5.3: Execution times of different implementations.

To compare our parallel eigensolver with state-of-the-art eigensolvers, we use the MAT-
LAB eigensolver, the TRLan package [126], and the parallel MATLAB eigensolver, and
execute on an Intel Core i7 920 (2.66GHz) with 4 cores and 8 threads. The first two
implementations are serial, and the third is parallel. Our implementation with the no-
reorthogonalization strategy is executed on an Nvidia GTX 280 platform. The results are
summarized in Table 5.3. By choosing a more efficient algorithm and parallelizing the algo-
rithm on a massive parallel GPU platform, we achieve 291× speedup compared to a serial
implementation, and 194× speedup compared to a parallel implementation. Conducting a
detailed exploration of the design space has allowed our approach to outperform existing
eigensolvers.

The eigen-decomposition pattern is the major bottleneck of the contour detection step
in the object recognition system by Gu et al. [61]. The next step of the system is to segment
images into regions based on the contours. The major bottleneck for the segmentation step
is Breadth-First-Search (BFS) graph traversal on images. This pattern is introduced and
optimized in the following section.

57

5.2 Breadth-First-Search Graph Traversal on Images

It is common to represent an image using a graph, with nodes representing image pixels
and edges representing neighborhood relationships between pixels. So a pixel will only con-
nect to its adjacent pixels, and the graph is highly structured. Graph algorithms are widely
used for region and boundary related operations. For example, labeling of connected compo-
nents can separate pixels into groups. Image color filling can mark pixels inside a region with
the same color. Graph traversal algorithms can compute the city block distance transform,
the chessboard distance transform, and local maximums of gray-scale images [22]. The wa-
tershed algorithm [90] can find image segmentations. More complicated graph algorithms are
employed in state-of-the-art image segmentation techniques [48, 117, 132, 127, 7]. Breadth-
First-Search (BFS) graph traversal on image graphs is a subset of the Graph Traversal

application pattern in Table 5.1. Because it is frequently used in segmentation-based object
recognition systems [61, 38], we want to parallelize and optimize this computation.

5.2.1 Exploring the Design Space of Algorithms

In general, queues are used for BFS graph traversal. First, the starting nodes from
the graph are enqueued, and then each node is iteratively dequeued. The neighbors of the
dequeued node are examined, and untraversed neighbors are enqueued. This procedure
continues until the queue is empty. The basic idea of BFS graph traversal is to allow each
dequeued node to actively access its neighboring nodes, and apply some operations on the
neighboring nodes.

1 2 3 4 5

6 7 8 9

11 12 13 14 15

16 17 18 20

21 22 23 24 25

10

19

1 2 3 4 5

6 7 8 9

11 12 13 14 15

16 17 18 20

21 22 23 24 25

10

19

(a) (b)

 A thread

Figure 5.5: (a) A graph representation of an image. Nodes 7 and 19 are starting nodes,
which will traverse their adjacent neighbors. (b) Parallel BFS graph traversal on a dis-
tributed graph.

58

Irregular data access poses a challenge when designing parallel BFS graph algorithms
with good scalability. Existing parallel algorithms for graph traversal can be placed into two
categories. The first uses a distributed graph representation and traverses this distributed
graph in parallel. In this approach, starting nodes are identified for each distributed sub-
graph, and each subgraph is traversed in parallel. This algorithm is explained in Figure 5.5.
In Figure 5.5(a), a 5×5 image is represented by a graph. Each node in the graph represents
a pixel in the image, and each edge represents the neighboring relationship between pixels.
We assume that the 8 nearest pixels are the neighbors of each pixel. Nodes 7 and 19 are
two starting nodes. In the BFS graph traversal algorithm, nodes 7 and 19 will traverse their
adjacent nodes. The distributed graph algorithm partitions the image graph into four sub-
graphs as shown in Figure 5.5(b). Since the structure of an image graph is highly regular,
we only perform vertical and horizontal cuts. Based on this partition, the subgraphs can
be traversed in parallel. The parallel BGL library uses distributed queues to represent the
subgraphs, and operates on these distributed queues [57]. Scarpazza et al. optimized such a
strategy on the Cell/BE processor [107], while Xia and Prasanna dynamically adjusted the
number of working threads on the subgraphs to reduce synchronization overhead [128].

1 2 3 4 5

6 7 8 9

11 12 13 14 15

16 17 18 20

21 22 23 24 25

10

19

7 19

(a) (b)

 A thread

Figure 5.6: (a) A graph representation of an image. Nodes 7 and 19 are starting nodes,
which will traverse their adjacent neighbors. (b) Parallel BFS graph traversal with a parallel
task queue.

The second approach uses the concept of a parallel task queue to parallelize BFS graph
traversal. This algorithm is explained in Figure 5.6. As shown in Figure 5.6(b), the starting
nodes of the graph are collected in a queue, and then traversal tasks are distributed to
available processing units in parallel. Bader and Madduri employed this approach on a
Cray MTA-2 machine [11].

Here, we propose a novel approach for parallelizing the BFS graph traversal on images
using highly-parallelizable structured grids computations.

Structured grids is a category of well-developed algorithms that are commonly used in
the high performance computing (HPC) field [10, 15]. In structured grids computations,

59

data is arranged in a regular multi-dimensional grid, and each grid point is updated based
on the states of the adjacent grid points. This update process continues until stop criteria
are satisfied. Data arrangement is regular, and the data access pattern is regular and
independent. The inherent parallelism in structured grids computation is considerable, and
can be mapped to Single Instruction Multiple Data (SIMD) vector units. In addition, the
order in which grid points are updated can be arranged to provide spatial locality, resulting
in efficient use of the memory hierarchy. Additional optimization strategies are discussed in
[35].

In mapping BFS graph traversal operations to structured grids, the computation is
reversed: each graph node checks if it can be traversed by an adjacent node. This mapping is
described in Figure 5.7. As shown in Figure 5.7(a), the naive BFS graph traversal algorithm
makes nodes 7 and 19 traverse their adjacent nodes. In contrast, our own algorithm proposes
mapping each node to a grid point, with edges mapped to the stencil operations on these grid
points. As shown in Figure 5.7(b), the grid represents the spatial locations of graph nodes.
Figure 5.7(c) illustrates the 8-point stencil operation that is applied on each grid point. In
the proposed mapping, a stencil operation checks if a grid point can be traversed according
to the configurations of its adjacent neighbors. For example, consider the corresponding grid
point of node 13. The stencil operation checks the configuration of its 8 adjacent neighbors.
Since grid points 7 and 19 are both traversed, grid point 13 can be traversed in the current
iteration. However, now there are multiple sources that can traverse grid point 13. To
enforce deterministic program behavior, we must specify whether grid point 13 should be
traversed by grid point 7, grid point 19, or both, using a deterministic ordering. There are
several ways to achieve this goal. If a deterministic serial implementation of the application
is available, we can implement the behavior of the serial implementation in our parallel
implementation. We can make decisions based on the nature of the application. We can
also set up the traversal rule arbitrarily.

The algorithm for the proposed parallel structured grids computation for BFS graph
traversal is summarized in Figure 5.8. Let i be a counter for the structured grids iterations;
let P0, P1, . . . , Pi, . . . be the traversal results after iteration i; let S be the set of starting
nodes; let R(p, q) be the rules specifying whether grid points p and q are connected; and let
N(p) be the set of neighbors of grid point p. Initially, P0 is set to S (line 2). The status
of each grid point is then iteratively updated by structured grids computations (lines 3-10
in Figure 5.8). For each iteration we distribute the computation of updating the status
of each pixel to all available processing units (lines 6-8). Since the computation on each
grid point is the same and also independent, we can evenly distribute the work. After each
structured grids computation, if the status of all grid points remains the same then no
additional traversal is required, and the computation is terminated (lines 9-10). On line 3
another termination criterion is used to control the runtime of the algorithm by ensuring
that the total number of iterations will not exceed the maximum number allowed. The
latest traversal results are returned as output (line 11). In order to efficiently check if the
status of any grid points is changed in each iteration we employ a global variable change
that is accessible by all processing units. Whenever a processing unit updates the status of
a grid point, this global variable is set to true.

60

1 2 3 4 5

6 7 8 9

11 12 13 14 15

16 17 18 20

21 22 23 24 25

10

19

(a) (b) (c)

Figure 5.7: Mapping BFS graph traversal onto a structured grids computation. (a) A graph
representation of an image. Nodes 7 and 19 are starting nodes, which will traverse their
adjacent neighbors. (b) The structured grids representation of the graph. (c) The stencil
operation on each grid point.

The Check Update subroutine in Figure 5.9 is the update computation for each untra-
versed grid point. Suppose the subroutine is updating grid point p. It first verifies whether a
neighbor of p in the previous stage Pi−1 was enabled to traverse p (lines 1-5). The traversal
is valid if neighboring pixels q and p satisfy the connection rule R(q, p), and q has already
been traversed (line 3). If multiple valid grid points surround a grid point, it is necessary
to define an order of traversal to prevent nondeterministic updates (lines 6-8); however, if
only one neighbor can traverse grid point p, then the computation is straightforward (lines
9-10). Finally, we check the status of grid point p, and set the global variable changed to
true when the status of p is changed. Moreover, because there is no read operation on the
global variable changed in this subroutine, all processing units can write the global variable
asynchronously.

The basic idea of our proposal is to map the irregular BFS graph traversal computation to
the regular structured grids computation. This mapping is feasible as long as the graph can
be represented by structured grids. For example, instead of mapping a grid point to a pixel
in the image, we can map a grid point to a set of pixels. This is equivalent to down-sampling
the image. This proposed mapping strategy allows us to apply highly-parallel algorithms
developed for structured grids to BFS graph traversal. For example, when implementing the
proposed parallel BFS graph traversal algorithm on distributed systems, we can use ghost
nodes or double buffering to deal with boundary grid points [10]. Adaptive mesh refinement
algorithm [10] can also be used when the density of traversal can be defined in a coarse to
fine grained fashion.

61

Algorithm: Structured Grid Traversal(I, S, R, N)
Input: I (Input Image)

S (Starting Nodes Set)
R (Grid Connection Rules)
N (Neighbor Definition)

Output: P (Final image with traversed
information stored in each grid point.)

1 i← 0;
2 P0 ← S;
3 while (i < Max Iteration)
4 i← i+ 1;
5 changed← false;
6 for each pixel p in I
7 if (Traversed (p) = false)
8 Pi ← Check Update(p, I, Pi−1, R, N , changed);
9 if (changed = false)
10 break;
11 return Pi;

Figure 5.8: Parallel structured grids computation for BFS graph traversal.

Advantages and Disadvantages of the Proposed Parallel BFS Graph Traversal
Algorithm

Comparing our proposed algorithm to existing parallel BFS graph traversal algorithms,
we note three main advantages to our approach:

1. More extensive parallelism: In existing parallel BFS graph traversal algorithms, the
traversal operation from different nodes can be done in parallel but the amount of
parallelism is limited by the current working set of active nodes. In our proposed
structured grids computation, all grid points are updated in parallel. In general, the
number of nodes who can propagate information to its neighbors is much smaller than
the number of grid points, resulting in more extensive parallelism.

2. Better scalability and load balancing: For graph traversal algorithms, the total com-
putations necessary for traversal from different starting nodes are generally not known
in advance. This makes it difficult to balance work loads for different processing units.
In the distributed graph approach proposed in [57, 107, 128] it is difficult to define
balanced graph partitions. The task queue approach in [11] works better for load
balancing; however, task collection and redistribution are expensive. For structured
grids, the computations on all grid points are the same. The workloads on available

62

Algorithm: Check Update(p, I, Pi−1, R, N , changed)
1 valid num← 0;
2 for q ∈ N(p)
3 if (R(p, q) = true ∧ Traversed(q) = true)
4 valid(q)← true;
5 valid num← valid num+ 1;
6 if (valid num > 1)
7 order ← Decide Trav Order(valid, p, I, Pi−1, R, N);
8 Multiple Grid Trav(order, p, I, Pi−1, R, N)
9 if (valid num = 1)
10 Single Grid Trav(valid, p, I, Pi−1, R, N);
11 if (Status(p) 6= Status(Pi−1, p))
12 changed← true;

Figure 5.9: The routine for updating information in each grid point.

processing units can be easily balanced, and the scalability is linear in the number of
available processing units.

3. No race conditions: In general, if multiple nodes are enabled to traverse the same
node, then the order in which updates are applied to the nodes is nondeterministic,
resulting in a potential race condition. Our structured grids computation prevents
this by ensuring that before a node updates itself it checks all adjacent neighbors that
can traverse it, and then decides the access ordering according to the behavior of a
serial implementation. This prevents any race condition from occurring.

A drawback of using the structured grids approach is that it leads to a larger number
of computations than necessary – nodes that do not require an update also participate in
computations. Potentially, this might consume more energy than other methods.

We now compare the computational complexity of the serial graph traversal algorithm,
the existing parallel graph traversal algorithms, and the structured grids approach. As-
suming that there are n starting nodes, where each starting node will finally traverse
a1, a2, . . . , an nodes, respectively, the computational complexity of the serial algorithm is
O(

∑n
i=1 ai). For existing parallel graph traversal algorithms with p processors, there is a

difficulty in ensuring effective load balancing. So, we present them optimistically, assum-
ing the following optimal load balancing scenario. Each processor takes care of n/p source
nodes. The computational complexity of existing parallel graph traversal algorithms be-
comes O(n

p
maxi(ai)), and the upper bound of the number of processing units is n. For

structured grids computation, let the number of nodes in the graph be m, and the maxi-
mum distance that a starting node i can traverse be di. Then the computational complexity
of the structured grids algorithm is O(m

p
maxi(di)), and p can scale to m. Suppose we have

63

m processing units, then the performance of parallel structured grids computation compared
to the existing parallel graph traversal methods is O(max(ai)), as opposed to O(max(di)).
Usually O(max(ai)) = O((max(di))

2), so structured grids outperforms the existing parallel
graph traversal methods when a large number of processing units is available.

5.2.2 Exploring the Design Space of Parallelization Strategies

We have presented three different parallel BFS graph traversal algorithms. The graph
partition and task queue approaches are computationally efficient, but express less paral-
lelism. The structured grids approach is computationally expensive, but expresses more
parallelism. Therefore, the first two algorithms are better suited for CPU platforms, which
are composed of a small number of powerful cores. However, the third algorithm is bet-
ter suited for GPU platforms, which are composed of a large number of light-weight cores.
We want to optimize these three algorithms on the targeting platforms. We compare their
performance in Section 5.2.3.

Parallelizing the graph partition BFS graph traversal algorithm on a CPU platform is
straightforward – we need only partition the graph into several subgraphs and use different
threads to process them. Partitioning an image graph is also relatively simple, and involves
specifying vertical cuts and horizontal cuts to evenly partition the image graph. The only
challenge comes from each thread needing to communicate with the others when a traversal
path crosses subgraph boundaries. For this, we employ a strategy similar to the distributed
queue in the parallel BGL library [57]. Given n threads, each thread maintains n queues.
Let qij be the jth queue maintained by the ith thread. qii contains the local traversal tasks
for the ith thread. qij for j 6= i contains tasks submitted from the jth thread. The jth thread
submits a task to the ith thread if a traversal path from the jth subgraph goes to the ith
subgraph.

Parallelizing the task queue BFS graph traversal algorithm on a CPU platform has
three steps: task distribution, task processing, and task collection. The task distribution
step evenly distributes tasks to all threads. The task processing step handles all tasks. A
task is defined by a graph node – given a node, we need to access its neighbors, update its
neighbors, and create new tasks associated with neighbors that have not been traversed.
We let every thread have its own queue to store new tasks created by the thread. The task
collection step merges all newly-created tasks from all threads into a single shared queue,
which is used in the next iteration to evenly distribute tasks to all threads. This task
collection step is the bottleneck of the algorithm. Because the threads do not communicate
with each other in the task processing step, it is possible that one task is duplicate by many
threads. To address this, two design decisions can be made here: we can sort the tasks and
remove duplicates, or just leave the duplicate tasks. When distributing tasks, we always
assign consecutive tasks to a thread. As a result, it is very rare for different threads to
create duplicate tasks. Based on this observation, the first design strategy of removing the
duplicate tasks is too expensive. So, we employ the second strategy to leave the duplicate
tasks and process slightly more tasks.

While exploring the parallelization strategy design space of the previous two algorithms

64

Table 5.4: Comparison between serial algorithms and the proposed parallel algorithms.

MATLAB function Core i7 (ms) GTX 280 (ms) Speedup
bwdist 532.8 252.2 2.11 ×

imregionalmin 452.4 79.3 5.70 ×
imfill 415.7 81.2 5.12 ×

watershed 2013 799.3 2.52 ×

on CPU platforms, we focus on coarse-grained parallelism. The overall computation is
divided into several large pieces, and each piece is assigned to a thread. Conversely, while
parallelizing the structured grids BFS graph traversal algorithm on GPU platforms, we need
to find fine-grained parallelism. The finest granularity on an image graph is a node, so we
use a GPU thread to check whether a node can be updated by its neighbors. The number
of threads created is equal to the number of pixels in the image. However, because the
operations on each node are the same, the SIMD units on the GPU can be efficiently used.
Moreover, neighboring threads access neighboring nodes. To better take advantage of data
locality, we use texture memory on the GPU to cache the image graph. This is the memory
optimization we perform in our implementation.

5.2.3 Experimental Results

Speedup Against Serial BFS Graph Traversal Algorithms

We examine the effectiveness of our proposed parallel BFS graph traversal algorithm by
implementing several image processing computations that use BFS graph traversal opera-
tions, and compare their runtime with serial implementations. In MATLAB, the bwdist,
imregionalmin, imfill, and watershed functions all use BFS graph traversal operations, and
the computational kernels of these functions are implemented by C++ mex functions. The
mex functions are the interface to allow programmers to write C++ subroutines for MAT-
LAB. Therefore, the performance of these functions is similar to highly optimized C++
implementations. We implement these functions using the proposed parallel BFS graph
traversal algorithm, and compare the runtime with the serial MATLAB functions. We ap-
ply the algorithms on a 1600 × 1200 image. The serial implementation is executed on an
Intel Core i7 920 (2.66 GHz) machine, while the parallel implementation is on an Nvidia
GeForce GTX 280 card. The Nvidia card has 30 processing units, each of which has 8-way
SIMD. Experimental results are summarized in Table 5.4: the parallel BFS graph traversal
algorithm provides 2 − 6× speedups. The variations result from differences in maximum
traversal distances of different functions – this factor will be examined in the third experi-
ment.

Scalability of the Proposed Algorithm

Scalability is an important measure of the effectiveness of a parallel algorithm. High
scalability guarantees performance gain when the number of available processing units in-
creases. To evaluate the scalability of our proposed parallel BFS graph traversal, we apply

65

100

1000

10000

1 10 100

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s)

Core Number

Figure 5.10: Scalability of the proposed parallel BFS graph traversal algorithm.

the watershed algorithm on the same 1600× 1200 image, and execute on Nvidia GTX 280
(30 cores), 9800 GTX (16 cores), and 9400M G (2 cores). Results are shown in Figure 5.10:
the proposed parallel algorithm scales linearly with the number of cores.

Effectiveness of the Proposed Algorithm on Different Images

As discussed in Section 5.2.1, the performance of the proposed parallel BFS graph traver-
sal algorithm is proportional to the maximum distance that a starting node can traverse. In
order to understand this property, we generate 7 images with different maximum traversal
distances. The size of the images is 4096 by 4096, and the maximum traversal distance
ranges from 4 pixels to 256 pixels. Using these seven images, we compare our proposed
algorithm with the serial MATLAB imregionalmin function, the parallel graph partition
algorithm, and the parallel task queue algorithm. The serial algorithm is executed on an
Intel Core i7 920 (2.66 GHz) machine. We implement the graph partition algorithm and
the task queue algorithm using OpenMP [99], and execute on an Intel Core i7 920 (2.66
GHz) machine with 4 cores and 8 threads. The parallel structured grids implementation is
executed on an Nvidia GeForce GTX 280 card.

The experimental results are summarized in Figure 5.11. The graph partition algorithm
and the task queue algorithm have similar performance, resulting in a 4× to 5× speedup
against the serial algorithm. Also, the proposed structured grids implementation outper-
forms the other algorithms when the maximum traversal distance is less than 64 pixels.
The runtime of the structured grids implementation increases when the maximum traversal

66

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s)

Maximum Traversal Distance (pixel)

Serial

CPU Task Queue

CPU Graph Partition

GPU Structured Grids

Figure 5.11: Runtime of the local minimum extraction algorithm on images with different
maximum traversal distances.

distance increases. When the maximum traversal distance is only 4 pixels, the proposed
parallel algorithm achieves 32× speedup against the serial implementation, and 6× speedup
against the parallel graph partition and the parallel task queue implementation. Therefore,
the proposed parallel BFS graph traversal is efficient when the maximum traversal distance
is short. The maximum traversal distance is inversely proportional to the content complex-
ity of an image. Therefore, the proposed parallel BFS graph traversal is most effective for
complex images, which are very common. For example, images from Magnetic Resonance
Imaging (MRI) are in this category. We have applied the watershed algorithm on hundreds
of images in an MRI image database, ranging from 200×200 to 500×500 in size. The max-
imum traversal distance of these images is about 10-50 pixels. We have achieved speedup
of 12× to 33× on structured grids versus serial, and 2× to 6× on structured grids versus
graph partition and task queue.

The major bottleneck of the segmentation step in the object recognition system by
Gu et al. [61] is the watershed algorithm, and can be solved by the BFS graph traversal
pattern. Because the images in the benchmark suite are complicated, using the structured
grids approach is very efficient. We will discuss the performance improvement in Chapter 7.
After an image is segmented into regions, the next step is to collect contour features from
regions. This pattern is discussed in the following section.

67

5.3 The Contour Histogram

Histogram Accumulation is a key application pattern in Table 5.1. This is used in
almost all feature descriptors, such as SIFT [80], HOG [33], GIST [98], and contour feature
[61]. A histogram accumulation computation can be defined by a vector, a histogram, and
two functions. Let a be a vector of n elements a = [a1, a2, . . . , an], and h be a histogram
of m bins h = [h1, h2, . . . , hm]. For every element ai in a, we must find a histogram bin
it can contribute to. The index of the corresponding histogram bin is related to the value
of ai, and to the index of ai, which is i. Let f(ai, i) be the function that computes the
corresponding histogram bin index based on ai and i. If ai contributes to histogram bin hj,
or f(ai, i) = j, we must then compute the amount that ai will contribute to histogram bin
hj. Let v(ai, i) be the function that computes the amount of contribution. The histogram
accumulation computation can be described by

∑n
i=1 h[f(ai, i)]← h[f(ai, i)] + v(ai, i).

