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Abstract
Large-scale parallel machines are programmed mainly with the
single program, multiple data (SPMD) model of parallelism. This
model has advantages of scalability and simplicity, combining in-
dependent threads of execution with global collective communi-
cation and synchronization operations. However, the model does
not fit well with divide-and-conquer parallelism or hierarchical ma-
chines that mix shared and distributed memory. In this paper, we
define a hierarchical team mechanism that retains the performance
and analysis advantages of SPMD parallelism while supporting hi-
erarchical algorithms and machines. We demonstrate how to ensure
alignment of collective operations on teams, eliminating a class of
deadlocks. We present application case studies showing that the
team mechanism is both elegant and powerful, enabling users to
exploit the hardware features at different levels of a hierarchical
machine and resulting in significant performance gains.

1. Introduction
Parallel languages use either dynamic or static models of par-
allelism, with dynamic threading models dominating small-scale
shared memory programming and the static single program, multi-
ple data (SPMD) model dominating large scale distributed memory
machines. A SPMD program is launched with a fixed number of
threads, typically one per core, that execute throughout the pro-
gram. The SPMD model dominates programming at scale because
it encourages “parallel thinking” throughout the program execu-
tion, exposing the actual degree of available parallelism. It also
naturally leads to good locality and can be implemented by sim-
ple, low-overhead runtime systems. The model of communication
between threads is orthogonal to choice of control, and both mes-
sage passing models like MPI [17] and a number of partitioned
global address space (PGAS) languages like UPC [7], Titanium
[22], and Co-Array Fortran [19] use the SPMD model by default.
Previous work on Titanium also shows that the simplicity of the
SPMD model can be used avoid certain classes of deadlocks, stati-
cally detect data races, and perform a set of optimizations specific
to the parallel setting [14, 15].

While SPMD has proven to be a valuable programming model,
its restrictiveness does have drawbacks. Algorithms that divide
tasks among threads or that recursively subdivide do not fit well
into a model with a fixed number of threads executing the same
code. SPMD programming languages also tend to have a relatively
flat machine model, with no distinction between threads that are
located nearby on a large-scale machine and threads that are fur-
ther apart. This lack of awareness of the underlying machine hier-
archy results in communication costs that are not transparent to the
programmer. Similarly, it can be difficult to program for heteroge-
neous machines using the SPMD model. Finally, SPMD programs
have difficulty coping with variable levels of runtime parallelism
and cannot easily perform dynamic load balancing.

In this paper, we address some of the above shortcomings by
extending the SPMD model with user-defined hierarchical teams,
which are subsets of threads that cooperatively execute pieces of
code. We introduce a data structure to represent teams, library func-
tions to facilitate team creation, and language constructs that oper-
ate on teams. We demonstrate how to ensure textual alignment of
collectives, eliminating many forms of deadlock involving teams.
Our implementation is in the context of the Titanium program-
ming language, and we evaluate the language additions through
case studies on two applications. We demonstrate that hierarchical
teams are useful for expressing computations that naturally subdi-
vide, without having to create and destroy logical threads, retaining
the advantages of parallel thinking. We also show that hierarchi-
cal teams can be used to optimize for the varying communication
characteristics of modern, hierarchical parallel machines, achieving
significant performance improvements.

2. Background
The single program, multiple data (SPMD) model of parallelism
consists of a set of parallel threads that run the same program. Un-
like in dynamic task parallelism, the set of threads is fixed through-
out the entire program execution. The threads can be executing at
different points of the program, though collective operations such
as barriers can synchronize the processes at a particular point in the
program.

As an example of SPMD code, consider the following written
in the Titanium language:

public static void main (String [ ] args ) {
System .out .println ("Hello from thread " +

Ti .thisProc ( ) ) ;
Ti .barrier ( ) ;
if (Ti .thisProc ( ) == 0)
System .out .println ("Done." ) ;

}

A fixed number of threads, specified by the user on program start,
all enter main(). They first print out a message with their thread IDs,
which can appear to the user in any order since the print statement
is not synchronized. Then the threads execute a barrier, which
prevents them from proceeding until all threads have reached it.
Finally, thread 0 prints out another message that appears to the user
after all previous messages due to the barrier synchronization.

SPMD languages occupy a middle ground between task and
data parallelism; they are more structured and therefore easier to
program and more analyzable than task parallel languages, but are
more flexible and provide better performance than data parallel
languages.

Prior work has shown the benefit of assuming textual alignment
of collectives [14]. Collectives are textually aligned if all threads
execute the same textual sequence of collective operations. For ex-
ample, the following code violates textual alignment, since differ-
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ent threads take different branches and therefore reach different tex-
tual instances of a collective:

if (Ti .thisProc ( ) % 2 == 0) / / even t h r e a d s
Ti .barrier ( ) ;

else / / odd t h r e a d s
Ti .barrier ( ) ;

Discussions with parallel application experts indicate that most
applications do not contain unaligned collectives, and most of those
that do can be modified to do without them. Our own survey of eight
NAS Parallel Benchmarks [4] using MPI demonstrated that all of
them only use textually aligned collectives. Prior work has also
demonstrated how to enforce textual collective alignment using
dynamic checks [16].

2.1 Titanium
Titanium is an explicitly parallel dialect of Java that uses the SPMD
model of parallelism and the PGAS memory model. The parti-
tioned global address space (PGAS) model allows any thread to di-
rectly access memory on other threads, though with a performance
penalty. As an example, consider the following Titanium code:

int [ ] local mydata = { 0 , 1 , . . . } ;
int [ ] data0 = broadcast mydata from 0 ;
for (int i = 0 ; i < data0 .length ; i++)

. . . data0 [i ] . . .

In this code, each thread creates an integer array in its own memory
space. Thread 0 then broadcasts a pointer to its array to the other
threads, which can then access elements of thread 0’s array, albeit
with a possible performance penalty.

