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Abstract

We argue that mid-level representations can bridge the gap between
existing low-level models, which are incapable of capturing the structure
of interactive verbs, and contemporary high-level schemes, which rely on
the output of potentially brittle intermediate detectors and trackers. We
develop a novel descriptor based on generic object foreground segments;
our representation forms a histogram-of-gradient representation that is
grounded to the frame of detected key-segments. Importantly, our method
does not require objects to be identified reliably in order to compute a ro-
bust representation. We evaluate an integrated system including novel
key-segment activity descriptors on a large-scale video dataset containing
48 common verbs, for which we present a comprehensive evaluation proto-
col. Our results confirm that a descriptor defined on mid-level primitives,
operating at a higher-level than local spatio-temporal features, but at a
lower-level than trajectories of detected objects, can provide a substantial
improvement relative to either alone or to their combination.

1 Introduction

Broadly speaking, competing lines of research on activity recognition have fo-
cused on either “AI” based approaches, which exploit high-level models that
involve explicit detection of objects, people and pose as an intermediate repre-
sentation, or “learning” based models, which exploit low-level methods including
point trajectories, local bag of feature models, etc. At the same time, empirical
challenge problems that define the field have been progressing from relatively
simple activities (e.g., run, jump, walk) to those that involve, complex, struc-
tured events and the interaction of multiple people and/or multiple objects (e.g.,
exchange, hand-over, lead). These latter “interactive” activities are most valu-
able for many real world applications, but have previously been the subject of
relatively limited evaluation efforts.

Performance using low-level features and learning-based methods has been
outstanding in many cases in earlier evaluations, but these new datasets provide
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Figure 1: Mid-level descriptors based on generic object key-segment regions offer
a trade-off between the robustness of low-level models and the structure captured
by high-level models. We develop a new system which combines low-level mo-
tion features, mid-level key-segment descriptors, and high-level predicates on
objects/people and their relationships, on a large-scale dataset containing 48
categories of interactive activities such as, in this example, approach.

a challenge: can low-level models really suffice when considering structured in-
teractive activities? It would seem that rich intermediate representations must
be essential for recognizing interactive verbs such as open, for example, given
the broad range of instantiations of a semantic category (e.g. compare opening
a door to opening a bottle).

Several authors have recently attempted to address this question in the case
of static action/activity recognition [43, 25], motivated by the PASCAL activity
recognition challenge [9]; however, our focus on the case of dynamic activities
as revealed in video sequences, as in the classic activity recognition benchmarks
of KTH, UCF Sports, Olympics, etc [18, 36, 28]. Dynamic interactive activity
datasets–video corpora that include multiple people interacting in various roles–
are more rare, and we focus our development on the recently introduced publicly
downloadable “Visual Intelligence” (VISINT) activity dataset [1].

Recent results suggest that high-level models—those that operate on rep-
resentations formed over tracked objects, object attributes, and/or interaction
predicates between objects—are quite powerful at recognition of dynamic inter-
active activities [38, 5, 41]. A recent model for recognition based on interaction
primitives [30] was shown to offer strong performance on the VISINT corpus;
this model exploited appearance and STIP primitives defined on person and
object trajectories obtained using a deformable part model detector [11]. Such
models are powerful, but still fail to track all types of objects, or be robust to
many types of observation conditions.

To improve robustness on complex activities that are difficult to track com-
prehensively using existing detectors, we introduce a novel mid-level activity de-
scriptor based on generic object segments. We leverage the key-segments method
of [22], and compute a descriptor based on static and dynamic properties of a
detected key segment.

We combine this novel representation with two existing methods: a low-
level latent state temporal sequence model [28], and a high-level model based on
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a sequence of structured features including primitive representations of object
state and person-object interaction [30]. We provide a comprehensive evaluation
of these representations, separately and in combination, on the VISINT corpus.
We show that the mid-level representation offers a clear improvement when
combined with the previous techniques, and the best performance is obtained
with the fusion of all three methods. Intuitively, we believe that the key-segments
method improves in the cases where higher-level models are required (activities
with structured interaction) but where the primitive trackers have failed to do
object occlusion or appearance variation.