Although the histogram accumulation computation can be simply defined by two arrays
and two functions, the two functions can vary significantly. Different feature descriptors
define different f and v functions. Because function f decides memory access behavior,
optimizing the histogram accumulation computation is tightly related to function f . It is
very difficult to design a library that can handle all kinds of f functions efficiently. As a
result, different feature descriptors with different f functions should be optimized differently.
Our proposed parallel library for the histogram accumulation application pattern should be
a combination of all these special cases. We start this task by optimizing the contour feature
in the region-based object recognition system by Gu et al. [61].

The contour descriptor is defined by encoding the gPb feature [81] of a region into a 128-
bin histogram. The region will be evenly divided into 4× 4 grids, and each grid contributes
to 8 histogram bins. So, there are 4 × 4 × 8 = 128 bins in total. For each grid, the gPb
features of 8 orientations are accumulated in 8 different bins. In other words, the contour
location information is discretized into a 4× 4 coordinate system. The contour orientation
information is discretized into 8 orientations. The contour descriptor of a region is shown in
Figure 5.12. The leftmost column is a region with its gPb features. Given a pixel p inside
the region, we evaluate its orientation and location. If the orientation is o, and the location
falls in grid (i, j), then the gPb value of the pixel will be accumulated into histogram bin
number (o− 1)× 16 + (i− 1)× 4 + j.

5.3.1 Exploring the Design Space of Algorithms

We have tried two algorithms to describe the contour histogram computation. The
first algorithm is based on processing pixels within the bounding box of each region. This
algorithm is summarized in Figure 5.13. Let R be the region set with n regions extracted
from the input image, and we compute the contour histogram for each region. H is the
corresponding histogram set for all regions. The size of each histogram is 128, so the
dimension of H is n× 128. In the algorithm, we first initialize H, and then accumulate gPb
features into the histogram bins. For each region, we must accumulate the gPb features
of all pixels inside the region into corresponding histogram bins. The Bounding Box(R[i])

68

Orient 1

Orient 2

…

Orient 8
…

Bin 1-16

Bin 17-32

Bin 113-128

…

128 bin
histogram

Figure 5.12: The contour feature used by Gu et al. [61].

function computes the bounding box of region R[i]. If a pixel p is inside the bounding box,
and belongs to region R[i], we employ the Orient(p) and Grid Coor(p) functions to compute
the orientation and grid coordinates of the pixel. This information is then used to compute
the index of histogram bin binid. Finally, the gPb feature of orientation o and pixel p is
accumulated into the histogram bin of index binid.

The second algorithm takes advantage of the fact that a region is divided into 4×4 grids
and that the pixels within a grid contribute to the same histogram bin. This algorithm is
summarized in Figure 5.14. The pixel-based algorithm uses two nested loops to compute
the histogram, while the grid-based algorithm uses three nested loops. Given a region, this
algorithm processes pixels within each grid separately. The 4×4 grid partition of the region
is stored in array grid. grid[4(x − 1) + y] refers to the grid with coordinates (x, y). Given
a grid, we process pixels within the grid and accumulate the gPb feature of the pixel to the
corresponding histogram bin.

The grid-based algorithm seems to be more complicated than the pixel-based algorithm;
however, the grid-based algorithm’s memory behavior is better. When processing pixels
within a grid, we must access only 8 histogram bins. We can use registers to store the
contents of the 8 histogram bins, which gives us the shortest latency to update the bins.
Conversely, the pixel-based algorithm must access all 128 histogram bins. This is unlikely
to keep them all in registers, so we need to use lower-layer memory such as the L1 cache to
store the histogram contents. This introduces longer delays when updating the contents.

69

Algorithm: Pixel-Based Contour Histogram
Input: R (Region Set)

n (Region Set Size)
gPb (gPb Feature)

Output: H (Histogram Set)
1 for i← 1, . . . , n
2 for j ← 1, . . . , 128
3 H[i][j]← 0;
4 for i← 1, . . . , n
5 for pixel p in Bounding Box(R[i])
6 if (p ∈ R[i])
7 o← Orient(p);
8 (x, y)← Grid Coor(p);
9 binid← 16(o− 1) + 4(x− 1) + y;
10 H[i][binid]← H[i][binid] + gPb[o][p];

Figure 5.13: The pixel-based contour histogram algorithm.

5.3.2 Exploring the Design Space of Parallelization Strategies

Two parallelization strategies can be applied on the pixel-based contour histogram algo-
rithm. The first strategy processes each region in parallel. The histogram computation on
each region is totally independent, so no communication is required. The number of regions
in an image is usually in the range of 200 to 500 – not too large. CPU platforms are better
suited for this kind of coarse-grained parallelism. The second strategy expresses parallelism
on both regions and pixels. We can process each region in parallel. Moreover, when com-
puting the histogram of a region, we can access pixels within the region bounding box in
parallel. GPU platforms are the ideal candidates for this strategy, because they are good at
expressing fine-grained parallelism and at hosting many threads concurrently. We distribute
the regions to the GPU processors, using the SIMD unit of each to process consecutive pix-
els in parallel. To be more specific, a set of threads is created, and consecutive threads
are responsible for consecutive pixels. Because operations on the pixels are the same, these
threads can be executed concurrently on the SIMD pipeline. The data access pattern is
vectorized because consecutive threads access consecutive pixels. However, different threads
might update the content of the same histogram bin at the same time. In order to ensure
the correctness of the results, we must use atomic operations to commit the update. An
atomic operation is a sequence of instructions that are executed sequentially without in-
terruption. Such operations are more expensive than regular instructions. Moreover, when
collision occurs, the operations will be serialized.

For the grid-based contour histogram algorithm, we have also tried two parallelization

70

Algorithm: Grid-Based Contour Histogram
Input: R (Region Set)

n (Region Set Size)
gPb (gPb Feature)

Output: H (Histogram Set)
1 for i← 1, . . . , n
2 for j ← 1, . . . , 128
3 H[i][j]← 0;
4 for i← 1, . . . , n
5 for j ← 1, . . . , 16
6 for pixel p in grid[j]
7 if (p ∈ R[i])
8 o← Orient(p);
9 binid← 16(o− 1) + j;
10 H[i][binid]← H[i][binid] + gPb[o][p];

Figure 5.14: The grid-based contour histogram algorithm.

strategies. The first is based on the Geometric Decomposition pattern in OPL as shown
in Figure 4.1. The idea of this pattern is to divide the input data into regular partitions
using geometric information and then deal with each partition in parallel. In the grid-
based contour histogram algorithm, we partition a region into 4 × 4 grids by employing
three evenly-distributed vertical cuts and three evenly-distributed horizontal cuts. This is
an exact match with the Geometric Decomposition pattern. We use GPU platforms to
express this strategy. The regions are distributed to GPU processors. In a processor, 128
threads are generated for a region, where each thread walks through pixels in one orientation
in a grid, and accumulates the gPb values in the corresponding histogram bin. Although
the threads are grouped and executed using the SIMD unit, the data access pattern is
not vectorized, which may incur significant memory access overhead. The second strategy
focuses on one grid at a time. The regions are still distributed to GPU processors. However,
in a processor, we serially process the 16 grids. The SIMD unit is used to perform parallel
reduction over pixels within a grid. The data access pattern is vectorized. However, due to
the nature of the parallel reduction, not all threads are working all the time.

In summary, each algorithm and parallelization strategy has its advantages and disad-
vantages. The parallel region strategy on the pixel-based algorithm explores coarse-grained
parallelism on CPU platforms. The atomic operation strategy on the pixel-based algorithm
explores fine-grained parallelism on GPU platforms, and has vectorized memory access,
but uses more expensive atomic operations. The geometric decomposition strategy on the
grid-based algorithm explores fine-grained parallelism on GPU platforms, but does not have
vectorized memory access. The reduction strategy on the grid-based algorithm explores

71

fine-grained parallelism on GPU platforms, and has vectorized memory access, but the uti-
lization rate of the threads is lower.

5.3.3 Experimental Results

10

100

1000

10000

0 50 100 150 200 250 300 350 400

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s)

Region Width

Serial

OpenMP

Atomic

Geometric

Reduction

Figure 5.15: Execution time of different algorithms and parallelization strategies on images
with various region sizes.

In our experiments, we implement the serial histogram computation and the parallel
region strategy on an Intel Core i7 920 (2.66 GHz) machine, using OpenMP [99] with 8
threads, and we implement the atomic operation, geometric decomposition, and reduction
strategies on an Nvidia GTX 480 machine, using CUDA [96]. We evaluate the performance
of these strategies on a 512 × 410 image. An image can have regions with different sizes.
Larger regions contain more pixels, while smaller regions contain fewer pixels. In order to
understand whether region sizes will influence the performance of different parallelization
strategies, we partition the benchmarking image into square regions with different sizes,
and evaluate the performance of all implementations on regions with different sizes. Ex-
perimental results are summarized in Figure 5.15: the reduction strategy outperforms all
other strategies, irrespective of the size of the regions in the image. We conclude that the
non-vectorized data access and thread conflict problems are more serious than the thread
stalling problem. Therefore, the reduction strategy is the best solution for the contour his-
togram problem – it achieves 5 − 30× speedup compared to the serial contour histogram
implementation.

72

5.4 Summary

In this chapter, we describe three case studies of application patterns that are the major
bottlenecks of the object recognition system by Gu et al. [61]. These include eigensolver
for the normalized cut algorithm, BFS graph traversal on images, and contour histogram.
We apply the exhaustive search approach to explore the design space of algorithms and
parallelization strategies on these computations, and make our design decisions based on
experimental results.

We select the Lanczos algorithm to solve the eigen-problem from the normalized cut
algorithm. The three major bottlenecks for the Lanczos algorithm are then examined and
resolved. The SpMV computation is optimized by using the diagonal format to store the
sparse matrix and parallelize on the matrix rows. Reorthogonalization overhead is reduced
by using the no-reorthogonalization strategy with the Cullum-Willoughby test. The cost of
computing the Ritz values is reduced by doing this infrequently. According to the experi-
mental results, 20× speedup is achieved by reducing the reorthogonalization cost. Compared
to a serial implementation, 280× speedup is achieved by applying all optimizations.

For the BFS graph traversal algorithm, we propose a new algorithm to express massive
parallelism on image graphs. The idea is to map the original graph traversal algorithm
to a structured grids algorithm. Instead of making a pixel propagate information to its
neighbors, we ask all pixels to collect information from neighbors. This new algorithm
achieves 2−5× speedups compared to serial implementations on various computations that
rely on BFS graph traversal. The new algorithm scales linearly on the number of cores, and
it outperforms other parallel BFS graph traversal algorithms when the maximum traversal
distance is less than 64 pixels. On complicated images, the new algorithm achieves 12−33×
speedups versus the serial algorithm, and 2− 6× speedups versus other parallel algorithms.

The contour histogram computation can be solved by two algorithms, and each can be
parallelized by two different strategies. Every strategy has its advantages and disadvantages.
We have evaluated the performance of all four strategies and concluded that the reduction
strategy is the best solution for this problem, achieving 5− 30× speedups compared to the
serial algorithm.

These three case studies illustrate how we can apply the exhaustive search method to
explore design spaces, and so achieve significant speedups by parallelizing and optimizing
a serial computation. This is a subset of the application patterns for our proposed parallel
application library for object recognition. We can also continue performing case studies on
the application patterns to enlarge the functionality of the library. The ultimate goal is to
cover all application patterns listed in Table 5.1. This is our future work and will be further
discussed in Section 8.2.

73

Chapter 6

The OpenCL for OpenCV (OLOV)
Library

The micro-architectures of parallel microprocessors are increasing in their diversity. As
a result, different hardware vendors have developed their own languages to exploit paral-
lelism in their architectures, such as SSE [115] and AVX [70] for x86, CUDA [96] for Nvidia
GPUs, and Stream [2] for AMD GPUs. Fortunately, the leaders of the parallel computing
industry have standardized parallel computations with OpenCL [116]. The goal of OpenCL
is to make parallel code portable to heterogeneous platforms. OpenCL is an open-source
project with partners from industry and academia, including AMD, Apple, ARM, Blizzard,
Broadcom, Codeplay, Creative, Electronic Arts, Ericsson, Fixstars, Freescale, Fujitsu, GE,
Graphic Remedy, HI, IBM, Imagination Technologies, Intel, Kestrel Institute, Khronos,
Alamos National Laboratory, Media Tek, Motorola, Movidia, Nokia, Nvidia, Petapath,
QNX, Qualcomm, RapidMind, Renesas, S3 Graphics, Samsung, Seaweed Systems, Sony,
ST Microelectronics, Symbian, Takumi, Texas Instruments, Toshiba, Vivante, and ZiiLABS.
This long list of membership includes designers from various fields and platforms: GPU,
CPU, SoC, mobile device, super computer, video game, and software. With these partner-
ships, we can expect OpenCL to have extremely wide coverage on all kinds of hardware
platforms. If there is ever any standard programming model that rules how programmers
write parallel programs, very likely it will be OpenCL.

In all case studies presented in Chapter 5, we optimize the computation on Nvidia GPUs
using CUDA – if a user does not have an Nvidia GPU, he cannot use our code. Although
portability is not our topmost concern when developing this parallel application library,
we still want to provide a solution that can be executed on platforms from more than one
vendor. Since OpenCL is the best currently-available solution for portability, we use it as
the main parallel programming model for developing our library.

OpenCV [21] is the most well-known open-source computer vision library, and is widely
used in many projects. It aims to provide functions for real-time computer vision applica-
tions. This goal matches our purpose of speeding up object recognition systems. When the
library we develop reaches a mature stage, we plan to provide APIs that are synchronous
with OpenCL’s APIs, so that people can use them easily. As a result, we call our project of

74

developing a portable parallel application library the OpenCL for OpenCV (OLOV) project.

6.1 Overview of OLOV

In this section, we discuss our target platforms, and the scope of the OLOV project.
Many different parallel platforms exist today, such as Intel Nehalem, AMD Phenom, IBM

Cell, Sun Niagara, Nvidia Fermi, and AMD Radeon. However, not all parallel platforms
are commonly available. Generally, consumers purchase a desktop or laptop with a CPU
from Intel or AMD, and a GPU from Nvidia or AMD. We are targeting platforms commonly
employed by end users, and not specific to research environments, which narrows our interest
to multicore CPU platforms and manycore GPU platforms.

By multicore CPU, we refer to architectures that duplicate several traditional CPUs on
a chip. Each core has its own memory hierarchy with full instruction support, and operates
with a high clock frequency. A manycore GPU, on the other hand, incorporates numerous
small cores on a chip. Each GPU core has widely-vectorized algorithmic logic units, and
can simultaneously execute many threads. However, the individual cores may not have
full instruction support, and operate on a lower clock frequency compared to CPUs. From
an architectural perspective, we present the advantages and disadvantages of these two
mainstream parallel platforms as follows:

• Task Parallelism vs. Data Parallelism: Multicore CPUs are well suited for expressing
coarse-grained task parallelism, while manycore GPUs are better for expressing fine-
grained data parallelism. With multicore CPUs, each core can independently operate
on different tasks, but there are only a relatively small number of available cores.
Manycore GPUs, on the other hand, have a larger number of cores, each with a wide
SIMD width. As the capabilities of CPUs and GPUs evolve, we can express data
parallelism using the SIMD units in multicore CPUs. Similarly, we can express task
parallelism using the scheduler in manycore GPU runtimes. However, the amount of
available data parallelism in CPUs is still less than in GPUs, and compared to CPUs
the task parallelism in GPUs remains restrictive.

• Irregular Data Access vs. Regular Data Access: Multicore CPUs effectively handle
both regular data access and irregular data access, while regular data access is neces-
sary to achieve high performance on manycore GPUs. With multicore CPUs, regular
data access patterns do result in better cache usage, but the latency resulting from
irregular data access is reduced by the memory hierarchy. GPUs, however, rely heavily
on data parallelism – in the absences of regular data access, the memory bandwidth
for GPU architectures may be significantly reduced, resulting in potential serialization
of kernels.

As such, CPU and GPU platforms have different characteristics. When optimizing a
computation on CPU platforms, we normally use coarse-grained parallelization strategies –
we partition a computation into several expensive tasks, and assign independent tasks to
each CPU core. On the other hand, when optimizing a computation on GPU platforms we

75

commonly use fine-grained parallelization strategies – that is, expressing data parallelism
on consecutive data to utilize the wide SIMD unit on GPU cores. Although OpenCL is
executable across all CPU and GPU platforms, performance is not portable. Code optimized
for CPU platforms performs worse on GPU platforms, and vice versa. There is no one-size-
fits-all solution. Because optimizing a computation on one platform is challenging enough,
we focus our research on only one platform. We do plan to expand the OLOV project to
support more platforms in the future, however.

Comparing CPU and GPU platforms, GPUs provide larger memory bandwidth on reg-
ular memory accesses. For example, the memory bandwidth of an Nvidia GTX 480 is 177
GB/s, and the memory bandwidth of an AMD Radeon 6970 is 176 GB/s. CPU memory
bandwidth, however, is always bounded by DRAM, and is therefore significantly lower. The
memory bandwidth of an Intel Core i7 980 is only 25.6 GB/s. Moreover, because GPU plat-
forms have wider SIMD units, the peak floating point number performance is also higher.
The GTX 480 and Radeon 6970 can perform 1345 GFLOPS and 2700 GFLOPS, respectively,
while the Core i7 980 can perform only 160 GFLOPS. As a result, as long as a computation
accesses memory regularly and performs the same operations on many data, we can expect
GPU platforms to deliver better performance. Most of the application patterns in Table 3.1
satisfy these properties. As such, we target GPU platforms in the OLOV project.

However, even if we target only GPU platforms, the capabilities of each individual plat-
form are nonetheless different. Nvidia GPUs are composed of a cluster of processors, and
each processor has schedulers that distribute instructions to its SIMD units. Different GPUs
have different numbers of cores, different SIMD widths, different numbers of schedulers, dif-
ferent numbers of registers, different sizes of local memory and caches, and different global
memory bandwidths. AMD GPUs are also composed of a cluster of processors; however,
each processor is composed of many stream cores, and each stream core is itself composed of
a Very Long Instruction Word (VLIW) unit. Different AMD GPUs have different numbers
of processors, different numbers of stream cores per processor, different VLIW widths, dif-
ferent numbers of registers, different sizes of local memory and caches, and different global
memory bandwidths. Because of all these architectural differences, we need different opti-
mization strategies on each individual platform. Given a computation, the superset of all
valid implementations forms the design space, and we must explore the design space to find
the best implementation on a specific platform. It is impossible to ask all library users to
explore the design space themselves. Therefore, we need to develop autotuners that auto-
matically explore the design space and optimize a computation on a specific platform when
a user installs our library.

Although we can develop autotuners for every application pattern in Table 3.1, the
research time for developing an autotuner is significantly longer than that of the case studies
discussed in Chapter 5. As a result, we focus on computations that are frequently used
and computationally intensive. We have developed two autotuners for two computations
that satisfy these requirements. The first is for sparse matrix vector multiplication, which
is the major bottleneck in Histogram Accumulation, Quadratic Optimization, Eigen

Decomposition, Nonlinear Optimization, Singular Value Decomposition, and Convex

Optimization application patterns. The second autotuner is for the Vector Distance

76

pattern. The details of these autotuners are discussed in Sections 6.3 and 6.4.
In summary, the OLOV project develops a collection of autotuners for computationally-

intensive application patterns on GPU platforms using OpenCL.

6.2 OpenCL Programming Model

Work
Item
(0, 0)

Work
Item
(0, 1)

Work
Item
(0, 2)

Work
Item
(0, 3)

Work
Item
(1, 0)

Work
Item
(1, 1)

Work
Item
(1, 2)

Work
Item
(1, 3)

Work
Item
(2, 0)

Work
Item
(2, 1)

Work
Item
(2, 2)

Work
Item
(2, 3)

Work
Item
(3, 0)

Work
Item
(3, 1)

Work
Item
(3, 2)

Work
Item
(3, 3)

A kernel with 3x3=9 work groups A work group with 4x4=16 work items

Figure 6.1: The programming model of expressing data parallelism in OpenCL.

The OpenCL programming model is a combination of task and data parallelism. A task
queue is created to store OpenCL kernels – if these kernels are independent and are launched
asynchronously, they can be executed in parallel. This is the preferred way to express task
parallelism on CPU platforms.

Data parallelism is expressed within an OpenCL kernel, and is described by Figure 6.1.
A programmer organizes a computation by work groups, each of which is independent and
cannot communicate with others. A work group is composed of many work items. These
work items work together and share the register file and local memory belonging to the work
group. The work items in a work group can be synchronized using shared local memory.
Both work groups and work items can be indexed in one-dimensional, two-dimensional, or
three-dimensional fashion. For example, in Figure 6.1, we create two-dimensional 3× 3 = 9
work groups, and each work group has two-dimensional 4 × 4 = 16 work items. Data

77

parallelism is expressed by work items in a work group performing the same instructions
on different data. We follow this programming model to express data parallelism on GPU
platforms.

Although the OpenCL programming model remains the same for all GPU platforms, the
avenues through which the programming model maps to real hardware architectures are still
different. On Nvidia GPUs, each work group is scheduled to one processor, and a warp of
work items is scheduled together on the SIMD units in a processor. The warp size of current
Nvidia GPU architecture is 32, so 32 work items are gathered and executed on the SIMD
units of a processor. On AMD GPUs, each work group is also scheduled to one processor,
and a wavefront of work items is scheduled together on the stream cores. The wavefront
size of current AMD GPU architectures is 64, so 64 work items are gathered and executed
on each stream core. A stream core is composed of a VLIW unit with a width of four or
five. In order to effectively use these VLIW units, we must employ explicit vector types,
such as float4 or int4, to advise the compiler to generate width-four VLIW instructions for
each work item. As a result, when writing OpenCL programs, we can use scalar data types
(such as float or int) on Nvidia GPUs, but should use vector types on AMD GPUs. The
architectural differences between Nvidia and AMD GPUs are also considered in the OLOV
project.

6.3 The Sparse Matrix Vector Multiplication Auto-

tuner

Many of the optimization and linear algebra application patterns in Table 3.1 can be
solved by iterative methods, composed of matrix vector multiplication operations with vector
updates. For example, the conjugate gradient method can be used to solve linear systems,
and Krylov subspace methods can be employed to find eigenvalues and eigenvectors [131].
Further, many matrices are naturally sparse, so we must perform sparse matrix vector mul-
tiplication (SpMV) operations in the optimization and linear algebra application patterns.
Since the matrix size is orders of magnitude larger than the vector, SpMV operations domi-
nate the execution time of iterative methods. In order to accelerate these iterative methods
it is essential to optimize the SpMV kernel.