As can be seen in the example above, PGAS languages tend to
expose some degree of memory hierarchy to the programmer. In Ti-
tanium, pointers can be thread local, node local, or global. Thread
local pointers can only address data on the same thread1, node lo-
cal pointers can only reference data in the same physical address
space, and global pointers can point to any object in the program.
By default, pointers in Titanium are global, and the local qualifier
specifies that a pointer is node local. Other PGAS languages such
as UPC only have two levels of hierarchy.

While Titanium does have a memory hierarchy, like most other
SPMD languages, it does not have a concept of execution hierarchy.
Some languages such as UPC are moving towards an execution
model based on teams [3], in which the set of program threads
can be divided into smaller subsets that cooperatively run pieces
of code. The GASNet [6] runtime layer used in Titanium now
has experimental support for teams and team collectives. Unlike
the teams in our work, teams in both UPC and GASNet are non-
hierarchical groupings of threads.

Previous work has shown that PGAS languages in general [23]
and Titanium specifically [24] provide an excellent combination of
application performance and programmer productivity, justifying
our decision to pursue hierarchical extensions to parallel program-
ming in the context of the Titanium language.

2.2 Related Work
Many current languages besides the SPMD languages mentioned
above are locality-aware, supporting two levels of machine hierar-
chy. In the X10 language [20], the memory and space is composed
of places, and tasks execute at specific places. Remote data can
only be accessed by spawning a task at the target place. Chapel [8]
has a similar concept of locales, and it allows data structures to be
distributed across locales. Data parallel operations over such data

1 Thread local pointers in Titanium are actually only used by program
analysis and are not exposed in the type system.

structures spawn tasks at each locale to locally operate on data, and
tasks can also be spawned at particular locales.

Only a handful of existing parallel languages incorporate hier-
archical programming constructs beyond two levels of hierarchy.

In the Fortress language [2], memory is divided into an arbitrary
hierarchy of regions. Data structures can be spread across multiple
regions, and tasks can be placed in particular regions by the pro-
grammer.

The Sequoia project [10] incorporates machine hierarchy in its
language model. A Sequoia program consists of a hierarchy of tasks
that get mapped to the computational units in a hierarchical ma-
chine. Sequoia has two types of tasks: inner tasks that decompose
computations into subtasks and leaf tasks that perform actual com-
putation. Both the height and width of the resulting task hierarchy
can be controlled by the user when starting the program. Communi-
cation between tasks is very limited: only parent and child tasks can
communicate, through the use of parameters. This restriction on
communication as well as the lack of collective operations make the
Sequoia model unsuitable for many applications written in SPMD
and PGAS languages.

The hierarchical place trees abstraction [21] extends the Sequoia
model to allow more general communication between tasks and
incorporates X10’s ability to spawn tasks at specific locations in a
machine. The programming model, however, is still essentially task
parallel, with task queues at each location to run tasks. This model
both lacks the simple, analyzable structure of SPMD parallelism
and the latter’s mechanisms for cooperative synchronization and
communication.

Hierarchically tiled arrays (HTAs) [5] allow data structures to
be hierarchically decomposed to match a target machine’s layout.
A program can then operate on these data structures in an essen-
tially data parallel manner, with the compiler and runtime mapping
execution according to the data layout. Like other data parallel lan-
guages, however, the HTA model is quite restrictive, as it is difficult
to write applications with irregular task or communication struc-
tures.

The HotSLAW library for UPC [18] extends the SPMD model
of UPC with dynamic task parallelism. Dynamically created tasks
are executed using task queues on a subset of the UPC threads.
HotSLAW includes a hierarchical work stealing algorithm using
user-defined, hierarchical locality domains for load balancing. Hi-
erarchical load balancing [25] has also been implemented in the
context of the Charm++ programming language [12].

The concept of thread teams has been gaining popularity in the
SPMD community. MPI has communicators that allow a subset
of threads to perform collective operations, and other communi-
cation layers and programming languages have recently introduced
or are in the process of introducing similar team constructs. How-
ever, MPI communicators place no restriction on the underlying
thread structure of a team, and a thread can be a part of multiple
communicators concurrently, making it easy to deadlock a program
through improper use of communicators. Even correct use of multi-
ple communicators can be difficult for programmers to understand
and compilers to analyze, as they must reason about the order of
communicator calls on each thread. Finally, communicators do not
have a hierarchical structure, so they cannot easily reflect the layout
of the underlying machine.

3. Language Extensions
Before discussing the Titanium team extensions, we first give an
overview of the design philosophy behind the additions. We then
describe the team representation, followed by the new language
constructs that operate on teams.
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3.1 Design Goals
In designing the new additions to the Titanium language, we had a
few goals in mind for the extensions to satisfy: safety, composabil-
ity, support for collectives, and performance.

1. Safety. Team implementations in other SMPD languages and
frameworks do not generally impose any restrictions on their
use. This can lead to circular dependencies in team operations,
resulting in deadlock. For example, a set of threads may attempt
to perform a collective operation on one team, while other
threads that they depend on attempt to perform a collective
operation on a different team that overlaps with the first set.
The Titanium team extensions should prevent such circular
dependencies. It also should ensure that team collectives are
textually aligned on all threads in the relevant team, as it does
for existing global collectives.

2. Composability. Existing code running in the context of a par-
ticular team should behave as if the entire world consisted of
just the threads in that team, with thread ranks as specified by
the team. This is to facilitate composition of different tasks, so
that a subset of threads can be assigned to each of them. At the
same time, the team library should provide new programs with
the ability to interact with threads outside of an assigned team.

