
Autotuning Sparse Matrix-Vector Multiplication for

Multicore

Jong-Ho Byun
Richard Lin
Katherine A. Yelick
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-215

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-215.html

November 28, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C.Discovery (Award
#DIG07-10227). Additional support comes from Par Lab affiliates National
Instruments, Nokia,
NVIDIA, Oracle, and Samsung. Also supported by U.S. DOE grants DE-
SC0003959, DE-SC0004938, DE-SC0005136, DE-SC0003959, DE-AC02-
05-CH11231, DE-FC02-06ER25753, DE-FC02-07ER25799, and DE-FC03-
01ER25509.

Autotuning Sparse Matrix-Vector Multiplication for Multicore

Jong-Ho Byun1, Richard Lin1, Katherine Yelick1,2, and James Demmel1,2

1EECS Department, University of California at Berkeley, Berkeley, CA, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

Sparse matrix-vector multiplication (SpMV) is an important kernel in scientific and engineering com-
puting. Straightforward parallel implementations of SpMV often perform poorly, and with the increasing
variety of architectural features in multicore processors, it is getting more difficult to determine the sparse
matrix data structure and corresponding SpMV implementation that optimize performance. In this pa-
per we present pOSKI, an autotuning system for SpMV that automatically searches over a large set of
possible data structures and implementations to optimize SpMV performance on multicore platforms.
pOSKI explores a design space that depends on both the nonzero pattern of the sparse matrix, typically
not known until run-time, and the architecture, which is explored off-line as much as possible, in order to
reduce tuning time. We demonstrate significant performance improvements compared to previous serial
and parallel implementations, and compare performance to upper bounds based on architectural models.

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Sparse matrix-vector multiplication, Auto-tuning, Multicore.

1 Introduction

Sparse matrix-vector multiplication (SpMV) is an important kernel for a diverse set of applications in many
fields, such as scientific computing, engineering, economic modeling, and information retrieval. Conventional
implementations of SpMV have historically performed poorly, running at 10% or less of system peak perfor-
mance on many uniprocessors, for two major reasons: (1) indirect and irregular memory accesses generally
result in little spatial or temporal locality, and (2) the speed of accessing index information in the data
structure is limited by memory bandwidth [17, 32, 35, 15]. Since multicore architectures are widely used
(starting with dual-core processors in 2001, and now throughout supercomputer, desktop and embedded
computing systems), we want to make SpMV as efficient as possible by exploiting multicore’s architectural
features such as the number of cores, simultaneous multithreading, SIMD intrinsics, non-traditional memory
hierarchy including NUMA and shared/private hardware resources [33, 35, 19].

Since SpMV performance depends strongly both on the matrix sparsity pattern and the micro-architecture,
optimizing SpMV requires choosing the right combination of data structure and corresponding implementa-
tion that best exploit the architecture. This is difficult for two reasons: First, the large variety of sparsity
patterns and architectures, and their complicated interdependencies, make the design space quite large. Sec-
ond, since the sparsity pattern is typically not known until run-time, we have to explore this large design
space very quickly. This is in contrast to situations like dense matrix multiplication [4, 33] where off-line
tuning is sufficient, so significant time can be spent optimizing. Since the increasing complexity of architec-
tures also makes exploring the design space by hand more difficult, we are motivated to develop autotuning
systems that automatically and quickly provide users with optimized SpMV implementations.

The HPC community has been developing autotuning methodologies with empirical search over design
spaces of implementations for a variety of important scientific computational kernels, such as linear algebra

1

and signal processing. For examples, ATLAS [33] is a auto-tuning system that implements highly optimized
dense BLAS (basic linear algebra subroutines) and some LAPACK [22] kernels. FFTW [13] and SPIRAL
[26] are similar systems for signal processing kernels.

Our work is most closely based on OSKI [32] (Optimized Sparse Kernel Interface), which applies autotun-
ing to several sparse linear algebra kernels, including SpMV and sparse triangular solve. OSKI automatically
searches over the several sparse storage formats and optimizations. The sparse storage formats (see Section
2.1 for more details) include CSR, CSC, BCSR and VBR, and the optimizations include register blocking
and loop unrolling. Since the nonzero pattern of the sparse matrix is typically not known until run-time,
OSKI combines both off-line and run-time tuning. To reduce the run-time tuning costs, OSKI uses a heuris-
tic performance model to select the best data structure instead of exhaustive search. However, OSKI only
supports autotuning for cache-based superscalar uniprocessors, while ATLAS, FFTW and SPIRAL support
autotuning for multicore platforms.

In this paper, we present pOSKI, an autotuning framework for sparse matrix-vector multiplication to achieve
high performance across variety of multicore architectures (the “p” in pOSKI stands for “parallel”). Since
its predecessor OSKI supports autotuning only for uniprocessors, where the most important optimization
is the data structure with register blocking, we extend OSKI to support an additional set of optimizations
for diverse multicore platforms. Our new optimizations include the following (see Section 3 for more de-
tails): (1) We do off-line autotuning of in-core optimizations for the individual register blocks into which
we decompose the sparse matrix. These optimizations include SIMD instrinsics, software prefetching and
software pipelining, to exploit in-core resources such as private caches, registers and vector instructions. (2)
We do run-time autotuning of thread-level parallelism, to optimize parallel efficiency. These optimizations
include array padding, thread blocking and NUMA-aware thread mapping, to exploit parallel resources such
as the number of cores, shared caches and memory bandwidth. (3) We reduce the non-trivial tuning cost at
run-time by parallelizing the tuning process, and by using history data, so that prior tuning results can be
reused.

We conducted autotuning experiments on three generations of Intel’s multicore architectures (Nehalem,
Sandy Bridge-E and Ivy Bridge), and two generations of AMD’s (Santa Rosa and Barcelona), with ten sparse
matrices from a wide variety of real applications. Additionally, we compared our measured performance re-
sults to SpMV performance bounds on these platforms using the Roofline performance model [34, 36]; this
shows that SpMV is memory bound on all of the platforms and matrices in our test suite. Experimen-
tal results show that our autotuning framework improves overall performance by up to 9.3x and 8.6x over
the reference serial SpMV implementation and over OSKI, respectively. We also compare to parallel Intel
MKL Sparse BLAS Level 2 routine mkl dcsrmv() and a straightforward OpenMP implementation, getting
speedups of up to 3.2x over MKL and 8.6x over OpenMP.

The rest of this paper is organized as follows. In section 2 we overview SpMV including sparse matrix
storage formats and the existing auto-tuning system. In section 3 we describe our autotuning framework
for SpMV, including our optimizations spaces for both off-line and run-time tuning. In section 4 we present
overviews of the multicore platforms and sparse matrices in our test suite. In section 5, we present our
experimental results and analysis comparing to the Roofline performance model, and reference serial and
parallel implementations. Finally, we conclude and describe future work in section 6.

2 Background

2.1 Sparse Matrix-Vector Multiplication

Sparse Matrix-Vector Multiplication (SpMV) means computing y = Ax where A is a sparse matrix (i.e. most
entries are zero), and x and y are dense vectors. We refer to x as the source vector and y as the destination
vector. More generally, we also consider y = βy + αAx where α and β are scalars.

2

2.1.1 Data Structures

Sparse matrix data structures generally only store nonzero entries along with additional index information to
determine their locations. There are numerous possible storage formats, with different storage requirements,
memory access patterns, and computing characteristics, see [30, 31, 11, 27, 3, 5, 20, 35, 12, 16, 37]. Here
are some examples; for more details see [31]. The simplest sparse format is coordinate (COO) format, which
stores both the row and column indices for each nonzero value. Another widely used format is compressed
sparse (CSR) format, which stores matrices row-wise, so the row index does not need to be stored explicitly
as in COO format. The compressed sparse column (CSC) format is similar to CSR, but stores the matrix
column-wise. The diagonal (DIAG) format is designed for sparse matrices consisting of some number of
(nearly) full nonzero diagonals. Since each diagonal is assumed to be full, we only need to store one index
for each nonzero diagonal, and no indices for the individual nonzero elements. The ELLPACK/ITPACK
(ELL) format is designed for the class of sparse matrices in which most rows have the same number of
nonzeros. If the maximum number of nonzeros in any row is s, then ELL stores the nonzeros values in a 2D
array of size m × s, where m is the number of rows, and a corresponding 2D array of indices. The jagged
diagonal (JAD) format was designed to overcome the problem of variable length rows/columns by storing
them in decreasing order by the number of nonzeros per row, plus an additional permutation matrix. The
skyline (SKY) format is a composite format which stores the strictly lower triangle of the matrix in CSR,
the strictly upper triangle in CSC, and the diagonal in a separate array. The block compressed sparse row
(BCSR) format is a further improvement of CSR format by using block structure, to exploit the naturally
occurring dense block structure typical of matrices arising in finite element method (FEM) simulations ; for
more details of BCSR see Section 3.1. The variable block row (VBR) format generalizes the BCSR format
by allowing block rows and columns to have variable sizes.

Comparisons of storage formats are reported in [31, 27, 2, 20]. Vuduc [31] reports that CSR tends to
have the best performance on a wide class of matrices and on a variety of superscalar architectures (Sun
Ultra 2i, Ultra 3, Intel Pentium III, Pentium III-M, Itanium 1 and Itanium 2, IBM Power 3 and Power
4), among the basic formats (including CSR, CSC, DIAG, ELL and JAD) considered for SpMV. He also
reports that BCSR with a proper block size achieves up to 4x speedups over CSR, and VBR shows up to
2.1x speedups over CSR. Shahnaz et al. [27] review the several storage formats (including COO, CSR, CSC,
JAD, BCSR, and DIAG) for sparse linear systems. They report that COO, CSR and CSC are quite similar
to each other with the difference in column and row vector, and CSR has minimal storage requirements.
BCSR is useful when the sparse matrix is compressed using square dense blocks of nonzeros in some regular
patterns, however it does not perform significantly better with different block sizes. Bell et al. [2] reported
the the hybrid format (ELL + COO format) is generally fastest for a broad class of unstructured matrices,
comparing among the basic formats (COO, CSR, DIAG, and ELL) on a GPU (GeForce GTX 280); block
storage formats (BCSR, VBR) are listed as future work. Karakasis et al. [20] conduct a comparative study
and evaluation of block storage formats (including BCSR and VBR formats) for sparse matrices on mul-
ticore architectures. They report that one-dimensional VBR provides the best average performance while
the best storage format depends on a matrix and underlying architecture. They also report that BCSR can
provide more than 50% performance improvement over CSR, but it can lead to more than 70% performance
degradation when selecting improper blocks on a variety of multicore architectures (Intel Hapertown, Intel
Nehalem and Sun UltraSPARC T2 Niagara2). As demonstrated in this literature, the performance benefit
from a particular storage format depends strongly on nonzero pattern and underlying micro-architectures.
Furthermore, the performance benefit from block storage formats depends on selecting proper block size.

Additionally, to increase the effectiveness of those data structures, reordering rows and columns of matrix
can be used, since this can increase the available block structure. There are numerous reordering algorithms
such as Column count [14], Approximate Minimum degree (AMD) [1], reverse Cuthill-McKee (RCM) [9],
King’s algorithm [21], and the Traveling Salesman Problem (TSP) [25].

