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Abstract

Predictive and Programmable Testing of Concurrent and Cloud Systems

by

Pallavi Joshi

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Koushik Sen, Chair

Today’s software systems often have poor reliability. In addition to losses of billions,

software defects are responsible for a number of serious injuries and deaths in transportation

accidents, medical treatments, and defense operations. The situation is getting worse with

concurrency and distributed computing becoming integral parts of many real-world software

systems. The non-determinism in concurrent and distributed systems and the unreliability

of the hardware environment in which they operate can result in defects that are hard to

find and understand.

In this thesis, we have developed tools and techniques to augment testing to enable it

to quickly find and reproduce important bugs in concurrent and distributed systems. Our

techniques are based on the following two key ideas: (i) use program analysis to increase

coverage by predicting bugs that could have occurred in “nearby” program executions, and

(ii) provide programming abstractions to enable testers to easily express their insights to

guide testing towards those executions that are more likely to exhibit bugs or help achieve

testing objectives without having any knowledge about the underlying testing process. The

tools that we have built have found many serious bugs in large real-world software systems

(e.g. Jigsaw web server, JDK, JGroups, and Hadoop File System).

In the first part of the thesis, we describe how we can predict and confirm bugs in the

executions of concurrent systems that did not show up during testing but that could have

shown up had the program under consideration executed under different thread schedules.
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This improves the coverage of testing, and helps find corner-case bugs that are unlikely to be

discovered during traditional testing. We have built predictive testing tools to find different

classes of serious bugs like deadlocks, hangs, and typestate errors in concurrent systems.

In the second part of the thesis, we investigate how we can improve the efficiency of

testing of distributed cloud systems by letting testers guide testing towards the executions

that are interesting to them. For example, a tester might want to test those executions

that are more likely to be erroneous or that are more likely to help her achieve her testing

objectives. We have built tools and frameworks that enable testers to easily express their

knowledge and intuition to guide testing without having any knowledge about the underlying

testing process. We have investigated programmable testing tools in the context of testing

of large-scale distributed systems.
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Testing Multithreaded Programs
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Chapter 1

Introduction

For decades, the Moore’s law held true, and the performance of single-core processors almost

doubled every eighteen months. But, in recent years, because of the limitations imposed by

physics, we have not been able to continue with the same rate of improvement in performance

in single-core processors. As a result, the processor manufacturing world has shifted its focus

towards multi-core processors that pack multiple CPUs on a single chip. With multi-core

processors, we can potentially execute different parts of a software system in parallel, and

thus improve the performance of the software system.

One of the main challenges of using multi-core processors is writing correct multithreaded

programs that can execute different threads of computation in parallel on different cores.

Multithreaded programs can have an enormous amount of interaction going on between

different simultaneous threads that can get mind-boggling and tedious for a programmer to

keep track of and reason about. Thus, programmers can often unintentionally allow incorrect

interaction between threads in their programs. Such errors are difficult to detect because

they show up only under very specific thread schedules. Thus, even if a particular execution

of a multithreaded program does not exhibit an error, it does not mean that the program

does not have an error for the input used. There might be an error that could have occurred

had the threads interleaved in a different manner.

The common way to test multithreaded programs is to stress those programs, that is, to

operate those programs under extreme conditions like high concurrency and heavy load so

that the rare erroneous thread interleavings become more likely to show up. For example, to
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stress a program, one can spawn a large number of concurrent threads, or run the program

for days and weeks, or add randomness and delays in the program to perturb the program

execution unexpectedly. Stress testing might lead to the exhibition of rare interleavings,

but it is quite ad-hoc and does not systematically try to find the rare erroneous thread

interleavings. In our work, we have tried to address this drawback by adding in the right

intelligence to testing techniques that helps them to quickly predict and confirm bugs in

the incorrect thread interleavings that did not show up during program execution. The

intelligence is provided by an appropriate program analysis that is suitable for the type

of bugs that we are interested in. The program analysis is performed in the background,

and thus the tester does not have to bother about learning any details about the analysis,

and can continue with testing as she is accustomed to. We call this predictive testing.

Predictive testing is not new. There has been a significant amount of work on predictive

testing [93, 24, 108, 86, 39, 12, 6], but most of this work has focused only on prediction of

errors. Predicted errors however may not always be real errors as the predictive techniques

might use approximation that might result in the reporting of false positives (predicted

errors that are not real errors). In our work, in addition to predicting errors, we also try to

automatically confirm which of the predicted errors are real errors.

Figure 1.1 illustrates how predictive testing analyzes “nearby” thread interleavings that

did not show up during traditional testing, and uses appropriate program analysis in the

background to quickly predict and confirm bugs in those interleavings. A “nearby” inter-

leaving is one that is similar to one of the interleavings observed during normal testing,

but has some thread synchronization operations executing in a different order. The triangle

on the left in Figure 1.1 represents the set of all thread interleavings that were observed

during normal testing. For each interleaving that was observed, predictive testing uses the

right program analysis to find the bugs of the kind that we are interested in in “nearby”

interleavings. The shaded region around each thread interleaving in the triangle in the right

in Figure 1.1 represents the “nearby” interleavings that predictive testing considers. Since

predictive testing analyzes “nearby” interleavings without actually executing them, it can

only find potential bugs that can occur in those interleavings. A potential bug that is found

might or might not correspond to a real bug that can occur during an actual program ex-

ecution since predictive testing typically approximates “nearby” interleavings to find bugs
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(i) Traditional Testing (ii) Predictive Testing

Figure 1.1: Coverage: Traditional testing versus Predictive testing

in them. The approximation might result in some false positives (reported errors that are

not real errors). Therefore, after predictive testing reports potential bugs, we also try to

automatically confirm if a reported bug is a real bug or not. Specifically, we actively control

the thread scheduler during program execution to mimic the thread interleaving that can

potentially lead to the reported bug.

There are various kinds of errors or bugs that can happen in multithreaded programs,

e.g. data races, deadlocks, atomicity violations, and typestate errors. In this thesis, we

have focused on deadlocks and typestate errors, and will be presenting predictive testing

techniques for finding them in subsequent chapters. Even though the predictive testing

techniques are designed for finding deadlocks and typestate errors, different parts of those

techniques can be applied to finding other classes of bugs. We will be pointing out the ideas

that can be generalized to find other kinds of bugs as we explain the techniques.

In the subsequent chapters, we first give an overview of how predictive testing works with

the help of an example (Chapter 2). We then provide background definitions in Chapter 3,

and use them when explaining predictive testing techniques for deadlocks (Chapters 4 and

5) and typestate errors (Chapter 6). We describe how predicted errors can be confirmed by
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actively controlling the thread scheduler in Chapter 7. Finally, we provide the implemen-

tation and a detailed evaluation of all our analyses (Chapters 8 and 9), and conclude by

comparing our work against related work in Chapter 10.
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Chapter 2

Overview

In this chapter, we provide a high-level overview of how predictive testing predicts and

confirms bugs in thread interleavings that did not show up during normal testing. Consider

the interleaving of the two threads in Figure 2.1. The first thread acquires locks on the

objects L1 and L2, and subsequently releases the two locks. It then acquires a lock on a

different object L3, and modifies the value of the variable SV. The variable SV is shared

between the two threads, and therefore the threads use locks to synchronize their accesses

to SV. The thread subsequently releases the lock on L3. All the while the first thread is

executing, the second thread is executing a long running method longM(). After it is done

with executing longM(), it reads the value of SV into a local variable T while holding the

lock L3. After that it also acquires locks on L1 and L2, and releases them subsequently. Note

that the second thread acquires locks on L1 and L2 in reverse order, that is, it first acquires

the lock on L2 and then the lock on L1. The two threads might perform some operations

while holding the locks on L1 and L2, but we do not show the operations here to keep the

example simple.

There is no deadlock in the interleaving shown in Figure 2.1, that is, neither of the threads

gets blocked forever during execution. But, there is another not so likely interleaving that

could have resulted in a deadlock. In the deadlocking interleaving (Figure 2.2), the first

thread acquires the lock on L1, but before it can acquire the lock on L2, the second thread

finishes the execution of longM(), reads SV, and acquires the lock on L2. The first thread

now gets blocked while trying to acquire the lock on L2 as the second thread has not yet
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Thread T1 Thread T2

lock(L1); longM();

lock(L2);

unlock(L2);

unlock(L1);

lock(L3);

SV = 100;

unlock(L3);

lock(L3);

T = SV;

unlock(L3);

lock(L2);

lock(L1);

unlock(L1);

unlock(L2);

Figure 2.1: Thread interleaving causing no deadlock

released it. The second thread also gets blocked when trying to acquire the lock on L1 as the

first thread is still holding it. As a result, there is a deadlock. The deadlocking interleaving

is unlikely to show up during normal execution because the execution of longM() takes so

long that the first thread would likely acquire and release all the locks before the second

thread can start acquiring locks. But, nevertheless, the erroneous interleaving is feasible,

and the deadlock should be detected and fixed in the program.

If we test the program that has the two threads by just executing it repeatedly, it is

unlikely that the deadlocking interleaving would show up. Thus, traditional testing might

miss the deadlock in the program. Even if the deadlock does not show up in any program

execution, predictive testing can detect the deadlock by analyzing “nearby” thread interleav-

ings. For each execution observed, predictive testing records information about the different

operations observed during the execution. It uses this gathered information to predict and

confirm errors in thread interleavings that did not show up during normal testing. For ex-

ample, let us say that while observing the interleaving in Figure 2.1, we record information
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Thread T1 Thread T2

lock(L1); longM();

lock(L3);

T = SV;

unlock(L3);

lock(L2);

Figure 2.2: Thread interleaving causing deadlock

about the thread synchronization operations. Thus, the only operations that we record are

the lock acquires and releases. Let LOCK(L, T) denote the acquire of lock on L by thread

T, and UNLOCK(L, T) denote the release of lock on L by thread T.

When observing the thread interleaving in Figure 2.1, we can generate the trace of op-

erations or events as shown in Figure 2.3. Note that we do not record any information

regarding longM() and read and write of SV. This is because method calls and variable

accesses are not necessary to find deadlocks. When designing a predictive testing technique

for a particular class of errors, one needs to find the set of operations that the technique

should keep track of when observing a program execution. The right set of operations would

include the thread synchronization operations and other operations that are necessary to

be able to detect that class of errors. For example, when finding communication deadlocks

(another class of deadlocks explained in Chapter 5), one needs to keep track of lock acquires

and releases, and also signals and notifications and the change in values of the conditions

on which they depend, and when finding typestate errors (Chapter 6), one needs to record

method calls on objects of type of interest in addition to synchronization operations.

There are two main advantages of generating a trace by keeping track of only a subset

of relevant operations: (i) the trace is simpler than the actual program execution and thus

it is easier and faster to analyze it and find errors for other orderings of events in it, and (ii)

throwing away non-relevant operations and inter-thread dependencies enables us to analyze

those orderings of events in the trace that would not have been possible had we retained all

operations and dependencies. Some of these orderings might correspond to real executions
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LOCK(L1, T1)

LOCK(L2, T1)

UNLOCK(L2, T1)

UNLOCK(L1, T1)

LOCK(L3, T1)

UNLOCK(L3, T1)

LOCK(L3, T2)

UNLOCK(L3, T2)

LOCK(L2, T2)

LOCK(L1, T2)

UNLOCK(L1, T2)

UNLOCK(L2, T2)

Figure 2.3: Trace of operations (or events) obtained from observing the execution in Fig-
ure 2.1

of the program under consideration. For example, had we retained accesses to the shared

variable SV in the trace in Figure 2.3, and considered the dependency of the read of SV in

the second thread on the write in the first thread, we would not have been able to order the

read in the second thread before the write in the first thread and would have thus missed

the deadlocking interleaving (Figure 2.2).

After we have generated the trace of events, we can use an appropriate program analysis

to find bugs that could have occurred had the events ordered in a different manner. For

example, from the trace in Figure 2.3, we can find that the lock acquire and release of L3

and lock acquire of L2 can execute in thread T2 before thread T1 tries to acquire the lock on

L2. This is because there is no dependency in the trace that prevents the operations to be

executed in this manner. Thus, we can find a potential deadlock by reordering the events in

the trace. Since we are tracking only a subset of all operations that occur during execution,

we are approximating the execution observed with the event trace that we generate. Thus,

when we predict a bug that can occur for a different ordering of events in the trace, that bug

might or might not correspond to a real bug that can manifest during an actual program

execution. If we just report the bugs that we find by analyzing the event trace, then the

tester would have to go through all the potential bugs one by one and reason to see if it can

occur in a real program execution. The process of reasoning can easily get tedious. Thus,
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apart from predicting bugs, the predictive testing techniques that we have developed also

try to automatically confirm which of the predicted bugs are real bugs.

From the trace in Figure 2.3, we can infer that had the second thread acquired and

released the lock on L3, and then acquired the lock on L2 before the first thread could try

to acquire the lock on L2, then there would have been a deadlock. Let us say that we want

to check if this can happen in a real execution of the program. For this, we execute the

program again. But, this time, when the first thread tries to acquire the lock on L2, we

pause the thread and let the second thread execute. We want the second thread to acquire

the lock on L2 before the first thread tries to acquire the lock. After executing longM(),

thread T2 acquires and releases the lock on L3, and then acquires the lock on L2. But,

when it tries to acquire the lock on L1, it gets blocked because thread T1 has not released

the lock on L1. At this point, if we allow thread T1 to proceed, it gets blocked when

acquiring the lock on L2 because thread T2 has not released the lock yet. As a result, both

the threads get blocked resulting in a deadlock. Thus, by actively controlling the thread

scheduler during program execution, we have forced the execution to follow an interleaving

that exhibits the deadlock. We use hints from the analysis of the event trace (e.g., pause the

first thread after it has acquired the lock on L1 but before it acquires the lock on L2) to figure

out the preemption points during execution where we should pause certain threads to force

an interleaving that would likely exhibit an error. Designing the right error confirmation

technique involves figuring out the right preemption points for the kind of bugs that we are

interested in confirming. For example, for confirming communication deadlocks (Chapter 5),

we would need to preempt before lock acquires or releases, signals or notifications, or the

conditions on which the signals or notifications that are involved in the potential deadlocks

depend.

In the following chapters, we describe in detail predictive testing techniques that we

have designed for deadlocks and typestate errors which are two common classes of bugs in

multithreaded programs. Even though the techniques are built for these specific classes of

bugs, a significant part of the techniques can be generalized and applied to finding other

classes of bugs. We explain which parts of the techniques are generalizable as we describe

those techniques.
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Chapter 3

Background Definitions

In this chapter, we provide the formalizations and definitions that we use to describe the

various predictive techniques later. We formalize various aspects of the multithreaded pro-

gram execution that we use in our techniques. A multithreaded execution consists of a finite

number of threads. We assume that each thread is started only once. At any instant, the

execution is in a state s, in which each thread is at a statement. It transitions from one state

to another with the execution of a statement by a thread. The initial state is denoted by s0.

Threads communicate with each other via shared objects. Since simultaneously accessing

and modifying objects might lead to inconsistencies in the object states, threads should be

correctly synchronized when accessing shared data. This can be done using locks. When a

thread acquires a lock, no other thread can acquire the lock until the thread holding it has

released it. Thus, if we protect accesses to shared data using locks, then we can ensure that

at most a single thread can modify shared data at any point during execution. We consider

locks to be re-entrant, i.e., a thread may re-acquire a lock it already holds. A thread must

release a lock it holds the number of times it has acquired it before it can be acquired by any

other thread. This is true in several languages including Java. Our predictive techniques can

be extended to languages that do not permit re-entrant locks. Instead of counting how many

times a lock is being acquired so that it is considered available for other threads after it has

been released that many times, the analyses can be modified to consider a lock available after

it has been released once by the thread that held it and to consider a thread blocked if it

tries to re-acquire a lock it already has. We also assume that locks are acquired and released
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in a nested fashion, i.e., if a thread acquires lock l2 after acquiring lock l1, then it has to

release l2 before releasing l1. In other words, a thread always releases the last lock that it

had acquired. Though the predictive testing techniques that we have developed assume the

nesting of lock acquires and releases, they can be extended to arbitrary locking patterns. We

made the assumption to simplify the program analyses in our predictive testing techniques,

and also because the assumption holds true for Java, a language that we have focused on in

the implementations of our techniques.

Threads can also communicate by explicitly sending notifications to other threads. A

thread can block itself and wait on a monitor [57] for a condition to become true. When

another thread sets the condition to true, it can notify a thread (if any) that is waiting on a

monitor for that condition, or it can notify all threads that are waiting for that condition. A

condition or predicate and the queue of threads waiting for that condition to become true are

represented by a condition variable. A thread can wait on a condition variable of a monitor

by blocking and adding itself to the queue associated with the condition variable, and it can

remove and release a thread or all threads from the queue to notify those threads.

3.1 Events

In our predictive testing analyses, we consider the following statements that are executed by

a thread. Each statement has a label that distinguishes the statement from other statements.

We sometimes drop the statement label when it is not needed in the context of our discussion.

We call the execution of a statement as an event or an operation.

1. c : Acquire(l): acquire of the dynamic lock l. c is the label of the statement (same for

below).

2. c : Release(l): release of lock l. l is the last lock that was acquired by the executing

thread.

3. c : Wait(l): waiting on the condition variable (monitor) l.

4. c : Notify(l): notifying a thread (if any) that is waiting on the condition variable l.
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5. c : NotifyAll(l): notifying all threads waiting on the condition variable l.

6. c : Start(t): starting of a fresh thread t, that is, a thread that has not yet been

started.

7. c : Join(t): waiting for thread t to finish executing.

8. c : Call(o, m): invocation of method m on object o.

9. c : Return(m): return from the method m.

10. c : o = new (o′, T ): allocation of a dynamic object o of type T . The statement occurs

in the body of a method m when m is invoked by object o′.

11. c : Write(o): writing to (some field of) object o.

When designing a predictive testing technique, we have to figure out the right set of

events we should keep track of to effectively and efficiently detect the kind of bugs that we

want to find. The above statements sufficed for the predictive analyses that we developed,

but we might need to keep track of additional statements when designing a different analysis

for detecting a different class of errors. For example, for data races, one needs to keep

track of both reads and writes, and record the field information along with other relevant

information for those operations.

We often denote an event by e, and denote the thread in which the event executes by

thr(e). In our analyses, we sometimes need to know the set of locks held by a thread when

executing an event to determine if the event is properly synchronized against other events.

We call the set of locks held by a thread as the lockset of the thread and denote the lockset

of a thread when executing an event e as LS(e).

We define a happens-before relation between events that we use in our analyses. Given

a sequence of events 〈ei〉 (ei represents the execution of a statement), we define a happens-

before relation ≺ as follows. ≺ is the smallest relation satisfying the following conditions:

• If ei and ej are events in the same thread and ei comes before ej in the sequence 〈ei〉,

then ei ≺ ej .
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• If ei is the execution of Start(t), then for the first event ej in thread t, ei ≺ ej .

• If ei is the execution of Join(t), then for the last event ej in thread t, ej ≺ ei.

• If ei is the execution of Notify(l) or NotifyAll(l), then for each event ej that is the

execution of Wait(l) and that was blocked before the execution of ei, ei ≺ ej.

• If events ei, ej , and ek are such that ei ≺ ej and ej ≺ ek, then ei ≺ ek.

The happens-before relation ≺ essentially captures the inter-thread dependencies that

will be respected in any feasible execution of the program under test. For example, if in a

program, a thread t1 starts another thread t2, then no event in t2 can ever execute before the

event in t1 that starts t2 in any feasible execution of the program. The temporal dependencies

between the event that starts t2 and the events in t2 will be captured by the happens-before

relation. For each event e of type Start(t) or Join(t) or Notify(l) or NotifyAll(l) or

Wait(l), we can consider it to be either sending a message to another thread, or receiving

a message from another thread. For example, if e is Start(t), then it sends a message to

thread t, and the first event in thread t receives the message. Similarly, if e is Join(t), then

the last event in thread t sends a message, and e receives the message. If e is Notify(l)

or NotifyAll(l), then e sends a message, and the Wait(l) that gets unblocked receives the

message. The happens-before relation relates a sender event to its corresponding receiver

event.

The happens-before relation can be computed during program execution by maintaining

a vector clock [37, 81, 86] with every thread. Each thread ti maintains a vector clock indexed

by thread IDs. ti’s vector clock entry for tj indicates the last event in tj that could have

affected ti. Let V(t) denote the vector clock of thread t. When thread t is created, V(t) is

initialized to 1 for t and 0 for other threads, that is, V(t)(t) = 1 and V(t)(t′) = 0 for all

t′ 6= t. We also associate a vector clock with each monitor l and denote it by V(l). V(l) is

initialized to 0 for all threads. The vector clock for a monitor l keeps track of the vector

clocks of threads when they execute waits and notifies on l. When an event e in thread t

is executed, the vector clocks of different threads and monitors are updated in the following

manner after the execution of e.
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1. If e is Start(t′), then

a) V(t)(t) = V(t)(t) + 1

b) V(t′)(tk) = max(V(t′)(tk), V(t)(tk)) for all tk 6= t′

2. If e is Join(t′), then

a) V(t)(tk) = max(V(t)(tk), V(t
′)(tk)) for all tk 6= t

b) V(t)(t) = V(t)(t) + 1

3. If e is Wait(l), then

a) V(t)(tk) = max(V(t)(tk), V(l)(tk)) for all tk 6= t

b) V(t)(t) = V(t)(t) + 1

4. If e is Notify(l) or NotifyAll(l), then

a) V(t)(t) = V(t)(t) + 1

b) V(l)(tk) = V(t)(tk) for each thread tk

We also associate a vector clock with the event e and denote it by V(e). V(e) is the

vector clock of thread t after e has been executed in it. For two vector clocks V1 and V2, we

say V1 < V2 iff ((∀ ti V1(ti) ≤ V2(ti)) ∧ (∃ tj V1(tj) < V2(tj))).

Theorem 1 (ei ≺ ej) ⇔ (V(ei) < V(ej))

Proof We first prove (ei ≺ ej) ⇒ (V(ei) < V(ej)), and then (V(ei) < V(ej)) ⇒ (ei ≺ ej).

Also, let Vi denote V(ei) and Vj denote V(ej).

Assume ei ≺ ej . First consider the case where ei and ej execute in the same thread t.

Thus, ei executes before ej . Since the elements in the vector clock of a thread never decrease

during the course of an execution, ∀ tk Vi(tk) ≤ Vj(tk). Furthermore, since V(t)(t) increases

by 1 for each event executed in t, Vi(t) < Vj(t). Therefore, Vi < Vj . Now consider the case

where ei executes in thread ti and ej in thread tj and ti 6= tj. We have the following four

possibilities.
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• ei is the execution of Start(tj) and ej is the first event in tj . Then, ∀ t 6= tj (Vi(t) ≤

Vj(t)). Also, Vi(tj) = 0 as ti has not received any communication from tj and hence

it does not have any knowledge of the events in tj , but Vj(tj) > 0. Thus, Vi(tj) <

Vj(tj). This implies that Vi < Vj .

• ej is the execution of Join(ti) and ei is the last event in ti. Then, ∀ t 6= tj Vi(t) ≤

Vj(t). Since Vj(tj) is incremented by 1 after execution of ej , Vi(tj) < Vj(tj). Thus,

Vi < Vj .

• ei is the execution of Notify(l) or NotifyAll(l) for monitor l and ej is the Wait(l)

that was unblocked by the execution of ei. Since ei is the last notification on l before

the wait ej was woken up, V(l) = Vi when computing Vj . Thus, ∀ t 6= tj Vi(t) ≤ Vj(t)

and Vi(tj) < Vj(tj). Therefore, Vi < Vj .

• There exists an event ek such that ei ≺ ek and ek ≺ ej . Using the previous three cases

and the associativity of < for vector clocks, we can prove that Vi < Vj .

We now prove (Vi < Vj) ⇒ (ei ≺ ej). This is equivalent to proving ¬ (ei ≺ ej) ⇒ ¬ (Vi

< Vj). Since ¬ (ei ≺ ej), there is no chain of messages between the threads starting from

ei and ending at ej . Since the vector clock of a thread updates the entry for another thread

only when it receives a message from the other thread, Vj(ti) < Vi(ti). Thus, ¬ (Vi < Vj).

3.2 Multithreaded execution state

We use the following definitions regarding the state of threads and the multithreaded exe-

cution.

• Enabled(s) denotes the set of threads that are enabled in the state s. A thread is

disabled if it is waiting to acquire a lock already held by some other thread or waiting

to be notified by another thread or waiting for another thread to finish executing.

• Alive(s) denotes the set of threads whose executions have not terminated in the state

s. A state s is in a stall state if the set of enabled threads in s (i.e. Enabled(s)) is

empty and the set of threads that are alive (i.e. Alive(s)) is non-empty.
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• Execute(s, t) returns the multithreaded execution state after executing the next state-

ment of the thread t in the state s.

We use the definitions and formalizations presented in this chapter to explain our pre-

dictive techniques in the subsequent chapters.
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Chapter 4

Resource Deadlocks

A deadlock in a multithreaded program is an unintended condition in which one or more

threads block forever waiting for a synchronization event that will never happen. Deadlocks

are a common problem in real-world multithreaded programs. For instance, 6,500/198,000

(∼ 3%) of the bug reports in the bug database at http://bugs.sun.com for Sun’s Java

products involve the keyword “deadlock” [67]. There are a few reasons for the existence of

deadlocks in multithreaded programs. First, software systems are often written by many

programmers; therefore, it becomes difficult to follow a synchronization discipline that could

avoid deadlock. Second, programmers often introduce deadlocks when they fix race condi-

tions by adding new locks. Third, software systems can allow incorporation of third-party

software (e.g. plugins); third-party software may not follow the synchronization discipline

followed by the parent software and this sometimes results in deadlock bugs [69].

Figure 4.1 illustrates a simple deadlock. There are two threads, T1 and T2, with each

trying to synchronize data by acquiring some locks. The first thread, T1, acquires the lock

L1. The second thread, T2, acquires the lock L2. Thread T1 then tries to acquire the lock

L2 but cannot since thread T2 is still holding that lock. When thread T2 tries to acquire the

lock L1, it cannot as it is still held by thread T1. Thus, T1 and T2 get blocked with each

waiting for the other to release a lock. We have a deadlock as a result. Deadlocks of this kind

are called as resource deadlocks because the blocked threads are waiting for other blocked

threads to release resources (or locks). Note in the figure that we have a cycle with the

edges between L1 and L2. Most of the tools for finding resource deadlocks [53, 13, 6, 112, 34]
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T1 T2

L1

L2

Figure 4.1: Example of a resource deadlock

look for the presence of such cycles in appropriate graphs or data structures that encode the

locking information.

4.1 Predictive testing for resource deadlocks

Most of the previous work [52, 53, 13, 6, 112, 34, 79, 42, 8, 107, 84] for resource deadlocks

report deadlocks by finding cycles in the locking patterns across different threads. Lock-

graph is a data structure that is used to express succinctly the locking patterns of threads.

It has a node for each lock that is acquired by a thread, and has a labeled edge from one

lock to the other if a thread acquires the latter lock while holding the former lock in some

program state. Previous predictive dynamic techniques [53, 13, 6] compute the lock-graph

dynamically during program execution, and find cycles in it to predict deadlocks that could

have occurred in a different thread interleaving. The algorithm in their predictive analyses

is called as the Goodlock algorithm. The analyses use the basic Goodlock algorithm [53] or

generalized variations of the basic algorithm [13, 6].

We built an improved version of the generalized Goodlock algorithm [13, 6] to predict

resource deadlocks [67]. We improve over Goodlock in the following two ways. First, we

add context information to a computed potential deadlock cycle. This information helps

to identify the program locations where the deadlock could happen and also to statically



CHAPTER 4. RESOURCE DEADLOCKS 20

identify the lock and thread objects involved in the deadlock cycle. This aids in debugging of

deadlocks, and as we would later see (Chapter 7) that it also helps in confirming the deadlocks

automatically. Second, we simplify the generalized Goodlock algorithm by avoiding the

construction of a lock graph. Unlike existing Goodlock algorithms, we do not perform a

depth-first search of the lock-graph, but compute transitive closure of the lock dependency

relation (defined below in Section 4.3). As such it uses more memory, but has better runtime

complexity. We call our version of the Goodlock algorithm as the iGoodlock algorithm with

the “i” standing for “informative”. We describe the iGoodlock algorithm in the following

sections.

4.2 Overview

In this section, we illustrate how iGoodlock works with the help of the Java program in

Figure 4.2. The program defines a MyThread class that has two locks l1 and l2 and a

boolean flag. The run method of MyThread invokes a number of long running methods f1,

f2, f3, f4 if flag is true and then it acquires locks l1 and l2 in order. The body of run

shows a common pattern, where a thread runs several statements and then acquires several

locks in a nested way. The main method creates two lock objects o1 and o2. It also creates

two threads (i.e. instances of MyThread). In the first instance l1 and l2 are set to o1 and

o2, respectively, and flag is set to true. Therefore, a call to start on this instance will

create a new thread which will first execute several long running methods and then acquire

o1 and o2 in order. A call to start on the second instance of MyThread will create a new

thread which will acquire o2 and o1 in order.

The example has a deadlock because the locks o1 and o2 are acquired in different orders

by the two threads. However, this deadlock will rarely occur during normal testing because

the second thread will acquire o2 and o1 immediately after start, whereas the first thread

will acquire o1 and o2 after executing the four long running methods. iGoodlock will report

this deadlock as a potential one by observing a single execution that does not deadlock.

iGoodlock keeps track of each lock acquire and release during execution. For each lock

acquired by a thread, it records some information regarding that lock acquire that later helps

iGoodlock to predict deadlocks. For example, when the second thread (say T2) acquires the
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1 class MyThread extends Thread {

2 Object l1 , l2;

3 boolean flag;

4 MyThread(Object l1, Object l2 , boolean b){

5 this.l1 = l1; this.l2 = l2; this.flag = b;

6 }

7
8 public void run() {

9 if (flag) { // some long running methods

10 f1();

11 f2();

12 f3();

13 f4();

14 }

15 synchronized(l1) {

16 synchronized(l2) {

17 }

18 }

19 }

20
21 public static void main (String [] args) {

22 Object o1 = new Object ();

23 Object o2 = new Object ();

24 (new MyThread(o1, o2 , true)).start();

25 (new MyThread(o2, o1 , false)).start();

26 }

27 }

Figure 4.2: Simple example of a deadlock

lock on o2 at line number 15, iGoodlock will record this event as the tuple (T2, [], o2, [15]).

The first entry in the tuple denotes the thread that acquired the lock, the second entry

represents the set of locks that the thread already held when acquiring the lock, the third

entry is the lock, and the last entry is the set of source locations where the thread has

acquired the locks that it currently holds. Similarly, iGoodlock generates the tuples (T2,

[o2], o1, [15, 16]), (T1, [], o1, [15]) and (T1, [o1], o2, [15, 16]]) to record the other three

lock acquires that it observes. All of these four tuples together form the lock dependency

relation (Section 4.3). After the program execution finishes, iGoodlock uses the computed

lock dependency relation to find potential deadlock cycles. Essentially, it tries to find cycles

among the tuples. For example, the tuples (T2, [o2], o1, [15, 16]) and (T1, [o1], o2, [15, 16]])

form a cycle since it is possible in an execution that thread T2 is waiting to acquire lock o1
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that is held by thread T1, and T1 is waiting to acquire the lock on o2 that is held by T2.

This cycle represents the deadlock in the program that we had seen before.

4.3 iGoodlock

We first introduce some formal definitions before we describe the algorithm.

Given a multithreaded execution σ, let Lσ be the set of lock objects that were held by any

thread in the execution and Tσ be the set of threads executed in the execution. Let C be the

set of all statement labels in the multithreaded program. In iGoodlock, we need to keep track

of the execution of the Acquire and Release statements (Chapter 3). Thus, C includes the

labels of only Acquire and Release statements. Moreover, we ignore an Acquire statement

when it is a re-acquire of a previously held lock, and we also ignore a Release statement

when it does not release a lock completely. This is implemented by associating a usage

counter with a lock which is incremented whenever a thread acquires or re-acquires the lock

and decremented whenever a thread releases the lock. Execution of Acquire(l) by thread t

is considered whenever t acquires or re-acquires the lock l and the usage counter associated

with l is incremented from 0 to 1. Similarly, execution of Release(l) is considered when the

usage counter goes from 1 to 0.

We next define the lock dependency relation of a multithreaded execution as follows.

Definition 2 Given an execution σ, a lock dependency relation Dσ of σ is a subset of

Tσ × 2Lσ × Lσ × C∗ such that (t, L, l, C) ∈ Dσ iff in the execution σ, in some state, thread t

acquires lock l while holding the locks in the set L, and C is the sequence of labels of Acquire

statements that were executed by t to acquire the locks in L ∪ {l}.

For the example in Figure 4.2, {(T2, [], o2, [15]), (T2, [o2], o1, [15, 16]), (T1, [], o1, [15]),

(T1, [o1], o2, [15, 16])} forms the lock dependency relation.

Definition 3 Given a lock dependency relation D, a lock dependency chain τ =

〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉 is a sequence in D∗ such that the following properties

hold.

