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Executive Summary
Technology advances will soon enable us to sequence a person’s genome for less than 
$1,000, which will lead to an exponential increase in the number of sequenced genomes. The 
potential of this advance is blunted unless this information is associated with patient clinical 
data, collected together, and made available in a form that researchers can use. Indeed, 
a recent US National Academy of Sciences study highlighted the creation of a large-scale 
information commons for biomedical research including DNA and related molecular information 
as a national priority in biomedicine, leading to a new era of “Precision Medicine.” Based on 
the current trajectory, the genomic warehouse will be the heart of the information commons. 
To create it requires cooperation from a wide range of stakeholders and experts: patients, 
physicians, clinics, payers, biomedical researchers, computer scientists, and social scientists. 
Here we focus on the technological issues in building a genomic warehouse. 

Genomic information is relevant to all aspects of medicine. To avoid a piecemeal approach, it 
makes sense to build a single database containing the inherited (germline) genome of millions 
of individuals that is used broadly and that is maintained throughout each individual’s lifetime, 
rather than having a separate database of genomes for each specific project or disease, or 
for each specific disease episode in a patient’s life.  Further, in addition to a single germline 
genome, in cancer and immunology in particular, it is also essential to ascertain somatic 
mutations (disease causing mutations to DNA in cells that are not in the germline, and hence 
not passed on to children) to the genome that occur in particular cells during the lifetime of the 
patient. A cancer patient’s data will soon include several full tumor genomes from biopsies at 
different sites and disease stages.  This database would be augmented by RNA-sequencing 
data from specific tissues at specific times in a patient’s life to capture gene expression, and by 
other molecular information, such as epigenetic changes (which do not swap DNA bases) and 
protein expression changes (modifications to the proteins that are produced from genes). 
 
We focus on cancer in part because it is the most complex form of genetic data for a genome 
warehouse--setting a high water mark in terms of design requirements--but also because it 
represents the most acute need and opportunity in genome-based precision medicine today.

● It is widespread: one third of US women will face cancer in their lifetimes, one half of US 
men will also face cancer, and there 1.6M new cases in the US each year; 

● Cancer is a disease that is clearly caused by changes to the genome;
● It is highly individualized, requiring precision medicine;
● Mortality is very high - one quarter of US deaths are due to cancer; within the next few 

years cancer will surpass heart disease as the leading killer;
● Speed is required - cancer patients have their genome(s) sequenced because they 

have a life-threatening disease and want genetic information that may inform treatment 
decisions that must be made in a matter of weeks, in contrast to individuals who are 
sequenced for the purposes of understanding long term predisposition to disease. 

● There are an estimated 800 targeted therapies available or in the pipeline for cancer that 
may benefit from knowledge of the patient’s tumor genome; and

● Its cost of care is much more than the $1,000 to sequence a genome. 
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As the Pulitzer Prize winning book The Emperor of All Maladies concludes, “The question is not 
if we will get this immortal disease, but when.”  Given the numbers above, accelerating progress 
to discover effective cancer treatments could literally save millions of lives. Thus, cancer by 
itself is a compelling justification for a genome warehouse. 
 
Within five years the collection of substantial amounts of molecular information from cancer 
patients, especially DNA, will be a part of patient care. Assuming appropriate privacy/legal 
protections, given a choice, most patients will want their information to also be available for 
research. They will understand that only by contributing to a large-scale effort can enough 
cases be assembled for study that are similar enough to their own subtype to draw meaningful 
scientific and medical conclusions. What we learn from their cancer will help their children and 
future generations with similar cancers. 
 
To maximize use and facilitate interaction between research and clinical practice, the bulk of 
the data should be mirrored for dependability, but act as a single research database under 
one access infrastructure and as a clinical decision support database under another. These 
databases will have distinct Application Programming Interfaces according to the different 
purpose and compliance requirements, so that third parties can build both compliant diagnostic 
tests and research-oriented analysis software on top of the basic information commons. We 
need to adopt the best practices from information technology to build dependable tools for 
genetic analysis and to benchmark results so as to make the most rapid progress.
   
Whole genome sequences are not too much data to store. We show that it is now technically 
possible to reliably store and analyze 1 million genomes and related clinical and pathological 
data, which would match the demand for 2014. Moreover, thanks to advances in cloud 
computing, it is surprisingly affordable: multiple estimates agree on a technology cost of about 
$25 a year per genome. While the focus is on technology, to be thorough, this paper touches 
on high-level policy issues as well as low-level details about statistics and the price of computer 
memory to cover the scope of the issues that a million cancer genome warehouse raises.
 
There a number of concerns that this white paper addresses:
 

1. Dual Use in the Clinic and in Research  - The only way to have a million genomes for 
research is to share data between research and clinical practice. We propose a single 
database with two different access structures and interfaces, one for clinical use and one 
for research. The database will provide one basic applications programming interface 
(API), and different third party entities will build either research or clinical service 
applications on top of that API on a competitive basis. A benefit of this is that sharing 
of clinical research data also facilitates the rapid deployment of research findings in the 
clinic. 

2. Unified Data and Computation - Given that the cost-performance of network bandwidth 
inside a datacenter is about 100 times better than the Internet bandwidth outside the 
datacenter, it will be much more economical to compute within datacenters rather 
than across them. Moreover, cloud computing has demonstrated that purchasing, 
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housing, and operating tens of thousands of servers as a single “warehouse scale 
computer” yields economies of scale that offer a 5- to 10-fold reduction in the total cost 
of computation. To prevent data loss due to a catastrophe, we recommend two nearly 
identical datacenters in different geographic regions. While both will hold the same data, 
they could support different kinds of access, computation, or compliance infrastructure.

3. Genomic analysis expense and accuracy – Current popular software pipelines 
take days to turn the output of sequencing machines into genomes and genome 
comparisons, and the accuracy and biomedical depth of the analysis may not be good 
enough to enable precision medicine. The data processing portion of sequencing a 
genome currently costs about $1000, which is far too high. In addition, DNA of cancer 
tumors has much greater variation from standard reference sequences than the DNA 
of normal cells, which makes accurate analysis for cancer even more challenging. We 
need advances in algorithms and implementations to improve upon the current state-of-
the-art in performance,  accuracy, biomedical depth, and software-engineering practices 
to match the demand from an exponentially increasing number of cancer genomes. 
Moreover, we need to agree upon analysis metrics and benchmarks so that we can 
measure progress and thereby accelerate it.

4. Single common patient consent form – If every collection of 1000 genomes has 
its own consent form, which is the case today, then researchers would need to get 
permission from 1000 data access committee to use the 1M genome warehouse. 
Obviously, such an impediment would render the warehouse unusable. Aggregated 
cancer genomic data collected under a single consent form will be extraordinarily more 
valuable than data collected under many different consents.

5. Need to further isolate some datasets  – Some data require special isolation. For 
example, data from patients in clinical trials must be tightly controlled until the study is 
complete.  To handle this, we propose that a virtual cluster within the cloud computing 
facility, accessible only to those involved in the trial, be allocated to each ongoing trial 
that elects to use the genomics services provided by the database. In exchange for 
services, it would be expected that a significant portion of the data be opened up for 
general research after the trial is complete. A similar approach could be taken to some 
other types of studies, However, if researchers must get permission from an endless  
set of panels to access all the data, it will both slow progress and discourage those 
who could otherwise work on different data sets with fewer roadblocks. It is critical 
that we streamline and shorten the path from collection of data to research analysis 
on aggregated datasets in order that the discoveries made from this repository rapidly 
benefit the patients who need them.

6. Regional warehouses and Application Programming Interfaces – Many countries 
will not feel comfortable putting their citizens’ health information into a single worldwide 
system that may be housed in and subject to the laws of a single nation. Hence, there 
will likely be multiple genomic warehouses, at minimum of one per continent. Third 
parties writing software for either clinical or research applications will need standards. 
Without planning, the likely outcome would be multiple incompatible systems. Following 
the successful tradition in the IT industry, we recommend identifying and embracing 
application programming interfaces early that will allow researchers and developers to 
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access to information in a more controlled manner. 
7. Privacy/use concerns – While nearly everyone recognizes the desire for and 

importance of patient anonymity and/or appropriate limitations on data use, heavy-
handed restrictions could slow progress and make it an unattractive set of data for 
researchers to work on. As long we follow common sense approaches to patient privacy, 
we can still help cancer patients in a timely manner. For example, within the US the 
HIPAA (Health Insurance Portability and Accountability Act) restrictions are routinely met 
for several cloud-housed datasets, so these potential obstacles are not as imposing as 
they might appear to outsiders. Getting the privacy and data use issue right is essential 
and requires a national dialogue. The National Cancer Institute (NCI) has suggested 
the possibility of a national program for Cancer Information Donors, the American 
Society for Clinical Oncology (ASCO) has proposed a rapid learning system for better 
clinical outcomes, and the American Association for Cancer Research (AACR) has 
provided a variety of information and communication resources for cancer researchers. 
These institutions, with input from patient advocates, could support a dialogue to 
address privacy and data use concerns, as well as help rapidly populate a 1M genomic 
repository.

8. Data compression and statistical validity – The purpose of building a genome 
warehouse is not just to store genomes, but also to enable a wide range of biological 
and medical inferences. Our calculations suggest that storing 100 gigabytes of 
compressed data per genome (100 petabytes for 1 million genomes) is the right 
compromise between cost and loss of information. As sequencing becomes cheaper 
and machines produce more data per genome, more aggressive data compression 
will be required to hold to the 100 gigabyte per genome upper limit. The consequence 
is that the data we keep will necessarily be incomplete and imperfect. Inference from 
cancer genome data will necessarily take place in a low signal/high noise regime, and it 
is essential to take this fact into account in designing data analysis pipelines.  Building 
a statistically-aware genome warehouse raises a number of challenges.  First, there 
are computational challenges involved in computing and propagating error bars on 
uncertain quantities. Second, database operations in the genomic warehouse need to 
be statistically grounded. Finally, to establish causality, the statistical underpinnings of 
causal inference (distinctions between experimental and observational data, attention to 
sampling frames, and so on) need to be provided in the genome warehouse. 

9. Embracing Technological Advances – The dramatic reduction in sequencing costs 
is due in part to rapid innovation in sequencing equipment. The third generation of 
sequencing is currently being deployed, and the fourth generation is just around the 
corner. Thus, a repository must be neutral to the technology (and the manufacturer) that 
produces the sequencing information. It will be vital to the acceptance and success of a 
genome warehouse that it easily include all information sources. Whereas today some 
centers use custom assays of subsets of genes, with the dropping cost we suggest the 
minimum today should be whole exomes, and soon should be whole genomes. Moore’s 
Law continues on the information technology side as well, so both the warehouse-scale 
computer design and the funding model must include a plan to refresh the IT equipment 
every few years, in part to grow the capacity of the warehouse.

6



 

10. Potential Candidates – We believe the first serious prototypes must be designed to 
scale quickly to many genomes, include patient records, and address privacy concerns. 
While a daunting combination, these necessary ingredients can be assembled. For 
example, some countries with national healthcare systems, such as Denmark (6M 
citizens), are already discussing plans to record germline genetic information of their 
citizens. For countries without national healthcare systems, like the US, we recommend 
pursuing multiple paths that collectively can develop the technology and make the case 
for the a single cancer repository:

a. A Top-Down path via a large government run clinical trial to collect structured 
patient medical and genetic data.

b. A Patient-Push path via a national organization that collects genetic and medical 
records directly from patients by leveraging patient advocacy groups.

c. A Center-Push path forming a consortium of enlightened cancer centers to 
combine full cancer genomes and unstructured electronic medical records.

11. Finding Seed Funding – If a cancer genome warehouse proves to be as valuable in 
fighting cancer as we hope, its health benefits will be unquestioned. At these prices, we 
believe healthcare systems can easily pay its ongoing costs as it will save money and 
save lives. However, we need to find a path to bootstrap the funding for the first several 
years to give the genomic warehouse the chance to prove its worth.  We make no 
recommendation as to whether the source should be government funds,  philanthropic 
foundations, or industrial support. However, we strongly recommend that seed funds 
be found soon so that we can accelerate discovery of effective treatments and thereby 
more rapidly reduce the mortality of this voracious disease.

 
In establishing that it is technically and economically feasible to construct a million cancer 
genome warehouse, and describing the key characteristics that it must have, we hope 
to provide additional impetus for the many pioneers in biomedicine, both nationally and 
internationally, who are currently advocating such repositories. Like many other computer 
scientists,  we are inventing new algorithms and building new tools that could help fulfill the 
vision of precision medicine, but we cannot make serious progress on them without access to 
real data at large scale. A team approach can change that. It is time to invest, and unleash the 
combined power of genomics and large-scale computation in medicine. 
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Introduction
This white paper discusses the motivation and issues surrounding the development of a 
repository and associated computational infrastructure to house and process a million genomes 
to help battle cancer, which we call the Million Cancer Genome Warehouse. It is proposed as 
an example of an information commons and a computing system that will bring about “precision 
medicine,” coupling established clinical–pathological indexes with state-of-the-art molecular 
profiling to create diagnostic, prognostic, and therapeutic strategies precisely tailored to each 
patient's individual requirements1.
 
The goal of the white paper is to stimulate discussion so as to help reach consensus about the 
need to construct a Million Cancer Genome Warehouse and what its nature should be. To try to 
anticipate concerns, including thorough cost estimates, it covers topics as varied as high-level 
health policy issues to low-level details about statistical analysis, data formats and structures, 
software design, and hardware construction and cost.

Problem Statement: Why a Million Cancer Genome Warehouse?
Cancer is a disease caused by combinations of mutations that occasionally accumulate in some 
cells in our bodies over our lifetime, and cause these cells to grow and divide in an uncontrolled 
fashion, often invading other tissues. In the United States, there are approximately 1.6 million 
new cases of cancer each year, 0.6 million die of cancer each year, and 13 million people 
live with cancer (about 4%) 2. Although of enormous value to science3,4 and often relevant to 
treatment5, the mutations that occur in newly diagnosed tumors are not being systematically 
assayed at this time. The cost of DNA sequencing is one impediment. However, this cost has 
dropped approximately 10,000-fold over the last 8 years, and in a year or so it will cost less than 
$1000 to sequence a human genome, making this assay feasible for routine clinical use. 
 
Another impediment is our current difficulty in interpreting the DNA mutations we find. The only 
solution to improve the quality of these interpretations is more research, which requires a large 
dataset of human cancer genetic data.  We believe we need a minimum of 1 million cancer 
genomes because smaller repositories will not have a sufficient number of samples for specific 
cancer subtypes to discover meaningful patterns.  Without a large, aggregated database we 
lack statistical power.

1 Mirnezami, R., Nicholson, J., & Darzi, A. (2012). Preparing for Precision Medicine. New England Journal 
of Medicine.
2 (2012). Cancer Facts & Figures - 2012 - American Cancer Society. Retrieved July 22, 2012, from http://
www.cancer.org/Research/CancerFactsFigures/ACSPC-031941.
3 Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., et al. (2008). DNA sequencing 
of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456(7218), 66-72.
4 Hudson, T. J., Anderson, W., Aretz, A., Barker, A. D., Bell, C., Bernabé, R. R., et al. (2010). 
International network of cancer genome projects. Nature, 464(7291), 993-998.
5 Ellis, M. J., Ding, L., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., et al. (2012). Whole-genome analysis 
informs breast cancer response to aromatase inhibition. Nature, 486(7403), 353-360.
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Following a recent US National Academy of Sciences study calling for a large scale knowledge 
network  for biomedical research6, Barbara Wold, former Director of Center for Cancer 
Genomics at the National Cancer Institute (NCI),  suggested the possibility of a national 
program for Cancer Information Donors. These are cancer patients who elect to donate their 
cancer genomics data for research independently from their clinical treatment, much like making 
a blood donation. Such a program could enable the creation of a research database consisting 
of sequence data for 1 million cancer patients that could be coupled to a database for clinical 
use. It is one of several possible paths to this goal. Here we recommend a technical approach 
to building such a database. We hope that other authors will address the social and economic 
issues in creating such a database in greater depth in companion papers. 