3

2.2 OSKI: An autotuning System for SpMV

For sparse matrix computations, OSKI, based in large part on the earlier SPARSITY framework [16, 18],
has successfully generated automatically tuned sparse kernels for cache-based superscalar uniprocessors. The
kernels include SpMV and sparse triangular solve (SpTS), among others. OSKI automatically searches over
the several sparse storage formats and optimizations to find the data structure and tuned code that best
exploit properties of both the sparse matrix and the underlying micro-architecture. The sparse storage
formats include CSR, CSC, BCSR and VBR, and the optimizations include register blocking and loop
unrolling. Since the nonzero pattern of the sparse matrix is not known until run-time, the need for run-
time tuning differs from the dense case where only off-line tuning has proved sufficient in practice [4, 33].
To reduce cost of run-time tuning, OSKI has two phases, off-line (compile-time) and run-time. The first
phase is an off-line benchmarking phase to characterize the performance of possible implementations on
the given machine. The second is a run-time search consisting of (a) estimating relevant matrix structural
properties, followed by (b) evaluating a heuristic performance model that combines the estimated properties
and benchmarking data to select an implementation. The heuristic performance model usually chooses an
implementation within 10% of the best implementation found by exhaustive search [31]. However, OSKI
only supports autotuning for cache-based superscalar uniprocessors.

3 pOSKI’s Approach

We extend OSKI’s autotuning framework for SpMV, shown in Figure 1, to support additional optimizations
for multicore platforms. Our work extends OSKI as follows: (1) We perform off-line autotuning of in-core
optimizations for performance on individual register blocks. (2) We perform run-time autotuning of thread-
level parallelism to optimize parallel efficiency. (3) We reduce the non-trivial tuning cost at run-time by
parallelizing the tuning process, and by using history data, so that prior tuning results can be reused. Based
on prior work of our own and others [3, 16, 23, 19, 20, 24, 27, 28, 31, 32, 33, 34, 35, 36], we present the
set of the possible optimization strategies for multicore architectures, classified into three areas as shown
in Table 1: (1) Data structures, (2) In-core optimizations and (3) Thread-level parallelism. The choice
of data structures depend mostly on the nonzero pattern of the sparse matrix, the in-core optimizations
depend mostly on single core architectural resources, and the thread-level parallelizations depend mostly
on parallel architectural resources. In this paper we consider only the subset of optimizations which are
marked with an asterisk(∗) in Table 1; implementing the others is future work. Note that low- and high-level
blocking and partitioning also influence the data structure. Array padding is useful to avoid conflict misses.
Index compression is useful to reduce memory traffic when it can use fewer bits to store column and row
information.

Off-line auto-tuning
(search & benchmark)

Run-time auto-tuning
(analysis & modeling) +

Figure 1: Overview of autotuning framework for SpMV.

Data structures In-core optimizations Thread-level Parallelism
- Storage formats (∗CSR, ∗BCSR, etc.) - Low-level blocking - High-level blocking
- Reordering rows and columns - (∗Register, Cache, TLB blocking) - (∗Thread blocking by row blocks)
- Index compression - ∗Software pipeline - Other partitioning schemes

- ∗Software prefetching - ∗NUMA-aware mapping
- ∗SIMDization - (process and memory afficity)
- ∗Loop unrolling - ∗Array padding

1Table 1: Overview of possible SpMV optimizations for multicore architectures. Asterisks (∗) denote the
optimizations considered in this paper.

4

3.1 Block Compressed Sparse Row (BCSR)

We use BCSR storage format for A, because BCSR format can achieve reasonable performance improvements
compared to CSR when the proper register block size is selected, and OSKI’s autotuning heuristic has been
shown to inexpensively select the proper size. We treat each block of BCSR as a dense block, which may
require filling in explicit zeros. Register blocks are used to improve register reuse (i.e. locality) by storing
as much as possible of the matrix as sequence of small dense blocks, keeping corresponding small blocks of
vector x and y in registers for SpMV. In BCSR format with r × c blocks, an m × n sparse matrix in CSR
format is divided into up to (m/r)× (n/c) blocks, each of size r × c. An example of 2× 2 BCSR format is
shown in Figure 2. BCSR format stores only one column index per register block, and one row pointer per
block row starting position in the array of column indices. The memory requirement for BCSR is therefore
O((r × c× k) + (m/r + 1) + (k)), where k is the number of blocks. Thus BCSR format can store fewer row
pointers and column indices than CSR, but at the possible cost of filling in explicit zeros, and so increasing
storage and arithmetic.

0	 2	 4	 5	 7	

ptr [m/r +1]

0	 3	 1	 6	 4	 0	 5	

ind [k]

a00	 a01	 a04	 a10	 a13	 a14	 a21	 a22	 a27	 a31	 a32	 a36	

a44	 a45	 a54	 a55	 a60	 a61	 a66	 a71	 a75	 a76	

val [r×c×k]

a00	 a01	 a04	

a10	 a13	 a14	

a21	 a22	 a27	

a31	 a32	 a36	

a44	 a45	

a54	 a55	

a60	 a61	 a66	

a71	 a75	 a76	

n

mA =

Figure 2: Example of 2 × 2 BCSR storage format for an 8 × 8 sparse matrix. Nonzero values including
explicit zeros are stored in the val array. The column index of the (0, 0) entry of each block is stored in ind
array. The ptr array points to block row starting positions in the ind array.

3.2 Off-line (compile-time) autotuning

Even though we cannot choose the best register block size until run-time when the input matrix structure is
known, the fastest implementations for all likely r× c block sizes can be selected off-line, by autotuning over
a design space of in-core optimizations including loop unrolling, SIMD intrinsics, software prefetching, and
software pipelining. Additionally, we can tune over the set of available compilers and compiler optimization
flags.

Our off-line autotuning system performs three major operations as shown in Figure 3: (1) It automati-
cally generates codes for various implementations with a set of tunable parameters. The parameters and
their ranges are shown in Table 2; thus 8 · 8 · 4 · 3 = 768 implementations are generated altogether (not
counting compilers and their flags). (2) It collects benchmarking data for each of these implementations
for a dense matrix stored in sparse matrix format on each micro-architecture of interest. This can take a
while, but is only done once per architecture and compiler. (3) It selects the best implementation for each
register block size, storing all the data for later use, including the best observed performance Prc(dense) in
Mflops/sec for each r×c block size, and all the relevant hardware and software environment parameters (OS,
compiler, compiler flags, etc.) needed to make the results reproducible. The benchmark and related data
are stored in .lua files (using the embedded scripting language Lua), and the implementations are stored in
a shared object .so file.

Our off-line autotuning is designed to be extensible using a Python-based code generation infrastructure.
This leads to more compact and maintainable code in which adding new machine-specific intrinsics for
prefetching and SIMD support is straightforward; new architectural concepts like co-processors require a more

5

Generate	 HW/OS	 configura2on	

Target	 HW/OS	
pla6orm	

Sample	 	
Dense	 Matrix	

1.	 Generate	 code	 variants	

Intrinsics	 Set	
(Machine-‐specific)	 2.	 Benchmark	

code	 variants	

Tuning	 Space	
(s,	 r,	 c,	 d,	 imp)	 3.	 Select	 best	 implementa2on	

of	 variant	 (d,	 imp)	 for	 each	
data	 structure	 (s,	 r,	 c)	

Autotuner (Python)

.so	

.C	 .C	 .lua	

Installation

Outputs

Generate	
benchmark	 data	

Transforma2on	 Lua	 Script	

Figure 3: Off-line autotuning phase. The sample dense matrix is stored in sparse storage format. The
generated benchmark data is stored in files (.lua) using Lua, a lightweight embedded scripting language.
The selected implementations are compiled based on HW/OS configuration into a shared object (.so).

Tuning Space

Tunable parameter Range of tunable parameter

Storage format (s) s ∈ { CSR, BCSR }
Number of rows of register block (r) 1 ≤ r ≤ 8

Number of columns of register block (c) 1 ≤ c ≤ 8
∗Software prefetching distance (d) in Bytes d ∈ { 0, 64, 128, 256 }

∗SIMD implementation (imp) imp ∈ { none, SIMDrow, SIMDcol }

Table 2: Tunable parameters for off-line autotuning. Software prefetching distance d = 0 means no prefetch-
ing is done. The SIMD implementation denotes the different computation orders to try to facilitate efficient
use of SIMD intrinsics with pipelined and balanced additions and multiplications: SIMDrow indicates a
row-wise implementation, and SIMDcol indicates column-wise, and none indicates no intrinsics are used (so
it is up to the compiler). All SIMD implementations for each register block are fully unrolled. Choosing
d = 0 and imp =none corresponds to the implementation in OSKI. The tunable parameters with asterisks
(∗) require the machine-specific intrinsics set.

substantial extension to the code generator, but can still be done in a modular way within the framework.

3.3 Run-time (on-line) autotuning

Run-time autotuning is performed only after the locations of the nonzeros of the sparse are known. The
three major autotuning steps are shown in Figure 4.

In Step 1, we partition the sparse matrix into submatrices, to be executed by independent threads in the
existing threadpool. As described later, we try to have one thread per core (or more if hyperthreading is
supported), accessing a submatrix pinned to the memory most local to that core, i.e. we use a nonuniform-
memory access (NUMA) aware mapping. pOSKI currently partitions the matrix into consecutive row blocks
(one-dimensional row-wise partitioning) with roughly equal numbers of nonzeros per block, in order to
balance the load. There are many other possible ways to partition into submatrices, such as one-dimensional
column-wise or two-dimensional partitioning schemes with graph or hypergraph partitioning models [7, 8];
implementing these is future work.

As discussed in more detail in Section 5, it is not always fastest to use all available cores, so choosing
the optimal number of cores is part of the autotuning problem. Trying all subsets of the available cores at
run-time is too expensive, so doing this tuning well is future work; pOSKI currently just uses all available
cores that are provided. In Section 5 we suggest a natural simple formula for the optimal number of cores,
based on measured performance data, but show that it only predicts the right number of cores for some test
matrices and some platforms.

In steps 2 and 3, we need to choose the best data structure and implementation for each submatrix (each

6

submatrix may have a different best choice). Since it is too expensive to exhaustively try all implementations
described in the last section, we use the OSKI heuristic performance model [31, 32] to quickly select the block
size r × c likely to be fastest (more details below). Alternatively, if the user supplies a “hint” that we could
use the same data structure and implementation as used before (based on a user-selected matrix name), this
could more quickly be obtained from a “history database” (a SQLite database .db file). Conversely, tuning
results from using the heuristic performance model can be stored in the database for future use.

Finally each submatrix is copied into its new format. This is often the most expensive autotuning step.
All autotuning steps after the matrix is partitioned are performed in parallel by different threads.

1.	 Par''on	 into	
sub-‐matrices	

2.	 Evaluate	 Heuris'c	
models	 for	 each	 sub-‐
matrix	 in	 parallel	

3.	 Select	 the	 best	 register	
block	 size	 (r,	 c)	 for	 each	 sub-‐

matrix	 in	 parallel	

Transform	 data	
structure	 for	 each	 sub-‐

matrix	 in	 parallel	

.so	 .so	 .lua	
Sparse	
Matrix	

Tuned	
matrix	

History	
data	

Create	 mul'ple	
threads	 as	 	
a	 threadpool	

.so	

Heuristic performance model

Figure 4: Run-time autotuning phase. The outputs of off-line autotuning, benchmark data (.lua) and tuned
codes (.so) are used for run-time autotuning.

Table 3 summarizes the run-time design space. We note that pOSKI currently only implements 1D row-
wise partitioning, other partitioning schemes are future work.