The dataset we use for evaluation is large and complex, and a further con-
tribution of this paper is the protocols we designed for evaluating action recog-
nition. In particular, humans do not always agree on verb presence when the
verbs are defined most broadly; we propose a new metric for evaluating system
agreement with noisy human labels. We hope this dataset, along with the pro-
tocol we developed, will be used by others to advance the state of the art in
interactive activity recognition.

2 Background

Many researchers have adopted activity representations using low-level tracked
points in a video as features [27, 29, 40, 39, 7, 20, 42, 24, 12]. Such a represen-
tation is prone to errors in tracking, which is especially true in the presence of
background clutter, but it avoids the difficult task of object and person detec-
tion. A number of current approaches entail the use of local space-time interest
points [39, 7, 29, 20, 4, 24, 42, 6, 26, 15]; several build representations using
visual vocabularies computed with gradient-based descriptors extracted at de-
tected interest points [7, 20, 6, 39, 42], while others build descriptors from the
point positions themselves [4, 12]. The advantages of combining both static and
dynamic descriptors have also been demonstrated [29, 24, 26, 15]. The strategy of
generating compound neighborhood-based features—explored initially for static
images and object recognition [44, 33, 21, 23, 32]—has since been extended to
video [12, 6, 42, 20]. Various approaches either subdivide the space-time vol-
ume globally using a coarse grid of histogram bins [20, 6, 42, 15], or place grids
around the raw interest points, and compute a new representation using the
positions of the interest points that fall within the grid cells surrounding that
central point [12].

Another line of work attempts to describe activities using intermediate pred-
icates. At the mid-level, several approaches represent activities in terms of
spatio-temporal shapes or segments [17, 3]. At the higher level, methods rep-
resent actions by the positions and velocities of an entire object using either a
bounding-box detector [14] or a parts-based model [34, 35, 31, 13, 37]. Although
a more intuitive framework, these representations suffer from the inherent inac-
curacy of bounding box detection and from the fact that they do not model the
entire scene and hence, cannot exploit contextual and geometric cues. On the
other hand, the high-level approach adopted in our paper [30] can model activity
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Key-segments

Background subtraction

Figure 2: The key-segments output (top row) automatically generates space-
time object segments that appear most central to the activity in the entire video
clip. Unlike simple background subtraction (bottom row), they can distinguish
the shapes of adjacent foreground objects, and extract object-like regions that
do not move.

using both semantic and relational modules.

3 A Mid-level Activity Representation based on
Key Segment Descriptors

A key challenge in realistic scenarios is that the system cannot know entirely
in advance what objects may appear during an activity. While it is natural to
search for people and an a priori bank of other very common objects, the sys-
tem must be flexible enough to discover novel objects that appear and include
them in the activity description. Thus, our approach to obtain a mid-level rep-
resentation is to exploit multiple foreground segmentations, each corresponding
to a unique human or object, but without having to detect or identify that ob-
ject. To this end, we adapt a recent approach for key-segment discovery [22].
The method takes an unannotated video as input, and returns a ranked list
of hypothesized space-time segmentations of the salient “object-like” regions as
output. We use a key-segments decomposition of a video clip, which provides a
space-time segmentation of the salient object-like regions that appear central to
the activity [22].

Briefly, the key-segment extraction method we use works as follows: Given
an unannotated video, we compute an initial pool of bottom-up regions. Then,
we rank that pool according to how “human-like” and “object-like” each region
appears. The former is based on a region’s overlap with high-scoring person
detections (we use [11]). The latter is based on the extent to which the re-
gion exhibits (1) appearance cues typical to objects in general (e.g., boundary
strengths, probability of belonging to a vertical surface [8]), and (2) differences
in motion patterns relative to its surroundings [22]. We cluster the top-ranked
regions across all frames to form multiple key-segment hypotheses. Each hy-
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Figure 3: Overview of the mid-level segmentation descriptor. (a) Key-segments
at frame t and t + 1, where x’s denote centroids. (b) Our descriptor encodes
the segment’s appearance (using quantized pHOG), its displacement, and its
displacement angle in the next frame. We compute descriptors for each segment
in all frames in the video; each increments a single bin in our final 3D appearance-
motion histogram of the video. Best viewed in color.