3. Support for Collectives. One of the key features of the SPMD
programming model is the ability of threads to communicate
and synchronize through collective operations, such as reduc-
tions and barriers. Without support for collective operations
over teams, users would have to hand-write their own imple-
mentations, requiring extensive development time and resulting
in suboptimal performance, as in the conjugate gradient appli-
cation described in §5.2.

4. Performance. Team operations should not adversely affect ap-
plication performance. This requires that team usage opera-
tions, which may be invoked many times throughout an appli-
cation run, be as lightweight as possible, even at the expense of
team creation operations that are called much less frequently.

3.2 Team Representation
In order to represent a team hierarchy, we introduced a new Team
object, as shown in Figure 1. A Team represents a portion of
a team hierarchy, containing references to its parent and child
teams as well as its member threads. Like MPI or GASNet groups,
Team objects specify team structure without forcing a program to
actually execute using that structure; this is useful when a program
uses multiple different team structures or repeatedly uses the same
structure, as in §5.2, and also allows team data structures to be
manipulated as first-class objects.

Knowledge of the physical layout of threads in a program al-
lows a programmer to minimize communication costs, so a new
method Ti.defaultTeam() returns a special team that corresponds
to the layout of threads at runtime. Currently, it merely groups to-
gether threads that share memory, though future use of the hwloc li-
brary [1] will provide a more representative layout. The invocation
Ti.currentTeam() returns the current team in which the calling
thread is participating.

Figure 2 shows the team hierarchy created by the following
code, when there are a total of twelve threads:

Team t = new Team ( ) ;
t .splitTeam ( 3 ) ;
int [ ] [ ] ids = new int [ ] [ ] {{0 , 2 , 1} , {3}} ;
for (int i = 0 ; i < t .numChildren ( ) ; i++)
t .child (i ) . splitTeamRelative (ids ) ;

public class Team {
/ / C r e a t e team wi th a l l t h r e a d s i n c u r r e n t l y
/ / e x e c u t i n g team .
public Team ( ) ;
/ / R e t u r n s t h e i t h c h i l d o f t h i s team .
public Team child (int i ) ;
/ / Number o f c h i l d teams .
public int numChildren ( ) ;
/ / Rank of t h i s team i n i t s p a r e n t .
public int teamRank ( ) ;
/ / Number o f t h r e a d s i n t h i s team .
public int size ( ) ;
/ / The c h i l d team c o n t a i n i n g t h e c a l l i n g t h r e a d .
public Team myChildTeam ( ) ;
/ / S p l i t team i n t o n e q u a l l y−s i z e d subteams ,
/ / w i th t h r e a d s r e t a i n i n g r e l a t i v e r a n k s .
public void splitTeam (int n ) ;
/ / S p l i t team i n t o n c h i l d teams , w i th t h r e a d s
/ / a s s i g n e d t o sub teams i n b l o c k c y c l i c o r d e r .
public void splitTeamBlockCyclic (int n , int sz ) ;
/ / S p l i t team i n t o t h e g i v e n subteams , w i th
/ / r a n k s s p e c i f i e d r e l a t i v e t o t h i s team .
public void splitTeamRelative (int [ ] [ ] teams ) ;
/ / C o l l e c t i v e s p l i t o p e r a t i o n . A s s i g n s t h r e a d s
/ / t o sub teams a c c o r d i n g t o c o l o r and t h e g i v e n
/ / r ank r e l a t i v e t o o t h e r t h r e a d s .
public single void splitTeamAll (int color ,

int relrank ) ;
/ / C o l l e c t i v e s p l i t o p e r a t i o n . D i v i d e s t h r e a d s
/ / i n t o sub teams of t h r e a d s t h a t s h a r e memory ,
/ / w i th t h e g i v e n r e l a t i v e r ank .
public single void splitTeamSharedMem (int rel ) ;
/ / C o l l e c t i v e o p e r a t i o n . C o n s t r u c t s a new team
/ / i n which each subteam c o n s i s t s o f a s i n g l e
/ / t h r e a d from each subteam of t h i s team .
public single Team single makeTransposeTeam ( ) ;
/ / I n i t i a l i z e r u n t i m e s t r u c t u r e s r e q u i r e d by
/ / t h i s team and run c o n s i s t e n c y c he ck s .
public single void initialize (boolean check ) ;

}

Figure 1. Relevant functions from the Titanium Team class.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

0, 1, 2, 3 4, 5, 6, 7 8, 9, 10, 11

0, 2, 1 4, 6, 5 8, 10, 9 1173

Figure 2. An example of a team hierarchy.

Each box in the diagram corresponds to a node in the team tree,
and the entries in each box refer to member threads by their global
ranks.

The code above first creates a team consisting of all the threads
and then calls the splitTeam function to divide it into three
equally-sized subteams of four threads each. It then divides each of
those subteams into two uneven, smaller teams. Note that since the
IDs used in splitTeamRelative are relative to the parent team,
the same code can be used to divide each of the three teams at the
second level, which would not be the case if the IDs were global.
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The Team class provides a few other ways of generating sub-
teams, as shown in Figure 1. In addition, it includes numerous func-
tions to query team properties, a sample of which are also shown in
Figure 1.

Before using teams with the constructs introduced below, the
programmer must call initialize, which is a collective operation
that performs the runtime setup needed by a team and checks
team consistency across threads. In our current implementation,
this initialization is separate from team creation, allowing a user
to construct a team on a single thread and then broadcast it to
the others. Those threads then must create local copies since Team
objects contain thread-specific state. So far, we have not found this
to be a useful feature, and we may remove this functionality in order
to combine team creation and initialization.

3.3 New Language Constructs
In designing new language constructs that make use of teams, we
identified two common usage patterns for grouping threads: sets of
threads that perform different tasks and sets of threads that perform
the same operation on different pieces of data. We introduced a new
construct for each of these two patterns.