Tunable parameters Range of tunable parameters

Partitioning scheme (Thread blocking) 1D row-wise

Storage format (s) s ∈ { CSR, BCSR }
Number of rows of register block (r) 1 ≤ r ≤ 8

Number of columns of register block (c) 1 ≤ c ≤ 8

Table 3: Tunable parameters for run-time autotuning.

3.3.1 Thread-level Parallelization

As shown in Figure 4, we first implement a threadpool, reusable multiple threads using thread affinity and
a spin lock, based on POSIX Threads (Pthreads) API for thread-level parallelism. We use a first-touch
allocation policy to allocate submatrices to the closest DRAM interface to the core that will process them.
We also use the affinity routines to pin the each thread to particular core. As mentioned earlier, it is im-
portant to use a NUMA-aware mapping to minimize memory access costs. Additionally, our NUMA-aware
mapping attempts to maximize usage of multicore resources (from memory bandwidth to physical cores in
an architectural hierarchy on a multicore platform) by scaling with the number of threads. This must be
handled carefully since the physical core ID depends on the platform. We pad the unit-stride dimension to
avoid cache line conflict misses for each sub-matrix.

As mentioned before, so far we only implement a one-dimensional row-wise partitioning scheme, and at-
tempt to load balance by approximately equally dividing the number of non-zeros among thread blocks.
However, this can result in a load balance problem between submatrices that use different register block
sizes r × c and so run at different speeds. Future work on other partitioning schemes will address this
potential problem.

7

3.3.2 Heuristic performance model

We briefly describe OSKI’s heuristic performance model [31, 32] that we also use to quickly select the optimal
register block size r×c for each submatrix: We choose r and c to maximize the following performance estimate
P̂rc(As) for each sub-matrix As of A:

P̂rc(As) =
Prc(dense)

f̂rc(As)
(1)

Here Prc(dense) is the measured performance value (in Mflops/sec) of SpMV for a dense matrix in r × c

BCSR format (from the off-line benchmark data), and f̂rc(As) denotes the estimated fill ratio of As caused
by storing explicit zeros in the r × c register blocks:

f̂rc(As) =
(number of true nonzeros) + (number of filled in explicit zeros)

number of true nonzeros
(2)

f̂rc(As) is estimated cheaply by statistical sampling of As [31, 32].

3.3.3 History data

Despite our use of a heuristic to quickly estimate f̂rc(As), run-time tuning still has a non-trivial cost. Vuduc
[31] reported that the total cost of run-time tuning could be at most 43 unblocked SpMV operations on the
matrices and platforms in his test suite. Since many users often reuse the same matrix structure in different
runs, this motivates us to quickly reuse previously computed tuning data, by keeping it in a database. We
still have to pay the costs of searching the database (given the matrix name, dimensions, number of nonzeros,
and number of submatrices), and converting the matrix from CSR format to the optimized format (stored
by the dimensions, number of nonzeros, and optimal r× c for each submatrix). To manage history data, we
use SQLite C/C++ interfaces.

4 Experimental Setup

Before we discuss the measured performance results in the following section, we will briefly summarize
characteristics of multicore platforms in our test suite, discuss an SpMV performance bound for our multicore
platforms, and present an overview of the sparse matrices.

4.1 Evaluated multicore platforms

In Table 4, we summarize characteristics of multicore platforms in our test suite, including architectural
configuration, system peak performance, and compiler. The system peak performance is for double-precision
floating point operations, considering neither the max turbo frequency nor AVX, although some of the plat-
forms support these techniques. The system peak bandwidth is the peak DRAM memory bandwidth in
billions of bytes transfered per second (GB/s). The system flop:byte ratio is the ratio of the system peak
performance to the system peak bandwidth.

Gainestown (Nehalem) platform is dual-socket quad-core, so 8 cores altogether, with NUMA support.
Each core runs at 2.66 GHz, with two hardware threads (hyper threading) to allow simultaneous execution
of one 128b SSE multiplier and one 128b SSE adder. The peak double-precision floating point performance
per core is therefore 10.64 GFlops/s, and the system peak double-precision floating point performance is
85.12 GFlops/s. Each socket with three fully buffered DDR3-1066 DRAM channels can deliver 21.3 GB/s.
The system peak bandwidth is therefore 52.6 GB/s.

Jaketown (Sandy Bridge-E) platform is single-socket six-core. Each core runs at 3.3 GHz, with two
hardware threads to allow simultaneous execution of one 128b SSE multiplier and one 128b SSE adder. The
peak double-precision floating point performance per core is therefore 13.2 GFlops/s, and the system peak

8

Platform Intel AMD
Gainestown Jaketown Ivy Santarosa Taurus

Core Architecture Nehalem Sandy bridge-E Ivy bridge Santa Rosa Barcelona
Model No. Xeon X5550 Core i7-3960X Core i5-3550 Opteron 2214 Opteron 2356

Core GHz (Max) 2.66 (3.06) 3.3 (3.9) 3.3 (3.7) 2.2 (-) 2.3 (-)
Sockets 2 1 1 2 2

Cores/Socket 4 6 4 2 4
HW-threads/Core 2 2 1 1 1

SSE (AVX) 128bit (-) 128bit (256bit) 128bit (256bit) 128bit (-) 128bit (-)
L1D cache (private) 64KB 32KB 32KB 64KB 64KB
L2 cache (private) 256KB 256KB 256KB 1MB 512KB
L3 cache (shared) 2× 8MB 15MB 6MB - 2× 2MB

NUMA Yes Yes No Yes Yes
DRAM Type DDR3-1066 DDR3-1600 DDR3-1600 DDR2-667 DDR2-667

(channels per socket) (3× 64b) (4× 128b) (2× 128b) (1× 128b) (2× 64b)
DP GFlops/s 85.12 79.2 26.4 17.6 73.6
DRAM GB/s 2× 21.3 2× 25.6 25.6 2× 10.66 2× 10.66

DP flop:byte ratio 2 1.55 1.03 0.83 3.45
Compiler icc 12.0.4 icc 12.0.4 icc 12.0.4 gcc 4.3.1 gcc 4.3.2

1Table 4: Overview of evaluated multicore platforms. The Gainestown, Jaketown and Ivy platforms enable
each core to run at max turbo frequency (Max). Each L1D and L2 cache is a private cache per core, and
each L3 cache is a shared cache per socket for all platforms. The system peak performance (DP GFlops/s)
is for double-precision floating-point performance. The system peak memory bandwidth (DRAM GB/s) is
the peak DRAM memory bandwidth in GB/s. The system flop:byte ratio (DP flop:byte ratio) is the ratio
of the system peak performance to the system peak memory bandwidth for double-precision floating-point
performance.

double-precision floating point performance is 79.2 GFlops/s. The system peak bandwidth on single-socket
with four fully buffered DDR3-1600 DRAM channels is 51.2 GB/s.

Ivy (Ivy Bridge) platform is single-socket quad-core. Each core runs at 3.3 GHz, win only one hardware
thread with 128b SSE instructions. The peak double-precision floating point performance per core is there-
fore 6.6 GFlops/s, and the system peak double-precision floating point performance is 26.4 GFlops/s. The
system peak bandwidth on single-socket with two fully buffered DDR3-1600 DRAM channels is 25.6 GB/s.

Santarosa (Santa Rosa) platform is dual-socket dual-core, so 4 cores altogether, with NUMA sup-
port. Each core runs at 2.2 GHz, can fetch and decode three x86 instructions per cycle, and executes 6
micro-ops per cycle. The each core supports 128b SSE instructions in a half-pumped fashion, with a single
64b multiplier datapath and a 64b adder datapath, thus requiring two cycles to execute an SSE packed
double-precision floating point multiply. The peak double-precision floating point performance per core is
4.4 GFlops/s, and the system peak double-precision floating point performance is 17.6 GFlops/s. Each socket
with one fully buffered DDR2-667 DRAM channel can deliver 10.66 GB/s. The system peak bandwidth is
therefore 21.33 GB/s.

Taurus (Barcelona) platform is dual-socket quad-core, so 8 cores altogether, with NUMA support.
Each core runs at 2.3 GHz, can fetch and decode four x86 instructions per cycle, executes 6 micro-ops per
cycle, and fully supports 128b SSE instructions. The peak double-precision floating point performance per
core is 9.2 GFlops/s, and the system peak double-precision floating point performance is 73.6 GFlops/s.
Each socket with two fully buffered DDR2-667 DRAM channels can deliver 10.66 GB/s. The system peak
bandwidth is therefore 21.33 GB/s.

9

4.2 Performance predictions

For the expected range of SpMV performance on the above multicore platforms, we adapt the simple roofline
performance model [36, 34]. In Figure 5, the system peak performance and the system peak bandwidth (black
lines) are derived from the architectural characteristics as shown in Table 4, and the stream bandwidth (blue
dashed lines) is the measured memory bandwidth obtained via Stream benchmark [29]. We measure the
stream bandwidth with both small and large data sets. The performance of the stream bandwidth with
large data set can indicate the performance without NUMA support for NUMA architectures (or the peak
DP on single core - red lines). The arithmetic intensity is the ratio of compulsory floating-point operations
(Flops) to compulsory memory traffic (Bytes) of SpMV. In CSR storage format, SpMV performs 2 × nnz
floating-point operations, and each nonzero is represented by a double-precision value (8-Bytes) and a integer
column index (4-Bytes), where nnz is the total number of nonzeros. Therefore, each SpMV must read at

at
ta

in
ab

le
 G

F
LO

P
/s

actual flop:byte ratio

 2

 4

 8

 16

 32

 64

 128

1/8 1/4 1/2 1 2 4 8

peak DP

w/out SIMD

mul/add imbalance

w/out ILPpeak s
yst

em Bandwidth

peak s
tre

am Bandwidth

w/out N
UMA

peak DP on single core

(a) Gainestown platform

at
ta

in
ab

le
 G

F
LO

P
/s

actual flop:byte ratio

 2

 4

 8

 16

 32

 64

 128

1/8 1/4 1/2 1 2 4 8

peak DP

w/out SIMD

mul/add imbalance

w/out ILP
peak s

yst
em Bandwidth

peak s
tre

am Bandwidth

peak DP on single core

large data st
ream Bandwidth

(b) Jaketown platform

at
ta

in
ab

le
 G

F
LO

P
/s

actual flop:byte ratio

 2

 4

 8

 16

 32

 64

 128

1/8 1/4 1/2 1 2 4 8

peak DP

w/out SIMD

w/out ILP
peak s

yst
em Bandwidth

peak s
tre

am Bandwidth

peak DP on single core

(c) Ivy platform

at
ta

in
ab

le
 G

F
LO

P
/s

actual flop:byte ratio

 2

 4

 8

 16

 32

 64

 128

1/8 1/4 1/2 1 2 4 8

peak DP

w/out SIMD

mul/add imbalance

w/out ILP

peak s
yst

em Bandwidth

peak s
tre

am Bandwidth

w/out N
UMA

peak DP on single core

(d) Santarosa platform

at
ta

in
ab

le
 G

F
LO

P
/s

actual flop:byte ratio

 2

 4

 8

 16

 32

 64

 128

1/8 1/4 1/2 1 2 4 8

peak DP

w/out SIMD

mul/add imbalance

w/out ILPpeak s
yst

em Bandwidth

peak s
tre

am Bandwidth

w/out N
UMA

peak DP on single core

(e) Taurus platform

Memory bandwith (GB/s)
Performance for SpMV (GFlops/s)

CSR (actual flop:byte ratio = 1/6) BCSR (actual flop:byte ratio = 1/4)

System peak Stream peak System peak Stream peak System peak Stream peak
small large small large small large

Gainestown 41.6 26.71 12.85 6.93 4.45 2.14 10.40 6.68 3.21
Jaketown 51.2 39.79 17.9 8.53 6.63 2.98 12.80 9.95 4.48

Ivy 25.6 19.7 18.71 4.27 3.28 3.12 6.40 4.93 4.68
Santarosa 21.33 12.12 6.69 3.56 2.02 1.12 5.33 3.03 1.67
Taurus 21.33 16.5 6.9 3.56 2.75 1.15 5.33 4.13 1.73

1
(f) Summary of performance model

Figure 5: The roofline performance model of SpMV for our evaluated multicore platforms. The black
line denotes system peak performance bound. The gray dashed line denotes system performance without
indicated optimizations (SIMD, mul/add imbalance, ILP). The blue dashed line denotes measured stream
bandwidth. The red dashed line denotes the peak single core performance bound limited by the stream
bandwidth with a large data set. The green dashed lines denotes bounds of the arithmetic intensity, actual
flop:byte ratio, for SpMV. Note the log-log scale.