pothesis defines a foreground color likelihood model within a space-time Markov
Random Field (MRF), where each node is a pixel, and each edge connects ad-
jacent pixels in space and time. We partition this graph with graph-cuts to
obtain a pixel-wise segmentation for the discovered object/human as it moves
over time. We compute the segmentations in order of hypothesis rank, and en-
force non-overlap between the selected key-segments, such that each hypothesis
corresponds to a unique human/object in the video. See Figure 2, and [22] for
complete details.

With the key-segmentations in hand, now we want to describe each discovered
object. This descriptor should capture the appearance and motion patterns, and
ideally exploit the shape-based nature of the extracted segments (which contrasts
with the cues a bounding box detector would provide). To this end, we design a
novel mid-level descriptor that summarizes the shape of the object-like regions
as well as their frame-to-frame motion trajectories, over the entire video clip. We
process each space-time segmentation hypothesis separately, and then combine
their features to create a single representation for the video.

To capture appearance, we compute a series of 2D pyramid of HOG (pHOG)
descriptors on a window tightly fit to the segment, one for each frame where
the segment appears. We compute the descriptor on a window that tightly fits
the foreground segment in the frame, where the background pixels are zeroed
out before the descriptor computation in order to capture the outer shape in
addition to the internal contours. We then quantize the descriptors into 50
pHOG-words using k-means. To capture motion, we compute the difference in
position and angle between the foreground segments in adjacent frames. We
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quantize the positions into 10 bins, in 2 pixel increments from 0 pixels (i.e.,
[0, 2), [2, 4), . . . , [18,∞)); the bins range from small displacements to very large
displacements. We quantize the angles into 4 bins, in π/4 increments from π/4;
the bins correspond to up, down, left, or right (see Figure 3).

Using these measurements, we create a 3D histogram whose dimensions cor-
respond to the appearance, distance, and angle, respectively. The size of the
histogram is 50×10×4. Each segment increments a single bin in the histogram.
We aggregate the contributions of all segments in all space-time segmentation
hypotheses to create a single histogram representation for the video. Finally,
since some videos may generate no key-segment hypotheses due to missed per-
son detections or high overlap in color distribution between the foreground and
background models (which can lead to the foreground being “smoothed out”),
we augment the mid-level descriptor with a histogram on the clip’s space-time
interest points and HoG/HoF features [20]. We train binary SVM classifiers
using the resulting histograms to distinguish each verb against the rest.

4 An Activity Recognition System using Key-
Segment Descriptors

We propose a multi-tier system design incorporating several levels of representa-
tion of increasing semantic richness. Our architecture is comprised of the novel
mid-level description scheme defined in the previous section, as well as low- and
high-level models based on previously reported methods. Our low-level represen-
tation employs a discriminative statistical sequence model built on top of sets
of low-level spatio-temporal interest point (STIP) descriptors. Our high-level
tier is a generative probabilistic sequence model incorporating high-level struc-
tural representations including person and object relationships. We combine the
outputs of these components using a max-margin fusion scheme.

4.1 Low-level model

The algorithm implemented by our low-level tier is based on the method for
activity classification described in [28]. This model is based on a framework
for modeling motion by exploiting the temporal structure of human activities.
The model represents activities as temporal compositions of motion segments,
and a discriminative model is trained that encodes a temporal decomposition
of video sequences, with STIP-based appearance models [18] for each motion
segment. In recognition, a query video is matched to the model according to
the learned appearances and motion segment decomposition. Classification is
performed using a latent template max-margin model, based on the quality of
matching between the motion segment classifiers and the temporal segments in
the query sequence. The model is comprised of a set of motion segment classifiers
each operating over a histogram of quantized interest points extracted from a
temporal segment whose length is defined by the classifier’s temporal scale. In
addition to the temporal scale, each motion segment classifier also specifies a
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temporal location centered at its preferred anchor point. Lastly, the motion
segment classifier is enriched with a flexible displacement model that captures
the variability in the exact placement of the motion segment within the sequence.
[28] describes associated learning and inference procedures for this model.