Task Decomposition. In task parallel programming, it is common
for different components of an algorithm to be assigned to different
threads. For example, a climate simulation may assign a subset of
all the threads to model the atmosphere, another subset to model the
oceans, and so on. Each of these components can in turn be decom-
posed into separate parts, such as one piece that performs a Fourier
transform and another that executes a stencil. Such a decomposition
does not directly depend on the layout of the underlying machine,
though threads can be assigned based on machine hierarchy.

Task decomposition can be expressed through the following
partition statement that divides the current team into subteams:

partition(T) { B0 B1 ... Bn−1 }

A Team object (corresponding to the current team at the top level)
is required as an argument. The first child team executes block B0,
the second block B1, and so on. It is an error if there are fewer
child teams than partition branches, or if the given team arguments
on each thread in the current team do not have the same description
of child teams. If the provided team has more than n subteams, the
remaining subteams do not participate in the partition construct.
Once the partition is complete, threads rejoin the previous team.

As a concrete example, consider a climate application that uses
the team structure in Figure 2 to separately model the ocean, the
land, and the atmosphere. The following code would be used to
divide the program:

partition (t ) {
{ model_ocean ( ) ; }
{ model_land ( ) ; }
{ model_atmosphere ( ) ; }

}

Threads 0 to 3 would then execute model_ocean(), threads 4 to 7
would run model_land(), and threads 8 through 11 would model
the atmosphere.

Since partition is a syntactic construct, task structure can be
inferred directly from program structure. This simplifies program
analysis and improves understandability of the code.

Data Decomposition. In addition to a hierarchy of distinct tasks, a
programmer may wish to divide threads into teams according to al-
gorithmic or locality considerations, but where each team executes
the same code on different sets of data. Such a data decomposition
can be either machine-dependent or required by an algorithm, and
both the height and width of the hierarchy may differ according to
the machine or algorithm.

= x

0 1 2 3

4 5 6 7

R1

R2

+
C1

C2

C3

C4

Figure 3. Blocked matrix-vector multiplication.

Consider the matrix-vector multiplication depicted in Figure 3,
where the matrix is divided in both dimensions. In order to compute
the output vector, threads 0 to 3 must cooperate in a reduction
to compute the first half of the vector, while threads 4 to 7 must
cooperate to compute the second half. Both sets of threads perform
the same operation but on different pieces of data.

A new teamsplit statement with the following syntax allows
such a data-driven decomposition to be created:

teamsplit(T) B

The parameter T must be a Team object (corresponding to the
current team at the top level), and as with partition, all threads must
agree on the set of subteams. The construct causes each thread to
execute block B as a member of its new subteam specified by the
team argument.

Common Features. Both the partition and teamsplit constructs are
lexically scoped, changing the team in which a thread is executing
within that scope. This implies that at any point in time, a thread is
executing in the context of exactly one team (which may be a sub-
team of another team). Given a particular team hierarchy, entering
a teamsplit or partition statement moves one level down in the hier-
archy, and exiting a statement moves one level up. Statements can
be nested to make use of multi-level hierarchies, and recursion can
be used to operate on hierarchies that do not have a pre-determined
depth. Consider the following code, for example:

public void descendAndWork (Team t ) {
if (t .numChildren ( ) != 0 )
teamsplit (t ) {

descendAndWork (t .myChildTeam ( ) ) ;
}

else
work ( ) ;

}

This code descends to the bottom of an arbitrary team hierarchy be-
fore performing work. A concrete example that uses this paradigm
is provided in §5.3.

In order to meet the composability goal of §3.1, the thread
IDs returned by Ti.thisProc() are now relative to the team in
which a thread is executing, and the number of threads returned
by Ti.numProcs() is equal to the size of the current team. Thus, a
thread ID is always between 0 and Ti.currentTeam().size()−1,
inclusive. A new function Ti.globalNumProcs() returns the num-
ber of threads in the entire program, and Ti.globalThisProc()
returns a thread’s global rank.

Collective communication and synchronization now operate
over the current team. The combination of the requirement that
all threads must agree on the set of subteams when entering a par-
tition or teamsplit construct, lexical scoping of the constructs, and
textual collective alignment ensure that no circular dependencies
exist between different collective operations. In §4, we describe
how the first and last properties are enforced.
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Discussion. It may be apparent that the partition statement can be
implemented in terms of teamsplit, such as the following:

teamsplit (t ) {
switch (t .myChildTeam ( ) . teamRank ( ) ) {
case 0 :

model_ocean ( ) ;
break ;

case 1 :
model_land ( ) ;
break ;

case 2 :
model_atmosphere ( ) ;

}
}

While this is true, we decided that an explicit construct for task
decomposition is cleaner and more readable than the combination
of teamsplit and branching. The two constructs also differ with
respect to the superset operations described below.

Superset Operations. By design, the partition and teamsplit con-
structs require a user to exit or enter a construct to move up or down
a team hierarchy or to use multiple team hierarchies. We suspect
that it may be useful, however, to be able to temporarily move up
one or more levels in a team hierarchy without exiting a partition or
teamsplit, though we have yet to find concrete examples where this
is the case. Nevertheless, our implementation contains a superset
statement that ascends the team hierarchy within a specified lexical
scope:

superset(i) B

This results in execution of block B in the context of the team that
is i levels up from the enclosing team, i.e. that team’s ith ancestor.
Since teams in a partition execute different code, the i enclosing
team statements must all be teamsplits in order to conform to
textual collective alignment. It is an error if all threads in the ith
ancestral team do not execute the superset, if they differ on the
value of i, or if no ith ancestor exists. Superset statements may
be nested, but they may not contain any teamsplit or partition
statements.