10

least 12 × nnz bytes. In addition, we assume no cache misses associated with the input/output vectors
and the row pointers of CSR. As a result, SpMV has a compulsory arithmetic intensity less than 2 × nnz
/ 12 × nnz, or about 0.166 (leftmost vertical green lines). In BCSR storage format, the register blocking
encodes only one column index for each register block. As register blocks can be up to 8× 8, it is possible to
amortize this one integer index among many nonzeros, raising the Flop byte ratio from 0.166 to 0.25 when
no explicit zeros are added in BSRC format (shown by the rightmost vertical green lines). By the roofline
performance model, we expect SpMV to be memory bound on all of our evaluated platforms, since the two
vertical green lines intersect the slanted (memory bound) part of the roofline. Thus, we can also expect that
it can achieve the system peak performance of SpMV with fewer cores.

4.3 Sparse matrix test suite

We conduct experiments on sparse matrices from a variety of real applications, including nonlinear opti-
mization, power network simulation, and web-connectivity analysis, available from the University of Florida
sparse matrix collection [10], as well as a dense matrix stored in sparse matrix storage format. These matri-
ces cover a range of properties relevant to SpMV performance, such as overall matrix dimension, non-zeros
per row, the existence of dense block substructure, and space required in CSR format. An overview of their
characteristics appears in Figure 6. Note that Matrix 1 is a dense matrix, and Matrices 2-4 are small matrices
which might fit into the higher level of caches, and Matrices 5-10 are large matrices. From their densities,
we expect that some matrices (Matrices 2, 4, 7, 10) might not benefit from BCSR, while others (Matrices 1,
3, 5, 6, 8, 9) might.

Name Spyplot Dimensions ave. nnz/row Space required# Description Nonzeros (nonzero density in CSR format
r = c in {2, 4, 8})

1 Dense
1

4K × 4K 4K 144 MBDense matrix in sparse format 16.0M (100, 100, 100)%

2 poisson3Da
1

1.3K × 1.3K 230 4 MBComputational fluid dynamics 0.3M (28, 8, 2)%

3 FEM-3D-thremal1
1

1.7K × 1.7K 235 5 MBThermal problem 0.4M (57, 35, 24)%

4 ns3Da
1

20K × 20K 3.6 19 MBComputational fluid dynamic 1.6M (28, 8, 2)%

5 Largebasis
1

440K × 440K 11.9 64 MBOptimization problem 5.24M (92, 45, 28)%

6 Tsopf
1

35.7K × 35.7K 246 100 MBPower network problem 8.78M (99, 93, 84)%

7 Kkt power
1 1

2.06M × 2.06M 6.2 154 MBOptimization problem 12.77M (43, 9, 3)%

8 Ldoor
1

952K × 952K 44.6 490 MBStructural problem 42.49M (78, 56, 33)%

9 Bone010 (2D trabecular bone)
1

968K × 968K 48.5 552 MBModel reduction problem 47.85M (56, 41, 25)%

10 Wiki-2007 (Wikipedia pages)
1

3.56M × 3.56M 12.6 530 MBDirected graph problem 45.4M (26, 7, 2)%

1Figure 6: Overview of sparse matrices used in evaluation study.

5 Experimental Results and Analysis

Here we present our measured SpMV performance on a variety of sparse matrices and multicore platforms.
We begin by comparing performance of our off-line autotuning framework to OSKI and the roofline model (on
dense matrices in BCSR format). We compare our auto-tuned implementations to reference serial SpMV with
CSR, to OSKI, to the parallel Intel MKL Sparse BLAS Level 2 routine, and to a straightforward OpenMP

11

implementation. We also compare our performance to the predicted performance, and finally discuss future
potential improvements of our autotuning system. Note that we use 8 byte double-precision floating-point
for matrix and vector values, and 4 byte integers for column indices and row pointers in sparse formats. All
implementations are compiled with Intel icc on Intel platforms and gcc on AMD platforms with the average
results shown (average over 50 runs for off-line results and 100 runs for run-time results).

5.1 Off-line (compile-time) autotuning

Here we discuss the performance gain on a single core by our off-line autotuning for SpMV with a dense
matrix in sparse matrix format, comparing results to OSKI and the roofline model. See Section 3.2 for
a discussion of the tuning-parameters and code generation. For all timing measurements, we average the
results over 50 runs.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.74 1.96 2.04 2.09 1.56 1.52 1.49 1.52

1.72 1.93 1.99 2.06 2.09 1.54 1.53 1.53

1.7 1.87 1.96 2.01 2.05 2.09 1.55 1.54

1.66 1.79 1.93 1.98 2.0 2.04 2.06 1.54

1.61 1.74 1.83 1.93 1.94 1.99 2.0 1.97

1.53 1.64 1.72 1.79 1.84 1.89 1.91 1.93

1.39 1.53 1.57 1.61 1.65 1.71 1.74 1.77

1.0 1.16 1.18 1.18 1.19 1.19 1.2 1.2

Gainestown

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

(a) Gainestown platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.63 1.85 1.92 1.99 1.75 1.75 1.65 1.73

1.73 1.77 1.87 1.96 2.0 1.69 1.7 1.67

1.72 1.71 1.84 1.91 1.95 1.97 1.72 1.72

1.67 1.64 1.76 1.85 1.91 1.95 1.97 1.69

1.64 1.62 1.67 1.77 1.81 1.88 1.93 1.92

1.56 1.66 1.6 1.64 1.71 1.75 1.78 1.83

1.42 1.58 1.59 1.51 1.54 1.56 1.6 1.61

1.0 1.05 1.07 1.07 1.07 1.08 1.08 1.08

Jaketown

1200

1600

2000

2400

2800

3200

3600

4000

4400

(b) Jaketown platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column
R

ow

1.65 1.76 1.8 1.81 1.62 1.6 1.56 1.64

1.69 1.74 1.78 1.81 1.82 1.6 1.6 1.47

1.68 1.7 1.77 1.79 1.8 1.8 1.6 1.54

1.67 1.65 1.73 1.76 1.79 1.8 1.8 1.55

1.62 1.64 1.67 1.72 1.75 1.77 1.78 1.79

1.57 1.63 1.57 1.64 1.69 1.72 1.73 1.75

1.44 1.58 1.6 1.56 1.59 1.61 1.63 1.66

1.0 1.02 1.03 1.03 1.03 1.03 1.03 1.03

Ivy

1200

1600

2000

2400

2800

3200

3600

4000

4400

(c) Ivy platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.4 1.35 1.16 1.22 1.22 1.3 1.24 1.33

1.38 1.3 1.13 1.12 1.15 1.26 1.27 1.26

1.34 1.3 1.29 1.09 1.14 1.2 1.25 1.22

1.3 1.39 1.33 1.23 1.08 1.08 1.13 1.26

1.29 1.38 1.34 1.2 1.1 1.06 1.1 1.06

1.2 1.27 1.32 1.35 1.24 1.24 1.1 1.12

1.21 1.29 1.29 1.36 1.38 1.41 1.33 1.1

1.0 1.1 1.13 1.22 1.26 1.26 1.3 1.31

Santarosa

200

400

600

800

1000

1200

1400

1600

(d) Santarosa platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.41 1.38 1.49 1.32 1.43 1.46 1.62 1.52

1.39 1.53 1.22 1.26 1.2 1.35 1.46 1.55

1.39 1.43 1.33 1.24 1.17 1.27 1.36 1.42

1.37 1.51 1.49 1.17 1.14 1.15 1.24 1.33

1.38 1.52 1.52 1.56 0.95 1.02 1.15 1.22

1.35 1.4 1.51 1.51 1.13 1.28 1.15 1.0

1.16 1.43 1.39 1.53 1.5 1.5 1.46 1.66

1.0 1.14 1.19 1.28 1.36 1.32 1.4 1.38

Taurus

200

400

600

800

1000

1200

1400

1600

(e) Taurus platform

Figure 7: SpMV Performance Profiles for OSKI on a dense matrix on a single core. On each platform, each
square is an r × c implementation, for 1 ≤ r, c ≤ 8, colored by its performance in MFlops/s, and labeled
by its speed up over the reference CSR implementation (r = c = 1). The top of the speed range for each
platform is the performance bound from the Roofline model, in the last column of Table 5.

5.1.1 OSKI baseline

Figure 7 shows the SpMV performance gain by using BCSR format with register block size r and c com-
pared to CSR, for a dense matrix in (B)CSR format. This implementation is the same as OSKI’s (B)CSR

12

implementation, i.e. the code is fully unrolled, but there is no explicit software prefetching or use of SIMD in-
trinsics. Each plot in Figure 7 shows all 64 implementations, for 1 ≤ r, c ≤ 8, each colored by its performance
in MFlops/s, and labeled by its speedup over the reference CSR implementation (r = c = 1).

OSKI achieves up to 2.1x, 2x, 1.8x, 1.4x and 1.7x speedups over CSR for a dense 4K × 4K matrix on
the Gainestown, Jaketown, Ivy, Santarosa and Taurus platform, respectively. We observe that the peak
performance is near r · c = 36 for Intel’s three platforms, 12 for Santarosa and 16 for Taurus. However, the
performance of register blocks with a single row (r = 1) is not much improved in contrast to taller blocks
(r > 1), largely because the register reuse is limited by having a single value of the output vector, resulting
in a read-after-write dependency. We also observed that Intel platforms (up to 2.1x speedup over CSR) show
slightly better performance gains by register blocking than AMD platforms (up to 1.7x speedup over CSR).