1. for all distinct i, j ∈ [1, m], ti 6= tj, i.e. the threads t1, t2, . . . , tm are all distinct objects,
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2. for all distinct i, j ∈ [1, m], li 6= lj, i.e. the lock objects l1, l2, . . . , lm are distinct,

3. for all i ∈ [1, m− 1], li ∈ Li+1, i.e. each thread could potentially wait to acquire a lock

that is held by the next thread,

4. for all distinct i, j ∈ [1, m], Li ∩ Lj = ∅, i.e., each thread ti should be able to acquire

the locks in Li without waiting.

Consider the example in Figure 4.2 again. 〈 (T2, [o2], o1, [15, 16]), (T1, [o1], o2, [15, 16])

〉 and 〈(T1, [o1], o2, [15, 16]), (T2, [o2], o1, [15, 16])〉 are two lock dependency chains in that

example.

Definition 4 A lock dependency chain

τ = 〈(t1, L1, l1, C1), . . . , (tm, Lm, lm, Cm)〉

is a potential deadlock cycle if lm ∈ L1.

Both the dependency chains that we saw earlier are potential deadlock cycles for the

example in Figure 4.2.

Note that the definition of a potential deadlock cycle never uses any of the Ci’s in Dσ to

compute a potential deadlock cycle. Each Ci of a potential deadlock cycle provides us with

information about program locations where the locks involved in the cycle were acquired.

This is useful for debugging and as we would later see (Chapter 7) is also used to determine

the program locations at which to pause threads when confirming a potential deadlock.

We next describe iGoodlock. Specifically, we describe how we compute the lock depen-

dency relation during a multithreaded execution and how we compute all potential deadlock

cycles given a lock dependency relation.

4.3.1 Computing the lock dependency relation of a

multithreaded execution

In order to compute the lock dependency relation during a multithreaded execution, we

maintain the following three data structures:
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• LockSet that maps each thread to a stack of locks held by the thread. This is essentially

the lockset (LS in Chapter 3) of each thread, but maintained as a stack and not a set.

• Context that maps each thread to a stack of the labels of statements where the thread

acquired the currently held locks

• D is the lock dependence relation

We update the above three data structures during a multithreaded execution as follows:

• Initialization

– for all t, both LockSet[t] and Context[t] map to an empty stack

– D is an empty set

• If thread t executes the statement c : Acquire(l)

– push c to Context[t]

– add (t, LockSet[t], l, Context[t]) to D

– push l to LockSet[t]

• If thread t executes the statement c : Release(l)

– pop from Context[t]

– pop from LockSet[t]

At the end of the execution, we outputD as the lock dependency relation of the execution.

Note that we use stacks for LockSet and Context because we assume that locks are acquired

and released in a nested fashion (Chapter 3). We would have to use appropriate data

structures for other (or arbitrary) locking patterns. The runtime complexity of computing

the lock dependency relation is O(S) where S is the number of synchronization operations

(lock acquires and releases) since the data structures are updated only for lock acquires and

releases and each update is O(1). The memory complexity of computing the relation is O(S2)

since the lockset or context saved for a lock acquire is bounded by O(S). In Figure 4.2, when

thread T2 acquires the lock on o1 at line number 16, LockSet[T2] is {o2}, and Context[T2]

is [15, 16]. Thus, we add (T2, {o2}, o1, [15, 16]) to the lock dependency relation for that

lock acquire.
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4.3.2 Computing potential deadlock cycles iteratively

Algorithm 1 iGoodlock(D)

1: INPUTS: lock dependency relation D
2: i ⇐ 1
3: Di ⇐ D
4: while Di 6= ∅ do
5: for each (t, L, l, C) ∈ D and each τ in Di do
6: if 〈τ, (t, L, l, C)〉 is a dependency chain by Definition 3 then
7: if 〈τ, (t, L, l, C)〉 is a potential deadlock cycle by Definition 4 then
8: report abs(〈τ, (t, L, l, C)〉) as a potential deadlock cycle
9: else

10: add 〈τ, (t, L, l, C)〉 to Di+1

11: end if
12: end if
13: end for
14: i ⇐ i+ 1
15: end while

Let Dk denote the set of all lock dependency chains of D that has length k. There-

fore, D1 = D. iGoodlock computes potential deadlock cycles by iteratively computing

D2, D3, D4, . . . and finding deadlock cycles in those sets. The iterative algorithm for com-

puting potential deadlock cycles is described in Algorithm 1. iGoodlock uses abstractions

to identify the threads and locks involved in a deadlock when reporting the deadlock. For

example, an abstraction for a thread or a lock object could be the source location where that

object was created. In a later chapter (Chapter 7), we show more precise abstractions that

can distinguish better between distinct objects. The method abs in Algorithm 1 computes

the abstractions of objects in a deadlock cycle. The runtime complexity of computing the

deadlock cycles is O(2S), where S is the number of synchronization operations (lock acquires

and releases). A lock dependency chain can have a maximum length of T where T is the

number of threads, and thus, we can compute the dependency chains in T steps with each

step i computing chains of length i. Since there are O(S) tuples in the lock dependency rela-

tion, the number of chains computed in step i is O(Si), and therefore the runtime complexity

of each step is also O(Si). Hence, the overall runtime complexity is O(S1 + S2 + . . .+ ST )

= O(2S). The memory complexity of computing deadlock cycles is O(2STS) since there are

O(2S) chains that are computed and each chain is bounded by O(TS). For the example in
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Figure 4.2, D1 is {(T2, [], o2, [15]), (T2, [o2], o1, [15, 16]), (T1, [], o1, [15]), (T1, [o1], o2,

[15, 16])}, and D2 is ∅ since both 〈(T2, [o2], o1, [15, 16]), (T1, [o1], o2, [15, 16])〉 and 〈 (T1,

[o1], o2, [15, 16]), (T2, [o2], o1, [15, 16])〉 are reported as potential deadlock cycles.

Note that in iGoodlock(D) we do not add a lock dependency chain to Di+1 if it is a

deadlock cycle. This ensures that we do not report complex deadlock cycles, i.e. deadlock

cycles that can be decomposed into simpler cycles.

4.3.3 Avoiding duplicate deadlock cycles

In Algorithm 1, a deadlock cycle of length k gets reported k times. For example, if

〈(t1, L1, l1, C1), (t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm)〉

is reported as a deadlock cycle, then

〈(t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm), (t1, L1, l1, C1)〉

is also reported as a cycle. In order to avoid such duplicates, we put another constraint in

Definition 3: the unique id of thread t1 must be less than the unique id of threads t2, . . . , tm.

With this constraint, we report only one potential deadlock cycle 〈 (T1, [o1], o2, [15, 16]),

(T2, [o2], o1, [15, 16])〉 and not two as before.

Thus, we have seen how resource deadlocks can be predicted using a deadlock-free execu-

tion. In the next chapter, we present a technique that not only predicts resource deadlocks

but also other classes of deadlocks that involve waits and signals.
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Chapter 5

Generalized Deadlocks

Resource deadlocks (Chapter 4) are not the only reason why threads can get blocked forever

during execution. There are other reasons for a multithreaded execution to go into a dead-

lock. For example, incorrect use of condition variables (i.e. wait-notify synchronization) as

well as unintended interaction between locks and condition variables can also result in dead-

locks. Such deadlocks are called as communication deadlocks, and are no less widespread or

insidious than resource deadlocks. Yet, in the extensive literature on deadlock detection only

little work (e.g. [5, 60]) addresses communication deadlocks. Thus, we set out to design a

predictive testing technique that can predict communication deadlocks.

The iGoodlock algorithm (Chapter 4) that we developed for resource deadlocks, and most

of the previous work on resource deadlock detection [6, 13, 52, 53, 67, 16, 34, 60, 80, 84, 107,

112] find deadlocks by checking for the violation of a simple idiom, namely that there is no

cycle in the lock-graph of a program. Thus, as a first attempt, we tried to build a tool that

can predict communication deadlocks by checking for the violation of an idiom analogous

to that for resource deadlocks. However, after studying a large number of communication

deadlocks in real-world programs, we realized that there is no single idiom that programmers

follow when writing code using condition variables. Therefore, any such testing technique

based on checking idioms would give many false positives and false negatives. The study

also suggested that finding communication deadlocks is a hard problem as a communication

deadlock can be non-trivially dependent on aspects of the underlying synchronization logic

that vary from program to program.
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In the end, we adopted a completely different approach [66] that we describe in the

subsequent sections. Instead of checking conformance to a particular idiom, we create a

simple multithreaded program, called a trace program, by observing an execution of the

original program, and model check the trace program to discover potential deadlocks. We

can find a broad class of deadlocks or generalized deadlocks with the trace program that

include both communication deadlocks and resource deadlocks and deadlocks involving both

locks and condition variables. The trace program for a given multithreaded execution creates

an explicit thread for each dynamic thread created by the execution. The code for each

thread in the trace program consists of the sequence of lock acquires and releases, wait

and notify calls, and thread start and join calls by the corresponding thread in the original

execution. However, this is not enough: the state of the synchronization predicates associated

with condition variables must also be tracked and checked. In the trace programs, these

synchronization predicates are represented as boolean variables with explicit assignments

where the original program performed an assignment that caused the predicate’s value to

change, and explicit checks before uses of waits and notifies. We call our predictive testing

technique as CheckMate, and describe it in detail in the following sections in the context

of Java that we have focused on in our implementation of the technique.

5.1 Rationale

In this section, we explain the rationale behind our approach after describing the recom-

mended usage pattern for condition variables.

Recommended Usage

Figure 5.1 shows the recommended pattern for using condition variables in Java 1. The

condition variable in the figure is associated with a synchronization predicate b (e.g. “FIFO

X is non-empty”). Any code like F1 that requires b to be true (e.g. “dequeuing an element

from FIFO X”) must hold the condition variable’s lock l, and repeatedly wait (l.wait()) on

the condition variable until b is true. Any code F2 that might make b true (e.g. “enqueue an

element in FIFO X”) must make these modifications while holding the condition variable’s
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// F1 // F2

synch (l) { synch (l) {

while (!b) <change in value

l.wait(); of b that could

<do something that make b true >

requires b = true > l.notifyAll();

} }

Figure 5.1: Recommended condition variable usage. We use synch to abbreviate synchro-
nized.

lock l, and must notify all threads that might be waiting for b to become true (l.notifyAll()).

After a waiting thread wakes up, it should again check to see if b indeed holds for two reasons.

First, the notifying thread (F2) may notify when b is not necessarily true. Second, some

other thread may have invalidated b before the woken thread was able to acquire lock l.

Our Initial Effort

As a first attempt, we devised a predictive testing technique that predicted communication

deadlocks by checking to see if all condition variables used in observed thread interleavings

followed the recommended usage pattern shown in Figure 5.1. Consider the real-world code

fragment in Figure 5.2. Any of its interleavings violates two aspects of that pattern: first,

thread 1 uses an if instead of a while to check predicate b, and secondly, neither thread

accesses b in the same synchronized block as the one containing l.wait() or l.notifyAll().

The analysis we devised thus reports a possible deadlock in this code fragment regardless of

the interleaving it observes. Indeed, the shown interleaving of this code fragment exhibits a

deadlock. In this interleaving, thread 1 first finds that boolean b is false. Thread 2 then sets

b to true, notifies all threads in the wait set of l (i.e. the threads that are waiting on l), and

releases l. The wait set of l, however, is empty; in particular, thread 1 is not (yet) waiting

on l. Finally, thread 1 resumes and waits on l, assuming incorrectly that b is still false, and

blocks forever as thread 2—the only thread that could have notified it—has already sent

a notification and terminated. This is a classic kind of communication deadlock called a

1Strictly speaking, Java uses monitors that combine a lock and a condition variable. We use lock and
condition variable to clarify which aspect of a monitor we are referring to; this also makes clearer how
CheckMate would apply to languages with separate locks and condition variables.
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// Thread 1 // Thread 2

if (!b)

b = true;

synch (l)

l.notifyAll();

synch (l)

l.wait();

Figure 5.2: Deadlock due to missed notification.

missed notification in Java.

Limitations of Pattern Enforcement

We found pattern-based enforcement to be of limited value, for two reasons. First, program-

mers often optimize the recommended pattern based on their knowledge about the code.

For instance, if the synchronization predicate b is always true when a thread is woken up,

then the thread may not need to check b again, i.e. the while in F1 can be an if. Or, if

a number of threads are woken up by a notifying thread, but the first thread that acquires

lock l always falsifies the predicate b, then waking up the other threads is pointless. In

this case, the notifying thread (F2) can use notify to wake a single thread. A real-world

example violating the pattern is found in lucene (version 2.3.0), a text search engine library

by Apache: in some cases, a thread may change the value of a synchronization predicate in

one synchronized block and invoke notifyAll() in another synchronized block. Although

the notification happens in a different synchronized block, it always follows the change in

value of the predicate, and hence there is no deadlock because of this invariant which the

recommended usage pattern does not capture.

Second, code that respects the pattern can still deadlock because of interactions between

other locks and condition variables. Consider the code in Figure 5.3 (based on a real exam-

ple): the locks follow the cycle-free lock-graph idiom for avoiding resource deadlocks, and

the condition variables follow the recommended usage pattern in Figure 5.1 for avoiding

communication deadlocks, yet their combined use causes a deadlock, exhibited by the shown

interleaving. The second thread is the only thread that can wake the first thread up, but it

gets blocked when trying to acquire lock l1 as it is still held by the first thread. This code
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// Thread 1 // Thread 2

synch (l1)

synch (l2)

while (!b)

l2.wait();

synch (l1)

synch (l2)

l2.notifyAll();

Figure 5.3: Deadlock involving both locks and condition variables.

fragment can occur because a library uses the condition variable involving lock l2, and an

application calls into the library while holding its own lock l1. In fact, this pattern occurs

frequently enough in practice that FindBugs, a popular static bug-finding tool for Java that

checks common bug patterns, reports that calls to wait() with two locks held may cause a

deadlock [60].

In summary, we could not find an idiom for accurately predicting all deadlocks by ob-

serving interleavings that did not exhibit them. This motivated us to devise an analysis

that uses a model checker to explore all possible interleavings. Model checking is difficult

to scale to large programs. We chose to strike a trade-off between scalability, completeness,

and soundness by model checking a trace program obtained from a single execution of the

given program. In doing so, we sacrifice both completeness and soundness, but our analysis

scales to large programs. This is not only because the trace program is generated from a

single finite execution of the given program, but also because it only records operations that

we deem are relevant to finding the above kinds of deadlocks. Not only does our analysis

find both deadlocks discussed above, it does not report a false deadlock for the correct usage

of notification in lucene described above.

5.2 Overview

In this section, we illustrate how CheckMate works using the example Java program in

Figure 5.4. Class MyBuffer is intended to implement a thread-safe bounded buffer that

allows a producer thread to add elements to the buffer and a consumer thread to remove

elements from it. List buf represents the buffer, cursize denotes the current number of
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elements in the buffer, and maxsize denotes the maximum number of elements allowed in

the buffer at any instant. Ignore the underlined field condition and all operations on it for

now. The program uses two condition variables to synchronize the producer and consumer

threads, one for the predicate that the buffer is full, checked using method isFull(), and

the other for the predicate that the buffer is empty, checked using method isEmpty().

A producer thread adds elements to the buffer using the put() method. If the buffer

is full, it waits until it gets notified by a consumer thread. After adding an element to the

buffer, it notifies any consumer thread that may be waiting for elements to be available in

the buffer. Likewise, a consumer thread removes elements from the buffer using the get()

method. If the buffer is empty, it waits until it gets notified by a producer thread. After

removing an element from the buffer, if the buffer was full, it notifies any producer thread

that may be waiting for space to be available in the buffer. Finally, the resize() method

allows changing the maximum number of elements allowed in the buffer.

The main() method creates a MyBuffer object bf with a maxsize of 1. It also creates

and spawns three threads that execute in parallel: a producer thread p that adds two integer

elements to bf, a consumer thread c that removes an element from bf, and a third thread r

that resizes bf to have a maxsize of 10.

Suppose we execute the program, and the three threads spawned by the main thread

interleave as shown in Figure 5.5. In this interleaving, thread p first puts integer 0 into bf.

Since the maxsize of bf is 1, bf is now full. But before p puts another integer into bf,

thread r changes the maxsize of bf to 10. Thus, bf is not full any more. Thread p then

puts integer 1 into bf. Finally, thread c removes integer 0 from bf. Note that neither of

the two wait()’s in the program is executed in this interleaving. However, there is another

interleaving of threads p, r, and c that deadlocks. This interleaving is shown in Figure 5.6.

Thread p puts integer 0 into bf. Since the maxsize of bf is 1, bf gets full. When p tries to

put another integer into bf, it executes the wait() in the put() method and blocks. Thread

r then increases the maxsize of bf, and thus, bf is not full any more. Thread c then removes

integer 0 from bf. Since bf is not full any more (as thread r grew its capacity), it does not

notify thread p. Thus, p blocks forever.

Our analysis can predict the deadlock from the interleaving in Figure 5.5, although

that interleaving does not exhibit the deadlock, and does not even execute any wait().
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1 public class MyBuffer {

2 private List buf = new ArrayList();

3 private int cursize = 0, maxsize;

4 private ConditionAnnotation condition =

5 new ConditionAnnotation(this) {

6 public boolean isConditionTrue() {

7 return (( MyBuffer) o).isFull ();

8 }};

9 public MyBuffer(int max) {

10 maxsize = max;

11 }

12 public synch void put(Object elem) {

13 condition.waitBegin(this);

14 while (isFull ()) wait();

15 condition.waitEnd();

16 buf.add(elem); cursize++; notify ();

17 }

18 public Object get() {

19 Object elem;

20 synch (this) {

21 while (isEmpty()) wait();

22 elem = buf.remove (0);

23 }

24 synch (this) {

25 condition.notifyBegin(this);

26 if (isFull ()) {

27 cursize --; notify ();

28 } else {

29 condition.notifyEnd(); cursize --;

30 }

31 }

32 return elem;

33 }

34 public synch void resize(int max) { maxsize = max; }

35 public synch boolean isFull () { return (cursize >= maxsize); }

36 public synch boolean isEmpty() { return (cursize == 0); }

37 public static void main(String [] args) {

38 final MyBuffer bf = new MyBuffer(1);

39 Thread p = (new Thread () {

40 public void run() {

41 for (int i = 0; i < 2; i++) bf.put(new Integer(i));

42 }}).start();

43 Thread r = (new Thread () { public void run() { bf.resize (10);}}).

start();

44 Thread c = (new Thread () { public void run() { bf.get();}}).start();

45 }

46 }

Figure 5.4: An example with a communication deadlock.
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For this purpose, our analysis records three kinds of information during the execution of

that interleaving. First, it records synchronization events that occur during the execution,

like lock acquires and releases, calls to wait() and notify(), and calls to start() and

join() threads. Secondly, it records changes to the value of any predicate associated with a

condition variable during the execution. Since Java has no explicit synchronization predicates

associated with condition variables, our analysis requires the user to explicitly identify each

such predicate by defining an instance of class ConditionAnnotation (shown in Figure 5.8).

In our example in Figure 5.4, there are two condition variables in class MyBuffer, one

for predicate isFull(), and the other for predicate isEmpty(). We manually annotate

the MyBuffer class with the underlined field condition defined on lines 4-8 to identify

predicate isFull(). This field holds a ConditionAnnotation object that defines a method

isConditionTrue() that can determine in any program state whether that predicate is true.

Our analysis uses this method to determine if each write in the observed execution changes

the value of predicate isFull(). We provide a similar annotation (not shown for brevity)

for predicate isEmpty(). Note that our annotations are very simple to add if we know the

implicit synchronization predicates associated with condition variables.

Thirdly, our analysis also records each wait() and notify() event that did not occur

during the observed execution because the condition under which it would have occurred was

false in that execution. Our analysis again relies on manual annotations for this purpose, this

time in the form of calls to pre-defined methods waitBegin(), waitEnd(), notifyBegin(),

and notifyEnd() on the ConditionAnnotation object corresponding to the predicate as-

sociated with the condition. The annotations on lines 13 and 15 denote that the execution

of wait() in the put() method depends on the value of predicate isFull(). During exe-

cution, even if this predicate is false, these annotations enable our analysis to record that

had it been true, the wait() would have executed. Likewise, the annotations on lines 25

and 29 denote that the execution of notify() in the get() method depends on the value

of predicate isFull(). We provide similar annotations (not shown for brevity) to indicate

that the execution of wait() in the get() method depends on predicate isEmpty().

Our analysis generates the Java program shown in Figure 5.7, which we call a trace

program, by observing the execution of the interleaving in Figure 5.5 and with the help of

the above annotations. Note that the trace program has excluded all the complex control
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// Thread p // Thread r // Thread c

bf.put(0)

bf.resize (10)

bf.put(1)

bf.get()

Figure 5.5: Non-deadlocking interleaving for example in Figure 5.4.

// Thread p // Thread r // Thread c

bf.put(0)

bf.put(1)

bf.resize (10)

bf.get()

Figure 5.6: Deadlocked interleaving for example in Figure 5.4.

structure (e.g. the for loop and method calls) and memory updates (e.g. changes in cursize

and buf) and has retained the necessary synchronization operations that happened during

the execution. This simple trace program without the complicated program logic of the

original program is much more efficient to model check.

In the trace program, we have used descriptive identifier names and comments to help

relate it to the original program. Such comments and identifier names help our analysis

to map any error trace in the trace program to the original program, which could be used

for debugging. The fact that our analysis can generate an informative error trace in the

original program is a key advantage of our technique over other predictive dynamic analysis

techniques. In the trace program, bf denotes the instance of MyBuffer created during

the observed execution. Note that we make bf of type Object, instead of type MyBuffer,

because we do not need to worry about the program logic in the trace program. isFull

denotes predicate bf.isFull() upon which the wait() in the put() method and notify()

in the get() method are control-dependent. The main thread main initializes isFull to

false, and starts threads p, r, and c as in the observed execution. Note that although the

wait() in the put() method is not executed in either of the two calls to bf.put() by thread

p in that execution, the run() method of thread p in the trace program records that this

wait() would have been executed in either call had isFull been true. Also, isFull is set

to true on line 18 since the buffer becomes full after thread p puts the first integer 0 into it.
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1 public class TraceProgram {

2 static Object bf = new Object ();

3 static boolean isFull;

4 static Thread main = new Thread () {

5 public void run() {

6 isFull = false;

7 p.start();

8 r.start();

9 c.start();

10 }

11 };

12 static Thread p = new Thread () {

13 public void run() {

14 synch (bf) { // enter bf.put(0)

15 if (isFull) {

16 synch (bf) { bf.wait(); }

17 }

18 isFull = true;

19 bf.notify ();

20 } // leave bf.put(0)

21 synch (bf) { // enter bf.put(1)

22 if (isFull) {

23 synch (bf) { bf.wait(); }

24 }

25 bf.notify ();

26 } // leave bf.put(1)

27 }

28 };

29 static Thread r = new Thread () {

30 public void run() {

31 synch (bf) { // enter bf.resize (10)

32 isFull = false;

33 } // leave bf.resize (10)

34 }

35 };

36 static Thread c = new Thread () {

37 public void run() {

38 synch (bf) { // enter bf.get()

39 if (isFull) {

40 synch (bf) { bf.notify (); }

41 }

42 } // leave bf.get()

43 }

44 };

45 public static void main(String [] args) {

46 main.start();

47 }

48 }

Figure 5.7: Trace program generated by observing the execution of the interleaving in Fig-
ure 5.5 of the example in Figure 5.4.
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Thread r is the thread that resizes the buffer and increases its maxsize. The run() method

of thread r sets isFull to false on line 32 since the buffer is no longer full after its maxsize

has been increased. Finally, although the notify() in the get() method is not executed in

the call to bf.get() by thread c in the observed execution, the run() method of thread c

in the trace program records that the notify() would have been executed had isFull been

true. Thus, the trace program captures all synchronization events in the observed execution,

any writes in that execution that change the value of any annotated predicate associated with

a condition variable, as well as any annotated wait()’s and notify()’s that did not occur

in that execution but could have occurred in a different execution. All other operations in

the observed execution of the original program are not deemed relevant to finding deadlocks.

There exists an interleaving of the threads in this trace program that corresponds to

the interleaving in Figure 5.6 that exhibits the deadlock. In this interleaving of the trace

program, p executes its run() method till the wait() on line 23, where it gets blocked.

Then, r completely executes its run() method and exits. Thereafter, c executes its run()

method, but does not notify p because isFull is false. Thus, p blocks forever waiting to

be notified by c. CheckMate uses an off-the-shelf model checker to explore all possible

interleavings of the trace program and check if any of them deadlocks. In the process of

model checking, it encounters this interleaving, and thus finds the deadlock in the original

program.

5.3 Predictive Testing for Communication Deadlocks

In this section, we present our predictive deadlock detection algorithm. We first describe the

annotations our algorithm requires. We then discuss how to generate the trace program, and

how to model check the trace program to report possible deadlocks in the original program.

5.3.1 Condition Annotations

Our algorithm requires users to annotate the predicate associated with each condition

variable in a Java program using class ConditionAnnotation. This class is shown in

Figure 5.8. For brevity, we have not shown the synchronization required to make the
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1 public abstract class ConditionAnnotation{

2 protected static int counter = 0;

3 protected Object o;

4 protected int condId;

5 protected boolean curVal;

6 public ConditionAnnotation(Object o1) {

7 o = o1; condId = counter++;

8 associateWithObject(o1); initCond();

9 }

10 public abstract boolean isConditionTrue();

11 public void waitBegin(Object lock) {

12 int lockId = getUniqueObjId(lock);

13 boolean val = isConditionTrue();

14 addLine(“if (c”+condId+“) {”);
15 if (!val)

16 addLine(“synchronized (l”+lockId+“)”+“{l”+lockId+“.wait();}”);
17 }

18 public void waitEnd() { addLine(“}”); }

19 public void notifyBegin(Object lock) {

20 int lockId = getUniqueObjId(lock);

21 boolean val = isConditionTrue();

22 addLine(“if (c”+condId+“) {”);
23 if (!val)

24 addLine(“synchronized (l”+lockId+“)”+“{l”+lockId+“.notify();}”);
25 }

26 public void notifyEnd() { addLine(“}”); }

27 public void logChange() {

28 boolean newVal = isConditionTrue();

29 if (newVal != curVal) {

30 addLine(“c”+condId+“=”+newVal+“;”);
31 curVal = newVal;

32 }

33 }

34 private void associateWithObject(Object o) {

35 /** associate this instance of ConditionAnnotation with the object o in a map **/

36 . . .
37 }

38 private void initCond() {

39 curVal = isConditionTrue();

40 addLine(“c”+condId+“=”+curVal+“;”);
41 }

42 private void addLine(String line) {

43 AddLinesToTraceProgram.addLine(line);

44 }

45 }

Figure 5.8: Definition of class ConditionAnnotation.
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1 public class AddLinesToTraceProgram {

2 protected static Map/*<Int ,List <String >>

3 */ thrToLines = new TreeMap();

4 public static int getUniqueObjId(Object o) {

5 . . . // return unique integer ID for object o

6 }

7 public static void addLine(String line)

8 {

9 int tId = getUniqueObjId(

10 Thread.currentThread());

11 /** append line to list mapped to tId in thrToLines **/

12 . . .
13 }

14 }

Figure 5.9: Definition of class AddLinesToTraceProgram that is used by class
ConditionAnnotation (Figure 5.8) and Algorithm 2.

ConditionAnnotation class thread-safe in the figure. Here, we only explain the annota-

tion and how the user provides it. We later show how our algorithm uses it to generate the

trace program.

For the predicate associated with a given condition variable, the user subclasses

ConditionAnnotation to implement its only abstract method isConditionTrue(). This

method should evaluate to true if and only if the predicate evaluates to true. The pred-

icate usually depends on the state of an object in the program, that is, the predicate’s

value can be computed by accessing fields or calling methods of that object. Field o of

ConditionAnnotation denotes that object. In practice, we have multiple such fields to

accommodate cases where the predicate depends on the state of multiple objects. We can

also handle predicates that depend on static variables. The user thus implements method

isConditionTrue() by accessing the appropriate fields, or calling the appropriate methods

of o. Then, whenever the object on whose state the predicate depends is created in the

program, the user also creates an instance of the defined subclass of ConditionAnnotation,

and associates it with that object by passing it to ConditionAnnotation’s constructor. Fi-

nally, the user calls pre-defined methods waitBegin(), waitEnd(), notifyBegin(), and

notifyEnd() on the created instance of ConditionAnnotation before and after any calls to

wait(), notify(), and notifyAll() that are control-dependent on the predicate.
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The example from Figure 5.4 uses two condition variables, one for the predicate that the

buffer is full, and another for the predicate that it is empty. The underlined field condition

defined on lines 4-8 in the figure, along with the methods invoked on it on lines 13, 15, 25, and

29 to specify control-dependent calls to wait() and notify(), constitutes the annotation

for the predicate that the buffer is full. Method isConditionTrue(), in this case, simply

calls method isFull() of class MyBuffer. A similar annotation (not shown) is provided for

the predicate that the buffer is empty.

5.3.2 Stage I: Generating the Trace Program

The first stage of our algorithm generates a trace program by observing an execution

of the given program with annotations on synchronization predicates. Algorithm 2 ex-

plains how the trace program is generated. It populates global map thrToLines in class

AddLinesToTraceProgram (Figure 5.9) while observing the execution. Map thrToLines

maps each thread in the observed execution to a list of strings. Each string is a statement or a

part of a statement, and the whole list is a legal block of statements that constitutes the body

of the corresponding thread in the trace program. Whenever a synchronization statement

is executed by a thread in the observed execution, the algorithm calls method addLine()

in class AddLinesToTraceProgram to add the string it generates to the list mapped to that

thread in thrToLines. The generated string depends on the kind of synchronization state-

ment that was executed.

If a lock acquire statement (i.e. statement of type Acquire as in Chapter 3) is executed,

the algorithm begins a synchronized statement for the involved lock object. The lock

object is uniquely identified in the trace program using method getUniqueObjId() in class

AddLinesToTraceProgram which provides a unique integer for each object created in the

observed execution. If a lock release statement is executed, the algorithm closes the last

synchronized statement that it had started for the thread. We had earlier stated our

assumption that locks are acquired and released in a nested fashion (Chapter 3). Thus, a

lock release statement always releases the lock that was most recently acquired by the thread.

If a wait() statement is executed, the algorithm generates a corresponding wait() state-

ment. Similarly, when a notify(), notifyAll(), start(), or join() statement is executed,
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Algorithm 2 TraceProgramGenerator(s0)
1: s ⇐ s0
2: while Enabled(s) 6= ∅ do
3: t ⇐ a random thread in Enabled(s)
4: stmt ⇐ next statement to be executed by t
5: s ⇐ Execute(s, t)
6: if stmt = Acquire(l) then
7: lId ⇐ getUniqueObjId(l)
8: addLine( “synchronized (l” + lId + “) {” )

9: else if stmt = Release(l) then
10: addLine( “}” )

11: else if stmt = Wait(l) then
12: lId ⇐ getUniqueObjId(l)
13: addLine( “l” + lId + “.wait();” )

14: else if stmt = Notify(l) then
15: lId ⇐ getUniqueObjId(l)
16: addLine( “l” + lId + “.notify();” )

17: else if stmt = NotifyAll(l) then
18: lId ⇐ getUniqueObjId(l)
19: addLine( “l” + lId + “.notifyAll();” )

20: else if stmt = Start(t) then
21: tId ⇐ getUniqueObjId(t)
22: addLine( “t” + tId + “.start();” )

23: else if stmt = Join(t) then
24: tId ⇐ getUniqueObjId(t)
25: addLine( “t” + tId + “.join();” )

26: else if stmt = Write(o) || Stmt = Call(o, m) then
27: for each ConditionAnnotation c associated with o do
28: c.logChange()
29: end for
30: end if
31: end while
32: if Alive(s) 6= ∅ then print ‘System Stall!’ endif
33: CreateTraceProgram(AddLinesToTraceProgram.thrToLines)

a corresponding statement is generated.

If a statement writing to (some field of) object o is executed, or a method is called on

an object o, then the algorithm finds all ConditionAnnotation objects that are associated

with object o. After the write or the method call, the state of o may have changed, and

hence the predicates associated with those ConditionAnnotation objects may have also

changed. The trace program needs to track changes to the values of predicates associated
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Algorithm 3 CreateTraceProgram(thrToLines)

1: lockIds ⇐ set of lock identifiers in thrToLines

2: predIds ⇐ set of synchronization predicate identifiers in thrToLines

3: thrIds ⇐ set of thread identifiers in thrToLines

4: print “public class TraceProgram {”
5: for all lId such that lId is in lockIds do
6: print “ static Object l” + lId + “ = new Object();”
7: end for
8: for all pId such that pId is in predIds do
9: print “ static boolean p” + pId + “;”

10: end for
11: for all tId such that tId is in thrIds do
12: print “ static Thread t” + tId + “ = new Thread() {”
13: print “ public void run() {”
14: for all s such that s is in thrToLines[tId] do
15: print s
16: end for
17: print “ } };”
18: end for
19: print “ public static void main(String[ ] args) {”
20: for all tId: tId + “.start();” not in any list in thrToLines do
21: print tId + “.start();”
22: end for
23: print “ } }”

with condition variables. For this purpose, the algorithm calls method logChange() in class

ConditionAnnotation to evaluate the predicate and check if its value has indeed changed,

and if so, generates a statement writing the new value to the variable associated with the

predicate.