We anticipate that the most likely use of a superset operation
will be to perform a collective, such as a barrier, at a higher level
in the team hierarchy. As such, we have implemented versions
of many collective operations that operate at higher levels with-
out requiring an explicit superset construct. For example, the call
Ti.barrier(1) executes a barrier on the parent team. Of course,
such operations must meet the same requirements as the superset
construct itself.

Implementation. We have implemented hierarchical team con-
structs on top of GASNet teams, which are flat groupings of
threads. Each node in a team hierarchy is associated with a separate
GASNet team, which are created when teams are initialized. When
changing team contexts by entering or exiting a teamsplit, parti-
tion, or superset operation, the Titanium runtime sets the current
GASNet team on each thread accordingly and updates a handful
of variables to reflect the properties of the new team. As a result,
there is very low overhead to switching team contexts, satisfying
the performance goal of §3.1. In order to execute a collective, the
Titanium runtime passes the current GASNet team to the GASNet
collectives library, resulting in the desired behavior that collectives
only execute over the current team.

4. Alignment of Collectives
Like other SPMD languages, Titanium provides primitive collec-
tive operations to allow program threads to synchronize and com-
municate together. These operations include barriers, broadcasts,

exchanges, and reductions, as well as the the partition, teamsplit,
and superset statements introduced in §3.

Collective operations introduce the possibility of deadlock if not
all threads execute the same sequence of collectives. The collec-
tives are aligned if all threads do execute the same sequence.

4.1 Alignment Rules
Titanium requires that collectives be textually aligned on all threads
that participate in a collective. The basic conditions that guarantee
this alignment consist of the following global rules:

1. If any branch of a conditional has effects on team t, then all
threads in t must take the same branch.

2. If the body/test of a loop has effects on team t, then all threads
in t must execute the same number of iterations.

3. If a method call has effects on team t, then the dynamic dispatch
target of the call must be the same on all threads in t.

4. The source thread in a broadcast and target thread in a reduction
on team t must evaluate to the same value on each thread in t.

5. Team objects passed to a partition or teamsplit on team t must
have consistent immediate subteams across all threads in t.

6. The level argument passed to a superset statement or collective
that targets team t must evaluate to the same value on all threads
in t.

In addition, the following local rules must be satisfied:

7. Team objects passed to a partition or teamsplit must match the
current team at the top level.

8. A superset operation with a level argument i must be enclosed
by i teamsplit statements, with no intervening partition state-
ments.

Different definitions of has effects on team t result in different
enforcement schemes [16]. For example, weak alignment results if
a statement or expression has effects on team t if it or a substate-
ment or subexpression actually executes a primitive collective op-
eration at runtime. The enforcement extensions we discuss below
work for both strict and weak alignment.

4.2 Alignment Enforcement
The first four conditions above are enforced on the global team by
the single type system in the current version of Titanium or by
a system of dynamic checks in an experimental version [16]. The
static type system cannot be easily extended to handle all teams
[13], so we extended the dynamic version to work on teams.

The basic idea behind the dynamic enforcement system is that
each thread tracks all control flow decisions that potentially af-
fect alignment of a collective. Prior to executing a collective, the
threads cooperate to perform a global check to ensure that they are
all aligned. Since this check runs before each collective, misaligned
collectives are never executed, as they are detected in the preced-
ing check. A failed check results in the program terminating with
an error message describing the sequence of control flow decisions
that resulted in the misalignment. An implicit barrier with a cor-
responding alignment check occurs at program end, catching any
unmatched collectives.

The first four alignment rules are enforced by inserting an en-
try in a per-thread tracking list recording the decision made when
executing an affected program expression or statement. Various op-
timizations such as hashing can minimize the overhead of dynamic
checking [16]. Since partition and teamsplit statements are collec-
tives themselves, rules 5 and 7 can be checked directly when enter-
ing such a statement. We come back to rules 6 and 8 later.
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In order to extend dynamic enforcement to work on all teams,
we now keep separate track of control flow decisions that may
affect alignment of collectives on different teams. To simplify the
discussion, we ignore the existence of superset operations until
later. Then it is sufficient for both strict and weak alignment to
record control flow decisions in the tracking list for the current
team. Upon encountering a collective operation, the tracking list is
checked for consistency among only the threads in the current team.
A final check must be made at the end of a partition or teamsplit to
ensure that no unmatched collectives exist within such a statement.

As a concrete example, consider the following code:

1 if (a ) Ti .barrier ( ) ;
2 teamsplit (u ) {
3 if (b ) Ti .barrier ( ) ;
4 }
5 if (c ) Ti .barrier ( ) ;

Let t be the current team outside the teamsplit. When the condi-
tional on line 1 is executed, each thread in team t records the branch
taken in the tracking list for t. Those threads that take the if branch
await a check before performing the barrier. If other threads do not
take this branch, they perform a check before the teamsplit, result-
ing in the error being detected. Upon encountering the teamsplit
and executing a successful check, the threads in t ensure that team
u is equivalent to t at the top level and that the immediate sub-
teams of u are the same on all threads. If this is the case, then each
thread’s corresponding subteam in u becomes the new current team
on that thread, and control flow decisions within the teamsplit are
now recorded in the tracking list for u.myChildTeam(). Thus, it is
perfectly valid for one subteam of u to execute the barrier on line
3 while other subteams skip it. Let v refer to the first subteam of u.
Then all threads in v record the branch taken, and if some threads
in v take the if branch, they will await a check before performing
the barrier. If other threads do not take the branch, then they will
perform a check at the end of the teamsplit, resulting in detection of
the error. Finally, upon leaving the teamsplit, t once again becomes
the currently executing team, so that alignment of the barrier on
line 5 will be checked with respect to team t.

Note that it is always necessary to ensure that alignment is
consistent in the current team before entering a new team context.
The checks prior to teamsplit and partition and at their end ensure
that this is the case.