5.1.2 pOSKI’s in-core optimizations

Figure 8 shows the SpMV performance gain by off-line autotuning of in-core optimizations (see Table 2) for
each register block size r × c. We refer to this implementation as optimized-BCSR. Each plot shows all 64

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.1 1.0 1.0 1.0 1.2 1.3 1.3 1.2

1.1 1.0 1.0 1.0 1.0 1.3 1.3 1.3

1.1 1.1 1.0 1.0 1.0 1.0 1.3 1.3

1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.3

1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0

1.1 1.2 1.1 1.1 1.1 1.1 1.0 1.0

1.1 1.2 1.2 1.2 1.1 1.1 1.1 1.1

1.0 1.4 1.4 1.5 1.5 1.5 1.5 1.5

Gainestown

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

(a) Gainestown platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.4 1.2 1.1 1.2 1.3 1.3 1.3 1.3

1.3 1.3 1.2 1.2 1.1 1.3 1.3 1.3

1.2 1.3 1.2 1.2 1.1 1.2 1.3 1.3

1.2 1.3 1.2 1.2 1.2 1.2 1.1 1.3

1.2 1.4 1.3 1.3 1.2 1.2 1.1 1.2

1.1 1.3 1.3 1.3 1.2 1.3 1.2 1.2

1.1 1.3 1.3 1.4 1.4 1.4 1.3 1.4

1.1 1.6 1.5 1.7 1.6 1.8 1.7 1.8

Jaketown

1200

1600

2000

2400

2800

3200

3600

4000

4400

(b) Jaketown platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2

1.1 1.1 1.1 1.1 1.0 1.2 1.2 1.3

1.1 1.1 1.1 1.1 1.0 1.1 1.2 1.2

1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.2

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.0 1.1 1.2 1.1 1.1 1.1 1.1 1.1

1.0 1.1 1.1 1.2 1.1 1.1 1.1 1.1

1.0 1.5 1.4 1.6 1.5 1.7 1.6 1.7

Ivy

1200

1600

2000

2400

2800

3200

3600

4000

4400

(c) Ivy platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.4 1.0 1.2 1.2 1.1 1.1 1.1 1.1

1.5 1.0 1.1 1.2 1.1 1.0 1.0 1.1

1.5 1.0 1.0 1.3 1.0 1.1 1.0 1.1

1.5 1.1 1.0 1.1 1.2 1.2 1.1 1.1

1.6 1.5 1.0 1.2 1.2 1.3 1.2 1.3

1.7 1.5 1.3 1.0 1.0 1.0 1.1 1.2

1.4 1.5 1.5 1.5 1.1 1.0 1.0 1.2

1.2 1.7 1.7 1.5 1.5 1.5 1.5 1.5

Santarosa

200

400

600

800

1000

1200

1400

1600

(d) Santarosa platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

1.7 1.4 1.2 1.5 1.3 1.4 1.2 1.4

1.8 1.3 1.5 1.7 1.6 1.5 1.3 1.3

1.7 1.5 1.4 1.7 1.6 1.7 1.4 1.4

1.8 1.4 1.2 1.8 1.6 1.8 1.5 1.5

1.7 1.5 1.6 1.3 2.0 2.1 1.7 1.7

1.6 1.6 1.6 1.6 1.6 1.6 1.6 2.0

1.7 1.6 1.7 1.5 1.6 1.4 1.3 1.1

1.5 1.8 1.9 1.8 1.8 1.6 1.6 1.6

Taurus

200

400

600

800

1000

1200

1400

1600

(e) Taurus platform

Figure 8: SpMV Performance Profiles for optimized-BCSR on a dense matrix on a single core. On each
platform, each square is an r × c implementation, 1 ≤ r, c ≤ 8, colored by its performance in MFlops/sec,
and labeled by its speedup over OSKI. The top of the speed range for each platform is the performance
bound from the Roofline model, in the last column of Table 5.

implementations, each colored by its performance in MFlops/s, and each labeled by its speedup over OSKI’s
performance (from Figure 7).

13

By autotuning each register block size off-line, optimized-BCSR achieves up to 1.5x, 1.8x, 1.7x, 1.7x and
2.1x speedups over OSKI on Gainestown, Jaketown, Ivy, Santrarosa and Taurus, respectively. Although
the x86 architectures support hardware prefetching to overcome memory latency from L2 to L1, our use
of software prefetching still helps performance by improving locality in L2. For example, we observe on
Taurus that optimized-BCSR with r = c = 1 is 1.5x faster than OSKI, by choosing the proper software
prefetching distance. In-core optimizations are more helpful for blocks with a single row (r = 1) to overcome
the read-after-write dependency problem with a single output. For example, we observe that optimized-
BCSR improves the performance up to 90% over OSKI (on Taurus) for register blocks with r = 1. On Intel
platforms the MFlop rate is still slightly lower for blocks with r = 1 than for taller blocks, with r > 1.
In contrast, on AMD platforms the performance when r = 1 or c = 1 is often better than for other block
sizes. The automatically selected prefetching distance and SIMDization schemes are shown in Figure 9. Each
plot shows all 64 implementations, each colored by its performance in MFlops/s, and each labeled by its
prefetching distance (upper label) and SIMDization scheme (lower label). In our experience, some decisions
vary from run to run because some choices are very close in performance (see Figure 9(f)).

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

128
col

128
row

128
col

128
row

64
row

256
row

128
col

64
col

128
col

64
row

64
col

128
col

64
none

128
col

256
col

128
col

64
col

128
col

64
row

128
row

64
col

128
col

64
row

128
col

128
col

64
col

64
col

128
row

128
col

128
col

256
none

128
col

128
col

128
col

64
row

128
row

64
row

128
col

128
row

128
row

128
col

64
col

64
row

64
col

128
row

64
col

128
col

128
col

128
col

128
row

128
row

256
row

64
row

64
col

64
row

64
col

0
none

256
row

256
row

128
row

256
row

256
row

256
row

256
row

Gainestown

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

(a) Gainestown platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

256
col

64
row

64
row

64
row

64
row

64
row

0
row

64
col

256
col

64
col

64
row

64
row

64
row

64
row

64
row

64
col

256
col

64
col

64
row

64
row

64
row

64
row

64
row

64
row

256
col

64
col

64
row

128
row

64
row

64
col

64
row

64
row

256
col

64
row

64
row

64
row

64
row

64
row

64
col

64
col

256
col

128
row

64
col

64
col

64
row

64
col

64
row

64
col

256
col

128
row

256
col

256
row

64
row

64
col

64
row

64
row

256
none

256
row

256
row

256
row

256
row

256
row

256
row

256
row

Jaketown

1200

1600

2000

2400

2800

3200

3600

4000

4400

(b) Jaketown platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

256
col

64
row

64
col

64
col

64
row

64
row

64
row

128
col

256
col

128
row

64
row

64
col

64
row

64
row

64
col

64
row

64
col

64
row

64
row

0
col

64
col

64
row

64
col

64
row

128
col

64
row

64
row

64
col

64
row

0
row

64
row

64
row

256
col

64
row

64
row

64
col

64
col

64
col

64
row

64
row

64
col

64
col

64
row

64
row

64
row

64
col

64
col

64
row

128
col

64
col

64
row

64
row

64
row

64
col

64
row

64
row

256
none

128
row

256
row

256
row

128
row

256
row

256
row

256
row

Ivy

1200

1600

2000

2400

2800

3200

3600

4000

4400

(c) Ivy platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

256
col

0
col

128
row

0
row

0
row

128
row

64
col

0
row

64
col

0
none

0
row

256
col

0
row

0
row

0
row

64
col

128
col

0
row

0
none

0
col

0
row

0
row

0
row

128
row

64
col

256
col

0
none

0
row

256
col

0
row

0
row

0
row

64
col

64
row

0
none

0
row

128
row

0
col

0
row

0
row

64
col

64
row

128
row

0
col

0
none

0
none

0
row

128
row

64
col

64
col

128
row

128
col

256
row

0
none

0
none

0
col

64
none

64
row

64
row

64
row

128
row

128
row

128
row

64
row

Santarosa

200

400

600

800

1000

1200

1400

1600

(d) Santarosa platform

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Column

R
ow

256
col

0
row

64
row

64
row

256
row

128
row

128
row

64
row

256
col

64
row

256
row

128
row

128
row

64
row

128
row

256
row

128
col

256
col

64
row

128
row

256
row

64
row

256
row

128
row

64
col

256
col

64
row

256
col

64
row

128
row

128
row

64
row

128
col

256
col

256
row

64
row

64
row

128
col

128
row

128
row

128
col

128
row

256
row

256
col

64
row

64
row

256
row

128
col

64
col

64
row

256
row

256
row

256
row

256
col

128
row

64
row

128
none

256
row

128
row

256
row

256
row

256
row

256
row

256
row

Taurus

200

400

600

800

1000

1200

1400

1600

(e) Taurus platform

r × c 8× 5 8× 6
imp row col row col

d

0 3733 3703 3826 3823
64 3761 3663 3866 3796
128 3522 3432 3600 3634
256 3011 3025 3198 3097

r × c 8× 7 8× 8
imp row col row col

d

0 3722 3721 3641 3665
64 3530 3573 3844 3998
128 3408 3452 3677 3841
256 3110 3066 3185 3174

1
(f) Jaketown platform

Figure 9: The selected software prefetching distance (d) and SIMDization scheme (imp) for optimized-BCSR
on a dense matrix on a single core. On each platform, each square is an r × c implementation, 1 ≤ r, c ≤ 8,
colored by its performance in MFlops/sec, and labeled by its d (upper label in each square) and imp (lower
label in each square). Note row indicates SIMDrow (row-wise) and col indicates SIMDcol (column-wise).
The top of the speed range for each platform is the performance bound from the Roofline model, in the last
column of Table 5. Figure 9(f) shows examples of possible choices in performance (MFlops/s) on Jaketown.

14

5.1.3 Summary of off-line autotuning

Table 5 summarizes our off-line autotuning performance. pOSKI’s optimized-BCSR achieves up to 2.1x,
2.4x, 1.9x, 2.1x and 2.4x speedups over the reference CSR implementation on Gainestown, Jaketown, Ivy,
Santarosa and Taurus, respectively. It also improves average performance for all register block sizes with a
better (smaller) standard deviation than OSKI (except for Santarosa, where the performance gains mostly
occur for small register block sizes, r × c ≤ 8). This implies that it will give a better choice when run-time
autotuning selects the proper register block size for a sparse matrix. However, optimized-BCSR does not
improve the overall peak performance on Gainestown, whereas it improves peak performance up to 40% on
other platforms. This shows that some but not all compilers can achieve good optimization for dense register
blocks without explicit software prefetching or use of SIMD intrinsics. Comparing against the expected peak
performance from the Roofline model, optimized-BCSR on a dense matrix achieves up to 91% of the single
core peak performance (stream peak performance with a large data set, as shown in Figure 5 and the
rightmost column of Table 5). The peak performance is an empirical upper-bound on SpMV performance
with optimized-BCSR on single core, since a dense matrix maximizes data reuse and minimizes irregular
memory access. We repeat that off-line tuning can be expensive since it searches over all possible in-core
optimizations for each register block size r × c, but occurs only once for each platform.