What data will be collected.
The use of high throughput sequencing data in clinical care has begun.  Where tests for 
sequence mutations within specific exons of one gene were the norm, now targeted panels of 
genes are being simultaneously assayed.  In cancer diagnostics particularly, the past several 
years have witnessed the development of targeted panels consisting of all of the exons for 20-
300 genes7.  Since the fundamental technique used to generate the sequence data is scalable 
(via use of additional PCR primers), the number and coverage of genes in these panels is 
expected to grow as the cost of sequencing continues to drop.  
 
Although ultimately, all of these data will be collected systematically without specific targeting, 
there are several reasons why this has not yet happened:

● While the cost of sequencing continues to drop at an impressive rate, the cost of 
performing genome-wide sequence analysis in cancer is still too high for routine clinical 
use.

● Storing and interpreting smaller panels is a simpler and currently more tractable task.
● Since the fraction of the sample representing tumor can be small and the tumor 

population itself heterogeneous, it is desirable to sequence to a depth sufficient to 
accurately discern the sequence of a clone present in 1% of cells, in some cases less.  
Achieving this depth is much more tractable with targeted panels.

● Targeted panels include only sequence data from regions that can inform an immediate 
treatment decision.

● Development of targeted panels is in line with current practice of applying only CLIA-
approved clinical tests evaluating a specific hypothesis or issue associated with a 
treatment decision in a situation where (1) the accuracy of the test is well-documented 
and (2) the proper use of the test results in making treatment decisions is well-
documented.

● Collecting untargeted data may pose a liability issue for medical institutions and related 
companies, since disease associations are still being discovered.  This opens up 
the possibility of a successful lawsuit in situations where mutations are recorded and 

6 Mirnezami, R., Nicholson, J., & Darzi, A. (2012). Preparing for Precision Medicine. NEJM.
7 Mamanova et al (2010).  Target-enrichment strategies for next-generation sequencing.  Nature 
Methods. 7(2):111-8.
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attributed to a specific patient even though they are not associated with a particular 
prognosis or treatment option at the time of diagnosis.  This includes the majority of 
situations where the basis of the lawsuit may be an entirely unrelated act of claimed 
negligence.

 
A well designed patient consent form can and should help alleviate concerns about negligence.  
Additionally, there are distinct benefits to sequencing more broadly:  namely the discovery 
of new disease associations and the ability to use new associations to help with existing 
clinical care and potentially help prevent recurrence or identify it early.  These points are also 
addressed in several other sections of this paper. 
 
The resource we propose within this paper will be designed to collect all types of data required 
to help diagnose cancer and guide its treatment, as well as information primarily useful for 
research.  This repository can incorporate data commonly obtained today, such as array data 
from expression arrays or SNP chips and sequence from targeted panels of genes, but will 
be able to scale to RNA-seq and full genomic data, which is several orders of magnitude 
larger than these currently used datasets.  Additional assays for epigenetic, non-coding RNA, 
metabolic, and protein expression data are providing important insights, will likely be used in 
clinical care, and are expected to be saved in this repository.  
 
For the purposes of this paper, calculations will be performed using genomic data as an upper 
bound to the data storage requirements for each patient. We address the technical issues 
in scaling up. The policy, liability and other social issues mentioned above will have to be 
addressed separately.  

How This Will Impact Patient Care 
Despite the issues discussed above, several institutions have already adopted preliminary 
pipelines for interpretation of large genomic datasets within clinical oncology8 and medical 
genetics9.  The figure below shows an outline for a typical sequence of events following new 
clinical suspicion of neoplasm under the new molecular paradigm, drawn largely from existing 
processes published by these institutions.  We expect the process to take roughly one week 
given a tumor board that meets biweekly, using a modern mutation calling pipeline and the 
genomic warehouse presented in this paper. The fourth step,  “Automated upload to cancer 
genome warehouse and comparative analysis,” is new to these processes. 

8 Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM,  et al.  (2011)  Personalized oncology 
through integrative high-throughput sequencing: a pilot study.  Science Translational Medicine.
9 Biesecker, Leslie G. (2010).  Exome sequencing makes medical genomics a reality.  Nature Genetics.
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Current genomic testing strategies in oncology may combine tests for mutations in specific 
genes, low pass genome sequencing, exome sequencing (in which just the protein-coding 
regions are sequenced), RNA-seq and/or additional expression microarrays (in which RNA 
transcripts are sequenced or otherwise assayed to determine genes that are abnormally 
expressed), methylation/epigenetic analysis (in which modifications to chromatin by DNA 
methylation and other mechanisms are assayed by sequencing or microarrays) or SNP 
array testing (in which microarrays are used to initially determine tumor sample purity and to 
determine variations in the copy number of genes).  
 
In the near future, as microarrays are replaced by sequencing and sequencing machines 
become network-attached devices, patient assays will be immediately and automatically 
streamed into large databases for storage and processing, either along with clinical information 
or accompanied by a URL indicating where clinical information can be retrieved. At this point, 
if a million cancer genome warehouse is created, patient data could be compared to a vast 
number of other cases that have been previously analyzed and contain treatment and outcome 
data associated with them.  Such comparisons and analysis could provide the physician with 
valuable information about the specific mutations present in the patient’s tumor that may be 
prognostic or suggest gene-targeted therapies, epigenetic changes and changes in gene 
expression and molecular pathway activity that define subtypes that are also prognostic or 
suggest particular therapies, and summary information about trials, studies and outcomes for 
similar cases found by matching patient data within the large repository. 
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Molecular analysis of cancer is vital to both clinical decision support and to research. Rendering 
this information into a form that is interpretable and actionable by physicians as well as 
researchers will be a very active area for third party software development and innovation. 
These third parties will rely on the Applications Development Interface and query platform 
provided by the centralized database.  The section on “Performance Demands” addresses how 
a million cancer genome warehouse could achieve the speed and scale necessary to allow 
external programs to interpret genetic data for a patient within one day.  
 
Most institutions engaged in clinical sequencing use tumor boards to review each case, to 
choose appropriate clinical trials for each patient, and to recommend tailored therapy.  These 
boards generally have members from pathology, oncology, clinical genetics, and statistics 
or informatics.  Additionally, some boards include ethics members; this can be particularly 
important when considering the implications of analysis and disclosure of such comprehensive 
genetic information.  We envision that tumor  boards will be the primary consumer of new 
molecular pathology information from the million cancer genome warehouse for clinical 
applications. By providing a single platform and standards on which third parties can build tools, 
interfaces and analysis pipelines for use by tumor boards across the country, the warehouse will 
foster a widespread use of molecular information in the treatment of cancer. 
 
Tumor sequencing boards also play an important role in improving clinical care by identifying 
and incorporating new associations between genetic elements, therapies, and clinical outcomes 
generated in basic research.  A dual-use million cancer genome warehouse could serve as a 
conduit between researchers and clinicians, helping translational researchers work with tumor 
boards to flag important new developments and decide when to incorporate them into patient 
care.  This process has the potential to increase the pace at which scientific discoveries are 
translated into clinical practice.  It will also accelerate changes expected in clinical trial design to 
meet the demands of personalized oncology10.
 
Since this warehouse would be continually updated, it could be used by clinicians to identify in 
their patients newly discovered clinical correlations from other studies.  It would provide a single 
source for the myriad specialists involved in a patient’s care to access relevant molecular data 
and to be alerted to potential new disease correlations or treatments involving these molecular 
data that are available to their existing patients.  Given the complexities of today’s cancer 
regimens and the number of clinicians involved, this continuously enhanced information could 
improve the quality and continuity of care11. 
 
Indeed, this post hoc analysis of full genomes and resulting change to treatment is one 
argument why patients should have their full tumor genomes sequenced even though today we 
only a fraction of it to prescribe treatments. A patient who has their cancer genome sequenced 
today, even if it has no effect on their immediate treatment,  will be in a better position if they 
recur 10 years from now because it will help doctors in the future to understand the origins and 

10 Maitland, Michael L. and Schilsky, Richard L. (2011)  Clinical Trials in the Era of Personalized 
Oncology.  CA: A Cancer Journal for Clinicians.
11 www.asco.org/CancerLinQ

12

http://www.asco.org/CancerLinQ
http://www.asco.org/CancerLinQ
http://www.asco.org/CancerLinQ
http://www.asco.org/CancerLinQ
http://www.asco.org/CancerLinQ
http://www.asco.org/CancerLinQ
http://www.asco.org/CancerLinQ


 

long term progression of their disease.
 

How it will Impact Science and Discovery of New Treatments
Even though they were running blind with respect to the full spectrum of cancer mutations, 
cancer researchers over the last 40 years have made remarkable progress in understanding the 
disease, and along the way have revolutionized our basic understanding of the signaling and 
other molecular pathways of the cell12. This advance occurred through intensive experimental 
investigation comparing different kinds of cancer-mutated cells to normal cells. The models that 
have been built are greatly oversimplified, but with a million genome database, and computer-
enabled deeper and more comprehensive models13,14,15 the scientific community would now be 
in a dramatically better position to begin to tackle the actual complexity of the cellular processes 
that drive life. 
 
As the most powerful and prolific source of naturally mutated human cells for study in vitro, via 
xenograft and in vivo within patients, cancer studies will continue to play a key role in advancing 
basic molecular, cell and developmental biology. A one million cancer genome repository 
with an effective API will provide an essential support structure for this work, akin to the way 
Google’s search engine and the World Wide Web support so many other critical aspects of 
society today. 
 
The science that results from a deeper molecular understanding of normal and cancer cells has 
already had a profound impact on cancer treatment. New targeted therapies include imatinib16 
(Gleevec) inhibiting the receptor tyrosine kinase ABL, trastuzumab17 (Herceptin) against 

12 Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-
674.
13 Vaske, C. J., Benz, S. C., Sanborn, J. Z., Earl, D., Szeto, C., Zhu, J., et al. (2010). Inference of 
patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. 
Bioinformatics, 26(12), i237-i245.
14 Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R., & Califano, A. (2005). Reverse 
engineering of regulatory networks in human B cells. Nature genetics, 37(4), 382-390.
15 Chuang, H., Lee, E., Liu, Y., Lee, D., & Ideker, T. (2007). Network-based classification of breast cancer 
metastasis. Molecular systems biology, 3(1).
16 Druker, B. J., Guilhot, F., O'Brien, S. G., Gathmann, I., Kantarjian, H., Gattermann, N., et al. (2006). 
Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. New England Journal of 
Medicine, 355(23), 2408-2417.
17 Slamon, D., Leyland-Jones, B., Shak, S., Paton, V., Bajamonde, A., Fleming, T., et al. (1998). Addition 
of Herceptin [TM](humanized anti-HER2 antibody) to first line chemotherapy for HER2 overexpressing 
metastatic breast cancer (HER2+/MBC) markedly increases anticancer activity: a randomized, 
multinational controlled phase III trial. Proc.Annual Meeting-American Society Of Clinical Oncology. 
American Society Of Clinical Oncology.
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ERBB2, gefitinib18 and erlotinib19 against EGFR, crizotinib20 against ALK, vemurafenib21 against 
BRAF, as well as various inhibitors of genes in the PI3K/AKT/mTOR pathway and other key 
cancer drivers. These drugs show dramatic results when the mutations they target are present 
in the tumor, with vastly more precision than standard chemo- or radiation therapy. Genomics 
analysis is also emerging as a key player in understanding differential patient responses to both 
targeted and standard therapies, and emergence of resistance. 
 
Cancer genomics studies are now pushing discovery at a greatly accelerated rate. New 
processes have been implicated in tumorigenesis such as mutations in splicing factors22 23, 
and in HLA genes24, as well as translocations in epithelial tumors25. New aberrant metabolic 
processes have been linked to glioblastoma and other cancers via the discovery of mutations 
of genes such as IDH126. Mutations found in chromatin modifying genes have revealed 
the key role of epigenetics in many cancers, including childhood neuroblastoma27, renal 
carcinoma28, multiple myeloma29, AML30 and many others. (IDH1 mutation in fact has a dual 

18 Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. 
(2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–
small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129-2139.
19 Shepherd, F. A., Rodrigues Pereira, J., Ciuleanu, T., Tan, E. H., Hirsh, V., Thongprasert, S., et al. 
(2005). Erlotinib in previously treated non–small-cell lung cancer. New England Journal of Medicine, 
353(2), 123-132.
20 Gandhi, L., & Jänne, P. A. (2012). Crizotinib for ALK-Rearranged Non–Small Cell Lung Cancer: A New 
Targeted Therapy for a New Target. Clinical Cancer Research, 18(14), 3737-3742.
21 Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., et al. (2011). 
Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of 
Medicine.
22 Yoshida, Kenichi et al. "Frequent pathway mutations of splicing machinery in myelodysplasia." Nature 
478.7367 (2011): 64-69.
23 Graubert, Timothy A et al. "Recurrent mutations in the U2AF1 splicing factor in myelodysplastic 
syndromes." Nature genetics (2011).
24 Comprehensive genomic characterization of squamous cell lung cancers, The Cancer Genome Atlas 
Research Network, Nature, in press. 
25 Tomlins, Scott A et al. "Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate 
cancer." Science 310.5748 (2005): 644-648.
26 Parsons, D Williams et al. "An integrated genomic analysis of human glioblastoma multiforme." 
Science's STKE 321.5897 (2008): 1807.
27 Cheung, Nai-Kong V et al. "Association of age at diagnosis and genetic mutations in patients with 
neuroblastoma." JAMA: the journal of the American Medical Association 307.10 (2012): 1062-1071.
28 Varela, Ignacio et al. "Exome sequencing identifies frequent mutation of the SWI/SNF complex gene 
PBRM1 in renal carcinoma." Nature 469.7331 (2011): 539-542.
29 Van Haaften, Gijs et al. "Somatic mutations of the histone H3K27 demethylase gene UTX in human 
cancer." Nature genetics 41.5 (2009): 521-523.
30 Ley, Timothy J et al. "DNMT3A mutations in acute myeloid leukemia." New England Journal of 
Medicine 363.25 (2010): 2424-2433.
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and perhaps more important role in epigenetics31). New cancer mutational mechanisms such 
as chromothripsis32 and kataegis33 have been discovered, along with hypermutated subtypes 
of colorectal and endometrial cancers with distinct clinical features. Researchers have found 
striking, extensive subclonal evolution34 and mutational heterogeneity in breast35, kidney36 and 
other cancers. 
 
About 800 drugs are targeted at about 300 different genes relevant to cancer are either 
available or in development37. We desperately need better molecular characterization of 
patients and better tracking of outcomes in order to target these therapies appropriately. Thus, 
the genome warehouse will not only be an engine of discovery for targeted therapies, but a vital 
part of clinical translation, validation, and refinement of the cancer pathway knowledge it fosters. 
 
Beyond single-agent therapeutics lies the new horizon of combination therapies38, synthetic 
lethal and passenger mutation-based strategies39, immunotherapies40, and other molecular 
strategies. The need for a comprehensive molecular and clinical database will only increase as 
the science of cancer pushes forward, and as precision treatments that anticipate and adapt to 
mutational and epigenetic moves made by the cancer become the new standard of care. 

Current Repositories, Data Format, Data Size
Repositories that currently hold personal genome sequences include the dbGaP database 
of genomes at the US National Center for Biotechnology Information (NCBI), the European 
Genome-phenome Archive (EGA), the DNA Databank of Japan (DDBJ), and the NCI Cancer 
Genomics Hub (CGHub). Reference genomes and other genome datasets are also available 
from the Beijing Genomics Institute (BGI) and its journal GigaScience. Each of these centers 
makes the genomes they contain available for research. 
 