When calls to the pre-defined methods waitBegin(), waitEnd(), notifyBegin(), and

notifyEnd() (Figure 5.8) that have been added as annotations execute, statements are

generated for the trace program that capture the control-dependence of the execution

of the wait() or notify() or notifyAll() on the synchronization predicate that has

been annotated. These statements are also added using the method addLine() in class

AddLinesToTraceProgram.

After observing the complete execution, the algorithm creates a legal Java program (trace

program) by calling method createTraceProgram() defined in Algorithm 3. It creates an

object for each lock object, a boolean variable for each predicate, and a thread object for
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each thread in the observed execution. For each created thread, it prints a run() method

containing the list of strings generated for the corresponding thread in map thrToLines.

Finally, the algorithm prints the main() method, and starts all those threads in it which are

not started by any other thread 2. The trace program for the example in Figure 5.4 is shown

in Figure 5.7.

The algorithm does a couple of optimizations before it prints the body for each thread.

Firstly, it does not print any synchronized statement that involves a lock that is local to

the thread. Thread-local locks cannot be involved in a deadlock, and hence, it removes

statements that use them. Secondly, for any block of statements that consists only of

synchronized statements, it does the following optimization. It finds the different nest-

ings of lock acquires within the block. Instead of printing all synchronized statements

present in the block, the algorithm prints one block of nested synchronized statements for

each nesting of lock acquires. This removes a lot of redundancy in synchronized statements

because of loops in the original program. If the original program has a loop, then the same

pattern of lock acquires can be repeated a number of times. After the optimization, the

algorithm prints only one block of nested lock acquires for the pattern, and does not repeat

the pattern as many times as it was observed during program execution.

5.3.3 Stage II : Model Checking the Trace Program

The second stage of our algorithm uses an off-the-shelf model checker to explore all possible

thread interleavings of the trace program and check if any of them deadlocks. When we gen-

erate the trace program, for each line in it, we also record the source location of the statement

in the original program that led to its generation. This helps in mapping a deadlocking inter-

leaving in the trace program (i.e. a counterexample) back to an interleaving in the original

program. A deadlock in the trace program may or may not imply a deadlock in the original

program. The counterexample provided by the model checker assists in determining whether

a deadlock reported by our algorithm is real or false. Multiple counterexamples may denote

the same deadlock. We group together counterexamples in which the same set of statements

2normally just the main thread



CHAPTER 5. GENERALIZED DEADLOCKS 44

(either lock acquires or calls to wait()) is blocked and report each such group as a different

possible deadlock. The deadlock for the example in Figure 5.4 is shown in Figure 5.6.

5.4 CheckMate and iGoodlock

Note that CheckMate can not only predict communication deadlocks but also resource

deadlocks. The trace program captures the locking and wait-notify synchronization ob-

served during execution, and therefore can predict a broad class of deadlocks that involve

locks or condition variables or both. CheckMate can thus find all the resource deadlocks

that can be predicted by iGoodlock that we saw in the previous chapter. But, iGoodlock has

the advantage of being more efficient since it focuses only on resource deadlocks. Further-

more, iGoodlock is optimized to have a better runtime complexity than the basic iGoodlock

algorithm. As shown in Section 4.3, iGoodlock has a runtime complexity of O(2S), where S

is the number of synchronization operations (lock acquires and releases), but CheckMate

has a runtime complexity of O(S!). In CheckMate, we explore all interleavings of the syn-

chronization operations, and thus, its runtime complexity if O(S!). Therefore, the runtime

complexity of CheckMate is more than that of iGoodlock. Our experiments (Chapter 9)

also validate that iGoodlock is faster than CheckMate when finding resource deadlocks.

However, the memory complexity of iGoodlock as shown in Section 4.3 (O(2STS)) is more

than that of CheckMate (O(S)). The trace program generated by CheckMate has a

memory complexity of O(S) since a constant number of statements are generated in the

trace program for each synchronization operation observed. Thus, the memory complexity

of CheckMate is O(S). A tester interested in finding resource deadlocks has to keep the

trade-offs in mind when deciding on using iGoodlock or CheckMate.

We have now seen predictive techniques for finding deadlocks. In the next chapter, we

present a predictive technique for finding a different class of concurrency errors, typestate

errors.
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Chapter 6

Typestate Errors

Typestate [104] properties are high-level properties that specify the correct usage protocols of

libraries and application programming interfaces (APIs). For example, a typestate property

on an InputStream object in Java is that one cannot read from an InputStream object after

it has been closed. The typestate property of an object type can be conveniently represented

by a finite state automaton. A state in the automaton represents a typestate. At any state

in an execution, an object can be exactly in one typestate, with the typestate of the object

being set to the initial state of the automaton when the object is being created. Each edge

of the typestate is labeled by a method defined by the object type. The invocation of a

method during an execution changes the typestate of an object according to its typestate

automaton. If a typestate in the automaton has no edge corresponding to a method, then

an invocation of the method during an execution on an object in the typestate leads to a

violation of the typestate property. Dynamically checking a typestate property [9] of an

object simply involves checking that the sequence of method calls made on the object is a

sequence accepted by the object’s typestate automaton.

Figure 6.1 shows an example of a typestate error. The example has two threads:

MainThread and ChildThread. MainThread creates a new Socket object, connects it to an

address, and then starts ChildThread. MainThread obtains an input stream for the socket,

and reads from it a number of times. Finally, MainThread closes the socket. ChildThread

obtains an output stream for the socket, and writes a string to it. The example program

is buggy and can throw an exception. Such an exception is thrown if MainThread is ex-
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MainThread ChildThread

InetAddress ad = InetAddress.getByName(‘‘testsite.com’’);

Socket mySocket = new Socket();

mySocket.connect(new InetSocketAddress(ad,80));

ChildThread.start();

OutputStream os = MainThread.mySocket.

getOutputStream();

PrintWriter out = new PrintWriter(os,true);

out.println(‘‘testString’’);

nputStream is = mySocket.getInputStream();

BufferedReader ibr =

new BufferedReader(new InputStreamReader(is));

for (n =0; n < 100; n++)

String line = ibr.readLine();

mySocket.close();

Figure 6.1: Example of a typestate error: An IOException is thrown when getOutput-
Stream() is invoked on a closed Socket object

.

ecuted to completion before ChildThread executes its first statement. This is because at

the completion of its execution, MainThread closes mySocket and then ChildThread calls

getOutputStream on the closed socket. Such an execution violates the typestate property

that the getOutputStream method of a Socket object cannot be called after calling the

method close on the same object. However, in a normal execution it is very unlikely that

ChildThread will be called after the completion of the execution of MainThread. This is

because the execution of MainThread will take a long time due to the presence of the loop

and a fair thread scheduler will schedule ChildThread long before MainThread completes its

execution. Nevertheless, the exception can happen under some schedule and the bug in the

program should be fixed.

In our attempt to build a predictive testing technique for finding typestate errors, we

had to overcome three problems [68]. First, checking typestate property for each object

type is expensive and time-consuming. Second, coming up with the valid typestate property

for each object type requires a lot of manual effort. Third, checking typestate property

efficiently against all “nearby” thread interleavings could be expensive. We solve these

problems by combining three techniques in three stages. In the first stage, we perform
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object race detection [108] to identify the object types whose methods could be concurrently

invoked by multiple threads. Racing object types could only cause a typestate violation due

to different interleavings in an execution; therefore, we only consider these object types in

the next two stages. This helps us to significantly prune the object types whose typestate

needs to be checked predictively. Second, we observe a successful execution, that is, an

execution that does not throw an exception, and try to infer the likely typestate property of

an object type by using an existing dynamic specification mining technique [7]. There are

static methods to mine specifications [99] too, which cover all possible ways an object type

can be used and not only the ways that were observed during an execution, but are usually

not very scalable. Although our inferred typestate properties may not be accurate, they

help to reduce the burden on specifications writer who can further help to refine the inferred

specifications rather than trying to write them from scratch. Third, we efficiently check

the inferred typestate properties by constructing an abstract model of an execution, called

computation lattice. We call our predictive testing technique as PRETEX, and explain in

in detail in the subsequent sections.

6.1 Overview

We explain how PRETEX works using the example in Figure 6.1. A näıve way to find the

error in the program would be to execute the program many times with the hope that the

thread scheduler will create the buggy thread interleaving in some execution. PRETEX can

discover this typestate bug by just looking at a single successful execution of the program.

We next explain how PRETEX predicts the occurrence of the bug by looking at a successful

execution (or exception-free execution) where ChildThread is executed before MainThread

calls the method getInputStream. The interleaving is shown in Figure 6.1.

PRETEX works in three stages. In the first stage, it computes the types of the objects

whose method calls could potentially race with each other. Only the object types that

could potentially race are considered for typestate checking in the next two stages. This is

because the objects that could potentially race are likely to violate a typestate property due

to lack of synchronization. Note that the first stage is only meant for optimization. In the

example program, the Socket object, mySocket, is in race, since the method invocations,
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getOutputstream
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close
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Figure 6.2: The likely typestate specification automaton learnt for Socket objects

getInputStream() in MainThread, and getOutputStream() in ChildThread, can occur in

either order.

Our second stage is the typestate specification mining stage. We use the typestate prop-

erties mined in this stage to predict if they could have been violated in some execution that

was not observed but that could have occurred. In this stage, we infer the likely typestate

property of each object type by observing a successful execution. Specifically, for each type

obtained from the previous stage, we obtain the sequence of method calls invoked on each

object of that type. We pass these sequences of method calls to an off-the-shelf machine

learning procedure [92] to learn an automaton that contains all the observed sequences.

Such an automaton represents the likely typestate property of the object type, i.e. the valid

sequence of method calls on that object type.

For example, the sequence of calls on mySocket, the only Socket object, is connect,

getOutputStream, getInputStream, close in a successful run where ChildThread termi-

nates before MainThread. From this sequence, we can infer the likely typestate property that

getInputStream or getOutputStream, cannot be called on a Socket object after close has

been invoked on it. Typically, in real-world programs, we have a number of objects for each

type in race, and hence, the automaton that describes the union of the sequences observed

for these objects gets close to the correct typestate specification automaton for that type.

Figure 6.2 gives a typestate specification automaton that can be inferred for Socket objects

from our example.

The third stage is the predictive typestate checking stage. Once we have a likely typestate

property for each type and a successful execution, we predictively check each typestate



CHAPTER 6. TYPESTATE ERRORS 49

MainThread

e1:<MainThread,(1,0)>

e2:<ChildThread,(1,1)>

mySocket

mySocket

mySocket mySocket

mySocket mySocket

mySocket

00

10

1120

30

31

getOutputStream()

getInputStream()

connect() connect()

getOutputStream()getInputStream()

getInputStream()getOutputStream()close()

getOutputStream() close()
close()

21

e3:<MainThread,(2,0)>

e4:<MainThread,(3,0)>

ChildThread

7→ {s1}

7→ {s4,b}

7→ {s2}

7→ {s3}7→ {s3}

7→ {s4} 7→ {s3}

∑

∑

∑ ∑

∑

∑

∑

Figure 6.3: The multithreaded computation lattice for Figure 6.1

property against the successful execution. That is, by looking at the causal dependence

among the various events in the successful execution, we compute other thread interleavings

that can be obtained from the successful execution by reordering independent events. We

then check each typestate property against the computed thread interleavings. In order to

compute the thread interleavings “near” the successful execution, we compute an abstract

model from the successful execution, called the multithreaded computation lattice. Each

path in such a computation lattice denotes an execution that could potentially happen if

we change the thread interleaving slightly. We then check the typestate property against all

paths in this lattice using a dynamic programming algorithm.

Figure 6.3 gives the lattice for the observed execution in our example. The left-hand side

diagram in the figure depicts the partial order observed during program execution. Each

event is a pair of the thread name in which it occurred, and the vector clock of the thread

when it occurred. The state b in Σ31 in the computation lattice is the bad state in the

typestate specification automaton for Socket. Any transition that is not possible in the

specification automaton leads to the bad state b. The solid lines in the lattice describe the
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observed execution from which we have computed the entire lattice, whereas the dotted lines

trace the executions that could have been observed. The program state Σ30 in the lattice

shows that the typestate property of the Socket type can be violated. This is because

the socket is already closed in this state, when the method getOutputStream is invoked on

it. Note that we do not observe this state in the actual execution, but we predicted this

erroneous state by analyzing the computation lattice.

6.2 Predictive Testing for Typestate Errors

We describe the different stages of PRETEX in this section. The first stage executes the

program and finds the types of objects that are involved in race in those executions. The

second stage executes the program again, once for each type that was identified to be in

race in the previous stage, and obtains the sequence of method calls for each object of that

type. PRETEX then constructs a typestate specification automaton for each type of object

in race from the method sequences. The third and final stage predictively checks the inferred

typestate specifications against a multithreaded execution.

6.2.1 Definitions

We describe the notion of a multithreaded computation lattice that we use in PRETEX. This

lattice is computed from the execution of a multithreaded program as in [10, 97, 95, 98]. As

we have seen in Chapter 3, a multithreaded program execution consists of a finite number

of threads, and the execution can be viewed as a sequence of events where an event is the

execution of a statement by a thread. Let us denote the k-th event that occurred in the

i-th thread ti by ei
k. Then the program state after events e1

k1 ,e2
k2, . . . , en

kn is denoted by

Σk1k2...kn. For example, in Section 6.1, the program state after the execution of connect by

MainThread is denoted by Σ10.

A state Σk1k2...kn is called consistent [98] if and only if for any 1 ≤ i ≤ n and any li ≤

ki, lj ≤ kj holds for any 1 ≤ j ≤ n and any lj such that ej
lj ≺ ei

li, where ≺ is the happens-

before relation between events (Section 3.1). In other words, a consistent state is one which

can be formed by an interleaving of events that respects the happens-before relation. For
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example, Σ10 is a consistent state in Section 6.1 that arises after the execution of connect

by MainThread, but Σ01 is not a consistent state as ChildThread cannot execute its first

event getOutputStream before MainThread executes connect and starts the ChildThread.

Let Σ00...0 be the initial program state. A feasible interleaving of events e1, e2, . . . , em

generates a sequence of program states ΣK0 , ΣK1, . . . , ΣKm for which the following two

conditions hold. Each ΣKr is consistent, and for any two consecutive states, ΣKr and ΣKr+1,

Kr and Kr+1 differ in exactly one index by one. If the index in which the two differ is i,

then the i-th element of Kr+1 is larger by one than the i-th element of Kr. A sequence of

states ΣK0, ΣK1, . . . , ΣKm thus identifies an interleaving of events or threads, or a run of the

program. We say that Σ leads to Σ
′

, written as Σ  Σ
′

if there is a run in which Σ and Σ
′

are consecutive states. The set of all program states together with the partial order forms

a lattice. For a state Σk1k2...kn, we call k1 + k2 + . . .+ kn as its level in the computation

lattice. Consider the example in Section 6.1 again. Figure 6.3 shows the computation lattice

for the example. An arrow in the figure from Σ to Σ
′

denotes Σ  Σ
′

.

6.2.2 Object race detection

This stage finds the types of objects whose method calls by different threads are in race.

Our algorithm to detect the objects that are in race is a combination of the dynamic race

detection techniques proposed in [108, 86]. Specifically, at runtime, we check the following

condition for each pair of events (ei, ej).

ei = Call(oi, mi) ∧ ej = Call(oj, mj) ∧ (thr(ei) 6= thr(ej)) ∧ (oi = oj)

∧(LS(ei) ∩ LS(ej) = ∅) ∧ ¬(ei ≺ ej) ∧ ¬(ej ≺ ei).

The definitions of thr, LS, and happens-before relation (≺) used in the above condition

are provided in Chapter 3. The above condition essentially states that two events are in

race if they are events on different threads, they are due to method calls on the same object,

and the two events are not related by the happens-before relation (i.e. the two events are

concurrent). If the above condition holds, we say that the object oi could be in race, and

we record its type. Objects which are in race are more likely to result in typestate errors.
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Therefore, we concentrate on building the typestate specification automaton for such objects

in subsequent stages.

6.2.3 Inferring likely typestate specifications

Typestate [104] can be used to express the correct usage rules for many application

programming interfaces (APIs). For example, one can use typestate to express that a

java.net.Socket object cannot be read from after it has been closed. A typestate specifi-

cation uses a finite state automaton (FSA) to encode the correct usage protocol. A state in

the FSA is called a typestate, and an object is in one of these typestates at any point of time

during program execution. The edges in the automaton are labeled with method names.

When a method is invoked on an object, it follows that outgoing edge from its typestate

which is labeled with the method name, and transitions to a new typestate (which might

be the same as its old typestate). If no such edge exists in its current typestate, then we

say that a typestate error has occurred. In this section, we briefly describe how we obtain

the typestate specifications for object types that we identified to be in race in the previous

stage.

For each type in race, we collect the sequence of method calls invoked on each object of

that type. For example, if we find that objects of type java.net.Socket are in race, then

for each object of type java.net.Socket, we record the sequence of method calls that was

invoked on it during the execution of the program. Thus, we get as many sequences as the

number of Socket objects that were used during the execution of the program. For each

such set of sequences, we learn a finite state automaton (FSA) that accepts the sequences in

the set, and rejects most of those outside the set. The automaton so learnt can be thought

of as the typestate specification of that object type because it captures all the different ways

objects of that type were used during program execution. Moreover, since the execution

does not throw an exception, we can assume that the observed sequences of method calls

are valid.

The FSA that we learn is a deterministic finite automaton (DFA), the edges of which

are labeled with method names. We use an off-the-shelf PFSA (Probabilistic Finite State

Automaton) learner [92]. The learner infers a PFSA that accepts the set of method call
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sequences presented to it, plus some more sequences that get added as it over-approximates.

The PFSA learner first constructs a prefix tree or a trie from the set of sequences. A trie

is a tree data structure with each path in the tree starting from the root down to a leaf

representing a sequence. Each edge of the trie is labeled with a method name. The trie is

initially empty with just the root node. Nodes and edges get added to the trie as we add

sequences to it. To add a sequence, we first traverse as much of the sequence as we can in

the trie starting from the root. We then add edges and nodes to create a path for the rest of

the sequence. For example, to add the method sequence connect, close to the empty trie,

we create an outgoing edge from the root labeled connect, and create a new node n to form

the other end of the edge. We then add an outgoing edge from n labeled close and a new

node m as the other end. Now, if we want to add the sequence connect, getInputStream,

close, since we already have an edge labeled connect outgoing from the root, we traverse

that edge and reach node n. There is no edge from n that is labeled getOutputStream.

Thus, we create a new node k and label the edge from n to k with getInputStream. Finally,

we create an outgoing edge from k labeled with close, and create a new node to form the

other end of the edge.

Each edge of the trie is also labeled with a frequency that reflects how many times that

edge was traversed while creating the trie. The trie can be seen as a FSA that accepts

the set of sequences from which it was built. Since prefix trees are usually very large in

size, the PFSA learner uses the sk-strings method [92] to merge nodes in the prefix trees.

The sk-strings method is a variation of the k-tails method [14] for stochastic automata. It

constructs a non-deterministic finite automaton (NFA) by successively merging those nodes

of the trie which are sk-equivalent. Let Σ be the set of method names in the set of sequences,

Q be the set of nodes in the trie, δ : Q × Σ∗ → Q be the transition function of the trie

(that is, the function that given a node and a sequence of method calls returns the node

that would be reached if the sequence is traversed starting from the given node), and FC

be the final nodes (or leaves) of the trie. The set of k-strings of node q is then defined to

be the set {z|z ∈ Σ∗, (|z| = k ∧ δ(q, z) ∈ Q) ∨ (|z| < k ∧ δ(q, z) ∈ Fc)} [92]. Each k-string

has a probability associated with it which is equal to the product of the probabilities of the

edges traversed to form that string. The k-strings of a node are arranged in decreasing order

of their probabilities. The top n strings, whose probabilities add up to s% or more, are
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retained and the rest discarded. Two nodes are said to be sk-equivalent if the sets of the

top n strings of both are equal. The process of merging sk-equivalent nodes is repeated until

no more nodes can be merged. The resulting PFSA accepts a superset of the method call

sequences that was presented to it, due to the approximations done during merging. The

final stage in the learning process converts the NFA into a DFA.

The DFA learned in this stage for each object type can be used as the likely typestate

specification for the type. Note that we use this stage to reduce the burden on users so that

they do not have to write tedious typestate specification for each type from scratch. However,

they can take a look at the inferred typestate automata and refine them as required.

6.2.4 Predictive checking against typestate specifications

Algorithm 4 PRETEX: Level-by-level traversal of the computation lattice
Q ⇐ [ ]
while not end of computation do

# get the next method invocation event observed

e ⇐ NextEvent()

add e to Q
while constructLevel() do

NOP

end while
end while

boolean constructLevel() :
CurrLevel ⇐ [Σ00...0]
NextLevel ⇐ [ ]
for each e ∈ Q do

if Σ ∈ CurrLevel and isNextState(Σ, e) then
NextLevel ⇐ NextLevel ⊎ createState(Σ, e)
if isLevelComplete(NextLevel, e, Q) then

Q ⇐ removeUselessEvents(CurrLevel, Q)
CurrLevel ⇐ NextLevel

return true

end if
end if

end for
return false

After we infer the likely typestate specification automata, we predictively check them



CHAPTER 6. TYPESTATE ERRORS 55

against a multithreaded execution by generating a computation lattice for each automaton

based on method invocation events that are relevant to that automaton. Algorithm 4 illus-

trates the predictive checking algorithm. As the program under test executes, the method

invocation events observed on objects whose typestates we want to check are queued into

Q. CurrLevel denotes the current level of the computation lattice. It initially consists of

just Σ00...0 which is the program state before any event has been observed. A program state

is a mapping from objects to sets of states in the typestate specification automaton. Thus,

the program state Σk1k2...kn specifies the possible typestates that objects can be in after ki

(1 ≤ i ≤ n) events have been executed in the i-th thread in some order.

Algorithm 5 Check if it is feasible to execute an event e in the given program state Σ
(isNextState(Σ, e))

i ⇐ thr(e) # thread of event e
if (∀ j 6= i : VC(Σ)[j] ≥ VC(e)[j] and VC(Σ)[i]+1 = VC(e)[i]) then

return true

else
return false

end if

Whenever a new event e is observed, the algorithm generates any new program state that

can be obtained by executing e in a program state Σ already in CurrLevel. An event e can be

executed in a program state Σ if the events that lead to Σ followed by e would form a feasible

interleaving of events that respects the happens-before relation between events. Or, in other

words, if e in Σ would result in a consistent state. For example, in Figure 6.1, let e denote

the execution of the getOutputStream method on mySocket in ChildThread. If Σ is the

initial state, then e in Σ would not result in a consistent state since the execution of connect

in the MainThread should always happen before e in any feasible thread interleaving. But,

if e is the execution of connect, then e in Σ would result in a consistent state. Algorithm 5

computes if event e in program state Σ results in a consistent state or not. It uses vector

clocks (Section 3.1) to check if e in Σ would respect the happens-before relation or not.

The vector clock of a program state Σ reflects the latest event that has occurred in each

thread when the program state is reached. The vector clock of an event e is the vector clock

of its thread when it occurred. In addition to updating the vector clocks as explained in

Section 3.1, we also update the vector clocks when we observe a (method invocation) event e.



CHAPTER 6. TYPESTATE ERRORS 56

We update the vector clock of the thread in which e executes (thr(e)) by 1 for that thread.

VC(Σ) gives the vector clock associated with program state Σ, and VC(e) gives the vector

clock associated with event e.

Algorithm 6 Return a new state after executing event e in state Σ (createState(Σ, e))

Σ
′

⇐ new copy of Σ
j ⇐ thr(e) # thread of event e
VC(Σ

′

)[j] ⇐ VC(Σ)[j] + 1
Σ

′

⇐ Σ
′

[obj(e) ⇐ ρ(Σ(obj(e)), methodId(e))]
if b ∈ ρ(Σ(obj(e)), methodId(e)) then

print ‘typestate error observed’

end if
return Σ

′

If the current event e can result in a consistent state with a state Σ in CurrLevel, then

the new consistent state is generated and added to NextLevel that denotes the states in the

next level of the lattice. Algorithm 6 illustrates how a new consistent state Σ
′

is computed.

For the object o on which the method m is invoked in event e, the new typestates of o are

computed using the typestate specification automaton for the object type of o. If the bad

state b is one of the new typestates, then we report a typestate error for object o. Any

transition that is not possible in the automaton is considered to lead to the bad state b. If

the new state Σ
′

that is created has a vector clock equivalent to that of a state already in

NextLevel, then we merge the two states. We merge the mappings of the corresponding

objects in the two states. For an event e, obj(e) returns the object o and methodId(e) returns

the method m. ρ takes the set of states obj(e) is mapped to in Σ, and returns the set of new

states after applying the typestate automaton transition corresponding to methodId(e) to

those states. For example, in Figure 6.1, when we observe getInputStream being executed,

the current state is Σ11 and mySocket is in typestate s3. Using the typestate automaton in

Figure 6.2, we find out that mySocket should remain in typestate s3 after the invocation of

getOutputStream. Thus, in the new state Σ21, mySocket is mapped to typestate s3. We

would generate the state Σ21 twice for the two different paths (or event orderings) in the

lattice that lead to the state. In both the cases, we would find that mySocket would be in

typestate s3 in Σ21. Had we found different typestates for the two cases, we would have

merged the typestates into a set, and mapped mySocket to that set.



CHAPTER 6. TYPESTATE ERRORS 57

Algorithm 7 Check if a level in a lattice is complete (isLevelComplete(NextLevel, e, Q))
if size(NextLevel) ≥ w then

return true

else if e is the last event in Q and size(Q) ≥ l then
return true

else
return false

end if

After new states have been generated using the current event e and the states in

CurrLevel, the next level NextLevel is checked to see if it is complete or not. After a

level is complete, we discard the previous level that was used to compute the new complete

level, i.e. after NextLevel is complete, we discard CurrLevel and start computing the level

after NextLevel. But, the problem with waiting till a level is complete is that the number of

states in a level can be exponential in the number of that level. Thus, the number of states

for the n-th level can be exponential in n. Instead of generating and storing an exponential

number of states in a level, we employ a heuristic called the causality cone heuristic [98]

to cut down on the number of states. The heuristic is shown in Algorithm 7. Instead of

generating all possible states in a level, the heuristic considers a level to be complete after w

states in the level are generated, where w is a pre-determined parameter. However, a level

may contain less than w states. The level construction algorithm would get stuck in that

case. Also, one cannot determine if there are less than w states in a level unless one sees

all the events in the complete computation. This is because the total number of threads is

not known until the end of the execution. To avoid this, another parameter l is introduced.

We consider the construction of a level to be complete if we have used all the events in the

event queue Q for the construction of the states in that level and the length of queue is at

least l, or if we have generated w states in that level. For example, in Figure 6.1, if we set l

to 1 and w to 1, then after we have generated state Σ11, we would consider the 2nd level to

be over and would not later generate Σ20.

After we are done with generating states for NextLevel, we discard the previous

level CurrLevel, and use the states in NextLevel to generate states in the level after

NextLevel. We also purge the event queue Q to discard events that can no longer gen-

erate consistent states when executed in any state in the recentmost level. The function
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removeUselessEvents in Algorithm 4 performs the purging. It creates a vector clock V Cmin,

each component of which is the minimum of the corresponding components of the vector

clocks of the states in the recentmost level. All events in Q which have a vector clock less

than or equal to V Cmin are removed, because they cannot generate consistent states any

more. For example, in Figure 6.1, after we are done with level 1, we can throw the connect

invocation from Q since connect can no longer participate in generating new states later.

The algorithm to generate the lattice is very similar to the one presented in [98], except

for the happens-before relation employed by them. The happens-before relation in [98]

considers shared variable reads and writes, and lock acquires and releases, along with the

synchronization events, start(), join(), wait(), notify() and notifyAll(). We do

not consider shared variable reads and writes, and lock acquires and releases to avoid the

overhead that would be incurred if we kept track of them. The happens-before relation

(Section 3.1) that we employ is, thus, an over-approximation of the exact happens-before

relation that exists between the events in a multithreaded execution, but it helps us in

verifying more thread interleavings, some of which might be feasible, but not possible under

the more conservative happens-before relation in [98].

In the next chapter, we show how we can try to automatically confirm the real errors in

a set of predicted errors. A predicted error may or may not correspond to a real error in

the program. Thus, if we can automatically confirm the real errors, then the developer does

not have to go through the often tedious process of manually reasoning about each predicted

error to see if it can occur in a real program execution or not.
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Chapter 7

Confirming Predicted Errors

The predictive analyses that we saw in the previous chapters detect errors that could have

occurred in a thread interleaving that did not show up during normal testing. These predicted

errors are potential errors, that is, they might occur in a real interleaving of the program

under consideration, or they might not occur in any feasible interleaving of the program.

Thus, if we report all the predicted errors to the tester, then she would have to examine each

error and investigate if it can occur in a real interleaving or not. The process of manually

confirming errors can easily get tedious for real-world programs. Thus, after predicting

errors, we try to automatically confirm which of the predicted errors are real errors. We do

this by actively controlling the thread scheduler and by pausing threads at the right points

during execution so that the execution is forced to go into a state that would likely exhibit

a predicted error if it is a real error.

In order to identify the right preemption points during execution, the analysis that pre-

dicts the errors needs to also record some “extra” information for each predicted error. For

example, for confirming a deadlock, we need the source locations of the lock acquires, and

waits and notifies that are involved in the deadlock so that we can pause threads when they

reach those locations to reproduce the deadlock. In this chapter, we describe a technique

called DeadlockFuzzer that we designed to confirm resource deadlocks. Although Dead-

lockFuzzer confirms only resource deadlocks, it can be extended for other kinds of bugs.

As we describe DeadlockFuzzer, we also explain how it can be adapted to confirm other

classes of bugs.
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1 class MyThread extends Thread {

2 Object l1, l2;

3 boolean flag;

4 MyThread(Object l1, Object l2 , boolean b){

5 this.l1 = l1; this.l2 = l2; this.flag = b;

6 }

7
8 public void run() {

9 if (flag) { // some long running methods

10 f1();

11 f2();

12 f3();

13 f4();

14 }

15 synchronized(l1) {

16 synchronized(l2) {

17 }

18 }

19 }

20
21 public static void main (String [] args) {

22 Object o1 = new Object ();

23 Object o2 = new Object ();

24 // Object o3 = new Object ();

25 (new MyThread(o1, o2, true)).start();

26 (new MyThread(o2, o1, false)).start();

27 // (new MyThread(o2 , o3, false)).start();

28 }

29 }

Figure 7.1: Confirming a Resource Deadlock

7.1 Overview

Consider the example in Figure 4.2 that we saw earlier in Chapter 4. We reproduce the

example here in Figure 7.1. Ignore the two extra statements that have been commented out.

As we had seen earlier in Section 4.2, the example has a resource deadlock that is detected

by iGoodlock and reported as the cycle 〈(T1, [o1], o2, [15, 16]]), (T2, [o2], o1, [15, 16])〉,

with T1 and T2 denoting the first and the second thread respectively. To confirm whether

the reported deadlock is a real deadlock or not, DeadlockFuzzer executes the program

again. During execution, when the second thread T2 tries to acquire the lock on o1 at line

number 16 after acquiring the lock on o2 at line number 15, it pauses the thread. Note that
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the state of T2 when it tries to acquire the lock on o2 matches the state that is expressed

in the tuple (T2, [o2], o1, [15, 16]) in the reported deadlock. Thus, DeadlockFuzzer

essentially checks before each lock acquire to see if the state of the thread acquiring the lock

matches the state expressed in any of the tuples in the reported deadlock. If it does, then

it pauses the thread at that point. Similarly, DeadlockFuzzer pauses thread T1 when it

tries to acquire the lock on o2 after having acquired the lock on o1. Since both the threads

are now paused, DeadlockFuzzer releases one of them to let the execution proceed. If it

releases T1, then T1 gets blocked since T2 holds the lock on o2. Similarly, if it releases T2,

then T2 gets blocked since T1 has the lock on o1. There is a deadlock as a result. Thus,

by pausing threads at the right points during execution, DeadlockFuzzer has confirmed

that the reported deadlock is a real deadlock.

For confirming other classes of bugs, the predictive analysis for those bugs should report

information about the state of each thread when a particular bug occurs so that the bug can

be confirmed by preempting threads when they reach their respective states. Each tuple in

the deadlock cycle reported by iGoodlock approximates the state of a thread involved in the

deadlock when the deadlock occurs. DeadlockFuzzer uses the thread states summarized

in the reported deadlock to force all threads involved in the deadlock to reach their respec-

tive states simultaneously. For other kinds of bugs, the predictive analysis should provide

appropriate approximation of the thread states when a bug occurs. The checker for those

bugs can then preempt threads accordingly to confirm those bugs.