CSR OSKI-BCSR optimized-BCSR Expected peak GFlops/s by Roofline
(optimized-BCSR peak GFlops/s in %)

average peak average peak system peak stream peak
Platform GF GF stdev r × c GF GF stdev r × c GF small large
Gainestown 1.3 2.3 17% 8× 4 2.8 2.5 8% 6× 4 2.8 10.7 (26%) 6.7 (41%) 3.2 (86%)
Jaketown 1.7 2.8 16% 7× 5 3.4 3.6 11% 8× 4 4.1 12.8 (32%) 9.8 (42%) 4.5 (91%)
Ivy 2.1 3.3 15% 7× 5 3.8 3.8 8% 8× 4 4.1 6.4 (63%) 4.9 (83%) 4.7 (87%)
Santarosa 0.48 0.6 8% 2× 6 0.7 0.7 20% 7× 1 1.0 5.3 (19%) 3.0 (33%) 1.7 (60%)
Taurus 0.41 0.6 12% 2× 8 0.7 0.9 10% 7× 1 1.0 5.3 (19%) 4.1 (24%) 1.7 (58%)

1Table 5: Summary of optimized-BCSR single core performance for SpMV on dense matrices, compared to
peak performance from the Roofline model. The peak performances of OSKI and optimized-BCSR are taken
from Figures 7 and 8. The three Roofline performance bounds are computed using system peak bandwidth
(system peak), stream bandwidth with a small data set (small stream peak), and stream bandwidth with a
large data set (large stream peak) as shown in Figure 5. GF is performance in GFlops/sec. Averages and
standard deviations (stdev, shown as the percent of average) for OSKI and optimized-BCSR are computed
from the performance data for all 64 values of 1 ≤ r, c ≤ 8. The Roofline performance bound computed
from the large stream peak (rightmost column) is the same as the expected single core peak performance.
The percentages in the three rightmost columns show peak GF of optimized-BCSR divided by the Roofline
performance bound.

5.2 Run-time (on-line) autotuning

Here we measure the SpMV performance gain by the run-time autotuning techniques presented in Section 3.3,
as well as the run-time tuning cost, measured as a multiple of the cost of one SpMV on the same matrix. For
all timing measurements, we average the results over 100 runs (Note that SpMV performance in GFlops/s
does not include run-time tuning cost).

5.2.1 Thread-level Parallelization

To partition a matrix we must choose the number of submatrices into which to divide it, i.e. the number
of threads (or cores) to use, since each thread processes one submatrix (where each core runs one thread).
Since SpMV is memory bound on all of multicore platforms in our test suite, using too many cores may
oversubscribe some memory resources (like total bandwidth) and cause slowdowns. This will be seen below
in Figure 10, which shows performance data for varying numbers of cores. (Using too many cores may also

15

Gainestown

NUMA id 0 1
Core id 0 1 2 3 4 5 6 7

HW thread id 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15
Mapping order 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

Jaketown

Channel id 0 1

-Core id 0 1 2 3 4 5
HW thread id 0 1 2 3 4 5 6 7 8 9 10 11

Mapping order 0 6 2 8 4 10 1 7 3 9 5 11

Ivy
Channel id 0

-Core id 0 1 2 3
Mapping order 0 2 1 3

Santarosa
NUMA id 0 1

-Core id 0 1 2 3
Mapping order 0 2 1 3

Taurus
NUMA id 0 1
Core id 0 1 2 3 4 5 6 7

Mapping order 0 4 2 6 1 5 3 7

1Table 6: Thread mapping order for efficient thread-level parallelism. NUMA id denotes a group of cores
which share the NUMA node. Channel id denotes a group of cores which share memory channels. Core
id denotes a group of HW threads (hyperthreading) which share cache. HW thread id denotes a physical
core (logical processor) id on our platforms. Mapping order denotes our NUMA-aware mapping order when
increasing the number of threads.

waste energy, a future autotuning topic). After presenting the data, we will suggest a natural simple formula
for the optimal number of cores, based on measured performance data, but show that it only predicts the
right number of cores for some test matrices and some platforms; quickly and accurately choosing the optimal
number of cores remains future work.

Having selected the number of threads, we need to decide how to map each thread to an available core,
because not every subset of cores has the same performance: cores may or may not share critical resources
like cache or memory bandwidth. This is important when we only want to use fewer threads than the
available number of cores; which cores should we use?

We choose cores using the platform-dependent NUMA-aware mapping shown in Table 6. For example,
consider an 8-core Gainestown: The first row, labeled “NUMA id”, divides the 8 cores into two groups of
4, according to which fast memory they share. The second row, labeled “core id”, gives a unique number
to each core in each group of 4. The third row, labeled “HW thread id”, give a unique number to each of
the two hyperthreads that can run on each core, so numbered from 0 to 2 · 8− 1 = 15; the HW thread id is
specified by the Gainestown system. Finally, the last row, labeled “Mapping order”, tells us in what order
to assign submatrices to hyperthreads.

For example, with two submatrices on Gainestown, the first submatrix/thread (Mapping order = 0)
pins to the first HW thread (id = 0) in the first NUMA region (id = 0), and the second submatrix/thread
(Mapping order = 1) pins to the first HW thread (id = 4) in the second NUMA region (id = 1). This doubles
the total hardware resources available, since each submatrix/thread utilizes 21.3GB/s memory bandwidth
of each socket, and the 8MB L3, 256KB L2, and 64KB L1 caches on two 2.66GHz cores, so we would expect
the largest possible speedup. With, say, seven submatrices on Gainestown, we would use hyperthreads from
Mapping order = 0 to Mapping order = 6.

Similar scaling behavior for two submatrices/threads is expected for other NUMA platforms (Jaketown,
Santarosa and Taurus). Note that Jaketown is a single socket but the two memory channels have NUMA
behavior. However, using two threads on Ivy cannot double memory bandwidth and L3 cache, though they
do double the L2 and L1 caches. Thus, we expect that scaling beyond two threads on Ivy may not help for
matrices that do not fit in L2; this is borne out in Figure 10.

Figure 10 shows measured SpMV performance of all our test matrices on all platforms, with different
numbers of threads. We observe that scaling with two or four threads shows good scalability on most
matrices (except on Ivy). We also observe that using too many cores degrades the performance in some
cases, in particular Gainestown and Jaketown. Finally, for a number of matrices pOSKI’s SpMV exceeds the
peak performance predicted by the Roofline model; this occurs frequently when using the Roofline model

16

with bandwidth measured by the Stream benchmark with a large data set (the lower red dashed lines in
Figure 10), and occasionally even using Stream bandwidth with a small data set (the upper red dashed
lines). Apparently Stream underestimates the bandwidth of the different memory access patterns accessed
by SpMV, and it incurs no data reuse in caches. Also, we recall that small matrices 2 and 3 fit in L3 cache
on Gainestown, Jaketown, and Ivy platforms.

Finally, we describe a simple performance model for predicting the optimal number of threads/subma-
trices to use, and compare it to the results in Figure 10: Take the fraction of system peak performance
attained by optimized-BCSR, shown as a percentage in the third column from the right in Table 5; call it
x (for example x = 26% for Gainestown). Then ideally using 1/x cores should attain the peak performance

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Gainestown
stream peak

1 2 4 8 16

(a) Gainestown platform

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1 2 3 4 5 6 7 8 9 10
P

er
fo

rm
an

ce
 in

 G
F

lo
ps

/s

Matrix

Jaketown
stream peak

1 2 4 6 12

(b) Jaketown platform

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Ivy
stream peak

1 2 4

(c) Ivy platform

 0

 1

 2

 3

 4

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Santarosa

stream peak

1 2 4

(d) Santarosa platform

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Taurus

stream peak

1 2 4 8

(e) Taurus platform

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8(6) 16(12)

G
F

lo
ps

/ s
 /

C
or

e

Cores

Per-Core Efficiency (Average)

Gainestown
Jaketown
Ivy
Santarosa
Taurus

(f) Per-core efficiency

Figure 10: The performance of pOSKI on 10 test matrices, on 5 multicore platforms, with varying numbers
of cores. Each color on a single matrix denotes the number of threads used to perform SpMV. Two Roofline-
based performance bounds are shown, one using bandwidth measured using the Stream benchmark with a
large data set (lower red dashed line) and one with a small data set (upper red dashed line).

17

permitted by the peak system bandwidth on the memory-bound SpMV. Rounding 1/x to the nearest integer
give the optimal number of cores as 1/26% ≈ 4 for Gainestown, 1/32% ≈ 3 for Jaketown, 1/63% ≈ 2 for
Ivy, 1/19% ≈ 5 for Santarosa, and 1/19% ≈ 5 for Taurus. However, comparing to the data in Figure 10, we
see the optimal number of cores is slightly different than expected due to lower per-core efficiency (shown
in Figure 10(f)) by scaling with the number of threads; 4, 8 or 16 for Gainestown, 4 or 6 for Jaketown, 4
for Ivy, 4 for Santarosa, and 4 or 8 for Taurus. Clearly, a better predictor of the optimal number of cores is
needed by considering other factors, such as memory latency and size of shared caches, which can affect the
per-core performance by scaling with the number of threads.

5.2.2 Results from the Heuristic performance model

Run-time autotuning partitions a sparse matrix into submatrices, and then uses the heuristic performance
model from Section 3.3.2 to select the best data structure and SpMV implementation for each submatrix.
Thus, each submatrix may have a different data structure, different SpMV implementation, and different
performance, possibly upsetting the load balance (improving the load balance is future work).

Table 7 shows in detail the results when we partition a single matrix, Matrix 6 (Tsopf), into 4 submatrices,
for all 5 platforms. For each submatrix and platform, we show (1) the optimal values of the tuning parameters
(r, c, d and imp), (2) the expected performance from the heuristic model P̂rc(As) = Prc(dense)/f̂rc(As), and
(3) the measured performance for each submatrix, both running alone on a single core, and while running in
parallel with all cores. As can be seen, different optimal parameters may be chosen for different submatrices
on the same platform.

Platform Id Tunable parameters Heuristic model GFlops/s
nnz r × c d imp Prc(dense) f̂rc(As) P̂rc(As) serial parallel

Gainestown

1 2195751 8× 2 128 row 2.7 1.29 2.09 2.29 1.76
2 2195456 6× 4 128 row 2.75 1.05 2.62 3.07 2.02
3 2195798 6× 4 128 row 2.75 1.05 2.62 3.07 2.01
4 2194944 4× 4 128 row 2.6 1.05 2.48 3.07 2.00

overall 2.83 6.46

Jaketown

1 2195751 8× 4 64 row 4.07 1.39 2.93 2.8 2.20
2 2195456 8× 4 64 row 4.07 1.07 3.8 3.84 2.36
3 2195798 8× 4 64 row 4.07 1.07 3.8 3.81 2.40
4 2194944 5× 4 128 row 3.91 1.05 3.72 3.83 2.37

overall 3.5 8.9

Ivy

1 2195751 8× 2 64 row 4.06 1.29 3.15 3.11 1.05
2 2195456 7× 2 128 row 3.99 1.05 3.8 3.9 1.10
3 2195798 8× 2 64 row 4.06 1.05 3.87 3.99 1.10
4 2194944 7× 2 128 row 3.99 1.05 3.8 3.89 1.10

overall 3.68 4.18

Santarosa

1 2195751 3× 1 64 col 0.96 1.08 0.89 0.86 0.59
2 2195456 7× 1 64 col 1.00 1.05 0.95 0.97 0.68
3 2195798 4× 1 64 col 0.99 1.05 0.94 0.96 0.68
4 2194944 7× 1 64 col 1.00 1.05 0.95 0.96 0.69

overall 0.98 2.39

Taurus

1 2195751 2× 2 64 row 0.95 1.05 0.90 0.85 0.71
2 2195456 5× 1 64 col 1.00 1.05 0.95 1.02 0.59
3 2195798 5× 1 64 col 1.00 1.04 0.96 1.06 0.71
4 2194944 5× 1 64 col 1.00 1.04 0.96 1.07 0.59

overall 0.92 2.92

1Table 7: Example of the selected tuning parameters with 4 threads for Matrix 6 (Tsopf). Id denotes the
submatrix, nnz is the number of non-zeros for each submatrix, r × c is the selected block size, d is the
selected software prefetching distance, imp is the selected SIMD implementation, Prc(dense) is measured
SpMV performance for a dense matrix with r × c, f̂rc(As) is the fill ratio, P̂rc(As) is the expected SpMV
performance, and GFlops/s is the measured per-core performance in serial and in parallel.