31 Figueroa, Maria E et al. "Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, 
disrupt TET2 function, and impair hematopoietic differentiation." Cancer cell 18.6 (2010): 553-567.
32 Stephens, Philip J et al. "Massive genomic rearrangement acquired in a single catastrophic event 
during cancer development." Cell 144.1 (2011): 27-40.
33 Nik-Zainal, Serena et al. "Mutational processes molding the genomes of 21 breast cancers." Cell 
(2012).
34 Shah, Sohrab P et al. "The clonal and mutational evolution spectrum of primary triple-negative breast 
cancers." Nature 486.7403 (2012): 395-399.
35 The genetic determinants of the molecula portraitrs of human breast tumors, The Cancer Genome 
Atlas Network, to appear.
36 TCGA, in preparation.
37 http://www.businessweek.com/magazine/content/11_26/b4234024330707.htm
38 Al-Lazikani, B., Banerji, U., & Workman, P. (2012). Combinatorial drug therapy for cancer in the post-
genomic era. Nature Biotechnology, 30(7), 679-692.
39 Muller, F. L., Colla, S., Aquilanti, E., Manzo, V. E., Genovese, G., Lee, J., et al. (2012). Passenger 
deletions generate therapeutic vulnerabilities in cancer. Nature, 488(7411), 337-342.
40 Rosenberg, S. A. (2005). Cancer immunotherapy comes of age. Nature clinical practice. Oncology, 
2(3), 115.
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A common data format for DNA sequences is used by all centers: the BAM format pioneered 
by the international 1000 Genomes Project41. A BAM file stores individual snippets of DNA 
a few hundred DNA bases in length, read from random positions in the genomes of the cells 
from the tissue sample42. To get sufficiently accurate information, each position in the tumor 
genome may be read on average 30 or more times43. For cancer, a minimum of two BAM files 
are obtained for each patient, one for the DNA of the normal cells (representing the germline 
genome of the patient), and one for DNA of the cells of the tumor tissue. In practice, RNA 
is often read as well, and provides valuable information on which genes in the tumor are 
abnormally expressed. RNA information is also stored in the BAM format. 
 
BAM is also used for “exome” sequencing files, which only cover the protein coding region of 
the genome and a few other selected regions. For reasons given above, today many centers 
assay a subset of genes needed for treatment of a particular cancer. As costs drop, the number 
of genes is expanded. Given the rapid change in costs and that it takes time to agree on which 
subset of genes to sequence, we think today it makes more sense that the absolute minimum 
sequencing should be whole exome. Similarly, because the price of whole genome sequencing 
is dropping faster than that of special preparations used in exome sequencing, it is likely that 
most assays will move to cover whole genomes. 
 
The total size of the BAM files of a single patient may approach 1 terabyte (TB) or 1 million TB 
for 1 million patients. As of July 2012, there were approximately 1400 TB of raw BAM data in 
NCBI, 1100 TB in EGA,  312 TB in CGHub, and approximately 35 TB of research data at BGI/
GigaScience. These numbers do not include RAID replication or backup copies. DDBJ has an 
exchange agreement with NCBI and EGA for unrestricted data and thus will have a similar set 
of BAM files. One million TB is considerably larger than current databases.
 
A million TB is 1,000 petabytes (PB), which is roughly the size of all the videos in YouTube. One 
can expect in the near future to gain a factor of approximately 10 from future BAM compression 
technologies such as CRAM44 or cSRA45, with very little loss of medically or scientifically 
relevant information.  Therefore we discuss the design of a 100 petabyte database to hold 
genomics data for 1 million cancer cases.

Limitations of Data Compression
Considerable research has gone into video compression, while BAM compression is currently 
in its infancy. One might argue that it would be wiser to spend money on better compression 

41 Altshuler, D. M., Lander, E. S., Ambrogio, L., Bloom, T., Cibulskis, K., Fennell, T. J., et al. (2010). A 
map of human genome variation from population scale sequencing. Nature, 467(7319), 1061-1073.
42 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence 
alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079.
43 Meyerson, M., Gabriel, S., & Getz, G. (2010). Advances in understanding cancer genomes through 
second-generation sequencing. Nature Reviews Genetics, 11(10), 685-696.
44 Fritz, M. H., Leinonen, R., Cochrane, G., & Birney, E. (2011). Efficient storage of high throughput DNA 
sequencing data using reference-based compression. Genome research, 21(5), 734-740.
45 http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
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methods now rather than building a large genome warehouse. However, significant effort has 
gone into the CRAM and cSRA schemes as well, and while a factor of 10 is feasible it will not be 
possible to compress BAM format DNA sequence data by a factor of, say, 1,000 without losing 
very important information. The reason is rather subtle. Cancer tissues contain a population 
of cells with slightly different mutations, multiplying at different rates, and occupying different 
proportions of the tumor tissue46,47. Mutations that occur in 1% or fewer of the cells in the tumor 
tissue may be important in determining how the tumor will respond to therapy that destroys most 
of the other cells, as well as in predicting the future course of the tumor without treatment48,49. 
Yet even reading each position in the genome 100 times, a novel important mutation in 1% of 
the cells at a particular position in the genome cannot be distinguished with sufficiently high 
accuracy from the enormous pool of background noise within the reads of the BAM file (see the 
Error Characteristics Table). 
 
Two years after a patient’s tumor genome is sequenced, a pattern may be discovered that 
indicates the importance of a mutation at a particular location in the genome for a particular 
type of cancer. Only then can we go back and recognize that among the vast pool of randomly 
discordant reads, those few discordant reads in the original patient mapping to this position 
were indicating that important mutation in a small subset of the cells in his tumor. If we only 
keep a record of the obvious mutations supported by a large percentage of the reads, we can’t 
go back to check. Thus, to retain all the medically and scientifically useful information from the 
sequencing of a tumor, we must retain all the essential information from each of the cancer 
DNA reads. Once again, if we do keep all the information, the patient who does full genome 
sequencing can benefit from later discoveries, as centers could contact the patient and treating 
physician about the impact of the discoveries on treatment. 

API for Research at Different Data Summary Levels
Not all research requires the full 100 petabytes of DNA reads. Therefore, we propose a layered 
structure, in which the compressed BAM files are kept in the slowest and cheapest medium, 
while index, summary and interpretive information is kept on faster but more expensive media. 
In addition to basic biomedical research, we expect the database will be used by biotech and 
biopharmaceutical companies to help design new therapies, diagnostic companies to design 
new tests, epidemiologists to study mutation prevalence, and most importantly by physicians 
using third-party clinical decision support software. We must build an Applications Programming 
Interface (API) to the database that allows research scientists and engineers in both the public 
and private sector to build software tools that help interpret the data and translate it for use 
in research and in clinical practice. In typical operating mode, many of these tools will only 

46 Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational 
evolution spectrum of primary triple-negative breast cancers. Nature, 486(7403), 395-399.
47 Nik-Zainal, S., Van Loo, P., Wedge, D. C., Alexandrov, L. B., Greenman, C. D., Lau, K. W., et al. 
(2012). The Life History of 21 Breast Cancers. Cell.
48 Ding, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., et al. (2012). Clonal 
evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature.
49 Downing, J. R., Wilson, R. K., Zhang, J., Mardis, E. R., Pui, C., Ding, L., et al. (2012). The Pediatric 
Cancer Genome Project. Nature Genetics, 44(6), 619-622.
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need access to intermediate interpretations or high-level summaries of the data, which are 10s 
to 1000s of times smaller than the compressed BAM files. The clinical data associated with 
each patient falls into this latter category of relatively small, high-level data. Uniformity and 
completeness of clinical information, however, remains a serious issue50,51. Current medical 
records in either structured form or as unstructured text are trivial in size when compared to the 
BAM data, but must be further regularized to allow effective large-scale computational analysis. 
As this effort cuts across all of medicine, we would hope that the cancer genome database effort 
could link-up with an even broader effort, rather than solve this problem in isolation. 

Need to Bring the Computation to the Data
It is not yet feasible to transmit petabytes of data over optical fiber from one datacenter to 
another in different parts of the country. Our national backbone fiber operates at 10 Gigabits 
per second, at most half of which would be available for any particular transfer, which translates 
into 50 terabytes per day, or 20 days per petabyte. CGHub, for example, has achieved these 
rates. Wider use will drive this rate down sharply, because no single user would get half of the 
capacity of the national backbone fiber all to themselves. Even after the data are successfully 
transferred, there are considerable costs associated with storage at the other end. Therefore, 
the only practical way forward for a database of this size is to bring the computation that needs 
to be done to the database, rather than transmitting the data to a remote site for computation. 
Computation involving in-depth comparison of large numbers of genomes cannot be done 
efficiently without transferring the data if genomes are spread over many sites. This means that 
to the greatest extent possible, the genome data should all be located in a single database and 
that attached to that database flexible “cloud” computing resources should be provided, which 
many laboratories can use either on a temporary or permanent basis. This is a key element of 
our design.

Queries of a Million Cancer Genome Warehouse
At a simplified level, mutations affect genes, genes are organized into pathways of molecular 
activity in the cell, and disruptions in these activities cause disease.  Therefore, some of the 
questions that researchers and clinicians will be asking using information in the database are: 
 

● For a given subtype of cancer:
● What are the pathway disruptions that are characteristically present in the tumor 

cells?
● Are there specific genes involved in those pathways that are recurrently mutated 

in this or other cancer subtypes to create these disruptions?
● Are there specific mutations in these genes that recur in many cases and are 

common driver mutations for this or other subtypes of cancer?
● Is there a genetic signature associated with prognosis, response to therapy, or 

drug efficacy and side effects for that subtype of cancer?

50 Bennett, S. N., Caporaso, N., Fitzpatrick, A. L., Agrawal, A., Barnes, K., Boyd, H. A., et al. (2011). 
Phenotype harmonization and cross‐study collaboration in GWAS consortia: the GENEVA experience. 
Genetic epidemiology, 35(3), 159-173.
51 Covitz, P. (2004). National Cancer Institute External Data Standards Review.
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● For a given type of pathway disruption:

● In what subtypes of cancer does it often occur?
● What are the phenotypic/clinical consequences and how are such disruptions 

assayed?
● What genes in the pathway are typically disrupted?
● What therapies are available to counteract or exploit this pathway disruption, e.g. 

by inhibiting the action of these genes?
 

● For a given gene:
● In what pathways and cancer subtypes is it involved?
● What biology is known about the gene, e.g. what is its normal variation within the 

human population and its role in specific pathways?
● What are the differential effects of distinct mutations on this gene, e.g. loss-of-

function mutations versus various types of gain-of-function mutations?
 

● For a tumor tissue sample from a given patient:
● What are the specific mutations, gene changes, and pathway disruptions relative 

to other samples from that patient, i.e. relative to the patient’s normal tissue 
sample or to other samples taken during the course of the diagnosis, treatment 
and recurrence?

● How common are these mutations?
 

● For each individual cancer patient:
● How does the set of mutations in a patient’s genome compare to mutations 

observed in other similar patients? How were those patients treated and what 
was the outcome?

● What genetic signatures can be identified for that patient that are statistically 
associated with prognosis, response to therapy, drug efficacy, or side effects?

● What controlled studies relevant to the patient are discussed in the literature, and 
for what on-going clinical trials might the patient qualify?
 

The goal of the database is to provide a platform and an API upon which third-party groups 
could build software services that answer questions such as these. It is a non-trivial problem to 
organize 100 petabytes of personal DNA information to enable efficient and secure queries of 
these kinds. 

Database Architecture
It is essential to have a layered architecture for a database of this size supporting a large variety 
of queries.  Figure 1 shows the three-layered approach that we propose, where each level is 
optimized for the data attributes, size, and queries associated with the given data types.
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Figure 1: Million Cancer Genomes Database Architecture

 
Focusing on the DNA and RNA data only, for the moment, the lowest layer is the storage 
of the compressed BAM files. Bulk access to these will be less frequent than derived data. 
However, the database must support relatively rapid access to specific information in them. 
In particular, all DNA reads in a BAM file are mapped to specific coordinates in the current 
universal reference human genome determined by the Genome Reference Consortium52 (see 
Appendix A).  Rapid, random access queries of the form “give me all DNA reads for a given 
sample that map within a certain narrow range of locations in the reference genome” must be 
possible without downloading entire BAM files. This query is known as BAM slicing. At a deeper 
level, this layer should support compression and queries based on identity by descent of large 
segments of genomes referred to as haplotypes (Appendix A). Multiplexing accesses to the 
different types of data in BAM files (e.g. bases vs quality scores) will reduce access times, as 
discussed below. In addition to these optimizations for specific queries, it will still be necessary 
to be able to relatively rapidly stream all the data from 1000s of genomes into a research 
analysis pipeline running in the nearby servers for in-depth analysis.

52 (2008). Genome Reference Consortium (GRC) - NCBI - NIH. Retrieved July 22, 2012, from http://
www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/.
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The next layer is called the variation database or VCF layer after the increasingly popular 
Variant Call Format for genome data53,54,55. A VCF file for a patient is constructed from all of 
the BAM files for the DNA reads from the different tissue samples taken during the course of 
the patient’s lifetime. Thus, in moving from the sequence database layer up to the variation 
database layer, the data are reorganized in a patient-centric manner, grouped according to 
longitudinal information about a single individual. The VCF file does not record the raw DNA 
reads, but only records what differences are inferred from the BAM files to be present in the 
genome(s) in each tissue sample relative to a standard genome. The standard is typically the 
universal reference human genome, but for cancer could in the future instead be the genome 
inferred to be present from birth in the patient’s normal cells, called the patient’s germline 
genome. 
 
Because a VCF file records only the differences between closely related genomes, including 
inherited variants that distinguish the patient’s germline genome from the universal reference 
genome and somatic mutations that distinguish the patient’s tumor cells from his normal cells, 
it is typically more than 100 times smaller than the BAM files from which it is derived. The price 
of this compression is that some evidence for specific mutations that are present at a very low 
level is omitted from the VCF file. Currently, the optimal conversion of BAM to VCF is still a 
difficult data interpretation problem and is a very active area of research.  However, we expect 
this process to be hardened by the time this database is built, with robust software in place that 
has well-defined statistical accuracy. Special data structures representing the tumor genomes 
at different times in the patient’s life that interpret the single nucleotide inherited and somatic 
variants as well as the larger structural changes represented in a VCF file for an individual will 
also be an integral part of this layer (Appendix A). To obtain the maximal accuracy, all genomes 
obtained from an individual should be processed together. This means that we cannot just 
produce a new VCF file and freeze it each time a new BAM file for the patient arrives from the 
sequencing pipeline, but rather all previous VCF interpretations of the patient’s past recorded 
mutations must be reevaluated, even though research has been conducted and medical actions 
may have already been taken in light of those previous interpretations. 
 
Built upon the VCF layer is the interpretation database layer, which is the first layer in which 
phenotypic and clinical data are incorporated. As discussed in the NAS Precision Medicine 
Report56, the interpretation database must be primarily organized around the individual patient, 
with tables that can be joined using a unique patient identifier as a key. The database layer will 
take advantage of patient-centric organization already present in the VCF layer. Other joins 

53 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., et al. (2011). The 
variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158.
54 (2011). VCF (Variant Call Format) version 4.1 | 1000 Genomes. Retrieved July 22, 2012, from http://
www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41.
55 (2012). PyVCF Download - Softpedia. Retrieved July 22, 2012, from http://linux.softpedia.com/
progDownload/PyVCF-Download-79117.html.
56 Mirnezami, R., Nicholson, J., & Darzi, A. (2012). Preparing for Precision Medicine. New England 
Journal of Medicine.
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must be supported as well, such as based on sample ID within a patient, and by phenotypic/
clinical feature, reference genome location (and common ethnic variant haplotype for that 
location), mutation, gene, pathway, and disease. For efficiency, the interpretation database 
layer can only contain summaries of the data present at the lower levels. Mechanisms for data 
update, revision, retraction, versioning, etc. must be coordinated between the interpretation 
level and the lower levels. Finally, the database layer must contain reasonably complete 
provenance information on how the data in the lower layers were obtained, including details of 
experimental protocols and algorithms used. 
 