4.2 High-level model

The high-level model evaluated here is based on the joint activity recognition
and object tracking method of [30], which presents a model for understanding
the interactions between humans and objects while performing an action over
time. The model uses an “in the hand” interaction primitive and represents a
variety of actions in which an object is manipulated. This representation not
only allows for recognition of actions in sequences, but is also able to provide
improved localization of the object of interest. The outputs of monocular object
and person detectors are used as input to the Pose-Transition-Feature model of
[30]. This model captures the spatial trajectory of the person and surrounding
visual features, and is run on the person trajectory of a sequence to produce a
score for each verb.

We then use the person and object trajectories and define three additional
interaction primitives with respect to the object: “moving toward,” “moving
away from,” and “touching”. The primitives are observed in each frame, and
we collect the counts of the primitives and transitions between the primitives
in adjacent frames as additional features. For a given sequence, we concate-
nate the Pose-Transition-Feature scores with the primitive counts in addition to
the following object-person interaction features: the percentage of frames each
object-person primitive was active, the spatial variance of the object’s trajectory,
the spatial variance of the offset between the person and object, and an indictor
variable for the identity of the object; the average object detection score in the
sequence (to help the classifier ignore the object if it was not strongly detected).
Using this feature vector, an SVM with a quadratic kernel is trained for each
action separately.

4.3 Max-margin fusion

While the three individual models above have very different internal represen-
tations, they share a common max-margin learning framework, and thus are
suitable to be fed into an ensemble pipeline. Specifically, we adopt a late fusion
scheme by training a one-vs-all SVM with each of the low, mid, and high level
features separately, and then combining their outputs via a soft voting scheme.
To combine the outputs, we first convert the prediction of each SVM to a pseudo
likelihood with a softmax function [2]:

pci(x) =
exp(mci(x))∑
j exp(mcj(x))

,
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where mci is the output for class i from classifier c (c ∈ {L,M,H}). Our fused
prediction is then based on a mixture of experts model [16]:

p∗i (x) =
∑

c
wcpci(x),

where the mixing coefficients wc(
∑

c wc = 1) are found via cross-validation on
the training data.

5 Data and Evaluation Procedure

5.1 Interaction Dataset

We based our evaluation on the publicly available VISINT dataset [1]; this
dataset was recently collected to aid the development of action recognition meth-
ods, and represents a variety of commonplace interactions between humans by
far exceeding that in previous datasets. Hired actors performed 10 exemplars
of each action in outdoor scenes such as parks and streets, each 14 sec. long
on average. Each exemplar action was shot 16 times, varying the dimensions:
urban/park, daylight/evening, close/far field, center/side location within the
frame. The full dataset was split into training and testing portions; a smaller
subset containing fewer verbs was also used in some of our experiments. For the
full set, we split the data to 3480 training and 1294 testing videos, and for the
subset, we used 314 training and 86 testing videos. The dataset is provided with
ground truth labels indicating per-video present/absent labels for each of the
verbs in the corpus, which represent non-expert human responses from Amazon
Mechanical Turk (AMT) to questions of the form “Did you see X?”, where X is
one of the verbs, separately for each verb.

5.2 Computing Annotator Agreement

While care was taken to control present/absent verb label quality, this was
mostly aimed at removing malicious workers and not at enforcing agreement.
In fact, verb annotation in videos without specific annotator training besides
providing the broad verb definition is a highly subjective task. Some annotators
have an over-detection bias, answering “yes” to the question “Did you see X?”
even if the action appeared briefly and was accompanied by many other actions.
Others answer “yes” only if the action was central in the video sequence. There-
fore, the resulting binary labels are noisy and not reliable sources of training
data for traditional binary discriminative classifiers.

