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Abstract
Architectural Principles of Phosphorelay Signaling Networks
by
Joshua Adam Hug
Doctor of Philosophy in Electrical Engineering and Computer Science
University of California, Berkeley

Lauren El Ghaoui, Chair

The phosphorelay is a ubiquitous biological module that plays a fundamental role in
signal transduction and stress response coordination in organisms ranging from
bacteria to plants. Despite their central role, the manner in which they integrate
information is poorly understood. Furthermore, naturally occurring systems have a
number of key architectural variations whose purpose remains mysterious. These
variations include the number of stages in the relay, the number of proteins from
which the relay is built, and the set of stages which are targeted by phosphatases
and kinases.

In this work, I create a unified framework for understanding the function of
phosphorelays and their architectural variations. Central to this investigation are a
pair of models for the phosphorelay, one of which is an Ordinary Differential
Equations based model, and the other of which is a Chemical Master Equation based
model. The ODE based model is used to rigorously demonstrate that a phosphorelay
is monotone, and thus converges to some steady state. In turn, the steady state
output is elucidated in terms of the parameters that determine the net influx and net
efflux at each stage as well as the growth rate.

This steady state output function provides an elaboration on a prior hypothesis
which suggests that a long phosphorelay provides additional phosphoregulation
targets. Specifically, we find that the output of a phosphorelay is proportional to the
net influx rate divided by the sum of various products of efflux signals. In the large
efflux signal limit, effluxes are effectively multiplied to generate the final output. In
this way, the activity of phosphatases which act on multiple stages in the relay are
multiplied, allowing the phosphorelay to act as an analog computation device for
this specific function.

Growth is shown to have an unexpectedly powerful effect on relay output. In the
most extreme cases, the phosphorelay output is shown to obey a power law with
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respect to growth, with an exponent which can be as large as the length of the relay,
and which is also mediated by other key architectural variations. Thus, the
phosphorelay can be utilized as a device which allows an organism to select
behavior by comparing its growth rate to a threshold, where the level and sharpness
of this threshold can be controlled by architectural and parametric changes. These
results also provide design laws for building phosphorelays which are robust to
growth rate variation.

Phosphorelays are also known to have a substantial effect on growth rate, and thus
the relay and growth rate form a cross inhibitory loop. We show that under
reasonable parametric conditions, a phosphorelay can thus be used as a hysteretic
growth switch, and discuss the implications of this idea. Many of these ideas are
then supported through numerical simulation of the ODE outside of the parametric
conditions which allowed these ideas to be derived. They are further supported
through investigation of a CME based model, and biological experiments are
suggested that could validate these ideas. Finally, we discuss these results in the
context of the Bacillus subtilis phosphorelay, whose output is known to affect the
production of every relay protein but one. We hypothesize that this single feedback
is missing in order to preserve the analog computation function.
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1 Introduction

1.1 Cellular Signaling

Biological cells can be thought of as state machines whose states evolve in response
to the inputs they receive from the world within and around them. If a living cell is
to thrive, the state of the cell must evolve in a suitable manner in response to those
inputs. For example, an embryonic human must segment its body with exquisite
temporal and spatial accuracy to form fingers, toes, and other handy appendages for
use later in life. Mammals and birds sense and regulate their own internal
temperature to ensure that the chemical reactions that sustain their lives are
thermally operating at maximal efficiency. Some bacteria produce and secrete toxic
chemicals when they sense a competing population. These processes are ultimately
governed by the organization of the machinery of the cell.

Modern biotechnology allows us to understand such processes at scales ranging
from atomic interactions within a single protein to the ecosystem level. In this work,
[ focus on cellular function at the molecular scale. At this scale, biological processes
are carried out by a cell wide network of fungible biological parts, specifically
metabolites, genes, and gene products. Such networks are also called biological
circuits. Despite their natural occurrence, these networks can be analyzed using
metaphors, terminology, and techniques that have been developed for engineering
man-made systems.

Previous work has shown that biological circuits can be thought of as an assembly of
functional modules. Each module performs a specific function, and comprises a
relatively limited number of parts that operates more or less autonomously towards
accomplishing this function. As in manmade systems, modules may be of vastly
different sizes, and can be assembled hierarchically [1]. For example hemoglobin
can be thought of as a monomolecular module that simply transports oxygen. At the
other end of the scale, the human brain can be thought of as a vast module that
coordinates the high level activity of an entire person.

In this thesis, we will discuss a specific type of module known as a signaling network
or signaling pathway, which are simply collections of biological parts that “allow the
cell to receive, process, and respond to information[2].”

In this work, we consider signaling networks to be roughly divided into three stages.
The first stage transduces inputs, the second stage processes transduced inputs, and
the final stage effects a response. The role of the transduction stage is to convert
useful information into a usable form, for example, conversion of photon energy into
structural protein changes inside the eye. The processing stage may play many roles,
including but not limited to sharpening the shape of the output/input response [3],
integrating multiple signals [4], frequency filtering [5], and adding delay [5]. The

1



processing stage can also be thought of as a decision making stage[6]. The effector
stage performs some action in response to the information provided by the
processing stage. For example, the effector may promote or inhibit the expression of
genes|[7], change the direction of flagellar rotation [8], or open an ion channel[9].

Though we will typically think of the aggregate flow of information as traveling in a
linear fashion from the transduction to the processing to the effector stages, it may
also travel backwards or between non-consecutive stages. Motifs common to
manmade systems are also found in signaling networks, including positive and
negative feedback loops [10], multistable switches [10], oscillators [10], and logical
operators [11]. Our partitioning of signaling networks into three separate stages is
merely for conceptual convenience, and in reality, the same part may play multiple
roles. For example the LuxR protein in Vibrio fischeri gains the ability to effect its
tasks when it binds to a certain extracellular communication factor, thus it acts not
only as a sensor of this communication factor but also as an effector [12].

From an engineering standpoint, signaling systems are interesting because they
constitute the core control systems that govern cellular behavior. In this work, we
hope to elucidate the core architectural principles behind one of the most common
signaling network types, known as the phosphorelay.

1.2 Signaling Networks

Signaling networks vary widely in their biological role, architecture, and complexity.
In this section, we discuss common mechanisms and motifs.

Sensor proteins typically transduce information by receiving post-translational
modifications (PTM) in response to one or more stimuli, though stimuli may also
prevent a constitutive PTM [13]. These modifications include decoration of protein
residues with a modifying group, conversion of amino acids within the protein, and
proteolytic cleavage (i.e. destruction) of the protein [14]. PTMs affect the cell by
changing protein properties, for example the partners with which it can chemically
interact, the stability of the protein, or the compartment to which the cell will
transport the protein[14].

In the signaling networks that we will discuss in this paper, the effect of a PTM on a
protein will be to modulate its ability to induce PTMs upon some downstream signal
integration protein or proteins. These PTMs cascade from sensor proteins to signal
integration proteins until finally reaching an effector protein. These cascading PTMs
need not be of the same type. When a protein induces a PTM on some other protein,
it may receive a PTM as a side effect. Though propagation from sensor to processor
to effector is most common, any protein in any stage may induce a PTM in any other
stage, and constitutive PTMs may occur at any stage.

As an example of a simple signaling network using PTM, consider the signaling
system that E. coli uses to swim towards greater concentrations of desirable
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chemicals (called attractants) and away from undesirable chemicals (called
repellants) in a process also known as chemotaxis. There are five so-called methyl-
accept chemotaxis proteins (MCP) in E. coli that act as sensors, each of which detects
specific known stimuli, e.g. the Tsr protein acts as a detector for serine and lucine.
When an attractant is bound to an MCP, the MCP (with the assistance of a protein
called CheW) phosphorylates a protein called CheA. In turn, CheA~P gives its
phosphate over to CheY, which when phosphorylated will cause the flagella of the
cell to rotate clockwise, causing the cell to tumble around randomly, staying in
place. By contrast, when CheY is unphosphorylated, the flagella rotate counter-
clockwise and the cell tends to move in a straight line. CheA can also pass its
phosphate on to CheB instead of CheY. When CheB is phosphorylated, it (along with
the assistance of protein CheR) causes the sensor proteins to become methylated,
blocking their ability to phosphorylate CheA. Thus, if the attractant concentration
remains constant, methylation will eventually block the MCP’s ability to
phosphorylate CheA, and the system adapts to the current concentration of
attractant[6]. In this system, the MCP represent the sensors, and CheA, CheB, CheR,
and CheW and be thought of as the processing stage which only activate the effector
if the sensed attractant concentration is increasing as a function of time or the
sensed repellant concentration is decreasing as a function of time, and the final
activator CheY is an effector which controls the direction of the cellular flagellum in
response to the processing stage.

Among post-translational modifications, the addition of a phosphate group (HP0O3),
also called phosphorylation, is the most studied and believed to be the most
ubiquitous, affecting roughly one third of all known proteins [15]. Among networks
involving phosphorylation, there are two highly conserved network types, the
phosphorelay[16] and the kinase cascade[17].

In both networks, an initial protein becomes phosphorylated either constitutively or
in response to a specific environmental stimulus. This protein then phosphorylates a
residue on another protein. This process repeats until a terminal protein is
phosphorylated and can effect a response. The output of the signaling network is
thus given by the concentration of phosphorylated effector proteins. In many
phosphate based networks, there are special proteins called phosphatases that act
to remove phosphate groups from proteins, also called dephosphorylation.

In this work, we focus almost entirely on phosphorelays, which will be more fully
defined in the next section. Despite their ubiquity and cosmetic similarity to their
well-studied kinase cascade cousins, the reasons for certain common architectural
variations remain mysterious, and their ultimate function is not well understood. In
this thesis, we provide common architectural principles which allow us to
understand observed differences between natural systems, and which may provide
guidance for construction of synthetic phosphorelays in the future.

1.3 Phosphosignaling Networks



As introduced above, there are two broad classes of multistage phosphate signaling
cascades, namely kinase cascades and phosphorelays. Though this work focuses on
the latter, we will draw many comparisons with the former. Generally, kinase
cascades are found in higher eukaryotes, and phosphorelays are found in
prokaryotes, lower eukaryotes, and plants, though there are several known kinase
cascades in prokaryotes. In a typical kinase cascade, the signal is initiated when an
initial protein phosphorylates a receiver protein using ATP as a phosphate source,
usually in response to some condition. A protein that can transfer phosphate from
some donor molecule (e.g. ATP) to another protein is called a kinase. When doubly
phosphorylated, the receiver protein acts as a kinase on a third protein, again using
ATP. The cascade of kinases continues until it reaches a terminal protein that
actuates some physiological response. Typically, a kinase cascade has three stages,
each on a separate protein, the latter two of which require two consecutive
phosphorylation PTMs to become active[17]. A typical kinase cascade is depicted
below in Figure 1.1a.

By contrast, in a typical phosphorelay cascade, the signal is initiated when an initial
protein acts as an autokinase and autophosphorylates itself at a histidine residue
using ATP. This phosphate molecule is then passed to an aspartate residue on a
receiver domain, which may either be a domain on the autokinase itself, or may be
part of an entirely separate protein, in which case the receiver protein is called a
response regulator. There are two key differences with kinase cascades. First, unlike
a kinase cascade protein which draws additional phosphate from ATP at each stage,
a phosphorelay protein physically relays the same phosphate molecule between
consecutive domains, hence the term phosphorelay. Secondly, each stage along the
chain typically requires only a single phosphorylation event before it can
phosphorylate the next stage[16]. A typical phosphorelay is shown below in Figure
1.1b.

Phosphorelays comprising two and four phosphorylation steps have been identified.
In a four step relay, the phosphate is relayed three times, from histidine to aspartate
to histidine to aspartate. This final aspartate residue is part of a terminal response
regulator protein, which typically becomes active when this residue is
phosphorylated. These domains have been observed to occur across two, three, or
four separate proteins[16]. Both types of signaling cascades are extremely common,
have evolved many times [18], [19], and often play a central role in cellular decision
making [16], [20].

There are many embellishments beyond the simple picture above. Just to name a
few, phosphatases may remove phosphatase from one or more stages in a
phosphosignaling cascade[21]. The effector in the relay may control the expression
of phosphatases or of cascade proteins [7]. There may be multiple proteins at each
stage of the cascade, and these proteins may have a large fan-in and fan-out, as
observed in phosphorelays in plants [22]. These embellishments are more fully
discussed in the next chapter.
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Figure 1-1: A) A typical three stage kinase cascade. An initial input signal K1 activates the MAPKKK
protein. This MAPKKK protein in turn phosphorylates MAPKK, which requires two phosphorylation
events to become active. In turn, MAPKK-PP phosphorylates MAPK, which also requires two
phosphorylation events to become active. The MAPKK and MAPK stages have a quadratic response to
their inputs due to the dual phosphorylation sites, and the multistage nature of the cascade causes
these ultrasensitivities to be combined multiplicatively, giving a roughly quartic relationship
between Output and Input 1. The latter two stages are also regulated by a phosphatase. B) A typical
four stage phosphorelay. Here some input K1 causes the first stage to autophosphorylate itself. This
phosphate is then relayed three times before reaching a terminal response regulator, which becomes
activate upon phosphorylation. In this relay, each stage is also regulated by a phosphatase P;.

The output of a phosphosignaling cascade is given by the concentration of
phosphorylated effector molecules, for example MapK-PP in Figure 1.1a or x; in
Figure 1.1b. We conceptualize the inputs to the system to include the factors that
are transduced into phosphate groups (thus contributing an influx of phosphate to
the cascade), as well as the factors which remove or modulate the removal of
phosphate from the cascade (thus determining the net efflux of phosphate from the
cascade). There are a wide variety of environmental and physiological factors that
can be considered as inputs. Examples of signals that are transduced by kinases
include chemical concentration[23], redox potential[23], light[23], heat[24], and
mechanical stress[25]. Phenomena that remove phosphate or modulate the removal
of phosphate include protein degradation, phosphate hydrolysis, effective dilution
by growth, phosphatases[26], and intercellular molecules which inbhit
phosphatases[26]. Signaling cascades effectively integrate influx and efflux signals
into an output signal. For example, the PmrB/PmrA two component system in
Salmonella enterica is known to have an influx rate which depends on the pH and
Fe3* levels, and an efflux rate which depends Mg?2* levels[27]. Thus, we can consider
these to be inputs to the system, though we note that under normal growth
conditions, these inputs may not vary enough to significantly contribute to the
output of the PmrB/PmrA system.



1.4 Typical Modeling Frameworks

To quantitatively understand the function of biological networks, we must have
mathematical models of the system under study. The most accurate molecular scale
model would track the types, positions, and velocities of every molecule in the cell,
tracking collisions and changing molecule types as warranted by chemical reactions
[28]. In this model, chemical reactions are instantaneous events involving either one
or two molecules, called unimolecular or bimolecular reactions respectively, and the
latter of which occur only as a result of molecular collisions. Such a model is hard to
interpret, and is analytically and numerically intractable, given that even bacterial
cells contain on the order of 1 billion molecules (lower bound estimate from 665
femtogram weight of a bacterial cell [29] and estimate of water weight in a bacterial
cell [30]). One common way to mitigate this issue is to assume that a cell is divided
into one or more discrete compartments, and that the contents of any given
compartment of a cell are well-stirred and in thermal equilibrium. Given this
assumption, the position of the molecules becomes irrelevant, and the state of the
cell is simply given by the number of molecules of each type in each compartment,
along with the volume of each compartment[28].

Biological cells are not actually well-stirred, and there are many examples where
spatial models are necessary to recapitulate function in systems that specifically
take advantage of spatial variation of molecule count. For example, the development
of fruit fly embryos[31] and the septation of a dividing bacterial cell[32] are
inherently spatial processes, and models of these processes reflect that fact. Typical
spatial models are based on partial differential equations (PDEs), molecular
dynamics (MD), or Brownian dynamics (BD). For processes that lack a significant
spatial dependency, the well-stirred assumption works well for many systems[28].
We will use this assumption throughout this thesis for analyzing phosphosignaling
systems, and thus will not discuss spatial models.