Superset Operations. Superset operations complicate alignment
checking since they take in a level parameter that may not be known
at compile-team. Consider the following code:

if (d ) {
int n = . . . ; / / n o t a compi le−t ime c o n s t a n t
Ti .barrier (n ) ;
Ti .barrier (n+ 1 ) ;

}

Prior to entering the branch, a thread may not be able to determine
at what levels the barriers execute and thus which teams’ tracking
lists need to be updated. In order to handle this, an orphan tracking
list must be maintained that keeps track of control flow decisions
that may affect alignment of a superset operation. Then when such
an operation is encountered, the orphan list’s contents are copied
into that of the teams affected by the operation.

A superset operation is defined to have team effects on all teams
between the current team and the target team2. Thus, in checking a
superset operation, alignment must first be checked at the current
team level and all intermediate levels up to the target level, in order,

2 In strict alignment, a superset operation that is not executed at runtime is
defined to have effects only on the current team, since the target team is
unknown.

to ensure that alignment is satisfied at every level. Then rules 6 and
8 in §4.1 are checked before performing the superset operation.

4.3 Implementation
We have implemented team extensions to dynamic enforcement in
the context of weak alignment. Dynamic enforcement results in
runtime overhead; in particular, simple collective operations such
as broadcasts can take twice as long on larger numbers of threads
[16]. As with other runtime checks such as array bounds checking,
Titanium allows a user to turn them off in order to eliminate their
overhead. Most users enable checks when debugging but disable
them in production runs, as we have done in §5.

5. Application Case Studies
In order to guide the design of the language constructs described
in §3 and evaluate their effectiveness, we examined two application
benchmarks to determine how they can benefit from the new hier-
archical team constructs. In this section, we present case studies of
the two applications, conjugate gradient and parallel sort.

5.1 Test Platforms
We tested application performance on two machines, a Cray XT4
and a Cray XE6. The Cray XT4 is a cluster of quad-core AMD Bu-
dapest 2.3 GHz processors, with one quad-core processor per node.
The Cray XE6 consists of two twelve-core AMD MagnyCours 2.1
GHz processors per node, each of which consists of two six-core
dies, also called non-uniform memory access (NUMA) nodes since
each die has fast access to its own memory banks but slower access
to the other banks. On both machines, we used the MPI conduit of
GASNet for communication.

5.2 Conjugate Gradient
The conjugate gradient (CG) application is one of the NAS paral-
lel benchmarks [4]. It iteratively determines the minimum eigen-
value of a sparse, symmetric, positive-definite matrix. The matrix
is divided in both dimensions, and each thread receives a contigu-
ous block of the matrix, with threads placed in row major order.
The application performs numerous sparse matrix-vector multipli-
cations. Consider a blocked matrix-vector multiplication, as illus-
trated previously in Figure 3. Each element in the source vector
must be distributed to the threads that own a portion of the corre-
sponding matrix column. Each element in the destination vector is
computed using a reduction across the threads that own a portion
of the corresponding matrix row.

Original Implementation. Prior to our language extensions, Ti-
tanium only supported collectives over all threads in a program.
Thus, the original Titanium implementation of CG [9] required
hand-written reductions over subsets of threads. These reductions
required extensive development effort to implement, test, and opti-
mize.

The original implementation performs an all-to-all reduction
on each row, so that in the example of Figure 3, threads 0 to 3
receive the first half of the result vector and threads 4 to 7 receive
the second half. Since the algorithm is iterative, the result vector
becomes the input vector in the next iteration, so that threads 0 and
4 require the first quarter of the vector, threads 1 and 5 the second
quarter, and so on. In order to accomplish this, threads 2 and 4 swap
their results, as do threads 3 and 5. The remaining threads already
have their required data.

Row Teams. The first step in modifying CG to use teams was to re-
place the hand-written all-to-all reductions with built-in reductions
on teams. The code already computes the row and column number
of each thread, which we use to divide the threads into row teams
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with a call to splitTeamAll. Then in each matrix-vector multi-
plication, a single library call is all that is necessary to perform a
reduction across each row team, as shown in the below code.

Team rowTeam = new Team ( ) ;
public void initialize ( ) {
rowTeam .splitTeamAll (rowPos , colPos ) ;
rowTeam .initialize (false ) ;
. . .

}
public void multiply (Vector in , Vector out ) {

. . .
teamsplit (rowTeam ) {

Reduce .add (tmp , myResults ) ;
}
. . .

}

Column Teams. The above implementations perform unnecessary
communication, implicitly broadcasting the results of a row reduc-
tion to the entire row before transposing the result vector across
columns. In order to further optimize the code, we replaced the all-
to-all reductions with all-to-one reductions, so that in the example
of Figure 3, only thread 0 receives the first half of the result vector
and thread 6 receives the second half of the result vector. Thread
1 then copies the portion of the result vector needed by the second
column from thread 0, and thread 7 similarly copies from thread
6. Now that one thread in each column has the required data, it
broadcasts the result to the remaining threads in that column.

As before, a team for each row is required to perform the reduc-
tions. In addition, a team for each column is required to perform
the broadcasts. Lastly, we construct additional teams to synchro-
nize the source and destination threads of the copies between the
reductions and broadcasts. The below code demonstrates these op-
erations.

teamsplit (rowTeam ) {
Reduce .add (tmp , myResults , rpivot ) ;

}
teamsplit (copyTeam ) {
if (copySync )

Ti .barrier ( ) ;
}
if (reduceCopy )

myOut .copy (allResults [reduceSource ] ) ;
teamsplit (columnTeam ) {

myOut .vbroadcast (cpivot ) ;
}

Evaluation. The CG application demonstrates the importance of
teams for collective operations among subsets of threads. It also il-
lustrates the need for multiple team hierarchies and for separating
team creation from usage, as the cost for creating teams is amor-
tized over all iterations of the algorithm.