The SpMV kernel is notorious for its extremely low arithmetic intensity (the upper bound
of the flop:byte ratio is 0.25 – two flops for eight bytes on the single precision floating point
data type), and for its irregular memory access patterns [123]. The SpMV kernel is a pure
memory bounded problem as shown in the Roofline model [124]. Although the peak floating
point operations per second (FLOPS) of modern microprocessors is increasing rapidly, the
maximum memory bandwidth is not improving at a similar pace. As a result, the SpMV
kernel usually performs poorly, achieving only 10% of peak performance on single-core,
cache-based microprocessors [120]. Studies to improve performance of the SpMV kernel
can be categorized into two directions: applying architecture-specific optimizations, and
applying new sparse matrix formats.

Interest in SpMV has increased with the advent of more powerful multicore CPUs and

78

manycore GPUs. Williams et al. [123] evaluate different optimization strategies on AMD
Opteron X2, Intel Clovertown, Sun Niagara2, and STI Cell SPE. Bell and Garland [14]
optimize different SpMV kernels with different sparse matrix formats on Nvidia GPUs.
Bordawekar and Baskaran [19] further optimize the SpMV kernel with the Compressed
Sparse Row (CSR) sparse matrix format on Nvidia GPUs. Choi et al. [27] implement
Blocked Compress Sparse Row (BCSR) and Sliced Blocked ELLPACK (SBELL) formats on
Nvidia GPUs.

Researchers have also proposed various sparse matrix formats with the goal of minimizing
the memory footprint and enforcing some regularity on the access pattern. Buluc et al. [23]
employ the symmetric Compressed Sparse Block (CSB) and bitmasked register block data
structures to minimize the storage requirement of blocked sparse matrices. Monakov et al.
[92] propose the Sliced ELLPACK (SELL) format as an intermediate format between the
CSR and ELL formats. Vázquez et al. [118] suggest the ELLPACK-R format, which can
preserve the data alignment requirement on Nvidia GPUs.

Different sparse matrices have different characteristics, and different microprocessors
have different strengths. So, in order to achieve the best SpMV performance for a spe-
cific sparse matrix on a specific microprocessor, an autotuner is necessary to adjust the
sparse matrix and platform parameters. The Optimized Sparse Kernel Interface (OSKI)
library [120] is a state-of-the-art collection of sparse matrix operation primitives on single-
core cache-based microprocessors that relies on the SPARSITY framework [68] to tune the
SpMV kernel. Its major optimization strategy includes register blocking and cache blocking.
Autotuning is employed by Choi et al. [27] and Monakov et al. [92] to find the best block
sizes and the slice sizes of the given sparse matrices on Nvidia GPUs. Guo and Wang [63]
also autotune the parameters of the CSR SpMV implementation on Nvidia GPUs. Grewe
and Lokhmotov [58] develop a code generator to create CUDA and OpenCL code for SpMV
kernels to facilitate the autotuning process – however, their paper focuses on the generated
CUDA code. For OpenCL code, only CSR SpMV results are presented, so it is unclear how
their generator would perform on other sparse matrix formats.

In the OLOV project, we have developed the clSpMV autotuner, which optimizes sparse
matrix data structures and SpMV performance on GPU platforms [112].

6.3.1 Exploring the Design Space of Algorithms

We optimize the SpMV computation from two directions: proposing a new sparse matrix
format, and performing optimizations that are specific to underlying GPU platforms.

Introduction to the Cocktail Format

Many SpMV studies have developed novel sparse matrix formats. However, there is
no one-size-fits-all solution: every sparse matrix representation has its own strengths and
weaknesses. The symmetric Compressed Sparse Block (CSB), the bitmasked register block
data structures by Buluc et al. [23], the Blocked Compress Sparse Row (BCSR), and the
Sliced Blocked ELLPACK (SBELL) data structures by Choi et al. [27] all assume dense
blocks in the sparse matrix. The performances of the Sliced ELLPACK (SELL) format by

79

Monakov et al. [92] and the ELLPACK-R format by Vázquez et al. [118] rely on variations
in the number of non-zeros per row in the sparse matrix. The experimental results from
Bell and Garland [14] also demonstrate that the best SpMV results are heavily dependent
on the choice of sparse matrix format.

Based on the observation that different sparse matrix formats are good at different sparse
matrix structures, we have developed the Cocktail Format to take advantage of the different
matrix formats. The Cocktail Format is a combination of many different sparse matrix
formats. It partitions a given matrix into several submatrices, each specialized for a given
matrix structure. The trivial case finds a single best format for a given sparse matrix. The
most complicated case partitions the sparse matrix into many submatrices and represents
them using different formats. The list of sparse matrix formats in the Cocktail Format
can be arbitrary. In clSpMV, we support nine sparse matrix formats in three categories.
These categories and matrix formats are summarized below, and further explained in later
paragraphs.

• Diagonal-based category: formats that store dense diagonals.

– DIA: stores dense diagonals.

– BDIA: stores a band of diagonals together.

• Flat category: formats that require a column index for every non-zero data point on
the sparse matrix.

– ELL: packs non-zeros into a dense matrix.

– SELL: cuts the matrix into slices, using different ELL settings for each slice.

– CSR: the common compressed sparse row format.

– COO: the common coordinate format.

• Block-based category: formats that store dense blocks.

– BELL: the blocked variant of the ELL format.

– SBELL: the blocked variant of the SELL format.

– BCSR: the blocked variant of the CSR format.

There is also research that partitions a sparse matrix into many submatrices. However,
the partitions are very restricted. Vuduc [121] partitions the sparse matrix into two to four
submatrices with different dense block sizes. However, he focuses on only the BCSR format.
If the number of dense blocks per row is regular, the BELL format is a better choice. Bell and
Garland [14] partition the sparse matrix into the ELLPACK portion and the COO portion;
however, they do not take advantage of dense blocks in the matrices. The Cocktail Format
is the first proposal that partitions the matrix into many different specialized regions.

80

Diagonal-Based Formats

B =


3 7 0 0
0 4 8 0
1 0 5 9
0 2 0 6

 (6.1)

Diagonal-based formats capture dense diagonals. We use matrix B in Equation (6.1) to
explain the data structure of the formats in this category.

Offsets = [-2 0 1]
Data = [0 0 1 2, 3 4 5 6, 7 8 9 0]

Figure 6.2: The DIA format of matrix B.

DIA Format As explained in [14], the diagonal (DIA) format is composed of two
arrays: the Offsets array that stores offsets of each diagonal, and the Data array that
stores dense diagonals. The Data array is a 1D array, the commas are used to separate
different diagonals for representation convenience. Figure 6.2 shows the DIA format of
matrix B. There are advantages and disadvantages to the DIA format:

• Advantages: The DIA format does not require explicit column indices for each non-
zero datum. The format has single-stride and aligned access on the matrix data. It
also has single-stride access on the multiplied vector.

• Disadvantages: The DIA format requires zero fillings in the Data array to ensure that
the lengths of all diagonals are the same. On sparse diagonals and short diagonals,
the zero filling overhead might be significant.

Offsets = [-2 0]
BandPtr = [0 4 12]
Data = [0 0 1 2, 3 4 5 6, 7 8 9 0]

Figure 6.3: The BDIA format of matrix B.

BDIA Format The banded diagonal (BDIA) format is a variation of the DIA format.
Instead of storing disjoint diagonals, it stores a band as a whole. A band is a series of
consecutive diagonals. This format is composed of three arrays. The Offsets array stores
the offset of the first diagonal in each band. The BandPtr array stores the position of the
first element of each band – in other words, the elements of band i are stored between
BandPtr[i] and BandPtr[i + 1]. The Data array is exactly the same as in the DIA format.
Figure 6.3 shows the BDIA format of matrix B. The offset of the first band is −2, and

81

the offset of the second band is 0. The starting position of the first band is 0 in the Data

array, and the starting position of the second band is 4 in the Data array. There are also
advantages and disadvantages to the BDIA format:

• Advantages: The BDIA format does not require explicit column indices for each non-
zero datum. This format has single-stride and aligned access on the matrix data. It
also has single-stride access on the multiplied vector. It can use shared local memory
to cache the multiplied vector.

• Disadvantages: The BDIA format requires zero fillings in the data array to ensure that
the lengths of all diagonals are the same. On sparse diagonals, the zero filling overhead
might be significant. Compared to the DIA format, BDIA requires an additional
BandPtr array.

Flat Formats

Flat formats require explicit storage of the column indices of all non-zeros. We use
matrix B to explain the data structure of the formats in this category.

ELL Format The ELLPACK (ELL) format [60] packs all non-zeros towards the left,
and stores the packed dense matrix. Assuming that the packed dense matrix has dimension
m×n, the ELL width of the original matrix will be n, the width of the packed dense matrix.
The ELL format is composed of two arrays: the Col array stores the column indices of all
elements in the dense m × n matrix, and the Data array stores the values of the dense
m× n matrix. Figure 6.4 shows the ELL format of matrix B. The ELL format has several
advantages and disadvantages:

Col = [0 1 0 1, 1 2 2 3, 0 0 3 0]
Data = [3 4 1 2, 7 8 5 6, 0 0 9 0]

Figure 6.4: The ELL format of matrix B.

• Advantages: The access pattern of the Col and Data arrays is single-stride and aligned.

• Disadvantages: Assuming that the packed dense matrix has dimension m×n, the ELL
format needs zero paddings on every row that has fewer non-zeros than n. These zero
paddings potentially introduce significant overhead. This format also requires random
access on the multiplied vector.

SELL Format The sliced ELLPACK (SELL) format is proposed by Monakov et al.
[92]. The idea is to cut the original matrix into slices, then pack the slices into dense matrices
with different dimensions. The slices are constructed by cutting the matrix horizontally. The
SELL format is composed of three arrays. The SlicePtr array stores the beginning position

82

SlicePtr = [0 4 10]
Col = [0 1, 1 2; 0 2, 1 3, 3 0]
Data = [3 4, 7 8; 1 2, 5 6, 9 0]

Figure 6.5: The SELL format of matrix B.

of each slice in both Col and Data arrays – that is, the elements of slice i are stored between
SlicePtr[i] and SlicePtr[i+ 1]. The Col and Data arrays are similar to the ELL format,
storing the column indices and values of each element in the slices. Figure 6.5 shows the
SELL format of matrix B with slice height 2. The semicolons in the array separate different
slices. Monakov et al. [92] employ autotuning to determine the best slice height, reorder
the matrix to further reduce zero paddings, and propose the variable-height slice format.
According to their experimental results, the matrix reordering technique and the variable-
height format result in only marginal improvements. Since these strategies might increase
the complexity of the policies in the online decision-making stage, the current clSpMV
does not include these approaches. Regarding the slice height, we develop kernels with
slice heights equal to multiples of the GPU alignment requirement (128 bytes). There are
advantages and disadvantages to the SELL format:

• Advantages: The access pattern of the Col and Data arrays is single-stride and aligned.
The format requires fewer zero paddings compared to the ELL format.

• Disadvantages: The SELL format still requires zero paddings for each slice, and these
zero paddings potentially introduce significant overhead. The format requires random
access on the multiplied vector. It also needs an additional SlicePtr array to store
the slice positions.

RowPtr = [0 2 4 7 9]
Col = [0 1, 1 2, 0 2 3, 1 3]
Data = [3 7, 4 8, 1 5 9, 2 6]

Figure 6.6: The CSR format of matrix B.

CSR Format The compressed sparse row (CSR) format is the most common sparse
matrix format. It is composed of three arrays. The RowPtr array stores the beginning
position of each row in both Col and Data arrays – the elements of row i are stored between
RowPtr[i] and RowPtr[i+ 1]. The Col and Data arrays are used to store the column indices
and values of each non-zero. Figure 6.6 shows the CSR format of matrix B. The CSR format
has one primary advantage and several disadvantages:

• Advantages: The CSR format requires very few zero paddings.

83

• Disadvantages: The CSR format might have unaligned access on both the Col and
Data arrays. The access pattern on the multiplied vector is random. This format
might also have load balancing problems if the number of non-zeros per row varies
significantly.

Row = [0 0, 1 1, 2 2 2, 3 3]
Col = [0 1, 1 2, 0 2 3, 1 3]
Data = [3 7, 4 8, 1 5 9, 2 6]

Figure 6.7: The COO format of matrix B.

COO Format The coordinate (COO) format explicitly stores row indices. It is com-
posed of three arrays – the Row, Col, and Data arrays store row indices, column indices, and
the values of all non-zeros in the matrix, respectively. Figure 6.7 shows the COO format of
matrix B. There are advantages and disadvantages to using the COO format:

• Advantages: The COO format requires very few zero paddings. There is no load
balancing problem. As shown in [14], this format can deliver consistent performance
regardless of the structure of the matrix.

• Disadvantages: The COO format has the worst memory footprint. The format requires
explicit indexing on both row and column indices. It also requires random access on
the multiplied vector.

Block-Based Formats

C =


0 1 2 3 g h i j
4 5 6 7 k l m n
8 9 a b o p q r
c d e f s t u v

 (6.2)

Block-based formats are variations of flat formats. Instead of storing each non-zero
independently, these formats store a block contiguously. We use matrix C in Equation (6.2)
to show examples of block-based formats. For block sizes, because AMD platforms always
prefer the float4 data type [3], while Nvidia platforms achieve similar performance on both
float and float4 data types, we employ block sizes that are multiples of 4. Moreover, when
using texture memory to cache the multiplied vector, the OpenCL API always returns a
float4 value. If we do not use all four elements in the returned value, memory bandwidth is
wasted. Therefore, using block sizes with widths being multiples of 4 is always an advantage.
The block sizes supported by clSpMV are 1× 4, 2× 4, 4× 4, 8× 4, 1× 8, 2× 8, 4× 8, and
8 × 8. A blocked matrix is represented by blocks instead of singular elements. According
to the block height, we define a super-row of a matrix to be a submatrix of consecutive h
rows, where h is the height of the block. In other words, a super-row is the smallest row
unit that can operate on a blocked matrix.

84

Col = [0 0, 4 4]
Data = [0 1 2 3, 8 9 a b,

4 5 6 7, c d e f;
g h i j, o p q r,
k l m n, s t u v]

Figure 6.8: The BELL format of matrix C. The block size is 2× 4.

BELL Format The blocked ELLPACK (BELL) format is a variation of the ELL
format. Instead of storing singular non-zeros, it stores a block of consecutive non-zeros.
Each block requires only one column index, so the memory footprint is reduced. If the
height of the block is larger than 1, the same data read from the multiplied vector can be
reused across all the rows in the block. The BELL format is composed of two arrays: the
Col array stores the column indices of the first elements from all blocks, and the Data array
stores the values of all blocks. Moreover, we need special arrangement to enforce single-
stride memory access on the Data array. Because the 1 × 4 block is the smallest unit of
all block sizes we support, the Data array is managed in a 2D fashion. The first dimension
corresponds to the data of a 1× 4 block, and the second to the number of 1× 4 units in the
block dimension. Figure 6.8 shows the BELL format of matrix C. The block size is 2 × 4,
so there are two 1× 4 units in the block. The Data array can be viewed as a 2× 16 array.
We store the first 1× 4 unit of each block, and then store the next 1× 4 unit of each block.
The BELL format has several advantages and disadvantages:

• Advantages: The BELL format offers single-stride data access on the Data array. The
required memory storage of the column indices is reduced. If the block has a height
larger than 1, the segment of the multiplied vector can be cached in registers and used
across multiple block rows.

• Disadvantages: The BELL format requires zero fillings in the sparse blocks. It also
requires zero paddings to make sure that the number of blocks per super-row is all the
same. These fillings and paddings might introduce overhead.

SlicePtr = [0 4 8]
Col = [0 0, 4 4; 0 0, 4 4]
Data = [0 1 2 3, 4 5 6 7,

g h i j, k l m n;
8 9 a b, c d e f,
o p q r, s t u v]

Figure 6.9: The SBELL representation of matrix C. The block size is 1 × 4, and the slice
height is 2.

85

SBELL Format The sliced blocked ELLPACK (SBELL) format is proposed by Choi
et al. [27]. Although the data arrangement in clSpMV is different from that of Choi et al.
[27], the idea is similar. In clSpMV, the SBELL format is composed of three arrays. The
SlicePtr array stores the beginning position of each slice in the Col array – that is, the
elements of slice i are stored between SlicePtr[i] and SlicePtr[i+1]. The Col array stores
the column indices of the first elements from all blocks. The Data array stores the values of
all blocks. The data of a slice are stored consecutively. Like the case in the BELL format,
in a slice the data of a 1 × 4 unit are stored consecutively, and the data of multiple 1 × 4
units are stacked into a large array. Figure 6.9 shows the SBELL format of matrix C, with
block size 1× 4 and slice height 2. Choi el al. [27] also rearrange the matrix rows to reduce
the paddings of the SBELL format. Because we are using the SBELL format to represent
only the portion of the matrix that is best for SBELL, the remaining singular non-zeros
should be addressed by the flat formats. Therefore, we do not reorder the matrix in our
implementation. There are advantages and disadvantages to the SBELL format:

• Advantages: The SBELL format offers single-stride data access on the Data array. The
required memory storage of the column indices is reduced. If the block has a height
larger than 1, the segment of the multiplied vector can be cached in registers and used
across multiple block rows. This format requires fewer zero paddings compared to the
BELL format.

• Disadvantages: The SBELL format requires zero fillings in the sparse blocks. It also
needs zero paddings to ensure that the number of blocks per super-row in a slice is
all the same. These fillings and paddings might introduce overhead. This format also
requires an additional SlicePtr array.

RowPtr = [0 2 4]
Col = [0 4, 0 4]
Data = [0 1 2 3, g h i j,

8 9 a b, o p q r;
4 5 6 7, k l m n,
c d e f, s t u v]

Figure 6.10: The BCSR format of matrix C. The block size is 2× 4

BCSR Format The blocked compressed sparse row (BCSR) format is also discussed
by Choi et al. [27]. The data arrangement in clSpMV is different, but the idea is similar.
The BCSR format is composed of three arrays. The RowPtr array stores the beginning
position of each super-row in the Col array – the elements of super-row i are stored between
RowPtr[i] and RowPtr[i + 1]. The Col array stores the column indices of the first elements
from all blocks, and the Data array stores the values of all blocks. As with the BELL format,
the data of a 1 × 4 unit are stored consecutively, and the data of multiple 1 × 4 units are

86

Table 6.1: Advantages and disadvantages of sparse matrix format categories.

Sparse Matrix
Advantages Disadvantages

Format Category

No explicit column indices. Requires zero fillings on sparse
Diagonal-Based Single-stride access on the diagonals.

matrix and vector.

Block-Based
Partial explicit column indices. Requires zero fillings on sparse
Better reuse of the vector. blocks.

Flat No zero fillings. Requires explicit column indices.

Table 6.2: Advantages and disadvantages of diagonal-based formats.

Diagonal-
Advantages Disadvantages

Based Format

DIA
Does not require the BandPtr Cannot use shared memory to
array. cache the vector.

BDIA
Can use shared memory to Requires the BandPtr array.
cache the vector.

stacked into a large array. Figure 6.10 shows the BCSR format of matrix C, with block size
2× 4. There are several advantages and disadvantages to the BCSR format:

• Advantages: The required memory storage of the column indices is reduced with the
BCSR format. If the block has a height larger than 1, the segment of the multiplied
vector can be cached in registers and used across multiple block rows. This format
does not need to pad zero blocks at the end of each super-row.

• Disadvantages: The BCSR format requires zero fillings in the sparse blocks. It might
have unaligned access on the Data array. It also might have load balancing problem.

We summarize the advantages and disadvantages of the three sparse matrix format
categories in Table 6.1, the two diagonal-based formats in Table 6.2, the four flat formats
in Table 6.3, and the three block-based formats in Table 6.4.

The clSpMV Autotuner

Based on the Cocktail Format, every sparse matrix can be partitioned into many sub-
matrices. However, it is challenging to find the best partitioning scheme of a given sparse
matrix. Moreover, each sparse format can have many different parallelization strategies.
Assume that the Cocktail Format is composed of k sparse matrix formats f1, f2, . . . , fk. Let
F be the superset over all k sparse matrix formats,

⋃k
i=1 fi = F . For a matrix format

fi, assume there exist bi implementations pi1, pi2, . . ., pibi . Let Pi be the superset over all
implementations of format i,

⋃bi
j=1 pij = Pi. Let t(A, fi, pij) be the execution time of the

SpMV kernel using format fi and implementation pij on matrix A. The matrix partitioning
problem can then be formulated as follows:

87

Table 6.3: Advantages and disadvantages of flat formats.

Flat
Advantages Disadvantages

Format

Single-stride and aligned access to Requires zero paddings on short rows.
ELL Data and Col.

Does not require the SlicePtr array.
Single-stride and aligned access to Requires zero paddings on short rows.

SELL Data and Col. Requires the SlicePtr array.
Fewer zero paddings compared to ELL.

CSR
Very few zero paddings. Unaligned access to Data and Col.

Bad load balance.

COO
Very few zero paddings. Threads might stall in reduction.
Good load balance. Requires explicit row indices.

Table 6.4: Advantages and disadvantages of block-based formats.

Block-Based
Advantages Disadvantages

Format

Single-stride and aligned access to Requires zero paddings on short
BELL Data. super-rows.

Does not require the SlicePtr array.
Single-stride and aligned access to Requires zero paddings on short

SBELL Data. super-rows.
Fewer zero paddings compared to BELL. Requires the SlicePtr array.

BCSR
Very few zero paddings. Unaligned access to Data.

Bad load balance.

• Problem CMP (Cocktail Matrix Partitioning): Given sparse matrix A, the k sparse
formats in the Cocktail Format, and the bi implementations of format fi, find k sub-
matrices A1, A2, . . . , Ak and k implementations L1, L2, . . . , Lk such that

∑k
i=1Ai = A,

L1 ∈ P1, L2 ∈ P2, . . . , Lk ∈ Pk, and the value of
∑k

i=1 t(Ai, fi, Li) is minimized.

The CMP problem is an NP-complete problem. For a sparse matrix with n non-zeros,
and the Cocktail Format with k formats, the size of the sample space is O(kn × max

1≤i≤k
bi).

If we allow the same non-zeros to be covered by multiple formats, the sample space is even
larger. Moreover, function t(A, fi, pij) is nonlinear. The actual execution time will depend
on the thread scheduler, system load, cache behavior, and many other factors.

Overall Structure of the clSpMV Autotuner

In addition to the CMP problem, we must also compute the t(A, fi, pij) function. When
multiple implementations of a single sparse matrix format are available, most autotuners
execute all implementations exhaustively to find the best implementation [92, 58, 63]. This

88

strategy gives us the exact t(A, fi, pij) value, but is very time-consuming. For the Cocktail
Format, the brute force search strategy involves expensive reformatting of the input matrix
because the submatrices may need to be adjusted frequently. This overhead is unacceptable.
Some autotuners develop models of specific architectures and predict performance based on
these models [27]. This strategy is applicable, but requires significant effort – for each
platform we support, we would need to develop its performance model, then apply that
performance model on every implementation. When a new platform is released, we would
need to undertake the entire procedure again. For portability concerns, this is not the best
strategy.