In this work, we will only consider systems with one compartment, though this
work easily generalizes to multi-compartment systems. Given the well-stirred
assumption, there are many possible modeling frameworks. We choose to examine
the phosphorelay using two of the most common techniques, namely a chemical
master equation (CME) based model and an ordinary differential equation (ODE)
based model.

1.4.1 CME Modeling

In a traditional CME-based model, the state of a cell containing W different

molecules is represented by a positive integer valued vector X(t) € ZEW, which
represents the number of molecules of each type in the cell, and the volume of the
cell Q € R, which is assumed to be constant in the traditional CME formulation. The
goal in a CME model is to estimate the state vector given that the system begins at
X(t,) = xo at some initial time t,,.



The state of the cell evolves according to the set of possible chemical reactions in the
cell. Each reaction R; is characterized by two quantities. The first of these is the
state-change vectors; = (sy}, ..., Ssj), where s;; is the change in the number of i

molecules every time reaction j occurs. We can assemble the R state-change vectors
into a matrix § known as the stoichiometric matrix.

For example, consider the system of four chemical reactions given below

[Q:] - [Q,] (1-1)
[@s] + 2[Q2] — [Qs] + [Q4]
[Q2] =0
0 - [Q4]

Our stoichiometric matrix is given by

-1 1 0 1 (1-2)
s=[1 -2 -1 0
0 0 0 0

In addition to being characterized by a column of the stoichiometric matrix, each
reaction R; is also characterized a propensity a;, which is defined such that

aj(x)dt = P(R; occurs inside Q in the next time interval [t, t + dt) | X(t) = x) (1-3)

IfR; is a unimolecular reaction involving reactant x;, then the propensity a;(x) =
CjXx, and ¢; is some arbitrary constant. If R; is a bimolecular reaction involving two
reactant types x; and x4, then a;(x) = c¢jx;x,. If the R; is a bimolecular reaction
involving two reactants of the same type xy, then a;(x) = cjx;(x, — 1). For both
types of bimolecular reactions, our arbitrary constant ¢; < 1/0Q. If R; is a pure-birth

process involving no reactants (e.g. 0 — [S;]), then the propensity is simply
a;(x) = ¢j, where ¢; «x Q.

Given this probabilistic framing of the evolution of the state, we cannot accomplish
our original goal of making an exact prediction of X(t). Instead, we try to find the
probability distribution for the state vector as a function of time

P(x,t |x0,t0) = p(X(£) = x |X(to) = xo) (1-4)

To this end, from equation 1-3, we can derive the chemical master equation

OP(x,t |xg,to) x (1-5)
ar == Z[af(x —5;)P(x = 55, t |x0,t0) — a;(X)P(x, t |x0, t0)]

Jj=1

Thus, the CME is a countably infinite set of coupled ODEs, with one equation for
every possible state vector X(t). Generally speaking, the CME is analytically
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intractable, while numerical simulation is possible through the Gillespie stochastic
simulation algorithm (SSA) or its many variants. Given a CME and a starting state,
one run of the SSA gives a sample trajectory which obeys the probability
distribution that would be obtained if one could solve the CME.

We will not discuss the derivation of the SSA in this thesis, though we will utilize it
in a later section. See [28] for a more thorough discussion and derivation of the SSA
and the CME.

1.4.2 ODE Modeling

Another common approach is to relax our constraints on the state vector X(t) so
that its values are now continuous instead of discrete. In this case, our state is given
by a vector of non-negative real numbers X(t) € RY, where the ith element of the
state vector represents the (real valued) count of molecule i. The cellular volume
() € R is generally assumed to be constant.

In this framework, each reaction R; is again described by two quantities, the state
change vector s;, which is exactly as in the CME formulation, and the rate law v},

given by v; = k; [, xl.cj(l), where ¢; (i) is the number of i molecules that participate
in reaction j, and k; is the rate constant. For example, for the reaction 4[S;] +
2[S;] = [Ss], then ¢;(3) =4, ¢;(2) = 2, and thus v; = k;x5x%. For non-constant
volumes, the reaction rate is given by the proportionality relationship k; o

Q1-2Ei6[33],

Given these two quantities above, we have the reaction rate equations given by the
the system of ODEs

Xm' - (1-6)
RO
j=1
Or more compactly
dX -
—=Nv (1-7)
dt

Given an ODE model, there are many system properties that one might explore,
including dynamical behavior (number of equilibria, the time to reach these
equilibria given typical conditions, oscillations, bifurcations, excitability), parameter
sensitivity, and frequency response, just to name a few.

1.4.5 Existing Characterizations of Phosphosignaling Cascades

As mentioned above, both kinase cascades and phosphorelays are quite common
and occur across all classes of life, with the exception that phosphorelays have not



been discovered in higher eukaryotes except plants. One intriguing mystery is the
advantage the cell gains by having multiple stages between the sensor and the
effector. While a two stage system makes sense, because the sensor stage is typically
bound to the membrane and thus can’t reach deep into the cell to induce an effect,
there is no intuitive reason for multi-stage systems. Furthermore, the fact that
multistage systems are so common and have independently evolved many times
suggests that there is some functional advantage to having multiple stages. To
understand the possible reasons for having multistage systems, mathematical
models have been built and studied, with experimental evidence used to validate the
hypotheses where possible.

Despite their shared ubiquity, kinase cascades have received far more theoretical
and experimental attention than phosphorelays, no doubt due to their importance in
mammalian cell function. Perhaps the most important finding regarding kinase
cascade function is based an ODE model which was used to show that the steady
state output of a kinase cascade should exhibit a sharp output response to the rate
of phosphate influx at the initial stage. This sharpness of response, also called
ultrasensitivity, is believed to be a direct consequence of the multi-stage nature of
the cascade. Specifically, existing models show that some stages have an
approximately quadratic small signal steady state response, which results from the
fact that some proteins in a kinase cascade must be doubly phosphorylated before
being able to act as a kinase. These quadratic responses at each stage are believed to
be combined multiplicatively, resulting in a sharpness that increases exponentially
with cascade length, resulting in an approximately quartic small signal response to
the initial influx signal for the cascade pictured in Figure 1 [17], [34]. This
approximately quartic response has been experimentally verified, though the
multiplicative mechanism has not [17]. Effectively then, the kinase cascade acts as a
step function which maps some putative input factor to an output MAPK-PP
concentration. Further, theoretical work has suggested that the multi-stage nature
of the kinase cascade allows for multistability without any explicit feedback due to
similar properties, meaning that some kinase cascades may act as a digital switch
[35], though this property has not been observed experimentally.

Phosphorelays lack the dual-phosphorylation mechanism found in kinase cascades,
and thus are not expected to exhibit a sharp output response to influx signals, and
no theoretical or experimental work has substantively suggested otherwise. This
raises the interesting question of what fitness advantage, if any, the length of a long
relay conveys. Explanations for lengthy phosphorelays include integration of
multiple phosphatase signals[16], low pass signal filtering / high frequency noise
resistance [5], [36], [37], noise generation [38], and sharp influx signal response by
intermediate concentrations (as opposed to the terminal actuator) [37]. The
hypothesis that the phosphorelay acts as a noise generator was explored by
generating trajectories using a CME based model and a noisy ODE model. Low pass
filtering has been studied from both the ODE and CME perspectives. Intermediate
stage ultrasensitivity was based on an ODE model.



1.4.6 Thesis Organization

In this work, we present a unified framework for understanding the function of
phosphorelays. Unlike previous work which has typically relied almost exclusively
on phenomenological interpretations of numerical simulations or consider
phosphorelays only in the context of one specific organism, we focus on rigorous
mathematical analysis of relay function in the context of a unified framework.

We provide this framework by defining the core phosphorelay module in terms of a
specific set of chemical reactions inspired by known phosphorelays. We show that
an ODE based model of this set of reactions can be proven monotone under mild
assumptions, meaning that the core phosphorelay module converges to some
equilibrium. Furthermore, this allows one to analyze larger systems which include
the core phosphorelay to be analyzed using the notion of monotone input/output
systems|[39].

We also generalize and mathematically explore the old hypothesis that long
phosphorelays provide the ability to integrate multiple phosphatase signals into a
single output. We first generalize by expanding the set of inputs beyond
phosphatases to include any possible mechanism which removes phosphate from
the network. We then provide a provide a set of assumptions which can be used to
derive a closed form expression for the steady state output of the phosphorelay in
terms of its inputs, finding that a phosphorelay can theoretically be used as a sort of
analog calculation device which computes the ratio of its phosphate influx rate by
the product of the efflux rates.

Given recent work that considers the role of growth in affecting module function in
growing cells, we consider how growth affects the phosphorelay in terms of two
primary effects on the steady state output function. The first effect is in its role as an
efflux signal, as it acts to effectively dilute the amount of phosphorylated proteins.
The second effect is in its role as an implicit controller of protein concentrations, as
cells which grow rapidly tend to have fewer receiver proteins and phosphatase
proteins. Our analysis suggests that a phosphorelay (and other similar systems) may
have a very sharp response to perturbations in growth rate due to its length. We
provide a concise description of the possible degree of growth sensitivity in terms of
key architectural and parametric features. We then conduct an exhaustive numerical
verification of these growth properties by incrementally removing our simplifying
assumptions that were used to derive the results, and find that the results hold even
without these assumptions. Among the tools used to verify these properties is a tool
which automatically generates ODE systems for use with MATLAB based on rules
which are entered in a simple custom syntax. These results are also explored in the
context of a CME based stochastic model, where again the basic ideas appear to hold
quite well.

Given that phosphorelays are known to activate metabolically expensive and growth
suppressive phenotypes, we then expand our basic model to include systems where
the phosphorelay suppresses growth. We find that such systems can exhibit
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multistability, meaning that a phosphorelay can be used as an implicit digital growth
switch, where cells that cross some putative low growth threshold find themselves
committed to a low growth phenotype. We also discuss how such hysteretic systems
can be used to eliminate spurious output chatter in the event that the underlying
basal growth rate is noisy.

Lastly, we conduct a brief analysis of the complex Bacillus subtilis phosphorelay,
showing how its unique feedback system may be designed to provide a just-in-time
supply of phosphorelay protein components while avoiding corruption of the steady
state output calculation. We also show that the core of the subtilis phosphorelay
cannot be oscillatory. We finally provide an interpretation of the Bacillus subtilis
relay output in terms of each cell’s measurement of food and number of growing
neighbors.

2 Model of the Phosphorelay Signaling Network

2.1 The Single Influx Single Branch Open Loop Phosphorelay Model

We will begin by discussing the single influx single branch open loop (SISBOL)
phosphorelay model, which reflects the most common configuration for known
phosphorelays. In a SISBOL phosphorelay, phosphate enters the relay at only one
node, is bidirectionally passed along a linear chain of phosphate carrying domains,
and there is no feedback of any kind from the later stages to the earlier stages
except reverse phosphotransfer along the chain. The phosphorelay in Figure 1.1b
shows the archetypical SISBOL phosphorelay.

The core set of chemical reactions that constitute a SISBOL phosphorelay are given
in Table 2.1 below in the column labeled Full Reactions where i = {1, ..., N}, and rate
constants are specified for each reaction which will be used in our coming analysis.

Full Reactions Simplified Reactions
K1 K1 :
X, - X} X, - X Phosphorylation
Xi +Xj11 S X Xjy1 S XiXi1 S X + X5 X i * Phosphotransfer
i T Xit1 i Xi+1 iXit1 i T Xig1 X[+ Xis1 S X+ X p
L
L; L i
x5 x; xS x; Dephosphorylation
* * .
X +mM, S X; Ty XM S X+ W kn; Dephosphorylation
i k=7 Atk itk i k x;+nk—>xi+nk p p y
P; Py P; Py : :
0= x;,0 =1, 0= x;,0 -1, Protein Production
g+d;  , g+d; g+d; g+d; g+d; g+dm; | Protein Loss
x;i— 0,x;, — 0,1, — 0 x;—0,x; — 0,1, — 0

Table 2.1: List of phosphorelay reactions

x; and x; represent unphosphorylated and phosphorylated phosphorelay protein
concentrations, respectively. m; represent phosphatase protein concentrations.
Variables involving two symbols (e.g. x;x;,;) represent the concentration of
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intermediate complexes. Our system output is xy , which represents the
concentration of the phosphorylated form of the terminal response regulator
protein. It is this phosphorylated protein xy that will interact with some
downstream part of the cell to produce a response to the system inputs. Each
protein is assumed to include only a single phosphate carrying domain.

To make the model tractable, we assume that all bimolecular reactions are one-step
mass action, thereby asserting that the enzymatic reactions are out of saturation,
yielding the column labeled Simplified Reactions. We will begin by analyzing the
Simplified Reactions, and will later analyze the model which includes the Full
Reactions.

In this case, the state of the phosphorelay is thus given by a vector of length 2N+P,
where N is the number of phosphorelay stages and P is the number of phosphatases.

As discussed in section 1.4, if we ignore spatial and stochastic effects, the simplified
reactions can be modeled by a system of 2N+P nonlinear ODEs, given below as
equations 2-1.

dxi* « . % % * (2-1)
ar keixi + FioqXi_yX; + Bixpxjyy — Fixixipq — BioqXi_qx) — (Li + kgt + d; + g)x;
dx;
d_tl = —kyX; = Fi_qx{_1X; = BxiXipy + Fix{xppq + BioaXi_qx + (Li + k)% — (d; + 9)x;
+P,
dm;
d_tl = Pni - (dﬂ'i + g)ﬂi

The first terms of the x; equation tell us that unphosphorylated proteins are
converted to phosphorylated proteins at a rate of k;x;, where k; = 0 for i # 1. The
next four terms cover phosphotransfer forward and backwards between the current
stage and its two neighbor stages (with rates equal to zero ifi —1 < 0ori+ 1 > N).
The last term gives us the rate at which phosphorylated proteins are lost. The
second equation describes the evolution of x; and is only asymmetric with the first
equation in that species x; is produced ex nihilo at a constant rate P;, and loss rates
L; and kym convert phosphorylated proteins x; back into unphosphorylated
proteins x;, whereas d; and g eliminate proteins altogether. Our final equation for m;
describes the evolution of phosphatase concentration vs. time.

In reality, growth would be better modeled by a hybrid ODE model where the cell’s
volume continuously increases until it suddenly halves and protein concentrations
are partitioned. However, modeling growth as a decay process is a standard
approximation. For a more thorough discussion of this approximation, see [40]. We
will discuss a hybrid ODE model for growth in section 2.7.

In principle, any of our parameters can vary with time, and thus be considered as an
input to the system. If we assume constitutive expression of all of our proteins (i.e.
P; and P, constant), then the remaining parameters most likely to vary in a

meaningful way are k;, phosphatase activity k, and the growth rate g. Our k; values
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represent the rate of influx into the relay, and as discussed above, have been
observed to vary with a wide variety of interesting environmental and physiological
factors. Our parameters k,, and g regulate the efflux of phosphate from the system.
In some systems, k;, has been observed to vary with putative intercellular
communication factors[41]. In all cells growth rate g naturally varies. g also affects
the concentration of our phosphorelay and phosphatase proteins c; and ;. Thus, we
can conceptualize the typical phosphorelay as having input signals k,, k;; and g, and
output xy, where the inputs act by regulating the influx and efflux of phosphate
from the network as well as the protein concentrations.

We term the rate k; to be the influx signal, as it controls influx into the relay. We
term L;, g, d;, and k;,m; to be the efflux signals of the relay. Even though L; and d;
will not typically vary in a meaningful way, we include them in our list of signals for
generality.