Fortunately, the dataset contains 16 variations per exemplar, or the same
action (see Section5.1). This allows us to combine the human responses for the
16 unique videos that represent the variants of an exemplar action, effectively
resulting in a score from 0 to 16 for that action for each of the 48 verbs1.

1A few videos that did not have all 16 variants were regarded as not having a label and
removed from evaluation.
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Agreement Positive Negative Use in Dataset
50%/75% ≥8/16 said yes ≤4/16 said yes subset, full
62%/87% ≥10/16 said yes ≤2/16 said yes subset, full
93%/93% ≥15/16 said yes ≤1/16 said yes full

Table 1: Levels of agreement used in our experiments to map Turker votes into
binary labels.
verb BOUNCE HAVE HIT HOLD KICK LEAVE TOUCH WALK Total

yes(≥10) 12 16 12 16 16 16 33 13 134
no(≤2) 37 12 29 28 41 20 16 36 219

Table 2: The number of labels at 62%/87% level of agreement in the training
portion of subset.

To obtain binary present/absent labels from the tallied votes, we tried several
agreement thresholds, in order of increasing conservatism: (1) treat as positive
videos for which 8 or more of the 16 annotators said the verb was present, and as
negative those where 4 or fewer said the verb was present; (2) treat as positive
those with 10 or more “yes” votes, and treat as negative those with 2 or fewer;
and (3) treat as positive those with 15 or 16 votes, and as negative those with at
most 1 vote. These are summarized in Table 1. The most stringent level did not
produce enough labels in the subset datasets (10 or more positive and negative
per verb). A list of verbs in the subset and their number of yes and no labels
at the second level of agreement is shown in Table 2.

5.3 Evaluation Metrics

We use both a traditional detection metric (mean average precision) to evaluate
w.r.t. binary labels, and propose a divergence-based metric to capture how
well the predicted likelihood of an action agrees with the distribution of human
judgments.

Mean Average Precision (mAP): mAP is traditionally used to evaluate de-
tections of binary labels, and is better-suited to unbalanced data than accuracy.
The AP for a binary detection problem is defined as the average precision ob-
tained by varying a threshold (sensitivity) of the classifier, where precision is the
number of true positives divided by the total number of assigned positive labels
at a particular threshold. The mAP is then defined as the mean AP across all
binary problems (across all verbs in our case).

Mean JS Divergence (mJSD): mAP is limited to hard binary labels and
cannot measure the distance between soft labels (probabilities) of each verb be-
ing present, as given by the human votes. It is important to note that unlike
most object recognition tasks, the verb labels for action recognition are not mu-
tually exclusive, e.g., a set of responses for a video may have p(“go”) = 0.9
and p(“walk”) = 0.9, thus computing a distance between the overall distribu-
tion of responses for all verbs is incorrect, as it does not constitute a prob-
ability distribution of a single random variable, but rather a set of distribu-
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tions of several random variables corresponding to the presence or absence of
each verb. Thus, we propose to compute the distance separately for each la-
bel, using the Jensen-Shannon divergence (JS-divergence). Let Q denote the
Bernoulli distribution of a verb being present given the human response data,
and P denote the system response distribution, both of which have been nor-

malized. Then the KL-divergence is given by DKL(P ||Q) =
∑

i P (i) log P (i)
Q(i) .

JS-divergence compares the two distributions (P and Q) to their mean as fol-
lows: DJS(P ||Q) = 1

2DKL(P ||M) + 1
2DKL(Q||M). JS-divergence has a number

of advantages over the KL-divergence: (a) it can handle zero probabilities, and
is less sensitive to small numerical values; (b) it is symmetric and thus a true
distance; (c) it is bounded in [0, 1], whereas KL-divergence is unbounded. Fi-
nally, the mean JS divergence (mJSD) metric for a test video is calculated by
averaging over verbs.