7.2 Confirming Resource Deadlocks

The iGoodlock algorithm described in Chapter 4 predicts resource deadlocks that can

occur in thread interleavings that did not show up during normal testing. Let

〈(t1, L1, l1, C1), (t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm)〉 be a deadlock cycle computed by the al-

gorithm. To recap what each element of a tuple in the cycle means: for i ∈ [1, . . . , m], ti

denotes a thread involved in the deadlock, Li denotes the set of locks that the thread already

holds when it acquires the lock on li, and Ci denotes the source locations where the thread

has acquired all its locks. We call Cis as the contexts in which the locks should be acquired

for the deadlock to occur.
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To confirm a potential deadlock, DeadlockFuzzer needs to identify the locks and

threads involved in the deadlock when it executes the program again. For this, iGoodlock as-

sociates a unique id to each thread and lock in the deadlock cycle that does not change across

executions. The address of a thread or a lock object is unique in an execution, but it can

change across executions. Thus, iGoodlock cannot use the object address to report a lock or a

thread. Instead, it uses an abstraction computed out of static program information to identify

a thread or a lock object. For example, the label of a statement at which an object is created

could be used as its abstraction. We describe two better (i.e. more precise) object abstrac-

tions in Section 7.3. In this section, we assume that abs(o) returns some abstraction of the

object o. Thus, for the deadlock cycle 〈(t1, L1, l1, C1), (t2, L2, l2, C2), . . . , (tm, Lm, lm, Cm)〉,

iGoodlock reports the cycle as 〈(abs(t1), abs(l1), C1), (abs(t2), abs(l2), C2), . . . , (abs(tm),

abs(lm), Cm)〉 to DeadlockFuzzer.

Given a potential deadlock by iGoodlock,DeadlockFuzzer executes the program using

a random scheduler. A simple randomized execution algorithm is shown in Algorithm 8.

Starting from the initial state s0, this algorithm, at every state, randomly picks an enabled

thread and executes its next statement. The algorithm terminates when the system reaches

a state that has no enabled threads. At termination, if there is at least one thread that is

alive, the algorithm reports a system stall.

A key limitation of this simple random scheduling algorithm is that it may not create

real deadlocks very often. DeadlockFuzzer biases the random scheduler so that potential

deadlock cycles reported by iGoodlock get created with high probability. The active random

deadlock checking algorithm is shown in Algorithm 9. Specifically, the algorithm takes

an initial state s0 and a potential deadlock cycle Cycle as inputs. It then executes the

multithreaded program using the simple random scheduler, except that it performs some

extra work when it encounters a lock acquire or lock release statement. If a thread t is

about to acquire a lock l in the context C, then if (abs(t), abs(l), C) is present in Cycle, the

scheduler pauses thread t before t acquires lock l, giving a chance to another thread, which

is involved in the potential deadlock cycle, to acquire lock l subsequently. This ensures that

the system creates the potential deadlock cycle Cycle with high probability.

Algorithm 9 maintains three data structures: LockSet that maps each thread to a stack

of locks that are currently held by the thread, Context that maps each thread to a stack of
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Algorithm 8 simpleRandomChecker(s0)
1: INPUTS: the initial state s0
2: s ⇐ s0
3: while Enabled(s) 6= ∅ do
4: t ⇐ a random thread in Enabled(s)
5: s ⇐ Execute(s, t)
6: end while
7: if Alive(s) 6= ∅ then
8: print ‘System Stall!’
9: end if

statement labels where the thread has acquired the currently held locks, and Paused which

is a set of threads that has been paused by DeadlockFuzzer. Paused is initialized to an

empty set, and LockSet and Context are initialized to map each thread to an empty stack.

DeadlockFuzzer runs in a loop until there is no enabled thread. At termination,

DeadlockFuzzer reports a system stall if there is at least one active thread in the execu-

tion. In each iteration of the loop, DeadlockFuzzer picks a random thread t that is en-

abled but not in the Paused set. If the next statement to be executed by t is not a lock acquire

or release, t executes the statement and updates the state as in the simple random scheduling

algorithm (see Algorithm 8). If the next statement to be executed by t is c : Acquire(l), c

and l are pushed to Context[t] and LockSet[t], respectively. DeadlockFuzzer then checks

if the acquire of l by t could lead to a deadlock using checkRealDeadlock in Algorithm 10.

checkRealDeadlock goes over the current lockset of each thread and sees if it can find a

cycle. If a cycle is discovered, then DeadlockFuzzer has created a real deadlock. If there

is no cycle, then DeadlockFuzzer determines if t needs to be paused in order to get into

a deadlock state. Specifically, it checks if (abs(t), abs(l), Context[t]) is present in Cycle. If

t is added to Paused, then we pop from both LockSet[t] and Context[t] to reflect the fact

that t has not really acquired the lock l. If the next statement to be executed by t is c :

Release(l), then we pop from both LockSet[t] and Context[t].

At the end of each iteration, it may happen that the set Paused is equal to the set of

all enabled threads. This results in a state where DeadlockFuzzer has unfortunately

paused all the enabled threads and the system cannot make any progress. We call this

thrashing. DeadlockFuzzer handles this situation by removing a random thread from the
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Algorithm 9 DeadlockFuzzer(s0,Cycle)

1: INPUTS: the initial state s0, a potential deadlock cycle Cycle

2: s ⇐ s0
3: Paused ⇐ ∅
4: LockSet and Context map each thread to an empty stack
5: while Enabled(s) 6= ∅ do
6: t ⇐ a random thread in Enabled(s)\ Paused

7: Stmt ⇐ next statement to be executed by t
8: if Stmt = c : Acquire(l) then
9: push l to LockSet[t]

10: push c to Context[t]
11: checkRealDeadlock(LockSet) // see Algorithm 10
12: if ((abs(t), abs(l), Context[t]) /∈ Cycle) then
13: s ⇐ Execute(s,t)
14: else
15: pop from LockSet[t]
16: pop from Context[t]
17: add t to Paused

18: end if
19: else if Stmt = c : Release(l) then
20: pop from LockSet[t]
21: pop from Context[t]
22: s ⇐ Execute(s,t)
23: else
24: s ⇐ Execute(s,t)
25: end if
26: if |Paused| = |Enabled(s)| then
27: remove a random thread from Paused

28: end if
29: end while
30: if Alive(s) 6= ∅ then
31: print ‘System Stall!’
32: end if

Algorithm 10 checkRealDeadlock(LockSet)

1: INPUTS: LockSet mapping each thread to its current stack of locks
2: if there exist distinct t1, t2, . . . , tm and l1, l2, . . . , lm such that lm appears before l1 in

LockSet[tm] and for each i ∈ [1,m− 1], li appears before li+1 in LockSet[ti] then
3: print ‘Real Deadlock Found!’
4: end if
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set Paused. A thrash implies that DeadlockFuzzer has paused a thread in an unsuitable

state. DeadlockFuzzer should avoid thrashing as much as possible in order to guarantee

better performance and improve the probability of detecting real deadlocks.

7.3 Object abstractions

A key requirement of DeadlockFuzzer is that it should know where a thread needs to

be paused, i.e. it needs to know if a thread t that is trying to acquire a lock l in a context

C could lead to a deadlock. DeadlockFuzzer gets this information from iGoodlock, but

this requires us to identify the lock and thread objects that are the “same” in the iGoodlock

and DeadlockFuzzer executions. This kind of correlation cannot be done using the

address (i.e. the unique id) of an object because object addresses change across executions.

Therefore, we propose to use object abstraction—if two objects are same across executions,

then they have the same abstraction. We assume abs(o) computes the abstraction of an

object.

There could be several ways to compute the abstraction of an object. One could use the

label of the statement that allocated the object (i.e. the allocation site) as its abstraction.

However, that would be too coarse-grained to distinctly identify many objects. For example,

if one uses the factory pattern to allocate all thread objects, then all of the threads will have

the same abstraction. Therefore, we need more contextual information about an allocation

site to identify objects at finer granularity.

Note that if we use a coarse-grained abstraction, then DeadlockFuzzer will pause

unnecessary threads before they try to acquire some unnecessary locks. This is because

all these unnecessary threads and unnecessary locks might have the same abstraction as

the relevant thread and lock, respectively. This will in turn reduce the effectiveness of our

algorithm as DeadlockFuzzer will more often remove a thread from the Paused set due

to the unavailability of any enabled thread. Note that we call this situation thrashing. Our

experiments (see Chapter 9) show that if we use the trivial abstraction, where all objects have

the same abstraction, then we get a lot of thrashing. This in turn reduces the probability of

creating a real deadlock. On the other hand, if we consider too fine-grained abstraction for

objects, then we will not be able to tolerate minor differences between two executions, causing
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threads to pause at fewer locations and miss deadlocks. We next describe two abstraction

techniques for objects that we have found effective in our experiments.

7.3.1 Abstraction based on k-object-sensitivity

Given a multithreaded execution and a k > 0, let o1, . . . , ok be the sequence of objects such

that for all i ∈ [1, k − 1], oi is allocated by some method of object oi+1. We define absOk (o1)

as the sequence 〈c1, . . . , ck〉 where ci is the label of the statement that allocated oi. abs
O
k (o1)

can then be used as an abstraction of o1. We call this abstraction based on k-object-sensitivity

because of the similarity to k-object-sensitive static analysis [83].

In order to compute absOk (o) for each object o during a multithreaded execution, we

maintain a map CreationMap that maps each object o to a pair (o′, c) if o is created by

a method of object o′ at the statement labeled c. This gives the following straightforward

runtime algorithm for computing CreationMap.

• If a thread t executes the statement c : o = new (o′, T ), then add o 7→ (o′, c) to

CreationMap.

One can use CreationMap to compute absOk (o) using the following recursive definition:

absOk (o) = 〈〉 if k = 0 or CreationMap[o] = ⊥

absOk+1(o) = c :: absOk (o
′) if CreationMap[o] = (o′, c)

When an object is allocated inside a static method, it will not have a mapping in

CreationMap. Consequently, absOk (o) may have fewer than k elements.

7.3.2 Abstraction based on light-weight execution indexing

Given a multithreaded execution, a k > 0, and an object o, let mn, mn−1, . . . , m1 be the call

stack when o is created, i.e. o is created inside method m1 and for all i ∈ [1, n − 1], mi

is called from method mi+1. Let us also assume that ci+1 is the label of the statement at

which mi+1 invokes mi and qi+1 is the number of times mi is invoked by mi+1 in the context

mn, mn−1, . . . , mi+1. Then absIk(o) is defined as the sequence [c1, q1, c2, q2, . . . , ck, qk], where

c1 is the label of the statement at which o is created and q1 is the number of times the

statement is executed in the context mn, mn−1, . . . , m1.
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1 main() {

2 for (int i=0; i<5; i++)

3 foo();

4 }

5 void foo() {

6 bar();

7 bar();

8 }

9 void bar() {

10 for (int i=0; i<3; i++)

11 Object l = new Object ();

12 }

For example in the above code, if o is the first object created by the execution of main,

then absI3(o) is the sequence [11, 1, 6, 1, 3, 1]. Similarly, if o is the last object created by the

execution of main, then absI3(o) is the sequence [11, 3, 7, 1, 3, 5]. The idea of computing this

kind of abstraction is similar to the idea of execution indexing proposed in [113], except

that we ignore branch statements and loops. This makes our indexing light-weight, but less

precise.

In order to compute absIk(o) for each object o during a multithreaded execution, we

maintain a thread-local scalar d to track the depths of method calls and object creation

statements and two thread-local maps CallStack and Counters. We use CallStackt to

denote the CallStack map of thread t, and Counterst to denote the Counters map of

thread t. The above data structures are updated at runtime as follows.

• Initialization:

– for all t, dt ⇐ 0

– for all t and c, Counterst[dt][c] ⇐ 0

• If a thread t executes the statement c : Call(o,m)

– Counterst[dt][c] ⇐ Counterst[dt][c] + 1

– push c to CallStackt

– push Counterst[dt][c] to CallStackt



CHAPTER 7. CONFIRMING PREDICTED ERRORS 68

– dt ⇐ dt + 1

– for all c, Counterst[dt][c] ⇐ 0

• If a thread t executes the statement c : Return(m)

– dt ⇐ dt − 1

– pop twice from CallStackt

• If a thread t executes the statement c : o = new(o′, T )

– Counterst[dt][c] ⇐ Counterst[dt][c] + 1

– push c to CallStackt

– push Counterst[dt][c] to CallStackt

– absIk(o) is the top 2k elements of CallStackt

– pop twice from CallStackt

Note that absIk(o) has 2k elements, but if the call stack has fewer elements, then absIk(o)

returns the full call stack.

7.3.3 Example

Consider again the example in Figure 4.2. To illustrate the utility of thread and lock abstrac-

tions, we uncomment the lines at 24 and 27. Now we create a third lock o3 and a third thread

which acquires o2 and o3 in order. iGoodlock as before will report the same deadlock cycle

as in Section 7.1. In DeadlockFuzzer, if we do not use thread and lock abstractions, then

with probability 0.5 (approx), the third thread will pause before acquiring the lock at line

16. This is because, without any knowledge about threads and locks involved in a potential

deadlock cycle, DeadlockFuzzer will pause any thread that reaches line 16. Therefore, if

the third thread pauses before line 16, then the second thread will not be able to acquire lock

o2 at line 15 and it will be blocked. DeadlockFuzzer will eventually pause the first thread

at line 16. At this point two threads are paused and one thread is blocked. This results in

a thrashing (see Section 7.2). To get rid of this stall, DeadlockFuzzer will “un-pause”

the first thread with probability 0.5 and we will miss the deadlock with probability 0.25
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(approx). On the other hand, if we use object abstractions, then DeadlockFuzzer will

never pause the third thread at line 16 and it will create the real deadlock with probability

1. This illustrates that if we do not use abstractions, then we get more thrashings and the

probability of creating a real deadlock gets reduced.

7.4 Optimization: avoiding another potential cause

for thrashing

We showed that using object and thread abstractions helps reduce thrashing; this in turn

helps increase the probability of creating a deadlock. We show another key reason for a

lot of thrashings using the following example and propose a solution to partly avoid such

thrashings.

1: thread1{ 8: thread2{

2: synchronized(l1){ 9: synchronized(l1){

3: synchronized(l2){ 10:

4: } 11: }

5: } 12: synchronized(l2){

6: } 13: synchronized(l1){

14: }

15: }

16: }

The above code avoids explicit thread creation for simplicity of exposition. iGoodlock

will report a potential deadlock cycle in this code. In the active random deadlock checking

phase, if thread1 is paused first (at line 3) and if thread2 has just started, then thread2

will get blocked at line 9 because thread1 is holding the lock l1 and it has been paused

and thread2 cannot acquire the lock. Since we have one paused and one blocked thread,

we get a thrashing. DeadlockFuzzer will “un-pause” thread1 and we will miss the real

deadlock. This is a common form of thrashing that we have observed in our benchmarks

(Chapter 9).

In order to reduce the above pattern of thrashing, we make a thread to yield to other

threads before it starts entering a deadlock cycle. Formally, if (abs(t), abs(l), C) is a com-
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ponent of a potential deadlock cycle, then DeadlockFuzzer will make any thread t′ with

abs(t) = abs(t′) yield before a statement labeled c where c is the bottom-most element in

the stack C. For example, in the above code, DeadlockFuzzer will make thread1 yield

before it tries to acquire lock l1 at line 2. This will enable thread2 to make progress (i.e.

acquire and release l1 at lines 9 and 11, respectively). Thread2 will then yield to any other

thread before acquiring lock l2 at line 12. Therefore, the real deadlock will get created with

probability 1.

7.5 Confirming other concurrency errors

Algorithm 11 Checker(s0, set of events breakpoints )
1: s ⇐ s0
2: Paused ⇐ ∅
3: Initialize Σ, the local state used by the underlying analysis

4: while Enabled(s) 6= ∅ do
5: t ⇐ a random thread in Enabled(s) \ Paused

6: e ⇐ next event to execute in t
7: Σ = analyze(Σ, e)
8: if e ∈ breakpoints then
9: Paused ⇐ check(e, Paused)

10: end if
11: if e /∈ Paused then
12: s ⇐ Execute(s, e)
13: end if
14: if |Paused| = |Enabled(s)| then
15: remove a random event from Paused

16: end if
17: end while
18: if Alive(s) 6= ∅ then
19: print ‘System stall!’

20: end if

Algorithm 11 generalizes the DeadlockFuzzer algorithm, and shows how we can con-

firm other classes of errors [65]. We assume that the potential error that we are trying to

confirm is given in the form of a set of events (breakpoints) whose execution should be paused

to exhibit the error. For example, in DeadlockFuzzer, the set of events is the set of tuples

in the given deadlock cycle. The program under test is executed by randomly picking an
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enabled thread t that is not paused at each step of execution. The information regarding

the next event e to execute in t is used to update the local state Σ used by the algorithm in

analyze. For example, in DeadlockFuzzer, the event e is used to update the LockSet

and Context used by DeadlockFuzzer (Algorithm 9). If e is in the set of events provided

to the checker algorithm, then it might be paused in check to force the execution to reach

a state that exhibits the potential error being considered. In DeadlockFuzzer, if the

context of e matches that of a tuple in the given deadlock cycle, then it will be paused if

permitted by the optimization in Section 7.4. Before pausing an event, the algorithm also

checks to see if the given error has already been exhibited by the events that have been

paused thus far. If the error has been reproduced, the algorithm classifies the error as a real

error and exits. If all enabled threads have been paused, one of them is randomly chosen

and woken up in order to allow the program execution to make progress.

We have seen how real deadlocks and other concurrency errors can be confirmed in this

chapter. In the next two chapters, we explain how we have implemented the predictive

techniques into prototype tools, and also evaluate various aspects of our tools.
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Chapter 8

Implementation

We explain how we have architected the prototype tools that implement our predictive

techniques. All the tools can be broken down into two main pieces: the instrumentor and

the analysis. The instrumentor adds hooks to the program under consideration so that it can

observe events of interest (e.g., lock acquires and releases, thread starts and joins) when the

program executes, and pass those events and their context information on to the analysis.

We describe the instrumentor and the analysis in our tools in the following sections. Our

prototype tools are built for Java programs.

8.1 The instrumentor

We instrument the Java bytecode of the given program to insert probes so that we can

collect context information regarding relevant events during program execution. Bytecode

instrumentation allows us to analyze any Java program for which the source code is not

available. We use two different frameworks to instrument: the Soot compiler framework [102]

and JChord [1] which is a program analysis framework for Java. All our tools use Soot except

for CheckMate (Chapter 5) which uses JChord. The probes inserted by instrumentation

invoke methods (also implemented in Java) that implement the analysis in the tool. For

example, in iGoodlock (Chapter 4), we are interested in tracking lock acquires and releases

to compute potential deadlock cycles. Thus, we instrument bytecode to add hooks that track

the execution of lock acquires and releases. The hook for lock acquires can call a method
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(say lockAcq()) and pass on the relevant lock, thread, and location information so that the

method can update the lockset and context for the current thread and the lock dependency

relation according to the algorithm described in Section 4.3.1. The hook for lock releases

can similarly call another method (say lockRel()) that pops locks and location information

from appropriate stacks according to the same algorithm. If we consider the example in

Figure 4.2 shown in Chapter 4, then following is the sequence of method calls that would

be called by the inserted probes during the non-deadlocking execution in which the second

thread acquires and releases all the locks before the first thread can acquire any lock.

lockAcq(o2, T2 , 15);

lockAcq(o1, T2 , 16);

lockRel(o1, T2);

lockRel(o2, T2);

lockAcq(o1, T1 , 15);

lockAcq(o2, T1 , 16);

lockRel(o2, T1);

lockRel(o1, T1);

The methods called by probes would update the lock dependency relation as the program

executes, and would compute the deadlock cycles in the end. The parameters o1, o2, T1,

and T2 are unique integer identifiers for the locks and the threads in the program, and 15

and 16 are the source locations where the locks were acquired. The instrumentor assigns

a unique identifier to each object during execution. The identifier for the same object

however might be different in two different executions. Thus, we also use object abstractions

(Chapter 7) built from static program information to identify objects across executions. To

build the abstractions, in addition to tracking lock acquires and releases, we also have to

insert probes to track object creation, and method calls and returns. Similarly, for other

predictive techniques, we insert probes to track the execution of the statements relevant to

the analyses in those techniques.

8.2 Implementing analyses

After the relevant statements have been instrumented by inserting probes, the analysis that

we want to implement can be implemented in the methods that are called by the probes.
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The probes can pass on the dynamic (or static) information that the methods might need

to implement the analysis. For example, the probes pass on the lock and thread identifiers

and location information for iGoodlock (Chapter 4). In CheckMate (Chapter 5), the

methods called by the probes generate the trace program (Algorithm 2) using the object

identifiers and source location information as the program under test executes. In PRETEX

(Chapter 6), the probes help to perform object race detection (Section 6.2.2) and generation

and traversal of the computation lattice (Section 6.2.4). DeadlockFuzzer (Chapter 7)

uses the information passed on by the probes to compute object abstractions and identify

threads and locks potentially involved in a deadlock and to control the thread scheduler.

There are two concepts that are used a lot by our tools, and also often by other tools

for concurrent programs: locksets and vector clocks (Chapter 3). We implement locksets by

tracking lock acquires and releases, and vector clocks by tracking thread starts and joins and

waits and notifies. The implementations of locksets and vector clocks have been factored out,

and is shared across the tools that employ them. There are some tool specific optimizations

and details that we provide in the rest of the section.

In CheckMate, given a Java program, we first use the ConditionAnnotation class

(Figure 5.8) to manually annotate the predicate associated with each condition variable in

the program. CheckMate then uses JChord [1] to instrument lock acquires and releases,

waits and notifies, thread starts and joins, and all writes to objects and method calls in

the program. It then executes the annotated, instrumented program on given input data

and generates the trace program. Finally, it uses the JPF model checker [54] to explore all

possible executions of the trace program and report deadlocks.

In PRETEX, while performing object race detection in the first stage of the analysis, we

track method invocations on objects. The number of method invocations in an execution

can often be very large, and saving information for each of them can stress the memory

requirement of the program under test. Thus, we implement the following optimization.

Before adding a method invocation event to the database of events, we first search the

database to see if such an event already exists. If it does, then we do not add the current event

to the database, or else we add it to the database. Since we track the thread dependencies

arising out of start(), join(), wait(), notify(), and notifyAll() and ignore other

dependencies present between threads, a considerable number of events that occurs on an
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object in a thread occurs with the same vector clock and lockset. Therefore, for all of these

events, we have to add only a single entry to the database.

For the second stage of PRETEX, we use an off-the-shelf PFSA builder [92] to generate

likely typestate automata for object types that we found to be in race in the first stage.

The PFSA builder takes a list of method call sequences as input, and outputs an automaton

that accepts all of those sequences and rejects most of the others. In the third stage, for

each automaton that we generate in the previous stage, we instrument the program at each

point where a method call present in one of the edges of the automaton is invoked. The

instrumentation uses the method invocation events to build the levels of the multithreaded

computation lattice.

DeadlockFuzzer can go into livelocks while pausing threads to reproduce a potential

deadlock in a program. Livelocks happen when all threads of the program end up being

paused, except for one thread that does something in a loop without synchronizing with

other threads. In order to avoid livelocks, we create a monitor thread that periodically

“un-pauses” those threads that are paused for a long time.

The source code for iGoodlock and DeadlockFuzzer can be found at http://srl.cs.

berkeley.edu/~ksen/calfuzzer/. The source code for CheckMate is included with the

source code for JChord that can be downloaded from http://pag.gatech.edu/chord/. The

source code for PRETEX can be found at https://github.com/pallavij/PRETEX. In the

next chapter, we evaluate various aspects of our tools on a number of real-world programs.
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Chapter 9

Evaluation

We have implemented the predictive analyses presented in the previous chapters into proto-

type tools for Java programs, and have experimented the tools with a number of real-world

Java benchmarks to evaluate their efficiency and effectiveness. We discuss our experiments

and findings in the subsequent sections.

9.1 Resource deadlocks

We evaluated iGoodlock (Chapter 4) and CheckMate (Chapter 5) on a variety of Java

programs and libraries. We ran our experiments on a dual socket Intel Xeon 2GHz quad

core server with 8GB of RAM. The following programs were included in our benchmarks:

cache4j, a fast thread-safe implementation of a cache for Java objects; sor, a successive over-

relaxation benchmark, and hedc, a web-crawler application, both from ETH [108]; jspider,

a highly configurable and customizable Web Spider engine; and Jigsaw, W3C’s leading-

edge Web server platform. We ran CheckMate on more benchmarks in which we found

communication deadlocks, but discuss those benchmarks in Section 9.2. We created a test

harness for Jigsaw that concurrently generates simultaneous requests to the web server,

simulating multiple clients, and administrative commands (such as “shutdown server”) to

exercise the multithreaded server in a highly concurrent situation.

The libraries we experimented on include synchronized lists and maps from the Java

Collections Framework, Java logging facilities (java.util.logging), and the Swing GUI
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Program name Lines of Avg. Runtime in msec. # Deadlock cycles
code Normal iGoodlock CM iGoodlock Real

cache4j 3,897 2,045 3,409 5,890 0 0
sor 17,718 163 396 3,000 0 0
hedc 25,024 165 1,668 47,000 0 0
jspider 10,252 4,622 5,020 6,000 0 0
Jigsaw 160,388 - - - 283 ≥ 29
Java Logging 4,248 166 272 5,700 3 3
Java Swing 337,291 4,694 9,563 1,22,600 1 1
DBCP 27,194 603 1,393 15,300 2 2
Synchronized Lists
(ArrayList, Stack, 17,633 2,862 3,244 4,000 9 + 9 + 9 9 + 9 + 9
LinkedList)
Synchronized Maps
(HashMap, TreeMap,
WeakHashMap, 18,911 2,295 2,596 3,000 4 + 4 + 4 4 + 4 + 4
LinkedHashMap, + 4 + 4 + 4 + 4
IdentityHashMap)

Table 9.1: Experimental results for resource deadlocks

framework (javax.swing). Another widely used library included in our benchmarks is the

Database Connection Pool (DBCP) component of the Apache Commons project. We cre-

ated general test harnesses to use these libraries with multiple threads. For example, to

test the Java Collections in a concurrent setting, we used the synchronized wrappers in

java.util.Collections.

9.1.1 Results

Table 9.1 shows the results for resource deadlocks. The second column reports the number

of lines of source code that was instrumented for iGoodlock. If the program uses libraries

that are also instrumented, they are included in the count. We instrument more source

lines for CheckMate since we also track wait-notify synchronization in CheckMate. We

give details about CheckMate’s instrumentation in Section 9.2. The third column shows

the average runtime of a normal execution of the program without any instrumentation or

analysis. The fourth column is the runtime of iGoodlock. The fifth column is the average

runtime of CheckMate. For CheckMate, we include the total time it takes to run the

instrumented program to generate the trace program and to model check the trace program.
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We give details regarding the trace programs generated and the model checking process in

Section 9.2. The table shows that the overhead of iGoodlock is within a factor of three for

all programs except hedc. Note that runtime for the web server Jigsaw is not reported due

to its interactive nature. The runtime for CheckMate is much more – it can be as large

as 30X of the time taken by iGoodlock. Thus, iGoodlock has better runtime complexity as

compared to CheckMate, but it can only find resource deadlocks. The sixth column is

the number of potential deadlocks reported by iGoodlock. The last column reports the real

deadlocks that we found after manual inspection. For Jigsaw, we could confirm 29 of the

cycles using DeadlockFuzzer(Section 9.4), and thus, we can say for sure that Jigsaw has

29 or more real deadlocks. Note that two distinct deadlock cycles might correspond to the

same root bug, that is, the same fix might resolve both of them. This can happen when,

say, different locks are involved in the deadlock cycles, but those locks are acquired at the

same statements. CheckMate found all the resource deadlocks found by iGoodlock, and

its evaluation is presented in more detail in Section 9.2.

9.1.2 Deadlocks found

Both iGoodlock and CheckMate found a number of previously unknown and known re-

source deadlocks in our benchmarks. We next describe some of them.

Two previously unknown deadlocks were found in Jigsaw. As shown in Figure 9.3, when

the http server shuts down, it calls cleanup code that shuts down the SocketClientFactory.

The shutdown code holds a lock on the factory at line 867, and in turn attempts to acquire

the lock on csList at line 872. On the other hand, when a SocketClient is closing, it also

calls into the factory to update a global count. In this situation, the locks are held in the

opposite order: the lock on csList is acquired first at line 623, and then on the factory at

line 574. Another similar deadlock occurs when a SocketClient kills an idle connection.

These also involve the same locks, but are acquired at different program locations.

The deadlock in the Java Swing benchmark occurs when a program synchronizes on a

JFrame object, and invokes the setCaretPosition() method on a JTextArea object that is

a member of the JFrame object. The sequence of lock acquires that leads to the deadlock is

as follows. The main thread obtains a lock on the JFrame object, and an EventQueue thread
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org.w3c.jigsaw.http.httpd {

384: SocketClientFactory factory;

1442: void cleanup(...) {

1455: factory.shutdown();}

1711: void run() {

1734: cleanup(...) ;}}

org.w3c.jigsaw.http.socket.SocketClient {

42: SocketClientFactory pool;

111: void run() {

152: pool. clientConnectionFinished (...) ;}}

org.w3c.jigsaw.http.socket.SocketClientFactory {

130: SocketClientState csList;

574: synchronized boolean decrIdleCount() {...}

618: boolean clientConnectionFinished (...) {

623: synchronized (csList) {

626: decrIdleCount();}}

867: synchronized void killClients(...) {

872: synchronized (csList) {...}}

902: void shutdown() {

904: killClients(...);}

}

Figure 9.1: Deadlock in Jigsaw

which is also running, obtains a lock on a BasicTextUI$BasicCaret object at line number

1304 in javax/swing/text/DefaultCaret.java. The main thread then tries to obtain a lock

on the BasicTextUI$BasicCaret object at line number 1244 in javax/swing/text/Default-

Caret.java, but fails to do so since the lock has not been released by the EventQueue thread.

The EventQueue thread tries to acquire the lock on the JFrame object at line number 407 in

javax/swing/RepaintManager.java but cannot since it is still held by the main thread. The

program goes into a deadlock. This deadlock corresponds to a bug that has been reported

at http://bugs.sun.com/view bug.do?bug id=4839713.

One of the deadlocks that we found in the DBCP benchmark occurs when a thread

tries to create a PreparedStatement, and another thread simultaneously closes another

PreparedStatement. The sequence of lock acquires that exhibits this deadlock is as fol-

lows. The first thread obtains a lock on a Connection object at line number 185 in org/a-

pache/commons/dbcp/DelegatingConnection.java. The second thread obtains a lock on a

KeyedObjectPool object at line number 78 in org/apache/commons/dbcp/PoolablePrepared-
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Statement.java. The first thread then tries to obtain a lock on the same KeyedObjectPool

object at line number 87 in org/apache/commons/dbcp/PoolingConnection.java, but cannot

obtain it since it is held by the second thread. The second thread tries to obtain a lock on

the Connection object at line number 106 in org/apache/commons/dbcp/PoolablePrepared-

Statement.java, but cannot acquire it since the lock has not yet been released by the first

thread. The program, thus, goes into a deadlock.

The deadlocks in the Java Collections Framework happen when multiple threads are

operating on shared collection objects wrapped with the synchronizedX classes. For ex-

ample, in the synchronizedList classes, the deadlock can happen if one thread executes

l1.addAll(l2) concurrently with another thread executing l2.retainAll(l1). There are

three methods, addAll(), removeAll(), and retainAll() that obtain locks on both l1 and

l2 for a total of 9 combinations of deadlock cycles. The synchronizedMap classes have 4

combinations with the methods equals() and get().

The test cases for Java Collections are artificial in the sense that the deadlocks in those

benchmarks arise due to inappropriate use of the API methods. We used these benchmarks

because they have been used by researchers in previous work (e.g. Williams et al. [112] and

Jula et al. [69]), and we wanted to validate our tool against these benchmarks.

9.2 Communication deadlocks

We experimented CheckMate (Chapter 5) with several Java libraries and applications. We

ran all our experiments on a dual socket Intel Xeon 2GHz quad core server with 8GB RAM.

The libraries that we experimented with include the Apache log4j logging library (log4j),

the Apache Commons Pool object pooling library (pool), an implementation of the OSGi

framework (felix), the Apache Lucene text search library (lucene), and a reliable mul-

ticast communication library (jgroups). We used two different versions of jgroups. We

also experimented with the following libraries that we also used for iGoodlock (Section 9.1):

the Java logging library (java.util.logging), the Apache Commons DBCP database con-

nection pooling library (dbcp), and the Java swing library (javax.swing). We wrote test

harnesses exercising each library’s API, including two different harnesses for each of pool

and lucene, and a single harness for each of the remaining libraries.
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Program No. Orig Trace Orig Time JPF JPF No. Pot. Real Kwn.
name of prog prog prog to gen (orig (trace err errs errs errs

annts LOC LOC time prog prog) prog) trcs

groovy-1.1 1 45,796 59 0.118s 1s > 1h 1.3s 5 1/0 1/0 1/0
log4j-1.2.13 2 48,023 225 0.116s 1s - 8.7s 167 2/0 1/0 1/0
pool-1.5 4 48,024 136 0.116s 1s > 1h 2.3s 41 1/0 1/0 1/0
(harness 1)
pool-1.5 4 48,024 191 0.123s 1s > 1h 2.6s 36 1/0 1/0 1/0
(harness 2)
felix-1.0.0 4 73,512 113 0.173s 2.8s - - - - 1/0 1/0
lucene-2.3.0 9 68,311 298 0.230s 3s > 1h 1s 0 0/0 0/0 1/0
(harness 1)
lucene-2.3.0 9 81,071 3,534 0.296s 3.6s > 1h 20s 0 0/0 0/0 1/0
(harness 2)
jgroups-2.6.1 12 92,934 118 0.228s 4s - 3.4s 39 2/0 1/0 1/0
jigsaw-2.2.6 17 122,806 3,509 - - - > 1h 7894 2/7 1/5 0/2
jruby-1.0.0 16 136,479 966 1.1s 13.7s - 3.9s 58 1/0 1/0 1/0
jgroups-2.5.1 15 160,644 2,545 9.89s 21s - > 1h 124 1/0 0/0 1/0
java logging 0 43,795 131 0.177s 2s > 1h 3.7s 96 0/2 0/1 0/1
(jdk-1.5.0)
dbcp-1.2.1 0 90,821 400 0.74s 3.3s - 12s 320 0/2 0/2 0/2
java swing 0 264,528 1,155 0.96s 17.6s - 105s 685 2/1 0/1 0/1
(jdk-1.5.0)

Table 9.2: Experimental results for CheckMate

The applications include Groovy, a Java implementation of a dynamic language that tar-

gets Java bytecode (groovy), and JRuby, a Java implementation of the Ruby programming

language (jruby). We also used the jigsaw web server (Section 9.1).