2.2 The SISBOL Phosphorelay is Monotone

To investigate the dynamical properties of the SISBOL phosphorelay, we will first
apply the change of variables ¢; = x; + x;. In this case, our system of equations
becomes

dx; * * * * * * * (2'2)
P ki(c; —x) + Fioaxi_1(¢; — x{) + Bi(c; — x)xi1q — Fix{ (Civr — Xi11)
—B,_1(ciq — x{_ )] = (Li + kgt + d; + g)x]
dCl'
dEZPi_(di+g)ci
7'[4
d_tL = Pni - (dni + g)ﬂi

For conveniently finding the sign of our Jacobian matrix, we reorganize this into

dx; . « * (2-3)
a kici = (Bi—1Ci—1 + Ficiyq)x{ + (Fi1(c; — x{) + Bi_1)x{_4
+(Fix;{ + Bi(c; — x{))X{ 41
C.
dd—tl=Pi—(di+g)ci
7'[4
d_tL = Pni - (dni + g)ﬂi

Here, our variables c¢; and &; evolve independently of x;, clearly converging to a
single fixed point, and thus we can treat these as a constant in steady state. This
leaves us to consider the variables x;". Since ¢; > x; the sign of the Jacobian J for our
variables x; is given by

-+ 2-4
. 0 (2-4)

sign(J) =
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From this, we know that the SISBOL relay is monotone, because all of its off diagonal
entries are positive[42]. Consequently, except for a possible set of measure zero, the
relay will always converge to one of its fixed points[42].

Given that the relay always converges to some fixed point, one item of special
interest is the possible steady values for xy, which represents our system output.
Unfortunately, the system of ODEs given above as 2-1 (or 2-2) is analytically
intractable for all but the smallest systems, as it is the solution to an order
Npolynomial. In the following sections, methods for solving the system will be
discussed.

2.3 Steady State ODE Solutions for the SISBOL Phoshporelay

2.3.1 The Unidirectional Phosphorelay

In this section, a steady state solution is given for the output of the SISBOL
phosphorelay in the special case that phosphate travels only in the forward
direction, i.e. B; = 0. Though this case is physically impossible due to the fact that all
real chemical reactions are reversible, the analysis is simpler, and the basic ideas
will hold also true and serve as a guide to understanding the more comprehensive
bidirectional relay case, which will be discussed in the next section.

To linearize system B2, we will utilize a change of variables similar to the one we
used for proving monotonicity. First, we define c¢; to be the total concentration of
domain i, i.e.c; = x; + x;. We next assume that the relay is in a state of low
activation and that most phosphorylation domains are unoccupied i.e. x; < x;,
allowing us to make a change of variables using the approximation x; = ¢;. Thus
each bimolecular phosphotransfer reaction becomes the new reaction:

Fi 2-5
* *
Ci+1 + X 2 Xjyq F Civa (2-5)

This low activation assumption is made purely for the sake of analytic tractability,
and it is possible that real systems do not obey this assumption. Numerical
simulation will later be used show that the same key findings hold even without this
assumption. The low activation change of variables gives us the new system of ODEs
2-6 given below, where i = {1, ..., N} and N is the number of steps in the relay.

dx; . . (2-6)
dtl = (rk; + Fi_1x;_1)¢i — (Ficip1 + A4)x;
dCi
¢ = b~ (di+ g)e
dm;
d_tL = Pni - (dni + g)ﬂi
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Here, we’'ve condensed our efflux rates into the simple aggregate rates A; = L; +
d; + g + ky;m;, ie. the sum of all phosphate loss rates at stage i, with respective
losses due to spontaneous phosphate loss, protein degradation, protein dilution
through growth, and phosphatase activity. In 2-6, k; and A; represent the influx and
aggregate efflux signals which regulate phosphate flow through the network, g
regulates protein concentrations (and also acts as part of 4;), and the output is still
given by the concentration of the activated output protein xy. Our system is now
equivalent to the simple unidirectional first order reaction cascade given below in
Figure 2.1.

K1¢
X

1
MV

*

Fico , F2C3 Fn-1Cn .
—» X — v — X, — Output

7\2*2 )\n*

Figure 2.1 - Unidirectional First Order Reaction Cascade

One interesting consequence of this change of variables is that our ODE system 2-6
can also be used to model systems where multiple phosphorylation domains appear
on a single protein, as long as we assume that phosphotransfer always occurs in cis
between cognate phosphotransfer domains on the same protein (e.g. if domains 1

and 2 are on the same protein, domain 1 never transfers phosphate to the domain 2
de;
dt
on the same protein. Mathematically, this is equivalent to asserting that transfer

rates are independent of protein concentration when the transfer happens between
two domains on the same protein. Thus our model now covers the vast number of
known multistage phosphorelays where multiple stages are part of the same
protein.!

of another protein). To do this, we setc; = 1 and — = 0 if domainsiand i — 1 are

More importantly, this change of variables allows us to solve for xy given ODE 2-6.
We first observe that x7 is given by

e K (2-7)

And for i > 2, x; can be written in terms of x;_, as follows

o = Fi1x{_1¢; (2-8)
" Ficiy + A

Using equations 2-7 and 2-8 and noting that cy,; = 0, we have that xy is given in
terms of state variables c; by equation 2-9, which will be discussed in the next
section.

1t is possible to include proteins containing multiple phosphorylation sites even from the beginning.
However, the resulting chemical reactions and ODEs are far messier than given in Table 2.1 and
Equation 2-1 respectively. By deferring until this point in the manuscript, we avoid this issue.
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1K1 H?I:_ll Ficiyq (2-9)
An TS (A + Ficigq)

Xy =

In turn, ¢; and m; can be derived from 2-6 as

0 If domains i and i-1 are on the same protein  (2-10)
¢ = P; Otherwise
di+g
Py,
l dTL'i + g

Though our model for growth (given in 2-6) is a gross simplification, its essential
prediction (given in 2-10) is that stable protein concentration is inversely
proportional to the growth rate for high growth rates and reach some maximum
value at zero growth, which is consistent with more complex theoretical growth
models and experimental measurements for exponentially growing bacterial
cultures [43].

2.3.1.1 Multiplying Efflux Signals

Though previous work has suggested that a long phosphorelay provides additional
phosphoregulation targets, the additional functionality provided by having
additional regulation targets has not been discussed. Equations 2-9 and 2-10
specifically elucidate how a low-activation forward-only phosphorelay integrates
efflux signals, namely that the output is equal to the weighted sum of various
products of the efflux signals.

In the event that all of the efflux signals act at a rate faster than phsophotransfer, i.e.
they satisfy the inequality

Ai » Ficiyq (1)

Then we have that the output is inversely proportional to the products of the
aggregate efflux signals,

1K H?/:_ll Ficiyq (2-11)

Xy =

If inequality I; is only satisfied for some subset of the efflux signals, then the output
will be inversely proportional to only that same subset. These results tell us that the
phosphorelay can act as a specialized machine for dividing the influx signal by the
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product of several efflux signals. We will discuss the implications of this idea in
section 2.3.3.

The overall picture here is quite simple as long as growth rate is constant. If growth
rate varies, then we must address the messy issue that ¢; and mr; are dependent on
growth rate g, which is also one of the components of the aggregate efflux rate 4,.

2.3.1.2 Brief Analysis of Growth Ultrasensitivity

Equations 2-9 and 2-10 suggest the intriguing possibility that the phosphorelay may
exhibit a complex dependence on growth, since growth is a component of each
aggregate efflux signal, and protein concentrations c¢; and m; are also dependent on
growth.

In order to quantify growth sensitivity, we introduce the notion of elasticity, also

known as the response coefficient. If our output X is a function of parameter g, then
the elasticity of output X with respect to input g is given by €,(X) = ﬁd};;g) [44]

For example if X = g*, then ¢,(X) = k.

Applying our definition for growth elasticity to equation 2-9, we have that

N-1 N-1
€4(Xn) = € (C1K1 1_[ F; Ci+1> — € (/11\/ n(ﬂi + FiCi+1)>
i=1 i=1

If we again consider the case where all efflux signals are large (i.e. inequality I is
obeyed), then we have that

N-1 N (2-13)
Eg(x;\}) =€ (C1K1 l_lFi Ci+1> — €g (l_[ Ai)

i=1

(2-12)

Using the properties of the elasticity function, we can rewrite this as

N-1 N (2_14)
&g (i) = g () + ) €g(Fician) = ) €g(A)

To complete the simplification process, we first note that there is no biological
reason to believe that transfer rates F; or influx rate k; should vary with growth
rate. Secondly, we note that if there are M distinct proteins comprising the relay,
then we can replace N — M of our c; variables by 1. Thus, we have that

M N (2-15)
&) = ) eg(c) = ) &)
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In section 2.3.2.1, we will show that equation 2-15 also holds in the case where
phosphate is allowed to move through the relay bidirectionally; we will defer a
thorough analysis of 2-15 until that section.

2.3.2 The Bidirectional Phosphorelay

We now return to the more general case of the bidirectional relay as given in the
Simplified Reactions column of Table 1. As with the forward only relay, we will again
make the assumption thatx; < x;, allowing us to make the change of variables
x; = ¢;. In the bidirectional case, this means that each bidirectional phosphotransfer
reaction is replaced by the following pair of reactions

Fi
* *
Civ1 +X; 2 Xjy1 + Cipa

B; -
i+ X > X+ ¢ (2-16)

Again the low activation assumption is made purely for the sake of analytic
tractability, and as with the unidirectional relay, numerical simulation will later be
used to show that the same key findings hold even without this assumption. In Section 2.3.4,
we also discuss the alternate assumption that F; = B;, and show that it yields similar results.

The low activation approximation that x; = c; gives us the new system of ODEs 2-17 given
below, where again i = {1, ..., N} and N is the number of steps in the relay

Aot ) ) ) (2-17)
dtl = ii¢; + (Fi—1xj_1 + Bixjy1)c; — (Ficipq + Bi—1Ciq + A)x;
dCi
¢ = b= (di+ g)e
dm;
d_tl = Pni - (dni +g)ni

The system is now equivalent to the bidirectional first order reaction cascade shown below
in Figure 2-2.

K1
* Fico Facs Fn1Cn
X4* _4_’ Xo* 4_’ _’4_ Xn* — Output

]
M * Bicq 7\2* B2c, Bn-1Cn-1 An*

Figure 2-2: Bidirectional First Order Reaction Cascade

As in the unidirectional relay, the system 2-17 can also be used to model systems
where multiple phosphotransfer domains lie on the same protein. In the
unidirectional case, we handled this by redefining c; to be a constant in the special
case where domainsiandi — 1 were on the same protein. For the bidirectional
relay, as before, an appropriate model should remove the effects of concentration c;
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only when transfer is occurring between two domains on the same protein, but
additional complexity arises as a result of the fact that phosphotransfer can move
two directions. For example, if domain i is be on the same protein as i — 1 but not on
the same protein as i + 1, then we cannot simply replace c¢; by a constant to handle
the fact that i and i — 1 are on the same protein.

For bidirectional relays, our alternate approach is to replace F;c;,; by ¢; and B;c; by
Bi, defined as follows: ¢; = F; if domains i and i-1 are on the same protein, and
¢; = F;c;;, if not; §; = B; if domains i and i+1 are on the same protein, 8; = B;c; if
not. ¢»; and f; represent the phosphotransfer rate forward (backward) from (to)
node i.

Our protein concentrations ¢; and m; are exactly as in the unidirectional case
(Equation 2-10), except thatc; no longer depends on the domains lie on which
proteins. However, xy is considerably more complex. Because the bidirectional relay
exhibits retroactivity due to downstream phosphorelay nodes passing phosphate
back up to earlier nodes, the steady state value of x; is not simply some factor times
X;+,- Instead, we have that the following relationship fori > 2 (where k; = 0 for
i>1,andc; =0ifi <0ori > N)

o = s + Gi_1xi_q1 + Bixi1 (2-18)
' Ai+ Bi + @i

Solving our 2-18 for xy, we find that the output is given by

N 1) (2:19)
N Zaezfl" Wa}”a

Here, @ = (a4, ..., ay) is an N dimensional multi-index with entries equal to zero or
one, and A% = /1?1 .../1%”. Thus, the sum in the denominator will have 2¥ summands,
because there are 2V possible vectors of length N with components equal to zero or
one. The weights w, are functions of physiological parameters and protein
concentrations that act as relative weights for integration of aggregate efflux signals
and they are given in Appendix A.

For example, for a four step relay (x;, x,, x3, x4 ) with two distinct proteins, each with

two receiver domains, and only the first domain acting as an autokinase, we have

K1C1C3F1F2F3 (2'20)
W(0,0,0,0) T W0,001)41 + W(0,01,0042FtW0,01,104142 + - + W1,1,1,1)41 424344

Xy =

The steady state output of the bidirectional relay (Equation 2-19) is nearly identical
to the solution for the unidirectional relay (Equation 2-9). Both solutions are equal
to kinase concentration divided by a weighted sum of various products of efflux
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signals. The two equations differ only in that the weights are different, and that the
bidirectional relay includes additional efflux signal products, specifically products
that don’t include Ay (i.e. all products that appear in the denominator of Equation 2-
9 include Ay).

As with the unidirectional relay, we can simplify in the large 4 limit, where each 4;
obeys inequality I,, which is derived by expanding out w;,

Ai > Bi + ¢ (I2)

The physical interpretation of inequality I, is that it requires that the effective mean
lifetime of a phosphorylated domain (« 1/4;) must be shorter than the mean time
that each phosphate molecule spends on a given domain before being transferred to
an adjacent domain (« 1/(f; + ¢;)). Recall that each phosphorylated domain half-
life is determined by the aggregate efflux signal A; acting on domain i, which
includes spontaneous dephosphorylation, phosphatase activity, protein
degradation, and dilution by growth.

Known kinetic parameters indicate that inequality I, is biologically reasonable. For
example, in the two component Cphl-Rcpl system, the in vivo mean forward
transfer time given by log(2) /¢; has been measured as approximately 3 minutes, as
seen in Table 1 of [45]. Phosphorylated response regulator mean life-times due to
spontaneous phosphate loss, by contrast, have been measured to be as short as
seconds in some systems [46]. However, there are many systems where transfer
rates are much higher and phosphorylated domain lifetimes much longer, and thus
we expect that many systems do not obey I,. Due to the paucity of available kinetic
parameters, we cannot identify any single phosphorelay in the literature that obeys
I, at all of its domains.

Assuming that inequality I, is obeyed, we have that

C1Kq Hév=_11 bi (2-21)

.....

Which can be further simplified since w(;, ;) = 1 as discussed in the appendix, and
A1) = TIN | 2; by definition, yielding

C1Kq Hév=_11 bi (2-22)

Xy = m

We observe that in the large efflux signal case, the solution for the bidirectional
relay (Equation 2-22) is exactly the same as the solution for the unidirectional relay
(Equation 2-11).

We have now shown that the bidirectional relay has similar efflux signal integration
properties, namely that the additional phosphotransfer domains allow
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multiplication of those efflux signals. We now return to discussion of growth
dependence.

2.3.2.1 Growth Ultrasensitivity in the Large Efflux Signal Regime

As with the unidirectional relay, we will again consider the elasticity of our output
equation with respect to growth. Generally speaking, elasticity is given by

* P R ) (2-23)
€q(xp) = €4 <zl‘4aiz{l"—“:x/1“> = z €q(ci) — €4 < z Wy A >

i= N
=1 €y

In the large efflux signal regime, our output equation 2-19 for the bidirectional relay
is exactly the same as the output for the unidirectional relay given by equation 2-9,
and thus we have that growth elasticity is again given by 2-12, repeated below

M N (2-12)

&9 (i) = ) €ge) = ) €g(h)

i=1 i=1

Let us first consider €,4(c;), which will be determined by equation 2-7, which gives ¢;
as a function of growth. From inspection of equation 2-7, we see that ifd; < g,
€5(c;) = —1,and if d; » g, €;(c;) = 0. Physically, this means that if protein-half lives
are shorter than cell doubling times, we expect a growth effect.