Following the philosophy of OSKI [120], the clSpMV autotuner is composed of two
stages: the offline benchmarking stage, and the online decision-making stage. The goal of
offline benchmarking is to sample performance data with different sparse matrix settings,
and to provide a way of estimating the value of t(A, fi, pij). The online decision-making
stage then solves the CMP problem.

The Offline Benchmarking Stage

The purpose of the offline benchmarking stage is to solve the performance approximation
problem. Given a sparse matrix format fi and a corresponding implementation pij, the offline
benchmarking stage samples the execution time on different sparse matrix settings. These
settings include matrix dimensions, total number of non-zeros, average number of non-zeros
per row, variations in the number of non-zeros per row, and so forth. The sample density
controls trade-offs between approximation accuracy and offline benchmarking time. More
data points with wider matrix settings yield better approximation results, but require more
offline benchmarking time. Given an arbitrary sparse matrix, the execution time can be
approximated by interpolating nearby data points.

In our current implementation, we consider only matrix dimensions and average number
of non-zeros per row, and we benchmark on dense banded matrices. When sampling on the
matrix dimensions, we want representative data for the case that the processors are under-
utilized most of the time, and for the case that all processors are saturated. Therefore, we
employ an exponential scale: 210, 211, . . . , 221. When sampling on the number of non-zeros
per row, we must cover from the case that the matrix is extremely sparse to the case that
every row has enough work to saturate all processors. As will be discussed in Section 6.3.2,
the parallelization strategies for different formats are different, so the sampling density of
different formats is also different. If the parallelization strategy is based on having different
work items working on independent rows, then having the number of non-zeros range from 1
to 64 should be enough. On the other hand, if the parallelization strategy is based on having
multiple work items on the same row, then we need hundreds to thousands of non-zeros per
row to saturate the processors.

For the nine sparse matrix formats, we have 75 implementations in total, and we must
collect hundreds of sample points for each implementation. Including generating sparse ma-
trices with different dimensions and numbers of non-zeros per row, the offline benchmarking
stages on both Nvidia and AMD platform take about half a day. However, this is a one-time
cost – we must only benchmark on a platform once, and the results can be applied to tune

89

the performance of SpMV on as many sparse matrices as we want.

The Online Decision-Making Stage

This stage solves the CMP problem by analyzing the input sparse matrix. We achieve
this by collecting matrix features and enforcing partition policies.

Transforming a matrix from one format to another is both time and memory consuming.
The clSpMV autotuner explores the design space of 30 different formats (block-based for-
mats with different block dimensions are considered different formats here), so it is infeasible
to analyze the structures of all the matrix formats by converting to those formats. Instead,
we collect only statistical features that are representative of different matrix formats. When
collecting features for diagonal formats, we maintain a histogram to count the number of
non-zeros per diagonal. When collecting features for blocked formats, we maintain two his-
tograms for each block dimension – one counts the number of blocks per super-row, and the
other counts only the number of dense blocks per super-row. The definition of a dense block
is given in the partition policies. The first histogram is used to estimate the execution time
if we store the entire matrix using block-based formats; the second is used to estimate the
execution time if we store only the dense blocks of the matrix. When collecting features for
flat formats, we maintain a histogram to count the number of non-zeros per row. These fea-
ture histograms are used to capture the characteristics of a matrix under different formats.
We also make our partition decisions based on the collected feature histograms.

The solution space of the CMP problem is enormous, so we use greedy policies to par-
tition the sparse matrix. These policies are based on our analysis of the strengths and
weaknesses of the formats. According to the nine supported sparse matrix formats, we
apply the following policies:

• Priority of the categories: the priorities of the three categories (diagonal-based, flat,
and block-based) are decided by the maximum estimated performance of each category
according to the current matrix settings explored in the offline benchmarking stage.

• Dense Diagonals: let gd be the maximum GFLOPS that the diagonal category can
achieve under the current matrix settings, and let gf be the maximum GFLOPS that
the flat category can achieve under the current settings. A diagonal with dimension
nd is considered to be dense if its non-zero number ed satisfies the following formula:

ed > nd ×
gf
gd

• BDIA vs. DIA: choose the maximum achievable GFLOPS in the following three cases:
using only BDIA, using only DIA, or using BDIA to represent thick bands and DIA
to represent disjoint diagonals or thin bands.

• Dense Blocks: let gd be the maximum GFLOPS that the block-based category can
achieve under the current matrix settings and the given block size. A block with size
nb is considered to be dense if its non-zero number eb satisfies the following formula:

eb > nb ×
gf
gb

90

• SBELL vs. BELL vs. BCSR: choose the maximum achievable GFLOPS in the follow-
ing three cases: using only SBELL, using only BELL, or using only BCSR.

• ELL and SELL vs. CSR and COO: let the maximum achievable GFLOPS of ELL,
SELL, CSR, and COO be gELL, gSELL, gCSR, and gCOO, respectively. Use CSR and
COO if mc = max(gCSR, gCOO) > me = max(gELL, gSELL). Otherwise, extract the
ELL and SELL portion first, then represent the remaining non-zeros using CSR or
COO.

• Extract ELL: let w be the ELL width, let c be the number of columns of the matrix,
let z(w) be the zero paddings when the ELL width is w, and let e(w) be the non-zeros
covered by the ELL format with width w. w is then decided by solving the following:

max w
s.t. (z(w) + e(w))/gELL < e(w)/mc

w ≤ c
w ∈ N

The possible values of w are bounded by c, so we apply the brute force method to
solve this problem.

• Extract SELL: the idea is the same as extracting ELL – the only difference is consid-
ering the ELL width of each slice independently.

• ELL vs. SELL: choose the one that has the higher achievable GFLOPS value.

• CSR vs. COO: this decision is based on the load balancing issue of CSR. Assume that
there are u work groups in the CSR implementation. Let nnz(i) be the number of
non-zeros computed by work group i. For a matrix with n non-zeros, use the CSR
format if the following rule is satisfied:

u× max
1≤i≤u

nnz(i)

gCSR
<

n

gCOO

• Merge small submatrices: merge a submatrix into another existing submatrix if such
behavior results in better estimated performance.

The Cocktail Format is a superset over many single sparse matrix representations. An
input sparse matrix is partitioned into one or more submatrices, and each of which is rep-
resented by a specific format. Theoretically, the SpMV performance of the Cocktail Format
should be at least the same as the SpMV performance of every format it covers. In practice,
however, performance depends on the policies of the clSpMV autotuner and the accuracy
of the estimated execution time (the value of the t(A, fi, pij) function). This is a trade-off
between analysis time and SpMV performance. If we apply more complicated policies and
more accurate execution time estimates, we can find better matrix partitions and achieve
higher SpMV performance, but this requires more analysis time. The analysis overhead of

91

OSKI is about 40 SpMVs. clSpMV takes 1 SpMV for diagonal analysis, 20 SpMVs for block
analysis of one block size, and 4 SpMVs for flat analysis.

Because the matrix analysis overhead is not trivial, clSpMV is ideal for iterative methods
that perform SpMV on a single sparse matrix hundreds or thousands of times. Moreover,
if the autotuner user is dealing with matrices with similar structures, one can perform
a full analysis on example matrices and then use the results to speed up the analysis of
future matrices. For example, if the exemplar matrices do not have any dense blocks, one
can advise clSpMV to skip the analysis of the block-based formats. To further reduce the
analysis overhead, we can also follow the strategy used by Vuduc [121] – instead of analyzing
the entire matrix, we can randomly sample the non-zeros of the matrix and make decisions
based on these samples. Since most of the analysis is based on counting (tallying the number
of non-zeros in a diagonal, a block, or a row), we can also parallelize the analysis procedure
to further reduce the overhead.

6.3.2 Exploring the Design Space of Parallelization Strategies

The idea of the Cocktail Format is to take advantage of the strengths of a set of dif-
ferent sparse matrix formats. The clSpMV autotuner plugs in multiple implementations
of many SpMV kernels, performs analysis on the matrices, and decides the best partition
for the matrices. No matter what the final decomposition of the matrices is, SpMV per-
formance depends fully on the implementations of all supported formats. Because different
platforms have different characteristics, there is no one-size-fits-all solution. To achieve the
best performance, the implementations of the SpMV kernels should be platform-dependent.

Because we target GPU platforms, we choose parallelization strategies that express data
parallelism on GPUs. Moreover, we employ several parallelization strategies for each for-
mat. The clSpMV autotuner can select the best parallelization strategy based on offline
benchmarking information. Here, we introduce the parallelization strategies for each sparse
matrix format.

Diagonal-Based Formats

DIA Format The parallelization strategy of the DIA kernel is similar to [14] – each
work item is responsible for one row of the matrix. Because AMD platforms favor explicit
vectorization by using the float4 data type [3], we also implement the kernel that each work
item is responsible for four rows of the matrix. Moreover, we implement kernels that use
texture memory and kernels that do not use texture memory to store the multiplied vector.

BDIA Format The parallelization strategy of BDIA is very similar to that of the
DIA format. We have implementations where each work item is responsible for one matrix
row, and implementations where each work item is responsible for four matrix rows using
the float4 data type. The major difference between the DIA and BDIA formats is that the
diagonals in a band are consecutive, so we can predict the vector sections that each work
item is accessing. For example, assume that the size of a work group is 128, and that work
items r to r + 127 in this work group are responsible for row r to row r + 127, respectively.

92

Considering a band with d diagonals, and the offset of the first diagonal being o, work item
i will access vector elements o + i, o + i + 1, . . . , o + i + d − 1. The entire work group will
access vector elements o+ r, o+ r+1, . . . , o+ r+127+d−1. The consecutive vector section
can be cached into the shared local memory. We have implemented kernels that employ this
caching strategy, and kernels that do not employ this caching strategy.

Flat Formats

ELL Format The parallelization strategy is similar to [14]. Each work item is respon-
sible for one row of the matrix. Considering platforms that favor explicit vectorization such
as AMD GPUs, we also have the implementation that each work item is responsible for four
rows using the float4 data type. Again, kernels using texture memory and not using texture
memory to cache the multiplied vector are all included.

SELL Format The parallelization strategy is the same as that in the ELL format.
The only difference is that we cache the SlicePtr array in the local shared memory.

CSR Format Bell and Garland [14] propose two parallelization strategies for the CSR
format. The scalar strategy allows one work item working on one row of the matrix. The
vector strategy allows one warp of work items working on one row of the matrix. According
to [14], the scalar strategy outperforms the vector strategy only when the number of non-
zeros per row is small. However, when the number of non-zeros per row is small, the ELL
format is a better candidate. Therefore, we implement only the vector strategy in clSpMV.
Again, implementations using texture memory and not using texture memory are both
included.

COO Format The parallelization strategy is the same as [14]. We perform segmented
reduction computation on the three arrays in the COO format. However, the implementation
in [14] requires three kernel launches. By padding zeros at the end of three arrays to match
the work group size, we need only two kernel launches in our OpenCL implementation.

Block-Based Formats

BELL Format The parallelization strategy is similar to the ELL format. However,
instead of letting one work item work on a row, we let one work item work on a super-row.
Because the smallest unit of all block sizes is 1× 4, we employ the float4 data type in our
implementation.

SBELL Format The parallelization strategy is similar to the BELL format. Each
work item is responsible for one super-row. The only difference is that we cache the SlicePtr
array in the local shared memory.

93

BCSR Format The parallelization strategy is similar to the vector CSR strategy used
in [14]. However, instead of letting one warp of work items work on one row, we now let
one warp of work items work on one super-row.

6.3.3 Exploring the Design Space of Platform Parameters

Here, we explore the design space of platform parameters on a subset of sparse matrix
formats supported by clSpMV.

CSR Format The parallelization strategy of the CSR format is to use a warp of work
items working on one row. However, different GPUs can host different numbers of warps in
a processor. If we create too many warps, the scheduling overhead grows; conversely, if we
create too few, we cannot saturate the processors. Ideally, the number of warps should just
match the maximum capacity of the underlying GPU. To find this optimal number, clSpMV
evaluates the performance of different numbers of work groups in the offline benchmarking
stage. The number of warps can then be computed from the number of work groups. Based
on this offline benchmarking information, clSpMV selects the best configuration to optimize
the CSR SpMV kernel.

COO Format The parallelization strategy of the COO format is to perform a seg-
mented reduction on the three COO arrays. The basic idea of segmented reduction is to
create a fixed number of work groups, then let the work groups go over the arrays iter-
atively until the arrays are fully processed. As a result, similar to the case of the CSR
SpMV kernel, the performance of the COO SpMV kernel is related to the number of work
groups created. clSpMV evaluates the performance of the COO SpMV kernel with different
numbers of work groups in the offline benchmarking stage. In the online decision-making
stage, clSpMV selects the COO SpMV kernel with the best work group configurations.

Block-Based Formats The block-based formats include BELL, SBELL, and BCSR.
These formats are similar to their flat variations – the only difference is that the flat formats
store one non-zero at a time, while the block-based formats store one block of non-zeros
together. The common numeric configurations of these formats are the block sizes. Larger
block sizes use less memory to store column indices, but might increase the number of zero-
fillings; smaller block sizes use more memory to store column indices, but might decrease the
number of zero-fillings. Using a larger or a smaller block size is therefore matrix dependent.
clSpMV supports eight different block sizes: 1 × 4, 2 × 4, 4 × 4, 8 × 4, 1 × 8, 2 × 8,
4 × 8, and 8 × 8. The performance of these different configurations is collected during
the offline benchmarking stage. In the online decision-making stage, clSpMV then selects
the ideal block size based on this offline benchmarking information and the input matrix
characteristics.

94

6.3.4 Experimental Results

We can evaluate the performance of clSpMV on different platforms, given the cross-
platform capabilities of OpenCL. Nvidia and AMD are the major GPU vendors, so we
evaluate the autotuner’s performance on these two different platforms. Since both platforms
achieve higher performance on the single precision floating point data type, we use such a
data type in our experiments. In this section, we first introduce the matrices used for
benchmarking, and then discuss the performance of clSpMV on an Nvidia GTX 480 and an
AMD Radeon 6970.

The Benchmarking Matrices

We use the 14 matrices from Williams et al. [123] for our benchmarking. This same set is
also used in other SpMV research [14, 92, 27]. The statistics of the matrices are summarized
in Table 6.5. The # rows column, the # cols column, the # nnzs column, and the nnz/row
column summarize the number of rows, number of columns, number of non-zeros, and
average number of non-zeros per row, respectively. Unfortunately, this set contains mostly
regular matrices that are well-suited for single-format representation. Although clSpMV
is able to determine the best single format to represent the matrices, it is unlikely that
the Cocktail Format will further improve performance. Therefore, we add six additional
matrices from the University of Florida Sparse Matrix Collection [37] to our benchmarking
suite. We choose matrices with balanced portions of diagonals, dense blocks, and random
singular non-zeros; matrices with highly irregular distributions of non-zeros; and matrices
with enough non-zeros that the overhead of launching multiple kernels will not be significant.
The statistics of these six additional matrices are also summarized in Table 6.5.

Table 6.5: Overview of the sparse matrix benchmark.
Name # rows # cols # nnzs nnz/row

Dense 2K 2K 4M 2000
Protein 36K 36K 4.3M 119

FEM/Spheres 83K 83K 6M 72
FEM/Cantilever 62K 62K 4M 65
Wind Tunnel 218K 218K 11.6M 53
FEM/Harbor 47K 47K 2.37M 50

QCD 49K 49K 1.9M 39
FEM/Ship 141K 141K 3.98M 28
Economics 207K 207K 1.27M 6

Epidemiology 526K 526K 2.1M 4
FEM/Accelerator 121K 121K 2.62M 22

Circuit 171K 171K 959K 6
Webbase 1M 1M 3.1M 3

LP 4K 1.1M 11.3M 2825

circuit5M 5.56M 5.56M 59.5M 11
eu-2005 863K 863K 19M 22

Ga41As41H72 268k 268k 18M 67
in-2004 1.38M 1.38M 17M 12
mip1 66K 66K 10M 152

Si41Ge41H72 186k 186k 15M 81

95

Experimental Results on Nvidia GTX 480

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the DIA Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

3

5

7

9

11

13

15

19

23

27

31

35

39

43

47

51

55

59

63

10

20

30

40

50

60

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the BDIA Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

3

5

7

9

11

13

15

19

23

27

31

35

39

43

47

51

55

59

63

10

20

30

40

50

60

70

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the COO Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

2

4

8

16

32

64

128

0

1

2

3

4

5

6

7

8

9

Matrix Dimension

of

 D
en

se
 B

lo
ck

s
pe

r
S

up
er

−
ro

w

Performance Benchmarking of the1x4 BELL Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

3

5

7

9

11

13

15

19

23

27

31

0

10

20

30

40

50

Matrix Dimension

of

 D
en

se
 B

lo
ck

s
pe

r
S

up
er

−
ro

w

Performance Benchmarking of the1x4 SBELL Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

3

5

7

9

11

13

15

19

23

27

31

0

10

20

30

40

50

Matrix Dimension

of

 D
en

se
 B

lo
ck

s
pe

r
S

up
er

−
ro

w

Performance Benchmarking of the1x4 BCSR Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18

2

4

8

16

32

64

128

256

512

5

10

15

20

25

30

35

40

45

50

55

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the ELL Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

2

4

8

16

32

64

128

0

5

10

15

20

25

30

35

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the SELL Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

2

4

8

16

32

64

128

0

5

10

15

20

25

30

35

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the CSR Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18

2

8

32

128

512

2048

0

5

10

15

20

25

30

35

Figure 6.11: Performance benchmarking on the Nvidia GTX 480 platform. The x axis is
the dimension of the matrix. On rows 1 and 3, the y axis is the number of non-zeros per
row. On row 2, the y axis is the number of dense blocks per super-row. The unit of the
color-bar is in GFLOPS.

We summarize our performance benchmarking results on the Nvidia GTX 480 platform
in Figure 6.11. Some performance numbers at the top-right corners are missing because the
matrix storage size is larger than a pre-defined upperbound. Some performance numbers at
the top-left corners are missing because the matrix is too dense to be considered a sparse
matrix. The performance of the diagonal-based formats is benchmarked on dense diagonal
matrices. Although each diagonal format has multiple implementations, the heat-map shows
only the best achievable performance among all implementations. As expected, performance
increases with an increase in matrix dimension and number of non-zeros per row. The peak
performance of the BDIA format is larger than that of the DIA format, but when the

96

number of non-zeros per row is very small, the DIA format will perform slightly better. The
performance of the block-based formats is benchmarked on dense diagonal blocked matrices.
Due to space limitations, the performances of only the 1×4 blocked matrices are included in
this figure. However, blocked matrices with other dimensions follow a similar pattern. For
the BELL and the SBELL formats, each work item works on a super-row, and we can achieve
close to peak performance when there are 20 to 30 dense blocks per super-row. However,
for the BCSR format, because a warp of work items is responsible for a super-row, we need
more than 200 dense blocks per super-row to saturate the processors. Performance of the flat
formats is benchmarked on dense diagonal matrices. These performance patterns are very
close to their blocked variations, but their peak achievable performances are significantly
reduced. The COO performance is very stable when the dimension of the matrix is large
enough; however, the peak achievable performance is the lowest among the nine formats.

Table 6.6: clSpMV performance on Nvidia GTX 480 for the selected 20 matrices, compared
to implementations in [14] and to all the single formats supported by clSpMV. The highest
achieved performance for each matrix is in bold.

Benchmark NV CUDA Single All clSpMV
Name NV HYB Best NV Best NV Best Single Best Single clSpMV clSpMV

(GFLOPS) (GFLOPS) Format (GFLOPS) Format (GFLOPS) Format
Dense 8.38 32.63 CSR 54.08 BCSR 53.05 BCSR
Protein 15 23.17 CSR 35.84 SBELL 35.86 SBELL

FEM/Spheres 25.11 25.11 HYB 34.44 SBELL 34.52 SBELL
FEM/Cantilever 19.06 34.9 DIA 35.03 SBELL 35.10 SBELL
Wind Tunnel 25.07 25.07 HYB 42.94 SBELL 42.94 SBELL
FEM/Harbor 11.67 13.83 CSR 27.17 SBELL 27.21 SBELL

QCD 25.05 25.09 ELL 30.93 SELL 29.88 ELL
FEM/Ship 19.11 19.11 HYB 40.59 SBELL 40.73 SBELL
Economics 7.61 7.61 HYB 7.32 SELL 10.59 ELL(81%)COO(19%)

Epidemiology 24.02 24.02 ELL 25.36 SELL 26.55 ELL
FEM/Accelerator 9.35 9.35 HYB 16.29 SBELL 15.25 SELL

Circuit 7.35 7.35 HYB 7.72 SELL 11.40 ELL(84%)COO(16%)
Webbase 9.74 9.74 HYB 7.30 COO 12.77 ELL(64%)COO(36%)

LP 8.89 12.78 CSR 12.99 BCSR 12.98 BCSR

circuit5M 12.81 12.81 HYB 9.02 COO 17.07 DIA(9%)SELL(73%)COO(18%)
eu-2005 12.14 12.14 HYB 11.84 SBELL 16.03 SELL(85%)COO(15%)

Ga41As41H72 13.28 16.11 CSR 16.11 CSR 16.80 BDIA(18%)ELL(32%)CSR(50%)
in-2004 10.53 10.53 HYB 12.04 SBELL 16.87 SELL(79%)COO(21%)
mip1 10.8 18.92 CSR 18.92 CSR 19.00 SBELL(80%)SELL(17%)COO(3%)

Si41Ge41H72 12 17.68 CSR 17.68 CSR 18.77 BDIA(15%)ELL(27%)CSR(58%)

To evaluate the performance of clSpMV, we compare its performance to other imple-
mentations on the 20 benchmarking matrices. We first compare the performance to [14].
The released code of [14] is based on CUDA, and has SpMV kernels of the DIA, ELL, CSR,
COO, and HYB formats. The HYB (Hybrid) format in [14] is composed of the ELL and
COO formats; therefore, the HYB format is a subset of our Cocktail Format. Although
we would like to compare the performance of clSpMV to the SELL format by Monakov et
al. [92] and to the blocked formats by Choi et al. [27], they did not release their code.
So, we instead compare clSpMV to our own OpenCL implementations of the SELL, BELL,
SBELL, and BCSR formats.

Our experimental results are summarized in Table 6.6. Performance is measured by

97

Table 6.7: Improvement of clSpMV compared to the hybrid format in [14], to the best im-
plementations in [14], and to the best single-format implementations supported by clSpMV.