5.4 Procedure

The following sections describe the details of the experimental setup specific to
each system component, such as the processing applied to the videos, which
inputs are given to the system at each level, and the model parameters used in
the experiments.

Low-level model settings. We subsample all videos to a size of 640×360. We
use spatio-temporal interest points detected with the 3D Harris corner method
[18] and described with HOG/HOF descriptors, using the binaries available at
[19]. We run the detector on each video with the parameters: -res 2. If no
detections are found, (e.g. resolution is too low to capture the motion in the
video), we run the detector again with the parameters: -res 4. We then uni-
formly sample 200 videos from the training set and use all their local feature
descriptors to form a codebook. The codebook is computed using k-means with
k = 500. Finally, we train binary classifiers for each verb separately using agree-
ment labels, using a fixed number of K = 3 motion segments per model.

Mid-level model settings: For efficiency, we generate the initial region pool on
40 frames uniformly sampled from the video. We compute up to four segmenta-
tions per video (two human, two other generic objects). For the color-likelihood
models we use 5 fg and 10 bg GMMs and the RGB color space. We normalize
the histograms to sum to 1, and use χ2 kernels for the SVMs, with C = 100.

High-level model settings: Object and person detections for the model were
computed using the DPM model [10]; a Viterbi tracker was run on top of the
person detections to provide a trajectory for the primary person of interest
in the sequence. We selected which single object was present in the sequence
according to which object had the highest maximum detection score in each
frame, averaged across frames. We included a second person as a possible object,
only using detections that were outside of the trajectory found for the primary
person. A Viterbi tracker was similarly run on the chosen object to produce an
object trajectory. Codewords of STIP features from the low-level model were
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used as local appearance features near the person track.

5.5 Results

In addition to results obtained by different levels of representation, we also show
several baselines: assigning random probabilities to the verbs (Random), assign-
ing the prior probability as measured on the training set (Prior), and a baseline
k-nearest neighbor classifier with k = 1 (Baseline). The latter retrieves the
training examples with the nearest STIP feature vectors to the input video and
returns the averaged human verb distributions.

Effect of Agreement: First, we investigate the effect of annotator agreement
on classifier performance. Figure 4 shows the mAP score obtained by Baseline
and LowLevel, as well as the random baselines, using labels obtained by requiring
increasing levels of agreement (Table 1). The trend is that the stricter agreement
produces more accurate results, however, the strictest level (15/16 or 93% for
yes and no, i.e. all but one must agree) results in a smaller set of available
training labels, producing lower accuracy. The second level (62% for yes and
87% for no) is therefore optimum, and we only report results with these labels
for the rest of the paper. Note that, because each agreement level produces
different sets of binary labels, the number of verbs that have sufficient labeled
positive and negative examples changes: e.g., at the 50%/75% level, 47 verbs
had sufficient (10 or more) positive and negative examples in the training set.

Activity Recognition: We first compare the performance of each level of
representation on subset, which at the 62%/87% agreement contains sufficient
labels for: bounce, have, hit, hold, kick, leave, touch, and walk. These verbs
were chosen as a representative set, and the high-level relational primitives were
designed with these verbs in mind. Table 3 (columns labeled “subset”) shows the
mAP and mJSD obtained by the models. Overall, results are encouraging: all
models achieved scores well above chance performance and significantly higher
than those of Baseline. The highest single-component mAP is obtained by the
high-level model (0.75). We believe its good performance is explained by its use
of interaction features. Figure 5 compares the performance by verb in terms of
the mAP score. Here we see the complementariness of the “pixel” vs. “predicate”
approaches: the high-level model does significantly better on verbs bounce, have,
hit and worse on touch,walk. In particular, its poor performance on walk can
be explained by the fact that walk does not involve interaction between humans
and objects.