If we define two integer valued parametric features M and M;, where M is the
number of proteins in a phosphorelay and M, is the number of phosphorelay
proteins for which d; > g, then we have that

M (2-24)
Z GQ(CL') =-M+ Md

i=1

To understand €,4(4;), we go back to the definition of the aggregate efflux signal, that
A = Ly +d; + g + ky ;. We first observe from equation 2-7 that if a phosphatase is
stable relative to growth, then €,(rr;) = —1.

Given €,(m;), we can also summarize €,(4;) in terms of simple integer valued
parametric features. First, let N, and N be 0 if inequality I, is not obeyed. If it is
obeyed, let N, be the number of phosphorelay stages where growth dominates 4;
(ie.g » L; + d; + kym;), and N, be the number of phosphorelay stages where
phosphatase activity dominates 4; (i.e. ky,m; > L; + d; + g) and that phosphatase is
stable relative to growth (€, (m;) = —1). In this case, then we have that
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N (2-25)
> @) =Ny = Ny

i=1

Together, equations 2-24 and 2-25 tell us that if inequality I, is obeyed, then the
overall system growth sensitivity is given by

e,(x3) = =M + My — Ny + Ny (2-26)

Equation 2-26 tells us that efflux signals are all large, then the steady state
phosphorelay output obeys a power law with respect to growth, where the power
linearly decreases with the number of proteins comprising the relay and the number
of phosphorylated domains whose efflux is dominated by effective dilution due to
growth, and where the power linearly increases with the number of domains for
which efflux is dominated by stable phosphatases and the number of relay proteins
whose half-lives are shorter than the cell doubling time. Ultimately, this
ultrasensitivity property means that a long relay allows a switch-like dependence on
growth, and provides insight into how a phosphorelay’s growth sensitivity can be
tuned or eliminated. These ideas will be discussed in section 2.3.3.

2.3.2.2 Constraints on Parametric Features N, M, M 4, Ng, and N,

In section 2.3.2.1, we’ve described the growth sensitivity of a phosphorelay in terms
of key parametric features. Using known Kinetic parameters and observed
architectural features in real networks, we can place constraints on the parametric
features N, M, M, Ny, N, that are likely to occur in real systems. In the literature,
phosphorelays have been found with 2, 3, and 4 domains, and thus N € {2, 3, 4}.
Likewise, relays have been found with 2, 3, and 4 proteins and thus for a system
with N domains, M € {2, ..., N}. By definition, M, € {0, ... M}. Analyses of N; and N
are slightly more complicated. For either of these features to be greater than zero,
the appropriate efflux signal (growth and phosphatase activity, respectively) must
dominate the aggregate efflux signal at some relay stage, and that efflux signal must
also act faster than phosphotransfer at that stage (to satisfy inequality ).

To our knowledge, the slowest phosphotransfer reaction between cognate proteins
belonging to the same phosphorelay has a mean turnover time of 3.25 minutes [45].
In that paper, the authors calculate k.,; using the following model.

d[Rcp1¥] [Rep1] (2-28)
———— =k, gt |CPA1 | —————
dt cat CPRY ]

By taking measurements of % at a very high Rcp1 level and known Cph1* level,

they calculate the value k., = 5.1x1073s71, corresponding to a mean turnover
time of 3.25 minutes.

22



Because bacterial cell cycle times are always much longer than 3 minutes, then we
have that g < f5; + ¢; for all known systems, and thus growth can never be the
largest component 4; in a system which also obeys I, and therefore N, = 0.

Turning now to N, we find that kinetic data on phosphatases in phosphorelays are
sparse. However, known phosphatases are generally very efficient in their
operation, with one phosphatase having been observed as a near-perfect
enzyme[47], meaning that it dephosphorylates its substrate after almost any
collision and therefore has an extremely short turnover time which is limited only
by its diffusion rate. Furthermore, most proteins are stable under growth
conditions. Thus we leave open the possibility that N,; € {0, ..., N}.

If we consider non-cognate phosphotransfer events, mean turnover times have been
measured in excess of approximately 18 hours[48]. If we take into account these
crosstalk reactions in our phosphorelay growth rate can act faster than
phosphotransfer and thus N, € {0, ..., N}. However, it is precisely these reactions for
which the phosphotransfer events are believed to be physiologically irrelevant and
thus it seems inappropriate to allow non-zero N, based on such data.

2.3.2.3 Growth Sensitivity in the Meso-regime

If the large efflux signal inequality I, fails then growth sensitivity is given by
equation 2-23, which is too complex to be useful. In Sections 2.3.2.1 and 2.3.2.2, we
eliminated this complexity by assuming that all efflux signals are large, considerably
simplifying €, (Zaez’l" Wal“) into YN, €4(4;). From there, we considered the nice
cases where €,4(c;) € {0,1}and €,4(4;) € {—1,0,1}, allowing us to derive the master
growth dependency equation 2-26.

Despite its usefulness as a predictor of asymptotic relay behavior, Equation 2-26 can
fail in four distinct ways. The first is if growth rates operate at roughly the same
time scale as degradation, and thus €,4(c;) is not an integer (i.e. it lies somewhere
between 0 and 1). The second is if the aggregate efflux signal 4; is not dominated by
a single efflux signal, or if it is dominated by a phosphatase which has a degradation
rate that is on the same time scale as growth and thus €;(4;) = €,(m;) is not an
integer (i.e. €5(4;) are not described by the simple equation 2-25). The third way is
if not all efflux signals are large (i.e. equation 2-23 is no longer valid). The fourth
way is if our parametric assumptions fail and our tractable ODE system 2-2 is no
longer a valid approximation of ODE system 2-1. In this section, we provide bounds
for e(xy) that hold even if the first three conditions fail. In the coming sections, we
will address the fourth through numerical simulation.

To bound €,(x;) as given in equation 2-23, we must bound €;(c;) and

€g (Zaezll\’ Wal"‘). Towards this latter end, we must also bound €,(4;) and €;(w,).
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We begin by considering €,(c;). From the definition of elasticity and Equation 2-10

(keeping in mind that for the bidirectional relay, c; is never replaced by a constant),
we can give a full expression for €,(c;) as

9 (2-29)

i

Equation 2-29 gives us that for the non-trivial case where c; is not identically zero,
i.e. €5(c;) is a monotonically decreasing function which lies in € [—1, 0] that is zero

at g = 0 and which asymptotically approaches -1 as g approaches infinity. By
inspection of equation 2-10, €, (7;) exhibits the same behavior.

We next consider €4(4;). From our definition thatA; = L; + d; + g + ky,m;, where
m;(g) is given by Equation 2-10, we have that

kP, (2-30)
g\l1-——""=
(dﬂi +9)
Eg(li) = P
+ L +d+ L
g 1 L dT[i + g

The exact form of this equation is unimportant. The key facts are that it is 0 for
g = 0, reaches some minimum value that is in the range [—1,0] at some g > 0, and
after reaching that minimum asymptotically increases towards 1. A plot of €4(4;) vs.
g is shown in Figure 2-3. If d,ZTL. > ky,Py,, then the minimum value of €4(4;) is simply
zero, and the function monotonically increases as a function of g over its entire
domain.

0 2 4 6 8 10
Growth Rate g
Figure 2-3: Sample plot of €,(4;). For non-growing cells, elasticity is zero because phosphatase
concentrations m; are insensitive to growth and efflux rate 4; is independent of g. For slightly higher
growth rates, phosphatase concentrations begin to drop, causing 4; to decrease as a function of g. 4;
begins to increase again once g > ./k,.P;, — d,., representing the fact that at very high growth rates,
12 A L

aggregate phosphate efflux is dominated by growth rate.

Thus, we can bound €,4(4;) by
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~1<e,(A) <1 (2-31)

We next turn towards understanding €, (Zaez’l" Wazl"‘). We begin with equation 2-

32, which states that the elasticity of the sum of two functions is the weighted mean
of the elasticity of the two functions, where the weight is given by the value of the
respective function.

Feg(f(x)) + g(x)eg(g(x)) (2-32)
flx) +gx)

es(f() +g(x) =

As g, (Zaezll" Wazl"‘) is the sum of 2V elasticities, it is equal to the weighted average

of the separate elasticities. Thus, we can bound the total elasticity by the minimum
and maximum elasticities, giving us

(2-33)
: a a a
;reuzrlllv (eg(wal )) <€ Z weA% | < or(ré%iv( (eg(wal ))
aEZ?
We now turn to understanding each elasticity €;(w,4%). By definition 1% =
A7 .. 23", and thus we have that €,(w,4%) is given by equation 2-34.

. N (2-34)
Eg(wal ) =€,(wy) + Z aieqg(A;)
i=1
Where from 2-31, we have that
N N N (2_35)
— Z a; < Z aieg(4) < Z a;
i=1 i=1 i=1

To use equation 2-34 to bound ¢, (wgA%), we must now complete the final piece of the
puzzle and consider bounds on €, (w,). To do this, we turn to the definition of w, in
Appendix A. We note that each weight w, is proportional to the sum of Q, products,
each of which is the product of a, transfer rate constants and a, concentrations, where
a, =N —YN, a;, and Q, is the number of valid assignments for a.

Thus, our weights are given by the expression below, where ¢,,(@,i,j) is a map from
ZVxN? to {1,..,N} which selects the right concentration from the set of
concentrations based on the multi-index of the weight being calculated («), the index of
the summand in weight w,, (i), and the index of the product in summand i ().
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Q. da (2-36)

Wqg X z 1_[ Cm(a,i,j)

i=1 j=1

Above, we’ve written this as a proportionality relationship because our forward and
backward rates F; and B; are growth independent. Furthermore, we don’t care about
the precise form of ¢,,(@, i, j). Instead we simply care about how many concentrations
appear inside each weight w,. Using equation 2-36, we can bound the growth elasticity
of weight w, by

aq aq (2-37)
min €, | | Cm(aij) | < €gWe) < max €g | | Cm(a,i,j)
j=1 ]=1

Since each elasticity is just the elasticity of the product of a, concentrations, we can
convert these elasticities to the sums of the individual elasticities.

ag Ga (2-38)
miinz €g(cmi) < €g(wg) < m{’:IXZ €g(Cm(aip)
j:]_ ]=1

We next replace € (cm(a, i,j)) by its growth elasticity as given by equation 2-29. Since
cm(a,i,j) €10,1], then Z;lil eg(cm(a,i,j)) € [0, a, ], and thus we have

0<e5(wy) <ag, (2-39)

Or in terms of @ and N, we have 2
N (2-40)
0 < eg(wy) SN—Zai
i=1

By combining 2-40 and 2-35 with 2-34, we can finally bound €, (4%w,) = €,(4%) +
€5(Wg), yielding equation 2-41

N (2-41)
- Z a; < €5(A%Wg) < N

i=1

With the trivial extension that

2 One might suspect that equation 2-40 should involve “M” instead of “N”, since the underlying
quantity being diluted by growth here is protein concentrations. However, in Appendix A, we see that
the same protein may appear exponentiated inside of a given weight w,, allowing w, to depend on as
more than M ¢; values. At most, it may depend on N-1 ¢; values [with N excluded since w(q ¢y = 0].
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(2-42)
min e, (A%w,) < ¢4 E weA% | < max ey (A%wg)
(24 a

aEZ?
Where min, €,(A%w,) = min,(— YN a;) = —N, and thus

(2-43)
—N < ¢4 Z WeA% | <N

N
a€EZy

We can use equation 2-23 and 2-43 to bound our entire output sensitivity by €, (x;)

M M (2-44)
Z €g(ci) — N < €4(xp) < Z €g(ci) + N
i=1 i=1

Which in turn can be simplified to yield
—M —N<e€4(xp) <N (2-45)

This equation bounds the growth dependency of a phosphorelay as long as the low-
activation assumption holds true. We will discuss the implications of these bounds
in section 2.3.3.

2.3.2.4 Growth Sensitivity in the Small Efflux Signal Regime

Thus far, we've given the growth sensitivity of a phosphorelay in the large efflux
signal regime (equation 2-26) and we’ve bounded the growth sensitivity outside of
that regime. Another interesting operating regime is when inequality I, fails for all
stages. This can occur, for example, if growth rates are sufficiently that our
concentrations c; have become large enough to invalidate inequality I,. To derive
the growth dependence for this case, we’'ll also assume that €,(c;) and €,4(m;) are

sensitive to growth rates (i.e. proteins are relatively stable compared to growth).

To probe the low growth limit, we observe from equation 2-32 and equation 2-42
that if one of our weights w,,, is significantly larger than the others, then we have

that

(2-46)
€g Z Wald® | ~ €5 (2"Mwg,,)

N
a€Zy

Given «, let C, be the number of proteins present in w, and let N, be the number of
domains i such that ¢; = 1 and some phosphatase is acting on domain i. As long as
growth remains faster than degradation, then in the low growth limit, we have
trivially from our definitions of C, and N, that weight €,(w,A%) increases with the
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C,™ power of growth and that A% increases with the N,* power of growth. The
elasticity €,(w,A%) can thus be expressed as equation 2-47 in this low growth limit.

€g(Wed%) = Cq + Ny (2-47)

If we define @ to be the a such that C, + N, is maximized, wzA% will dominate the
sum Y, eznv WoA” in the low growth limit, and thus from equations 2-46 and 2-47,

yielding

(2-48)
€g z WgA% | = Cz + Ny

N
a€Zy

Above, we assumed that only one value & maximizes N, + C,. Even if there are
multiple values for a such that N, + C, is maximized, by equation 2-47 they will all
have the same growth elasticity, and thus equation 2-48 remains true.

In terms of our graph based definition of w, as given in Appendix A, we can identify
a term which maximizes N,C, by shading in as many of our nodes which are
regulated by a phosphatase while simultaneously maximizing the number of protein
boundaries that are crossed by arrows. Once the problem is understood, the
algorithm for doing this is obvious by inspection. One simply fills in every
phosphatase regulated node and leaves every other node unfilled. From there,
arrows are always drawn to maximize boundary crossings. If we fill in only our
phosphatase regulated nodes, it is possible to cross every boundary except those
with a phosphatase on both sides.

Let B;, be the number of protein boundaries where both of the domains on the

boundary are regulated by a phosphatase. In this case, we have that N, = N, by
inspection and C, = M — 1 — By, using the graph based algorithm in the above

paragraph. Thus, we have that ¢, (A“M WaM) =N;+M—1-By,

Our output elasticity €,(xy) given by Equation 2-23 can thus be simply represented
in this low growth asymptote by

€g(xy) = Ny — 1 — By, (2-49)

Naturally, once growth rates get even lower, then e€(c;) and €(rr;) will converge to
zero, and thus €, (xy) also converges to zero as cellular growth stops.

2.3.3 Summary and Implications of Steady State Results

Above, we've shown that the phosphorelay calculates the ratio of the influx signal k;
by the weighted sums of products of our efflux signals A; (equation 2-19). We've also
characterized the growth sensitivity of the phosphorelay in terms of key parametric
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features, including the number of stages in the relay (N), the number of physical
proteins comprising the relay (M), the number of proteins in the relay which are
stable relative to growth (M;), the number of stages in the relay which are regulated
by a phosphatase which is stable relative to growth (N,), the number of stages
whose efflux is dominated by growth (Nj)and the number of boundaries between
two proteins where both sides are regulated by a phosphatase (By,). For known

systems, we stated that these parametric features are likely to be given by N €
{234}, M€ {2,..,N},M; € {0, ..., M}, N, € {0, ..., N}, N, = 0,and By, € {M — 1}.