The interpretation data layer is the most heterogeneous from a software design perspective, 
and because our understanding of cancer is evolving quickly, it must be designed such that third 
parties can both contribute to it and build on top of it. Reasoning about the biology of cancer 
and its clinical outcomes involves sophisticated models of disparate phenomena ranging from 
molecular signalling pathways within the cell to global physiological response. The database 
must provide the tools that the research community needs to build and deploy such models, 
including or in close collaboration with a platform by which such models can be deployed 
in research and clinical decision making.  The process of building the models themselves 
that answer the user questions listed above must not be dominated by the operators of the 
database. Rather, it must engage the widest possible set of scientists and engineers. 

Performance Demands for a Million Cancer Genome Warehouse
Having covered the potential medical benefits of a warehouse, we need to learn its cost. Hence, 
we next dive down into the details of the computing needed to analyze the such data. (Readers 
less concerned with such low-level details may want to skip to the next section.)
 
Given the projected uses of this system, we expect a mix of production and research workloads.  
The production queries will be run for every patient at the time of diagnosis and then at follow 
up sequencing appointments as the patient’s status is monitored.   The research queries will 
be much more ad hoc, designed to support researchers in their exploration of these large 
datasets.  The content of the research queries could vary widely.  We expect research projects 
will probably require their own dedicated compute and block storage resources which will be 
provisioned by the sponsoring party.
 

Query Type Query Size Query Frequency

Production Diagnosis < 1PB 1.6M / year

Production Check-up < 1PB 13M / 6 mo = 26M / year

Clinical Trial Research 10 TB - 1 PB
(10 - 300 patients per trial 
with contextual info)

~8000 possible trials
* 5 researchers / trial 
* 10 queries/researcher/day
= 400K / year 

Ad hoc research variable (up to 100 PB) 100 simultaneous
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Production Workload
Production workload will consist of a set of predefined queries. This workload will be generated 
by physicians for each new and existing cancer patient.  Given that there are roughly 1.6M 
people diagnosed each year57, we should plan for an average daily production load of 4,500 
queries of this type.  Additionally, there are roughly 13M people living with cancer and we 
will periodically want to perform a checkup every six months, meaning we will have to run on 
average 70,000 times daily. Rounding up, let us assume that we need to run 80,000 queries per 
day, or 1 query per second. To achieve such throughput we would likely need to store the query 
input data in fast storage (e.g., DRAM) and replicate it. 
 
Assuming a query takes 30 seconds on average, we need to execute roughly 30 queries in 
parallel. Furthermore, assume that the input of each query is 1 petabyte and that each query 
executes in parallel on 1,000 cores, and the data is partitioned so that each core reads roughly 
1 terabyte of data. Next, assume that each server has at least 16 cores, and that the level of 
parallelism on each server is 10x (we assume that the loss of 4x accounts for other tasks and 
overhead). In other words, every byte of input can be shared by 10 queries. If each query’s 
input is 1 PB, we will need to replicate the input 3 times (as each 10 queries can share the same 
input). As a result, we need 3 PB DRAM and 30,000 cores to run 80,000 queries/day with an 
average query response time of 30 sec. Note that assuming 16-32 cores per server we need 
1000-2000 servers to satisfy the computation demands. However, even assuming each server 
had 512 GB DRAM, we need as many as 6000 servers to satisfy the memory demands!
 
If the DRAM requirements are too expensive, another option would be to group (batch) all 
queries in a given time interval and run them together. By streaming the input data through 
all queries in the group, we need to read the input only once per batch of queries. Similarly, 
assume each batch of queries runs on 1000 cores, and that the input is on the disk. Since 
each core needs to read 1 TB, it will take a batch 5.6 hours to read the entire input in parallel, 
assuming that the disk throughput is 50 TB/sec. Accounting for contention and other overheads, 
let us assume that it takes 12 hours to read 1TB of data from a single disk. If we assume that 
the computation time of a query is still 1min, then we can batch 720 queries together. As a 
result, by trading the latency and waiting 12 hours we can achieve the query throughput target 
of 50K queries/year without requiring large amounts of DRAM.

Clinical Trial Research and other Special Studies
Part of the research workload is generated by large research institutes and hospitals (e.g., 
clinical trials). Ideally, the research workload should not interfere with production workload. The 
research workload is more explorative (ad hoc) in nature and will typically process significantly 
more data. Furthermore, some workloads will process the original BAM files. A likely approach 
to achieve isolation would be to allocate virtual clusters for each project. Let’s assume that a 
special study may operate on ~100 TB of data, that is 1,000 patients at 100 GB/patient or 100 
patients at 1 TB/patient. To initiate a research project we would dynamically spin off a virtual 

57 (2012). Cancer Facts & Figures - 2012 - American Cancer Society. Retrieved July 22, 2012, from http://
www.cancer.org/Research/CancerFactsFigures/ACSPC-031941.
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cluster and then copy the dataset to the virtual cluster. Assuming we stripe data over 100 disks, 
it will take around 6 hours to copy 100 TB of data, if each disk can sustain a throughput of 50 
MB/second. Assuming 10 disks per server, we would need around 10 servers for each research 
project. In other words, we allocate 1 server per 10 TB of dataset. Note that we assume that 
these research projects will be long lived--days or even months--so that the time it takes to spin 
out a virtual cluster and copy the dataset is relatively small.
 
One important aspect of clinical trial research is the calculation of efficacy of treatment or 
identification of biomarkers predicting outcomes.  These are highly statistical processes, 
generally requiring iterative processing steps most efficiently performed in DRAM.  Since each 
trial will have a virtual cluster with DRAM and compute apportioned for the endeavor, these 
resources will be constantly available to perform these operations and allow trial researchers to 
monitor the progress and potential discoveries arising from their trial on a continuous basis.  For 
a 100 patient trial, each of 10 servers contains 192-512GB DRAM, or about 20-50GB DRAM per 
patient.

Ad Hoc Research
Finally, we expect researchers will want to run queries on the raw data (i.e., BAM files).  Most 
of the time, researchers will be interested in identifying either frequency of specific sequences 
within the data (looking for novel sequence, pathogens, frequency of a defined sequence, copy 
number variation, tumor or allele fraction, and so on) or recalculating occurrence of sequence 
variants either on an individual or population basis.  The main challenge with these queries will 
be the disk bottleneck as the raw data is stored on the disk. Assuming the BAM files are stored 
on 5TB drives, and assuming again that the disk sequential read throughput is 50 MB/second 
it will take 28 hours just to read the data from the disk! Thus, the only realistic way to run ad-
hoc queries that each require a large fraction of the raw data is to batch them. Assuming that 
a response time of one week is acceptable, we can answer virtually any ad hoc query by using 
17% (= 28h/7days*24h) of the disk I/O. Similarly, we assume that these queries will also use up 
to 15-20% of the CPU resources. We believe this is a conservative assumption as we expect 
these queries to be I/O bounded.  
 
This contrasts with ad hoc queries that require only a small fraction of the reads in the database, 
such as a BAM slicing query that pulls from multiple BAMs only the reads that map to a specific 
location in the reference genome. These types of queries will be frequent. For them, fast 
indexing by location in the reference genome and/or by specific DNA sequence can be used to 
avoid the I/O bottleneck described above. 
 
Finally, since raw reads and quality scores are expected to make up the bulk of the data stored 
on the system, while many of the downstream analysis will be interested only in frequency or 
variant data, routine batching should occur in one coordinated, weekly update to compute and 
store this summary information.  Caching this data could tremendously reduce the size of most 
queries if it eliminates loading of the raw data.
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The following table summarizes the resource requirements and the response times for various 
query types.
 

Query Type Query Size Load Resources Response Time

Production 
(diagnosis & 
checkup)

1 PB 27.5M 
queries/year

30K cores (1000 - 
2000 servers); 
3PB DRAM (6000 
servers @ 512GB/
server)

30s with 3 PB 
DRAM, 
12h otherwise 
(reading from disk)

Clinical Trial 
Research / 
Special Study

10TB - 10PB N/A 1-100 servers / 
study

N/A

Ad hoc 
research

variable (up 
to 100PB)

100 
simultaneous

15-20% of entire 
cluster 

1 week

 

Software Principles for a Million Cancer Genome Warehouse
The hardware described above is a necessary condition to build a warehouse, but its usefulness 
is limited by the quality and extensibility of the software that runs in the warehouse. Hence, 
it is vital that such software be built using the best practices from the information technology 
industry. Moreover, to ensure that the efforts in inventing new software algorithms for genetic 
analysis are headed in the right direction, we need to agree on benchmarks to measure 
progress.

Service Oriented Architecture
A major element of the success of "Web 2.0" has been a strong and rapid trend towards 
service-oriented architecture (SOA)58.  In this design stance, an application is structured as a 
collection of independent but cooperating services, and access to data and functionality occurs 
exclusively through each service's Application Programming Interface (API).  The distinction 
is subtle but important: if service A needs data from service B, it must call an existing API 
on B to get that data, because no other access is provided to access B's database directly.  
Applications are then constructed by composing the desired services.  For example, the retail 
site Amazon.com composes standalone services for retail catalog search, recommendations, 
order fulfillment, creating product reviews, and integrating third-party marketplaces.
 
The advantages of SOA have established it as the de facto architecture for network-enabled 
applications:

● APIs tend to be narrow interfaces, so services can be evolved independently as long as 
the APIs remain stable.  Services can be reengineered at the software level or moved to 
different hardware, perhaps radically so; for example, algorithms can be reimplemented 
to take advantage of emerging compute architectures such as Graphics Processing 

58 Fox, A. and Patterson, D. Engineering Long-Lasting Software, Strawberry Canyon, 2012.
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Units (GPUs) without any changes needed to the client applications.
● Service-level APIs are designed to operate over a wide-area network protocol.  While in 

practice the cooperating services may be physically co-located, APIs designed this way 
are necessarily language-neutral and language-independent.  The rapid rate of progress 
in programming tools is a strong motivator to avoid creating a system that is heavily 
dependent on the use of any one language, however popular.

● When an application is composed of independent services, each service's resource 
needs can be addressed separately, with more resources being dedicated to compute-
intensive or storage-intensive tasks in order to "balance the pipeline".

● As new algorithms and techniques are developed, in a SOA new applications can be 
created to use them by recomposition.

● The software infrastructure building blocks needed to create SOA—Web servers, 
network-based programming frameworks, testing frameworks, and so on—are not only 
mature but the focus of constant ongoing attention because of the move to SOA in the 
ecosystem of "commodity" Internet services.

● If a hardware or software "appliance" approach is desired, it is straightforward to create 
user interfaces in front of a composition of services.  Indeed, some of the highest-volume 
Web services such as Twitter are architected just this way, so that the Twitter.com site is 
actually a relatively simple User Interface (UI) in front of a set of independent services.

● If new data formats emerge that are better suited for particular tasks within the research 
agenda, they can be transparently deployed as long as the APIs for working with the 
data remain stable.

 
All of these advantages argue for an SOA-based rather than full-application-based or appliance-
based approach.  

API Design Principles
Some design principles for these APIs include:

● APIs should be language-neutral, as we expect that software writers will use many 
different tools for the job.  An easy way to achieve language-neutrality is to adopt widely-
used SOA conventions such as REST (Representational State Transfer) for establishing 
the set of operations, HTTP (Hypertext Transfer Protocol) as the medium over which 
service calls occur, URLs (Universal Resource Locators) or UUIDs (Universally Unique 
Identifiers) for referring to data items, and simple intermediate representations such 
as XML (eXtensible Markup Language) and JSON (JavaScript Object Notation) for 
representing the calls to a service and the responses.

● APIs must be designed around the reality that the computation should be near the data.  
In general, API calls will name a set of data items, an operation to be performed, and a 
place to put the result.  For example, Amazon's Elastic MapReduce API names datasets 
stored in an HDFS file system, which uses URLs as its naming scheme.

● Any specialized hardware (wet lab or otherwise) should be virtualized behind an 
appropriate API.  It is less important to obtain wide agreement on how a particular class 
of device should be represented, as long as the API documentation and communication 
standards are open.
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Scientific Software Engineering
Another software issue is the quality of the data analysis software itself. A 2008 survey of 2000 
scientists found that most are most are self-taught in programming, that only a third think formal 
training in software engineering is important and, perhaps as a result, less than half have a 
good understanding of software testing.59 Merali chronicles the widespread concern about 
the quality of scientific software, and reports of a case where a bug in a program supplied by 
another research lab forced a “structural-biology group led by Geoffrey Chang of the Scripps 
Research Institute … to retract five papers published in Science, the Journal of Molecular 
Biology and Proceedings of the National Academy of Sciences.”60

 
Through trial and error, the IT industry has developed software development practices that 
make it easier to build dependable software that is easy to use and easy to install.61 Best 
practices include using source code control systems; test driven development where the 
tests are written before the code; highly productive modern programming environments such 
as Ruby on Rails or Scala and Spark; “scrum” organization of small programming teams; 
calculating “velocity” to predict time to develop new features; and Agile software development 
lifecycle that involves rapid iterations of working prototypes and close interaction with end users 
for feedback.

Benchmarks
Finally, the IT industry made rapid progress in improving performance not only because of 
the additional hardware resources provided by Moore’s Law, but also because the industry 
agreed on what were the proper metrics to measure performance and in particular what were 
the best benchmarks to run to have a fair comparison between competing systems.62 Before 
that agreement, each company invented its own metrics and ran its own set of programs as 
benchmarks, making the results incomparable and customers suspicious of them. Even worse, 
engineers at competing companies couldn’t tell whether innovations at their competitors were 
useful or not, so the competition occurred only within companies rather than between them. 
Once the IT industry agreed on a fair playing field, progress accelerated as engineers could see 
which ideas worked well and which didn’t.63 
 
Rapid progress in genomics will be problematic without proper metrics and benchmarks for 
alignment, assembly,  SNP and structural variant calling, gene expression level and isoform 
interpretation from RNA-seq data, pathway analysis, and clinical outcome prediction.

59 Hannay, J. E. et al. How do scientists develop and use scientific software? Proc. 2nd Int. Workshop on 
Software Engineering for Computational Science and Engineering (2009).
60 Merali, Z. Computational science: ...Error Why scientific programming does not compute. Nature 
467(2010), pp. 775-777.
61 Fox, A. and Patterson, D. Engineering Long-Lasting Software, Strawberry Canyon, 2012.
62 Patterson, D. For better or worse, benchmarks shape a field: technical perspective, Communications of 
the ACM, v.55 n.7, July 2012.
63 Hennessy, J. and Patterson, D. Computer Architecture: A Quantitative Approach, 5th edition, Morgan 
Kaufmann Publisher, 2011.
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In summary, open and language-neutral APIs using existing technologies will not only allow 
different applications to be created through the composition of services, but will prevent data 
format heterogeneity, hardware heterogeneity and software (language) heterogeneity from 
becoming obstacles to software progress. Even with good APIs, however, if analysis software 
development does not follow best development methodologies, it will take longer to build and 
be more difficult to use, which will slow progress.That is, the software engineering practices 
of genomic tool developers affect the speed that we can address the looming data analysis 
bottleneck. Finally, even if we agree on APIs and adopt the best software engineering practices, 
if we cannot agree on how to evaluate results, advances in data analysis software will not come 
as fast as we need; it is hard to make progress when you can’t measure it.