Finally, we evaluate performance on the full dataset. With the 62%/87%
agreement labels, this amounts to 46 verbs (all but move and bury). The re-
sults are shown in Table 3 (columns labeled “full”). Here the low-level model
outperforms the others; the lower performance of the high-level model may be
because the primitives used are not enough to capture the other actions beyond
the eight verbs they were designed for (extending the high-level primitives to
more verbs is part of future work). Finally, we combine all three representa-
tion levels, obtaining the best overall results: mAP=.81, mJSD=.0397 on the
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Figure 4: Comparison of verb recognition mAP at increasing levels of annotator
agreement.
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Figure 5: Breakdown by verb of mAP obtained on the subset, using annotator
agreement 62%/87%.

subset and mAP=.71, mJSD=.0198 on the full data dataset. The fact that the
combined model performs significantly better than either level alone indicates
that there is additional information in the low-level features that is not being
exploited by the intermediate mid- and high-level models.

Our evaluation in terms of the divergence between the predicted verb prob-
ability and the human judgements reveals that the lowest divergence is also
obtained by the combined three-level scheme. However, the behaviour of this
metric is different from mAP. Notice that using the verb prior to predict labels
(Prior) only improves mAP marginally, but cuts the mJSD to a third on the
full dataset. This suggests that the prior distribution of certain verbs (e.g. go is
likely to be present in most videos) may play a larger role in cases where humans
do not agree.

6 Conclusion

Based on our results, we argue that intermediate representations should be used
in addition to low-level features to get best performance; one reason high-level
models fail is they throw away useful information available in the sequence by
committing to the (possibly erroneous) object track. We presented a novel mid-
level representation based on generic object key-segments found in video se-
quences; our approach combined elements of low and high-level representations.
While the key-segments approach alone was not the strongest model, in concert
with the other paths it significantly improved performance.
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mAP mJSD
model subset full subset full

Random .50 .20 .1099 .1086
Prior .59 .25 .0639 .0301

Baseline .63 .40 .0623 .0270
Low .70 .63 .0489 .0286
Mid .70 .59 .0600 .0259
High .75 .49 .0594 .0361

Low+High .75 .69 .0544 .02541
Low+Mid+High .81 .71 .0397 .0198

Table 3: Results obtained by the different representation levels on the interaction
dataset, using annotator agreement for binary labels of 62%/87%. The table
shows mAP (higher is better) and mJSD (lower is better) scores.

References

[1] http://www.visint.org/.

[2] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[3] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as space-
time shapes. In ICCV, 2005.

[4] M. Bregonzio, S. Gong, and T. Xiang. Recognizing action as clouds of space-time
interest points. In CVPR, 2009.

[5] W. Brendel, A. Fern, and S. Todorovic. Probabilistic event logic for interval-based
event recognition. In CVPR, 2011.

[6] J. Choi, W. Jeon, and S.-C. Lee. Spatio-temporal pyramid matching for sports
videos. In ACM Multimedia, 2008.

[7] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse
spatio-temporal features. In 2nd Joint IEEE International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance, 2005.

[8] I. Endres and D. Hoiem. Category independent object proposals. In ECCV, 2010.

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man. The PASCAL Visual Object Classes Challenge 2011 (VOC2011) Results.
http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html.

[10] P. Felzenszwalb, D. Girshick, and D. R. McAllester. Object detection with dis-
criminatively trained part-based models. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 2010.

[11] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained,
multiscale, deformable part model. In CVPR, 2008.

[12] A. Gilbert, J. Illingworth, and R. Bowden. Fast realistic multi-action recognition
using mined dense spatio-temporal features. In ICCV, 2009.

[13] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as space-
time shapes. PAMI, 29(2):2247–2253, 2007.

[14] A. Gupta, P. Srinivasan, J. Shi, and L. Davis. Understanding videos, constructing
plots - learning a visually grounded storyline model from annotated videos. In
CVPR, 2009.

13

http://www.visint.org/


[15] D. Han, L. Bo, and C. Sminchisescu. Selection and context for action recognition.
In ICCV, 2009.

[16] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton. Adaptive mixtures of local
experts. Neural Computation, 3(1):79–87, 1991.

[17] Y. Ke, R. Sukthankar, and M. Hebert. Spatio-temporal shape and flow correlation
for action recognition. In CVPR, 2007.