2.3.3.1 Using the Phosphorelay as a Signal Integration Platform

Equation 2-19 suggests that one potential advantage of providing additional efflux
regulation targets is the ability to multiplicatively combine these efflux signals.
Calculating the product of efflux signals is clearly only useful if there are interesting
efflux signals acting on different stages of the relay, and if the product of those
interesting signals is itself useful. By definition, every domain is affected by a single
aggregate efflux signal. However, many efflux signals are unavoidable consequences
of the physical chemistry of the cell, for example, hydrolysis of histidine and
aspartate phosphates, and thus the products of such signals do not represent any
useful information. Examples of information bearing efflux signals include growth
rate (discussed in the next section), and the activity of the Rap phosphatases in
Bacillus subtilis whose activity is contingent on secreted peptides that have been
hypothesized to act as subpopulation quorum signals [49].

While one can imagine a product of signals being useful, for example multiplication
of a quorum signal by an antibiotic concentration in order to estimate future food
supply, the existence of such arithmetic calculations by living cells remains
speculative. To test this hypothesis, we’d need a system which has a set of two or
more dominant information-bearing efflux signals acting on different domains of the
same relay, and the efflux signals and output would need to be simultaneously
measurable. Ideally, these efflux signals would also be controllable, for example, as
with phosphatase concentrations. We are unaware of any natural system which
meets these requirements. Experimental verification of the phosphorelay’s ability to
compute an efflux signal product will have to wait until such a system is identified
or artificially constructed.

Though a long relay allows signals to be combined multiplicatively, there are many
other chemical mechanisms besides cascading by which efflux signals may be
combined multiplicatively, and in principle a simple two component system or even
futile cycle can achieve N-way efflux signal multiplication. For example, the simplest
conceptual way to achieve multiplication of N signals is to have a single phosphatase
whose activity is constituent on N distinct conditions. This could be achieved, for
example, by having a phosphatase heteromer whose constituent proteins are
competitively bound by a set of regulating molecules. In this way, the concentration
of the inhibitors would then be combined multiplicatively. In general, these
alternate multiplicative mechanisms require proteins with a more complex
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structure than that observed in common relays. Such solutions may be harder to
reach with evolution than a simple N step relay with N independently functioning
phosphatases, which can be evolved through gene and domain duplication and
binding site mutation [18].

2.3.3.2 Using the Phosphorelay as a Growth Switch

Equations 2-26, 2-45, and 2-49 imply that the phosphorelay can be used as an
implicit growth switch which activates or deactivates some response once growth
rate crosses a threshold. This could be useful, for example, in controlling general
stress responses that are advantageous under conditions of low growth, without
having to devote resources to sensing myriad growth suppressive conditions like
toxins, temperature, and nutrient availability.

In Section 2.3.2.2, we showed that Equation 2-45 provides bounds for how steep
this growth switch may be, specifically that —M — N < €,(x,,) < N. One direct
consequence of these bounds is that a longer phosphorelay allows for sharper
switching behavior.

In Section 2.3.2.1, we showed that if all efflux signals are large, then the growth
sensitivity of a phosphorelay is given by the simple equation 2-26, that e, (x;) =
—M + My — Ny + Ny. This equation says that the steady state phosphorelay output
obeys a power law with respect to growth, where the power linearly decreases with
the number of proteins comprising the relay and the number of phosphorylated
domains whose efflux is dominated by effective dilution due to growth, and where
the power linearly increases with the number of domains for which efflux is
dominated by stable phosphatases and the number of relay proteins whose half-
lives are shorter than the cell doubling time.

As discussed above in section 2.3.2.1, known kinetic parameters suggest that N, = 0
in the large efflux signal regime for all real systems. Given this constraint, on one
extreme, phosphorelay output can be inversely proportional to the 4t power of
growth, when M,Mg, Ny, N, = (4,0,0,0) . Biologically, such a relay would be
composed of four distinct, stable proteins with no incident phosphatases and slow
phosphotransfer rates relative to spontaneous dephosphorylation rates. Based on
our bound in section 2.3.2.2, such a system reaches the largest possible growth
elasticity for a low-activation phosphorelay.

By contrast, we predict that at the other extreme, phosphorelay output can be
proportional to the 4t power of growth, when M, M, Ny, N, = (2,2,0,4). Such a
phosphorelay would consist of four domains across two proteins with half-life
shorter than cell doubling time, and a stable phosphatase acting on all stages of the
relay and with dephosphorylation rate faster than spontaneous dephosphorylation
rate and phosphotransfer rate. It is irrelevant whether the phosphatase acting on
each stage is a distinct protein or if instead some phosphatase acts on multiple
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stages. Based on our bound in section 2.3.2.2, such a system reaches the lowest
possible growth elasticity for a low activation phosphorelay.

2.3.3.3 Building a Phosphorelay that is Robust to Growth

Though a long phosphorelay can be used as a growth switch, there are many other
phosphorelay properties that are conferred by having a long relay, as discussed in
sections 1.4.5 and 2.3.3.1. A system which utilizes these properties may wish to
avoid extreme growth dependence. For example, if a long relay is being utilized to
calculate the products of multiple efflux signals, that same system may not want to
also include exponentiated growth rate as part of that calculation.

To avoid growth switching, system parameters must be chosen to mitigate the two
mechanisms by which growth ultrasensitivity arises, specifically the multiplication
of efflux signals influenced by growth and the multiplication of receiver
concentrations sensitive to growth. The specific system adjustments needed to
ensure growth robustness depend on the purposes for which the relay will be used.

For example, if the system is operating in the large efflux signal regime (useful for
taking advantage of the multiplicative property from section 2.3.3.1), then growth
dependence is given by equation 2-26, and thus then we need only tune our
parameters M, M, Ny, N, such that -M + M; — N, + N; = 0. For example, let's
assume that we wish to use four phosphatases multiplicatively to integrate
information about our environment, which each phosphatase’s activity is regulated
by one informative condition. In this case, we have that N, = 4 and N = 4. Since N,
cannot be realistically made larger than 0, we could instead achieve growth
robustness by building our relay out of 4 distinct proteins (M = 4), ensuring
robustness over the multiplicative regime. For uses other than phosphatase based
signal integration, one could instead use phosphatases to avoid growth switching by
tuning N;.

If cells are operating in the low growth regime where efflux signals are likely to be
small relative to transfer rates (due to greater protein abundances), then if proteins
are relatively stable compared to degradation, the growth dependence is given by
equation 2-49. In this case, growth dependence can be eliminated if we add a strong
constitutively active phosphatase so that (N, = 1, By, = 0).

Alternately, one can provide growth robustness by ensuring that protein
concentrations do not vary with growth rate. This can be attained in the high growth
case utilizing some sort of gene regulation. Also, at sufficiently low growth rates
where proteins are relatively unstable, protein concentrations will become
independent of growth rate, and thus phosphorelay output will become
independent of growth rate as well.

2.3.4 An Alternate Derivation of the Steady State Results
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In section 2.3.2, we solve our system of ODES by assuming that x; < x;, allowing us
to make the change of variables x; = ¢;. An alternate solution is provided if we
instead assume that our forward and backward transfer rates are equal, i.e. F; = B;.

We start with the system of ODEs 2-2 (repeated below), where we have substituted

*

X; = C — X;.

dx; * * * * * * * (2-2)
P ki(c; —x) + Fioaxi_1(¢; — x{) + Bi(c; — x))xi1q — Fix{ (Ciqr — Xi11)
—B,_1(ciq — x{_ ) = (Li + ki + d; + g)x]
dCl'
Ezpi—(dﬁ'g)ci
dT[i

EZPni_(dﬂi'i'g)T[i

If F; = B;, then all of our terms involving products of two x; variables cancel out,
yielding

dxf* % * * * 2'50
dtL = ki(c; — x) + (Fimaxi_q + Bixiy1)c; — (Ficipr + Bioicimq + A)X; (2-50)
dCi
Ezpi—(dﬁ‘g)ci
dm;
d_tl = Pnl’ - (dni + g)ni

We note that the system of ODEs given in 2-50 is almost identical to the system that
results from the low activation assumption (Equation 2-17). The only difference is
that the influx term k; is now x;(¢; — x;).

Solving for xy as before, we obtain

C1Kq Hév=_11 b; (2-51)
S(ky, A) + Zaezg" Wo A%

Xy =

Where S is the saturation function given below in equations 2-52 and 2-53. The
weights w, that appear in 2-52 are exactly the same as appear in equation 2-51 and
are given in Appendix A.

Sk, A) = Z aywaA* (2-52)
aezl
N (2-53)
a;
A(X = Kl H}{l
i=2

Thus our denominator has 2"~! — 1 additional non-zero summands. For example,

consider again the four step relay (xy, x,, x3,x,) with two distinct proteins, each
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with two receiver domains, and only the first domain acting as an autokinase that
had output given by equation 2-20 under the low activation assumption. Under the
alternate assumption F; = B;, we have that our output is given by Equation 2-54.

K1C1C3F1F2F3 (2'54‘)
W(1,0,0,0)K1 + W(1,001)K14a + -+ W(11,1,1)K1424344 + Zaezll" We A%

Xy =

The exact from of S(x4, A) is not necessarily all that interesting. The most important
difference between equation 2-51 and the low-activation solution given by equation
2-19 is that for large k4, the denominator becomes proportional to x,, and thus the
output xy levels off for large k. By contrast, if x; is small, then S(x4, 4) disappears.

Specifically, from our equations 2-51 and 2-52, we can derive inequality /5.
Ky K A (13)

If this inequality is obeyed, then equation 2-51 is exactly the same as equation 2-19,
and thus we obtain the same efflux signal multiplication and growth sensitivity
properties. If the converse of 15 is true (k; > 4,), then the results are similar except
that the phosphorelay doesn’t include A, in its calculations, and growth sensitivity is
no longer dependent on A,. Equation 2-12 therefore becomes

N N (2-55)

HEOEDWAOEPIWACH

i=1 i=2

Since N; = 0 for real systems, the only practical difference is that the system is no
longer sensitive to phosphorelay activities k 7, that are less than x;. Thus, the

most extreme difference possible is that phosphorelay growth elasticity will be one
less than given in equation 2-26.

2.4 Numerical Simulations of the Bidirectional Phosphorelay

Above, we’ve shown that under the low activation assumption (x; < x;) and the
equal transfer rates assumption (F; = B;), then our output is given by equations 2-
19 and 2-30, respectively. Clearly, these equations will not generally hold for all sets
of parameters.

In this section, we will show that the more general implications discussed in section
2.3.3 will hold true even beyond our simplifying assumptions. Specifically, using
numerical solutions of our full system of ODEs 2.1, we will show that the
phosphorelay still calculates the ratio of the influx signal to the sum of products of
efflux signals, and that growth sensitivity still obeys equations 2-26 and 2-49 in the
high efflux and low growth limits, respectively.
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Numerical simulations were performed in MATLAB. Specifically, ODE models of the
form given in Equation 2-1 were specified using the Systems Biology Toolbox [50],
which was used as a front end to the stiff ODE solvers ode1l5s and ode23s [51].
Steady state values were calculated using ode23s by running the solver until the
norm of the state vector changed by no more than 10~*% within one time step. The
resulting state vector was then substituted into ODE system 2-1 and verified to
generate a zero vector. Growth elasticity was computed from the numerical
derivative with respect to growth, which in turn was approximated by calculating
the slope of xy5(g) between growth rates g = g, and g = g, where g, = g, + Ag,
Ag = g,/1000. Custom software was utilized to handle automatic generation of
SBToolbox models and plotting of data.

2.4.1 Demonstrations of Key Properties in the Analytically Tractable Regimes

Figure 2-4 shows the results from the full simulation of nonlinear ODE system 2-1.
In each subfigure, growth rate is varied and elasticity is calculated. As our goal here
is simply to demonstrate the explanatory power of equations 2-26 and 2-49, we do
not restrict growth rate to reflect physically realizable growth rates (i.e. Ny is

allowed to grow beyond 0).

We start with the four component system in Figure 2-4.1B. The red curve shows
that €, (x3) for a system with large loss rates L; = Ly; 5, and the blue curve for a
system with small loss rates L; =L,,, . For both curves, the x-axis is
nondimensionalized by diving growth rate by loss rate L;,,,,.

At the lowest growth rates, €,(x;) = 0 because 4; > g and d; » g. As growth rates
climb, growth overpowers degradation and thus €,(c;) ® —1. Simultaneously,
transfer rates ¢; and f; are rapid relative to A;, and thus inequality I, fails. Thus our
system is in the low growth regime described by equation 2-49 where efflux signals
are small relative to transfer rates, but protein concentrations are sensitive to
growth. In this regime, we see from the blue curve in Figure 2-4.1B that €,(x}) is
approximately -1, in agreement with low growth asymptote equation 2-49
(Nr = 0,Bg, = 0). For the red curve, loss rates are high enough that the system
does not plateau in the low growth regime. As growth rates rise, our concentrations
¢; drop, reducing ¢; and S; so that the system enters the large efflux signal regime,
where elasticity is described by equation 2-26. We see that as we transition from the
low growth asymptote to the high efflux signal regime, €,(x;) decreases to —4 in
agreement with equation 2-26 (M, My, Ny, N = 4,0,0,0). At the highest growth rates,
growth rate g begins to outpace spontaneous phosphate loss L; at all stages of the
relay and thus N, increases to 4, which results in a growth elasticity of €,(x;) = —8
corresponding to (M, Mgy, Ng, N, = 4,0,4,0). The red curve shows that when
spontaneous loss rates are high, then there is a large range of growth values for
which ¢, (x3) = —4, because (M, M, Ny, N, = 4,0,0,0) for a wide range of values for
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g. By contrast, for the system represented by the blue curve, loss rates are too slow
to outpace transfer rates (L; < ¢; + f5;) even for rapid growth rates, and thus the
system is only described by equation once g > c¢;,1F; + ¢;B;, i.e. g (M, My, Ny, N =
4,0,4,0). As a consequence, the system transitions straight from the low growth
asymptote of €,(x;) = —1to €,(x;) = —8.

In Figure 2-4.2A, we show a contrasting example of a four step relay on a single
protein. Again, at the lowest growth rates, €,(x;) = 0. As we enter the low growth
asymptote described by equation 2-49 where (N, =0,B;, =0), we see that
€4(x3) = —1. As growth rates increase further, the system enters the large efflux
signal regime (M, My, Ny, N; = 1,0, varies, 0). Send an email to the address, detje at
joshh.ug, if you, the reader of this thesis, are ready to begin the test. Some
restrictions may apply. For the black curve where spontaneous loss rates L; operate
on vastly different time scales, we can see that N; incrementally increases from 0 to
4 as each loss rate is successively overpowered by growth. For this system, we
observe that because equations 2-49 and 2-26 predict the same elasticity €,(x;) =
—1, there is no visible transition between the two equations Figure 2-4.2B as we
saw for the blue curve in 2-4.1B.

Figure 2-4.C shows €,(x3) for a two protein, four step phosphorelay. Each line
shows behavior for a different phosphatase configuration--the line numbered in the
legend by the integer P provides the growth dependence for a relay with a
phosphatase acting on domains 1 through P. There are three qualitative growth
dependence transitions for this system, denoted by thin blue lines, resulting in a
graph with four distinct regions. Unlike the previous two figures, we omit the trivial
region of the graph where €,(x;) = 0. The leftmost region shown is the low growth

asymptote given by equation 2-49, where (N,t =(0,1,2,3,4), By, = (0,0,0,1,1)) for

lines 0 through 4, respectively. In all three regions to the right, we are in the large
efflux signal regime, and thus equation 2-26 is expected to hold. In the first of these
regimes (second region from the left), we see that €,(x;) increases by 1 for each
phosphatase present in the system (M,Mg, Ny, N, = 2,0,0,varies). In the next
regime to the right, phosphatases become weak relative to spontaneous growth
(m; < L;), and €,4(x;) approaches -2 (M, Mgy, Ny, Ny = 2,0,0,0) for all phosphatase
configurations. Finally, as growth becomes stronger than spontaneous phosphate
loss (g » L;), €5(x}) approaches -6 (M, My, Ny, N = 2,0,4,0).