18

First, to confirm the accuracy of the heuristic model, we compare the measured serial performance
(second to last column of Table 7) with the predicted performance (third to last column, P̂rc(As)); there
is reasonable agreement, with some over- and some underestimates. Second, to understand the impact
of parallelism, we compare the measured per-core performance in the last column to the measure serial
performance; performance drops, sometimes significantly, because of resource conflicts. In particular, it
drops almost 4x on Ivy, because 1 core is enough to saturate the memory bandwidth for this matrix.

5.2.3 Run-time tuning cost

The cost of run-time tuning depends on whether we use our history database or not: If we do not use it, we
need to apply the heuristic performance model to choose the optimal data structure and implementation. If
we do use it, we incur the (lesser) cost of accessing the database. Either way, we pay the cost of copying the
input matrix from CSR format to the optimal format.

Figure 11 shows the run-time tuning costs in three cases, measured as a multiple of the time to perform a
single sequential SpMV on the matrix in CSR format (i.e. without optimizations): (1) Case-I: autotuning
with the heuristic performance model in serial, (2) Case-II: autotuning with the heuristic performance model
in parallel, and (3) Case-III: autotuning with the history database in parallel. In Cases II and III, the number
of cores is the optimal number as shown in Figure 10.

The dense matrix in sparse format (Matrix 1) is special case we discuss separately. We also consider the
smaller matrices (Matrices 2-4) separately from the larger ones (Matrices 5-10), because the short running
time for the small matrices makes the relative cost of tuning much more expensive.

1	

10	

100	

1000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Tu
ni
ng
	 c
os
t	 /
	 S
pM

V	

Matrix	

Gainestown	
Case-‐I	
Case-‐II	
Case-‐III	

(a) Gainestown platform

1	

10	

100	

1000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Tu
ni
ng
	 c
os
t	 /
	 S
pM

V	

Matrix	

Jaketown	
Case-‐I	
Case-‐II	
Case-‐III	

(b) Jaketown platform

1	

10	

100	

1000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Tu
ni
ng
	 c
os
t	 /
	 S
pM

V	

Matrix	

Ivy	
Case-‐I	
Case-‐II	
Case-‐III	

(c) Ivy platform

1	

10	

100	

1000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Tu
ni
ng
	 c
os
t	 /
	 S
pM

V	

Matrix	

Santarosa	
Case-‐I	
Case-‐II	
Case-‐III	

(d) Santarosa platform

1	

10	

100	

1000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Tu
ni
ng
	 c
os
t	 /
	 S
pM

V	

Matrix	

Taurus	
Case-‐I	
Case-‐II	
Case-‐III	

(e) Taurus platform

Figure 11: The run-time autotuning cost, relative to unoptimized SpMV in CSR format. Case-I denotes
autotuning with the heuristic model in serial. Case-II denotes autotuning with the heuristic model in parallel.
Case-III denotes autotuning with history data in parallel. Note that the vertical axises are log-scale.

19

We see that for a dense matrix (Matrix 1) and for all platforms, the average run-time tuning cost is 113,
143 and 160 unoptimized SpMVs in Case I, II and III, respectively. Case-II costs 1.7x, 1.0x and 1.3x less
than Case-I on Gainestown, Santarosa and Taurus, however, it costs 1.3x and 1.3x more than Case-I on
Jaketown and Ivy. Case-III costs 5.2x, 1.1x, 1.1x and 1.4x less than Case-I on Gainestown, Jaketown, Ivy
and Santarosa, respectively, however, it costs 1.8x more than Case-I on Taurus.

We see that for small matrices (Matrices 2-4) and for all platforms, the average run-time tuning cost is
179, 201 and 300 unoptimized SpMVs in Case I, II and III, respectively. Case-II costs up to 1.1x, 1.2x, 1.2x,
1.8x and 1.8x less than Case-I on Gainestown, Jaketown, Ivy, Santarosa and Taurus, respectively. However,
for a few matrices, Case-II costs at most 1.3x, 1.4x and 1.1x more than Case-I on Gainestown, Jaketown and
Ivy. Case-III costs up to 1.2x and 2.4x less than Case-I on Jaketown and Ivy. However, for a few matrices, it
costs at most 1.4x, 1.4x, 1.8x and 1.8x more than Case-I on Gainestown, Jaketown, Santarosa and Taurus,
respectively.

We see that for large matrices (Matrices 5-10) and for all platforms, the average run-time tuning cost is
39, 26 and 14 unoptimized SpMVs in Cases I, II and III, respectively. Case-II costs up to 1.9x, 2x, 1.8x, 2.9x
and 5.0x (average 1.5x, 1.6x, 1.5x, 2.2x and 2.7x) less than Case-I on Gainestown, Jaketown, Ivy, Santarosa
and Taurus, respectively. However, for a few matrices, it costs at most 1.2x and 1.1x more than Case-I on
Gainestown and Jaketown. Case-III costs up to 8.2x, 7.4x, 9.5x, 8.2x, and 10.5x (average 4.5x, 4.2x, 4.9x,
3.9x and 4.3x) less than Case-I on Gainestown, Jaketown, Ivy, Santarosa and Taurus, respectively.

We observe that parallel tuning (Case-II) and using history data (Case-III) give larger speedups (less
run-time tuning cost) than Case-I on the largest sparse matrices (Matrices 8-10). However, we also observe
that parallel tuning (Case-II) or using history data (Case-III) can result in more cost than Case-I on some
cases (specially on small matrices). Further reducing run-time tuning costs is also future work.

5.2.4 Summary of run-time autotuning

For clarity, we present the overall performance of each autotuning optimization condensed into a stacked bar
format as seen in Figure 12, in order to see the contribution made by each optimization. We also include the
performance of parallel Intel MKL Sparse BLAS Level 2 routine mkl dcsrmv() and straightforward parallel
implementation with OpenMP and CSR for comparison.

The colored bars have the following meanings. The bottommost, dark green, bar (labeled CSR) indicates
the performance of the naive implementation, i.e. serial CSR. The second, dark blue, bar (labeled OSKI)
indicates the performance of OSKI, i.e. serial performance using OSKI’s optimization (register blocking).
The third, light green, bar (labeled SIMD) indicates the performance of optimized-BCSR, i.e. serial per-
formance using pOSKI’s in-core optimizations (register blocking, software prefetching and SIMD intrinsics).
The fourth, light blue, bar (labeled TB) shows the performance of thread blocking, running in parallel with
the optimal number of cores shown in Figure 10, but without NUMA-aware mapping (pinning threads to
cores by OS scheduler). Finally, the topmost, yellow-green, bar (labeled NUMA) indicates the performance of
pOSKI with all of pOSKI’s optimizations including NUMA-aware mapping, again running with the optimal
number of cores. In addition, we compare our autotuning SpMV performance to the performance bounds
from the Roofline model as in Figure 10 (dashed red lines).

In Figure 12, some matrices (Matrices 2, 4, 7, 10) do not or slightly improve performance by optimized-
BCSR (labeled SIMD), since the matrices are too sparse. Although other matrices (Matrices 3, 5, 6, 8, 9)
do get benefits from optimized-BCSR, the gains are less than in the dense matrix (Matrix 1) mainly due
to overheads from filling in explicit zeros within each register block and irregular memory accesses of the
input vector between register blocks. This further suggests that reordering methods for creating larger dense
blocks will be worthwhile for optimized-BCSR for other sparse matrices.

All matrices (Matrices 1 to 10) show performance improvement by thread blocking (labeled TB) on all
platforms. Ivy shows the least performance improvement (4% over optimized-BCSR) by thread blocking on
Largebasis (Matrix 5). NUMA-aware mapping (labeled NUMA) improves some matrices on NUMA archi-
tectures, however it also depends on the matrix and the underlying architecture.

As seen in Figure 12, the overall our autotuning for SpMV for the dense matrix (Matrix 1) in sparse

20

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Gainestown
stream peak

CSR
OSKI

SIMD
TB

NUMA
MKL

OpenMP

(a) Gainestown

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Jaketown
stream peak

CSR
OSKI

SIMD
TB

NUMA
MKL

OpenMP

(b) Jaketown

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Ivy
stream peak

CSR
OSKI

SIMD
TB

NUMA
MKL

OpenMP

(c) Ivy

 0

 1

 2

 3

 4

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Santarosa

stream peak

CSR
OSKI

SIMD
TB

NUMA
OpenMP

(d) Santarosa

 0

 1

 2

 3

 4

 5

1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 in
 G

F
lo

ps
/s

Matrix

Taurus

stream peak

CSR
OSKI

SIMD
TB

NUMA
OpenMP

(e) Taurus

pOSKI speedup over
CSR OSKI OpenMP MKL

Dense min 2.3 1.3 1.2 1.1
Matrix ave 6.6 3.4 4.3 1.8

1 max 9.3 5.5 8.3 3
Small min 2 2 0.8 0.7

Matrices ave 5.2 4.8 3.2 1
2-4 max 9 8.6 8.1 1.3

Large min 1.5 1.1 0.9 0.9
Matrices ave 4.3 3.3 2.7 1.6

5-10 max 7.5 5.5 7.4 3.2

All
min 1.5 1.1 0.8 0.7
ave 4.8 3.7 3.0 1.4
max 9.3 8.6 8.3 3.2

1
(f) Speedups on all platforms

Figure 12: Overall performance of autotuned SpMV. Each colored bar corresponds to performance from a
different set of optimizations, as described in the text. Intel MKL results on Intel platforms are denoted by
black triangles. OpenMP results are denoted by red circles. Two Roofline-based performance bounds are
shown, one using bandwidth measured using the Stream benchmark with a large data set (lower red dashed
line) and one with a small data set (upper red dashed line). Minimum, average and maximum speedups for
each subset of matrices are shown in Figure 12(f). Note that speedup less than 1 means slowdown factor.

format achieves up to 74%, 80%, 73%, 57% and 64% of the system peak performance of SpMV (the third-
from-rightmost column of the table in Figure 5(f)), and up to 118%, 104%, 95%, 100% and 83% of the

21

Roofline-based performance bound using bandwidth measured with the Stream benchmark with a small
data set (upper red line) on Gainestown, Jaketown, Ivy, Santarosa and Taurus platform, respectively. Since
the dense matrix (Matrix 1) in sparse format contains clear dense structure and large dimensions, the overall
performance on the dense matrix is a kind of empirical upper bound on large matrices (Matrix 5-10).

Among large sparse matrices (Matrices 5-10) in our test suite, Tsopf (Matrix 6) shows the highest per-
formance on all platforms because it has the highest density, the highest number of nonzeros per rows and
the smallest dimensions (see Figure 6) among Matrices 5-10. Tsopf achieves at least 80% of the performance
with the dense matrix. Wiki-2007 (Matrix 10) shows the lowest performance on all platforms because the
matrix is very sparse with the largest dimensions resulting in poor cache locality of input vector. Wiki-2007
shows less than 20% of the performance with the dense matrix. Cache and TLB blocking optimizations may
improve data reuse for large dimensional matrices.