Benchmark clSpMV Improvement
Name NV HYB Best NV Best Single
Dense 533.1% 62.6% -1.9%
Protein 139.1% 54.8% 0.1%

FEM/Spheres 37.5% 37.5% 0.2%
FEM/Cantilever 84.2% 0.6% 0.2%
Wind Tunnel 71.3% 71.3% 0.0%
FEM/Harbor 133.1% 96.7% 0.1%

QCD 19.3% 19.1% -3.4%
FEM/Ship 113.1% 113.1% 0.3%
Economics 39.2% 39.2% 44.7%

Epidemiology 10.5% 10.5% 4.7%
FEM/Accelerator 63.1% 63.1% -6.4%

Circuit 55.1% 55.1% 47.6%
Webbase 31.1% 31.1% 74.9%

LP 46.0% 1.5% -0.1%

circuit5M 33.3% 33.3% 89.2%
eu-2005 32.1% 32.1% 35.5%

Ga41As41H72 26.5% 4.3% 4.3%
in-2004 60.2% 60.2% 40.1%
mip1 75.9% 0.4% 0.4%

Si41Ge41H72 56.4% 6.2% 6.2%

Average 83.0% 39.6% 16.8%

2×nnz
ExecutionT ime

(GFLOPS). Sometimes using texture memory to cache the multiplied vector
results in higher performance, sometimes not. We evaluate both cases and report only the
highest number in the table. The NV HYB (Nvidia Hybrid) column lists the performance
achieved by the CUDA code of the HYB format by Bell and Garland [14]. The Best NV
(Best Nvidia) column lists the highest performance achieved among the five implementations
supported in [14] – DIA, ELL, CSR, COO, and HYB. The Best NV Format column lists
the format that achieves the highest performance. The Best Single column lists the highest
performance achieved among all single formats. Among all single-format performances,
DIA, ELL, CSR, and COO performance is measured using the CUDA implementations
from [14]; BDIA, SELL, BELL, SBELL, and BCSR performance is measured using our
own OpenCL implementations. Because we have multiple implementations of every single
format introduced in Section 6.3.2 (such as different block sizes of the block-based formats),
only the highest performance numbers among all implementations are reported. The Best
Single Format column summarizes the format that achieves the highest performance. The
clSpMV column lists the performance achieved by the clSpMV autotuner. The clSpMV
Format column lists the decision made by clSpMV. The percentage numbers following the
formats refer to the portions of non-zeros covered by the formats.

Table 6.7 summarizes the improvement ratios of clSpMV compared to other implemen-
tations based on the performance numbers in Table 6.6. On average, clSpMV is 83% faster
than the CUDA implementation of the proposed HYB format in [14], 39.6% faster than
all CUDA implementations in [14], and 16.8% faster than all single formats supported by
clSpMV.

For the 14 matrices from Williams et al. [123], most have regular structures, and their
total numbers of non-zeros are small. Therefore, they favor single-format representation. As

98

0

10

20

30

40

50

60

G
FL

O
P

s

NV HYB

Best NV

Best Single

clSpMV

0

2

4

6

8

10

12

14

16

18

20

G
FL

O
P

s

NV HYB

Best NV

Best Single

clSpMV

Figure 6.12: clSpMV performance on the 20 benchmarking matrices on GTX 480. Top:
regular matrices that clSpMV suggests representing with one format. Bottom: irregular
matrices that clSpMV suggests partitioning into multiple submatrices.

shown in Table 6.6 and Figure 6.12, most of the time clSpMV can successfully find the best
single representation to match the results in the Best Single Format column. Even when
the chosen format is not the same, the performance difference is very small. There are three
matrices for which the clSpMV matches the NV HYB format in [14]. For these, clSpMV
outperforms the CUDA implementation of the NV HYB format due to three factors. First,
the NV HYB format in [14] assumes that the ELL format is three times faster than COO
format. In contrast, clSpMV uses the more accurate offline benchmarking numbers. Second,

99

the COO implementation from [14] requires three kernel launches, but clSpMV requires only
two. Third, the number of work groups (or thread blocks) used by the COO implementation
from [14] is fixed; however, clSpMV selects the best work group size based on the offline
benchmarking information.

For the six additional matrices from the University of Florida Sparse Matrix Collection
[37], clSpMV partitions them into many submatrices. clSpMV achieves significant improve-
ments on three matrices (40% − 90% better performance), but small improvements on the
other three (0.4%− 6%). This is because of texture memory. Texture memory boosts CSR
performance from 10 GFLOPS to 16−18 GFLOPS; therefore, the data access pattern of CSR
has very high hit rate on the texture cache. Though CSR performance is good, clSpMV
achieves even better performance. Theoretically, the Cocktail Format should outperform
every single format. In practice, clSpMV uses good policies to find reasonable matrix par-
titions, represents them using the Cocktail Format, and does achieve better performance
compared to all other single formats.

We can also discuss the results on regular matrices and irregular matrices separately. A
matrix is considered regular if clSpMV suggests using one sparse matrix format to represent
the entire matrix. A matrix is considered irregular if clSpMV suggests partitioning the
matrix into many submatrices and then using different formats for them. The result is
shown in Figure 6.12. The plot on the top shows performance on 11 regular matrices. On
these matrices, the performance of clSpMV is 114% better than the NV HYB format in
[14], 48% better than the best formats in [14], and 0.5% worse than the best single format.
The plot on the bottom shows performance on the other nine irregular matrices. On these,
the performance of clSpMV is 46% better than the NV HYB format in [14], 29% better
than the best formats in [14], and 38% better than the best single format. As a result, if a
given matrix is regular, clSpMV finds a single format that properly represents the matrix,
and thus achieves comparable performance to the best single format. If a given matrix
is irregular, clSpMV determines the proper Cocktail Format to represent the matrix, and
outperforms all existing SpMV works.

Experimental Results on AMD Radeon 6970

The experimental settings on the AMD platform are very similar to those on the Nvidia.
The performance benchmarking results are summarized in Figure 6.13. Additional perfor-
mance numbers at the top-right corners are missing because the required matrix storage
sizes of these sample points exceed 256 MB, the largest consecutive memory size allowed
by the AMD OpenCL runtime. We are not aware of any SpMV project that targets AMD
platforms, so we compare clSpMV to only the single-format implementations supported by
clSpMV. The results are shown in Table 6.8. On average, the performance of clSpMV is
43.3% higher than any of the single format implementations. On the dense matrix and the
LP matrix, clSpMV chooses the right single format, but the chosen block size is not optimal
and so the performance is worse than the best single format. An offline benchmarking pro-
cedure with wider and denser sample points would supply better execution time estimates,
and therefore enable clSpMV to determine the best block size.

Figure 6.14 shows our experimental results by separating the benchmarking matrices into

100

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the DIA Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

3

5

7

9

11

13

15

19

23

27

31

35

39

43

47

51

55

59

63

5

10

15

20

25

30

35

40

45

50

55

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the BDIA Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

3

5

7

9

11

13

15

19

23

27

31

35

39

43

47

51

55

59

63

0

10

20

30

40

50

60

70

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the COO Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

8

16

32

64

128

0

0.5

1

1.5

2

2.5

3

Matrix Dimension

of

 D
en

se
 B

lo
ck

s
pe

r
S

up
er

−
ro

w

Performance Benchmarking of the1x4 BELL Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

3

5

7

9

11

13

15

19

23

27

31

0

10

20

30

40

50

Matrix Dimension

of

 D
en

se
 B

lo
ck

s
pe

r
S

up
er

−
ro

w

Performance Benchmarking of the1x4 SBELL Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

3

5

7

9

11

13

15

19

23

27

31

0

5

10

15

20

25

30

35

40

45

50

Matrix Dimension

of

 D
en

se
 B

lo
ck

s
pe

r
S

up
er

−
ro

w

Performance Benchmarking of the1x4 BCSR Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18

2

4

8

16

32

64

128

256

512

0

5

10

15

20

25

30

35

40

45

50

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the ELL Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

2

4

8

16

32

64

128

0

5

10

15

20

25

30

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the SELL Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18 2^19 2^20 2^21

1

2

4

8

16

32

64

128

0

5

10

15

20

25

Matrix Dimension

of

 N
on

−
Z

er
os

 p
er

 R
ow

Performance Benchmarking of the CSR Format

2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17 2^18

2

8

32

128

512

2048

2

4

6

8

10

12

14

16

18

20

Figure 6.13: Performance benchmarking on the AMD Radeon 6970 platform. The x axis is
the dimension of the matrix. On rows 1 and 3, the y axis is the number of non-zeros per
row. On row 2, the y axis is the number of dense blocks per super-row. The unit of the
color-bar is in GFLOPS.

regular and irregular. The plot on the top shows the performance on nine regular matrices.
On these matrices, the performance of clSpMV is 2% worse on average than the best single
format. The plot on the bottom shows the performance on the other 11 irregular matrices.
On these, the performance of clSpMV is 80% better than the best single format.

When comparing Tables 6.6 and 6.8 and Figures 6.11, 6.12, 6.13, and 6.14, we see that
clSpMV makes decisions based on platform strengths. Since the BDIA format achieves sig-
nificantly higher performance than all other formats on the AMD platform, clSpMV favors
the BDIA format whenever possible. For example, the Protein and Cantilever matrices are
considered to be regular matrices on the GTX 480 platform, and are represented by only
the SBELL format. Conversely, they are considered irregular matrices on the Radeon 6970
platform, and are partitioned into one BDIA matrix and one other matrix. Such partition-

101

Table 6.8: clSpMV performance on the selected 20 matrices, compared to all the single
formats supported by clSpMV on AMD Radeon 6970. The highest achieved performance
for each matrix is in bold.

Benchmark Single All clSpMV
Name Best Single Best Single clSpMV clSpMV Improvement

(GFLOPS) Format (GFLOPS) Format
Dense 46.85 BCSR 41.85 BCSR -10.7%
Protein 29.91 SBELL 30.99 BDIA(43%)SBELL(57%) 3.6%

FEM/Spheres 31.85 SBELL 31.44 SBELL -1.3%
FEM/Cantilever 33.72 DIA 35.93 BDIA(90%)ELL(10%) 6.5%
Wind Tunnel 35.23 SBELL 34.51 SBELL -2.0%
FEM/Harbor 22.29 SBELL 22.20 SBELL -0.4%

QCD 24.84 SELL 25.01 BELL 0.7%
FEM/Ship 33.75 SBELL 34.43 SBELL 2.0%
Economics 4.87 SELL 9.04 ELL(88%)COO(12%) 85.9%

Epidemiology 22.51 ELL 22.58 ELL 0.3%
FEM/Accelerator 15.83 SELL 15.51 SELL -2.0%

Circuit 3.06 COO 8.40 ELL(88%)COO(12%) 174.7%
Webbase 3.26 COO 6.42 ELL(70%)COO(30%) 97.0%

LP 10.03 BCSR 9.50 BCSR -5.3%

circuit5M 3.21 COO 8.06 SELL(82%)COO(18%) 150.7%
eu-2005 3.01 COO 8.19 ELL(83%)COO(17%) 172.1%

Ga41As41H72 4.70 CSR 6.93 BDIA(18%)ELL(32%)CSR(50%) 47.5%
in-2004 3.04 COO 7.42 SBELL(28%)ELL(53%)COO(19%) 144.2%
mip1 8.27 BCSR 8.28 BDIA(20%)SBELL(62%)SELL(14%)COO(4%) 0.2%

Si41Ge41H72 10.81 SBELL 11.10 BDIA(15%)SBELL(85%) 2.7%

Average 43.3%

ing actually boosts performance because BDIA is significantly faster than all other formats.
Moreover, the ELL performance on the AMD platform is significantly better than the COO
performance, so the clSpMV increases the ratio of the ELL portion on the AMD platform.
Taking the economics matrix as an example, clSpMV uses ELL to represent 81% of the
non-zeros on the GTX 480 platform, but uses ELL to represent 88% of the non-zeros on the
Radeon 6970 platform. These results demonstrate that clSpMV can automatically adjust
the Cocktail Format representation of a given matrix based on the strengths of the platform.

Theoretically, the Cocktail Format is a superset over all single sparse matrix formats,
so its performance should be better than (or at least equal to) all single formats. In prac-
tice, with the help of the clSpMV autotuner we have achieved 16.8% better performance
than any single format on the Nvidia GTX 480 platform, and 43.3% better performance on
the AMD Radeon 6970 platform. Although solutions that are portable across diverse plat-
forms generally provide lower performance compared to solutions specialized to a particular
platform, we have nonetheless achieved 83% better performance compared to the CUDA
implementation of the proposed HYB format in [14], and 39.6% better performance com-
pared to all CUDA implementations by Bell and Garland [14]. In conclusion, the Cocktail
Format delivers better SpMV performance both theoretically and practically. clSpMV is
a cross-platform autotuner that selects the best representation of any given matrices and
delivers very high-performance SpMV kernels.

102

0

5

10

15

20

25

30

35

40

45

50

G
FL

O
P

s

Best Single

clSpMV

0

5

10

15

20

25

30

35

40

G
FL

O
P

s

Best Single

clSpMV

Figure 6.14: clSpMV performance on the 20 benchmarking matrices on Radeon 6970. Top:
regular matrices that clSpMV suggests representing with one format. Bottom: irregular
matrices that clSpMV suggests partitioning into multiple submatrices.

6.4 The Pair-Wise Distance Computation Autotuner

The Vector Distance application pattern in Table 3.1 is widely used in many classi-
fication algorithms. It computes the distance between two vectors of the same dimension,
and is the basis of the k-nearest neighbor [8] algorithm – given a query vector, find k train-
ing samples with the smallest distances to the query vector, and ask these k neighbors to
decide the category to which the query vector belongs. Variations of the k-nearest neighbor

103

algorithm are used in many state-of-the-art object recognition systems [133, 95, 18, 61].
The fundamental idea of the Vector Distance pattern is to compute a scalar value from

two vectors with the same dimension. As such, this pattern can be generalized to many other
classification algorithms. For example, the support vector machine (SVM) classification [31]
is computed as follows:

c = sgn{b+
l∑

i=1

yiαiΦ(si, x)}, (6.3)

where x is the query vector, si is the ith support vector, Φ(si, x) is the kernel function on si
and x, αi is the weight of si, yi is the category of si, l is the total number of support vectors,
b is the biased term, sgn is the sign function, and c is the category of x. If we define the
distance between x and si to be Φ(si, x), we can employ the Vector Distance application
pattern to compute the SVM classification algorithm. The same strategy can apply the
Vector Distance application pattern to other classification algorithms that employ kernel
tricks, such as discriminant analysis [91] and logistic regression [67].

In practice, instead of computing a distance value between two vectors, more often
we compute distances between two vector sets all at once. Let X = x1, x2, . . . , xn be n
query vectors. In the k-nearest neighbor algorithm, let Y = y1, y2, . . . , ym be m training
samples, we need to compute the distances between each pair of xi ∈ X and yj ∈ Y . In
the SVM algorithm, let S = s1, s2, . . . , sm be m support vectors, we also need to compute
the distances between each pair of xi ∈ X and sj ∈ S. We therefore define the pair-wise
distance computation as follows:

• Computation PaDi(Pair-Wise Distance): Given two sets of vectors with dimension k,
X = {x1, x2, . . . , xn}, xi ∈ Rk ∀xi ∈ X, and Y = {y1, y2, . . . , ym}, yj ∈ Rk ∀yj ∈ Y ,
and a distance function dist(x, y), compute a distance table D with dimension n×m
such that Dij = dist(xi, yj) ∀xi ∈ X, yj ∈ Y .

The computational complexity of the PaDi computation is O(nmk), where n and m
are the sizes of the two vector sets, and k is the dimension of the vectors. If k, m, and n
are of the same magnitude, the computational complexity becomes O(n3). This is a very
expensive computation, so we develop the clPaDi autotuner to optimize it.

There are many different distance functions, and researchers keep creating new ones.
For clPaDi to be flexible enough to fit the diverse needs of researchers, we would like it to
provide user customizations. By analyzing common distance functions, we have observed
that most can be defined by three operators – an element operator, a reduction operator,
and a post-processing operator. Given two vectors with dimension k, u = [a1, a2, . . . , ak],
and v = [b1, b2, . . . , bk], an element operator e(a, b) computes a value between a pair of
elements in vectors u and v. By performing the same element operator on the k pairs, we
get a vector z with dimension k, z = [z1, z2, . . . , zk] = [e(a1, b1), e(a2, b2), . . . , e(ak, bk)]. The
reduction operator

⊕
reduces vector z into a scalar value c, c = z1

⊕
z2

⊕
. . .

⊕
zk. The

post-processing operator r(c) then computes the final distance value d based on c, d = r(c).
Tables 6.9 and 6.10 show how we can define common distance functions and SVM kernels

with only these three operators. The two tables cover all distance functions and SVM kernels

104

Table 6.9: Using element operators, reduction operators, and post-processing operators to
define common distance functions.

Distance Name Distance Computation e(a, b)
⊕

r(c)

Minkowski Distance (
∑k

i=1 |ai − bi|p)1/p |a− b|p + c1/p

Manhattan Distance
∑k

i=1 |ai − bi| |a− b| + c
Chebyshev Distance maxki=1 |ai − bi| |a− b| max c

Euclidean Distance
√∑k

i=1 (ai − bi)2 (a− b)2 +
√
c

Squared Euclidean Distance
∑k

i=1 (ai − bi)2 (a− b)2 + c

χ2 Distance
∑k

i=1
(ai−bi)2
ai+bi

(a−b)2
a+b

+ c

Canberra Distance
∑k

i=1
|ai−bi|
|ai|+|bi|

|a−b|
|a|+|b| + c

Table 6.10: Using element operators, reduction operators, and post-processing operators to
define common SVM kernel functions.

Kernel Name Kernel Computation e(a, b)
⊕

r(c)

Linear Kernel
∑k

i=1 aibi ab + c

Polynomial Kernel (α
∑k

i=1 aibi + γ)p ab + (αc+ γ)p

Gaussian Kernel exp (−γ
∑k

i=1 (ai − bi)2) (a− b)2 + exp(−γc)
Sigmoid Kernel tanh(α

∑k
i=1 aibi + γ) ab + tanh(αc+ γ)

Intersection Kernel [82]
∑k

i=1 min(ai, bi) min(a, b) + c

employed by the 31 state-of-the-art papers in Section 3.3. By enabling users to customize
these three operators, clPaDi is flexible enough to allow researchers to use their favorite
distance functions.

6.4.1 Exploring the Design Space of Algorithms

The PaDi computation is very similar to the general matrix multiply (GEMM) compu-
tation. In fact, if we let e(a, b) = ab,

⊕
= +, and r(c) = c, PaDi is exactly the same as

GEMM. GEMM is a fundamental computation in dense linear algebra, and has been studied
for decades. Here, we summarize algorithmic improvements for GEMM, and then explain
how we apply these algorithms in clPaDi.

The naive GEMM algorithm is summarized in Figure 6.15. We perform a dot product
computation between each row in A and each column in B. The total floating point opera-
tions (FLOPs) in this computation is 2nmk. Assuming n = m = k, total FLOPs becomes
2n3. The memory operations required in GEMM are the summation of the sizes of the three
matrices, n2 + n2 + n2 = 3n2. The arithmetic intensity of GEMM is 2n3

3n2 = 2n
3

. In other
words, the number of reuses of a value in the memory is proportional to n. When n increases,
elements in A, B, and C are reused more often. As a result, GEMM is a compute-bounded
computation – that is, the performance of GEMM is bounded by the number of FLOPs a
hardware platform can perform in one second, rather than by memory bandwidth.

However, although GEMM is theoretically compute-bounded, the naive algorithm in

105

Algorithm: GEMM
Input: A (Matrix with dimension n× k)

B (Matrix with dimension k ×m)
Output: C (Matrix with dimension n×m)
1 for i ← 1 to n
2 for j ← 1 to m
3 for s ← 1 to k
4 C[i][j] ← C[i][j] + A[i][s]B[s][j];

Figure 6.15: The naive GEMM algorithm.

Figure 6.15 is nonetheless still memory-bounded most of the time. If matrices A, B, and
C do not fit in the register file of a processor, they must stay in other memory layers. The
processor must therefore wait for the memory controller to load these matrices from other
memory layers to the register file before it can execute the multiply and add instructions.
If the processor spends a meaningful portion of its time waiting for data, performance will
be bounded by memory bandwidth.

In order to prevent the GEMM computation from being memory-bounded, we need to
reduce the number of memory operations and improve the utilization rate of data in every
memory layer. The most effective strategy to achieve this is blocking – we read a submatrix
Â from A, a submatrix B̂ from B, and update a submatrix Ĉ from C, such that Â, B̂,
and Ĉ will fit in the register file at the same time. The GEMM computation on Â, B̂, and
Ĉ thus do not rely on data from other memory layers, and the processor can achieve peak
performance in computing Ĉ = Ĉ + ÂB̂.

Figure 6.16 shows the blocked GEMM algorithm on a system with two memory layers –
a fast-but-small layer, and a slow-but-large layer. Assuming that the slow memory is able
to store matrices A, B, and C, and the fast memory is able to store submatrices Â, B̂, and
Ĉ, the blocked GEMM algorithm continuously partitions the original matrices into smaller
submatrices and performs the GEMM computation on these smaller submatrices. The
blocked GEMM algorithm partitions matrix A, B, and C into submatrices with dimensions
x × z, z × y, and x × y, respectively. Lines 1-2 iteratively go over submatrices Ĉ from C.
Line 3 reads Ĉ from the slow memory to the fast memory. Line 4 then iteratively goes over
submatrices Â and B̂ from A and B. Lines 5-6 read Â and B̂ from the slow memory to
the fast memory. Lines 7-10 perform the naive GEMM computation on the submatrices
Ĉ = Ĉ + ÂB̂. Line 11 stores submatrix Ĉ into the slow memory. Because the GEMM
computation of Ĉ = Ĉ + ÂB̂ happens in the fast memory, the blocked GEMM algorithm
is significantly faster than the naive GEMM algorithm, in which the entire computation
happens in the slow memory.