These figures provide a numerical depiction of how a low-activation or equal-
transfer-rates phosphorelay behaves outside of the regions covered by equation 2-
26 and 2-49. In the next sections, we will show that these same key equations hold
even if the simplifying assumptions used to derive these equations fail.
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Figure 2-4: Growth effects in differently configured phosphorelays. 1a) Schematic of four step phosphorelay

using four distinct proteins 1b) Plots of output elasticity with respect to growth €, = x:ig) x5'(g). Here growth is

the non-dimensional ratio of growth rate to loss rate for the blue curve. Parameters for blue line are k = 0.1,P; =
1,T;=1,L; = 1,d; = 0 and for the red line x = 1073, P; = 1072, T; = 1072 Blue (red) lines show ¢, in the case
where spontaneous loss is relatively weak (strong). Elasticity is zero when growth rates are very low. For
slightly higher growth rates, €,(x};) ~ —1 as given by Equation 2-49. At higher growth rates, ,(x}) is given by
equation 2-26. 2a) Schematic of 4CS on a single protein 2b) €, as a function of g fork = 0.1, ;= 1,T; =1,d =0
and spontaneous loss rates of Ly, L,, L3, L, ={1,1,1,1}, {0.1,1,10,100}, and {10-1,10,103,105}. Again the elasticity
transitions from 0 to equation 2-49 to equation 2-26. 3a) System with two distinct proteins and between zero
and four phosphatases. 3b) Plot of elasticities vs. growth rate in a.u. with parametersx = 0.1,P; =1, T; = 1,L; =
1, d; = 0. Inset shows x3 as a function of growth for each system.

2.4.2 Evidence that Key Properties Hold in the Analytically Intractable Regime
Above, we showed that in the low activation case (x; < ¢;) or in the equal transfer

rate case (F; = B;), if all efflux signals are large, then the growth dependence for a
bidirectional phosphorelay is given in terms of our key architectural and parametric

36



features as equation 2-26, and is given in the low growth asymptote as equation 2-
49.

If our assumptions fail, then we must consider the full nonlinear ODE system, which
is analytically intractable. In this section, we provide more comprehensive
numerical evidence that equation 2-26 and 2-49 still hold even without the low
activation or equal forward/backward phosphotransfer rate assumptions.

2.4.2.1 High Growth Limit

We first consider the very high growth limit, where growth dominates at all stages
and thus equation 2-26 predicts that ¢, = —-M — N, since N, = N,N, = 0. We
randomly generated 10,000 models with parameters independently drawn from the
distribution in Table 2.2, and calculated €;(xy) in the large g limit for each
parameter set. To find lim,_,o, €,(xy), €;,(xy) was calculated for g = 10, 1.0001x
10°, and 1.00012x10°. These values for g were heuristically selected based on
convergence performance for the parameter distribution given in Table 2.2. If these
Egle_egz < 10‘3>, then the
g

system was considered to have converged. If the convergencle value was within 5%
of equation 2-26, the prediction was considered successful.

three €g values were each within 1% of each other(

In all cases where €; converged, we found that €, asymptotically approaches
—M — N to within 1%. Note that for some parameter sets, the system was
numerically unstable in the neighborhood of g = 10°.

Parameter Name Symbol | Number Distribution
Number of phosphorelay stages M 1 4

Number of phosphorelay proteins N 1 u(1,4)
Number of phosphatases 1 4

Kinase activity Ky 1 10Y(=33) gt
Protein production rate (including phosphatases) P; M+N 10Y(=33) M a.tu.!
Forward transfer rate F; M-1 10Y(=33) M-1a.tu.t
Reverse transfer rate B; M-1 10Y(=33) M-1a.tu.t
Dephosphorylation time L; M 10Y(=33) a.tu.1
Protein degradation rate d; M+N 10Y(=33) a.tu.1

Table 2.2: Distribution of Parameters for Random Models

2.4.2.2 High Loss and Phosphatase Limits
Given each of our models above in the high growth limit, we randomly selected a

subset of size [ from our set of loss rates L;, and a subset of size p from our set of
phosphatase transcription rates F;,. These were chosen such that the indices of our
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selected loss rates and phosphatase transcription rates were non-overlapping. For
example, if L; was chosen, then P, could not be chosen.

Each of the selected loss rates and phosphatase transcription rates were then
increased to a high level (specifically L = 1015, B, = 105, again chosen heuristically
so that the elasticities would converge). According to our definitions of N, and N,
this should reduce N, by [ + p, and should increase N by p, because growth will
now dominate [ + p fewer stages and phosphatases will dominate p stages (as
opposed to zero). By only increasing these two rates, we guarantee that we remain
in the large efflux signal regime where I, is obeyed for all stages of the relay. Thus,
we can observe whether or not equation 2-26 is still valid in the full nonlinear
system under the conditions of our numerical experiment. Given these changes to
our loss rates and phosphatase transcription rates, we predict that ¢, should
converge to —M — N + [ + 2p at sufficiently high L; and Fy,.

We found that for 10,000 models, €, either converged to within 1% of —-M — N +
p + 2q or diverged due to numerically instability. With these results, it appears that
our core finding for the large efflux signal regime (equation 2-26) is a general
feature of any phosphorelay that obeys inequality I,, irrespective of the linearizing
constraint that x; < ¢; or parametric assumptions (F; = B;) that can be used to
derive equation 2-26.

2.4.2.3 Low Growth Asymptote

We also verified the low growth asymptote by generating models that obey the
distribution given in Table 2.2, but with degradation rates d;, d,, set to zero to
ensure that protein concentrations remained sensitive to growth. For this
experiment, 1,000 parameters set were randomly generated. The same procedure as
the high growth limit was repeated, except with starting g =10"—-5, g =
107°%1.0001, g = 107>x1.00012. For all parameter sets which converged, €4(x3)
converged to within 1% of N, — 1 — B,,. We note that we did not explore as much
of the low growth asymptote parameter space as we could have. Specifically, for the
parameter sets in Table 2.2, N; = N and thus By, = M — 1, since there are M — 1
protein boundaries, all of which have phosphatases on both sides. [could do this
pretty easily actually - might come back and do this after everything else is done]

2.5 Numerical Simulations of the Complexing Phosphorelay

We now return to the original model for the system, given by the Full Reactions
column of Table 2.1. In this model, phosphotransfer occurs via a 3 step process,
whereby x; + x;11 S X[ Xj11 S XX, S X; + X[, i.e. two proteins must physically
bind and form a complex before phosphotransfer is possible, and must disassociate
before being able to interact with another protein. Likewise, phosphatases act only
through a similar binding process x; + m, < x;m, = x;7, S Xx; + 7).
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In such a model, we now have many more chemical species, as every complex is
another species that must be considered. From Table 2.1, we see that if there are N
stages and Np stages regulated by P phosphatases, then there are 2Np complexed
species which involve a phosphatase and a phosphotransfer protein, and 3(N-1)
complexed species which involve two phosphotransfer proteins. Thus, the total
number of species in such a system is given by 2N+P+2Np+3(N-1)=5N-3+ P+2Np.

2.5.1 Automatic model generation

To probe the behavior of long complexing phosphorelays, I created a simple plain-
text rule-based model specification language and a corresponding MATLAB tool
which automatically converts specifications into SBToolbox models. From there,
they may be exported to the Systems Biology Markup Language (SBML) for use with
other simulation tools.

The syntax of the specification language is as follows. One specifies a Reaction Type
from the first column of Table 2.3 on a line, followed by a colon. Then, according to
the format of the reaction type, one specifies a list of reactants or parameters, with
formats listed in the central column of Table 2.3. The chemical reaction represented
by that Reaction Type is given in the right column. For the SISBOL phosphorelay, we
use only the first five reaction types. The remaining three were used for probing
more exotic phosphorelays not discussed in this thesis.

Reaction Type Syntax Reactions Represented
Phosphorylate [R], [k] R K R
Phosphotransfer [R1], [R2] Ri+ R, S R{R; S RiR; S Ry + R,
Ri{+ R, 5 R4R,
Dephosphorylate [R], {S1, ..., S, } R+S/SRS;>RS;SR+S;
Promote [R],{S1, .-, S, } R—->R+S;
Become [R], {Sy, ..., Sn } R - S;
phosphotransfer** [R1], [R2] Ri+ R, S R{R; 5 Ri{R; S Ry + R,
Ri+ R, 5 R4R,
Ri + R; < R{R;
Bind [R], {S1,..-,Sn } R+ S; 5 RS;
Degrade [R],{S1, .-, Sn } R+S —-R

Table 2.3: Syntax for rule-based specification of phosphorelay models
For example, to create an ODE model of a four stage relay with a phosphatase that

acts on the second and third proteins, we would specify this system using the simple
input file
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phosphotransfer:
x1, x2

x2, X3

x3, x4
dephosphorylate:
prl, x2, x3
autophosphorylate:
x1, kappa

promote:

P, x1, x2, x3, x4, pl
become:

x1P, x1

xX2P, x2

X3P, x3

x4P, x4

For the example above, the conversion would automatically generate a system of
ODEs of 5N-3+ P+2Np =20-3+1+4=22 species.

When the script is run, a plain text SBToolbox model is generated. In addition to the
reactions explicitly specified above, every species takes part in a degradation
reaction R —» 0, with the exception of species that appear as[R;]in a promotes
reaction, which are not subject to degradation. Parameter names are automatically
generated and a default value is assigned.

2.5.2 Observed Data for the Complexing Phosphorelay

A four stage complexing phosphorelay was generated using the following
specification

phosphotransfer:
x1l, x2

x2, X3

x3, x4
dephosphorylate:
Pil, x1

Pi2, x2

Pi3, x3

Pid, x4
autophosphorylate:
x1, kappa

promote:

sigA, x1, x2, x3, x4, pil, Pi2, Pi3, Pid4
become:

x1P, x1

x2P, x2

x3P, x3

x4P, x4

From this set of rules, the system of ODEs given in Appendix B was generated.
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2.5.2.1 Efflux Signals are Combined Multiplicatively

For symmetry reasons, it seems likely that the output of the complexing relay
should still be of the same general form as equation 2-19. First, we expect that the
output should be linearly dependent on the influx signal under the low activation
assumption, and should level off as the system becomes saturated with phosphate.
Simulations suggest that this is indeed the case, though we do not provide
supporting data in this thesis. Further, we expect that the output is still likely to be
inversely proportional to the sums of various products of aggregate loss rates. In
this section, we explore this notion.

In our non-complexing system, phosphate leaves the system only via reactions
involving x;. However, in the complexing relay, phosphate can also be lost in
complexes, specifically x; x;,4, x;_1x;, and m;x;. Consequently, we expect a more
complex interplay of parameters to drive loss rates.

Spontaneous loss rates L; should behave in the same manner as in the non-
complexing relay, since they still draw phosphate directly from x;". By contrast, r; no
longer directly removes phosphate from the relay, as it now requires an
intermediate binding step, and thus we expect that dephosphorylation rate

K,
X{m;— m; kz, should have a saturating effect. For parameters which drive

concentrations (d; and g) including our complexes, we expect the results to be more
complex. We will consider each of these parameters in this section and in the next.
There are also a host of additional parameters we will not discuss, such as the rate
of the reaction x; + m; = x;m;.

To investigate the roles of L; and k,,, 100 random parameter sets were selected for
the ODE given in Appendix B, each independently drawn according to the
distribution 10Y-22), Figure 2-5 shows plots of €, (x;) vs. L, where every L; = L.

For every numerically stable distribution tested, €, (x;) = —1 for sufficiently large
L;. When all L; were made large, then €, (x;) = —1 for each L;, providing evidence
that x; o< 1/ YN . L; for sufficiently large L;. In all numerically stable cases

e1,(x}) € [0,1].
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Each line represents the elasticity with respect to a single parameter L; for a single parameter set. All
€1,(x3) values converge to —1, meaning that in the large loss limit, the output is inversely

proportional to the product of our loss signals.

In Figure 2-6, we repeat the same experiment k. By contrast, output is sensitive
only to k,, in some intermediate range, as given below in Figure 2-6.
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Figure 2-6: Plot ofekm(xj;) vs. ky,. For all parameter sets Ekm(xj{) decreases until from zero it

reaches some minimum, at which point it monotonically increases back up to zero. The decrease is
the transition as loss due to the phosphatase on node 4 becomes significant. For many systems, this
phosphatase never plays a significant role (shown as flat lines). The increase in €k, (x}) back to zero

[loss of sensitivity] occurs as x;m, = x,m, is no longer the limiting reaction in the reaction chain
Xy + Ty S X4y = X4y S Xy + Ty

2.5.2.2 Growth Sensitivities Obey Similar Rules

In the low growth asymptote, we still have that r; < 1/g, and thus we expect that
output can potentially increase with growth rate. Likewise, in the extremely high
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growth asymptote, we still have that receiver proteins and phosphorylated are
directly removed by growth, and suspect effects should be multiplicative as in the
non-complexing relay.

The situation becomes more complicated when considering intermediate complexes
, such as x; x;,, and x;x;,,, which are also diluted by growth. In the most extreme
case, an intuitive analysis would suggest that the system should exhibit a growth
sensitivity given by €,(xy) = 3N — 2, because there are 2N + 2(N — 1) different
molecules along the chain of reactions that leads from x; to x;.

To test this intuitive hypothesis, random parameters were selected from the
distribution 10Y-22), and ¢, (x;) was calculated for a wide variety of growth rates.
As seen in Figure 2-7, the results are in line with our intuition. As growth rates
approach zero, the system has no dependence on growth (which can be trivially
proven using the system of ODEs in Appendix B, since growth always appears in a
sum and thus any function dependent on growth will have €, = 0 at g = 0). In the
small efflux signal limit where concentrations are dependent on growth, we see that
the system can exhibit a positive dependence on growth, almost certainly due to
dilution of phosphatases by growth. As always occurs with the non-complexing
relay, above some critical growth rate, most parameter sets for the complexing
model exhibit a monotonic decrease in €;(x;) towards the same large growth rate
limit, which is found to be —14. This value is in alignment with our intuitive
discussion above. Note that one random parameter set in Figure 2-7 (given in blue)
exhibits non-increasing €,4(x;) until approximately g = 2, at which point €;(x3)
briefly increases. The mechanism by which this occurs is unknown, but it does not
appear to be a numerical artifact.

——parameters=0.1
——randomized

1ial

10 10° 107 10” 10 10 10

g
Figure 2-7: €,(x;) for a complexing model of the phosphorelay. The output of a system with all
parameters set equal to 0.1 is given in black. Brown and blue lines shown systems with parameters
randomly drawn according to 10Y¢-22)_ As with the non-complexing model, all parameter sets exhibit

Ll
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€4(x3) when g is near zero. As growth rate increases, some systems exhibit an increase with respect
to growth, due to dilution of phosphatases. Above some growth threshold, growth has an increasingly
strong output suppressive effect until it reaches the maximum possible suppressive effect of
€4(x3) = —14. For one random parameter set (highlighted in blue), elasticity does not monotonically
decrease after the threshold, showing a slight increase at some later value. The reasons for this are
unknown.