As shown in Figure 12(f), for the dense matrix (Matrix 1) and for all platforms, pOSKI is up to 9.3x
faster than the reference serial CSR implementation, up to 5.5x faster than the optimized serial OSKI imple-
mentation, up to 8.3x faster than a straightforward parallel implementation using OpenMP and CSR, and
up to 3x faster than the parallel Intel MKL implementation.

For the small matrices (Matrices 2-4) and for all platforms, pOSKI is up to 9x faster than the reference
serial CSR implementation, up to 8.6x faster than the optimized serial OSKI implementation, up to 8.1x
faster than a straightforward parallel implementation using OpenMP and CSR, and up to 1.3x faster than
the parallel Intel MKL implementation. However, for a few matrices, pOSKI performs at most 1.3x and 1.2x
slower than Intel MKL and OpenMP implementations, respectively.

For the large matrices (Matrices 5-10) and for all platforms, pOSKI is up to 7.5x faster than the reference
serial CSR implementation, up to 5.5x faster than the optimized serial OSKI implementation, up to 7.4x
faster than a straightforward parallel implementation using OpenMP and CSR, and up to 3.2x faster than
the parallel Intel MKL implementation. However, for a few matrices, pOSKI performs at most 1.1x and 1.1x
slower than Intel MKL and OpenMP implementations, respectively.

In summary for each platform, pOSKI achieves up to 6.6x, 6.1x, 4.5x, 9.3x and 9x speedups over naive
CSR, up to 6.6x, 4.9x, 3.7x, 4.9x and 8.6x speedups over OSKI, and up to 2.8x, 2.4x, 1.4x, 6.6x and 8.3x
speedups over OpenMP+CSR on Gainestown, Jaketown, Ivy, Santarosa and Taurus, respectively. It achieves
up to 3.2x, 1.6x and 1.4x speedups over MKL on Gainestown, Jaketown and Ivy platform, respectively. Ad-
ditionally, pOSKI shows better performance than MKL or OpenMP implementations on most cases (42 out
of 50 cases), while MKL or OpenMP implementations show better performance than on a few cases (Matrix
2 and 3 on Gainestown, Matrix 3-5 on Jaketown, Matrix 4, 5 and 7 on Ivy platform).

6 Conclusions

We have presented pOKSI, an autotuning framework for Sparse Matrix-Vector Multiplication (SpMV) on a
diverse set of multicore platforms. We demonstrate significant performance gains over prior implementations:
pOSKI is up to 9.3x faster than the reference serial CSR implementation, up to 8.6x faster than the optimized
serial OSKI implementation, up to 8.3x faster than a straightforward parallel implementation using OpenMP
and CSR, and up to 3.2x faster than the parallel Intel MKL implementation. However, for a few matrices,
pOSKI performs at most 1.3x and 1.2x slower than Intel MKL and OpenMP implementations, respectively.
We also show the how the performance of SpMV and run-time tuning cost strongly depends on structural
properties of the sparse matrix and features of the underlying architecture.

Our autotuning depends on the following components: (1) Off-line optimization of in-core architectural
features can thoroughly explore a large design space of possible implementations, without impacting run-time
costs. (2) Run-time optimization of NUMA-aware thread-level parallelism can be done very quickly, and
includes the possibility of using fewer than the maximum number of cores. (3) Run-time optimization can
be done even more quickly by using a history database to reuse prior autotuning results. Using the history
database depends on user hints saying “this matrix has the same structure as matrix XYZ in the database”;
see [6] for more details about the pOSKI user interface.

22

Future work includes extending the scope of both off-line and run-time optimizations. These include (1)
investigating reordering methods to reduce the fill ratio in BCSR format, (2) exploiting index compression,
cache-blocking and TLB blocking to reduce memory traffic or to improve locality, (3) implementing other
matrix partitioning schemes, (4) improving load balance when there are different data structures for each
submatrix, (5) reducing data structure conversion costs at run-time, and (6) determining the most efficient
number of cores for parallelism. We also plan to expand our autotuning framework to other, higher level
sparse kernels, such as ATAx and the matrix powers kernel [Ax,A2x, ..., Akx].

Acknowledgements

Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding and by match-
ing funding by U.C.Discovery (Award #DIG07-10227). Additional support comes from Par Lab affiliates
National Instruments, Nokia, NVIDIA, Oracle, and Samsung. Also supported by U.S. DOE grants DE-
SC0003959, DE-SC0004938, DE-SC0005136, DE-SC0003959, DE-AC02-05-CH11231, DE-FC02-06ER25753,
DE-FC02-07ER25799, and DE-FC03-01ER25509.

References

[1] P. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm. SIAM
J. Matrix Anal. Appl., 17(4):886 – 905, 1996.

[2] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical
Report NVR-2008-004, NVIDIA Corporation, Dec. 2008.

[3] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented
processors. In Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 18:1–18:11, New York, NY, USA, 2009. ACM.

[4] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing matrix multiply using phipac: a portable,
high-performance, ansi c coding methodology. Proceedings of the International Conference on Super-
computing, July 1997.

[5] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson. Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using compressed sparse blocks. In Proceedings of the twenty-
first annual symposium on Parallelism in algorithms and architectures, SPAA ’09, pages 233–244, New
York, NY, USA, 2009. ACM.

[6] J.-H. Byun, R. Lin, J. W. Demmel, and K. A. Yelick. poski: Parallel optimized sparse kernel interface
library user’s guide for version 1.0.0, 2012. http://bebop.cs.berkeley.edu/poski.

[7] U. Catalyurek and C. Aykanat. Decomposing irregularly sparse matrices for parallel matrix-vector
multiplication. In Proceedings of the Third International Workshop on Parallel Algorithms for Irregularly
Structured Problems, IRREGULAR ’96, pages 75–86, London, UK, UK, 1996. Springer-Verlag.

[8] U. V. Çatalyürek, C. Aykanat, and B. Uçar. On two-dimensional sparse matrix partitioning: Models,
methods, and a recipe. SIAM J. Sci. Comput., 32(2):656–683, Feb. 2010.

[9] E. Cuthill and J. Mckee. Reducing the bandwidth of sparse symmetric matrices. Proceedings of the
24th National Conference of the Association for Computing Machinery, ACM Publication P-69, 1969.

[10] T. A. Davis. University of florida sparse matrix collection. NA Digest, 92, 1994.
http://www.cise.ufl.edu/research/sparse/matrices/.

23

[11] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills. Vectorized sparse matrix multiply for compressed row
storage format. In Proceedings of the 5th international conference on Computational Science - Volume
Part I, ICCS’05, pages 99–106, Berlin, Heidelberg, 2005. Springer-Verlag.

[12] O. A. Fagerlund. Multi-core programming with opencl: performance and portability : Opencl in a
memory bound scenario, 2010.

[13] M. Frigo. A fast fourier transform compiler. SIGPLAN Not., 34(5):169–180, May 1999.

[14] J. R. Gilbert, E. G. Ng, and B. W. Peyton. An efficient algorithm to compute row and column counts
for sparse cholesky factorization. SIAM J. Matrix Analysis and Applications, 15:1075–1091, 1994.

[15] P. Guo and L. Wang. Auto-tuning cuda parameters for sparse matrix-vector multiplication on gpus.
In Computational and Information Sciences (ICCIS), 2010 International Conference on, pages 1154
–1157, dec. 2010.

[16] E.-J. Im. Optimizing the Performance of Sparse Matrix-Vector Multiplication. PhD thesis, UC Berkeley,
Jun 2000.

[17] E.-J. Im and K. Yelick. Optimizing sparse matrix computations for register reuse in sparsity. In
Proceedings of the International Conference on Computational Science, volume 2073 of LNCS, pages
127–136. Springer, may 2001.

[18] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework for sparse matrix kernels. Inter-
national Journal of High Performance Computing Applications, 18(1):135 – 158, 2004.

[19] S. Kamil, C. Chan, S. Williams, L. Oliker, J. Shalf, M. Howison, and E. W. Bethel. A generalized
framework for auto-tuning stencil computations. In In Proceedings of the Cray User Group Conference,
2009.

[20] V. Karakasis, G. Goumas, and N. Koziris. A comparative study of blocking storage methods for sparse
matrices on multicore architectures. In Computational Science and Engineering, 2009. CSE ’09. Inter-
national Conference on, volume 1, pages 247 –256, aug. 2009.

[21] I. P. King. An automatic reordering scheme for simultaneous equations derived from network systems.
Int. J. num. Meth. Engng, 2:523–533, 1970.

[22] Lapack: Linear algebra package. http://www.netlib.org/lapack/.

[23] J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix-vector product computations using unroll
and jam. International Journal of High Performance Computing Applications, 18(2):225 – 236, 2004.

[24] J. Pichel, D. Singh, and J. Carretero. Reordering algorithms for increasing locality on multicore proces-
sors. In High Performance Computing and Communications, 2008. HPCC ’08. 10th IEEE International
Conference on, pages 123 –130, sept. 2008.

[25] A. Pinar and M. Heath. Improving performance of sparse matrix-vector multiplication. In Supercom-
puting, ACM/IEEE 1999 Conference, page 30, nov. 1999.

[26] M. Püschel, F. Franchetti, and Y. Voronenko. Encyclopedia of Parallel Computing, chapter Spiral.
Springer, 2011.

[27] R. Shahnaz, A. Usman, and I. Chughtai. Review of storage techniques for sparse matrices. In 9th
International Multitopic Conference, IEEE INMIC 2005, pages 1 –7, dec. 2005.

[28] P. Stathis, S. Vassiliadis, and S. Cotofana. A hierarchical sparse matrix storage format for vector
processors. In Parallel and Distributed Processing Symposium, 2003. Proceedings. International, page 8
pp., april 2003.

24

[29] Stream: Sustainable memory bandwidth in high performance computers.
http://www.cs.virginia.edu/stream.

[30] F. Tavakoli. Parallel sparse matrix-vector multiplication. Master’s thesis, Royal Institute of Technology
(KTH), 1997.

[31] R. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis, UC Berkeley, 2003.

[32] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically tuned sparse matrix
kernels. In Proc. SciDAC, J. Physics: Conf. Ser., volume 16, pages 521–530, 2005.

[33] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of software and the
atlas project. Parallel Computing, 27(12):3 – 35, 2001.

[34] S. Williams. Auto-tuning Performance on Multicore Computers. PhD thesis, UC Berkeley, 2008.

[35] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of sparse matrix-
vector multiplication on emerging multicore platforms. Parallel Computing, 35(3):178 – 194, 2009.

[36] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM, 52(4):65–76, Apr. 2009.

[37] M. M. Wolf, E. G. Boman, and B. A. Hendrickson. Optimizing parallel sparse matrix-vector multipli-
cation by corner partitioning. In Proceedings of PARA08, Trondheim, Norway, may 2008.

25

	Introduction
	Background
	Sparse Matrix-Vector Multiplication
	Data Structures

	OSKI: An autotuning System for SpMV

	pOSKI's Approach
	Block Compressed Sparse Row (BCSR)
	Off-line (compile-time) autotuning
	Run-time (on-line) autotuning
	Thread-level Parallelization
	Heuristic performance model
	History data

	Experimental Setup
	Evaluated multicore platforms
	Performance predictions
	Sparse matrix test suite

	Experimental Results and Analysis
	Off-line (compile-time) autotuning
	OSKI baseline
	pOSKI's in-core optimizations
	Summary of off-line autotuning

	Run-time (on-line) autotuning
	Thread-level Parallelization
	Results from the Heuristic performance model
	Run-time tuning cost
	Summary of run-time autotuning

	Conclusions