Figures 4 and 5 compare the performance of the three versions
of CG on a Cray XT4 and a Cray XE6. We show strong scaling
(fixed problem size) results using two problem sizes, Class B for
one to 128 threads and Class D for 128 to 1024 threads. (Note
that both axes in the figures use logarithmic scale, so ideal scaling
would appear as a line on the graphs.) As expected, the replace-
ment of hand-written reductions with optimized GASNet reduc-
tions in the row teams version improves performance over the orig-
inal version. The communication optimizations resulting from the
addition of column teams further improves performance, achieving
speedups over the original code of 2.1x for Class B at 128 threads
and 1.6x for Class D at 1024 threads on the XT4. The XE6 shows
similar speedups of 1.6x and 1.5x for the same problem sizes and
thread counts.
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Figure 4. Strong scaling performance of conjugate gradient on
Cray XT4.
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Figure 5. Strong scaling performance of conjugate gradient on
Cray XE6.

As for parallel scaling, the column team version achieves a
speedup of 26x for Class B on 128 threads over the sequential
version on the XT4 and 44x on the XE6. Note that it should be
no surprise that the implementation ceases to scale for Class B,
since communication time dominates computation time for this
problem size at higher numbers of threads. For Class D, we achieve
a speedup of about 4x on 1024 threads over 128 threads on both
machines.

Shared Memory Optimizations. In addition to rewriting the CG
code to use team collectives, we wrote an experimental version
that explores various shared memory optimizations. In particular,
if threads that share memory are placed in the same column, these
threads can share their portion of the input vector. As a result, the
broadcasts described in §5.2 can be restricted to one thread on each
node, further reducing the amount of communication.

In implementing this optimization, we first had to divide the
matrix among threads in column major order. Unfortunately, the
assumption of row major order is pervasive in the code, so directly
making this change proved difficult. Instead, we constructed a
new global team that merely rearranged thread IDs to produce the
desired ordering. We then called the unmodified CG code in the
context of this team, as follows:
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public static void main (String [ ] args ) {
. . . / / Compute number o f rows and columns .
int id = Ti .thisProc ( ) ;
id = id / numRows + numCols ∗ (id % numRows ) ;
Team flipTeam = new Team ( ) ;
flipTeam .splitTeamAll ( 0 , id ) ;
flipTeam .initialize (false ) ;
teamsplit (flipTeam ) {

oldMain (args ) ;
}

}
public static void oldMain (String [ ] args ) {

. . .
}

We then had to divide each column team into subteams of shared
memory threads to allow for synchronization on their shared piece
of the input vector. We also had to construct teams with one thread
from each node in a column in order to perform the broadcasts. The
below code constructs both sets of teams.

teamsplit (columnTeam ) {
colSMPTeam = new Team ( ) ;
colSMPTeam .splitTeamSharedMem (id ) ;
colSliceTeam = colSMPTeam .makeTransposeTeam ( ) ;
colSMPTeam .initialize (false ) ;
colSliceTeam .initialize (false ) ;

}

Unfortunately, we determined that in most cases, the added syn-
chronization overhead was greater than the time saved by reduced
communication in the current version of the code. Despite the dis-
appointing performance results, this exercise demonstrates the ben-
efits of the new team constructs in exploring optimizations, and we
plan to investigate whether or not further optimizations can make
this version of the code more efficient.

5.3 Parallel Sort
The second application we examined was a sorting library that sorts
32-bit integers in parallel. We postulated that the most efficient
implementation would be a hierarchical distributed sort that uses
a communication-optimized algorithm between threads that do not
share memory but otherwise takes advantage of shared memory. We
started with two existing implementations, the sequential quicksort
from the java.util.Arrays class in the Java 1.4 library and a
distributed sample sort written in Titanium by Kar Ming Tang.

Overview of Sample Sort. In the sample sort algorithm [11], data
is initially randomly and evenly distributed among all processors.
At the end of the algorithm, the elements satisfy two properties: (1)
all elements on an individual processor are in sorted order and (2)
all elements on processor i are less than any element on processor
i+ 1. The algorithm accomplishes this by first randomly sampling
the elements on each of the n processors, sending them to processor
0. Processor 0 sorts the samples, determining n − 1 pivots that
divide the elements into n approximately equal sets. Each processor
then uses these pivots to divide its elements into n buckets, which
are then exchanged among all processors to satisfy property (2)
above. Then each processor sequentially sorts its resulting elements
to satisfy property (1), and the algorithm terminates.

The bucket exchange operation requires n(n − 1) messages,
since each processor must send n− 1 buckets to a different proces-
sor. On a cluster of multiprocessors, however, we speculated that it
would be more efficient to aggregate communication by using only
a single bucket for each node, so that m(m − 1) messages would
be required for m nodes. Each node’s data could then be sorted in
parallel by the processors on that node.

Shared Memory Sort. The original implementation of sample sort
treats all threads as if they do not share memory. In order to remedy

Thread 0 Thread 2

Thread 0

Thread 0 Thread 1 Thread 2 Thread 3Sequential
Sort

Merge
Phase 1

Merge
Phase 2

Figure 6. Shared memory sorting algorithm on four threads.

this, we first wrote a new sort implementation that assumes that all
threads share memory, relying heavily on the new team constructs
in writing the code.

The shared memory algorithm starts with a single, contiguous
array of integers. This array is divided equally among all threads,
each of which calls the sequential quicksort to sort its elements in-
place. The separately sorted subsets are then merged in parallel in
multiple phases, with the number of participating threads halved in
each stage. Figure 6 illustrates this process on four threads.