[18] I. Laptev. On space-time interest points. IJCV, 64(2):107–123, 2005.

[19] I. Laptev. Space-Time Interest Points, 2010. Software available at http://www.

irisa.fr/vista/Equipe/People/Laptev/download.html.

[20] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human
actions from movies. In CVPR, 2008.

[21] Y. J. Lee and K. Grauman. Foreground Focus: Unsupervised Learning from
Partially Matching Images. International Journal of Computer Vision (IJCV),
85(2), May 2009.

[22] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video object segmentation.
In ICCV, 2011.

[23] H. Ling and S. Soatto. Proximity distribution kernels for geometric context in
category recognition. In ICCV, 2007.

[24] J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos “in the
wild”. In CVPR, 2009.

[25] S. Maji, L. Bourdev, and J. Malik. Action recognition using a distributed repre-
sentation of pose and appearance. In CVPR, 2011.

[26] M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In CVPR, 2009.

[27] R. Messing, C. Pal, and H. Kautz. Activity recognition using the velocity histories
of tracked keypoints. In ICCV, 2009.

[28] J. Niebles, C. Chen, and L. Fei-Fei. Modeling temporal structure of decomposable
motion segments for activity classification. In ECCV, 2010.

[29] J. Niebles and L. Fei-Fei. A hierarchical model of shape and appearance for human
action classification. In CVPR, 2007.

[30] B. Packer, K. Saenko, and D. Koller. A combined pose, object, and feature model
for action understanding. In CVPR, 2012.

[31] V. Parameswara and R. Chellappa. Human action-recognition using mutual in-
variants. CVIU, 1998.

[32] D. Parikh, L. Zitnick, and T. Chen. Unsupervised learning of hierarchical spatial
structures in images. In CVPR, 2009.

[33] T. Quack, V. Ferrari, B. Leibe, and L. V. Gool. Efficient mining of frequent and
distinctive feature configurations. In ICCV, 2007.

[34] D. Ramanan and D. A. Forsyth. Automatic annotation of everyday movements.
In NIPS, 2003.

[35] C. Rao and M. Shah. View-invariance in action recognition. In CVPR, 2001.

[36] M. Rodriguez, J. Ahmed, and M. Shah. Action mach: a spatio-temporal maximum
average correlation height filter for action recognition. In CVPR, 2008.

[37] M. Rodriguez, J. Ahmed, and M. Shah. Action MACH: A spatio-temporal maxi-
mum average correlation height filter for action recognition. In CVPR, 2008.

[38] M. Ryoo and J. Aggarwal. Spatio-temporal relationship match: Video structure
comparison for recognition of complex human activities. In CVPR, 2009.

[39] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM
approach. In ICPR, 2004.

14

http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
http://www.irisa.fr/vista/Equipe/People/Laptev/download.html


[40] E. Shechtman and M. Irani. Space-time behavior based correlation or how to
tell if two underlying motion fields are similar without computing them? PAMI,
29(11):2045–2056, 2007.

[41] M. Sridhar, A. Cohn, and D. Hogg. Unsupervised learning of event classes from
video. In AAAI, 2010.

[42] J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li. Hierarchical spatio-
temporal context modeling for action recognition. In CVPR, 2009.

[43] B. Yao, X. Jiang, A. Khosla, A. Lin, L. Guibas, and L. Fei-Fei. Action recognition
by learning bases of action attributes and parts. In ICCV, 2011.

[44] J. Yuan, Y. Wu, and M. Yang. Discovery of collocation patterns: from visual
words to visual phrases. In CVPR, 2007.

15


	Introduction
	Background
	A Mid-level Activity Representation based on Key Segment Descriptors
	An Activity Recognition System using Key-Segment Descriptors
	Low-level model
	High-level model
	Max-margin fusion

	Data and Evaluation Procedure
	Interaction Dataset
	Computing Annotator Agreement
	Evaluation Metrics
	 Procedure
	Results

	Conclusion