9.2.1 Results

Table 9.2 summarizes our experimental results. The second column reports the number

of ConditionAnnotation’s we had to provide, each annotating a different synchronization

predicate in the benchmark. We report the number of ConditionAnnotation’s that we

had to define, and not the total number of lines of code that we had to use to define the

ConditionAnnotation’s and to invoke methods on those ConditionAnnotation’s. The

numbers in this column show that the annotation burden of our approach is very small.

The third column shows the number of lines of Java code in methods that were executed in

the original program. The fourth column shows the number of lines of Java code in the trace
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program. Notice that the trace programs are much smaller than (executed parts of) original

programs. Although the trace program unrolls all loops and inlines all methods executed in

the original program, we use optimizations as explained in Section 5.3.2 to contain the size

of the trace program.

The fifth column gives the average runtime of the original program without any instru-

mentation. We do not report the runtime for the jigsaw webserver because of its interactive

nature. The sixth column gives the average runtime of the original program with annotations

and instrumentation; it includes the time to generate the trace program. Comparing these

two columns shows that the runtime overhead of CheckMate is acceptable.

The seventh column gives the average runtime of JPF on the original program. We could

not run JPF on eight of these programs because it does not support some JDK libraries, and

has limited support for reflection. For the remaining six programs, JPF did not terminate

within 1 hour nor did it report any error traces.

The eighth column shows the average runtime of JPF on the trace programs. It terminates

within a few seconds on eleven of these programs. It does not terminate within 1 hour for

jgroups-2.5.1 and jigsaw-2.2.6, but it reports a number of error traces in that time.

These benchmarks have a lot of threads (31 for jgroups-2.5.1 and 12 for jigsaw-2.2.6),

hence a huge number of thread interleavings, which makes model checking slow. JPF crashes

on the trace program for felix-1.0.0. Comparing the runtime of JPF on the original and

trace programs shows that it is much more feasible to model check the trace programs.

The ninth column shows the number of error traces produced by JPF for the trace

programs. An error trace is an interleaving of threads that leads to a deadlock. Not each

error trace leads to a different deadlock, and thus, the number of error traces is not an

indication of the number of different deadlocks in the program. Hence, CheckMate groups

together error traces in which the same set of statements (either lock acquires or calls to

wait()) is blocked, and reports each such group as a potential deadlock. The tenth column

shows the number of these potential deadlocks reported by CheckMate. The eleventh

column shows how many of these deadlocks we could manually confirm as real, and the final

column shows the number of deadlocks that were previously known to us. The first number

in each entry in the last three columns is the number of communication deadlocks including

the deadlocks that involve both locks and condition variables. The second number is the
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number of resource deadlocks. In most of the benchmarks, we were able to find all previously

known deadlocks. Since JPF crashed on the trace program for felix-1.0.0, we applied a

randomized model checker (i.e. a model checker that tries out random thread schedules) to

it. The randomized model checker reported a deadlock that was the same as its previously

known communication deadlock.

9.2.2 Deadlocks found

We found a number of previously known and unknown deadlocks in our experiments. We

discuss some of them in detail below. The example in Figure 5.4 documents a previously

known communication deadlock that we found in log4j. The deadlock is reported at https:

//issues.apache.org/bugzilla/show_bug.cgi?id=38137.

T2

326:synch (writeLock) {

327: concurrentReads++;

328:}

T1

126:synch (writeLock) {

304: synch (writeQueue) {

305: while (concurrentReads != 0) {

307: writeQueue.wait();

309: }

310: }

129:}

T2

332:synch (writeLock) {

333: concurrentReads --;

334:}

335:synch (writeQueue) {

336: writeQueue.notify ();

337:}

Figure 9.2: Deadlock in groovy.

Figure 9.2 shows a previously known deadlock in groovy reported at

http://jira.codehaus.org/browse/GROOVY-1890. It shows relevant code

from MemoryAwareConcurrentReadMap.java. This deadlock involves both locks

and condition variables. Thread T2 increments field concurrentReads of a
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MemoryAwareConcurrentReadMap object. Thread T1 checks predicate concurrentReads

!= 0. Since this predicate is true, it executes the wait() on line 307. T1 executes the

wait() on writeQueue, but it also holds a lock on writeLock. Thread T2 is the only

thread that can wake it up, but before T2 can reach the notify() on line 336, it needs to

acquire the lock on writeLock to decrement the value of concurrentReads. Since the lock

on writeLock is held by T1, it gets blocked. Thus, T1 is waiting to be notified by T2, and

T2 is waiting for T1 to release writeLock.

T1 T2

417: synch void shutdown() {

419: notifyAll();

420:}

401: boolean done = false;

404:while (!done) {

406: wait();

407: done = true;

410:}

Figure 9.3: Deadlock in jigsaw.

We found a previously unknown communication deadlock in jigsaw. Figure 9.3

explains the deadlock. The line numbers in the figure are of statements in

ResourceStoreManager.java in the benchmark. Thread T1 is a StoreManagerSweeper

thread that executes the wait() on line 406 after it has been started. But, before it can

execute this wait(), the server receives a request to shut down. Thread T2, which is a

httpd server thread, tries to shut down the StoreManagerSweeper thread, and invokes

notifyAll() at line 419 during the process of shutting down. This notifyAll() is the

notification that is meant to wake T1 up when it waits at the wait() on line 406. Thus,

when T1 actually executes the wait(), it just gets hung there. It has already missed the

notification that was supposed to wake it up.

9.3 Typestate errors

We evaluated PRETEX on a number of benchmark programs. We ran our experiments on a

laptop with a 2GHz Intel Core 2 Duo processor and 2GB RAM. We considered the following
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Program Normal Time Time Time Reported Real LOC Thrds
Time (Seqs) (PFSA) (Typestate) errs errs

tornado 4141 4125 1235 4140 6 0 1326 40
cache4j 4250 90421 1228 99609 3 0 3897 10
hedc 2813 2829 1352 2766 5 0 29948 5

weblech 1079 2641 1353 1609 6 1 35175 3
jspider 641 922 1233 781 7 0 64933 5
ftpserver 4890 8109 152 8125 8 0 127297 40
jigsaw 39031 39000 1352 39000 12 0 381348 30

Table 9.3: Execution time for typestate checking

benchmark programs some of which we have already seen for deadlocks before : hedc,

a meta-crawler application kernel developed at ETH [108]; weblech, a website download

tool, tornado, a multithreaded web server; cache4j, a fast thread-safe implementation of

a cache for Java objects; jspider, a web spider engine; jigsaw, W3C’s web server, and

apache ftpserver. The eighth column of Table 9.3 gives the lines of source code for these

benchmarks. The last column in the table is the number of threads that were spawned for

the benchmarks. All of these were closed programs except for jigsaw and tornado. As

before for jigsaw, we wrote a harness that spawned a number of threads and queried the

web server for different urls. We wrote a similar harness for the other web server tornado.

9.3.1 Results

Table 9.3 summarizes the average execution time of the various benchmarks for the different

stages of PRETEX. The second column gives the average execution time of the unmodified

benchmark. The third column is the average time taken for obtaining the method call

sequences for objects of a particular type. The fourth column gives the average time for the

PFSA builder to build a PFSA from a set of method call sequences. The fifth column is

the average execution time to run the predictive typestate checker using a single automaton.

All of the execution time is in milliseconds. The sixth column gives the total number of

typestate errors reported by our tool. An error that is reported more than once is counted

only once, and not the number of times it was reported. We manually inspect all the errors

that are reported, and provide the number of real errors that we find in the seventh column.
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As can be seen from the table, the execution time of an application after being instru-

mented to print the method call sequences is less than 3 times the execution time of the

original application, except in the case of cache4j. The execution time of an application

after being instrumented to predict typestate errors is less than 2 times the execution time

of the uninstrumented application, except for cache4j. The overhead of instrumentation is

thus very small. The PFSA builder takes almost constant time to build a PFSA from a set

of method sequences. We manually examined the errors that were reported, and found one

real error in weblech which we describe in the next section.

There are two main sources of false positives (a reported error not being a real error)

in our experiments. Firstly, as in the other predictive analyses, the happens-before relation

here is an approximation of the exact happens-before relation between events. As a result,

we might consider an infeasible ordering of events. Secondly, since the automata that we

build are based on the method call sequences that are observed during a certain execution

of the program, they do not capture all legitimate method call sequences on objects of the

type considered. Thus, some of the reported errors correspond to legitimate method call

sequences that were not observed when the typestate automata were generated.

9.3.2 Typestate error found

In weblech, the URLs to be examined are queued in an instance of the class DownloadQueue.

In Spider.java, due to insufficient synchronization, a thread might try to retrieve a URL

from DownloadQueue even if there is no URL in it. The relevant portion of the code is shown

below.

When queue.getNextInQueue() is called in the above code, the condition that

queueSize() 6= 0 could have become false. The execution of queue.getNextInQueue()

can result in an exception being thrown if the size of queue is 0. The typestate automa-

ton inferred for DownloadQueue by PRETEX correctly infers that size() should always be

called before getNextInQueue(). The automaton is shown in figure 9.5. Using this typestate

automaton we could predict the typestate error in the above code.
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if (queueSize() == 0 && downloadsInProgress > 0)

{

....

continue;

}

else if (queueSize() == 0)

{

break;

}

....

synchronized (queue )

{

nextURL = queue.getNextInQueue();

downloadsInProgress ++;

}

Figure 9.4: Typestate error in weblech

queueURLs

queueURL

queueURL

size

queueURLs

size

returnURLFromgetNextInQueue

size

Figure 9.5: Typestate automaton inferred for DownloadQueue

9.4 Confirming Resource Deadlocks

We evaluated DeadlockFuzzer on the potential resource deadlocks reported by iGoodlock

(Section 9.1). For each potential deadlock, we used DeadlockFuzzer to try to automat-

ically reproduce it and confirm it. As for iGoodlock, we instrumented Java bytecode with

Soot to observe relevant events and to control the thread scheduler.



CHAPTER 9. EVALUATION 88

Program name Lines of Avg. Runtime # Deadlock cycles Prob. No. of
code Normal DF iGL Real DF thrashes

cache4j 3,897 2,045 - 0 0 - - -
sor 17,718 163 - 0 0 - - -
hedc 25,024 165 - 0 0 - - -
jspider 10,252 4,622 - 0 0 - - -
Jigsaw 160,388 - - 283 ≥ 29 29 0.214 18.97
Java Logging 4,248 166 493 3 3 3 1.00 0.00
Java Swing 337,291 4,694 28,052 1 1 1 1.00 4.83
DBCP 27,194 603 1,393 2 2 2 1.00 0.00
Synchronized Lists
(ArrayList, Stack, 17,633 2,862 7,070 9 + 9 9 + 9 9 + 9 0.99 0.0
LinkedList) + 9 + 9 + 9
Synchronized Maps
(HashMap, TreeMap,
WeakHashMap, 18,911 2,295 2898 4 + 4 4 + 4 4 + 4 0.52 0.04
LinkedHashMap, + 4 + 4 + 4 + 4 + 4 + 4
LinkedHashMap, + 4 + 4 + 4
IdentityHashMap)

Table 9.4: Experimental results for DeadlockFuzzer. (Context + 2nd Abstraction +
Yield optimization)

9.4.1 Results

Table 9.4 shows the results of using DeadlockFuzzer. We used the same benchmarks

as for iGoodlock (Section 9.1), and used iGoodlock to predict resource deadlocks in them.

The third column shows the average runtime (in milliseconds) of a normal execution of the

program without any instrumentation or analysis, and the fourth column is the average

runtime of DeadlockFuzzer. The table shows that the overhead of DeadlockFuzzer

is within a factor of six, even for large programs. Note that runtime for the web server

Jigsaw is again not reported due to its interactive nature.

The fifth column is the number of potential deadlocks reported by iGoodlock. The sixth

column is the number of cycles that correspond to real deadlocks after manual inspection.

For Jigsaw, since DeadlockFuzzer could reproduce 29 deadlocks, we can say for sure

that Jigsaw has 29 or more real deadlocks. With the exception of Jigsaw, iGoodlock was

precise enough to report only real deadlocks. The seventh column is the number of deadlock

cycles confirmed by DeadlockFuzzer. The eighth column is the empirical probability of

DeadlockFuzzer reproducing the deadlock cycle. We ran DeadlockFuzzer 100 times
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for each cycle and calculated the fraction of executions that deadlocked using Deadlock-

Fuzzer. Our experiments show that DeadlockFuzzer reproduces the potential deadlock

cycles reported by iGoodlock with very high probability. We observed that for some Col-

lections benchmarks, DeadlockFuzzer reported a low probability of 0.5 for creating a

deadlock. After looking into the report, we found that in the executions where Deadlock-

Fuzzer reported no deadlock, DeadlockFuzzer created a deadlock which was different

from the potential deadlock cycle provided as input to DeadlockFuzzer. For compari-

son, we also ran each of the programs normally without instrumentation for 100 times to

observe if these deadlocks could occur under normal testing. None of the runs resulted in

a deadlock, as opposed to a run with DeadlockFuzzer which almost always went into

deadlock. Column 9 shows the average number of thrashings (pausing the wrong thread or

at the wrong location) per run. Columns 8 and 9 show that the probability of creating a

deadlock decreases as the number of thrashings increases.

We conducted additional experiments to evaluate the effectiveness of various design deci-

sions for DeadlockFuzzer. We tried variants of DeadlockFuzzer: 1) with abstraction

based on k-object-sensitivity, 2) with abstraction based on light-weight execution indexing,

3) with the trivial abstraction, 4) without context information, and 5) with the optimization

in Section 7.4 turned off. Figure 9.6 summarizes the results of our experiments. Note that

the results in Table 9.4 correspond to the variant 2, where we use the light-weight execution

indexing abstraction, context information, and the optimization in Section 7.4. We found

this variant to be the best performer: it created deadlocks with higher probability than any

other variant and it ran efficiently with minimal number of thrashings.

The first graph shows the correlation between the various variants of DeadlockFuzzer

and average runtime. The second graph shows the probability of creating a deadlock by the

variants of DeadlockFuzzer. The third graph shows the average number of thrashings

encountered by each variant of DeadlockFuzzer. The fourth graph shows the correlation

between the number of thrashings and the probability of creating a deadlock.

The first graph shows that variant 2, which uses execution indexing, performs better than

variant 1, which uses k-object-sensitivity. The second graph shows that the probability of

creating a deadlock is maximum for variant 2 on our benchmarks. The difference is significant

for the Logging and DBCP benchmarks. Ignoring abstraction entirely (i.e. variant 3) led
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Figure 9.6: Performance and effectiveness of variations of DeadlockFuzzer

to a lot of thrashing in Collections and decreased the probability of creating a deadlock.

The third graph on the Swing benchmark shows that variant 2 has minimum thrashing.

Ignoring context information increased the thrashing and the runtime overhead for the Swing

benchmark. In the Swing benchmark, the same locks are acquired and released many times

at many different program locations during the execution. Hence, ignoring the context of

lock acquires and releases leads to a huge amount of thrashing.

The first graph which plots average runtime for each variant shows some anomaly. It

shows that variant 3 runs faster than variant 2 for Collections—this should not be true

given that variant 3 thrashes more than variant 2. We found the following reason for this

anomaly. Without the right debugging information provided by iGoodlock, it is possible for

DeadlockFuzzer to pause at wrong locations but, by chance, introduce a real deadlock
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which is unrelated to the deadlock cycle it was trying to reproduce. This causes the anomaly

in the first graph where the runtime overhead for Collections is lower when abstraction is

ignored, but the number of thrashings is more. The runtime is measured as the time it

takes from the start of the execution to either normal termination or when a deadlock is

found. DeadlockFuzzer with our light-weight execution indexing abstraction faithfully

reproduces the given cycle, which may happen late in the execution. For more imprecise

variants such as the one ignoring abstraction, a deadlock early in the execution may be

reproduced wrongfully, thus reducing the runtime.

The fourth graph shows that the probability of creating a deadlock goes down as the

number of thrashings increases. This validates our claim that thrashings are not good for

creating deadlocks with high probability and our variant 2 tries to reduce such thrashings

significantly by considering context information and object abstraction based on execution

indexing, and by applying the optimization in Section 7.4.

9.4.2 Incompleteness of DeadlockFuzzer

Since DeadlockFuzzer is not complete, if it does not classify a deadlock reported by

iGoodlock as a real deadlock, we cannot definitely say that the deadlock is a false warning.

For example, in the Jigsaw benchmark, the iGoodlock algorithm reported 283 deadlocks. Of

these 29 were reported as real deadlocks by DeadlockFuzzer. We manually looked into

the rest of the deadlocks to see if they were false warnings by iGoodlock, or real deadlocks that

were not caught by DeadlockFuzzer. For 18 of the cycles reported, we can say with a high

confidence that they are false warnings reported by the iGoodlock algorithm. These cycles

involve locks that are acquired at the same program statements, but by different threads.

There is a single reason why all of these deadlocks are false positives. The deadlocks can occur

only if a CachedThread invokes its waitForRunner() method before that CachedThread

has been started by another thread. This is clearly not possible in an actual execution of

Jigsaw. Since iGoodlock does not take the happens-before relation between lock acquires

and releases into account, it reports these spurious deadlocks. For the rest of the cycles

reported by iGoodlock, we cannot say with reasonable confidence if they are false warnings,

or if they are real deadlocks that were missed by DeadlockFuzzer.
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In the next chapter, we conclude our first section on testing concurrent programs by

comparing our predictive techniques with other related work that has been done previously.
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Chapter 10

Other Related Work

Plenty of work has been done on predictive analyses for finding bugs in multithreaded pro-

grams. But, most of this work focuses only on prediction of errors. We, on the other hand,

not only predict errors, but also work towards automatically confirming the predicted errors.

In addition, we have not only designed analyses for common classes of bugs like resource

deadlocks that have been well-studied by previous work, but have also built techniques for

harder-to-find but equally insidious bugs like communication deadlocks, hybrid between re-

source and communication deadlocks, and typestate errors. We have already explained some

related work in previous chapters. In this chapter, we describe and compare against other

related work that also come close to our direction of work.

10.1 Predictive testing

There has been previous work on predictive testing techniques on finding common classes of

errors like data races [93, 32, 108, 24, 23], atomicity violations [109, 39, 110], and resource

deadlocks [52, 53, 13, 6]. Our predictive testing techniques have the same flavor as these other

predictive techniques in that they all predict bugs that could have occurred in a different

thread interleaving that did not show up in any of the observed program executions. As in

our work, these analyses also identify and track the relevant events and the synchronization

observed during execution to predict potential bugs.

Apart from considering resource deadlocks which have been well-studied by previous
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work, we have designed predictive analyses for communication deadlocks, deadlocks that

involve both locks and condition variables, and typestate errors for concurrent systems that

have not received much attention in previous work. There is little prior work on detect-

ing deadlocks involving condition variables. Agarwal and Stoller [5] dynamically predict

missed notification deadlocks, in particular they define a happens-before ordering between

synchronization events, and use it to reason if a wait that was woken up by a notify could

have happened after that notify. Farchi et al [36] describe several concurrency bug patterns

that occur in practice including missed notification. They also describe a heuristic that can

increase the probability of manifesting a missed notification during testing. Li et al [76]

build a deadlock monitor that runs as a system daemon, and detects deadlocks that actually

occur during the execution of systems with multiple processes or threads. The monitor can

detect deadlocks involving semaphores and pipes in addition to locks. The monitor however

cannot predict deadlocks in other executions. There has also been some work that use static

analysis to find deadlocks which we describe later. Even if these analyses target deadlocks

arising out of incorrect condition variable usage, they still focus on a subset of those kinds of

deadlocks. They cannot predict a wide variety of deadlocks that we can with CheckMate.

For example, they cannot predict deadlocks involving waits with two locks and the deadlock

in Example 5.4.

There has been some previous work on finding typestate errors. 2ndStrike [45] predicts

typestate errors and automatically confirms them by controlling the thread scheduler. It

requires typestate specifications to be provided, but PRETEX automatically infers the spec-

ifications from observed executions. But, the technique of controlling the thread scheduler to

confirm real typestate errors is similar to DeadlockFuzzer in which we confirm resource

deadlocks. Other techniques [97] have been proposed to predict violations of safety proper-

ties in multithreaded programs which can be expressed using temporal logic. Temporal logic

might not be sufficient to express many typestate properties, and therefore these techniques

will not be able to check multithreaded programs against those typestate properties.

There has been work on automatically confirming potential concurrency bugs. Random

testing techniques have been proposed [33, 103] that introduce noise (using yield, sleep,

wait (with timeout)) to a program execution to increase the possibility of the exhibition of

a synchronization bug. Although these techniques have successfully detected bugs in many
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programs, they have a limitation. These techniques are not systematic as the primitives

sleep(), yield(), priority() can only advise the scheduler to make a thread switch, but

cannot force a thread switch. As such they cannot pause a thread as long as required to

create a real bug.

More recently, a few techniques have been proposed to confirm potential bugs in concur-

rent programs using random testing. Havelund et al. [11] use a directed scheduler to confirm

that a potential deadlock cycle could lead to a real deadlock. However, they assume that

the thread and object identifiers do not change across executions. Similarly, ConTest [85]

uses the idea of introducing noise to increase the probability of the occurrence of a deadlock.

It records potential deadlocks using a Goodlock algorithm. To check whether a potential

deadlock can actually occur, it introduces noise during program execution to increase the

probability of exhibition of the deadlock. DeadlockFuzzer differs from ConTest in the

following ways. ConTest uses only locations in the program to identify locks. We use context

information and object abstractions to identify the run-time threads and locks involved in

the deadlocks; therefore, our abstractions give more precise information about run-time ob-

jects. Moreover, we explicitly control the thread scheduler to create the potential deadlocks,

instead of adding timing noise to program execution. DeadlockFuzzer, being explicit in

controlling scheduler and in identifying objects across executions, found real deadlocks in

large benchmarks with high probability.

DeadlockFuzzer is part of the active testing framework [65] that provides support

for designing dynamic analyses for concurrency bugs, and for designing checkers to confirm

bugs by actively controlling the thread scheduler. RaceFuzzer [96] uses the framework

to find real races with high probability, and AtomFuzzer [87] to find atomicity violations.

RaceFuzzer only uses statement locations to identify races and does not use object ab-

straction or context information to increase the probability of race detection. As shown in

Section 9.4, simple location information is not good enough for creating real deadlocks with

high probability.

10.2 Static analysis and Model checking

Static analyses have also been developed to find different concurrency issues. These analyses

find errors without executing the program, but often report many false positives (i.e. reports
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that do not correspond to real errors). There has been a lot of work [79, 42, 8, 35, 107, 112, 84]

on statically finding resource deadlocks. Most of this work deals with implicitly or explicitly

computing the lock graph of a program, and finding cycles in it. Static techniques often

give no false negatives, but they often report many false positives. For example, the static

deadlock detector developed by Williams et al. [112] reports 100,000 deadlocks in Sun’s JDK

1.4 1, out of which only 7 are real deadlocks. Type and annotation based techniques [16,

42] help to avoid deadlocks during coding, but they impose the burden of annotation on

programmers.

There has been some work on statically finding communication deadlocks. Hovemeyer

and Pugh [60] present several common deadlock patterns in Java programs that are checked

by their static tool FindBugs, including many involving condition variables such as uncon-

ditional wait, wait with more than one lock held, etc. Their patterns can miss out on other

kinds of communication deadlocks like missed notifications and the deadlocks we had seen

earlier in Figure 5.4 in Chapter 5. Von Praun [107] also statically detects waits that may

execute with more than one lock held, and waits that may be invoked on locks on which

there is no invocation of a notify. His approach too cannot detect missed notifications and

the deadlock in Figure 5.4.

There has been a lot of work [104, 30, 38, 72] on finding typestate errors statically in

sequential programs. There is not much work for multithreaded programs. Yang et. al. [116]

have proposed a static technique to combine typestate checking with concurrency analysis.

The approach approximates thread interactions statically, and can result in high false positive

rates.

Model checking [59, 49, 31, 54, 20] systematically explores all thread schedules to find

concurrency bugs in them. Since it explores all possible schedules, it can find bugs that can

occur only in specific and rare schedules. However, model checking fails to scale to large

multithreaded programs due to the exponential increase in the number of thread schedules

with execution length.

1They reduce the number of reports to 70 after applying various unsound heuristics
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Part II

Testing Distributed Systems
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Chapter 11

Introduction

Large-scale distributed systems are increasingly in use in today’s cloud era. For example,

there are large-scale file systems (Hadoop File System [100]) and databases (Cassandra [75]),

computing platforms (Amazon EC2 [2]), and software as a service systems (Google Apps)

that run on clusters with thousands of commodity machines to serve hundreds of thousands

of simultaneous clients. Distributed systems of such large-scale have an enormous amount

of interaction going on between the commodity machines or nodes to carry out their com-

putation and to have consistent views regarding the system state. Given how popular and

pervasive cloud systems have become, and how they affect millions of users everyday, it is es-

sential that we test the systems thoroughly before deploying them. But, the complexity and

non-determinism in the interaction between different nodes, and even within a single node

in large-scale distributed systems result in such an enormous number of feasible executions

that it is hard to test them all with reasonable computing resources and time.

In addition to testing the correctness of cloud systems, we also need to test the robustness

of the systems against diverse hardware failures such as machine crashes, disk errors, and

network failures. The commodity machines that these systems are built out of are not fully

reliable and can exhibit frequent failures [29, 55, 89, 94, 106]. Even if the software on cloud

systems is built with reliability and failure tolerance as primary goals [25, 29, 46], the recovery

protocols in it are often buggy. For example, the developers of Hadoop File System [100]

have dealt with 91 recovery issues over its four years of development [50]. There are two main

reasons for the presence of recovery issues. Sometimes developers fail to anticipate the kinds
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of failures that a system can face in a real environment (e.g., only anticipate fail-stop failures

like crashes, but forget to deal with silent failures like data corruption), or they incorrectly

design or implement the failure recovery code. There have been many serious consequences

(e.g., data loss, unavailability) of recovery bugs in real cloud systems [18, 21, 22, 50]. Hence,

not only do we need to test the functional correctness of a system, we also need to test its

robustness against failures as failures are not the exception but rather the rule for large-scale

systems.

Model checking verifies the correctness of a distributed system by exhaustively check-

ing all possible executions of the system. Different executions resolve differently the non-

determinism in the ordering of events (i.e. operations) that are of interest to the tester (e.g.

sending and receiving of messages, and timeouts). Thus, model checking verifies that each

possible ordering of events results in correct system behavior. Model checking is effective in

that it can discover subtle corner-case bugs that can occur only when some events execute

in a specific order. But, since it exhaustively checks all possible executions, it does not

scale well to large systems that can have millions of feasible executions. Similarly, to test

the robustness of a system against failures, we can emulate (or “inject”) all possible kinds

and combinations of failures during execution and test the recovery of the system from those

failures. Again, this process of exhaustively checking against all failures is effective in finding

corner-case recovery issues, but this does not scale well to huge failure spaces with hundreds

of thousands of possible failures and failure combinations that can occur during execution.

In fact, the state-of-the-art of testing against failures employs exhaustive testing only for sin-

gle failures during execution, and tests against multiple-failure combinations by randomly

choosing some combinations and testing them. Injecting multiple failures is important be-

cause failing a system when it is already in the process of recovering from previous failures

can often reveal recovery bugs that cannot be found by injecting a single failure. Random

testing of multiple-failure combinations can be effective in discovering bugs, but it can miss

serious corner-case bugs that get triggered only when specific failures occur at specific points

of execution.

There have been different techniques proposed in the past that deal with improving the

efficiency and scalability of model checking. Partial-order reduction [48, 40] is an effective

way to reduce the number of executions that model checking has to explore. It essentially
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finds which events are “independent” (that is, events that result in the same system state

irrespective of the order in which they execute), and explores only a single ordering of

such events. This reduces the state space of executions, but the reduction still might not

be sufficient to scale model checking to large systems. Partial-order reduction uses the

happens-before relation [82] between events that is computed by observing which shared

resources do the events access and how are they synchronized with respect to each other to

decide which events are dependent and which are not. However, even if two events might

be dependent according to the happens-before relation, they might not be dependent for the

tester’s objectives as either order of two events results in the same degree of fulfillment of

the tester’s objectives (e.g., high source coverage). Testing any one of the two orders of the

events would suffice for the tester, but both the orders would be exercised by partial order

reduction. Similarly, when testing for failures, a tester might consider two different failures

or failure combinations to be equivalent for her testing objectives and might want to test

just one of them instead of exploring them both. In fact, we have found from our personal

experience and from talking to developers of cloud systems that often a tester has a good

idea about how to prune down the large space of failures so that the failures that are explored

enable her to achieve her testing objectives. For example, a tester might want to fail only

one representative subset of nodes in a system, or explore only a subset of all possible failure

types, or explore failures that occur at different source locations to obtain a high source code

coverage. Thus, if we can enable testers to easily express their intentions or intuitions to

the testing process, then the testing process can use those intentions or intuitions to prune

down large state space of executions or failures in such a way that exploring the pruned

down spaces help achieve the testers’ objectives.

In this second part of the thesis, we present work that builds tools and frameworks to

enable testers to easily express their intuitions and knowledge to direct the testing process

towards those executions or failures that are more likely to help achieve the testers’ objectives.

We provide the right abstractions of events, failures, and system executions that can be used

by testers to express their intuitions and knowledge without having any knowledge about the

internals of the testing process. Testers can express their intuitions and intentions in Python

which is a popular scripting language. We first show how we can build a customizable (or

programmable) testing tool that tests the functional correctness of distributed systems (in
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the absence of failures), and then we present another programmable tool for failure testing.

One common challenge that arises for both the tools is understanding what a tester might

want to express, and figuring out the right kinds of abstractions to provide to the tester that

would help her to express that and the right kind of tool architecture that would help to

compute and expose those abstractions. We explain policies (expression of tester’s intuition

or knowledge), abstractions, and tool architecture in detail in the subsequent chapters.

In the subsequent chapters, we first provide an overview of how the programmable tools

work with policies (Chapter 12), and then explain the background definitions (Chapter 13)

that we use to describe the tools in Chapters 14 and 15. We describe how we have imple-

mented our tools in Chapter 16, and evaluate various aspects of the tools in Chapter 17.

Finally, we compare the tools with related work in Chapter 18.
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Chapter 12

Overview

In this chapter, we illustrate using two examples how testers can use their knowledge and

intuition to guide the testing process towards interesting executions without having any

knowledge about the internals of the testing process. The first example is a simplified

version of the leader election protocol, and the second example is about hardware failures

during I/O operations in a distributed file system.

12.1 Example 1: Leader Election

In leader election, a group of nodes (or processes) in a distributed system exchange messages

(or votes) amongst each other to decide on a node that will function as the leader. The

leader then assumes various responsibilities like attending to clients’ requests and facilitating

coordination among different nodes. When leader election starts, each node considers itself

to be the leader and sends a message to each of the other nodes voting for itself. For example,

Node 1 sends “V = 1” (V stands for “Vote”) to the other nodes to indicate that it is voting

for itself. Similarly, Node 2 sends “V = 2”, Node 3 sends “V = 3”, and so on. A node

also updates its current view of the leader when it receives a higher vote from another node.

For example, when Node 1 receives a vote “V = 2” from Node 2, it updates its current

view of the leader to Node 2 from Node 1, and sends votes “V = 2” to the other nodes to

inform them of this change. This process is repeated until a majority of nodes agree on one

particular node as the leader.
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V = 4

Node 3
(V = 3)
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(V = 3)
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(V = 3)
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Ordering 
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Ordering 
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Figure 12.1: Different possible orderings of messages at Node 3 in the initial stage of the
leader election protocol. V stands for “Vote”.

Figure 12.1 illustrates the possible orderings of messages at a node (Node 3) during the

initial stage of leader election in a system with five nodes. Initially, Node 3 is going to

consider itself as the leader, but is going to receive four votes, one each from each of the

other nodes proposing itself as the leader. Since the votes arrive concurrently, there is no

deterministic order in which they are received and processed. For example, orderings #1

and #2 in Figure 12.1 show two different orders of votes from Node 4 and Node 5, and

orderings #3 and #4 show different orders of votes from Node 1 and Node 2. Different

orders of messages might trigger different system behaviors (e.g. orderings #1 and #2 result

in different votes being broadcast by Node 3), and thus, it is necessary that we test the

correctness of system behavior under different message orders.