This blocking strategy can be hierarchical according to the memory subsystem of the

106

Algorithm: Blocked GEMM
Input: A (Matrix with dimension n× k)

B (Matrix with dimension k ×m)
Output: C (Matrix with dimension n×m)
1 for bx ← 1 to n, step x
2 for by ← 1 to m, step y

3 Read Ĉ = C[bx][by] . . . C[bx + x− 1][by + y − 1] into fast memory;
4 for bz ← 1 to k, step z

5 Read Â = A[bx][bz] . . . A[bx + x− 1][bz + z − 1] into fast memory;

6 Read B̂ = B[bz][by] . . . B[bz + z − 1][by + y − 1] into fast memory;
7 for i ← bx to bx + x− 1
8 for j ← by to by + y − 1
9 for s ← bz to bz + z − 1
10 C[i][j] ← C[i][j] + A[i][s]B[s][j];

11 Store Ĉ into slow memory;

Figure 6.16: The blocked GEMM algorithm.

underlying hardware platforms. For example, Intel Core i7 2600 has four cores, and its
memory subsystem has four layers – an 8 MB L3 cache shared by all four cores, and a 256
KB L2 cache, a 32 KB data cache, and a 576 bytes floating point register file for each core.
Based on these four memory layers, we can perform four hierarchies of blocking to improve
the data utilization rate of each memory layer: 1) find submatrices Â1, B̂1, Ĉ1 from A, B,
C such that Â1, B̂1, Ĉ1 can be stored in L3; 2) find submatrices Â2, B̂2, Ĉ2 from Â1, B̂1,
Ĉ1 such that Â2, B̂2, Ĉ2 can be stored in L2; 3) find submatrices Â3, B̂3, Ĉ3 from Â2, B̂2,
Ĉ2 such that Â3, B̂3, Ĉ3 can be stored in L1; and 4) find submatrices Â4, B̂4, Ĉ4 from Â3,
B̂3, Ĉ3 such that Â4, B̂4, Ĉ4 can be stored in the register file.

For the blocked GEMM algorithm in Figure 6.16, every element in Â, B̂, and Ĉ is reused
y, x, and k times in the fast memory, respectively. The larger the blocks, the more reuse
of data in the fast memory. However, if the block sizes are too large, the slow memory
might not be able to store all the blocks. Moreover, different hardware platforms have
different memory subsystems. In order to optimize the GEMM computation on a specific
platform, we must consider different block sizes and determine which works best on the
memory subsystem. A number of autotuners have been developed to tune the block sizes
on different platforms. For example, ATLAS [122] and PHiPAC [16] tune the block size on
single-core platforms. GotoBLAS [56] tunes the block size on multicore platforms. Volkov
and Demmel optimized GEMM on Nvidia Tesla architectures by blocking matrix B in shared
local memory and blocking matrix C in registers [119]. Li et al. developed an autotuner to
find the best blocking sizes on Nvidia Fermi architectures [79]. Du et al. proposed using
autotuning to optimize GEMM on both Nvidia and AMD architectures using OpenCL [43].

107

Algorithm: Blocked PaDi
Input: A (Vector set with dimension n× k)

B (Vector set with dimension m× k)
Output: D (Distance Table with dimension n×m)
1 for bx ← 1 to n, step x
2 for by ← 1 to m, step y

3 Initialize D̂ to be a zero matrix in registers;
4 for bz ← 1 to k, step z

5 Read Â1 = A[bx][bz] . . . A[bx + x− 1][bz + z − 1] into shared local memory;

6 Read B̂1 = B[by][bz] . . . B[by + y − 1][bz + z − 1] into shared local memory;
7 for s ← 1 to z

8 Read Â2 = Â1[1][s] . . . Â1[x][s] into registers;

9 Read B̂2 = B̂1[1][s] . . . B̂1[y][s] into registers;
10 for i ← 1 to x
11 for j ← 1 to y

12 D̂[i][j] ← D̂[i][j]
⊕

e(Â2[i], B̂2[j]);

13 D̂ ← r(D̂);

14 D[bx][by] . . . D[bx + x− 1][by + y − 1] ← D̂;

Figure 6.17: The blocked PaDi algorithm.

Because the OLOV project targets GPU platforms, we use a strategy similar to that of Li
et al. [79] to perform two hierarchies of blocking in the PaDi computation – shared memory
blocking, and register blocking. The blocked PaDi algorithm is summarized in Figure 6.17.
Input matrices A and B are the two vector sets, and output matrix D is the table that
stores the distances between each vector pair of A and B. The dimension of vectors is k.
Vector sets A and B have n and m vectors, respectively. In lines 1-6, we store Â1 (a block
of A with dimension x × z) and B̂1 (a block of B with dimension y × z) into shared local
memory. This is the blocking in shared local memory. In lines 7-9, we iteratively read a
column of Â1 and B̂1 from shared local memory to registers. So, the dimensions of Â2 and
B̂2 are x × 1 and y × 1. This is the blocking in the registers. In lines 10-12, we update D̂
(a block of D with dimension x× y) in registers using the element and reduction operators.
In lines 13-14, we apply the post-processing operator on D̂ and store it into output distance
table D. This is the algorithm used in clPaDi.

The clPaDi Autotuner

After a user specifies the three operators – the element, reduction, and post-processing
operators, clPaDi automatically tunes and optimizes the PaDi computation with the dis-
tance function defined by the user. Similar to the clSpMV autotuner, clPaDi is composed

108

of two stages: the offline benchmarking stage, and the online decision-making stage. The
offline benchmarking stage samples the performance of different blocking sizes on different
vector set configurations. In the online decision-making stage clPaDi chooses the block-
ing size that delivers the best performance given the input configurations based on offline
benchmarking data.

The configurations of vector sets involve three parameters: n, m, and k. n is the number
of vectors in the first vector set, m is the number of vectors in the second vector set, and k
is the dimension of the vectors.

The offline benchmarking stage samples the performance of different blocking sizes on
different n, m, and k values. Sampling density is a trade-off between performance predic-
tion accuracy and benchmarking time – collecting more samples in the configuration space
produces more accurate performance predictions, but also takes more time. clPaDi samples
the three parameters in an exponential scale – n from 29 to 214, m from 29 to 214, and k
from 27 to 213. The offline benchmarking stage takes about half a day.

In the online decision-making stage, clPaDi computes the distance table between two
vector sets. Based on the input configuration (the n, m, and k parameters of the input vector
sets), clPaDi estimates the execution time of different blocking sizes, selects the optimal
blocking size, and performs the PaDi computation with this optimal blocking size. The
execution times of the different blocking sizes are estimated by interpolating between nearby
samples in the offline benchmarking data. The overhead for determining the best blocking
size is only 3.3 microseconds on an Intel Core i7 920 machine, and therefore negligible
compared to the PaDi computation.

6.4.2 Exploring the Design Space of Parallelization Strategies

In Figure 6.17, we block distance table D with submatrices D̂ of dimension x × y. Let
dx = n/x, dy = m/y, D is partitioned into dx × dy submatrices. Because the submatrices
are independent, we can compute each in parallel. We create two-dimensional work groups
wg[dx][dy] in OpenCL, and assign each work group to compute a submatrix of D. That
is, work group wg[i][j] computes the submatrix of D from D[(i − 1)x + 1][(j − 1)y + 1] to
D[ix][jy].

We create 16 × 16 work items in each group. Therefore, each work item is responsible
for computing x

16
× y

16
elements in the x × y submatrix. To ensure that every work item

receives the same amount of work, we force x and y be multiples of 16. For example, if
(x, y) = (16, 16), every work item computes an element in the submatrix; if (x, y) = (64, 80),
every work item computes 4× 5 elements in the submatrix.

Assuming that each work item is responsible for wx×wy elements in the submatrix, two
different parallelization strategies can be applied for assigning work to the work items:

1. Contiguous Work Assignment: Every work item is assigned a contiguous block with
dimension wx × wy from submatrix D̂. The work item with index (i, j) computes the

block from D̂[(i− 1)wx + 1][(j − 1)wy + 1] to D̂[iwx][jwy].

2. Interleaved Work Assignment: Every contiguous 16 × 16 block in submatrix D̂ is

109

(a) (b)

Figure 6.18: Two strategies for the work assignment of each work item: (a) Contiguous
work assignment, and (b) Interleaved work assignment.

computed by 16×16 different work items, and every work item is assigned an element
in each 16× 16 block. The work item with index (i, j) computes D̂[i + 16a][j + 16b],
∀0 ≤ a < x

16
, ∀0 ≤ b < y

16
.

Figure 6.18 shows a simplified example of the two strategies, where each work group has
2× 2 work items instead of 16× 16 work items. For a submatrix D̂ with dimension 8× 8,
every work item must compute 4 × 4 elements in the submatrix. For the contiguous work
assignment strategy, D̂ is partitioned into four blocks of dimension 4 × 4, and each work
item works on one contiguous block. For example, the work item with index (1, 1) computes
the blue block – D̂[1][1] to D̂[4][4]. For the interleaved work assignment strategy, a work
item never works on continuous elements – every contiguous 2× 2 block in D̂ is computed
by four different work items. For example, the work item with index (1, 1) computes the
blue elements – D̂[1 + 2a][1 + 2b] with a = {0, 1, 2, 3} and b = {0, 1, 2, 3}.

On GPU platforms, multiple work items are grouped and scheduled together. For Nvidia
platforms, a warp of 32 work items are scheduled together; for AMD platforms, a wavefront
of 64 work items are scheduled together. If we apply the contiguous work assignment strat-
egy, the scheduled work items will access disjoint data in the memory, resulting in redundant
memory transactions. However, if we instead apply the interleaved work assignment strat-
egy, consecutive work items access consecutive memory pieces and the number of memory
transactions is minimized. As such, the second strategy is better than the first, and so we
apply the second strategy in clPaDi.

6.4.3 Exploring the Design Space of Platform Parameters

There are three platform parameters we must tune in clPaDi – x, y, and z. These
parameters describe the blocking sizes of A, B, and D, which are partitioned into x × z,
y × z, and x× y blocks, respectively. As discussed in Section 6.4.2, we create 16× 16 work
items in each work group, and force x and y to be multiples of 16. This decision reduces
parameter space.

110

The blocked PaDi algorithm in Figure 6.17 iteratively loads an x×z block from A and a
y×z block from B to the shared local memory. The dimension of A is n×k – that is, n vectors
with dimension k, and the elements in a vector are stored consecutively. Because every ma-
trix is stored in linear memory in practice, the layout ofA is [a11, a12, . . . , a1k; a21, a22, . . . , a2k;
. . . , an1, an2, . . . , ank], where a11 to a1k is the first vector, a21 to a2k the second vector, and
an1 to ank the nth vector. The layout of B is similar. On GPU platforms, we need to read
consecutive data together in order to reduce the number of necessary memory transactions.
On Nvidia platforms, a warp of 32 work items are scheduled together, but are executed in
two clock cycles. So 16 work items are actually executed simultaneously. Similarly, on AMD
platforms a wavefront of 64 work items are scheduled together, but are executed in four clock
cycles – again, 16 work items are executed simultaneously. Based on this observation, we
set z to be 16. In other words, when 16 work items are active, they read 16 consecutive
elements from a vector with one memory transaction. If z is smaller than 16 we must still
load the entire memory segment, so some memory bandwidth is wasted. If z is larger than
16, we might need to reduce the value of x and y to ensure that Â and B̂ can be stored
in the shared local memory. However, reducing x and y deteriorates the effectiveness of
register blocking because the size of register blocking is x× 1 and y × 1 as shown in Figure
6.17. As a result, we conclude that 16 is the best value of z.

In clPaDi, we explore the design space of x = {16, 32, 48, 64, 80, 96} and y = {16, 32, 48,
64, 80, 96}. So, we implement 6× 6 = 36 kernels with different blocking sizes.

6.4.4 Experimental Results

Here, we evaluate the performance of clPaDi on the Nvidia GTX 480 and AMD Radeon
6970 platforms. Because both platforms achieve the highest performance on single precision
floating point data type, we perform experiments on vector sets with this data type.

Offline Benchmarking Performance

In the offline benchmarking stage, clPaDi collects the performance of different blocking
sizes with different vector set configurations. As discussed in Section 6.4.1, the input can be
characterized by parameters n, m, and k: n is the number of vectors in the first vector set,
m is the number of vectors in the second vector set, and k is the dimension of the vectors.
In the offline benchmarking stage, clPaDi samples n from 29 to 214, m from 29 to 214, and k
from 27 to 213. Given a configuration (n,m, k), clPaDi collects the performance of different
blocking sizes on that configuration. Since clPaDi supports blocking sizes from 16 × 16 to
96× 96, it collects 36 performance results for each configuration.

Figure 6.19 shows heat maps of the 36 performance results with the configuration of
(n,m, k) = (1024, 1024, 128) on the Nvidia GTX 480 platform. The heat map on the left
shows performance results when the distance function is defined as the dot product between
two vectors – that is, this heat map shows the single precision GEMM performance. The
heat map on the right instead shows the performance results when the distance function is
defined as the χ2 distance. The χ2 distance is used in the region-based object recognition
system by Gu et al. [61]. In the left heat map, the optimal performance is 561 giga floating

111

Performance Benchmarking of the Dot Product Distance

Block Dimension x

B
lo

ck
 D

im
en

si
on

 y

16 32 48 64 80 96

16

32

48

64

80

96

250

300

350

400

450

500

550

Performance Benchmarking of the Chi−Squared Distance

Block Dimension x

B
lo

ck
 D

im
en

si
on

 y

16 32 48 64 80 96

16

32

48

64

80

96

200

220

240

260

280

300

320

Figure 6.19: Performance benchmarking on the Nvidia GTX 480 platform. Left: Perfor-
mance benchmarking on dot product distance. Right: Performance benchmarking on χ2

distance.

point operations per second (GFLOPS), when the blocking size is 96× 80. In the right heat
map, the optimal performance is 325 GFLOPS, when the blocking size is 48×64. As shown
in the maps, when the blocking size is too small, there is little benefit from the blocked
algorithm; conversely, if the blocking size is too large, the registers cannot store all data and
a portion must be stored in slower memory layers, which degrades performance. Without
autotuning, it is very difficult to find the optimal blocking size.

When the distance function is defined as dot product, we need only multiply two el-
ements from two vectors and add the results to a summation variable. Both Nvidia and
AMD platforms have a MAD instruction that fuses multiply and add operations. So, the
computation requires one instruction and no additional registers to store any intermedi-
ate results. On the other hand, when the χ2 distance function is used, we need to compute
(a−b)2
(a+b)

on two elements from two vectors. At least five instructions are required – add (a+b),

subtract (a− b), multiply (a− b)× (a− b), divide (a− b)2/(a+ b), and add (add the results
to a summation variable). This requires many additional registers to store the intermediate
results, such that the total number of available registers for blocking is reduced. Therefore,
the optimal blocking size for the χ2 distance is smaller than that of the dot product dis-
tance. Further, because the division instruction is more expensive than other instructions,
the computation time for the χ2 distance is also longer than for the dot product distance. As
a result, the optimal performance of the χ2 distance is smaller than that of the dot product
distance.

Figure 6.20 shows heat maps of the 36 performance results with the same configuration
on the AMD Radeon 6970 platform. In the left heat map, the optimal performance is
388 GFLOPS, when the blocking size is 48 × 96. In the right heat map, the optimal
performance is 369 GFLOPS, when the blocking size is 64 × 64. The difference between

112

Performance Benchmarking of the Dot Product Distance

Block Dimension x

B
lo

ck
 D

im
en

si
on

 y

16 32 48 64 80 96

16

32

48

64

80

96

50

100

150

200

250

300

350

Performance Benchmarking of the Chi−Squared Distance

Block Dimension x

B
lo

ck
 D

im
en

si
on

 y

16 32 48 64 80 96

16

32

48

64

80

96

50

100

150

200

250

300

350

Figure 6.20: Performance benchmarking on the AMD Radeon 6970 platform. Left: Per-
formance benchmarking on dot product distance. Right: Performance benchmarking on χ2

distance.

the two optimal blocking sizes is small, and the performance difference is also small. This
is because the compiler performs different optimizations for the two distance functions.
When the blocking size is 64 × 64, each work item stores four elements from both vector
set A and B, and uses these eight values to update a 4 × 4 block in distance table D.
On AMD Radeon 6970, one work item is mapped to a VLIW unit with width four – in
other words, one work item can issue a VLIW instruction on four floating point numbers.
The χ2 distance is more complicated, so more operations are performed on the input data.
As a result, the compiler successfully identifies the opportunity to issue width-four VLIW
instructions for some operations. Conversely, when the distance function is dot product, only
one instruction is needed, and the compiler does not convert that operation into a VLIW
instruction. Therefore, the performance difference between the two distance functions is not
very significant.

Online Decision-Making Performance

When the distance function is dot product between two vectors, the PaDi computation
is the same as the GEMM computation. Both Nvidia and AMD release vendor-optimized
code for the GEMM computation. CUBLAS [97] is the Nvidia optimized linear algebra
library, while clAmdBLAS [4] is the optimized library from AMD. Both libraries offer a
highly-optimized GEMM routine. Here, we compare the performance of clPaDi to these
two libraries in order to understand the effectiveness of the autotuning procedure. Moreover,
in Chapter 7, since we use clPaDi to optimize the χ2 distance computation in the region-
based object recognition system by Gu et al. [61], we also evaluate the performance when
the distance function is set to be the χ2 distance. We perform these experiments on vector
sets with different sizes. Let the two vector sets be A and B, we set the number of vectors in

113

both sets to be the same, ranging from 512 to 8192. The dimension of the vectors is set to
128, because many feature vectors have the dimension of 128, including the contour feature
by Gu et al. [61] and SIFT [80].

0

100

200

300

400

500

600

700

800

900

0 2000 4000 6000 8000

G
FL

O
P

S

Number of Vectors

CUBLAS

clPaDi(GEMM)

clPaDi(χ2)

Figure 6.21: Performance of CUBLAS [97], clPaDi with dot product distance, and clPaDi
with χ2 distance on Nvidia GTX 480.

Figure 6.21 shows the experimental results on an Nvidia GTX 480. CUBLAS is a highly-
optimized library, and it achieves 800 GFLOPS on the GEMM computation, while clPaDi
achieves 650 GFLOPS. This performance gap results from two factors. First, we tune the
blocking sizes of only two dimensions. The GEMM autotuner by Li et al. [79] slightly
outperforms CUBLAS because they tune the GEMM computation on nine parameters. In
addition to blocking sizes, it also tunes the number of threads per thread block, and the
reshaping parameters to read submatrices of A and B into shared local memory. Second, we
do not use texture memory to cache matrices A and B. As such, the performance of clPaDi
could be further improved by more detailed autotuning and employing texture memory to
read matrices A and B. However, CUBLAS is optimized only when matrices are large; when
the matrices are small, clPaDi outperforms it. For example, when the number of vectors in
A and B are both 1024, clPaDi achieves 562 GFLOPS, while CUBLAS achieves only 328
GFLOPS. The performance of clPaDi with χ2 distance is steady at 320 GFLOPS, regardless
of matrix size. This is the performance we can expect when applying clPaDi to optimize
region-based object recognition in Chapter 7.

Figure 6.22 shows the experimental results on AMD Radeon 6970. clPaDi outperforms
the clAmdBLAS library most of the time. clPaDi can achieve 400 to 500 GFLOPS, while
clAmdBLAS reaches only 300 GFLOPS. However, clAmdBLAS is a relatively new library,
and AMD is still optimizing it. We can expect this library to achieve better performance in
future releases. But, for now, we can nonetheless claim that clPaDi achieves better perfor-
mance than the vendor-optimized clAmdBLAS library version 1.7. The clPaDi performance
with χ2 distance is similar to the dot product distance, for the same reason as in the offline
benchmarking stage – the compiler uses the VLIW unit more effectively with the χ2 distance

114

0

100

200

300

400

500

600

0 2000 4000 6000 8000

G
FL

O
P

S

Number of Vectors

clAmdBLAS

clPaDi(GEMM)

clPaDi(χ2)

Figure 6.22: Performance of clAmdBLAS [4], clPaDi with dot product distance, and clPaDi
with χ2 distance on AMD Radeon 6970.

function. If we manually employ vector types in clPaDi, such as float4, we might be able to
further boost performance of the GEMM computation.

Overall, clPaDi is a flexible autotuner that allows end users to customize distance func-
tions and optimize the PaDi computation with these customized functions. It achieves
near-peak performance on both Nvidia and AMD platforms.

6.5 Summary

We propose the OLOV project to develop a collection of autotuners for computationally-
intensive application patterns on GPU platforms using OpenCL. We have developed two
autotuners in this project: clSpMV and clPaDi.

clSpMV is an autotuner for sparse matrix vector multiplication (SpMV) computation.
To represent sparse matrices, we propose using the Cocktail Format – a collection of sparse
matrix formats. A matrix is partitioned into many submatrices, and each submatrix is rep-
resented by a specialized format. clSpMV is an autotuner that tunes the Cocktail Format of
a sparse matrix and the implementation of the corresponding SpMV computation. clSpMV
supports nine sparse matrix formats: DIA, BDIA, ELL, SELL, CSR, COO, BELL, SBELL,
and BCSR. It achieves 83% better performance compared to the HYB format in [14], and
39.6% better performance compared to all formats in [14]. Compared to all single formats,
clSpMV is 16.8% better on the Nvidia GTX 480, and 43.3% better on the AMD Radeon
6970.

clPaDi is an autotuner for the pair-wise distance (PaDi) computation. It allows an end
user to customize the distance function between two vectors by specifying three operators
– the element, reduction, and post-processing operators. clPaDi tunes the performance
of the PaDi computation with different blocking sizes. When the distance function is dot

115

product, the PaDi computation is equivalent to the general matrix multiply GEMM com-
putation. clPaDi performs slightly worse than CUBLAS [97], but significantly better than
clAmdBLAS [4]. Overall, clPaDi offers excellent efficiency, productivity, portability, and
flexibility.

clSpMV and clPaDi illustrate how effectively autotuners can be used to optimize computationally-
intensive application patterns. We plan to cover more application patterns in the future,
and in particular expensive optimization patterns.

116

Chapter 7

Developing Parallel Applications
Using the Parallel Application
Library

We perform three case studies on three application patterns in Chapter 5, and develop
two autotuners for expensive computations in Chapter 6. Although these functions cover
only a subset of application patterns in Table 3.1, they are sufficient to resolve bottlenecks
in the region-based object recognition system developed by Gu et al. [61]. This chapter
demonstrate how we can employ our parallel application library to parallelize and optimize
the region-based object recognition system.

7.1 The Region-Based Object Recognition System

Multi-scale scanning algorithms have traditionally been dominant in object recognition
research [33, 47, 75, 20, 49, 83]. Although region-based approaches have been used by some
researchers [61, 85, 106], their use in the computer vision field is not as prevalent. Identifi-
cation of objects in images by region may appear similar to how humans identify objects,
but this approach relies heavily on the accuracy of the segmentation algorithms used for
extracting regions. Without the ability to identify accurate segmentations, resulting object
recognition accuracy of the region-based approaches will be worse than brute-force scanning
algorithms. Fortunately, with advances in image contour detection [81] and segmentation
[7], we can generate very accurate segmentations on images. Having accurate regions leads
to a significant reduction in the size of the search space compared to multi-scale scanning
algorithms, and defines better separation between foreground objects and the background –
the background noise problem in multi-scale scanning algorithms can be reduced. As such,
region-based analysis will become more important in future object recognition research ef-
forts. Based on the gPb contour detection algorithm [81] and the UCM segmentation algo-
rithm [7], the object recognition system developed by Gu et al. [61] uses regions to identify
objects. This system achieves very high performance on the false positive per image (FPPI)
curve of the ETHZ [50] benchmark, and competitive performance on the Caltech 101 [46]

117

benchmark, thus closing the performance gap between multi-scale scanning algorithms and
region-based algorithms.