Regional Warehouses and APIs 
The laws that protect the privacy of citizens of a country where the warehouse is located 
normally do not protect the citizens of other countries. For example, US terrorism laws 
explicitly give US agencies the right to uncover private information about potential suspects in 
other countries. Thus, there will likely be at minimum of one warehouse per continent. Given 
this political reality, we imagine that researchers will first develop and validate hypotheses 
within their closest repository, and subsequently will want to test it in the others, and 
developers will first bring products to market in their own country, and subsequently want to 
adapt them for use in other countries. APIs that allow researchers to access to information 
in a more controlled manner will greatly facilitate the globalization of the new molecular 
approach to cancer.

Design and Cost to Build and Operate a Million Cancer Genome Warehouse 
While we have covered the hardware requirements to analyze the data and offered guidelines 
on how to build useful software for the warehouse, to complete the cost estimate we need to 
expand the design to include the cost of reliably storing the genomes as well as the operational 
costs of a Million Cancer Genome Warehouse. (We again dive down into low-level details for 
technology aficianados, and readers with other interests may want to skip ahead.)
 
The Open Compute Project (OCP) developed standard designs for compute servers and 
storage servers to be used in datacenters. Initiated by Facebook in 2011, the goal is to reduce 
costs and improve energy efficiency by utilizing “vanity free” servers.  The project now includes 
more than a dozen companies--including AMD, Dell, HP, Intel, and Quanta--and it recently 
released the second generation of designs. We expect to see new designs each year.
 
The OCP philosophy is to separate functions rather than have everything integrated into a 
single box that acts as a common building block. Hence

● There is both a storage-oriented server design and a compute-oriented server design, 
rather than have the same amount of processors, DRAM, and disks in every server.

● Power supplies are included in the cabinet, rather than included in each server.
● Batteries are in a separate rack, rather than in every rack.
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To deliver 100 PB, we need 125 PB of raw storage capacity to handle multiple disk failures 
safely (RAID 7 with 3 check disks per 12 data disks). As we project 5 TB per 3.5 inch SATA disk 
in 2014, we need 25,000 disks. The storage-oriented OCP server, called Open Vault, contains 
30 disks. A single “Open Rack” can contain 18 Open Vaults, yielding 540 disks or 2.7 PB per 
rack in 2014 (Each rack is approximately 21 inches wide and 90 inches tall.) Thus, we need 
about 45 racks for 125 PB. 
 
For the compute server, we selected the Intel v2.0 motherboard, which uses 2 Intel® Xeon® 
E5-2600 processors, has 16 DIMM slots per board, and 4 PCIe slots (from x16 to x4). In 
2014 we could build 192 GB per board and 10 cores per processor. Two motherboards fit in a 
chassis, with three chassis per tray, and 24 trays per Open Rack. Thus, one rack contains 144 
compute-servers, of 288 processors, 2880 cores, and 27 TB of DRAM. If we went with 35 racks 
for computation to match the 35 racks for storage, the total would be approximately 10,000 
processors, 100,000 cores, and 1 PB of DRAM.
 
In addition to single Open Racks, OCP offers a triple rack that has room for 3 Ethernet switches 
along with space for 24 compute-nodes or storage-nodes. If we add racks for batteries and 
datacenter switches, the total is about 85 racks of equipment.

CAPEX/OPEX of a Proposed Platform
The raw computer equipment cost in 2014 is roughly $2M for processors, $4M for disks, $5M 
for DRAM, $2M for networking equipment, and $1M for power supplies, chassis, racks, cabling, 
assembly, testing, and so on. Hence, the computing equipment capital expenditure (CAPEX) is 
approximately $14M per datacenter. With a second datacenter to prevent against data loss due 
to catastrophes, the total computing equipment CAPEX would be $28M.
 
(While this estimate may be missing some items, we don’t include volume discounts nor buying 
over time as demand merits, which would surely save money at this scale of purchase.64)
 
If we use the UC San Diego Supercomputing Center as a reference as an example colocation 
site, leaving it up to the facility to recover the costs for space, and cooling for 85 racks of 
equipment,  charging scheme for rack space and cooling at $14k per rack, we would expect an 
annual OPEX of about $1.25M per datacenter.  
 
The peak power demand for the equipment would be roughly 1 megawatt for processors and 
1 megawatt for DRAM, disks, switches, inefficiencies due to power supplies, and so on. If the 
datacenter runs at a Power Usage Effectiveness65 of 1.25, that would yield a peak demand 
of 2.5 megawatts. At $0.08 per kilowatt hour (in San Diego) and if we assume it operates on 

64Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, 
A., Stoica, I., Zaharia, M. A view of cloud computing, Communications of the ACM, v.53 n.4, April 2010.
65 Hoelzle, U., Barroso, L.A. The Datacenter as a Computer: An Introduction to the Design of Warehouse-
Scale Machines, Morgan and Claypool Publishers, 2009.
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average of 70% of peak load, the annual electricity cost would be about $1.25M per datacenter.
 
The number of administrators to monitor and replace broken equipment would for such a 
facility typically be 6 to 12, so let us add another $2.5M for personnel (including benefits) per 
datacenter.
 
(While we could be missing some costs, note that it might well be possible to locate the 
datacenters in locations that would be cheaper than San Diego.)
 
The annual networking costs can be separated into costs for uploading data to the database 
and costs for downloading data from the database. The download depends on the demand, but 
we could expect the costs to be $5,000 per gigabit/second per month, and if most computation 
is done at the database, the average demand to be less than 4 gigabit/second. At $5K per 
Gbps/month, this costs $0.25M/year.
 
We expect an upload model similar to that used today by storage companies like Amazon, 
which involves direct upload of data via the network for the vast majority of clients, and physical 
shipping of disks for a select few extremely large producers. One such large producer might 
be a company that may emerge which specializes in fast and inexpensive whole genome 
sequencing for research purposes, and when approved as a clinical test, as a clinical service. 
The roadmap for improved network speeds calls for increase from 10 gigabit/s to 100 gigabits/
s in the next few years, with projections for 100-400 gigabits/s by 2015 and 400-1,000 gigabits/s 
by 202066. Therefore we do not see upload speed as a major limitation for the majority of lower 
volume upload clients.  We allocate another $2M for networking costs for data upload.
 
Thus, our estimate for the two datacenters is roughly an initial $28M CAPEX and an initial 
annual OPEX of $8M. If we round up to account for omissions in these rough calculations, we 
end up with a $30M CAPEX and a $15M annual OPEX. If we upgrade all the computers, disks, 
and networking switches every 3 years, we could spread the CAPEX over 3 years ($10M per 
year), so the continuous OPEX would be roughly $25M for the hardware for both datacenters. 
Appendix C has an alternative design that reaches the same cost estimate.

Commercial Cloud Design
Another potentially interesting calculation is using the storage system of Amazon Web Services, 
called S3 for Simple Storage Service, to estimate costs. The current standard price for a small 
amount data is $125 per terabyte (TB) per month. The standard discounted price for at least 
5000 TB or 5 petabytes  (PB) is  $55 per TB per month, or $55,000 per PB per month. 
 
Since S3 storage is replicated internally, there is no need to account for additional redundant 
storage. Amazon S3 redundantly stores your objects on multiple devices across multiple 
facilities. For example, Amazon S3 is designed to sustain the concurrent loss of data in two 
facilities. Amazon claims that the chances of losing data are remote.
 

66 http://www.ieee802.org/3/ad_hoc/bwa/BWA_Report.pdf
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Suppose we could shrink the storage requirements from 2*125 PB as assumed above to “just” 
40 PB. The cost would be $55,000/PB/month * 12 months * 40 PB = $26,400,000, or about 
$25 per genome per year. While this estimate is just the storage cost and does not include the 
computing costs: 

● This estimate is based on 2012 prices, which are likely to drop by 2014. 
● We only need pay for storage occupied versus storage reserved (as in the earlier 

estimates), so the average storage costs may be lower.
 
Such a design would also give the greatest flexibility in storage and computation, as there would 
be no fixed maximum or minimum computation or storage as in the prior designs. As discussed 
further in the section on data compression below, it may be challenging to achieve compression 
to 40 PB, but even at 80 PB, the proportional costs of $50 per genome per year may still be 
attractive given the other advantages of this approach, and the scale and social importance of 
this project may merit further discounts that would be negotiated with commercial cloud provider 
like Amazon Web Services.

Privacy Policies for a Million Cancer Genome Warehouse 
The privacy of patient information in the context of healthcare and clinical research has 
traditionally been protected by two major federal laws: the Health Insurance Portability and 
Accountability Act (HIPAA) and the federal “Common Law” which outlines protection for human 
subjects involved in research.  Over the past 10 years, “genetic privacy” policies for the specific 
protection of genetic information have been implemented in most states, in federal law (e.g. 
GINA), and in policies written by several of the National Institutes of Health.  There are two 
primary - and often contentious - mandates that are addressed by these policies

● The protection of personal genetic information which can be used to identify an 
individual, his or her origin, family lineage or race, and personal traits or disease 
susceptibilities he or she or immediate family members may have

● The promotion of research involving genetic information to improve human health
 
There is an important balance between respect for individual privacy and access to specific 
data required for research to progress.  Because of the personal and predictive nature of 
genetic information, its disclosure could influence an employer or potential insurer, or could 
otherwise divulge specific information an individual might not want to share.   Conversely, 
access to large corpuses of such information unquestionably lends the statistical power required 
to make important disease associations.  Particularly in the field of cancer, where alteration 
of genetic information is synonymous with disease, access to large and specific bodies of this 
data is necessary to identify trends or mechanisms of disease which lead to new therapies and 
diagnostic tests.
 
These two mandates are not always in conflict, however.  In fact, the nature of genetic 
alterations present in cancer expose a subtle but important point of agreement between these 
mandates.  While the unique combination of genetic variation (germline mutation) encoded in a 
person’s genome is private, the alteration in that genome (somatic mutation) due to a neoplastic 
process is not.  Somatic mutations are not passed on, do not identify established traits, and do 
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not identify an individual in the same way germline mutations do.  Much research also relies on 
identification, aggregation and evaluation of somatic mutations and their association with clinical 
outcomes.  Disclosure of this information to cancer researchers is highly useful in research and 
it is much less private.  Genetic privacy policies largely allow the sharing of somatic mutations 
from patient records that are otherwise de-identified.  
 
There have been several different approaches to striking the balance between the mandate for 
privacy and that for research67.  Some groups have argued for open consent68, the release of 
information by patients into the public domain for the study of cancer. This has been promoted 
by several groups, including the Personal Genome Project69 and is starting to take hold.  The 
concept of a “cancer information donor” introduced by the NCI recently is more conservative 
in that patient data would still remain under restricted access only to qualified researchers. A 
similar consent is contemplated by the “Portable Legal Consent”70 used by SAGE Bionetworks71 
a non-profit organization promoting data intensive research and models in biomedicine. How to 
best manage consent remains an active topic of discussion72. 
 
One of the most difficult issues surrounding the creation of large databases of patient genome 
data for research is the question of how results obtained from the study of patient genomes 
by third parties other than the patient’s own physician are returned either to the physician 
or directly to the patient at their election. Expectation of returning all possible results and 
associations to the patient may be dangerous since disease associations are tentative and 
clinical relevance is still being established, while returning too few results may not sufficiently 
serve the data-donating patient. To create a million cancer genome warehouse for research, it 
may be best to start with the blood donor metaphor, in which there is no expectation of direct 
benefit to the donor, and allow infrastructure for return of results for the benefit of the donor to 
grow organically on top of the database API. 
 
We want to emphasize that the first step towards a useful cancer genome warehouse is a 
universal patient consent form within a region. The data collected before such consent is used 
will be much less useful than the data collected after such consent is used.
 
Appendix D describes technical approaches that may help address the privacy concerns for 
germline DNA data.
 

67 Schadt, Eric E. "The changing privacy landscape in the era of big data." Molecular Systems Biology 8.1 
(2012).
68 Lunshof, J. E., Chadwick, R., Vorhaus, D. B., & Church, G. M. (2008). From genetic privacy to open 
consent. Nature Reviews Genetics, 9(5), 406-411.
69 Church, G. M. (2005). The personal genome project. Molecular Systems Biology, 1(1).
70 (2011). consent to research. Retrieved July 22, 2012, from http://weconsent.us/.
71 (2009). Sage Bionetworks Seattle | Home. Retrieved July 22, 2012, from http://sagebase.org/.
72 (2012). Informed consent: A broken contract : Nature News & Comment. Retrieved July 22, 2012, from 
http://www.nature.com/uidfinder/10.1038/486312a.
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Structured vs. Unstructured Electronic Patient Records
It would seem that before trying to collect a million cancer genomes and the corresponding 
electronic patient records, we must first agree on standards for patient records so that we get a 
consistent dataset from which to draw inferences. While a certainly a good project to do, it could 
take years to reach agreement on what should be in the standard.
 
The Big Data movement is about unstructured information; indeed, many argue that what 
people mean by Big Data is not so much that it is large in size, but that it is unstructured, 
uncurated, and inconsistent data.73 The Big Data challenge then is to mine information gold 
nuggets from the ore of dirty data, and many researchers and companies are building new 
algorithms and tools with exactly those goals. Engineers at Google argue in their paper “The 
Unreasonable Effectiveness of Data” that based on their successes at image analysis and 
natural language translation 
 

“The first lesson of Web-scale learning is to use available large-scale data rather than 
hoping for annotated data that isn’t available.  … invariably, simple models and a lot of 
data trump more elaborate models based on less data.”74

 
In the era of electronic medical records, data being collected in clinical data warehouses 
is beginning to be used to inform therapy decisions75 as well as to perform surveillance 
on approved medications.76 77  In an example employing unstructured data, LePendu et al 
used term extraction tools on the clinical notes of a million patients to compile a database of 
statistically significant patterns of off-label drug use.78  Preliminary results include a cancer 
drug being used to treat blockage of veins from the retina and a sleep disorder drug used to 
treat Parkinson’s disease. They use such discoveries to identify adverse off-label usages that 
can then be incorporated into clinical practice.  Most importantly, these examples illustrate the 
use of unstructured data to derive statistically significant, actionable associations from these 
heterogeneous datasets.  Although still at an early stage, similar natural language processing 
techniques have been used to construct databases of formal relationships between terms within 

73 Patterson, D. Computer Scientists May Have What It Takes to Help Cure Cancer, New York Times. 
December 5, 2011. 
74 Halevy, A., Norvig, P. & Pereira, F. The Unreasonable Effectiveness of Data, IEEE Intelligent Systems, 
vol. 24, no. 2, 2009.
75 Frankovich J, Longhurst CA, Sutherland SM. Evidence-based medicine in the emr era. N. Engl. J. Med. 
2011;365:1758-1759
76 Lependu P, Iyer SV, Fairon C, Shah NH. Annotation analysis for testing drug safety signals using 
unstructured clinical notes. J Biomed Semantics. 2012;3 Suppl 1:S5
77 Liu Y, Lependu P, Iyer S, Shah NH. Using temporal patterns in medical records to discern adverse 
drug events from indications. AMIA Summits Transl Sci Proc. 2012;2012:47-56
78LePendu P, et al. AMIA Analyzing Patterns of Drug Use in Clinical Notes for Patient Safety. Summit on 
Clinical Research Informatics. San Francisco, CA: 2012.
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unstructured data that are being applied to help personalize therapy79.
 
Given the urgency of advancement of cancer, it would seem wise to try the unstructured path 
in parallel with structured approaches, as the unstructured path will surely get to large scale 
much more quickly and allow new algorithms and tools to be created much sooner. Algorithmic 
insights that come about from the recent surge in Big Data research may well allow advances in 
treatment for some cancers years sooner than it would take to first standardize patient records 
and then get a million cancer genomes that record patient information in that standard.   