If we want to test the correctness of leader election under all possible message orderings,

then we can näıvely order the four incoming votes at Node 3 in 24 (= 4!) different ways

with each ordering being in conjunction with orderings of messages at other nodes. Even

with partial-order reduction [40] (that can potentially reduce the number of executions to be

explored by considering only a single ordering of “independent” operations or messages), we
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would have to do 24 orderings since all messages at a receiver node are received through the

same socket and also queued onto the same queue and hence are considered to be dependent

by the happens-before relation in the partial-order reduction. Sending of messages at a

node might be considered to be independent by partial-order reduction [101], but receiving

of messages are considered to be dependent if they access the same shared resources (e.g.,

sockets, queues) at the receiver node.

From our knowledge of leader election, we might know that not all vote orderings result

in distinct system behaviors at Node 3. Exercising any one of such orderings would thus

suffice for us. Similarly, there might be votes that we might know would result in different

behaviors if ordered differently. We would like to exercise all possible orderings of such votes.

We show examples of both scenarios next and also explain how we can exploit our knowledge

of the election protocol to direct the model checking process towards the orderings that are

interesting to us.

Consider Ordering #3 and Ordering #4 again in Figure 12.1. Since the votes from Node

1 and Node 2 do not affect the current leader at Node 3, exercising either order of the two

votes would suffice. We do not want to explore both orders of the votes as we know that the

different orders are not going to affect the current leader at Node 3 differently (in fact, they

are not going to affect the current leader at Node 3 at all). Now consider Ordering #1 and

Ordering #2 in the same figure. When Node 3 receives “V = 4” in Ordering #1, it updates

its current leader to “Node 4” from “Node 3” and broadcasts this change to the other nodes

by sending votes for Node 4 to them. When it later receives “V = 5”, it again updates its

current leader to “Node 5” and informs other nodes of this change by sending votes for Node

5. In Ordering #2, Node 3 receives “V = 5” first, and thus updates its current leader directly

to “Node 5”. Later when it receives “V = 4”, the vote has no effect on the receiver’s current

leader as the vote is lower than the current leader. Thus, receiving “V = 4” before “V = 5”

impacts the current leader differently than receiving “V = 5” before “V = 4”. Therefore,

we want to explicitly order both the votes to test that the system operates correctly under

both the orders.

To sum up the search policy that we want to adopt when exploring different vote order-

ings: we want to explore both orders of two votes at a receiver node iff the votes are higher

than the current leader at that node and are different. Figure 12.2 presents how we can
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def dep (v1, v2, S):

bool b1 = (v1.receiver == v2.receiver)

bool b2 = (v1.vote != v2.vote)

bool b3 = (v1.vote > curVote(v1.receiver))

bool b4 = (v2.vote > curVote(v2.receiver))

return (b1 and b2 and b3 and b4)

Figure 12.2: Reorder votes v1 and v2 only if they are different and greater than the current
leader at the receiver node

Node A Node B

A1. write(B, msg); B1. write(A, msg);

A2. read(B, header); B2. read(A, header);

A3. read(B, body); B3. read(A, body);

A4. write(B, msg); B4. write(A, msg);

A5. write(Disk, buf); B5. read(Disk, buf);

Figure 12.3: I/Os executing in two nodes in a distributed file system

express the policy in our programmable tool to direct the testing process to explore only

the orderings that we want. If we want to explore both orders of two given votes, then the

policy returns true; otherwise false. With this policy, we would explore only 2 orderings of

the four votes at Node 3; one in which “V = 4” occurs before “V = 5”, and the other in

which “V = 5” is before “V = 4”. Thus, we get a speed-up of 12 (= 24/2) over näıve or

exhaustive exploration (model checking) or even with partial-order reduction in the number

of executions explored. For real-world systems and workloads and for ordering all messages

across all nodes, the speed-ups can be much higher.

12.2 Example 2: Distributed File System

Consider the code segment in Figure 12.3 that runs on a distributed file system with two

nodes, A and B. When a client reads from or writes to a file, there are various disk and

network reads and writes that would execute in each node. The very simple distributed

program in the figure illustrates how I/Os execute in each node. The I/Os can fail in

different ways during execution. For example, there might be a transient hardware failure

during the execution of an I/O, or a node might crash before an I/O, or the network might
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def flt (fs):

for f in fs:

fp = FIP(f)

isCrash = (fp[‘failure’] == ‘crash’)

isBefore = (fp[‘place’] == ‘before ’)

isDisk = (fp[‘target ’] == ‘disk’)

if not (isCrash and isBefore and isDisk):

return False

return True

Figure 12.4: Inject crashes before disk I/Os

fail resulting in the failure of a network read or write, or the data read might be corrupted.

Thus, we should test the robustness of distributed systems against different kinds of failures

that they can face. The state-of-the-art way to test against failures is to inject (or emulate)

failures during execution and then to check if the system could correctly recover from the

injected failures or not. For example, we can inject a transient I/O failure at the write call

on line A1 by executing code that throws an IOException instead of executing the write call.

Let us suppose that a tester wants to test against crashes before read and write calls,

and that she wants to inject two crashes in an execution. One possible combination is to

crash before the write at A4 and then to crash before the write at B5. Overall, since there

are 5 possible points to inject a crash on every node, there are 52 ∗N(N − 1) possible ways

to inject two crashes, where N is the number of participating nodes (N = 2 in the above

example). Again, considering many other factors such as different failure types, and more

failures that can be injected during recovery, the number of all possible failure sequences

can be too many to exhaustively explore with reasonable computing resources and time.

Moreover, increasing the number of failures to inject per execution can potentially result

in a combinatorial explosion in the number of failure sequences that can be tested. Thus,

multiple and diverse failures can pose a serious challenge for testing robustness of distributed

systems.

Instead of trying to automatically prune down the failure space (set of failure sequences),

we let the testers specify which failure sequences are interesting to them or which are equiv-

alent to them so that only one sequence out of a group of equivalent sequences would be

exercised. For example, let us say that the tester for the example in Figure 12.3 wants to
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only test against node crashes before disk I/Os. Thus, the only pair of crashes that she

would like to test is a crash before the disk write at line A5 and a crash before the disk

read at line B5. The tester can write the policy in Figure 12.4 to direct the failure testing

process to only exercise the crashes at A5 and B5. Note that the tester does not require

a detailed understanding of the internals of the failure testing process to be able to write

policies. Our tool provides high-level abstractions of execution points where failures can

occur (FIP in Figure 12.4 which is explained later in Chapter 13), and history of previous

executions to enable testers to easily express a variety of suitable policies according to their

testing objectives and budget.

12.2.1 Examples of failure space pruning

To give an idea about the kinds of specific failure sequences a tester might want to focus on,

we present some examples of testing situations and the kinds of policies that a tester might

want to write in those situations from our personal experience and our conversation with

developers of cloud systems.

Failing a component subset: Let’s suppose a tester wants to test a distributed write

protocol that writes four replicas to four machines, and let’s suppose that the tester wants to

inject two crashes in all possible ways during execution to show that the protocol can survive

and continue writing to the two surviving machines even after the crashes. A brute-force

technique will inject failures on all possible combinations of two nodes (i.e.,
(

4
2

)

). However,

to do this quickly, the tester might wish to specify a policy that just injects failures in any

two nodes.

Failing a subset of failure types: Another way to prune down a large failure space is to

focus on a subset of the possible failure types. For example, let’s imagine a testing process

that, at every disk I/O, can inject a machine crash or a disk I/O failure. Furthermore,

let’s say the tester knows that the system is designed as a crash-only software [19], that is,

all I/O failures are supposed to translate to system crash (followed by a reboot) in order

to simplify the recovery mechanism. In this environment, the tester might want to just

inject I/O failures but not crashes because it is useless to inject additional crashes as I/O
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failures will lead to crashes anyway. Another good example is the rack-aware data placement

protocol common in many cloud systems to ensure high availability [43, 100]. The protocol

should ensure that file replicas should be placed on multiple racks such that if one rack goes

down, the file can be accessed from other racks. In this scenario, if the tester wants to test

the rack-awareness property of the protocol, only rack failures need to be injected (e.g., vs.

single node or disk failures).

Coverage-based policies: A tester might want to speed up the testing process with some

coverage-based policies. For example, let’s imagine two different I/Os (A and B) that if

failed could initiate the same recovery path that performs another two I/Os (M and N).

To test recovery, a tester should inject more failures in the recovery path. A brute-force

method will explore 4 executions by injecting two failures at AM, AN, BM, and BN (M and

N cannot be exercised by themselves unless A or B has been failed). But, a tester might wish

to finish the testing process when she has satisfied some code coverage policy, for example,

by stopping after all I/O failures in the recovery path (at M and N) have been exercised.

With this policy, she only needs to explore 2 executions with failures at AM and AN.

Domain-specific optimization: In some cases, system-specific knowledge can be used to

reduce the number of failures. For example, consider 10 consecutive Java read I/Os that read

from the same input file (e.g., f.readInt(), f.readLong(), ...). In this scenario, disk failure

can start to happen at any of these 10 calls. In a brute-force manner, a tester would run ten

experiments where disk failure begins at 10 different calls. However, with operating system’s

knowledge, the tester might inject disk failure only on the first read. The reasoning behind

this is that a file is typically already buffered by the operating system after the first call.

Thus, it is unlikely (though possible) to have earlier reads succeed and the subsequent reads

fail. In our experience (Chapter 17), by reducing the number of such individual failures, we

can greatly reduce the number of multiple failure combinations that we have to test.

Failing probabilistically: Multiple failures can also be reduced by only exercising them

if the likelihood of their occurrence is greater than a predefined threshold [91, 105]. This is

useful especially if the tester is interested in correlated failures. For example, two machines

put within the same rack are more likely to fail together compared to those put across in
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different racks [43]. A tester can use real-world statistical data to implement policies that

are based on failure probability distributions.

In the subsequent chapters, we explain our programmable tools for model checking and

failure testing of distributed systems. We show how we architect the tools so that they can

provide simplified high-level abstractions to testers that the testers can then use to write a

variety of search or pruning policies.
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Chapter 13

Background Definitions

In this chapter, we introduce the definitions that we later use to describe the programmable

tools. A programmable tool should be able to provide the right abstractions of the relevant

aspects of system execution so that they can be used by testers to write appropriate search

or pruning policies. In order to provide the right abstractions, we need to identify the

information that a tester might want when writing a policy. We show next how we identify

the interesting context and abstract it and expose it to testers in our programmable tools.

13.1 Execution related abstractions

Let us suppose that we have identified the statements that are relevant to the tester. For ex-

ample, for testing system correctness under different network message orders, the statements

that send and receive network messages are relevant, and for failure testing, statements exe-

cuting I/Os are relevant. We abstract out the execution of a relevant statement (also called

an event) as a map from a set of keys K to a set of values V. A key k in K represents a part

of the static or dynamic context associated with the event. For example, k could be ‘sender’

to denote the node that sent a message, or ‘receiver’ to denote the node that received the

message, or ‘type’ to denote the type of the message, or ‘packet’ to denote the contents

of the message, or ‘stack’ to denote the call stack at the node before or after the event.

Table 13.1 gives an example of the abstraction of an event that we might encounter while

testing correctness under different message orders. The abstraction encapsulates the context
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Key Value

sender Node 2
receiver Node 3
type Election
packet Vote = 2
... ...

Table 13.1: Event abstraction

fip B5

Key Value

func read()
loc Read.java

(line L5)
node B
target file f
stack 〈stack trace〉
... ...

Possible
Failures
at fip B5 fit

Crash (crash, B5) / B5c
Corruption (corruption, B5) / B5cr
Disk failure (disk failure, B5) / B5d

Table 13.2: Failure-Injection Point (fip) and Failure-Injection Task (fit)

of a message sent by Node 2 to Node 3. A tester can obtain the context that she wants

regarding an event by accessing the relevant keys of the event abstraction. We provide a

variety of keys to enable testers to access different kinds of context. Identifying the relevant

statements and the context to provide in abstractions solves the problem of deciding what

context information to expose to testers.

Table 13.2 gives an example of an abstraction of an event we might encounter during

failure testing. We call the abstraction of an event where a failure can occur as a failure-

injection point (fip). A key k in a fip represents a part of the static or dynamic context

associated with the event as before. For example, k could be ‘func’ to represent the function

call being executed. It would be mapped to the name of the function in the fip. Other

examples for k are: ‘loc’ for the location of the function call in the source code, ‘node’ for

the node ID on which the execution occurs, and ‘target’ for the target of the I/O executed

by the function call (e.g., the name of the file being written to in case of a disk write I/O).

The left-hand side of Table 13.2 shows the fip (labeled B5) corresponding to the execution

point at the read call at line L5 in node B. We denote the set of all failure-injection points
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by P.

We call a pair of a failure type (e.g., crash, disk failure) and a failure-injection point as a

failure-injection task (fit). Thus, a fit f ∈ F × P, where F denotes the set of all failure

types. Given a failure-injection point, there are different types of failures that can be injected

at that point. For example, the right-hand side of Table 13.2 shows different fits that can

be formed for the fip illustrated in the same table for three different types of failures (crash,

data corruption, and disk failure). Exercising a fit f = (ft, fp) means injecting the failure

type ft at the fip fp. Since, in failure testing, we are interested in injecting multiple failures

during execution in addition to single failures, we also consider sequences of failure-injection

tasks. We denote the set of all sequences of failure-injection tasks by Q. We call a sequence

of failure-injection tasks as a failure sequence in short.

13.2 Profiling executions

We also profile executions and record them so that testers can use the profiles of past

experiments while writing their policies. For example, for failure testing, we profile an

execution by the set of failure-injection points observed in that execution. Failure-injection

points are typically built out of I/O calls, library calls, or system calls, and these calls can be

used to approximately represent an execution of the system under test. Thus, an execution

profile exp ∈ 2P .

Let allFips: Q → 2P and postInjectionFips: Q → 2P be the functions that return

execution profiles in failure testing. Given a failure sequence fs, allFips(fs) returns the

execution profile consisting of all fips observed during the experiment in which fs is injected,

and postInjectionFips(fs) returns the set of all fips observed after fs has been injected.

For the empty sequence (), allFips and postInjectionFips both return the set of all fips

seen in the execution in which no failure is injected.

In order to obtain the relevant execution and profiling information, we need to instrument

the system to keep track of the execution of relevant statements. For example, for testing

correctness under different message orders, we should instrument network message sends and

receives, and for failure testing, we should instrument the I/O statements (e.g., disk reads and

writes, network reads and writes, etc.). For message orders, we also need to instrument the
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statements that assemble the network message contents so that we can expose the contents

in the abstractions. Thus, after we have identified the relevant statements and context, we

need to instrument those statements to build abstractions and profiles during execution.

In the next two chapters, we explain the internals of our programmable tools, and also

demonstrate how event abstractions are used by testers to write appropriate policies to drive

the testing processes in the tools.
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Chapter 14

Programmable Model Checking

In this chapter, we explain our programmable tool PCheck to model check (that is, sys-

tematically and exhaustively test) distributed systems. PCheck has three components:

the event generator (MC Facilitator) that executes the given system, and identifies and ab-

stracts out the relevant events during execution, the policy framework (MC Driver) that

lets a tester express the event orderings that she wants to test, and the model checker (MC

Engine) that systematically explores the space of event orderings that are described in the

policy written by the tester. The MC Facilitator provides suitable abstractions for events

that can be used by a tester to write a variety of policies. In this work, we have focused on

testing system protocols that involve significant messaging between nodes. Thus, message

sends and receives are the events that MC Facilitator tracks and exposes. For testing other

kinds of protocols and properties, we can design the MC Facilitator accordingly to expose

events relevant to those protocols and properties. In the following sections, we explain how

the three components of PCheck interact, and also explain each component in detail.

14.1 Overall Architecture

Figure 14.1 shows the three components of PCheck, and their mutual interactions. Given

a system X , the MC Facilitator executes X , and keeps executing it repeatedly until the

MC Engine declares the exploration of event orderings to be over. During each execution,

the Facilitator identifies the relevant events (e.g., execution of a message send or receive),
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Figure 14.1: Architecture of PCheck. 1: Blocked events, 2: Model checking decision, 3:
Policies, and 4: Abstractions

and blocks their execution so that a previously unexplored ordering can be imposed on the

execution of those events. When the system execution reaches a stable state where no new

relevant event is observed, the MC Facilitator sends abstractions of the blocked events to the

MC Engine. The MC Engine decides which of the blocked events to execute next. The next

unblocked event might generate more relevant events, and thus, the MC Facilitator waits for

the system execution to again reach a stable state where no new event is generated. It then

repeats the process of sending the blocked events to the MC Engine that decides the next

event to be executed. This process is repeated until the system X finishes its execution.

The MC Engine uses the history of past system executions that it has seen, and the

policies written by the tester to decide which event ordering it wants to explore in the current

execution. For example, say the tester’s policies deem two events A and B to be dependent,

that is, the policies express the tester’s intention to test both orders of A and B. Then, if

event A has already been executed before event B in a previous execution at a specific system

state, then the MC Engine might explore B before A when the current execution reaches

that system state. Thus, if both A and B have been blocked, then it would ask the MC

Facilitator to execute B next in order to explore the ordering of B before A. The MC Engine

uses tester’s intuitions expressed in policies to decide which events are dependent rather

than using the happens-before relation that is used by traditional partial-order reduction to

determine dependent events.

The MC Driver provides a framework using the event abstractions provided by the MC
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Facilitator to enable a tester to write appropriate policies. A tester can use her knowledge

and intuition to express which events should not be reordered by the MC Engine even if they

are considered dependent by partial-order reduction since the difference in the system states

that the different orders of the events result in does not matter to the tester. For example,

consider two events A and B that are considered dependent by partial-order reduction. Both

orders of the events would thus be exercised by partial-order reduction. But, let us assume

that the set of statements that would be covered if we execute event A and then event B is

same as the set of statements that would be covered if we execute event B and then event

A. Thus, if source code coverage is the testing objective, then we need not explore both A

after B and B after A – either of the two orders would suffice even if the two orders would

result in different system states. The tester can express this knowledge in a policy using the

event abstractions provided by the MC Facilitator. Using the policy, the MC Engine would

explore only one of the two orders of A and B.

14.2 MC Facilitator

The MC Facilitator is responsible for executing a system and identifying the relevant events

during execution. Since we are interested in verifying messaging intensive protocols, the

relevant events for us are network message sends and receives. We want to verify that the

system executes correctly even when the order in which messages are received and executed

at various nodes of the system is changed. For other protocols, we can re-design the Facil-

itator to track and expose events relevant to those protocols. MC Facilitator identifies the

statements that are relevant to a messaging protocol, and instruments them so that it can

track their execution and generate appropriate abstractions (Chapter 13) when they execute.

Abstractions are used by the MC Engine to decide the next event to execute, and also by

testers to write policies.

Algorithm 12 illustrates how the MC Facilitator executes the system X under test. Given

X , the Facilitator executes it until it reaches a stable state S (Lines 1 and 5). A stable state is

an execution state in which no new relevant event is going to be observed even if we execute

X further. For example, consider X to be consisting of three nodes each of which sends a

message to the other two. After we have executed X and observed and blocked all the six
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Algorithm 12 Execute(S)
1: Input: Stable system state S to begin execution from

2: while not hasTerminated(S) do
3: NE := nextEvents(S)
4: e := nextEventToExecute(NE)

5: S := nextStableState(S, e)
6: end while

message receives, we would have reached a stable state since no more message receive can

be generated unless one of the blocked receives is unblocked and executed. Thus, at a stable

state, we have to choose and execute a blocked relevant event in order for X to make progress

in the protocol under consideration. Note that there might be non-determinism in the way X

executes until it reaches a stable state, but we are not controlling that non-determinism. We

are only controlling the non-determinism in the ordering of events relevant to the protocol

(e.g., leader election protocol) that we are considering, and exploring different possible ways

in which those events can execute. We tolerate the non-determinism during execution as

the system transitions from one stable state to the next, and thus, save ourselves the cost of

performing a full-fledged model checking of the system. We do a targeted model checking,

that is, exploring all orders of only the relevant events and not all events during execution. It

is possible that we might fail to explore an event ordering since we do not control all sources

of non-determinism. In such cases of failure, we resolve the event ordering in the execution

randomly and then explore event orderings around the random event ordering in subsequent

executions.

After X has reached a stable state S, we abstract out the relevant events NE that

have been blocked and can be executed next (nextEvents(S)), and send the abstractions

to the MC Engine. The MC Engine uses the history of executions that it has seen so

far and the tester-written policies to decide which of the blocked events to execute next

(nextEventToExecute(NE) in Algorithm 15). The MC Facilitator unblocks and executes

that event e, and waits until X reaches stable state again (nextStableState(S, e)).

Determining if a system has reached stable state varies from system to system and proto-

col to protocol. The ideal way to determine this would be for the tester to provide a predicate

on the system state that evaluates to true if a stable state has been reached. But, since writ-

ing such a predicate would require in-depth knowledge of the implementation details of X



CHAPTER 14. PROGRAMMABLE MODEL CHECKING 118

and internals of the protocol, we use a heuristic to determine the stable state. If the set of

blocked events remains constant after a configurable amount of time (say, 1 second), then

we assume we have reached a stable state. If the tester has a good understanding of the

system and the protocol, then she can of course override the heuristic by providing a more

precise predicate to determine stable state.

MC Facilitator repeats the process of querying the MC Engine for the next event to

execute at the next stable state and proceeds as before. At each stable state S, the Facilitator

also checks to see if the protocol being tested has already finished its execution at that state

(hasTerminated(S)). For example, if we are testing the leader election protocol, then we

would execute the system X until a leader is elected. The tester provides the predicate

hasTerminated to help the Facilitator determine when to consider a system execution to

be over. The MC Facilitator keeps executing a system repeatedly until the MC Engine

determines that all possible event orderings that are interesting to the tester have been

explored. After finishing an execution, the Facilitator queries the Engine via doNext?()

(Algorithm 16) to decide whether to execute the system again.

14.3 MC Driver

The MC Driver provides a policy framework in which testers can easily express which events

they want to reorder. They can use their intuitions and knowledge to understand and express

which events are dependent, that is, which events can potentially lead to two different states

when ordered differently such that the difference in the two states can affect the degree of

fulfillment of the testing objectives. For example, in the leader election protocol, the message

receive events at a node that contain different proposals for the leader are dependent since

the receiver node’s view of the leader might potentially be different for different orderings of

the two events.

Let E denote the set of all possible events. Then, the predicate dep : E × E × E∗ →

Boolean holds for the tuple (ei, ej, S) if the events ei and ej are considered to be dependent

by the tester in the system state that results after executing the event sequence S. The tester

can implement her policy of deciding event dependence by suitably implementing dep using
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λ e1, e2, S . (

let r1 = (e1[‘receiver’]) in

let r2 = (e2[‘receiver’]) in

let sameReceiver = (r1 == r2) in

let t1 = (e1[‘type’]) in

let t2 = (e2[‘type’]) in

let isFAck1 = (t1 == ‘FINALACK’) in

let isFAck2 = (t2 == ‘FINALACK’) in

sameReceiver ∧ isFAck1 ∧ isFAck2

)

Figure 14.2: Gossip protocol: Reorder message receive events e1 and e2 that are final acks
for gossip requests

the abstractions and libraries provided by the MC Driver. The predicate dep is used by the

MC Engine (Algorithm 14) to compute the event orderings that it should explore.

Figure 14.2 presents an example of the dep predicate. Let us consider a system that

has multiple nodes with each node contacting a small subset of other nodes asking them

to provide it with gossip information regarding the live nodes in the system that they are

aware of. The communication between two nodes involves a number of messages with the

final message being a final ack sent by a node to the node that requested gossip information.

Instead of reordering all messages that are exchanged between all the nodes, using the policy

in Figure 14.2 we test all orderings of only the final acks received at the nodes. This is because

the accumulated gossip information (gossip state) at a node is updated only when a final

ack is received from another node regarding a new piece of gossip information. Thus, two

different orders of final acks can potentially result in two different gossip states at a node.

Other messages cannot update the gossip state, and hence their different orderings cannot

result in different gossip states at a node.

Figure 14.3 gives another example implementation of dep. Let us say that we want to

test multiple clients writing concurrently to the same file in a distributed file system. The

servers in the file system redirect client write requests to the elected leader in the system.

For each write request, the leader asks for votes or acks from all servers in the system. If the

leader obtains enough acks for a write request, it commits that request. Instead of testing

all possible orderings of the messages sent between the clients, the leader, and the servers

in the system, we can use the policy (that is, the predicate) in Figure 14.3 to test only the
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λ e1, e2, S . (

let r1 = e1[‘receiver’] in

let r2 = e2[‘receiver’] in

let sameReceiver = (r1 == r2) in

let t1 = e1[‘type’] in

let t2 = e2[‘type’] in

let isAck1 = (t1 == ‘ACK’) in

let isAck2 = (t2 == ‘ACK’) in

let wr1 = (e1[‘wrID’]) in

let wr2 = (e2[‘wrID’]) in

let diffWrs = (wr1 6= wr2) in

sameReceiver ∧ isAck1 ∧ isAck2 ∧ diffWrs

)

Figure 14.3: Client write protocol: Reorder message receive events e1 and e2 that are acks
for different write requests

λ e1, e2, S . (

let r1 = e1[‘receiver’]) in

let r2 = e2[‘receiver’]) in

let v1 = e1[‘packet ’]) in

let v2 = e2[‘packet ’]) in

let sameReceiver = (r1 == r2) in

let diffVotes = (v1 6= v2) in

let cv = curVote(r1, S) in

let isGreaterV1 = isGreater(v1 , cv) in

let isGreaterV2 = isGreater(v2 , cv) in

sameReceiver ∧ diffVotes ∧ isGreaterV1 ∧ isGreaterV2

)

Figure 14.4: Leader election protocol: Reorder message receive events e1 and e2 that have
votes that are greater than the current leader at the receiver

different orderings of the acks received at the leader. For different orders in which acks are

received at the leader, the sequence in which the write requests are committed might be

different and thus, the state of the file being written to might be different. Reordering the

messages that are sent by the leader to other nodes asking for acks cannot directly impact

the order in which the leader commits the write requests and changes the state of the file.

Thus, we do not reorder those messages sent by the leader.

Figure 14.4 presents yet another example implementation of the dep predicate for the

leader election protocol. This example illustrates how we can use the event sequence S
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Algorithm 13 (PROG-DPOR(frontier, N))

1: if frontier == EmptyStack then
2: return

3: end if
4: for each (Q, k) in (top(frontier) \ done) do
5: add Q to done

6: update(frontier, Q)
7: NE := Enabled(Q)
8: if NE 6= ∅ then
9: e := choose(NE)

10: if k ≥ 0 then
11: push(frontier, {(Q.e, k)})
12: end if
13: PROG-DPOR(frontier, N)

14: end if
15: end for
16: pop(frontier)

provided as a parameter to decide whether two events are dependent in the system state

that we reach after executing S. The predicate orders two incoming election votes at a node

if the values of the votes are different and if each vote is greater than the current view of

the leader at that node. That is, if we have two message receive events at the same node,

and the votes in the two messages v1 and v2 are different and greater than the current view

of the leader cv at that node, then we test both orders of the two messages. If either of the

votes is less than cv, then that vote is not going to affect cv. Thus, we reorder only when

the incoming votes are greater than cv. We use the sequence S to compute what the current

leader is for the receiver node. Also, two equal votes in different messages are going to affect

cv in the same way irrespective of the order in which they are processed. Therefore, we

reorder two incoming messages only if their votes are different.

14.4 MC Engine

The MC Engine records information regarding past executions observed and the current

execution to decide which event orderings to explore in the current execution. We restrict

the number of reorderings that we can do in a particular execution with a tester-provided

parameter N. If N is 1, then the MC Engine would explore all possible executions that reorder
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Algorithm 14 update(frontier, S)

1: l := |S|
2: elast := Sl
3: for i in (l-1) to 1 do
4: eprev := Si
5: sq := S1...(i−1)

6: if dep(elast, eprev, sq) ∧ (eprev ∈ Enabled(sq)) ∧ (elast ∈ Enabled(sq)) ∧ (∃ k > 0 (sq,
k) ∈ frontieri−1) then

7: add (sq.elast.eprev, k - 1) to frontieri+1

8: end if
9: end for

Algorithm 15 nextEventToExecute(NE)

1: Input: Set of abstract blocked events NE

2: if |S| < |Q| then
3: e := Q|S|+1

4: else
5: add S to done

6: update(frontier, S)
7: e := choose(NE)
8: if k ≥ 0 then
9: push(frontier, {(S.e, k)})

10: end if
11: end if
12: S := S.e
13: return e

or switch at most one pair of events starting with the original system execution. Similarly, if

N is 2, then we explore all executions that we can reach starting from the original execution

by switching the order of at most two pairs of events, and so on. Algorithms 13, 14, 15,

and 16 explain how the MC Engine explores the space of executions with at most N event

reorderings. The MC Engine essentially performs a dynamic partial-order reduction [41]

(Algorithm 13) on the execution tree of feasible event orderings. The reduction in [41] would

consider all executions that can be reached starting from the original system execution by

performing any number of event reorderings, but we restrict ourselves to executions that can

be reached with N reorderings so that testers can fix and increase N based on the time and

resources that they have.

The MC Engine implements the partial-order reduction using Algorithms 15 and 16.
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Algorithm 16 doNext?()
1: add S to done

2: update(frontier, S)
3: while (top(frontier) \ done) == ∅ do
4: pop(frontier)
5: end while
6: if frontier == EmptyStack then
7: return false

8: end if
9: (Q, k) := choose(top(frontier) \ done)

10: S := EmptySequence

11: return true

A
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Figure 14.5: An example execution tree. The MC Engine performs depth-first search with
dynamic partial-order reduction on execution trees.

Instead of using the happens-before relation to decide whether two events are dependent

and can result in different system states when reordered [41], we let a tester decide when to

consider two events to be dependent (Algorithm 14). Often two events might be judged to

be dependent using the happens-before relation (say, since they both access the same shared

memory location), but a tester might consider them to be not dependent since the changes in

the system state for the two different orders of the events do not affect the tester’s objectives

(e.g., source code coverage). Thus, using tester’s intuition and knowledge, we might reduce

the state space of event orderings more than what we can using only traditional partial-order

reduction.
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The MC Engine implements a depth-first search of the execution tree using dynamic

partial-order reduction (Algorithm 13). The execution tree represents feasible event orderings

(or sequences) that can occur during execution. Figure 14.5 gives an example of an execution

tree. The root node represents the empty event sequence. We have an outgoing edge e from

a node if event e is enabled after the event sequence leading to the node has been executed.

For example, in Figure 14.5, there are three events initially that are enabled: A, B, and C.

If we choose A and execute it, then we have B and C that are enabled after the execution

of A. It is possible that new events get generated after executing A, but we do not consider

that situation to keep the example simple.

For depth-first search, we maintain a stack frontier that keeps track of the nodes that

can be explored next, and a set done that keeps track of the nodes that have been explored.

frontieri (i ≥ 0) represents the i-th record of the stack with a higher i denoting a record

higher up in the stack or closer to the top of the stack. Initially, frontier has only one

element {(EmptySequence, N)} where EmptySequence is the empty event sequence and N

is the tester-provided parameter that restricts the number of event reorderings in a single

execution. A stack element (Q, k) specifies the space of event orderings that begin with

the sequence Q and that have at most k event reorderings after Q has been executed. We

move forward along a path in the search tree starting from the root by arbitrarily picking an

enabled event e at each node (choose in Algorithm 13) until we reach the end of the system

execution. In the process of moving along the path, we add backtrack nodes into frontier

(Algorithm 14) that we later go back to and explore. For example, assume that N is 1 and

that we choose A, B, and C in order as we move forward in the tree in Figure 14.5. After

moving along A, we push {(A, 1)} to frontier. Similarly, we push {(AB, 1)} after B, and

{(ABC, 1)} after C. We also add backtrack nodes as we move forward that we explain next.

Algorithm 14 explains how we add backtrack nodes into frontier when exploring the

node n that we reach after the event sequence S. For the last event elast leading into n, we

go backwards along the path (or the sequence S) that reaches n to find an event eprev with

which we can reorder elast. The events eprev and elast are enabled together during execution

and are considered to be dependent by the tester. The tester implements the function dep

in MC Driver (Section 14.3) that takes two events and an event sequence as arguments and

decides whether the events are dependent or not at the state the system is in after the event
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sequence is executed. Furthermore, the sequence of events before eprev (sq) contains less

than N (N - k with k > 0) event reorderings. Thus, reordering eprev and elast after sq would

not exceed N. We add the backtrack node sq.elast.eprev (sequence sq followed by elast and

then eprev) to the stack and also decrement k to denote that we can perform 1 less than

k reorderings in the rest of the execution after the sequence sq.elast.eprev since we have

added one more event reordering after sq. We find all events eprev with which elast can be

reordered, and add appropriate backtrack points for them.

Consider the example in Figure 14.5 again. After we have executed A and B, we go

backwards to find an event that can be reordered with B. We find that the only other event

A can be reordered with B since they are both enabled at the same at the beginning of the

execution. Let us assume that the tester has also expressed that she wants to test both orders

of A and B in her policies. Thus, we add (BA, 0) to frontier2 changing frontier2 to {(AB,

1), (BA, 0)}. We decrease the number of reorderings for BA to 0 since we are already using

up our budget of 1 to reorder A and B, and hence, we cannot perform any more reorderings

after BA. After executing C after A and B, we again go backwards from C to find events

with which we can reorder C. We find that C can be reordered with both B and A, and thus,

add backtrack nodes (ACB, 0) and (CA, 0) to frontier3 and frontier2 respectively. After

executing ABC, we pick ACB from frontier to explore next. After executing ACB, we add

backtrack nodes as before and proceed to the next execution. In the end, we would have

executed ABC, ACB, BAC, CAB, CBA, and BCA.