Contour
Detection

Pair-wise
Distance

Training
Images

Object Region
Models

Object Region
Models

Training Stage Deployment Stage

Weight
Learning

Image
Segmentation

Contour
Feature

Extraction

Contour
Detection

Classification

Query
Images

Identified
Objects

Image
Segmentation

Contour
Feature

Extraction

Figure 7.1: The application-level software architecture of the object recognition system in
[61].

The region-based object recognition system by Gu et al. is summarized in Figure 7.1.
The basic idea is to identify objects by region matches. In the training stage, gPb contours
of training images are detected, and then images are segmented into regions using the UCM
algorithm. Contour features are collected to represent the shapes of the regions, and the
χ2 distances between each pair of feature vectors are computed. Although each object
is segmented into multiple regions, not every region is equally important. Discriminative
regions should reappear on multiple instances of the same object, and have long distances
compared to regions from other objects or the background. Based on this assumption,
a quadratic programming problem is formulated to compute the weight of each region.
Similarly, in the deployment stage contours of a query image are extracted by the gPb
algorithm [81] and the query image is segmented by the UCM algorithm [7]. Contour
features of the regions are extracted from the segmentation results, and the Hough Voting
algorithm scores matches between the query regions and training regions.

Although the region-based system by Gu et al. [61] is a high-quality object recognition
system, it is nonetheless computationally intensive. During the training stage, for example,
the training procedure on 127 images with an average size of 0.15M pixels takes 32,393
seconds. Even if training images are segmented in advance, feature extraction and region
model building still takes 2,332 seconds. Similarly, during the deployment stage, object
recognition takes 331 seconds on a 0.15M pixel image. As a result, it is essential to parallelize

118

and optimize this application if we want to employ it in real life.

7.2 Parallelizing the Object Recognition System

Figure 7.1 shows the topmost application-level software architecture of the object recog-
nition system. In order to parallelize and optimize this system, we conduct a more detailed
study on lower hierarchies of the software architecture, replace application patterns with
library functions we have developed, and evaluate the resulting performance.

7.2.1 The Software Architecture of the Object Recognition Sys-
tem

Image

Convert
Colorspace

Textons:
K-means

Texture
Gradient

Combine
(mPb)

Non-max
suppression

Intervening Contour

Generalized
Eigensolver

Oriented Energy
Combination (sPb)

Combine, Normalize
(gPb)

Contours

Bg Cga Cgb

Figure 7.2: The software architecture of the gPb contour detection algorithm [81].

The first three steps of both the training and deployment stages are the same: detecting
contours from the images, segmenting the images, and then collecting contour features for
the regions.

Currently, the highest-quality image contour detector (as measured by the Berkeley
Segmentation Dataset [87]) is the gPb detector [81], which is used in the object recognition
system. The application-level software architecture of the gPb algorithm is summarized in
Figure 7.2. The gPb detector consists of many modules that can be grouped into two main
components: mPb, a detector based on local image analysis at multiple scales; and sPb, a
detector based on the normalized cuts criterion.

119

The mPb detector is constructed from brightness, color, and texture cues at multiple
scales. For each cue, the detector from [86] is employed, estimating the probability of
boundary PbC,σ(x, y, θ) for a given image channel, scale, pixel, and orientation by measuring
the difference in image channel C between two halves of a disc of radius σ centered at (x, y)
and oriented at angle θ. The cues are computed over four channels: the CIELAB 1976 L
channel, which measures brightness, and A, B channels, which measure color, as well as
a texture channel derived from texton labels [84]. The cues are also computed over three
different scales [σ

2
, σ, 2σ] and eight orientations in the interval [0, π). The mPb detector is

then constructed as a linear combination of the local cues, where the weights αij are learned
by training on an image database:

mPb(x, y, θ) =
4∑
i=1

3∑
j=1

αijPbCi,σj(x, y, θ). (7.1)

The mPb detector is then reduced to a pixel affinity matrix W, whose elements Wij

estimate the similarity between pixel i and pixel j by measuring the intervening contour
[78] between pixels i and j. Due to computational concerns, Wij is not computed between
all pixels i and j, but for only those pixels that are near to each other. In this case, we use
Euclidean distance as the constraint, meaning that we compute only Wij ∀i, j s.t. ||(xi, yi)−
(xj, yj)|| ≤ r; otherwise, we set Wij = 0. In this case, we set r = 5.

Once W has been constructed, sPb follows the normalized cuts approach [108], which
approximates the NP-hard normalized cuts graph partitioning problem by solving a gener-
alized eigensystem. Only the k + 1 eigenvectors vj with smallest eigenvalues are useful in
image segmentation and need to be extracted. In this case, we use k = 8. The smallest
eigenvalue of this system is known to be 0, and its eigenvector is not used in image seg-
mentation, so we extract k + 1 eigenvectors. After computing the eigenvectors, we extract
their contours using Gaussian directional derivatives at multiple orientations θ, to create
an oriented contour signal sPbvj(x, y, θ). We combine the oriented contour signals based on
their corresponding eigenvalues:

sPb(x, y, θ) =
k+1∑
j=2

1√
λj
sPbvj(x, y, θ). (7.2)

The final gPb detector is then constructed through linear combination of the local cue
information and the sPb cue:

gPb(x, y, θ) = γ · sPb(x, y, θ) +
4∑
i=1

3∑
j=1

βijPbCi,σj(x, y, θ), (7.3)

where the weights γ and βij are also learned via training. To derive the final gPb(x, y)
signal, we maximize over θ, threshold to remove pixels with very low probability of being a
contour pixel, skeletonize, and then renormalize.

The gPb signal is then used to segment images following the UCM algorithm [7]. The
application-level software architecture of the UCM algorithm is summarized in Figure 7.3.

120

Watershed
Algorithm

Edge
Reweighting

Image
Contours

Image
Segmentations

Region
Clustering

Node and
Edge

Extraction

Edge
Linearization

Figure 7.3: The software architecture of the UCM segmentation algorithm [7].

Given the contours (the gPb signal) of an input image, the watershed algorithm [90] is
applied on the contours, which results in an over-segmentation of the image. The watershed
boundaries are represented as connected graphs – nodes are used to represent intersections
across multiple boundaries, and edges are used to represent boundaries between nodes. An
edge between two nodes can follow an arbitrary path. The UCM algorithm approximates
each edge by a set of linear segments. This linearization step makes it possible to compute
an orientation value for every edge segment. The accurate contours generated by the gPb
algorithm are used to associate weight with the watershed boundaries. A linear edge segment
on the watershed boundary, matching the orientation of the contours generated by the gPb
algorithm, will have a higher weight. Otherwise, it will be given a lower weight. The over-
segmentation effect caused by the watershed algorithm is alleviated by reducing the weights
of redundant boundaries. The final step of the segmentation algorithm is to further refine
the weight assignment on the watershed boundaries, using a region-clustering algorithm.

After segmenting an image, the contour features for regions on the image are collected.
The computation is the same as the contour histogram computation introduced in Section
5.3.

The training stage uses the contour features from the training images to develop a region
model that identifies discriminative regions on objects. The χ2 distances between each pair
of feature vectors are computed, and are used in the following weight-learning step. The
weight-learning step is formulated as a quadratic programming problem. Given an image
I, we need to compute the weight assignment of all its regions. Let J be the set of images
in the same object category as image I, and K be the set of images in the different object
categories. We select T pairs of images (J1, K1), (J2, K2), . . . , (JT , KT) from J and K, and

121

use these T pairs to train the weights of regions in image I. Let d(X, Y) be the distance
between image X and image Y . We use quadratic programming to find discriminative
regions, which make d(I,Kt) > d(I, Jt),∀t ∈ T . The generalized simplex algorithm is used
to solve this problem.

Query Image
Region Features

Pair-wise
Distance

Object Region
Models

Hough
Transformation

Mean Shift
Clustering

Object
Bounding Box

Figure 7.4: The software architecture of the classification step in [61].

The deployment stage uses the contour features from a query image to recognize objects.
The application-level software architecture of the classification step is summarized in Figure
7.4. The χ2 distances between the query features and the training features are computed
– if the distance is small enough, a region match is reported. Because a matched region
might represent only a portion of an object, the Hough transformation algorithm is used
to compute the bounding box of the overall object based on the matched region. Multiple
region matches of the same object generate multiple conjectures of the bounding boxes of the
object. Therefore, the mean-shift clustering algorithm is used to group all conjectures into
a single conjecture, with weight equal to the summation over the weights of all conjectures.
The weights of conjectures come from the region weights learned during the training stage.

7.2.2 Using the Parallel Application Library to Parallelize and
Optimize the Object Recognition System

The application-level software architecture of the object recognition system by Gu et
al. [61] is shown in Figures 7.1, 7.2, 7.3, and 7.4. We have developed many functions for
the parallel object application library in Chapters 5 and 6, and these highly parallelized
and optimized functions can be employed in the object recognition system to speed up the

122

Pair-wise
Distance

Contour
Feature

Extraction

Watershed
Algorithm

Generalized
Eigensolver

Eigensolver
with clSpMV

BFS Graph
Traversal

on Images

clPaDi

Contour
Histogram

Figure 7.5: Computations with the corresponding parallel library functions.

application. To do so, we simply replace the application patterns in the software architecture
with these functions. The replaceable application patterns are in blue boxes in the software
architecture, and are summarized in Figure 7.5.

The generalized eigensolver pattern in the gPb contour detection algorithm can be re-
placed by the eigensolver function discussed in Section 5.1. We use the clSpMV autotuner
in Section 6.3 to optimize the sparse matrix vector multiplication (SpMV) kernel in the
eigensolver. The final results suggest using only the diagonal format to represent the affin-
ity matrix. This matches our observations from Section 5.1. Therefore, we employ our
original eigensolver without any changes on the SpMV kernel. The watershed algorithm
[90] is composed of three steps: identifying local minimums in an image, assigning unique
labels to these local minimums, and propagating labels from the smallest to the largest
gray level. These steps can be implemented using BFS graph traversal. We replace the
watershed computation with our BFS graph traversal function in Section 5.2. The contour
feature extraction step is the same as the contour histogram function in Section 5.3. The
pair-wise χ2 distance computations in both the training and deployment stages are replaced
by the clPaDi autotuner.

Although we do not develop library functions for the remaining application patterns in
the software architecture, we still parallelize these computations with reasonable efforts.
The mPb and sPb signals in the contour detection are parallelized using data parallelism
strategies on a GPU. The quadratic programming computation in the weight learning step
is parallelized using a task parallelism strategy on a CPU.

7.2.3 Experimental Results

In this section, we examine the overall performance of the parallel object recognition
system we have developed, and compare our system with the original serial implementation

123

Table 7.1: Performance of the parallel object recognition system: deployment stage.

Computation time (s)
Computation Serial(double-precision) Parallel(single-precision) Speedup

Contour Detection 236.7 1.58 150 ×
Image Segmentation 2.27 0.357 6.36 ×
Feature Extraction 7.97 0.065 123 ×

Classification 84.13 0.779 108 ×
Total 331.07 2.781 119 ×

Table 7.2: Performance of the parallel object recognition system: training stage.

Computation time (s)
Computation Serial(double-precision) Parallel(single-precision) Speedup

Feature Extraction 543 15.97 34 ×
χ2 Distance 1732 2.9 597 ×

Weight Learning 57 1.41 40 ×
Total 2332 20.28 115 ×

in [61]. In the original serial implementation, the gPb contour detector [81] is implemented
mostly in C++. The UCM segmentation algorithm [7] is implemented half in C++ and
half in MATLAB. The remaining parts are implemented in MATLAB. The original serial
implementation uses double-precision floating point algebra, and is executed on an Intel
Core i7 920 (2.66 GHz) machine.

Our parallel library is implemented with single-precision floating point algebra because
Nvidia cards with CUDA computability prior to 1.2 do not support double-precision floating
point operations. In order to support earlier Nvidia cards, we decide to implement our library
in single-precision floating point algebra. If we re-implement our parallel library in double-
precision algebra, very likely the execution time will be doubled. The deployment stage is
executed on an Nvidia GTX 480 GPU. For the training stage, the contour detection and
image segmentation computations are the same as in the deployment stage. The performance
improvement is also the same as in the deployment stage. To avoid repetition, we assume
that training images are already segmented and only report the execution times for feature
collection and model building. The χ2 distance computation in the training stage is executed
on an Nvidia Tesla C1060 GPU, because the distance table in the training stage exceeds
the 1.5G memory on a GTX 480, but fits in the 4G memory on a Tesla C1060. The parallel
weight-learning computation is executed on an Intel Core i7 920 (2.66 GHz) machine with 8
threads. The performance of the parallel object recognition system is summarized in Tables
7.1 and 7.2. The deployment stage is executed on an image with 0.15M pixels. The training
stage is executed on 127 images with 0.15M pixels in average. Moving from a double-
precision MATLAB implementation to a single-precision C++ implementation results in
3-6× speedup. The remaining 20-40× speedup is gained by replacing the original serial
implementations with our highly-optimized parallel application library functions. We obtain
only 6× speedup on the segmentation computation, since only the watershed algorithm is

124

parallelized, and the computation is in integer so we do not get the extra 2× speedup by
replacing double-precision algebra with single-precision algebra.

In addition to evaluating execution time, we also evaluate the detection quality of the
parallelized object recognition system on the ETHZ shape benchmark [50]. The detection
quality is shown in Figure 7.6, using the detection rate of the False Positive Per Image
(FPPI) metric. Compared to the serial implementation, the detection quality of the parallel
implementation is slightly worse. The difference in quality results primarily from numerical
errors. MATLAB uses double precision floating point operations, while we use only single
precision floating point operations in order to achieve the best utilization rate of GPU com-
puting resources. Numerical errors influence the thresholding operations on the χ2 distance
table, forcing the parallel implementation to choose different image pairs for computing the
region weights of a training image. Detection quality is then influenced by the discrepancy
of region weights in training images.

Detection Accuracy with Bounding Boxes Detection Accuracy with Bounding Boxes

D
et

ec
ti

o
n

 R
at

e

D
et

ec
ti

o
n

 R
at

e

False Positive Per Image (FPPI) False Positive Per Image (FPPI)

Figure 7.6: (a) The detection rate versus FPPI curve of the original serial implementation.
(b) The detection rate versus FPPI curve of the parallel object recognition system.

In summary, we demonstrate how employing the parallel application library can help
transform computationally-intensive object recognition applications into near real-time ap-
plications. We achieve 110-120× speedup on both the deployment stage and the training
stage, compared to [61]. Using this parallel object recognition system, we are able to train
hundreds of images in minutes, and classify an image in only three seconds.

7.3 Summary

We demonstrate using the functions of the parallel application library to accelerate the
object recognition system by Gu et al. [61]. This system is very computationally intensive
– the training stage with training images segmented in advance takes 2332 seconds, while
the deployment stages takes 331 seconds on a 0.15 mega pixel image. Although this is a

125

highly-accurate system, the execution time is too long to be employed in real life. We study
the application-level software architecture to understand the essential computations, then
deploy the parallel application library by replacing computations in the software architecture
with the highly parallelized and optimized functions introduced in Chapters 5 and 6. The
functions we support cover only a subset of the computations, but these are the bottlenecks
of the system. We achieve 115× speedup in the training stage, and 119× speedup in the
deployment stage with comparable detection accuracy. As a result, we are able to detect
objects in a 0.15 mega pixel image in only three seconds. The technology we have developed
makes it possible and practical to employ this object recognition system in real life.

126

Chapter 8

Conclusions and Future Work

Object recognition is a major branch in the field of computer vision. If we can enable
computers to identify objects in images, we will be better able to make computers understand
the contents of images as well. However, state-of-the-art object recognition algorithms are
computationally-intensive. Worse, this computational cost grows with the number of object
categories to be recognized, the number of images for training and classification, and the
resolution of those images. For example, if we apply the object recognition system by Gu et
al. [61] on the PASCAL VOC benchmark [44], the training stage on 5011 images requires
529 tera floating point operations (FLOPs), and the classification stage on 4952 images
consumes 164 tera FLOPs. It takes years to finish these computations on even the best
available single-core desktop CPU system. This expensive computational cost becomes a
barrier to deploying these highly-accurate object recognition systems in real life. Therefore,
we must explore parallelism in these systems, and accelerate them on parallel platforms.

However, special expertise is required to parallelize and optimize a given computation
on a given parallel platform. Application developers understand the algorithms and com-
putations used in their applications, but lack the knowledge of parallelizing and optimizing
their code on parallel platforms. On the other hand, expert parallel programmers master
mapping computations to parallel platforms, but don’t understand the algorithms used in
the applications. As a result, an implementation gap exists between application developers
and expert parallel programmers. In order to bridge this gap, we propose developing a
parallel application library for object recognition systems.

8.1 Contributions

Here, we summarize the major contributions of this dissertation.

8.1.1 Application Patterns for Object Recognition

We perform pattern mining on 31 state-of-the-art object recognition papers selected from
CVPR 2007 through CVPR 2011, and conclude that only 15 application patterns are re-
quired to develop these systems. These 15 application patterns are convolution, histogram

127

accumulation, vector distance, quadratic optimization, graph traversal, eigen decomposi-
tion, k-means clustering, Hough transform, nonlinear optimization, meanshift clustering,
fast Fourier transform, singular value decomposition, convex optimization, k-medoids clus-
tering, and agglomerative clustering. These patterns therefore become the feature list of
the proposed parallel application library for object recognition. As long as we support these
patterns in our library, we are able to parallelize and optimize all 31 object recognition
systems under consideration.

8.1.2 Parallelizing and Optimizing Application Patterns

Parallelizing and optimizing a computation on a parallel platform is not trivial – a
systematic procedure is necessary to achieve this goal. We propose using Our Pattern Lan-
guage (OPL) [73] to architect a computation, and then employing this software architecture
to guide design space exploration. A design space can be divided into three layers: al-
gorithms, parallelization strategies, and platform parameters. The algorithm layer is the
superset over all valid transformations from input data to output data. The parallelization
strategy layer is the superset over all valid mappings from an algorithm to the underlying
parallel platform. The platform parameter layer is the superset over all valid configurations
of parameters used in a parallelization strategy.

We employ the exhaustive search strategy to optimize three application patterns. The
first is an eigensolver for the normalized cut algorithm, for which we employ the Lanc-
zos algorithm [12]. There are three major bottlenecks in the Lanczos algorithm, which
we have resolved through design space exploration. Sparse matrix vector multiplication
(SpMV) computation is optimized by representing the matrix using the diagonal format.
Reorthogonalization overhead is conquered by employing the no-reorthogonalization strat-
egy. Convergence checking overhead is reduced by performing that operation infrequently.
With these methods, we have achieved 280× speedup compared to the original serial MAT-
LAB solver. The second application pattern is breadth-first-search (BFS) graph traversal on
images. We propose using structured grids to replace the original BFS graph traversal com-
putation. This strategy results in 12 − 33× speedup compared to a serial implementation.
The third application pattern is contour histogram. We have experimented with different
parallelization strategies, and determined that parallel reduction is the best strategy for
this application pattern. With this, we have achieved 5− 30× speedup compared to a serial
implementation.

To improve the portability of the proposed parallel application library, we initiate the
OpenCL for OpenCV (OLOV) project. The goal of this project is to develop a collection of
autotuners to optimize computationally-intensive application patterns on GPU platforms.
This dissertation specifically contributes clSpMV and clPaDi autotuners to the project.

clSpMV is an autotuner for sparse matrix vector multiplication (SpMV) computation.
We propose using the Cocktail Format to represent sparse matrices. The Cocktail Format
is itself a collection of sparse matrix formats. A sparse matrix is partitioned into many
submatrices, each of which is represented by a specialized format. Currently, clSpMV sup-
ports nine sparse matrix formats: DIA, BDIA, ELL, SELL, CSR, COO, BELL, SBELL,

128

and BCSR. clPaDi determines the best representation of a sparse matrix, and optimizes the
SpMV kernel on the special representation. It achieves 40% better performance compared
to the Nvidia vendor-optimized code. It also performs 16.8% and 43.3% better compared
to all single formats on Nvidia and AMD platforms, respectively.

clPaDi is an autotuner for pair-wise distance computation. It allows the user to cus-
tomize a distance function using three operators – the element, reduction, and post-processing
operators. Based on the customized distance function, it finds the best blocking size on
the underlying platform. clPaDi achieves 650 giga floating point operations per second
(GFLOPS) with dot product distance and 320 GFLOPS with χ2 distance on an Nvidia
platform. It also achieves 450 GFLOPS and 405 GFLOPS for the two distance functions on
an AMD platform.

From these case studies, we illustrate the effectiveness of parallelizing and optimizing
application patterns by exploring the design space. We have achieved significant speedups
compared to serial implementations, and even compared to state-of-the-art parallel imple-
mentations. Following the same strategy to fully develop the parallel application library
will result in an optimized library for object recognition computations.

8.1.3 Developing a Parallel Object Recognition System Using the
Application Library

We employ the library functions we developed to optimize the region-based object recog-
nition system by Gu et al. [61], which is highly-accurate, but computationally very expen-
sive. We decompose the object recognition system with patterns to understand its software
architecture, and identify application patterns that match the functions in the parallel ap-
plication library. We then replace these patterns with our own highly-optimized parallel
functions. Experimental results show that we achieve 115× speedup in the training stage,
and 119× speedup in the deployment stage with comparable detection accuracy to [61]. As
a result, we are able to recognize objects in only three seconds. These improvements make
it practical to deploy this system in real life.

8.2 Future Work

In this dissertation, we demonstrate two different methods of library development. The
first optimizes specific computations on a specific platform. The three application patterns
discussed in Chapter 5 employ this strategy. This method is more narrowly-focused – no
user customization is available, and the underlying hardware platform is fixed. However,
there are still advantages to this development philosophy. For example, the design space
is significantly reduced because we need not worry about architectural differences between
different platforms. Moreover, because we do not provide user customizations, we also do not
need to create an abstract programming model that covers all variations of an application
pattern and enables end users to instantiate any subset of the application pattern. As
a result, the application patterns are simplified, and the library development procedure
can be accelerated. For a short-term goal, we would like to follow this method to expand

129

the parallel library with more optimized functions until we have full support for the 15
application patterns in Section 3.3.