Permission for Full Access to Data in the Million Cancer Genome Warehouse
Clearly, the power of the warehouse is the ability to cross traditional research boundaries to 
make discoveries that can accelerate improvements in health care for the benefit of society 
that ultimately is funding the research and the Million Cancer Genome Warehouse. While 
summary data will be available in an unrestricted manner as appropriate, privacy concerns 
are likely to force regulation of full access. Researchers needing full access will have to agree 
to terms set by patient consent and interpreted by an appropriate Data Access Committee. 
 
Requiring separate permissions from panels responsible for each source of data does not 
scale to the Million Cancer Genome Warehouse.  If this problem cannot be solved with a 
relatively simple permission mechanism, there is no point in building the warehouse, as it 
will be too painful for researchers to do their work.  There are both procedural and technical 
examples in place today that could serve as templates for these permissions.  Procedurally, 
the data access requirements for TCGA have specific usage and publishing clauses which 
could be adopted for this warehouse.  From a technical perspective, cloud service companies 
such as Amazon and Google have developed robust and reliable solutions for partitioning 
access to machines for access by individual clients which could easily be adopted here.  
Ultimately, leading government agencies such as the National Cancer Institute (NCI), the 
American Association for Cancer Research (AACR), and the American Society of Clinical 
Oncology (ASCO), informed by patient advocates,  must come up with a workable solution to 
this issue.
 

Potential Funding Models for a Million Cancer Genome Warehouse
Funding such a large endeavor will require investment from several different parties.  We expect 
that interested parties include biomedical technology companies, pharmaceutical companies, 
information technology companies, the government (i.e. NCI and NIH), hospitals, research 
institutions, philanthropists, and eventually payers (medicare and private insurance).  We see 
two phases:

1. Startup Phase, $30M for CAPEX + $15M/year of OPEX or $25M/year at a cloud 
provider.

79 Whirl-Carrillo M, et al.  Pharmacogenomics knowledge for personalized medicine.  Clin Pharmacol 
Ther. 2012 Oct;92(4):414-7.
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Initially, this will require large investment to procure the hardware to implement the 
project and pay the architects who will create this resource.
 

2. Production Phase, $25M/year of OPEX (including tech renewal) or $25M/year at a 
cloud provider. 

Once this process becomes established and used in clinical care, Medicare and private 
insurance would pay the bulk of the costs required to sustain this effort, considering it 
as part of the cost of a clinical test.  Given the potential benefits to the patient, these 
storage costs and access for downstream care can reasonably be included in the price 
of the assay.  One-time assays today such as Oncotype DX and Mammaprint are 
reimbursed at $2,000-$3,000 per test.  Similar pricing should cover both the cost of 
assay generation and storage for any one of exome/transcriptome/methylome assay, 
storage, and re-analysis by 2014 using the production system outlined above.  If the cost 
of genome sequencing continues to drop at the current pace, full genome sequencing 
can also be performed, stored, and periodically re-analyzed on this system within these 
cost constraints.

 
It is not clear how the start-up phase should be funded. Government funds channeled into 
typical government contracts do not seem likely to produce the desired result for a number 
of reasons that we will not elaborate on here. A true partnership in which the creators of 
the database are thought leaders, are respected and have creative control would be more 
likely to succeed. This may be possible with sufficient philanthropic leverage or through the 
establishment of a consortium model like the Hap-Map project80, representing a collaborative 
public-private effort. 

Storage Compression/Management 
With the rapid growth of sequence data, efficient sequence compression methods have 
assumed a new importance.   The two predominant methods are CRAM81; and cSRA82, a 
component of the SRA Sequence Toolkit83.  Both methods apply reference-based compression 
of mapped reads.  Rather than storing the sequence of the reads, they store data describing 
how the reads differ from the reference genome: where substitutions, inserts, and deletions 
occur, and any bases that are substituted or inserted.  Both methods also apply similar 
heuristics to discard secondary mappings, reduce the metadata stored per read, and store only 
those flags that cannot be recomputed accurately from compressed data.  Both achieve lossless 
compression ratios on the order of 0.3 bits/byte.
  

80 Gibbs, Richard A et al. "The international HapMap project." Nature 426.6968 (2003): 789-796.
81 Fritz, M. H., Leinonen, R., Cochrane, G., & Birney, E. (2011). Efficient storage of high throughput DNA 
sequencing data using reference-based compression. Genome research, 21(5), 734-740.
82 http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
83 Leinonen, R., Sugawara, H., & Shumway, M. (2011). The sequence read archive. Nucleic acids 
research, 39(suppl 1), D19-D21.
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However, most of the contents by volume of FASTQ and BAM sequence files are not sequence 
data but per-base quality scores.  These scores are typically discrete values ranging from 33 
to 126, stored as one character per base.  Compression performance will ultimately depend 
on reducing the storage of quality scores without significantly reducing the scientific content 
of the sequence archive.  In lossless mode, both CRAM and cSRA retain the quality score 
verbatim.  In lossy mode, cSRA discretizes the quality score, while CRAM applies a “quality 
budget” in which only the most important quality scores are preserved (these are typically the 
scores at substitutions or indels).  Manufacturers are taking steps to reduce the number of bits 
required for lossless storage of quality values. For example, the Illumina sequencing equipment 
produces an 8 bit “quality score”, which is considerably bigger than needed for reasonable 
accuracy and alignment algorithms. Steps they are taking to reduce the quality score to 4 or 
5 bits will benefit lossless compression. Additional performance gains might be achieved by 
exploiting properties of quality scores, such as how the values are non-uniformly distributed 
with most appearing rarely while a few appear frequently; and how adjacent bases tend to have 
similar quality scores84.
  
Sequencing capacity has far outstripped Moore’s Law.  Over the last ten years, sequencing 
capabilities have been increasing at more than four times the speed of computer processors85.  
This underscores the importance of dealing with compressed sequence data efficiently.  Along 
those lines, the world of genomics could draw on some valuable lessons from the world of video 
compression.  Part of the success of the MPEG standard was due to its usability, its ability to 
exploit network access, random access, and multiplexing.  Each of these attributes apply to 
sequence data:

● Usability: It is essential to have a single API with plugin decompression algorithms.  This 
will allow the client to tune the decompression scheme according to its precise needs 
and parameters.

● Network access: Just as one can now watch streaming video on demand, the sequence 
data should not need to live on the same physical machine as its client.  The client 
software (and the decompression software) should be able to retrieve the sequence data 
over the network, invisibly to the user.

● Random access: One can jump into the middle of a streaming video.  Likewise, the 
ability to index into the middle of a sequence archive is essential for methods that 
analyze the set of sequences that map to one given genomic region.

● Multiplexing: Video contains separate channels for visual and audio data.  Likewise, 
sequence data could be composed of separate channels for mapped reads, quality 
scores, and other elements.  This would give the client the ability to greatly improve 
bandwidth by disconnecting from any channel that is not needed.

 

84 Loh, P., Baym, M., & Berger, B. (2012). Compressive genomics. Nature Biotechnology, 30(7), 627-630.
85 Wan, R., Anh, V. N., & Asai, K. (2012). Transformations for the compression of FASTQ quality scores 
of next-generation sequencing data. Bioinformatics, 28(5), 628-635.
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Statistics/Accuracy Demands for a Million Cancer Genome Warehouse 
Standards for accuracy are a requirement for any assay that is to be used in treatment 
decisions and are a necessity for large-scale research as well. Current standards for DNA 
sequencing accuracy have been set primarily by the 1000 Genome Project and pertain 
only to the sequence of germline DNA. The international community is still in the process of 
establishing standards for the reporting of somatic mutations in cancer tissues relative to the 
patient’s germline genome. The Cancer Genome Atlas in the US and the larger International 
Cancer Genome Consortium are leading this effort. 
 
Setting standards is necessarily an ongoing task because the underlying technology by which 
the DNA is read is rapidly changing. Currently technology from three companies is creating the 
bulk of the data (Illumina, Complete Genomics, and Life Technologies), but newer companies 
with qualitatively different kinds of raw data such as Oxford Nanopore and Pacific Biosciences 
either have begun or will soon begin to produce data. On top of this, many cancer genome 
sequencing projects are in the midst of a shift from the current reliance on frozen tissue samples 
to tissue samples that are formaldehyde-fixed and paraffin-embedded (FFPE)86. This change is 
because in the U.S. in particular, the vast network of clinical practice is designed around FFPE 
storage. Essentially all U.S. archival samples are in this format. Handling and preservation 
of samples has a very significant effect on sequencing data that can be obtained from them, 
both for DNA and especially for RNA as it is considerably more labile; quantitative studies will 
be needed to precisely characterize these effects in the context of a very large database of 
sequenced samples from disparate sources.  
 
Finally, new sequencing techniques that require many fewer cells than the millions required 
by current methods are undergoing rapid development87. These techniques are necessary for 
tissue samples obtained by fine needle biopsy, a safer and less invasive method of obtaining 
tumor tissue for analysis prior to major surgery and in cases where surgery is not appropriate. 
While it is feasible to obtain 100,000 cells from a fine needle biopsy88, a fine needle biopsy 
often yields less than 100 cells by design, because the tumor is small, the physician wishes 
to specifically target a location within the tumor, or the physician wishes to target several 

86 Wagle, N., Berger, M. F., Davis, M. J., Blumenstiel, B., DeFelice, M., Pochanard, P., et al. (2012). High-
throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively 
parallel sequencing. Cancer Discovery, 2(1), 82-93.
87 Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution 
inferred by single-cell sequencing. Nature, 472(7341), 90-94.
88 Glehr, M., Leithner, A., Gruber, G., Wretschitsch, P., Zacherl, M., Kroneis, T., et al. (2010). A New 
Fine-Needle Aspiration System. Surgical innovation, 17(2), 136-141.
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locations in separate biopsies in order to survey the heterogeneity within the tumor89,90. 
Recovery of circulating tumor cells is another area where sequencing from very few cells is 
needed91. Accuracy standards for sequencing from a single cell are necessarily different from 
those for sequencing from many cells, because in preparing the DNA from a single cell, some 
significant percentage of it is inevitably lost, resulting in zero coverage over some regions of the 
reference genome. Thus, one cannot demand high or even moderate accuracy for all genes 
in the genome when sequencing from a single cell. If there is only one or very few cells per 
sequencing run, then data from several runs on different cells must be combined to get full 
coverage of the genome. 

Use of a Reference Genome
Human germline genomes are about 99.9% identical and the places where there is high 
variability between people, called single nucleotide polymorphisms (SNPs), have nearly all been 
well-documented92. Still, there are about 10 million such positions in the reference genome. 
In terms of single nucleotide somatic changes, a patient’s cancer genome (i.e. the dominant 
clone in the tumor) will differ from their germline genome in many fewer positions, somewhere 
between one93 and a few tens of thousands94, depending on the type of cancer. Thus when 
we read DNA either from the germline or the tumor, the majority of reads match a reference 
human genome, and at most a few times every million bases do we read something different 
(which is the reason why compression schemes are based on storing differences in the reads 
from reference). The problem of setting accuracy standards becomes when to decide that the 
something different that we read is worth noting because it might reflect a true difference, and 
when it is much too likely to be due to misread errors. 

Why Uncertain Information Must be Tolerated and Stored
Even with millions of cells per sample, it is not sufficient to merely set a very high bar for the 
accuracy of cancer genome sequencing, e.g. tolerating only a few mistakes per genome.  
Standards must take into account the fundamental accuracy limitations in the technology and 
the extent to which different cells in the tumor tissue sample may have genetic differences that 
must be surveyed. 

89 Voit, C., Kron, M., Schäfer, G., Schoengen, A., Audring, H., Lukowsky, A., et al. (2006). Ultrasound-
guided fine needle aspiration cytology prior to sentinel lymph node biopsy in melanoma patients. Annals 
of surgical oncology, 13(12), 1682-1689.
90 Micames, C. G., McCrory, D. C., Pavey, D. A., Jowell, P. S., & Gress, F. G. (2007). Endoscopic 
Ultrasound-Guided Fine-Needle Aspiration for Non-small Cell Lung Cancer Staging*. Chest, 131(2), 539-
548.
91 Wicha, M. S., & Hayes, D. F. (2011). Circulating tumor cells: not all detected cells are bad and not all 
bad cells are detected. Journal of Clinical Oncology, 29(12), 1508-1511.
92 Altshuler, D. M., Lander, E. S., Ambrogio, L., Bloom, T., Cibulskis, K., Fennell, T. J., et al. (2010). A 
map of human genome variation from population scale sequencing. Nature, 467(7319), 1061-1073.
93 Lee, R. S., Stewart, C., Carter, S. L., Ambrogio, L., Cibulskis, K., Sougnez, C., et al. (2012). A 
remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. The Journal of clinical 
investigation, 122(8), 2983.
94 Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., et al. (2007). Patterns 
of somatic mutation in human cancer genomes. Nature, 446(7132), 153-158.
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Using current DNA sequencing technology, between 1% and 0.1% of the DNA bases will be 
misread on each read attempt, i.e., in each short read that is stored in a BAM file95. We will 
denote the fraction of time that a base is misread, the (single pass) misread error rate, as p. 
Newer technologies are exhibiting higher values of p, not lower, but compensate by providing 
increased speed, longer reads, easier DNA preparation, smaller input DNA requirement or 
some other advantage. So the range for p above is unlikely to change drastically. All methods 
make up for the inaccuracy in an individual read by reading DNA from the same position in 
the reference genome multiple times, to a particular depth of coverage n. But depth is never 
completely uniform across the genome, some regions may be duplicated but with only one or a 
few of the copies mutated, and many tumors harbor mutations that are only present is a small 
subset of the cells. The result is that many mutation calls made from DNA sequencing data are 
in a “grey zone” where we cannot be sure they are meaningful without further evidence, yet we 
cannot discard the data we have lest we lose our ability to recognize that further evidence when 
we get it. A quantitative analysis of error rates and their implications for mutation calling is given 
in Appendix B.

Reasoning with Uncertain Information
It is important to keep in mind that the purpose of building a genome warehouse is not merely to 
store and transport genomes, but to serve as the basis for a wide range of statistical inferences, 
from genomic inferences at the level of individual base pairs and structural polymorphisms, to 
genetic inferences regarding haplotypes and recombination events, to biochemical inferences 
regarding the pathways disrupted by various mutations,  to medically-relevant inferences 
regarding correlations between  genomic variation, phenotypes and treatments.
 
Uncertainty enters the process in the raw data provided by the sequencing platform, where 
quality  scores attempt to quantify uncertainty in the output of the sequencing  process, and and 
the uncertainty profile changes as more data is accumulated at a given position, as discussed 
above. It is essential to propagate uncertainty throughout subsequent stages of processing.  For 
the crucial end-to-end  inferences regarding genotype/phenotype correlations, there will  rarely 
be enough data (enough cases of a specific disease with phenotypes) to be able to assess with 
certainty which aspects of the genotype are critical.  That is, inference for cancer genomics will 
necessarily take place  in a low signal/high noise regime, and it is essential to take this fact into 
account in designing data analysis pipelines.  
 
Indeed, while it is often tempting to try to reduce uncertainty  by making "calls" that convert 
uncertain quantities into discrete decisions, it is our belief that such calls should be postponed 
until as late as possible in pipelines, or forgone entirely.
 