As with the non-complexing phosphorelay, the very high growth limit of the
complexing relay is not physiologically possible. For the complexing phosphorelay
to exhibit a growth dependence of €,(x;) = —14, entire cells would have to
complete the impossible feat of dividing more quickly than complexes could bind
and disassociate, and more rapidly than phosphate would take to move between
two proteins in a complex.

2.6 Modeling Growth Inhibitory Effects of the Phosphorelay

Many phosphorelays are known to control metabolically expensive and growth
suppressive phenotypes, including motility, virulence, and sporulation [16], [52]. For
such systems, the phosphorelay and growth form a cross inhibitory system as
shown in Figure 2-8.a. The cross inhibition combined with the sigmoid dependence
of the phosphorelay on growth suggests that multistable behavior is possible,
allowing the system to remember previous growth rates.

To model this behavior, we replace our constant growth rate g by a standard
algebraic model of growth inhibition [43] given as Equation 2-56. At this point, there
is feedback in the system, so we call this a SISBCL (single-input single-branch
closed-loop) phosphorelay.

g(xy) = a/(b + xy) (2-56)

In this model, the ratio % represents the maximum possible growth rate of the cell

when the phosphorelay output is zero. b is the phosphorelay output level for which
the growth rate will be halved. Given this definition, it no longer makes sense to
discuss €4 (xy), because g is now a function of xy. Instead, we will use €, (xy) in its

place, assuming that a is the underlying time varying factor driving growth rate.

If we choose appropriate parameters and initial conditions, we find that the system
can indeed demonstrate bistability. In Figure 2-8.b, we plot the nullcline of x; (i.e.

the points where dd—? = 0) for a four step relay. We also plot equation 2-56 for three

different values of a/b. There is an equilibrium wherever these two functions
intersect. We see that for appropriately selected values of a/b, there are three
intersections and hence three equilibria.

In Figure 2-8.c, we show that two of these equilibria are stable using a hysteresis
plot. To generate this plot, basal cell cycle time a/b was initially set to a low value
(20 minutes) corresponding to rapidly growing cells. The system was then allowed
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to settle into steady state. Upon reaching steady state, a/b was incremented slightly,
and the system was allowed to settle into a new steady state. This process was
repeated until a/b = 85 minutes. a/b was then repeatedly decreased until a/b was
again 20 minutes. The resulting plot shows sudden switching events where an
infinitesimal change in a/a results in a huge change in system output. In other
words, as a approaches the bifurcation point, €,(x;) sharply increases before
becoming undefined for a region of measure zero before settling down again on the
other side of the bifurcation. Furthermore, we observe a small hysteretic region
where there are two stable steady states. The results here are consistent with a pair
of saddle node bifurcations.
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Figure 2-8: a) Schematic showing nonlinear cross-inhibition between growth and the phosphorelay b) Plot of
nullcline in blue for x; and growth rate curves in red g = a/(b + x3). The blue nullcline (generated by equation
2-19) corresponds to the parameter set wherek = 1.2 min™%, F; = B; = 0.012 uyM~* min~%, P, = 0.61 uM/min,
L;=102min"! , d; = 2.5X10"*min™! . Growth rate curves are given from bottom to top for
a={54,114,271} pyM~*min~%, and b = 10 uM. The three intersections between the solid nullcline for x} and
growth g are denoted by filled circles. c) Hysteresis plot for the system with parameters corresponding to solid
lines in subfigure b. Filled circles correspond to intersections given in subfigure b.

Naturally, the system can also exhibit a hysteretic response to other parameters. For
example, in Figure 2-9, we consider the output of a system with time varying kinase
activity k;, which could represent, for example, fluctuations in nutrient availability.
In subfigure 2-9.a, nullclines for 3 parameter sets are given. These three parameter
sets are identical except that transfer rates F; and B;. On the upper dotted nullcline,
transfer rates are relatively high compared to growth, and thus we expect that
|eg (x3)| < 1 according to equation 2-49 as there are no phosphatases present in the
system. Indeed, we observe from this nullcline that the output is roughly inversely
proportional to growth rate. On the central nullcline, the output has a sigmoidal
dependence on growth, and furthermore this nullcline intersects our growth
equation 2-56 in three places. On the lower dotted nullcline, the output is also
sigmoidally dependent on growth, but output levels are too low to allow an
intersection at relatively low growth rates (high cell cycle times).
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As in the previous example, we perform a hysteresis plot to probe the stability of the
three equilibria for the parameter set with intermediate transfer rates. In Figure 2-

9.b, we see that the system exhibits a hysteretic response to kinase activity ;.
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Figure 2-9: a) Schematic showing nonlinear cross-inhibition between growth and the phosphorelay b) Plot of
nullclines in blue for x3 and growth rate curve g = a/(b + x;) in red. Nullclines were generated using analytical
solution for linearized ODE model 2-2. The solid blue null-cline corresponds to parameter set where k =
12min™! , F;=B;=0.012uMtmin~! , P =0.61pM/min , L;=102min"! , d;=2.5%x10"*min™! ,
a=114uMmin~,b = 10 uM. The three intersections between the solid nullcline for xj and growth g are
denoted by filled circles. The upper dotted nullcline for x; is the same parameter set, except
F; = B; = 5 uM~* min~!. For the parameter set corresponding to this nullcline, transfer rates are sufficiently
high that inequality /, fails for cell cycle time shown. Instead of an ultrasensitive response to growth, the upper
nullcline shows a roughly linear relationship (e4(x3) ~ 1) between x; and growth rate as predicted by equation
2-49, and thus there can only be one intersection with the growth curve. By contrast the lower dotted nullcline is
for F; = B; = 0.005 uM~! min~!. At these slow transfer rates, the system exhibits growth ultrasensitivity, but
there is only one intersection with the growth curve. c) Simulation results of nonlinear ODE model 2-1 vs.
kinase activity, demonstrating multistability for the nonlinear model. Stable solutions corresponding to nullcline
intersections on the left plot are denoted by same colored circles.

Cross inhibition can also result in a simple increase in €,(x;) beyond the bounds
given in equation 2-45 (which only applies when there is no growth feedback). If we
adjust our transfer rates from Figure 2-9.c just beyond the bifurcation point, then
we can observe a narrow window of growth rates where eg(xj;) can be made

arbitrarily large in magnitude. An example is given below in Figure 2-10.
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are just barely too small to allow for hysteresis, and thus we see extreme dependence on basal growth rate over
a narrow range of growth rates.

1
’

2.6.1 Implications of Multistability

As we see in Figures 2-7 and 2-8, multistability can be used to introduce a hysteretic
switch-like response to a wide variety of system parameters including influx and
efflux signals and gene expression levels.

The most obvious use of such hysteretic responses is to allow the cell to commit to a
response to some temporary condition, whether it is a transient environmental
signal, or an internal fluctuation in protein concentration or even growth rate. For
example, Bacillus subtilis cells form spores when they are placed in adverse
conditions, and are known to commit to the spore formation process even if
conditions improve early on during spore formation [53]. Note that for this specific
example, the core Bacillus subtilis phosphorelay is embedded in a much larger
system with many known feedbacks, and thus the commitment is not likely to be
due to the cross inhibitory loop given in Figure 2-8.a.

If noise levels are sufficiently great that they can trip the switching threshold, a
hysteretic switch could also be used to randomly diversify populations of cells,
allowing a population of cells to hedge its bets against unknown future conditions.
By contrast, if noise levels are small, hysteresis can be used to provide a sharp
thresholded response without input chatter as discussed in [54] and as
demonstrated in Figure 2-10.

We give examples of this chatter suppressive behavior in Figure 2-11. As in Figures
2-8, 2-9, and 2-10, this figure was generated using ODE model 2-2 where growth is
given by equation 2-56. For both systems displayed in Figure 2-11, a noisy growth
rate (given in green) decreases past a critical threshold, and in response the output
(given in blue) increases sharply in response. The difference is in how the hysteretic
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system and the switch-like system respond when the input is left near the switching
threshold.

In Figure 2-11.c, a was varied according to the green curve, and this input was fed
into a system with x;(a) given in Figure 2-11.a. The large magnitude for €,(x})
results in noise amplification near the switch-like threshold, and thus the system
chatters between low and high output values. In Figure 2-11.d, a was varied
according to the green curve and fed into a hysteretic system with output response
x;(a) Figure 2-11.b. Again there is a dramatic switching event as a crosses some
threshold. However, in contrast to the switch-like system, the hysteretic system
does not exhibit chatter, even though the input a remains near the switching
threshold.
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Figure 2-10 a) Plot of system output vs. maximum growth rate a/b for a parameter set exhibiting
monostability. b) Plot of system output vs. maximum growth rate parameter a/b for a parameter set
exhibiting bistability. c) Effect of noisy growth rate parameter a/b near the steepest (most switch-
like) part of the growth sensitivity curve in part a. A 20% change in a/b results in a 65% change in
output signal. d) A 32% variation in b/a results in only a 7% variation in output.

2.7 CME Model of the Phosphorelay
In Section 2.3.2, we showed that in the large efflux signal regime, the phosphorelay

calculates the ratio of the influx rate to the product of the efflux rates. In Section
2.3.2.1, we showed that in this same regime the phosphorelay has a growth
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dependence described by equation 2-26. These results were numerically supported
for the full nonlinear model in section 2.5. In this section, we consider the effects of
stochasticity using a CME based model.

Above, we show using an ODE model that a phosphorelay can exhibit growth
ultrasensitivity. We now consider the same results with a CME based model for two
reasons. First, in one well studied system, basal protein concentration c5 is known
to be as low as 0.03 uM in a volume of approximately 1 femtoliter, while c, can be as
large as 4.4 uM [55]. These values correspond respectively to absolute counts of
approximately 20 and 3000 molecules.

Second, our previous model for growth assumes that growth acts in a manner
precisely identical to degradation. A better approximation of reality is to assume
that cells continuously grow until they reach some critical size threshold, at which
point molecules are binomially partitioned between the two child cells[56].

For this section, we build a CME based model of the phosphorelay. The traditional
CME formulation considers the volume of the cell constant. One common
generalization of the CME model is one in which the propensities of each reaction
are updated to reflect the volume change after each reaction[56]. This is the
approach that the simulations in this section will utilize. This approach works well
as long as the growth rate operates on a slower time scale than the fastest chemical
reaction in the system[56]. The model consists of the events and reactions given in
Table 2.4. The events were added to provide the generalization of changing volume.
The first event represents division events. When cell volume crosses some arbitrary
fixed threshold, volume is halved, and each reactant is binomially partitioned
according to a binomial distribution of probability 0.5. The second event represents
a discrete approximation to cell growth, where every ty,, seconds, cell volume is
increased incrementally by some arbitrary amount.

Reaction Name Reaction Equation Propensity
Autophosphorlaytion X1 = Xq K1 X;
Phosphotransfer X; + X401 =X+ X[ fixixi.,/Q
Dephosphorylation X; = X; Lix;
Protein Production 0 - x; P;Q
Protein Degradation xi = 0,x; -0 dix;
Event Name Trigger

Division R =B(R,0.5),Q0=0Q/2 0> 0r
Cell growth N =10+ gAt tstep Seconds elapsed

Table 2.4: CME Model Specification

Model specifications were created and simulations were performed using the
MATLAB SimBiology toolbox using a MATLAB implementation of the generic
Gillespie SSA[28] algorithm.
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To test the effects of growth on the stochastic relay, growth rate g was varied, and
x, was recorded as a function of time. An example trajectory is given in Figure 2-11
below.
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Figure 2-11: Stochastic simulation output showing x3, x;, and x4 vs. time for a single
parameter set. On the left, absolute molecule counts are shown. Sudden drops correspond
to division events. On the right, molecule counts are normalized by volume, which is not
plotted, but is also saw-tooth shaped.

2.7.1 Growth Effects on the Open Loop Phosphorelay

If the stochastic model agrees with the deterministic ODE model, then ¢, (x3) should
be zero for very low growth rates before decreasing steadily towards -8. €, (x3)

should never be positive, because there are no phosphatases in this model. For this
numerical experiment, non-zero values were selected for all parameters in Table
2.4. For a given parameter set, E[x;] was estimated from a single trajectory by
taking the mean of the final eighty percent of the run. This approach was chosen for
computational efficiency, avoiding the necessity of generating an ensemble of
trajectories. The potential weakness with this approach is that if the system is not
monostable, this simplification will fail. For each g value, E[x;] was calculated. To
compute €,4(x;), a low pass filter was applied to the vector of expected values, and
dE[x4]

the numerical derivative was approximated by computing the slope of the line

connecting adjacent data points. These numerical derivatives were then used to
calculate €, (x}).

For this first set of parameters, in the large growth limit, the growth elasticity was
found to obey the same general trend as in the ODE model as shown below in Figure
2-12. Specifically, for low growth rates, the output was found to be relatively
insensitive to growth. As growth rates grew large, the output sensitivity €, (x;)

decreased to a minimum ultrasensitivity value.
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Figure 2-12: Growth sensitivity for a stochastic system. Left side shows molecule
counts for E[x;], i.e. the expected value of absolute molecule counts for output x, vs.
growth rate. Right side shows €,(x;), which is computed from the numerical
derivative of E[x;] as described above. Output values become much noisier as
growth rates increase, because more data is required to accurately measure E[x;] as
it decreases. Even as the expected value of molecule counts falls below 1, the system
continues to be increasingly sensitive to growth. In theory, with enough simulations,
the right graph would converge to €,(x;) = —8.

One inherent challenge with this approach is that in order to observe the entire
transition from elasticities of €;(x3) all the way down to the theoretically smallest
elasticities of ¢, (x;) = —8, we’d need to run simulations which show changes over a
dozen or more orders of magnitude. This necessitates either very large molecule
counts, which eliminates the use of the SSA as an algorithm, or necessitates very
long simulation times in order to observe enough rare x; events in order to properly
estimate E[x;]. One possible approach to find a lower bound for growth sensitivity
would be to simulate only over a very narrow growth rate range, but with very large
simulation times in order to accurately estimate E [x].

2.7.2 Growth Effects on the Closed Loop Phosphorelay

Our CME model can be augmented to consider growth dependence. For this section,
our rules in Table 2.4 were removed, and growth was treated exctly as degradation.
A rule was added that g = a/(b + x;) that is updated any time x; changes, and a
trajectory was generated for the resulting system for values corresponding to those
used to generate Figure 2-9. Unlike the deterministic system, the stochastic system
is capable of random switching behavior even in the presence of fixed system inputs
due to the intrinsic noise introduced in the CME formulation, as shown below in
Figure 2-13 This could be used to introduce random behavior similar to excitability,
guaranteeing that some fraction of the cells are always in some uncommon state,
which could be used as a hedge against uncommon threats. In principle, the system
could also be tuned to allow only rare switching events, and these rare events could
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be latched to ensure that a cell that enters the random state is unable to escape until
the state is unlatched.
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Figure 2-13: Stochastic simulation output showing x; and growth rate g vs. time.
Parameters are the same as in ODE simulation 2-9 (parameter set with solid nullcline),
except that a was increased to a = 114 uM~'min~1. Note that growth model was adjusted to act
as a pure death process to align with the ODE simulation in Figure 2-9. In the top figure,
absolute molecule counts for the output are shown. In the bottom figure, growth rate is
shown. Sudden changes are stochastic switching events due to inherent noise. All
parameters with the exception of g are kept constant throughout the simulation.

2.8 Multi-Kinase Relays, Late Stage Kinase Ultrasensitivity

The Bacillus subtilis relay features a kinase which acts directly on the Spo0OA protein,
which fulfills the role of x, in a SISB relay[57]. More generally, we can imagine a
kinase which can interact with any stage of the relay. This can be modeled with the
addition of species y; and y; which obey the reactions given below in Table 2.5.