The MC Engine interacts with the MC Facilitator and implements the depth-first search

with partial-order reduction using Algorithms 15 and 16. In the algorithms, S is the current

event sequence explored at any point of time, and Q is the sequence that we want to execute

first in the next execution. Q is initially the empty sequence. The number of reorderings that

can be done in the remaining execution is denoted by k which is initially set to N (maximum

number of reorderings allowed). In Algorithm 15, the MC Engine moves forward along

a path by arbitrarily choosing an enabled event at each node, and adds backtrack nodes

along the way. The set of enabled events NE at a node is provided by the MC Facilitator.

When backtracking to a node Q, the algorithm first replays the sequence Q before arbitrarily

choosing nodes and moving forward in the sub-tree rooted at Q. Algorithm 16 decides the

next backtrack point to explore. If there is no backtrack point that we have not yet explored,
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it declares the search over and indicates to MC Facilitator that it does not have to execute

the system again. If it finds a backtrack node Q, it instructs the Facilitator to execute the

system again. Algorithm 15 then guides the execution to first follow the sequence Q of events

and then to arbitrarily choose enabled events till completion.

Thus, we have seen how testers can use policies to reduce the number of executions

explored during model checking. In the next chapter, we explain how testers can use policies

to reduce the number of failure sequences exercised during failure testing.
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Chapter 15

Programmable Failure Injection

This chapter presents our programmable failure testing tool PreFail [63]. PreFail has

two components: the FI engine and the FI driver as shown in Figure 15.1 (FI stands for

failure-injection). The FI engine is the component that injects failures in the system under

test, and the FI driver is the component that takes tester-specified policies to decide where

to inject failures. The FI engine exposes failure related abstractions to the FI driver that

can be used by the testers in their policies. In the following sections, we first illustrate the

test workflow in PreFail (§15.1), and then we explain the FI engine (§15.2), the FI driver

and policies (§15.3), and finally the detailed algorithm of the test workflow (§15.4).

15.1 Test Workflow

Figure 15.2 shows an example scenario of the testing process in PreFail. The tester specifies

three failures as the maximum number of failures to inject in an execution of the system

under test. The FI engine first runs the system with zero failure during execution (i.e.

without injecting any failure during execution). During this execution, it obtains the set of

all execution points where failures can be injected (i.e., failure-injection points as described

in Chapter 13): A, B, and C. Let us assume that we are interested only in crashes, and let

Ac, Bc, and Cc denote the injection of crashes (i.e., failure-injection tasks as described in

Chapter 13) at the failure-injection points A, B, and C, respectively (for ease of reading, a

failure-injection task Xc is represented as X in a box in Figure 15.2). Using the tester-specified
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Figure 15.1: PreFail’s Architecture. The figure shows the separation of PreFail into
failure-injection engine and driver.
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Figure 15.2: PreFail’s Test Workflow

policies, suppose PreFail prunes down the set of failure-injection tasks to Ac and Bc, and

then exercises each failure-injection task in the pruned down set.

After exercising a failure-injection task, the FI engine records all failure-injection points

seen where further crashes can be injected. For example, after exercising Ac (that is, injecting

a crash at A), the FI engine observes the failure-injection points D and E. A letter in a circle in

Figure 15.2 represents a failure-injection point observed in an experiment. From information

regarding observed failure-injection points, the FI engine creates the set of sequences of two

failure-injection tasks AcDc and AcEc that can be exercised while injecting two crashes in

an execution. Similarly, it creates BcEc after observing the failure-injection point E in the

execution that exercises Bc.

As mentioned before, the number of all sequences of failure-injection tasks that can be

exercised tends to be large. Thus, PreFail again uses the tester-specified policies to reduce

this number. For example, a tester might want to test just one sequence of two crashes

that exercises Ec as the second crash. Thus, PreFail would automatically exercise just one

of AcEc and BcEc to satisfy this policy instead of exercising both of them. The step from
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injecting two failures to three failures per execution is similar.

15.2 FI Engine

The failure-injection tasks described above are created by the FI engine. The FI engine

interposes different execution points in the system under test and injects failures at those

points. The target failure-injection points and the range of failures that can be injected all

depend on the objective of the tester. For example, interposition can be done at Java/C

library calls [50, 77], TCP-level I/Os [27], disk-level I/Os [90], POSIX system calls [74], OS-

driver interfaces [62], and at many other points. Depending on the target failure-injection

points, the range of failures that can be injected varies. In our work, we interpose all I/O

related to calls to Java libraries and emulate hardware failures by supporting diverse failure

types such as crashes, disk failures, and network partitioning at node and rack levels.

The FI driver tells the FI engine to run a set of experiments that satisfy the written

policies. An experiment is an execution of the system under test with a particular failure

scenario (could be one or multiple failures). For example, the FI driver could tell the FI

engine to run one experiment with one specific failure (e.g., a crash before a specific write)

or two failures (e.g., two simultaneous crashes before two specific writes in two nodes).

15.3 FI Driver

Based on the abstractions explained earlier in Chapter 13, the FI driver provides support

for writing predicates that it uses to generate policies that express how to prune the failure

space. For convenience and brevity, whenever we say that a tester writes a policy, we mean

that the tester writes the predicate that is later used by the FI driver to generate the policy.

A policy is a function p : 2Q → 2Q, where Q is the set of all failure sequences as described

in Chapter 13. It takes a set of failure sequences, and returns a subset of the sequences to

be explored by the FI engine. Testers can use the failure and execution point abstractions,

and execution profiles provided by the FI engine in their predicates. There are two different

kinds of predicates that can be written to generate two different kinds of policies: filter and
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Algorithm 17 fpGen

1: Inputs: A filter predicate flt and a set of failure sequences FS

2: Output: A set of failure sequences FS P

3: FSP = {}
4: for fs in FS do
5: if flt(fs) then
6: FSP = FSP ∪ {fs}
7: end if
8: end for
9: return FSP

Algorithm 18 cpGen

1: Inputs: A cluster predicate cls and a set of failure sequences FS

2: Output: A set of failure sequences FS P

3: FSP = {}
4: E = FS/Rcls

5: for e in E do
6: fs = select an element from e randomly

7: FSP = FSP ∪ {fs}
8: end for
9: return FSP

cluster policies. PreFail can also compose the policies generated from different predicates

to obtain more complex policies.

15.3.1 Filter Policy

A filter policy uses a tester-written predicate flt: Q → Boolean. The predicate takes

a failure sequence fs as an argument and implements a condition that decides whether to

exercise fs or not. Algorithm 17 explains how a filter policy works. Given a predicate flt,

the function fpGen : (Q → Boolean) → (2Q → 2Q) (implemented in PreFail) generates a

filter policy out of it. The policy takes a set of failure sequences FS, applies the flt predicate

on each sequence fs, and retains fs in its result set FSP if the predicate holds for it.

15.3.2 Cluster Policy

A cluster policy uses a tester-implemented predicate cls: Q×Q → Boolean. The predicate

takes two failure sequences as arguments, and returns true if the tester considers them to
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λ fs . (

let ((ft 1, fp 1), ..., (ft n, fp n)) = fs in

let isCrash(ft ) = (ft == crash) in

let inSetup(fp ) = fp [‘stack’] has ‘setup’ in
∧

i∈{1,...,n}

isCrash(ft i) ∧ inSetup(fp i)

)

Figure 15.3: Setup-stage filter: Return true if all fits (ft1, fp1), . . . , (ftn, fpn) in fs corre-
spond to a crash within the setup function.

be similar (e.g., exercising either of them would result in the same test coverage), and false

otherwise. The predicate implicitly implements an equivalence relation Rcls = {(fs1, fs2) |

cls(fs1, fs2)}. Algorithm 18 shows how a cluster policy works. Given a cls predicate, the

function cpGen : (Q×Q → Boolean) → (2Q → 2Q) (implemented in PreFail) generates a

cluster policy out of it. The policy uses the predicate to partition its argument set of failure

sequences FS into disjoint subsets FS/Rcls. It then randomly selects one failure sequence fs

from each equivalence class. Thus, the tester implements her notion of equivalence of failure

sequences, and the policy uses the equivalence relation to select failure sequences such that

all equivalence classes in its argument set of failure sequences are covered.

15.3.3 Example Policies

We give brief examples of how one can use the filter and cluster policies. Suppose that

a tester is interested in testing the tolerance of the setup stage of a distributed systems

protocol against crashes. The tester can write the flt predicate in Figure 15.3. The filter

policy fpGen(flt) would retain a failure sequence fs only if every fit in fs corresponds to

a crash in the setup stage (execution of the setup function).

In failure testing, since we are concerned with testing the correctness of recovery paths of

a system, one way to reduce the number of failure sequences to test would be to cluster them

according to the recovery paths that they would lead to. Out of all failure sequences that

would lead to a particular recovery path, we can just choose and test one. To achieve this,

we can write the cluster predicate in Figure 15.4. If two failure sequences fs1 and fs2 have

the same last fit, and their prefixes that leave the last fit out (fs1P and fs2P respectively)
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λ fs 1, fs 2. (

let rec(fs ) = allFips(fs ) \ allFips(()) in

let eq(fs 1, fs 2) = (rec(fs 1) == rec(fs 2)) in

let (f11, ..., f1m) = fs 1 in

let fs 1P = (f11, ..., f1(m−1)) in

let (f21, ..., f2n) = fs 2 in

let fs 2P = (f21, ..., f2(n−1)) in

(eq(fs 1P , fs 2P ) ∧ (f1m == f2n) ∧ (m ≥ 2)
∧ (n ≥ 2))

)

Figure 15.4: Recovery path cluster: Cluster two failure sequences if their last fits are the
same and their prefixes (that exclude the last fits) result in the same recovery path.

result in the same recovery path, then we can consider fs1 and fs2 to be equivalent in terms

of the recovery paths that they would lead to since they involve injecting the same failure at

the same execution point in the same recovery path. PreFail’s test workflow is such that

when deciding whether to test a failure sequence (e.g., fs1), all of its prefixal sequences (e.g.,

fs1P ) would have already been tested, and thus we would have already seen the recovery

paths that they lead to. Figure 15.4 uses the function rec to characterize a recovery path.

It uses the set of all fips seen in the recovery path to characterize it. From all fips observed

during an execution in which a failure sequence is injected, we subtract out the fips that are

observed during normal program execution (that is, when no failure is injected) to obtain

the fips seen in the recovery path. More details about recovery path clustering can be found

in Section 15.5.4.

PreFail also enables composition of policies. For example, the policies that use the

predicates in Figures 15.3 and 15.4 (fpGen(flt) and cpGen(cls)) can be composed to first

filter out those sequences that have crashes in the setup stage, and then to cluster the filtered

sequences according to the recovery paths that they would lead to. Section 15.5 shows how

to write the policies in Python in PreFail, and also gives many other examples of policies.

15.4 Test Workflow Algorithm

Having outlined the major components of PreFail, this section presents the detailed algo-

rithm of PreFail’s test workflow (Algorithm 19). PreFail takes a system Sys to test, a
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Algorithm 19 PreFailTest Workflow
1: INPUT: System under test (Sys), List of flt and cls predicates (Preds),

Maximum number of failures per execution (N)

2: FS c = {()}
3: FSn = {}
4: for 0 ≤ i ≤ N do
5: for each failure sequence fs in FS c do
6: Execute Sys and inject fs during execution

7: Profile execution using fips observed during execution

8: for each fit f computed from a fip in postInjectionFips(fs) do
9: fs ′ = Append f to fs

10: FSn = FSn ∪ fs ′

11: end for
12: end for
13: FSn = Prune(Preds, FSn)
14: FS c = FSn

15: FSn = {}
16: end for

Algorithm 20 Prune(Preds, FS )
1: FSP = FS

2: for predicate pr in Preds do
3: if pr is a filter predicate then
4: p = fpGen(pr)

5: end if
6: if pr is a cluster predicate then
7: p = cpGen(pr)

8: end if
9: FSP = p(FSP )

10: end for
11: return FSP

list of tester-written predicates Preds, and the maximum number of failures N to inject in

an execution of the system. The testing process runs in N + 1 steps. At step i (0 ≤ i ≤ N),

the FI engine of PreFail executes the system Sys once for each failure sequence of length

i that it wants to test, and injects the failure sequence during the execution of the system.

FS c is the set of all failure sequences that should be tested in the current step, and FSn is

the set of failure sequences that should be tested in the next step. Initially FS c is set to a

singleton set with the empty failure sequence as the only element. Therefore, in step 0 the

FI engine executes Sys and injects an empty sequence of failures, i.e. it does not inject any
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failure. The FI engine observes the fips that are seen during execution, computes fits from

them, and adds singleton failure sequences with these fits to FSn. Therefore, FSn has fail-

ure sequences that the FI engine can exercise in the next step, i.e. in the i = 1 step. Before

PreFail proceeds to the next step, it prunes down the set FSn using the predicates written

by testers. The predicates in Preds are used to generate policies that are then applied to

FSn (Algorithm 20). The policy generated from the first predicate is applied first to FSn,

the second policy is then applied to the result of the first policy and so on. Note that the

order of predicates is important since the policies generated from them may not commute.

In step i = 1, FS c is set to the pruned down FSn from the previous step, and FSn is reset

to the empty set. For each failure sequence fs in FS c, the failure-injection tool executes Sys

and injects fs during execution. For each fit f that it computes from a fip observed after

fs has been injected (that is, a fip in postInjectionFips(fs)), it generates a new failure

sequence fs ′ by appending f to fs, and adds fs ′ to FSn. After Sys has been executed once for

each failure sequence in FS c, PreFail prunes down the set FSn with predicates and moves

to the next step. This process is repeated till the last step.

15.5 Crafting Pruning Policies

In this section, we present the pruning policies that we have written and their advan-

tages. More specifically, we present our integration of PreFail to Hadoop File System

(HDFS) [100], an underlying storage system for Hadoop MapReduce [4], and show the poli-

cies that we wrote for it. We begin with an introduction to HDFS and then present the

policies.

Overall, we make three major points in this section. First, by clearly separating the

failure-injection mechanism and policy and by providing useful abstractions, we can write

many different pruning policies clearly and concisely. Second, we show that policies can be

easily composed together to achieve different testing objectives. Finally, we show that some

policies can be reused for different target systems. We believe these advantages show the

power of PreFail. We chose Python as the language in which testers can write policies in

PreFail, though any other language could have also been chosen.
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Figure 15.5: HDFS Write Protocol

15.5.1 HDFS Primer

HDFS is a distributed file system that can scale to thousands of nodes. Here we describe the

HDFS write protocol in detail. Figure 15.5 shows a simplified illustration of the write I/Os

(both file system and network writes) occurring within the protocol. Each box represents an

I/O, and thus a failure-injection point. For ease of reading, we label each failure-injection

point with an alphabetical symbol plus the node ID. The protocol by default stores three

replicas in three nodes. The client forms a pipeline (Client-N1-N2-N3) with the three nodes

where replicas of a file will be stored. The client obtains these target nodes from the master

(communication between client and master is not shown in the figure). The write protocol is

divided mainly into two stages: the setup stage and the data transfer stage; we will later see

how the recovery for each stage is different. For simplicity, we have not shown many other

I/Os such as other acknowledgment and disk I/Os. We also have not shown the rack-aware

placement of replicas.

Our FI engine is able to emulate hardware failures on every I/O (every box in Figure 15.5).

As illustrated, there are 13 failure points that the FI engine interposes in this write protocol.

(Note that, in reality, the write protocol performs more than 40 I/Os). At every I/O, the

FI engine can inject a crash, a disk failure (if it’s a disk I/O), or a network failure (if it’s

a network I/O). The figure also depicts many possible ways in which multiple failures can

occur. For example, two crashes can happen simultaneously at failure-injection points B1
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1 def cls (fs1 , fs2):

2 rs1 = abstractOut(fs1 , ‘node’)

3 rs2 = abstractOut(fs2 , ‘node’)

4 return (rs1 == rs2)

Figure 15.6: Ignore nodes cluster: Return true if two failure sequences have the same failures
with the same contexts not considering the nodes in which they occur.

and B2, or a disk failure at D1 and a network failure at E3, and many more. Interested

readers can learn more about HDFS from [100, 111] and from our extended technical report

(which depicts the write protocol in more detail) [64].

15.5.2 Pruning by Failing a Component Subset

In distributed systems like HDFS, it is common to have multiple nodes participating in a

distributed protocol. As mentioned earlier, let’s say we have N participating nodes, and the

developer wants to inject two failures on two nodes. Then there are
(

N

2

)

failure sequences

that one could inject. Worse, on every node (as depicted in Figure 15.5), there could be

many possible points to exercise the failure on that node.

To reduce the number of failure sequences to test, a developer might just wish to inject

failures at all possible failure-injection points in any two nodes. She can write a cluster policy

that uses the function in Figure 15.6 to cluster failure sequences that have the same context

when the node is not considered as part of the context. With this policy, the developer can

direct the FI engine to exercise failure sequences with two failures such that if the FI engine

has already explored failures on a pair of nodes then it should not explore the same failures

on a different pair of nodes. The function abstractOut in the figure removes the mappings

for nodes from the fips in its argument failure sequence. Using Figure 15.5 as an example,

a failure sequence with simultaneous crashes at D1 and D2 is equivalent to another with

crashes at D2 and D3.

We also want to emphasize that this type of pruning policy could be used for other

systems. Consider a RAID system [88] with N disks that a tester wishes to test by injecting

failures at any two of its N disks. To do this, we definitely need a FI engine that works for

RAID systems, but we can re-use much of the policy that we wrote for distributed systems
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1 def flt (fs):

2 last = FIP (fs [ len(fs) - 1 ])

3 return not explored (last , ‘loc’)

Figure 15.7: New source location filter: Return true if the source location of the last fip

has not been explored

1 def cls (fs1 , fs2):

2 last1 = FIP (fs1[len(fs1) - 1])

3 last2 = FIP (fs2[len(fs2) - 1])

4 return (last1[‘loc’] == last2[‘loc’])

Figure 15.8: Source location cluster: Return true if the fips in the last fits have the same
source location.

for RAID systems. The only difference would be in the keys in the fips whose mappings we

want to remove (i.e., for distributed systems we removed the mappings for the ‘node’ key in

Figure 15.6, for RAID systems we remove the mappings for ‘disk’ key).

15.5.3 Pruning via Code-Coverage Objectives

Developers can achieve high-level testing objectives using policies. One common objective in

the world of testing is to have some notion of “high coverage”. In the case of failure testing,

we can write policies that achieve different types of coverage. For example, a developer might

want to achieve a high coverage of source locations of I/O calls where failures can happen.

To achieve high code-coverage with as few experiments as possible, the tester can simply

compose the policies that use the flt function shown in Figure 15.7 and the cls function

shown in Figure 15.8. The filter policy explores failures at previously unexplored source loca-

tions by filtering out a failure sequence if the fip in its latest fit (last) has an unexplored

source location. The function FIP in Figure 15.7 returns the fip in the argument fit. The

function explored returns true if a failure has already been injected at the source location

in the last fip in a previous failure-injection experiment. For brevity, we do not show the

source code of these functions. The cls function in Figure 15.8 clusters failure sequences

that have the same source location in their last fits. Thus, after the filter policy has filtered

out failure sequences that have unexplored source locations, the cluster policy would cluster
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fit Recovery Path (Fig. 15.9) SL SL+N

A1c {ABCDE}×{234} 2 2

B2c {ABCDE}×{134} 2 △
C1c {FGI}×{23}, {CDE}×{23} ■ ■

C2c {FGJ}×{13}, {CDE}×{13} ● ●

D1c {FG}×{23}, {CDE}×{23} # #

E2c {FG}×{13}, {CDE}×{13} # ▽

Table 15.1: HDFS Write Recovery

the failure sequences with the same unexplored source location into one group. With these

policies, PreFail would exercise a failure sequence for each unexplored source location.

15.5.4 Pruning via Recovery-Coverage Objectives

In failure testing, since we are concerned with testing the correctness of recovery paths of

a system, another useful testing goal is to rapidly explore failures that lead to different

recovery paths. To do this, a tester can write a cluster policy that clusters failure sequences

leading to the same recovery path into a single class. PreFail can then use this policy to

exercise a failure sequence from each cluster, and thus exercise a different recovery path with

each failure sequence. Below, we first describe the HDFS write recovery protocol, and then

explain the whole process of recovery-coverage based pruning in two steps: characterizing

recovery path, and clustering failure sequences based on the recovery characterization.

HDFS Write Recovery

As mentioned before, the HDFS write protocol is divided mainly into two stages: the setup

stage and the data transfer stage. Table 15.1 shows in detail the recovery I/Os for the two

stages, that is, the I/Os that occur during execution while recovering from an injected failure

(or failure sequence). The first column shows the fits. A1c is the fit for crash at the I/O

A1. For simplicity, we do not distinguish between an I/O and the failure-injection point

that corresponds to the execution of the I/O. The second column shows the recovery paths

returned by the getRecoveryPath function (Figure 15.9) for every fit shown in the first

column1. For brevity, we use ×; {AB}×{12} represents the I/Os A1, A2, B1, and B2. The
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third and fourth columns represent two ways of characterizing the recovery path; the same

shape represents the same class of recovery path. For example, the third column represents

the characterization shown in Figure 15.10 which uses source location (SL) to characterize

recovery. The fourth column uses source location and node ID (SL+N) to characterize

recovery. We will gradually discuss the contents of the table in the following sections.

The recovery for each stage in the HDFS write protocol is different. In the setup stage,

if a node crashes, the recovery protocol will repeat the whole write process again with a

new pipeline. For example, in the first row of Table 15.1, after N1 crashes at I/O A1 (A1c),

the protocol executes the entire set of I/Os again (ABCDE) in the new pipeline (N2-N3-N4).

However, if a node crashes in the second stage, the recovery protocol will only repeat the

second stage with some extra recovery I/Os on the surviving datanodes. For example, in

the fifth row of Table 15.1, after N1 crashes at D1 (D1c), the protocol first performs some

synchronization I/Os (FG), and then repeats the second stage I/Os (CDE) on the surviving

nodes (N2 and N3).

Characterizing Recovery Path

1 def getRecoveryPath (fs):

2 a = allFips(fs)

3 a0 = allFips([])

4 rPath = a - a0

5 return rPath

Figure 15.9: Obtaining Recovery Path FIPs

To write a recovery clustering policy, a tester has to first decide how to characterize the

recovery path taken by a system. One way to characterize would be to use the set of fips

observed in the recovery path. Figure 15.9 returns the “difference” of the fips observed in

the execution in which a failure sequence fs is injected and the fips in the execution in

1The reader might wonder why the I/Os A, B, C, D, and E appear again in the recovery paths even
though the getRecoveryPath function returns the “diff” between the I/Os in the execution with failures
and in the normal execution path, and thus should exclude those I/Os. The answer is that these I/Os
are executed in the recovery path too, but with different contexts (e.g. different message content, different
generation number) that we incorporate in the fip. For simplicity, we do not discuss these detailed contexts
here.
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1 def eqvBySrcLoc (fs1 , fs2):

2 r1 = getRecoveryPath (fs1)

3 r2 = getRecoveryPath (fs2)

4 c1 = abstractIn(r1 , ‘loc’)

5 c2 = abstractIn(r2 , ‘loc’)

6 return c1 == c2

Figure 15.10: Considering only source locations to judge equivalence of recovery paths

which no failure is injected. The difference can be thought of as the fips that are observed

in the “extra” execution that results or the recovery path that is taken when the failure

sequence is injected. Line 2 in Figure 15.9 uses the function allFips (Chapter 13) to get

the set of all fips, a, observed during the execution in which fs is injected. Line 3 obtains

the set of fips observed when no failure is injected (represented by “[]”). Line 4 performs

the “diff” of the two sets to obtain the fips in the recovery path taken when fs is injected.

A tester can use the set of fips observed in the recovery path to characterize the recovery

path. Thus, two failure sequences that result in the same set of fips in the recovery path are

considered to be equivalent. Instead of using all of the context in the fips, the tester might

abstract out the fips and use only part of the context in them to characterize a recovery

path. For example, the tester might want to use only the source locations of fips. Thus,

she might consider two recovery paths to be the same if the I/Os in them occur at the same

set of source locations. The function in Figure 15.10 considers this relaxed characterization

of recovery paths. It returns true if two failure sequences result in the system executing

I/Os at the same set of source locations during recovery. The function abstractIn retains

only the mappings for the source locations (‘loc’) in the fips in its argument set. Thus, in

PreFail, a tester has the power and flexibility to decide how to characterize and cluster

recovery paths.

If we use the equivalence function in Figure 15.10 to cluster failure sequences that result

in the same recovery path into the same class, then we would obtain four different equivalence

classes for the HDFS write protocol. The third column in Figure 15.1 shows the four classes:

2, ■, ●, and # which represent the recovery paths {ABCDE}, {CDEF}, {CDEG}, and

{CDE} respectively. Note that the recovery paths of A1c and B2c are considered to be

equivalent (2) as they have I/Os at the same set of source locations {ABCDE} even if the
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Figure 15.11: Recovery Classes of HDFS Write Protocol

I/Os are executed in different nodes. However, if the tester decides to characterize recovery

paths using both source location and node ID, then the recovery paths of A1c and B2c would

be considered to be different (2 and △), as shown in the last column in Table 15.1.

Figure 15.11 provides more details of how different I/Os shown in Figure 15.5 are grouped

into different recovery classes. The symbols (e.g., A1, A2) represent I/Os described in

Figure 15.5. A shape (e.g., 2) surrounding an I/O #X represents the equivalence class

of the I/O with regard to the recovery path that is taken by HDFS when a crash occurs

at that I/O. Different shapes represent different equivalence classes. The left figure shows

4 recovery classes that result from the use of only source location to distinguish between

different recovery paths. Even by just using source location, PreFail is able to distinguish

between the two main recovery classes in the protocol (2 and #). Furthermore, PreFail

also finds two unique cases of failures that result in two more recovery classes (■ and ●).

In the first one (■), a crash at C1 leaves the surviving nodes (N2 and N3) with zero-length

blocks, and thus the recovery protocol executes I/Os at a different source location (labeled

with I in Table 15.1). In the second one (●), a crash at C2 leaves the surviving nodes (N1

and N3) with different block sizes (the first node has received the bytes, but not the last

node), and thus I/Os at yet another source location (labeled as J) are executed.

Figure 15.11b shows the 8 recovery classes that result when node ID is used in addition

to the source location to characterize recovery paths. If the tester uses all of the context

present in a fip, the I/Os in the write protocol will be grouped into 10 recovery classes.

In general, the more context information in fips considered, the more we can distinguish

between different recovery paths, and hence the more the number of recovery classes of I/Os.
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1 def cls (fs1 , fs2):

2 last1 = fs1 [ len(fs1) - 1 ]

3 last2 = fs2 [ len(fs2) - 1 ]

4 prefix1 = fs1 [ 0 : len(fs1) - 1 ]

5 prefix2 = fs2 [ 0 : len(fs2) - 1 ]

6 isEqv = eqvBySrcLoc (prefix1 , prefix2)

7 return isEqv and (last1 == last2)

Figure 15.12: Equivalent-recovery clustering: Cluster two failure sequences if their prefixes
result in the same recovery path and their last fits are the same

Lesser context leads to fewer recovery classes and thus fewer failure-injection experiments,

but might miss some corner-case bugs.

Clustering Failure Sequences

After specifying the characterization of a recovery path, the tester can simply write a cluster

policy that uses the cls function in Figure 15.12. Given this policy, if there are two sequences,

(prefix1, last) and (prefix2, last), such that prefix1 and prefix2 result in the same

recovery path, then PreFail will exercise only one of the two sequences. The cls function

uses eqvBySrcLoc to compute the equivalence of the recovery paths of the prefixes.

To illustrate the result of this policy, let’s consider the example in Table 15.1. The

fit Fc (crash at I/O F) can be exercised after any of the crashes at {DE}×{123} (i.e., 6

fits). Without the specified equivalent-recovery clustering, PreFail will run 6 experiments

(D1cFc.. E3cFc). But with this policy, PreFail will group all of the 6 failure sequences

into a single class (D1c/../E1c + Fc) as all the prefixes have the same recovery class (#, as

shown in Figure 15.11), and thus will run only 1 experiment to exercise any of the 6 failure

sequences. If the tester changes the clustering function such that it uses both source location

and node ID to characterize a recovery path (Figure 15.11b), then PreFail will run three

experiments as the prefixes now fall into three different recovery classes (#, ▽, and ▼).

15.5.5 Pruning via Optimizations

In general, failures can be injected before and/or after every read and write I/O, system call

or library call. For some types of failures like crashes or disk failures, there are optimizations
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1 def flt (fs):

2 for f in fs:

3 fp = FIP(f)

4 isCrash = (fp[‘failure’] == ‘crash’)

5 isWrite = (fp[‘ioType ’] == ‘write’)

6 isBefore = (fp[‘place’] == ‘before ’)

7 if isCrash and

(not (isWrite and isBefore)):

8 return False

9 return True

Figure 15.13: Generic crash optimization: The function accepts a failure sequence if all
crashes in the sequence are injected before write I/Os

that can be performed to eliminate unnecessary failure-injection experiments. In the follow-

ing sections, we present policies that implement optimizations for crashes and disk failures

in distributed systems. By reducing the number of individual failure-injection tasks, these

optimizations also help in reducing the number of multiple-failure sequences.

Crashes

In a distributed system, read I/Os performed by a node affect only the local state of the

node, while write I/Os potentially affect the states and execution of other nodes. Therefore,

we do not need to explore crashing of nodes around read I/Os. We can just explore crashing

of nodes before write I/Os. Figure 15.13 shows a flt function that can be used to implement

this optimization.

The second optimization that we can do for crashes is that we do not crash a node before

the node performs a network write I/O that sends a message to an already crashed node.

This is because crashing a node before a network write I/O can only affect the node to which

the message is being sent, but the receiver node is itself dead in this case. The flt function

that implements this optimization is shown in Figure 15.14. The function accepts a failure

sequence if for each crash at a network write to a receiver node rNode in the sequence, there

is no preceding crash in the sequence that occurs in the node rNode. The function uses the

function nodeAlreadyCrashed (also implemented by the tester but not shown) that takes a

failure sequence and a node as arguments, and returns true if there is a crash failure in the

sequence that occurs in the given node.
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1 def flt (fs):

2 for i in range(len(fs)):

3 fp = FIP(fs[i])

4 isNet = (fp[‘ioTarget’] == ‘net’)

5 isWrite = (fp[‘ioType ’] == ‘write’)

6 isCrash = (fp[‘failure’] == ‘crash’)

7 rNode = fp[‘receiver’]

8 pfx = fs[0:i]

9 if isNet and isWrite and isCrash and

10 nodeAlreadyCrashed(pfx , rNode):

11 return False

12 return True

Figure 15.14: Crash optimization for network writes

Disk Failures

For disk failures (permanent and transient), we inject failures before every write I/O call,

but not before every read I/O call. Consider two adjacent Java read I/Os from the same

input file (e.g., f.readInt() and f.readLong()). It is unlikely that the second call throws

an I/O exception, but not the first one. This is because the file is typically already buffered

by the OS. Thus, if there is a disk failure, it is more likely the case that an exception is

already thrown by the first call. Thus, we can optimize and only inject read disk failures

on the first read of every file (i.e., we assume that files are always buffered after the first

read). The subsequent reads to the file will naturally fail. The policy for this optimization

is similar to the one for network failure optimization (Figure 15.15) as explained in the next

section.

Network Failures

For network failures, we can perform an optimization similar to disk failures. Since there is

no notion of file in network I/Os, we keep information about the latest network read that

a thread of a node performs. If a particular thread performs a read call that has the same

sender as the previous call, then we assume that it is a subsequent read on the same network

message from the same sender to this thread (potentially buffered by the OS), and thus we

do not explicitly inject a network failure on this subsequent read. In addition, we clear the

read history if the node performs a network write, so that we can inject network failures
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1 def flt (fs):

2 for i in range(len(fs)):

3 fp = FIP(fs[i])

4 isNetFail = (fp[‘failure’] == ‘netfail’)

5 isRead = (fp[‘ioType ’] == ‘read’)

6 sender = fp[‘sender ’]

7 node = fp[‘node’]

8 thread = fp[‘thread ’]

9 time = fp[‘time’]

10 pfx = fs[0:i]

11 allFS = allFitSeqs()

12 if isNetFail and isRead and

13 (not first(pfx , node , thread, time , sender, allFS)):

14 return False

15 return True

Figure 15.15: Network failure optimization

when the node performs future reads on different network messages. Also, we do not inject

a network failure if one of the nodes participating in the message is already dead. The flt

function that can be used to implement the optimization for network failures is shown in

Figure 15.15. The function checks for each network failure at a read I/O in a failure sequence

to see if it is the first read of data in its thread that is sent by its sender to its node. It uses

the function first (implemented by the tester, but not shown) to determine if a network

read I/O is the first read of data in the read’s thread that is sent by the data’s sender to the

receiver node. The key time in a fip records the time when the fip was observed during

execution in the FI engine. This key helps in determining the temporal position of a read in

the list of all failure sequences allFS passed on by the FI engine.