The recursive nature of the sorting can be easily represented
with a team hierarchy consisting of a binary tree, in which each
node contains half the threads as its parent. The following code
constructs such a hierarchy, using the splitTeam() library function
to divide a team in half.

static void divideTeam (Team t ) {
if (t .size ( ) > 1) {
t .splitTeam ( 2 ) ;
divideTeam (t .child ( 0 ) ) ;
divideTeam (t .child ( 1 ) ) ;

}
}

Then each thread walks down to the bottom of the team hierarchy,
sequentially sorts its elements, and then walks back up the hier-
archy to perform the merges. In each internal team node, a single
thread merges the results of its two child nodes before execution
proceeds to the next level in the hierarchy. The following code per-
forms the entire algorithm, and Figure 7 illustrates the process on
six threads.

static single void sortAndMerge (Team t ) {
if (Ti .numProcs ( ) == 1) {
allRes [myProc ] = SeqSort .sort (myData ) ;

} else {
teamsplit (t ) {
sortAndMerge (Ti .currentTeam ( ) ) ;

}
Ti .barrier ( ) ; / / e n s u r e p r i o r work c o m p l e t e
if (Ti .thisProc ( ) == 0) {
int otherProc = myProc + t .child ( 0 ) . size ( ) ;
int [1d ] myRes = allRes [myProc ] ;
int [1d ] otherRes = allRes [otherProc ] ;
int [1d ] newRes = target (t .depth ( ) , myRes ,

otherRes ) ;
allRes [myProc ] = merge (myRes , otherRes ,

newRes ) ;
}

}
}

As illustrated in the above code, the shared memory sorting al-
gorithm is very simple to implement using the new team constructs.
The entire implementation is only about 90 lines of code (not in-
cluding test code and the sequential quicksort) and took just two
hours to write and test.
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Figure 7. Shared memory team hierarchy and execution on six
threads.

Distributed Sort. As an initial hierarchical, distributed sort im-
plementation, we started with an unoptimized sample sort imple-
mentation written by Kar Ming Tang in 1999. Our initial imple-
mentation assigns a single thread from each node to participate in
the sample sort, so that the number of messages is minimized as
described previously. Then each node performs the shared mem-
ory sort described above. The entire code to accomplish this is as
follows:

Team team = Ti .defaultTeam ( ) ;
team .initialize (false ) ;
Team oTeam = team .makeTransposeTeam ( ) ;
oTeam .initialize (false ) ;
partition (oTeam ) {
{ sampleSort ( ) ; }

}
teamsplit (team ) {

keys = SMPSort .parallelSort (keys ) ;
}

Again, the new team constructs make this algorithm trivial to im-
plement, requiring only 10 lines of code and 5 minutes of develop-
ment time. The code calls Ti.defaultTeam() to obtain a team in
which threads are divided according to which threads share mem-
ory. It then uses the makeTransposeTeam() library call to con-
struct a transpose team in which each subteam contains one thread
from each node. The partition construct is then used to perform
the sample sort on one of those subteams, after which the node
teams execute the shared memory sort.

This example illustrates the value of the composability features
of the team extensions. As far as the code in sampleSort() is
concerned, its entire world consists of just a single thread from
each node. The only change required was to remove the call to
sequential sort after the sampling and distribution. Similarly, as far
as the shared memory sort is concerned, its entire world consists
of the threads on a single node. No changes were required, and the
team hierarchy constructed in the shared memory sort composes
cleanly with the hierarchy used here.

Figure 8 illustrates the weak scaling (problem size proportional
to number of threads) performance of this initial implementation
on a Cray XT4 compared to a pure sample sort. Sorting takes
longer in the mixed, hierarchical version, since it is done in parallel,
with threads idling in the merge phases. However, the distribution
portion of the algorithm takes approximately the same time in both
versions at 8 nodes. We speculated that the distribution time in the
mixed version would take less time than the pure version at larger
numbers of nodes.

The initial implementation does not scale beyond 8 nodes in
either the pure sample sort or the mixed, hierarchical version, so
we completely reimplemented the sample sort. We omit the details
here, but the new version uses all threads to help with sampling
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Figure 8. Weak scaling performance of initial distributed sort on
Cray XT4.
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Figure 9. Weak scaling performance of optimized distributed sort
on Cray XT4.

and distribution rather than a single thread per node in the mixed
version of the code. Communication, however, is still aggregated
at the node level to minimize the number of messages required.
Figures 9 and 10 compare the performance of pure sample sort
and mixed, hierarchical sample and shared memory sort, with both
versions using the new sample and distribution code. On the Cray
XE6, we used a single Unix process per NUMA node, since its
non-uniform memory access makes it inefficient to rely on shared
memory between NUMA nodes. On both machines, the gap in
distribution time between the pure and mixed versions grows as
the number of threads increases, resulting in a speedup of 1.4x for
the mixed version over the pure version on both 512 nodes (2048
cores) of the XT4 and 512 NUMA nodes (3072 cores) of the XE6.

As for overall scaling of the algorithm, since the number of
elements per node is constant, we expect the sorting phase to
remain constant over all numbers of threads, as is the case for
both implementations. The distribution phase is dominated by the
bucket exchange operation described in §5.3. While the amount
of communication per thread remains constant, the total amount
of communication increases linearly and the number of messages
increases quadratically, accounting for the increase in distribution
time at higher numbers of threads.
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6. Conclusion
In this paper, we presented a set of language extensions for pro-
gramming in a hierarchical manner in the SPMD model of paral-
lelism. We introduced a new team data structure to hierarchically
group threads as well as new language constructs to work on teams.
We demonstrated how to enforce textual alignment of collectives
on teams, eliminating a class of deadlocks. Our experiences with
the conjugate gradient and sorting applications demonstrate that the
language additions allow simple expression of algorithms that sub-
divide computation. They also allow programmers to optimize for
the communication characteristics of hierarchical machines, taking
advantage of shared memory and achieving significant performance
gains without resorting to using two different programming models
as is typical with MPI.
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