The second method of library development uses autotuners to provide portable and flex-
ible solutions. The OLOV introduced in Chapter 6 employs this method. However, the
function optimization problem is more difficult. We need to understand the architectures of
different platforms, implement different optimization strategies for each, and design auto-
tuners to make dynamic decisions based on the underlying platform. Moreover, we need to
create an abstract programming model that enables users to instantiate any subset of the
application pattern. For example, in clPaDi we provide the abstract programming model
of three operators with which an end user can define arbitrary distance functions. This
development philosophy is more challenging, but also more general-purpose. An end user
can experiment with different ideas instead of using fixed functions. For our long-term goal,
we would like to expand the OLOV project by developing autotuners for all 15 application
patterns in Section 3.3.

In conclusion, for our short-term goal, we would like to expand our library to the point
that we can parallelize all 31 object recognition systems. Our long term goal is to provide
autotuners with which users can develop their own parallel object recognition systems on
any parallel platform.

8.3 Summary

We see the computational challenge in object recognition research, and believe the prob-
lem will only continue to grow. It is therefore essential for computer vision researchers to
take advantage of massively-parallel hardware platforms to accelerate their applications. To
overcome the difficulty of parallel programming, this dissertation proposes a parallel appli-
cation library to help computer vision researchers parallelize their applications. Our initial
results are encouraging: we have used our library to accelerate a computationally-intensive
object recognition by two orders of magnitude. By expanding the parallel application li-
brary to provide more functionalities, we are confident that it will become a key development
toolkit for all existing and future object recognition systems.

130

Bibliography

[1] Yannick Allusse, Patrick Horain, Ankit Agarwal, and Cindula Saipriyadarshan.
GpuCV: an opensource GPU-accelerated framework for image processing and com-
puter vision. In Proceedings of the 16th ACM International Conference on Multimedia,
MM ’08, pages 1089–1092, New York, NY, USA, 2008. ACM.

[2] AMD. ATI Stream Computing User Guide, 2008.

[3] AMD. AMD Accelerated Parallel Processing OpenCL Programming Guide, 2011.
http://developer.amd.com/zones/OpenCLZone.

[4] AMD. AMD Accelerated Parallel Processing BLAS Library, 2012. http://

developer.amd.com/libraries/appmathlibs/Pages/default.aspx.

[5] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[6] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection
and articulated pose estimation. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1014 –1021, June 2009.

[7] P. Arbeláez, M. Maire, Charles Fowlkes, and J. Malik. From contours to regions:
An empirical evaluation. In Proc. International Conference on Computer Vision and
Pattern Recognition, 2009.

[8] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM, 45(6):891–923, 1998.

[9] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel comput-
ing research: A view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[10] S. Baden, N. Chrisochoides, D. Gannon, and M. Norman. Structured Adaptive Mesh
Refinement (SAMR) Grid Methods. Springer, London, UK, 1999.

http://developer.amd.com/zones/OpenCLZone
http://developer.amd.com/libraries/appmathlibs/Pages/default.aspx
http://developer.amd.com/libraries/appmathlibs/Pages/default.aspx

131

[11] D.A. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first
search and st-connectivity on the cray mta-2. In ICPP, 2006.

[12] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the
solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, 2000.

[13] O. Barinova, V. Lempitsky, and P. Kohli. On detection of multiple object instances
using hough transforms. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 2233 –2240, June 2010.

[14] Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication
on throughput-oriented processors. In Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, pages 18:1–18:11, New York,
USA, 2009.

[15] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. In Journal of Computational Physics, 1984.

[16] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing ma-
trix multiply using phipac: a portable, high-performance, ansi c coding methodology.
Technical report, 1996.

[17] Guy Blelloch. Scans as primitive parallel operations. IEEE Transactions on Comput-
ers, 38:1526–1538, 1987.

[18] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image
classification. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1 –8, June 2008.

[19] Rajesh Bordawekar and Muthu Manikandan Baskaran. Optimizing sparse matrix-
vector multiplication on GPUs. In Ninth SIAM Conference on Parallel Processing for
Scientific Computing, 2008.

[20] Lubomir Bourdev and Jitendra Malik. Poselets: Body part detectors trained using 3D
human pose annotations. In International Conference on Computer Vision (ICCV),
2009.

[21] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[22] E. Breen and R. Jones. Attribute openings, thinnings, and granulometries. In CVIU,
volume 64, pages 337–389, 1999.

[23] A. Buluc, and, S. Williams, L. Oliker, and J. Demmel. Reduced-bandwidth multi-
threaded algorithms for sparse matrix-vector multiplication. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 721–733, may 2011.

[24] David R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1997.

132

[25] Bryan Catanzaro. Compilation Techniques for Embedded Data Parallel Languages.
PhD thesis, EECS Department, University of California, Berkeley, May 2011.

[26] Bryan Catanzaro, Bor-Yiing Su, Narayanan Sundaram, Yunsup Lee, Mark Murphy,
and Kurt Keutzer. Efficient high quality image contour detection. In International
Conference on Computer Vision, September 2009.

[27] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of sparse
matrix-vector multiply on GPUs. In Proceedings of the 15th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 115–126, New York,
USA, 2010.

[28] Jike Chong. Pattern-Oriented Application Frameworks for Domain Experts to Effec-
tively Utilize Highly Parallel Manycore Microprocessors. PhD thesis, EECS Depart-
ment, University of California, Berkeley, Dec 2010.

[29] S. Barry Cooper. Computability Theory. CRC Press, 2004.

[30] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. In-
troduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[31] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,
20(3):273–297, 1995.

[32] Jane K. Cullum and Ralph A. Willoughby. Lanczos Algorithms for Large Symmetric
Eigenvalue Computations. Vol. I: Theory. SIAM, 2002.

[33] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In International Conference on Computer Vision and Pattern Recognition, volume 2,
pages 886–893, June 2005.

[34] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz.
CPU DB: recording microprocessor history. Commun. ACM, 55(4):55–63, April 2012.

[35] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization and
performance modeling of stencil computations on modern microprocessors. In SIREV,
volume 51 of 1, pages 129–159, 2009.

[36] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter,
Leonid Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil compu-
tation optimization and auto-tuning on state-of-the-art multicore architectures. In
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages
4:1–4:12, Piscataway, NJ, USA, 2008. IEEE Press.

[37] T. A. Davis and Y. Hu. University of florida sparse matrix collection. 38(1), 2011.
http://www.cise.ufl.edu/research/sparse/matrices.

http://www.cise.ufl.edu/research/sparse/matrices

133

[38] Hongli Deng, Wei Zhang, E. Mortensen, T. Dietterich, and L. Shapiro. Principal
curvature-based region detector for object recognition. In Computer Vision and Pat-
tern Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1 –8, June 2007.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In Proc. International Conference on Computer Vision
and Pattern Recognition, 2009.

[40] T. Deselaers and V. Ferrari. Global and efficient self-similarity for object classification
and detection. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 1633 –1640, June 2010.

[41] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Med-
ina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, Eric
Darve, Juan Alonso, and Pat Hanrahan. Liszt: a domain specific language for build-
ing portable mesh-based pde solvers. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’11, pages
9:1–9:12, New York, NY, USA, 2011. ACM.

[42] Ulrich Drepper. What every programmer should know about memory, 2007.

[43] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack
Dongarra. From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming. Parallel Comput., 38(8):391–407, August 2012.

[44] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html, 2007.

[45] Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second
order information for training support vector machines. J. Mach. Learn. Res., 6:1889–
1918, 2005.

[46] L. Fei-Fei, F. Fergus, and P. Perona. Learning generative visual models from few
training examples: an incremental bayesian approach testing on 101 object categories.
In Workshop on Generative-Model Based Vision, CVPR, 2004.

[47] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multi-
scale, deformable part model. In CVPR, 2008.

[48] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image seg-
mentation. International Journal of Computer Vision, 59(2), September 2004.

[49] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction
for human pose estimation. In CVPR, 2008.

[50] V. Ferrari, T. Tuytelaars, and L. Van Gool. Object detection by contour segment
networks. In ECCV, May 2006.

134

[51] Joseph A. Fisher. Retrospective: very long instruction word architectures and the
eli-512. In 25 years of the international symposia on Computer architecture (selected
papers), ISCA ’98, pages 34–36, New York, NY, USA, 1998. ACM.

[52] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for
the fft. pages 1381–1384. IEEE, 1998.

[53] James Fung, Steve Mann, and Chris Aimone. OpenVIDIA: Parallel GPU Computer
Vision. In Proceedings of the ACM Multimedia, pages 849–852, November 2005.

[54] J. Gall and V. Lempitsky. Class-specific hough forests for object detection. In Com-
puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
1022 –1029, June 2009.

[55] Google Inc. Google Goggles, 2011. http://www.google.com/mobile/goggles/.

[56] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw., 34(3):12:1–12:25, May 2008.

[57] D. Gregor and A. Lumsdaine. The parallel bgl: A generic library for distributed graph
computations. In POOSC, 2005.

[58] Dominik Grewe and Anton Lokhmotov. Automatically generating and tuning GPU
code for sparse matrix-vector multiplication from a high-level representation. In Pro-
ceedings of the Fourth Workshop on General Purpose Processing on Graphics Process-
ing Units, pages 12:1–12:8, New York, USA, 2011.

[59] Matthias Gries and Kurt Keutzer. Building ASIPs: The Mescal Methodology. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[60] R. G Grimes, D. R. Kincaid, and D. M. Young. Itpack 2.0 user’s guide. Technical
Report CNA-150, University of Texas, Austin, TX, USA, August 1979.

[61] C. Gu, J. Lim, P. Arbeláez, and J. Malik. Recognition using regions. In Proc. Inter-
national Conference on Computer Vision and Pattern Recognition, 2009.

[62] M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learning
for image classification. In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 902 –909, June 2010.

[63] Ping Guo and Liqiang Wang. Auto-tuning CUDA parameters for sparse matrix-
vector multiplication on GPUs. In International Conference on Computational and
Information Sciences (ICCIS), pages 1154–1157, 2010.

[64] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum (scan)
with CUDA. In Hubert Nguyen, editor, GPU Gems 3. Addison Wesley, August 2007.

http://www.google.com/mobile/goggles/

135

[65] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2006.

[66] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun. ACM,
29(12):1170–1183, December 1986.

[67] Steven C. H. Hoi, Michael R. Lyu, and Edward Y. Chang. Learning the unified kernel
machines for classification. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’06, pages 187–196, New
York, NY, USA, 2006. ACM.

[68] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework
for sparse matrix kernels. International Journal of High Performance Computing
Applications, pages 18:135–18:158, February 2004.

[69] Intel. Intel core i7-920 processor, November 2008. http://ark.intel.com/products/
37147/Intel-Core-i7-920-Processor.

[70] Intel. Intel Advanced Vector Extensions Programming Reference. 2009. http://

software.intel.com/en-us/avx.

[71] Mike Johnson. Superscalar Microprocessor Design. Prentice-Hall, 1991.

[72] Capers Jones. Programming Productivity. Mcgraw-Hill, 1986.

[73] Kurt Keutzer and Tim Mattson. A Design Pattern Language for Engineering (Par-
allel) Software. Intel Technology Journal, Addressing the Challenges of Tera-scale
Computing, 13(4), 2010.

[74] Gunhee Kim, C. Faloutsos, and M. Hebert. Unsupervised modeling of object categories
using link analysis techniques. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1 –8, June 2008.

[75] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond sliding windows: Object
localization by efficient subwindow search. In CVPR, 2008.

[76] C.H. Lampert. Partitioning of image datasets using discriminative context informa-
tion. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1 –8, June 2008.

[77] Y.J. Lee and K. Grauman. Object-graphs for context-aware category discovery. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
1 –8, June 2010.

[78] Thomas Leung and Jitendra Malik. Contour continuity in region based image segmen-
tation. In Proc. European Conference on Computer Vision, pages 544–559. Springer-
Verlag, 1998.

http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor
http://software.intel.com/en-us/avx
http://software.intel.com/en-us/avx

136

[79] Yinan Li, Jack Dongarra, and Stanimire Tomov. A note on auto-tuning gemm for
GPUs. In Proceedings of the 9th International Conference on Computational Science:
Part I, ICCS ’09, pages 884–892, Berlin, Heidelberg, 2009. Springer-Verlag.

[80] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, November 2004.

[81] M. Maire, P. Arbeláez, C. Fowlkes, and J. Malik. Using contours to detect and localize
junctions in natural images. Proc. International Conference on Computer Vision and
Pattern Recognition, pages 1–8, June 2008.

[82] S. Maji, A.C. Berg, and J. Malik. Classification using intersection kernel support
vector machines is efficient. In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1 –8, June 2008.

[83] S. Maji and J. Malik. Object detection using a max-margin hough transform. In
CVPR, 2009.

[84] Jitendra Malik, Serge Belongie, Jianbo Shi, and Thomas Leung. Textons, contours and
regions: Cue integration in image segmentation. In Proc. International Conference on
Computer Vision, page 918, Washington, DC, USA, 1999. IEEE Computer Society.

[85] T. Malisiewicz and A. Efros. Recognition by association via learning per-exemplar
distances. In CVPR, 2008.

[86] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries
using brightness and texture. In Advances in Neural Information Processing Systems,
volume 14, 2002.

[87] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natu-
ral images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In ICCV, volume 2, pages 416–423, July 2001.

[88] David R. Martin, Charless C. Fowlkes, and Jitendra Malik. Learning to detect natural
image boundaries using local brightness, color, and texture cues. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26:530–549, 2004.

[89] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel pro-
gramming. Addison-Wesley Professional, first edition, 2004.

[90] F. Meyer. Topographic distance and watershed lines. In Signal Processing, 1994.

[91] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.R. Mullers. Fisher discriminant
analysis with kernels. In Neural Networks for Signal Processing IX, 1999. Proceedings
of the 1999 IEEE Signal Processing Society Workshop, pages 41 –48, aug 1999.

137

[92] Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. Automatically tun-
ing sparse matrix-vector multiplication for GPU architectures. High Performance
Embedded Architectures and Compilers, pages 111–125, 2010.

[93] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics
Magazine, 38(8), April 1965.

[94] Neeraj Kumar et al. Leafsnap: An Electronic Field Guide, 2011. http://leafsnap.

com/.

[95] E. Nowak and F. Jurie. Learning visual similarity measures for comparing never
seen objects. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE
Conference on, pages 1 –8, June 2007.

[96] Nvidia. Compute Unified Device Architecture Programming Guide, 2007. http:

//nvidia.com/cuda.

[97] Nvidia. CUDA Basic Linear Algebra Subroutines, 2012. http://developer.nvidia.
com/cuda/cublas.

[98] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation
of the spatial envelope. In IJCV, pages 145–175, 2001.

[99] OpenMP. OpenMP API specification for parallel programs. http://openmp.org.

[100] David A. Padua, editor. Encyclopedia of Parallel Computing. Springer, 2011.

[101] John C. Platt. Fast training of support vector machines using sequential minimal
optimization. In Advances in kernel methods: support vector learning, pages 185–208.
MIT Press, Cambridge, MA, USA, 1999.

[102] William Lester Plishker. Automated Mapping of Domain Specific Languages to Appli-
cation Specific Multiprocessors. PhD thesis, EECS Department, University of Califor-
nia, Berkeley, Oct 2006.

[103] Qualcomm Inc. Vuforia — Augmented Reality — Qualcomm, 2012. http://www.

qualcomm.com/solutions/augmented-reality.

[104] Linda Rising. The Patterns Handbook: Techniques, Strategies, and Applications. Cam-
bridge University Press, 1998.

[105] Randi J. Rost. OpenGL(R) Shading Language (2nd Edition). Addison-Wesley Pro-
fessional, 2005.

[106] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using multiple
segmentations to discover objects and their extent in image collections. In CVPR,
2006.

http://leafsnap.com/
http://leafsnap.com/
http://nvidia.com/cuda
http://nvidia.com/cuda
http://developer.nvidia.com/cuda/cublas
http://developer.nvidia.com/cuda/cublas
http://openmp.org
http://www.qualcomm.com/solutions/augmented-reality
http://www.qualcomm.com/solutions/augmented-reality

138

[107] D. P. Scarpazza, O. Villa, and F. Petrini. Efficient breadth-first search on the Cell/BE
processor. IEEE Transactions on Parallel and Distributed Systems, 19(10):1381–1395,
2008.

[108] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 22(8):888–905, Aug 2000.

[109] Youtube Statistics. Youtube statistics, May 2012. http://www.youtube.com/t/

press_statistics.

[110] Bor-Yiing Su, Tasneem Brutch, and Kurt Keutzer. Parallel BFS graph traversal on
images using structured grid. In Proc. International Conference on Image Processing,
pages 4489–4492, September 2010.

[111] Bor-Yiing Su, T.G. Brutch, and K. Keutzer. A parallel region based object recognition
system. In IEEE Workshop on Applications of Computer Vision (WACV), pages 81
–88, jan. 2011.

[112] Bor-Yiing Su and Kurt Keutzer. clspmv: A cross-platform opencl spmv framework on
GPUs. In Proceedings of the 26th ACM international conference on Supercomputing,
ICS ’12, pages 353–364, New York, NY, USA, 2012. ACM.

[113] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2011.

[114] TBB. Threading Building Blocks for open source. http://

threadingbuildingblocks.org.

[115] S. Thakkur and T. Huff. Internet streaming simd extensions. Intel Technology Journal
Q2, 32(12):26–34, dec 1999.

[116] The Khronos OpenCL Working Group. OpenCL - The open standard for parallel
programming of heterogeneous systems, 2011. http://www.khronos.org/opencl.

[117] R. Urquhart. Graph theoretical clustering based on limited neighborhood sets. In
Pattern Recognition, volume 15, pages 173–187, 1982.

[118] F. Vázquez, G. Ortega, J.J. Fernández, and E.M. Garzón. Improving the perfor-
mance of the sparse matrix vector product with GPUs. In IEEE 10th International
Conference on Computer and Information Technology (CIT), pages 1146–1151, 2010.

[119] Vasily Volkov and James W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC
’08, pages 31:1–31:11, Piscataway, NJ, USA, 2008. IEEE Press.

[120] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of automatically tuned
sparse matrix kernels. In Proceedings of SciDAC 2005, Journal of Physics: Conference
Series, June 2005.

http://www.youtube.com/t/press_statistics
http://www.youtube.com/t/press_statistics
http://threadingbuildingblocks.org
http://threadingbuildingblocks.org
http://www.khronos.org/opencl

139

[121] Richard W. Vuduc. Automatic performance tuning of sparse matrix kernels. PhD
thesis, University of California, Berkeley, CA, USA, January 2004.

[122] Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimiza-
tion of software and the atlas project. Parallel Computing, 27:2001, 2000.

[123] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and
James Demmel. Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In Proceedings of the ACM/IEEE conference on Supercomputing,
pages 38:1–38:12, New York, USA, 2007.

[124] Samuel Webb Williams, Andrew Waterman, and David A. Patterson. Roofline: An
insightful visual performance model for floating-point programs and multicore archi-
tectures. Technical Report UCB/EECS-2008-134, EECS Department, University of
California, Berkeley, Oct 2008.

[125] S.A.J. Winder and M. Brown. Learning local image descriptors. In Computer Vision
and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1 –8, June
2007.

[126] Kesheng Wu and Horst Simon. Thick-restart lanczos method for large symmetric
eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, pages
Vol.22, No. 2, pp. 602–616, 2001.

[127] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory
and its application to image segmentation. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, volume 11, pages 1101–1113, 1993.

[128] Y. Xia and V. K. Prasanna. Topologically adaptive parallel breadth-first search on
multicore processors. In PDCS, 2009.

[129] Liu Yang, Rong Jin, R. Sukthankar, and F. Jurie. Unifying discriminative visual code-
book generation with classifier training for object category recognition. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1 –8,
June 2008.

[130] Shulin Yang, Mei Chen, D. Pomerleau, and R. Sukthankar. Food recognition using
statistics of pairwise local features. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2249 –2256, June 2010.

[131] Saad Yousef. Iterative methods for sparse linear systems. Society for Industrial and
Applied Mathematics, 2003.

[132] C.T. Zahn. Graph-theoretic methods for detecting and describing gestalt clusters. In
IEEE Transactions on Computing, volume 20, pages 68–86, 1971.

140

[133] Hao Zhang, A.C. Berg, M. Maire, and J. Malik. Svm-knn: Discriminative nearest
neighbor classification for visual category recognition. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2126 –
2136, 2006.

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Thesis Contributions
	Thesis Outline

	Background
	Object Recognition
	Computational Cost of Feature Extraction
	Computational Cost of Classification
	Computational Cost of Real Object Recognition Systems
	Solution to the Bursting Requirements of Computation: Parallel Programming

	Challenges in Parallel Programming
	Variation of Hardware Platforms
	Variation of Programming Models
	Finding Parallelism in Algorithms
	Memory Optimizations
	Scalability and Amdahl's Law
	Load Balancing
	Concurrency Bugs

	The Implementation Gap
	Prior Work
	Summary

	Parallel Application Library for Object Recognition
	Parallel Application Library
	Application-Level Software Architecture
	Application Patterns for Object Recognition
	Summary

	Pattern-Oriented Design Space Exploration
	Implementation-Level Software Architecture
	Patterns and Our Pattern Language
	Architecting Computations Using Patterns

	Design Space
	The Design Space of Algorithms
	The Design Space of Parallelization Strategies
	The Design Space of Platform Parameters

	Design Space Exploration
	Exhaustive Search
	Autotuning

	Summary

	Case Studies of the Parallel Application Library for Object Recognition
	Eigensolver for the Normalized Cut Algorithm
	Exploring the Design Space of Algorithms
	Exploring the Design Space of Parallelization Strategies
	Experimental Results

	Breadth-First-Search Graph Traversal on Images
	Exploring the Design Space of Algorithms
	Exploring the Design Space of Parallelization Strategies
	Experimental Results

	The Contour Histogram
	Exploring the Design Space of Algorithms
	Exploring the Design Space of Parallelization Strategies
	Experimental Results

	Summary

	The OpenCL for OpenCV (OLOV) Library
	Overview of OLOV
	OpenCL Programming Model
	The Sparse Matrix Vector Multiplication Autotuner
	Exploring the Design Space of Algorithms
	Exploring the Design Space of Parallelization Strategies
	Exploring the Design Space of Platform Parameters
	Experimental Results

	The Pair-Wise Distance Computation Autotuner
	Exploring the Design Space of Algorithms
	Exploring the Design Space of Parallelization Strategies
	Exploring the Design Space of Platform Parameters
	Experimental Results

	Summary

	Developing Parallel Applications Using the Parallel Application Library
	The Region-Based Object Recognition System
	Parallelizing the Object Recognition System
	The Software Architecture of the Object Recognition System
	Using the Parallel Application Library to Parallelize and Optimize the Object Recognition System
	Experimental Results

	Summary

	Conclusions and Future Work
	Contributions
	Application Patterns for Object Recognition
	Parallelizing and Optimizing Application Patterns
	Developing a Parallel Object Recognition System Using the Application Library

	Future Work
	Summary

	Bibliography