Building a statistically-aware genome warehouse raises a number of challenges.  First, there 
are computational challenges involved in computing and propagating error bars on uncertain 
quantities. There exist statistical tools based on resampling and Monte Carlo that  can perform 

95 Nielsen, R., Paul, J. S., Albrechtsen, A., & Song, Y. S. (2011). Genotype and SNP calling from next-
generation sequencing data. Nature Reviews Genetics, 12(6), 443-451.
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such computations in principle, but such tools have  rarely been applied at the scales that we 
envision.  Moreover, there are numerous calibration issues that must be faced in converting 
quality scores and other genomic and genetic assessments of uncertainty into statistically 
meaningful error bars.  Second, relational database operations in the genomic warehouse need 
to be statistically grounded. Specifically, while database joins are often optimized on the basis 
of raw operation counts, in a statistical setting the goal is that of reducing uncertainty by joining 
complementary pieces of data.   Thus, optimizations should take into account the error bars 
of each  individual source as well as joint measures of uncertainty. Finally, the ultimate goal of 
genome-based biology is to be able to establish causality, and thus the statistical underpinnings 
of causal inference (distinctions between experimental and observational data, attention to 
sampling frames, etc) need to be provided in the genome warehouse.

Potential Paths to a Million Cancer Genome Warehouse
We hope by this point you are convinced that it is technically feasible to build a Million Cancer 
Genome Warehouse, and that we could afford to build it in 2014. As it will take time to 
develop the right algorithms, APIs, and tools that can process this quantity of data efficiently 
and accurately, we argue that we need to get started soon rather than wait until the cost of 
sequencing drops, forcing us to innovate while trying to cope with a tsunami of sequencing 
data. Hence, to deliver on the vision of Precision Medicine, we must give researchers access to 
cancer genomic information and patient records at large scale as soon as possible.
Once the initial systems demonstrate benefits in understanding and treating cancer, we believe 
the technology will naturally become more widespread.
 
In order to get this process started, we will need a sufficient number of targeted panels, exomes/
genomes and patient records that researchers could access so as to require development of the 
technology we need.
 
The first candidates to have such data would be nations that already have electronic medical 
records (EMR) as part of national health care systems. There has already been discussion 
in Denmark, for example, about sequencing the DNA of its 6 million citizens. To estimate the 
number of new cancer patients each year and the number living with cancer, we extrapolate 
from the US statistics. About 0.5% (1.6M/320M in US) or  30,000 Danes may get cancer each 
year and about 4% (13M/320M) or 240,000 could be living with cancer. To get to a million 
genomes, we would need more countries in the EU to participate. China obviously has a much 
larger population, but has only recently started a national healthcare system, so  it presumably 
would take several years to get to a million cancer genomes.
 
Within the US, there is no question that the fastest progress could be made if all the data was 
in a single large scale repository that gave researchers unfettered access. However, this option 
may not be politically feasible in the US until the benefits of the warehouse are demonstrated. If 
so, how could we make demonstrate the value of a million cancer genome warehouse? Quoting 
Shimon Peres:
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If a problem has no solution, it may not be a problem, but a fact - not to be solved, but to 
be coped with over time.
 

We see three paths to cope with the difficulty of creating a single US repository:
 

1. Top Down. A US government agency to start its own trial with, say, 1000 patients, and 
use the trial to drive a standard for patient records. Given the time for standardization 
and to run the study, it would take perhaps five years to get to a thousand cancer 
genome warehouse, and then another several years extend and modify these efforts to 
scale to a million genomes. This seems like a sensible, conservative plan forward, with a 
potentially large warehouse of clean data in 2020 or later. 

2. Patient Push. Create a public resource, provide a common consent form, and appeal to 
patients to donate their cancer data, perhaps as part of a non-profit organization.  This 
option would be to appeal to patients directly and would create a prominent role for 
patient advocacy groups insisting that their medical data be released by the institutions 
treating those who participate. Advocacy groups might even help transcribe electronic 
medical records (EMR) from the many centers into a standard form that this organization 
could use. Several consent forms geared toward this approach have been developed, 
most prominently the Portable Consent developed by John Wilbanks and used by Sage 
Bionetworks.

3. Center Push. Instead of dealing directly with cancer patients, another approach is to 
work with centers treating cancer patients. The idea would be to form a consortium 
starting with a small number of enlightened centers that 1) already have an EMR, 2) 
already plan to do full genome sequencing, and 3) are interested  in sharing data in a 
large repository so as to improve the care of their patients. For example,  MD Anderson 
treats ~110,000 patients per year, with a third being new, or about 40,000 new patients 
per year. That represents about 2.5% of all new cancer patients in the US. The second 
largest is Memorial Sloan–Kettering Cancer Center, which is similar but slightly smaller. 
While there are 1500 cancer centers in the US, the few largest centers combined treat 
10% to 20% of all US patients, or 160,000 to 320,000 new patients and 1.3M to 2.6M 
people living with cancer. This option presumes that such centers would be willing 
to cooperate to help their patients as well as to make progress on fighting cancer. 
Investigators combine data when forced to to gain necessary statistical power. The 
experience in genome-wide association studies is illustrative. For example, initial studies 
searching for statistically significant genetic links to schizophrenia did not have enough 
patients to find a link. The NIH helped inspire cooperation between centers in the US 
to find the link, but this effort was also short of data. It was only when they formed the 
International Schizophrenia Association--involving 106 researchers at 26 institutions in 
8 countries--that they pooled enough information to make a significant discovery.96 As 
mentioned above, centers would need to have ways to regulate information usage until 
the studies have been completed and the papers published.

 

96 Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature. 2009 August 6; 
460(7256): 744–747.
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These last two options would not have the pristine structured data of the first option. However, 
if the first option is not going to produce a database until after 2020, then the Google authors 
of  “The Unreasonable Effectiveness of Data” would likely expect these paths to be at least as 
successful as the first one as they will generate a lot more data sooner.  From our perspective, 
we can see the benefits or proceeding on all three fronts, rather than betting on a single 
approach.
 
Note that if warehouses deliver on their potential, a new industry would likely quickly grow 
around the processing and analysis of cancer genetic information. Being early is often a big 
advantage in a new industry, and whatever country becomes the center of that industry will 
likely benefit from new jobs and taxes. 

Conclusion
This white paper makes the argument that a Million Cancer Genome Warehouse is both 
important for society as a major step towards achieving Precision Medicine and that advances 
in technology have made it feasible. While we need to improve the cost-performance and 
accuracy of software that makes the warehouse useful and address policy issues around data 
access permissions and interfaces, we believe society can now easily afford to build such 
a warehouse.  To develop new algorithms and software to make inroads in the fight against 
cancer using genetic information, we need access to such a repository soon before we are 
swamped with the demands for processing and storing millions of genomes that will surely 
appear as the price of sequencing drops.
 
In countries like the US without a national healthcare system, it will be much more difficult to 
create a single repository until we have definitive evidence of its benefits. We recommend  
pursuing three paths: a large government clinical trials driven approach, a patient-oriented 
organization, and a medical center-oriented consortium. While medical institutions are 
notoriously slow to move, we believe there are several points which will be important in 
facilitating this process:

● Common consent form for all patients that contribute to the database in order for 
collection and dissemination of standard data from different treatment centers.

● Aligning the interests of clinicians and cancer researchers who will use the database in 
order to generate interest and motivate institutional adoption.

● Provide an early example of the utility of this database, most likely at a single medical 
center, to promote adoption among additional centers.

● Mobilizing patient advocacy groups in order to promote adoption among medical centers 
and to ensure the proper transfer of patient information. 

 
We urge the extension of existing and the piloting of new large medical genomic database 
efforts around the world to investigate their potential. If they prove to help researchers discover 
new ways to combat cancer or other diseases and help medical practitioners to save the lives of 
our fellow man, which we expect, some will surely migrate to a self-sustaining model. 
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Appendix A: The Universal Human Reference and Representation of Genome 
Structural Variation
Currently the human reference genome (GRCh37) is largely composed of what is termed 
a “golden path” set of sequences, representing, barring a few gaps, a complete monoploid 
set of chromosomes. Its importance to biomedical research is hard to overstate, ultimately 
providing a proxy to a universal coordinate system for human genetics. However, the golden 
path representation has a number of important drawbacks as a reference97. 
 
Many subsequences prevalent in the population have either been lost (deleted) from the 
genomes used to build the golden path or gained in other human genomes (inserted). 
Such subsequences are described as insertions with respect to the golden path, and 
while any such insertion can be described by its insertion point and sequence, the golden 
path coordinate system does not readily extend to describing nested variations contained 
within these insertions. For example, and most obviously, single nucleotide polymorphisms 
(SNPs) themselves present within such insertions have no coordinate within the golden 
path. Additionally, the current golden path, representing a chimera of haplotypes for each 
chromosome, has numerous minor alleles that are rare in the population, both in terms of SNPs 
and structural variations. This is true for both BAM and VCF files, where unmapped reads 
are a storage headache and ignoring the variants they contain leads to problematic biases. 
Finally, many tools use the golden path sequences (reference mappers98,99 , primer software100, 
reference based assemblers101,102, peak callers103 for chromatin immunoprecipitation assays 
that employ sequencing, etc.), and much annotation effort has been dedicated to the golden 
path, creating a disturbing bias in research towards reference allele discovery and curation 
at the expense of the alleles not represented in the reference104. As the reference is currently 
derived largely from a European individual105, the reference allele bias is also a potential 

97 Mardis, E. R. (2010). The $1,000 genome, the $100,000 analysis. Genome Med, 2(11), 84.
98 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. 
Bioinformatics, 25(14), 1754-1760.
99 Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment 
of short DNA sequences to the human genome. Genome Biol, 10(3), R25.
100 Tusnady, G. E., Simon, I., Varadi, A., & Aranyi, T. (2005). BiSearch: primer-design and search tool for 
PCR on bisulfite-treated genomes. Nucleic acids research, 33(1), e9-e9.
101 Pop, M., Phillippy, A., Delcher, A. L., & Salzberg, S. L. (2004). Comparative genome assembly. 
Briefings in bioinformatics, 5(3), 237-248.
102 Gnerre, S., Lander, E. S., Lindblad-Toh, K., & Jaffe, D. B. (2009). Assisted assembly: how to improve 
a de novo genome assembly by using related species. Genome biology, 10(8), R88.
103 Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., et al. (2008). Model-
based analysis of ChIP-Seq (MACS). Genome Biol, 9(9), R137.
104 Harrow, J., Denoeud, F., Frankish, A., Reymond, A., Chen, C., Chrast, J., et al. (2006). GENCODE: 
producing a reference annotation for ENCODE. Genome Biol, 7(Suppl 1), S4.
105 Osoegawa, K., Mammoser, A. G., Wu, C., Frengen, E., Zeng, C., Catanese, J. J., et al. (2001). A 
bacterial artificial chromosome library for sequencing the complete human genome. Genome research, 
11(3), 483-496.
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ethnic bias, which may cause greater problems when working with individuals from other sub-
populations. 
 

To address these issues, the Genome Reference Consortium106 is identifying and sequencing 
alternative haplotypes in highly polymorphic regions and including these along with the 
reference genome. For example, further haplotype sequences for the Major Histocompatibility 
Complex (MHC)107 have been added to the reference (though still only one is designated as 
being on the golden path). This approach necessitates a homology map between the multiple 

106 Church, D. M., Schneider, V. A., Graves, T., Auger, K., Cunningham, F., Bouk, N., et al. (2011). 
Modernizing reference genome assemblies. PLoS biology, 9(7), e1001091.
107 Horton, R., Gibson, R., Coggill, P., Miretti, M., Allcock, R. J., Almeida, J., et al. (2008). Variation 
analysis and gene annotation of eight MHC haplotypes: the MHC Haplotype Project. Immunogenetics, 
60(1), 1-18.
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possible references to avoid chronic ambiguities in the multiple mapping of both reads and 
annotations between functionally equivalent and evolutionary homologous regions. It creates a 
protocol that is inconsistent with the simple linear coordinate system currently used by a wealth 
of existing genome analysis tools, including all those that support the BAM and VCF formats. 
 
To resolve this, we propose creating a graph structure called a sequence graph based on 
the common variations of the reference genome as identified by the Genome Reference 
Consortium and collaborators, and then to produce a canonical linearization of this graph 
structure informally called a “fat consensus” golden path108. The fat consensus traverses the 
graph of all variation, defining a linear set of chromosomes (see figure below). We call it fat 
because we propose it should be inclusive, so that its coordinates provide space for all suitably 
prevalent insertions. It is a consensus, in that it should describe as far as possible the most 
common path of variation present in the population, to make it as representative as possible.  
The coordinate system established by the fat consensus golden path could be used at all levels 
of the system, from the short read mappings in the BAM files to the highest level relational 
database. 
 
The sequence graph contains more information than the fat consensus, and will itself be useful 
for many studies109. Genome variants are frequently inherited together, and often in large blocks 
that may, as a haplogroup (common haplotype shared by individuals), represent a large region 
that is identical by descent in cells within an individual, in individuals of a family or even in a 
whole sub-population of individuals. Because it represents the fundamental structure of genetic 
variation, this information on haplogroups is important to research and medicine. With newer 
sequencing technologies that produce longer reads, and the development of clever barcoding 
methods to better organize short reads,  reliable haplotype information will be increasingly 
available, and will at some point become the norm110,111,112. A million genome database for 
storing the next generation of DNA sequence data should be designed to take haplotype 
information into account. 
 
By giving haplogroups a place in the data structure, they can themselves be tiled together 
to describe, in a form of genetic shorthand, much of an individual genome. The general 
graph-theoretic representation of a sequence graph also allows the compact and computable 
representation (as subgraphs) of complex structural rearrangement events that occur in 

108 Paten, B., Nguyen, N., Zerbino, D., Earl, D., Raney, B., Hickey, G., Diekhans, M., Haussler, D. The 
Reference Problem: Defining a Consensus DNA Sequence from a Population. In preparation.
109 Paten, B., Zerbino, D., Haussler, D., Genome Histories. In preparation.
110 Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G., & Bayley, H. (2009). Single-nucleotide 
discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proceedings of the 
National Academy of Sciences, 106(19), 7702.
111 Fan, H. C., Wang, J., Potanina, A., & Quake, S. R. (2010). Whole-genome molecular haplotyping of 
single cells. Nature biotechnology, 29(1), 51-57.
112 Roach, Jared C et al. "Analysis of genetic inheritance in a family quartet by whole-genome 
sequencing." Science 328.5978 (2010): 636-639.
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cancer, such as chromothripsis113, with associated uncertainty.  This information is expressed 
in the VCF format file as raw observations of unexpected joins and atypical read depth in 
DNA from that tumor that maps to particular locations in the reference genome. A sequence 
graph interprets this information from the VCF file as a graph of tumor structural variation. 
Classification of rearrangements within an ontology of types such as inversions, translocations, 
etc., can be built by recognising characteristic subgraphs. This could facilitate the study of gene 
fusions, amplifications and losses, all fundamental to cancer, putting methods in this area on 
a par with the more well-developed methods for single nucleotide variants. Whatever precise 
format is chosen to represent structural variation, it will be important that the million genome 
database not treat structural changes as second-class citizens in the universe of cancer 
genome mutations. 

113 Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., et al. (2011). Massive 
genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144(1), 
27-40.
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Appendix B: Expected Number of False Positives Somatic Mutation Calls 
Per Position in the Reference Genome Due to Sequencer Read Error, and Its 
Implications
 
Let us assume for simplicity that we know the germline genome of the patient perfectly, treating 
it as the reference, and are sequencing from their cancer biopsy. We cannot avoid a substantial 
number of misread errors when reading DNA from the tumor that will give the appearance of 
mutations when there are none. Even at a misread error rate of p = 0.0001 (i.e. 0.01% of the 
bases in the read are wrong, 10 times lower than the average that can be expected from typical 
technology), there will be roughly 300,000 single base misreads (false positives) already with 
n = 1 coverage of a genome with 3 billion bases, and proportionally more for higher coverage 
(See Error Characteristics Table below). 
 