Disk Corruption

In the case of disk corruption, after data gets corrupted, all reads of the data give unexpected

values for the data. It is possible but very unlikely that the first read of the data gives a

non-corrupt value and the second read in the near future gives a corrupt one. Thus, we can

perform an optimization similar to the disk-failure case.
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15.5.6 Failing Probabilistically

Finally, a tester can inject multiple failures if they satisfy some probabilistic criteria. We

have not explored this strategy in great extent because we need some real-world failure

statistics to perform real evaluation. However, we believe that specifying this type of policy

in PreFail will be straightforward. For example, the tester can write a policy as simple as:

return true if prob(fs) > 0.1. That is, inject a failure sequence fs only if the probability of

the failures happening together is larger than 0.1. The tester needs to implement the prob

function that ideally uses some real-world failure statistic (e.g., a statistic that shows the

probability distribution of two machine crashes happening at the same time).

In summary, the programmable policy framework allows testers to write various failure

exploration policies in order to achieve different testing and optimization objectives. In ad-

dition, as different systems and workloads employ different recovery strategies, we believe

this programmability is valuable in terms of systematically exploring failures that are ap-

propriate for each strategy. In the next two chapters, we explain how we have implemented

our programmable testing tools (PreFail and PCheck), and also evaluate the effectiveness

and usefulness of policies used in the tools for testing real-world distributed systems.
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Chapter 16

Implementation

We explain how we have implemented our programmable testing tools. Both PCheck

(Chapter 14) and PreFail (Chapter 15) instrument the distributed system under consider-

ation and add hooks to it so that they can observe the execution of relevant operations or

events (e.g., message receive events and system calls). Using the instrumentation hook that

is inserted into the system to observe a relevant event, the testing tool can implement what

it needs to do when it observes that event. For example, PCheck would block the execution

of the relevant event, and would let it proceed at a later time to enforce a particular message

ordering that it wants to explore, and PreFail would execute code to emulate a failure (e.g.,

throwing of an exception and network failure) during (or before or after) the execution of the

relevant event. The hook gathers appropriate context information (e.g., source location, call

stack, network message content etc.) related to the relevant event, and passes it on to the

tool so that the tool can use the information to implement its action. We first describe how

we instrument the system under test, and then describe the policy frameworks of PCheck

and PreFail in more detail. Our tools have been built for systems written in Java.

16.1 The instrumentor

We instrument the system under test to add hooks to observe relevant events and gather

context information regarding those events. The MC Facilitator in PCheck and the FI

engine in PreFail are responsible for instrumenting the system and observing relevant

events. In both the tools, we use AspectJ [3] to instrument the system. We weave the
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Instrumented system

Centralized controller

Figure 16.1: Architecture of an instrumented system

Java bytecode of the system with aspects that track the execution of relevant events and

collect context for those events. AspectJ allows us to specify execution points of interest like

execution of particular method calls or instantiation of particular objects. We can add an

aspect for an execution point of interest so that when that point is reached during execution,

the aspect can gather the context information at that point and send it to the testing tool.

For example, the aspect below adds a hook to observe the read from an input stream.

Object around (): (call (* InputStream +. read *(..))){ ... }

This aspect would be executed whenever an input stream is going to be read. The aspect

can send the relevant context information associated with the read (e.g., the node where

the read occurs, the call stack when the read occurs etc.) to the testing tool that can then

perform a suitable action for the read call. For example, the tool can block the read (as in

PCheck), or it can inject an exception during read (as in PreFail).

Figure 16.1 shows how an instrumented system works. Whenever an inserted hook is

executed in a node in the system, the hook gathers the relevant context information and
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passes it on using RPC to a centralized controller (the MC Facilitator in Chapter 14 or the FI

engine in Chapter 15) which is another node or process. The controller, which is part of the

testing tool, can then decide to perform an appropriate action in response to the event whose

context information was sent by the instrumented node. The node waits for the controller to

finish its action before proceeding with its execution. The advantage of having a centralized

controller is that the controller has a global view of the events in the entire system, and

thus can take better decisions about its actions. For example, if the tester wants to reorder

messages across different nodes, the centralized controller can block message receive events

in different nodes and unblock them in the order in which the tester wants them to execute.

If we do not have a centralized controller, then we cannot know about the messages being

received at other nodes, and hence, we cannot force an ordering over messages at different

nodes. Similarly, if the tester wants to inject two failures during execution, then without a

centralized controller, the testing tool would not be able to track the number of failures that

have already been injected across all nodes.

16.1.1 Instrumentation in PCheck

In PCheck, since we are interested in testing the correctness of a system under different

message orders, we instrument message receive statements so that we can control the order

in which the network messages are received and processed. We instrument those statements

that can receive data from the network (e.g., reading from socket input streams) so that the

MC Facilitator can block the execution of those statements and unblock them in a manner

that imposes an ordering on them. To block a message receive event, the Facilitator executes

a wait on a monitor. It waits on that monitor until the MC Engine directs it to unblock that

event. To unblock the event, the Facilitator notifies the monitor on which it was waiting.

In addition to instrumenting statements that receive network messages, we also need to

instrument the statements that assemble the packets in those messages so that we can expose

the contents of the packets to the testers who can use them in their policies. Instrumenting

the statements that assemble message packets requires identifying those statements which

can differ from one system to another. We currently require the tester to manually identify

the statements and extend the instrumentation framework to track those statements. Even
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if it might look like a big challenge to identify and instrument packet assembling statements,

in our experience, these statements are concentrated across a few functions and not scattered

around. We could easily port PCheck to three different systems (ZooKeeper [61], Cassan-

dra [75], and Hadoop File System [100]) by instrumenting only 25, 14, and 24 statements

respectively to expose packet contents to policy writers.

We give an example of the statements that we have to instrument to expose the contents

of the network messages to testers. In the leader election protocol in ZooKeeper, we have

to instrument the following statement to obtain the different fields of the network message

that was received at a socket. The message is being put into the receive queue (recvQueue)

here so that it can be processed later.

recvQueue .put(new Message (message .duplicate (), sid));

The reason we have to instrument this statement in addition to the low-level socket

communication is that we do not know how to interpret the data read from a socket. The

data read is usually just a stream of bytes, and unless it gets reconstructed into a meaningful

object, it is hard to understand the data. In the above function call, the data read off the

socket has been reconstructed into a Message object, and is being passed as an argument.

We can access the argument, and read its fields to understand the network data that we had

earlier read from the socket.

16.1.2 Instrumentation in PreFail

PreFail instruments system or library calls for performing disk or network I/Os [50] (e.g.,

file reads and writes, reads from socket input streams, and writes to socket output streams)

since a failure in the hardware would manifest as a failure during an I/O. For example, if the

network link between two nodes fails, all writes to and reads from that link would fail and

throw exceptions. Thus, we can inject (that is, emulate) a network link failure by throwing

exceptions at system or library calls that write from and read to that link. We can similarly

inject other kinds of failures by failing the relevant I/Os in the right manner. For example,

we can inject a disk failure by throwing exceptions at reads from and writes to the disk,
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or we can inject a node failure by terminating the process running on that node. Some of

these failures can be transient or persistent. For example, a network link might be down for

sometime before coming back up, or a disk might have a temporary failure. We can inject

both transient and persistent failures. To inject a transient failure, we throw an exception

once for a system or library call, and to inject a persistent failure, we throw an exception

whenever the call is executed.

Unlike PCheck, we do not require very system specific information to implement the

instrumentation in PreFail. This is because the kinds of failures that we can inject at

a system or library call are independent of how the call occurs in a system. Thus, the

instrumentation to inject the failures at the system or the library call would not vary from

system to system.

16.2 The policy framework

Programmable testing tools provide a framework to testers in which the testers can easily

express their insights and knowledge to guide the testing process. For example, the MC

Driver in PCheck provides a framework with network message related abstractions that

the testers can use to express which messages they want to reorder and which they do

not want to reorder. Similarly, the FI driver provides support for expressing the failures

and the failure combinations that the testers want to test. To design a policy framework,

one has to decide which abstractions to provide to the testers so that they can easily and

quickly express their intuitions and intentions in the form of testing policies. We describe

the abstractions that we provide in our programmable tools, MC and PreFail, below. The

policy frameworks for both the tools are implemented in Python.

16.2.1 Abstractions in PCheck

We provide abstractions for network messages in PCheck that can be used by testers in their

policies. An abstraction for a network message is a Python object whose fields represent the

context and contents of the message. For example, the field named ‘sender’ is the ID of the

node that sent the message, ‘receiver’ is the ID of the node that received the message, ‘stack’



CHAPTER 16. IMPLEMENTATION 152

is the call stack at the sender node when the message was sent, ‘vote’ is the ID of the node for

which the sender node is voting in the leader election protocol, and ‘type’ is the type of the

message (‘request’, ‘ack’, ‘proposal’, etc.). Testers can access the different fields of messages,

and compare them against each other in their policies. For instance, a tester might compare

the ‘vote’ fields of two messages to determine if the received messages are votes for different

nodes or not. The abstractions provided by the MC Driver to the testers are the same as the

abstractions provided by the MC Facilitator to the MC Engine, but are implemented in a

high-level scripting language (Python in our case) to make it easier for testers to write their

policies. Testers implement a policy by implementing a specific function (the dep function)

that takes two messages and a sequence of messages as arguments and returns a boolean. The

implementation of the function should decide if the two given messages should be considered

to be dependent (and hence should be reordered) in the system state that results from the

processing of the given sequence of messages.

16.2.2 Abstractions in PreFail

In PreFail, we provide abstractions for failures that can be injected during execution. An

abstraction for a failure is again a Python object whose fields represent the type of the

failure and the context associated with the execution point where the failure can be injected.

For example, the field ‘type’ represents the type of the failure that can be injected, ‘node’

represents the ID of the node where the failure can be injected, ‘stack’ represents the call

stack at the node where the failure can be injected, and ‘disk’ represents the ID of the

disk that might fail if the failure is injected. We also provide abstractions for execution

points where failures can be injected, that is, failure-injection points (Chapter 13). These

abstractions are similar to the failure abstractions. They just leave out the fields that specify

failure-related information (e.g., the ‘type’ field).

Testers can access the different fields of failure abstractions to decide if they want to

exercise the failures or not. To implement a policy, the tester can implement the flt function

or the cls function that are two specific functions recognized by the policy framework. The

flt function takes a sequence of failure abstractions as argument and returns a boolean.

The implementation of the flt function by the tester should decide whether to exercise the
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failure sequence represented by the argument. The tester can use the different fields of the

failure abstractions in the given sequence to decide whether to exercise the failure sequence or

not. For example, if the tester wants to inject only crashes, then she can implement the flt

function to return true only when the ‘type’ of all the failures in the sequence is ‘crash’. The

cls function takes two sequences of failure abstractions as arguments and returns a boolean.

The implementation of the cls function should decide if the given failure sequences should

be considered to be equivalent or not. Again, the tester can use the fields of the failure

abstractions in her implementation of the cls function.

The policy framework also provides a library of functions that help the tester to access the

profiles of executions that have already been executed. For example, the allFips function

takes a sequence of failure abstractions as argument and returns the set of abstractions of

failure-injection points that were observed in the execution in which the argument failure

sequence was injected. Similarly, we also have the postInjectionFips function that given a

failure sequence returns the set of failure-injection points that were observed after the given

sequence was injected in a previous system execution.

16.3 Tool complexity

In PCheck, the MC Engine is written in Java, and has 9.5K LOC. The instrumentation

code in MC Facilitator varies from system to system; it is 1892, 1314, and 649, respectively

for ZooKeeper, Cassandra, and HDFS. The FI engine in PreFail is based on the failure-

injection tool in [50], which is written in 6000 lines of Java code. We added around 160 lines

of code to this old tool so that it passes on appropriate failure and execution abstractions to

the FI driver. The FI driver is implemented in 1266 lines of Python code. The source code

for PCheck can be found at https://github.com/pallavij/PCheck, and the source code

for PreFail is released at http://cloudfail.cs.berkeley.edu/download.html.

In the next chapter, we evaluate our tools, PCheck and PreFail, on popular real-world

distributed systems.
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Chapter 17

Evaluation

In this chapter, we provide detailed evaluation of various aspects of our programmable tools,

PCheck and PreFail. We have implemented the tools to test distributed systems written

in Java. We experimented with three different systems: ZooKeeper [61], a system that

provides distributed synchronization services like leader election among other services that

can be used by other distributed systems; Cassandra [75], a distributed database, and Hadoop

File System [100] (HDFS), a distributed file system. For all of the systems, we wrote different

workloads to exercise different protocols within the systems. We explain the workloads in

subsequent sections. We next discuss how the policies that we wrote for different systems

and workloads reduced the state space (of message orderings or failure sequences) that we

had to explore yet helped us to achieve our testing objectives.

17.1 Effectiveness of Policies

In this section, we show how policies are effective in achieving testing objectives while re-

ducing the state space to explore.

17.1.1 Policies in PCheck

For testing event (network message in our work) orderings, our testing objective was branch

coverage. Thus, we want to compare the branch coverage that we obtain using policies with
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Workload # m Policy # execs Speed-up Branch cov.

ZK-LE1 60

Policy 1 65 6.7 77.97%
Policy 2 100 4.36 76.27%
Random 500 - 77.97%
Normal 500 - 69.49%

ZK-LE2 29

Policy 1 27 3.56 44.9%
Policy 2 52 1.85 44.9%
Random 500 - 44.9%
Normal 500 - 43.9%

ZK-CW 12
Policy 1 4 5.75 43.7%
Random 500 - 43.7%
Normal 500 - 43.7%

CASS-GOSS 21
Policy 1 6 28.6 45.4%
Random 500 - 45.4%
Normal 500 - 45.4%

CASS-CI 4
Policy1 1 2 25.7%

Random 500 - 25.7%
Normal 500 - 26.5%

HDFS-WR 27
Policy 1 2 2 25.93%
Random 500 - 25.93%
Normal 500 - 18.5%

HDFS-APP 27
Policy 1 2 2.5 27.1%
Random 500 - 27.1%
Normal 500 - 19.75%

Table 17.1: Branch coverage with policies. Here, N = 1, that is, we allow reordering of at
most one pair of events in each execution

the coverage that we obtain with state-of-the-art testing approaches. The workloads that

we wrote for PCheck include workloads that exercise two different leader election protocols

within ZooKeeper, the client write protocol after a leader has been elected in ZooKeeper,

the gossiper protocol in Cassandra that helps nodes in the system to keep track of other

alive nodes, the insert protocol in Cassandra to insert data into the database, and the file

write and append protocols in the Hadoop File System. For Hadoop File System, we used

the version provided by Cloudera.

Table 17.1 shows how branch coverage varies with the system executions that we explore

with different policies. The first column is the name of the system and the workload used.

The first three workloads are for ZooKeeper (ZK): LE1 and LE2 are two versions of the

leader election protocol and CW is the client write protocol. The next two workloads are for
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Cassandra (CASS): the first one is the gossiper protocol and the second one is the database

insert protocol. The last two workloads are the write and the append protocols for HDFS.

All the workloads were run on systems consisting of three nodes. The second column is

the average number of messages observed when a workload is executed. Note that not

all messages are “concurrent”, that is, a message cannot be ordered with all of the other

messages.

The third column in Table 17.1 provides the various policies that we wrote for the work-

loads. We have presented some of the policies in Chapter 14. The Random policy chooses

random event orderings without paying any attention to the orderings that were explored

in previous executions. At each stable state during execution, the policy randomly chooses

one of the blocked events and releases it. Thus, the Random policy corresponds to random

testing which is the state-of-the-art when it comes to testing complex large-scale systems.

The Normal policy executes the system as it would without interfering with how events or-

der during execution, that is, the policy lets the execution resolve non-determinism in event

ordering on its own. Testers often test their systems by simply executing them repeatedly

and hoping that different executions would result in different event orderings. We wrote

specific policies (Policy *) for each workload based on our understanding of the workload

and the system. The fourth column is the number of system executions that we explore with

each policy, and the fifth column is the speed-up in testing that we achieve with a policy.

Speed-up here is defined as the number of executions we would explore with model checking

with partial-order reduction divided by the number of executions we explore with a policy.

The last column provides the branch coverage achieved with a set of executions.

Table 17.1 shows that in most of the workloads, we quickly reached the branch coverage

obtained by the Normal policy and sometimes even did better (e.g., ZK-LE1 and HDFS-

WR) in just a few executions with the specific policies written for the workloads. We

also did as well as random testing, and in fact, we obtained the same coverage with fewer

executions using policies than using random testing as shown later (Figures 17.1 and 17.2).

The coverage with random testing can vary from one set of executions to the other, but we

can more reliably obtain the same level of coverage with a policy each time. For CASS-

CI, HDFS-WR, and HDFS-APP, the messaging that we observed was mostly synchronous,

that is, messages would be sent only after previous messages have been processed, and thus,
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Figure 17.2: Policies for ZK-LE2

there were few concurrent messages during execution. As a result, the number of orderings

of relevant concurrent messages that we could perform was low for each of those workloads.

If we have a better knowledge of the systems and workloads, then we can instrument and

add more relevant context to the messages and can prune down the execution space more

precisely to obtain higher speed-ups.

Figures 17.1 and 17.2 illustrate how branch coverage increases with the number of ex-
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Workload Policy # executions Speed-up Branch cov.
ZK-LE1 Policy 1 121 177.3 77.97%
ZK-LE1 Policy 2 746 28.76 77.97%
ZK-LE2 Policy 1 32 25 44.9%
ZK-LE2 Policy 2 63 12.7 44.9%
ZK-CW Policy 1 6 17.5 43.7%
CASS-GOSS Policy 1 6 61 45.4%
CASS-CI Policy 1 1 2 25.7%
HDFS-WR Policy 1 2 3 25.93%
HDFS-APP Policy 1 2 3 27.1%

Table 17.2: Effect of increasing N. Here, N = 2, that is, we allow reordering of at most two
pairs of events in each execution

ecutions explored. Figure 17.1 shows how the two specific policies for the leader election

workload ZK-LE1 quickly reach (and even surpass) the coverage attained by random and

normal testing. This shows that we can achieve our testing objectives with fewer executions

with appropriate policies. Figure 17.2 shows the same trend for policies for the other leader

election protocol ZK-LE2.

Table 17.2 illustrates how the number of explored executions and branch coverage are

affected by increasing N which is the tester-provided parameter to restrict the number of

reorderings. When we increase N to 2, the number of executions increases, but the speed-up

is also much higher (25X or more for about half of the policies). The branch coverage is the

same or more as compared to N = 1 for all the policies.

17.1.2 Policies in PreFail

For failure testing, we wrote four different workloads for the Hadoop File System to test

its file read, write, and append protocols, and its recovery protocol using edit logs, two

workloads for Cassandra to test its database insert protocol and recovery protocol using logs,

and one protocol for ZooKeeper to test one of its leader election protocols. We first present

the evaluation of the code coverage (Section 15.5.3) and recovery coverage (Section 15.5.4)

policies, and then the optimization-based policies (Section 15.5.5).
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Coverage-Based Policies

We show the benefits of using different coverage-based failure exploration policies to prune

down the failure space in different ways. Figure 17.3 shows the different number of experi-

ments that PreFail runs for different policies. An experiment takes between 5 to 9 seconds

to run. Here, we inject only crashes so that the numbers are easy to compare. The figure only

shows numbers for multiple-failure experiments because injecting multiple failures is where

the major bottleneck is. The y-axis shows the number of failure-injection experiments for a

given policy and workload. The x-axis shows the workloads: the write (Wrt), append (App),

and log recovery (LogR) protocols from Cloudera’s version of HDFS. We also run workloads

from an old HDFS release v0.20.0 (marked with *), which has a different design (and hence

different results). Two and three crashes were injected per experiment for the bars on the

left- and right-hand sides respectively. CC and BF represent the code-coverage policy and

brute-force exploration, respectively. R-L, R-LN, and R-All represent recovery-coverage poli-

cies that use three different ways to characterize recovery (§15.5.3): using source location

only (L), source location and node (LN), and all information in fip (All). We stopped

our experiments when they reached 10,000 (Hence, the maximum number of experiments is

10,000).

With PreFail, a tester can choose different policies, and hence different numbers of
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#Failed
Workload #F Exps #Bugs #BugsR
Write 2 0 0 0

3 46 1 1

Append 2 14 2 2
3 31 (*) 2 (*) 2

LogRecovery 2 6 3 0
3 3 (*) 3 0

Table 17.3: #Bugs found. (*) implies that these are the same bugs (i.e., bugs in 2-failure
cases often appear again in 3-failure cases).

experiments and speed-ups, depending on her time and resource constraints. For example,

the code-coverage policy (CC) gives two orders of magnitude improvement over the brute-

force approach because it simply explores possible crashes at source locations that it has not

exercised before (e.g., after exploring two crashes, there is no new source location to cover in

3-crash cases). Recovery clustering policies (R-L, R-LN, etc.) on the other hand run more

experiments, but still give an order of magnitude improvement over the brute-force approach.

The more relaxed the recovery characterization, the lesser the number of experiments (e.g.,

R-L vs. R-All).

Pruning is not beneficial if it is not effective in finding bugs. In our experience, the

recovery clustering policies are effective enough in rapidly finding important bugs in the

system. To capture recovery bugs in the system, we wrote simple recovery specifications for

every target workload. For example, for HDFS write, we can write a specification that says

“if a crash happens during the data transfer stage, there should be two surviving replicas at

the end”. If a specification is not met, the corresponding experiment is marked as failed.

Table 17.3 shows the number of bugs that we found even with the use of the most relaxed

recovery clustering policy (R-L, which only uses source location to characterize recovery).

The table shows the number of crashes per run (#F) along with the actual number of bugs

that trigger the failed experiments (#Bugs). The last column (#BugsR) is the number of

bugs that can be found using randomized failure injection, that is, by randomly choosing

the execution points at which to inject crashes. For each workload, we execute the system

as many times as we do for the recovery clustering policy, and randomly inject crashes in

each execution. Randomized failure injection can find the bugs for the write and append
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Workload Crash Disk Net Data
Failure Failure Corruption

H. Read 2/42 1/4 4/17 1/4
H. Write 57/454 27/27* 45/200 N.A.
H. Append 111/880 43/60 117/380 1/18
H. LogR 36/128 39/64 N.A. 3/28

C. Insert 33/102 25/25* 12/26 N.A.
C. LogR 84/196 89/98 N.A. 5/14

Z. Leader 39/132 21/21* 31/45 N.A.

Table 17.4: Benefits of Optimization-based Policies. (*) These write workloads do not
perform any disk read, and thus the optimization does not work here.

workloads, but not for the log recovery workload. This is because the bugs for the log

recovery workload are corner-case bugs; the proportion of failure sequences that lead to a

log recovery bug is much smaller than that for a write or an append bug. This shows that

randomized failure injection (state-of-the-art in testing multiple failures), though simple to

implement, is not effective in finding corner-case bugs that manifest only in specific failure

scenarios.

Optimization-Based Policies

Table 17.4 shows the effectiveness of the optimizations of different failure types that we

described in Section 15.5.5. H in the table is for HDFS, C is for Cassandra, and Z is

for ZooKeeper. Each cell presents two numbers X/Y where Y and X are the numbers of

failure-injection experiments for single failures without using and with using the optimization

respectively. N.A. represents a not applicable case; the failure type never occurs for the

workload. For write workloads, the replication factor is 3 (i.e., 3 participating nodes).

Overall, depending on the workload, the optimizations bring 21 to 1 times (5 on average) of

reduction in the number of failure-injection experiments.
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17.2 Ease of writing policies

We wrote policies for all of our benchmark systems and workloads: two each for the leader

election workloads and one each for the rest of the workloads in PCheck, and three recovery-

coverage policies, one code-coverage policy, and four optimization-based policies for each of

the workloads in PreFail. In PCheck, writing a policy and instrumenting to expose

relevant context for network messages required some knowledge about the system and the

workload, but we could gain this knowledge from browsing relevant documentation and

source code. Someone with a better knowledge of the system and the workload can write

more specific and precise policies and can also instrument source code to expose more context

for network messages. In PreFail, we did not require much system and workload specific

knowledge for the policies that we wrote. The coverage-based policies are generic, and can

be applied to other systems. The optimization-based policies also do not require any system

specific knowledge. On an average, the size of a policy was 19 lines of code in PCheck, and

17 lines of code in PreFail.

17.3 Bugs found

We explain the recovery bugs that we found using PreFail. We were able to find all of the 16

bugs in HDFS v0.20.0 (older version of HDFS) that we had reported in our previous work [50].

We were told that many internal designs of HDFS have changed since that version. After

we integrated PreFail to a much newer HDFS version (the Cloudera version v0.20.2+737),

we found 6 more previously unknown bugs (three have been confirmed, and three are still

under consideration). Importantly, the developers believe that the bugs are crucial ones and

are hard to find without a multiple-failure testing tool. These bugs are basically availability

(e.g., the HDFS master node is unable to reboot permanently) and reliability bugs (e.g.,

user data is permanently lost). We explain below one of the new recovery bugs. This bug is

present in the HDFS append protocol, and it happens because of multiple failures.

The task of the append protocol is to atomically append new bytes to three replicas of a

file that are stored in three nodes. With two node failures and three replicas, append should

be successful as there is still one working replica. However, we found a recovery bug when
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two failures were injected; the append protocol returns error to the caller and the surviving

replica (that has the old bytes) is inaccessible. Here are the events that lead to the bug:

the first crash causes the append protocol to initiate a quite complex distributed recovery

protocol. Somewhere in the middle of this recovery, a second crash happens, which leaves

the system in an unclean state. The protocol then initiates another recovery. However, since

the previous recovery did not finish and the system state was not properly cleaned, this last

initiation of recovery (which should be successful) cannot proceed. Thus, an error is returned

to the append caller, and since the surviving replica is in an unclean state, the file cannot

even be accessed.

In summary, we have seen in our experiments that policies can reduce the state space

to explore significantly yet achieve testing objectives like branch coverage or bug coverage.

Using our programmable tools, testers can write a variety of policies without having any

knowledge about the internals of the underlying testing process.
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Chapter 18

Other related work

We have mentioned and compared our programmable tools with related work at various

points in the previous chapters. In this chapter, we describe more related work and compare

our tools with them.

Model checking of distributed systems: MoDist [114] interposes a thin layer be-

tween the system being considered and a model checker. The layer intercepts various OS

operations during execution and passes them on to the model checker that then performs a

full-fledged model checking on sequences of those operations. MoDist incorporates partial-

order reduction, but the reduction is traditional and is based on using synchronization of

two operations with respect to each other to determine if they are dependent. We use tester-

written policies to determine if two operations are dependent in PCheck. Even if two

operations are deemed dependent according to their synchronization with respect to each

other, the tester might not want to test both orders of the operations as she might know

that testing either order would suffice for her testing objectives. Thus, using policies we can

obtain a further reduction in the number of executions that we have to explore as compared

to model checking with traditional partial-order reduction. Moreover, MoDist intercepts and

considers all kinds of OS operations, but PCheck restricts itself to only those operations

that are interesting or relevant to the tester. As a result PCheck is faster, but it has to

tolerate non-determinism of non-relevant operations.

DeMeter [51] uses interface reduction to reduce the state-space of model checking. It

dynamically finds out the interface according to which a component in a system interacts with
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the other components, and using this information it locally model checks each component.

DeMeter and PCheck share the same goal of reducing state space, but DeMeter achieves

this by automatically dividing the execution into global and local component interactions

and exhaustively checking the local interactions and PCheck achieves this by putting more

power in the hands of the testers and by allowing them to use their knowledge and intuition

to identify how they want to reduce the state space.

MaceMC [73] is a model checker for applications written in the Mace language. It tests all

possible orders of the events identified in the application. FiSC [115] is another model checker

that checks file systems but does not use partial-order reduction. Instead, it uses techniques

like using hashing to merge “similar” states. Such state-space reduction techniques are hard-

coded into FiSC, but can be implemented by the tester in our approach according to when

the tester considers two states or messages to be equivalent.

We did not find any model checker that reduces the space of multiple-failure combinations

when performing failure testing as we do in PreFail by writing suitable policies.

Using high-level languages in testing: To the best of our knowledge, there is no

prior work that provides a high-level language or framework to enable testers to influence

model checking of distributed systems. But, there has been some previous work in design-

ing high-level languages for failure testing of distributed systems or applications. LFI [77]

provides a framework to allow testers to write down failure scenarios that occur during li-

brary calls. FIG [17] is another framework that lets testers control failure injection at the

library level. Testers can specify which library calls do they want to fail, and with what

frequency. Orchestra [28] uses Tcl scripts written by testers to fail or corrupt network mes-

sages. The Tcl scripts use TCP headers of messages to determine whether to fail them or

not. In PCheck, rather than providing the low-level context (e.g., TCP header) regarding

a message to testers, we instrument and track more high-level or “semantic” information

being carried in the message (e.g., vote in the message) and expose them so that testers can

use them in their policies. Genesis2 [70] allows testers to use scripts to control fault injection

in Web services and clients, and FAIL-FCI [56] provides a domain-specific language in which

testers can control failure injection in the Grid middleware. In these failure injection tools,

even though a high-level or a domain-specific language is provided, testers often might have

to write significant amount of code from scratch to pinpoint the execution context of the
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failure scenarios that they want to exercise. The event abstractions in PCheck and failure

abstractions in PreFail on the other hand already capture the relevant context for events

and failures. The context can thus be directly accessed and used by testers without writing

a lot of code.

Pruning down state space: There has been some work in devising smart techniques

that systematically prune down large search spaces. Extensible LFI [78] for example auto-

matically analyzes the system to find code that is potentially buggy in its handling of failures

(e.g., system calls that do not check some error-codes that could be returned). AFEX [71]

automatically figures out the set of failure scenarios that when explored can meet a certain

given coverage criterion like a given level of code coverage. It uses a variation of stochastic

beam search to find the failure scenarios that would have the maximal effect on the coverage

criterion. Fu et. al. [44] use compile-time analysis to find which failure-injection points

would lead to the execution of which error recovery code. They use this information to guide

failure injection to obtain a high coverage of recovery code. To the best of our knowledge,

the authors of these works do not address pruning of combinations of multiple failures in

distributed systems.

There has been some work in program testing [15, 26, 47] that uses tester-written speci-

fications or input generators to produce all non-isomorphic test inputs bounded by a given

size. The specifications or generators can be thought of as being analogous to the tester-

written policies, and the process of generating inputs from them by pruning down the input

space can be thought of as being analogous to the process of pruning down the space of

all event orderings or the failure space using policies. The specifications are used only for

the purpose of generating test inputs, and there is no support to address event orderings or

failures in the specifications.

Randomized testing: This is the state-of-the-art when it comes to testing large com-

plex distributed systems. For example, randomized injection of multiple failures is employed

to test systems in Google [21], Yahoo! [105], Microsoft [114], Amazon [55], and Netflix [58].

Randomized testing is simple to implement, but it can miss corner-case bugs that can oc-

cur only when events (e.g., network messages) order in a specific manner, or when specific

failures occur at specific points of execution.
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Chapter 19

Conclusion

Poor software reliability is a serious concern today. Software bugs have caused significant

financial losses, accidents, and even deaths. The techniques explored in this thesis can help

mitigate the problem by improving the effectiveness of software testing, specifically testing

of concurrent and distributed systems that have become integral components of today’s

software systems. Testing is still the most widely used technique in the industry to validate

software systems. Thus, improving the state-of-the-art of testing will improve the reliability

of software systems.

In this thesis, we have built techniques that amplify the effectiveness of testing by not

only exploring the program executions that showed up during testing but also by exploring

executions that came “close” to happening. The first part of the thesis describes how the

power of program analysis can be used in the background to build testing tools that provide

the familiar interface that traditional testing tools provide but that can not only find bugs

in the program executions that they observe but also predict and confirm bugs in “nearby”

program executions. We have built predictive testing tools to find deadlocks (both resource

and communication) and typestate errors in concurrent software systems. Our tools have

found a number of serious bugs in real-world software systems. Even though our tools

have been designed for deadlocks and typestate errors, some of the key ideas in them can

be extended to find other kinds of bugs. For example, the trace program based approach

(Chapter 5) can be extended to find other kinds of bugs by retaining the events necessary

to find those kinds of bugs in the trace programs. DeadlockFuzzer (Chapter 7) can also
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be extended to confirm other classes of bugs (Section 7.5) by actively controlling the thread

scheduler and pausing threads at suitable points to reproduce the real bugs.

We have also developed tools that allow testers to easily express their insights and knowl-

edge regarding the programs under consideration to guide the underlying testing process

towards interesting program executions that are more likely to help achieve the tester’s ob-

jectives or are more likely to exhibit bugs. As described in the second part of the thesis,

we have implemented programmable tools in which testers can express their intuitions and

intents in a high-level language to improve the efficiency of testing of correctness and ro-

bustness against failures of large-scale distributed systems. We have some default policies

(expressions of intuition) in the programmable tools that can be used even when the testers

do not have a detailed knowledge of the systems under consideration. The testers can how-

ever write better policies if they have a good understanding of the systems. They can even

start with a specific policy that exercises only some specific program executions, and improve

on the policy with the knowledge that they gain in the process of using it. We have found

a number of recovery bugs in popular real-world distributed systems with the policies that

we have written in our programmable tools.
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