 

Read 
Depth 
per 
Patie
nt
 
 
n

Error 
rate
 
 
p

Probability 
of at least 1 
misread at 
given site
(1-(1-p)n)

Expected 
number of sites 
out of 3 billion 
with at least 1 
misread

Required 
redundancy for a 
single genome of 
3 billion sites
x and (x/n)

Required redundancy 
for a cohort of 1,000 
patients, 3 billion 
sites
x and (x/1,000n)

500 0.0001 0.0488 146,000,000 5  reads (0.01) 49  reads (0.000098)

500 0.001 0.394 1,180,000,000 8  reads (0.016) 256  reads 
(0.000512)

500 0.01 0.993 2,980,000,000 16  reads (0.032) 1,933  reads 
(0.00387)

100 0.0001 0.00995 29,900,000 4  reads (0.04) 21  reads (0.00021)

100 0.001 0.0952 286,000,000 6 reads (0.06) 77 reads (0.00077)

100 0.01 0.634 1,900,000,000 9 reads (0.09) 456 reads (0.00456)

30 0.0001 0.00300 8,990,000 4 reads (0.133) 13 reads (0.000433)

30 0.001 0.0296 88,700,000 5 reads (0.167) 37 reads (0.001233)

30 0.01 0.260 781,000,000 7 reads (0.233) 171 reads (0.0057)

 
Error Characteristics Table. DNA sequencing error characteristics at different read depths as 
discussed in the text.
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Assuming that errors are uniform, independent, and occur at rate p, we can determine the 
probability that there will be various numbers of misreads that falsely produce non-reference 
bases that are not actually present in the DNA sequence being read. Let Q(x,n,p) be the 
probability that there are at least x misreads falsely producing the same non-reference base at 
a particular site when the sequencing depth is n and the single pass misread error rate is p. We 
can upper bound this value by
  

 
This bound is fairly tight when the number being bounded is small (see “Upper bound 
approximation” table below for probabilities of false positives for values of the upper bound 
approximation and the actual value of the probability). Let M(x,n,p) = Q(x,n,p) * 3,000,000,000, 
i.e. M(x,n,p) is the expected number of false positives in which x or more misreads falsely 
produce the same non-reference base at some site when sequencing a whole genome. If x is 
large enough so that M(x,n,p) < 1 then we can strongly trust a mutation call based on x reads 
of the same non-reference base at a given position because we don’t expect this to happen 
by chance even once in the entire genome of 3 billion bases. We call the smallest such x the 
required redundancy.  This is a very high bar for accuracy; more false positives than this can 
usually be tolerated in practice. Still, it serves as a useful benchmark. 
 
The Error Characteristics Table above gives some values of the required redundancy x for 
several cases of n and p (Column 5). In parentheses we indicate what fraction of the total 
coverage at a particular position is in the required redundancy. For example in the first row we 
see that if the error rate is p = 0.0001 and the patient’s DNA is sequenced to a depth of 500 at 
a given position then the required redundancy is 5 reads (i.e. 5 out of 500 reads, or 1%). Five is 
the number of times we would need to see a given non-reference base in that position in order 
to have a reliable mutation call. 
 
If we have a cohort of patients, and we are interested to know if the same mutation is either 
very dominant in one or a few patients and/or low level but recurrent among many patients in a 
given position of the genome, then we can add up the counts from all reads in all patients in a 
given position. This leads us to considerably smaller required redundancies as a percentage of 
the total number of reads in all patients at the given position. These required redundancies are 
given in Column 6 of the Error Characteristics Table for a cohort of 1,000 patients. 
 
Note that the above analysis only addresses the issue of whether we can be confident that 
the observed differences between the reference and the tumor are real (due to actual somatic 
mutations) or if they may be due to misreads. Even if the differences between the patient’s 
tumor DNA and germline DNA are real, they may still only reflect random “passenger” mutations 
in the tumor that have no bearing on the disease. In a large cohort, if the same mutation occurs 
in many different patients, we can be more confident that it is a driver rather than a passenger. 
However, some regions of the genome are more prone to random mutation, and this must be 
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taken into account when making higher level causal inferences of this type114. 
 
The values of the required redundancy reveal our current inability to detect mutations that 
occur in a small fraction of the cells in the tissue sample in a single patient. At n = 30-fold 
coverage, a mutation that is homozygously present in 5% of the cells (or heterozygously 
present in 10% of the cells in the tissue sample) has only a 6% chance of having the required 
redundancy to be reliably detected even in the most accurate case of misread rate p = 0.0001. 
A mutation homozygously present in 1% of the cells has only a 0.02% chance of having the 
required redundancy. For n = 100-fold coverage, the corresponding values are 74.2% and 1.8% 
respectively. It is not until we reach n = 950-fold coverage, where 6 reads are required to avoid 
false positives, that a mutation homozygously present in 1% of the cells (heterozygous in 2% 
of the cells) has more than a 90% chance of having the required redundancy. Thus, unless we 
are prepared to accept quite a number of false positives or to do a second phase of additional 
validation on the calls we make, as is done in the TCGA project, it is not possible to reliably call 
mutations that only occur is a small fraction of the cells of a single genome. It does become 
possible at the cohort level, however. To do this, we have to store and reason with isolated read 
discordancies in a patient, at frequencies far below the required redundancy, even though in 
any one tumor these may be overwhelmingly likely to be misread errors. 
 
The above analysis is highly simplified in that it does not address structural variation in the 
cancer genome (see Appendix A). Not only is structural variation difficult to precisely capture 
and assess, but the presence of duplications of genomic regions, with some copies mutated and 
other copies not mutated, makes assessing single nucleotide changes in those regions much 
more difficult. 
 
There are also technical errors in base calling that are not independent and can wreak havoc. 
These are often due to systematic mismapping of the reads to the reference genome. When 
the same mapping error is repeated multiple times, we get several reads that exhibit the 
false appearance of independent evidence for a particular difference relative to the reference 
genome. Both the 1000 Genomes Project and the TCGA/ICGC projects have found this to be 
a major source of errors among the variant calls that otherwise appear to be made with high 
confidence. In a database of 1017 data points (1 million genomes, each with 3 billion sites and 
with 30-40 single pass base calls at each site), any systematic, non-independent errors of this 
type must be uncovered and either eliminated or incorporated into the model of uncertainty. 
 
 

114 (2011). The Spectra of Somatic Mutations Across Many Tumor Types. Retrieved July 22, 2012, from 
http://www.genome.gov/Multimedia/Slides/TCGA1/TCGA1_Lawrence.pdf.
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Upper bound approximation table. The table below gives an estimated upper bound 
approximation (formula in the main text) and actual probabilities of a false positive at a single 
position for various coverages and error rates when x = 1, …, 16 identical non-reference reads 
are required. At low numbers, the estimation very closely bounds actual numbers.
 
 

n p est.
x = 1

actual
x = 1

est.
x = 2

actual
x = 2

est.
x = 3

actual
x = 3

est.
x = 4

actual
x = 4

500 0.0001 0.050 0.049 4.1e-4 4.1e-4 2.3e-6 2.3e-6 9.4e-9 9.4e-9

500 0.001 0.46 0.39 0.037 0.037 0.0020 0.0020 8.4e-5 8.4e-5

500 0.01 1 0.99 1 0.97 0.70 0.55 0.26 0.24

100 0.0001 0.010 0.0099 1.6e-5 1.6e-5 1.8e-8 1.8e-8 1.4e-11 1.4e-11

100 0.001 0.098 0.095 0.0016 0.0016 1.8e-5 1.8e-5 1.4e-7 1.4e-7

100 0.01 0.85 0.63 0.13 0.13 0.014 0.014 0.0011 0.0011

30 0.0001 0.0030 0.0030 1.4e-6 1.4e-6 4.5e-10 4.5e-10 0 0

30 0.001 0.030 0.030 1.4e-4 1.4e-6 4.5e-7 4.5e-7 1.0e-9 1.0e-9

30 0.01 0.29 0.26 0.014 0.014 4.2e-4 4.2e-4 9.5e-6 9.5e-6

 

n p est.
x = 5

actual
x = 5

est.
x = 6

actual
x = 6

est.
x = 7

actual
x = 7

est.
x = 8

actual
x = 8

500 0.0001 3.1e-11 3.1e-11 0 0 0 0 0 0

500 0.001 2.7e-6 2.7e-6 1.8e-9 1.8e-9 3.6e-11 3.6e-11 0 0

500 0.01 0.082 0.080 0.022 0.021 0.0049 0.0049 9.9e-4 9.9e-4

100 0.0001 0 0 0 0 0 0 0 0

100 0.001 9.1e-10 9.1e-10 4.8e-12 4.7e-12 0 0 0 0

100 0.01 7.1e-5 7.1e-5 3.8e-6 3.8e-6 1.7e-7 1.7e-7 6.5e-9 6.5e-9

30 0.0001 0 0 0 0 0 0 0 0

30 0.001 1.7e-12 1.7e-12 0 0 0 0 0 0

30 0.01 1.6e-7 1.6e-7 2.6e-11 2.6e-11 0 0 0 0
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n p est.
x = 9

actual
x = 9

est.
x = 10

actual
x = 10

est.
x = 11

actual
x = 11

est.
x = 12

actual
x = 12

500 0.0001 0 0 0 0 0 0 0 0

500 0.001 0 0 0 0 0 0 0 0

500 0.01 1.8e-4 1.8e-4 2.9e-5 2.9e-5 4.2e-6 4.2e-6 5.6e-7 5.6e-7

100 0.0001 0 0 0 0 0 0 0 0

100 0.001 0 0 0 0 0 0 0 0

100 0.01 2.2e-10 2.2e-10 6.7e-12 6.7e-12 0 0 0 0

30 0.0001 0 0 0 0 0 0 0 0

30 0.001 0 0 0 0 0 0 0 0

30 0.01 0 0 0 0 0 0 0 0

 
 

n p est.
x = 13

actual
x = 13

est.
x = 14

actual
x = 14

est.
x = 15

actual
x = 15

est.
x = 16

actual
x = 16

500 0.0001 0 0 0 0 0 0 0 0

500 0.001 0 0 0 0 0 0 0 0

500 0.01 7.0e-8 7.0e-8 8.1e-9 8.1e-9 8.7e-10 8.7e-10 8.8e-11 8.8e-11

100 0.0001 0 0 0 0 0 0 0 0

100 0.001 0 0 0 0 0 0 0 0

100 0.01 0 0 0 0 0 0 0 0

30 0.0001 0 0 0 0 0 0 0 0

30 0.001 0 0 0 0 0 0 0 0

30 0.01 0 0 0 0 0 0 0 0

 

51



 

Appendix C: Alternate Design of Warehouse Hardware
AIn this section, we assume an alternate design, in which the storage is distributed across all 
servers. Similarly, we consider an OCP rack design, where each rack hosts 18 2U servers. We 
assume each server contains 2 processors, 512 GB DRAM, and 12 disks of 5TB. Using same 
prices as before (i.e., $5K/TB DRAM, $30/TB Disk, $200 per processor), we get $5K per server. 
Adding the price for motherboard and rounding it up we get $6K per server. Thus, each rack has 
360 cores, 1.08PB, and 9TB of DRAM at $108K. To store 125 PB, we need 116 racks, at a cost 
of $12.5M. In addition to 125 PB of disk storage, the 116 racks host over 40,000 cores, and 1 
PB of DRAM. 
 
Typically, the cost of routers and switches is around 25% of server cost, or about $3M. In 
addition, we assume the cabling cost is $2K/rack or $332K for all racks. 
 
The CAPEX, which includes servers, networking equipment, cabinets and cabling, is $16M. If 
we add 10% to account for various estimates and larger number of racks, which will have higher 
hosting costs, we come close to the $18M of the earlier estimate.
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Appendix D. Technical Approaches to Germline DNA Privacy Concerns
In addition to somatic DNA changes that occur only in the tumor cells, inherited DNA variations 
in all of the patient’s cells can affect how an individual develops a particular cancer and how 
the disease responds to treatment regimes, so it will also be important to share this information 
while protecting patient privacy.  
 
An important goal for a Million Cancer Genome Warehouse is performing genome-
wide association studies (GWAS) of both common and rare inherited single nucleotide 
polymorphisms (SNPs) to compare regions of the genome between matched cohorts with and 
without a particular cancer. The large scale of the warehouse will increase the ability to achieve 
desired levels of statistical power for detecting weak associations between single nucleotide or 
structural variants and cancer susceptibility while limiting the rate of false positives. Achieving 
this goal is a critical step in realizing the vision of personalized medicine.
 
However, for the germline mutations, as discussed above,  patient privacy is a major concern 
and the warehouse's large scale introduces a major design challenge. Previously, many studies 
have pooled individual genotype data together while making the allele frequencies of each 
SNP in the pool publicly available. It has been implicitly assumed that releasing such summary 
data provides a secure way to share the results of a study without compromising the privacy 
of the study participants. However, Homer et al.115 showed that it is possible, by examining 
datasets based on high-density SNP arrays, to accurately detect the presence of individual 
genotypes in a mixture of pooled DNA even when each individual’s DNA is present in only small 
concentrations. Although this analysis was aimed at applications in forensic science, these 
findings raised the possibility that the presence of individual genotypes could be inferred from 
summary data, and this possibility has led to the removal of publicly available summary data 
from previous studies as a conservative means of protecting the privacy of human subjects116.
 
A key question about the types of cancer genomic analyses that researchers will want to 
perform is whether it will be sufficient to have access to summary SNP data for only a subset 
of the SNPs (“exposed” SNPs). In cases where such access is sufficient, then it is likely that 
an appropriately defined level of privacy can be maintained if the number of exposed SNPs is 
sufficiently small. Establishing privacy guidelines of this kind requires an understanding of how 
the number of exposed SNPs varies as a function of factors such as the allele frequencies of 
the SNPs, the number of individuals in the DNA pool and, of particular importance, the method 
used to detect the individual in the pool. An analysis of this kind was pursued by Homer et al117, 
who proposed a particular detection method and estimated the statistical power of detecting 

115 Homer, N., Szelinger, S., Redman, M., Duggan, D., Tembe, W., Muehling, J., et al. (2008). Resolving 
individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP 
genotyping microarrays. PLoS Genetics, 4(8), e1000167.
116 Gilbert, N. Nature doi:10.1038/news.2008.1083 (4 September 2008).
117 Homer, N., Szelinger, S., Redman, M., Duggan, D., Tembe, W., Muehling, J., et al. (2008). Resolving 
individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP 
genotyping microarrays. PLoS Genetics, 4(8), e1000167.
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an individual genotype in a sample of exposed SNPs using this new method. But although 
an analysis of any specific detection method provides an estimate of its power of detection, 
it remains possible that another method could provide increased power and that therefore no 
guarantee could be provided that its power of detection was below some acceptable level. 
 
Sankaraman et al118 propose a method and a tool, SecureGenome, that provides an upper 
bound on the detection power achievable by any method, which yields guidelines as to which 
set of SNPs can be safely exposed for a given pool size with a maximal allowable power Beta 
and false-positive level Alpha. SecureGenome is based on a statistical hypothesis testing 
formulation, for which the Likelihood Ratio test (LR test) attains the maximal power achievable. 
This approach provides a guarantee that it will be safe to expose a set of SNPs for which the 
LR test does not achieve sufficient power. SecureGenome takes as input a genotype dataset 
(including the individuals' genotypes), a reference dataset and a ranking of the SNPs, removes 
SNPs that are in linkage disequilibrium, and determines the number of highly ranked SNPs 
that can be safely exposed. The program outputs this value along with the power of the LR test 
evaluated both empirically and theoretically. 
 
In the context of a Million Cancer Genome Warehouse, the approach used by this tool may 
be useful in developing a methodology that enables effective cancer genomics research 
while taking into account both privacy and the need to leverage data collected throughout the 
community.

118 Sankararaman, S., Obozinski, G., Jordan, M. I., & Halperin, E. (2009). Genomic privacy and limits of 
individual detection in a pool. Nature genetics, 41(9), 965-967.
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