0-y;

yi =0

Vi 2 Yi

Yi =i
yitxi=yi+x
Table 2.5: Additional Reactions for a Multi-Kinase Relay

Rather than provide a full analysis of such systems, we instead focus on one
particularly interesting new behavior that arises in this framework. In particular,
we consider the two step relay in the case where some kinase y, acts directly on the
output stage x,. In the event thaty, + x; = y, + x, is very slow, then y,’s effect on
X, can be approximated by lifting the restriction on ODE system 2-1 thatk, =0,

eliminating the necessity of explicitly representing our y; and y; variables. In this

) . kxx . Kz . N
case, the reaction y, + x, — y, + x, becomes x, — x;, where k, = y;kyy, where y;
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will be proportional to the underlying influx signal driving the phosphorylation of
V2

For the two step relay, the full nonlinear system given by ODE system 2.1 is
analytically tractable, even when k, # 0. From the closed form solution (not
shown), we find that for a two stage relay with very high backwards transfer rate B,
a two component system can exhibit ultrasensitivity to k, for small ;. As seen in
Figure 2-? below, when the backwards transfer rate is very high, x, and x, compete
to deactivate x5, and k; acts to inhibit x; by phosphorylating it (and thus preventing
it from acting as a phosphatase on x3). Thus, the early kinase x; acts to modulate the
ultrasensitivity of the system to the late stage influx signal k,. The effect can be
trivially generalized to longer relays by choosing appropriate parameters such that
the intermediate stages are given by linear ODEs (i.e. x; < ¢;). Thus, this mechanism
is theoretically possible in multi-kinase systems such as the Bacillus subtilis
phosphorelay, in which kinases act on both the first and fourth stage of the relay.
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Figure 2-14: a) Schematic of a two component system where both components can
act as kinases. b) 3D plot showing x3 vs k; and k. c) Plot of elasticity €;,(x3) vs. k;
for small k, d) Plot of €;,(x;) with respect to k, for large k,. Note that the system
has a sigmoidal response to k, only for small x¥; . Thus k; modulates the
ultrasensitive response of the system to k.

2.9 Proposed Experimental Demonstrations
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In principle, it would be possible to test the key predictions of our work, particularly
equation 2-26, with a relatively straightforward albeit technically challenging
experiment, which would assay GFP produced under relay control as a function of
growth rate.

First, histidine kinases would be made constitutively active, for example by cleaving
the sensing domain of the histidine kinase[58]. To measure output concentrations,
GFP could be placed under transcriptional control of the terminal response
regulator. Growth rates would be controlled using nutrient limitation, and bulk
relay output could be assessed using flow cytometry to measure GFP
concentrations. Growth rates would be assayed at close to the highest attainable
levels to maximize growth effects.

The best system architectures to test would be those with the most extreme
predicted growth phenotypes. As discussed above, the two extremes are the four
component no-phosphatase phosphorelay and the two component four stage
phosphorelay with phosphatase regulation on all four stages. In the former case, we
expect that output will be strongly suppressed by growth, and in the latter case,
strongly promoted by growth. Ideally, the kinetics of candidate systems would be
considered in order to maximize the chance of observing the multiplicative growth
dilution effect and multiplicative receiver domain concentration effect. Such a
system would be difficult to identify a priori due to a lack of available kinetic data. It
would also be necessary to ensure that cellular physiology is not disrupted when the
histidine kinase is made constitutively active.

Though the strongest suppression by growth is expected for the four component
system, the only four protein phosphorelay that we’re aware of is the notoriously
complex Bacillus subtilis phosphorelay, which features complex gene regulation and
regulation by a vast number of regulating phosphatases whose expression is not
fully understood. Consequently, this relay would not be useful without a significant
amount of refactoring. Three component relays are seemingly plentiful including
those identified in yeast [59], E coli and other enterobacteriaceae [60], [61],
Arabidopsis [62], Pseudomonas aeroginosa [63], and at least 39 histidine
phosphotransferases have been predicted through genomic analysis [18], each of
which suggests the presence of a relay of at least three components. Thus,
experimental concerns may necessitate the use of a three component system.

Likewise, though the strongest promotion by growth is expected in a two
component system with all four domains regulated by a phosphatase, it may be
difficult to coax such a system into exhibiting an extreme growth phenotype, as
inequality I, requires dephopshorylation rates to be more rapid than in cis
phosphotransfers on the same protein.

One could also more directly test the simple hypothesis that phosphatase
concentrations modulate growth ultrasensitivity by varying the number of stages
under phosphorelay control. The simplest way to achieve this would be to test
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growth dependence in the presence and absence of a promiscuous phosphatase
which acts on all stages of a relay.

3 Case Study of the Bacillus Subtilis Phosphorelay

3.1 Bacillus subtilis

Bacillus subtilis is among the most widely studied and industrially utilized species of
bacteria due to its interesting stress response behavior, easily modified DNA, and
the desirability of the enzymes it is capable of producing. subtilis is known for its
wide range of stress response phenotypes, including development of motility and
chemotaxis, production of extracellular enzymes for resource collection, uptake of
exogenous DNA, and formation of metabolically inert spores[64]. Its ability to
uptake exogenous DNA make subtilis particularly useful from the experimental and
biotechnological point of view, as insertion of DNA is one of the primary techniques
utilized by experimental biologists. Its ability to form spores has captivated
biologists who seek to understand sporulation as a simpler version of the
developmental process by which more complex multi-cellular organisms
differentiate into different cell types as they develop[65].

These stress responses and many more are under the control of a phosphorelay3,
whose core components are the proteins KinA (x;), SpoOF (x,), SpoOB (x3) Spo0OA
(x4), RapA (m,), RapC (m;), RapE (m,), and SpoOE (m,), with the SISB equivalent
variable names in parentheses. m, is duplicated because there are three proteins
which act as phosphatases on SpoOF (x5).

The phosphorylated form of SpoOA, often given as Spo0OA* or SpoOA~P as
shorthand, is a prolific response regulator, known to control (either directly or
indirectly) the production rate of at least 121 genes[7], [67]. Even more interesting
is that among these genes are KinA, SpoOF, Spo0A, RapA, and SpoOE[67]. Indeed,
this includes all of the SISB phosphorelay proteins except x; (Spo0OB). A further
important twist is that the activities of the phosphatases RapA, RapB, and RapE (m,)
are regulated by small molecules PhrA, PhrC, and PhrE that are secreted and
absorbed by subtilis cells as a putative extracellular communication factor[68].
Furthermore, these small molecules are differentially expressed, implying that they
are each meant to convey a specific piece of information.[68] All of this information
is ultimately integrated through the phosphorelay.

The story is even more interesting when one considers that in the wild, colonies of
Bacillus subtilis form biofilms, which are colonies of cells that bind to each other and

3 In fact, the Bacillus subtilis phosphorelay was the first four stage phosphorelay ever discovered, way

back in 1991 [66], incidentally the same year that Nirvana, Tupac, and the Notorious BIG began their
ascent. The number of partners with which the subtilis phosphorelay is known to interact has
steadily grown over the last 20 years.
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coat a surface. In the lab, cells have been observed forming biofilms with aerial
structures comprised of cells, where cells at the edges of these structures have a
greater tendency to sporulate. These aerial structures are also called fruiting
bodies[69]. By forming spores at the ends of these fruiting bodies, spores are
presumably able to disperse further to enable colonization of new food sources[70].
The spatial and temporal correlation of such biofilms is ultimately mediated in
substantial part by Spo0OA.

It is far beyond the scope of this thesis to consider models of how these extracellular
factors are secreted or even interact with their target phosphatases. Furthermore,
there are a vast number of proteins that we have not mentioned which act on the
phosphorelay. Instead, this thesis will focus on understanding the function of the
core of the Bacillus subtilis phosphorelay including transcriptional regulation.

3.2 The Transcriptionally Regulated Phosphorelay Model

To take into account Spo0A*’s effects on relay protein concentration, the SISB model
given in Table 2.1 is now augmented with the protein production reactions given as
equation 3-1.

[xy] + [DNA;] = [xyDNA;] > [xyDNA;] + [x;] (3-1)
[x3] + [DNAg,| = [xyDNAg,| - [xyDNAz, | + [m;]

Though treating transcription as such a simple one step process is a crude
approximation, it is a standard one[71] without which our system would be
completely intractable analytically. A more detailed model of transcription,
translation, and protein folding would be necessary to study the effects of these
processes on relay function.

The first reaction can be rewritten in terms of variable c; as
[xy] + [DNA;] = [xyDNA;] = [xyDNA;] + [¢;] (3-2)

This results in the system of ODEs 3-3

dx; . . x (3-3)
ar = ki~ (Bi—1Ci—1 + FiCiyq + a)xi + (Fi_y (¢; — x{) + Bi_1)x{_4
+(Fix; + gi(ci = X)X 41
C.
= = P+ vl DNA] - (d; + g)c;

dm; .

d_tl = Pr; + 7, [XN\DNAy ] — (dr, + 9)m;
dDNA,

dt

= —KyxyDNA + K_[x;DNA]
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d[DNAx;] : *
—— = ~KixyDNA + K_[xj DNA]
This ODE system is analytically intractable. To address this, we will utilize an
approximation similar to the earlier approximation that x; +x;41 S x/x;41 S
XiX;y1 = x; + x{,, can be approximated by x; + x;41 = x; + x;,,. Specifically we will
assume that [xy] + [DNA;] = [xyDNA;] - [xyDNA;] + [c;] can be approximated by
[xy] = [e].

In this case our system of ODEs 3-3 becomes system 3-4

dx; X . x (3-4)
a kici = (Bi—1Ci—1 + Ficiyq + @)x{ + (Fi_1(¢; — x{) + Bi_1)x{_4

+(Fix;{ + Bi(¢; — x{))X{ 41

dCl' N

Fri P+ filxy) — (d; + )¢
dm; N

d—tL = PT[L' + fn_i(xN) - (dﬂ'i + g)T[l'

3.2.1 Bacillus subtilis Architecture

The Bacillus subtilis relay is a four stage, four protein relay. There are phosphatases
acting on stages two and four. Thus, N=4, m; = 0, 3 = 0. Furthermore, f;(x}) is
believed to be a strictly increasing function of x; for i = {1,2,4}, and f;(x;) is
believed to be zero. f;, (x3) is also believed to be strictly increasing, while f;; (x}) is
uncertain[67].

3.3 Steady State Output and Interpretations

The steady state function for the output x; of ODE system 3-4 is still given by
equation 2-19, where ¢; = Fic;,, and B; = B;c;. However, concentrations c¢; and w;
are now given by unknown functions f;(x3) and f;,(x}). In the regime where the
output is small and thus f;(x;) < P; and f,(x;) < B, then our transcriptional
feedback can be ignored, and trivially equation 2-19 is the closed form expression
for x;. Likewise, if the functions f;(x;) and f;,(x;) have saturated as a function of x;,
ie. f{ (x3) and f7, (x3) are sufficiently small, then equation 2-19 is again in closed
form, albeit with larger c; values than before.

Probing the intermediate regime where neither of these two simplifying conditions
apply requires some model for transcriptional feedback. Even a fairly simple model
of transcriptional feedback will result in an intractable steady state output. If we
assume that only the phosphatase regulated domains experience significant
phosphate loss, i.e.1; K ¢, + f; and 1; K ¢3 + 5, and that this loss is due to m;,
then output equation 2-19 becomes equation 3-7, where weights w, have been
expanded according to Appendix A.c, is missing from the numerator because it
cancels out with the ¢, that is present in weights w(q 1,00, W(0,0,0,1), and W(g, 1,0,1)-
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C1C3C4F2F3K1 (3'5)
B;B3cyC3kn, Ty + C3C4FyF3ky, my + (Bycy + CaF3) ke, K, oy

Xy =

Kinase activity is believed to be a measure of the nutritional quality of the growth
medium, and previous work has suggested that k., provides a measure of the
number of nearby growing cells in the environment[49] . Thus, the output of the
phosphorelay may provide a measure of the amount of food per growing cell,
prompting a cell to tend to sporulate when its own chances of finding food are poor.

3.3.1 Feedback Provides Just-in-time Supply of Proteins

We can probe the potential usefulness of transcriptional feedback without assuming
any particular function f(x,) for that feedback. Assuming that c;, ¢,, ¢4, and w4 are
proportional to the same function f(x}) of x;, then we have that

* f(x3)F>Fsrcq (3-6)
x; . "
B;Bsky,my + f(x})FoFsky, + (By + F3)ky,mof (x3)ky,

If f (x3) is sufficiently large, then B, B3c3k,,m, disappears and equation 3-6 becomes

- FyF3Kq (3-7)
F2F3kn—4 + (BZ + F3)k7-[2n'2k7-[4

*

X4

This equation, like equation 3-5, is inversely proportional to the dephosphorylation
rates k,, and k,, and thus the phosphorelay is sensitive to the extracellular factors
that regulates the activity of m,, as long as the activity of the constitutive activity of
1, is low enough to avoid dwarfing mr,’s influence. One thing that has changed is the
value of our protein concentrations which are now larger. Consequently, our output
given by equation 3-7 can now reach larger values before the relay is saturated and
the low activation assumption used to derive equation 2-19 and ultimately 3-7 fails.
The idea that the transcriptional feedback exists in order to provide a just in time
supply of phosphorelay protein is supported by the literature[38], [72].

3.3.2 Feedback on Spo0B May Block RapA Activity

Equation 3-7 suggests one possible reason that feedback is not observed on Spo0B
in the wild. However, if there is feedback on SpoOB, i.e. c3 is also proportional to
f(x}), then equation 3-7 instead becomes

X' o f(xa)caFaFzky (3-8)
* B;Bsky,my + f(x))FoFsky, + (By + F3)ky,moky,

Now, in the large f (x3) limit, equation 3-8 becomes
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o 4 (3-9)

In contrast to the system with no SpoOB feedback, equation 3-9 shows no
dependence on dephosphoylation rate k,,, and thus factors acting on x, will be

effectively ignored. This reason for the lack of SpoOB feedback is based on a large
number of assumptions. In particular, this explanation does not apply if

3.3.3 Feedback on Spo0B May Corrupt Phosphorelay Function
One can attempt to more deeply probe the intermediate f(x;) regime by choosing a

model for growth. One standard approach is to approximate transcriptional
feedback using Michaelis-Menten kinetics[71], given below as equation 3-10.

x5 (3-10)

Yielding protein concentrations:

X\ 3-11
PHnET, o
g
x*
P Ry
di+g

m; =

In principle, one can substitute equations 3-11 into equation 3-5 and solve for xy. As
discussed in the case of general f; and f;, in the event that basal production is
stronger than production due to transcriptional feedback or that feedback has
saturated as a function of xy (given by f;(xy) < P; and xy > K; respectively), then
the form of the output remains exactly as equation 2-19, and all of the multiplicative
and growth dependence properties follow.

For xy values on the same order as K;, this substitution is analytically intractable,
and no closed form solution for xy exists. However, if we assume that feedback on
each stage overpowers basal protein production (f; > P;) and that our output is
small relative to the feedback saturation level (xy <« Kjy), then we can approximate
¢; and mr; by linear functions of xy, where 7; are metaparameters.
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XN (3-12)

Yi K;
Ci = ¥ixp
i di+g YiXn
x*
Y, K,I:-]
T~ L= Y. Xx
i d+g Y XN

Substituting equation 3-12 into equation 3-5 for ¢; fori = {1,2,4} and m, yields in
the large m, limit

V1€3 VaF2F3K1 — By Bacs, (3-13)
B, B3VoC3ky, My + C3VaFoFsk, Ve, + (B2V2 + CaF3)ke ki, oV,

Xy =

The steady function is nearly unchanged from equation 3-5, though there are two
differences. The first is that that each term has been rescaled, effectively weighting
each efflux signal differently in the final calculation. The second is that a constant is
subtracted from the numerator. When this constant becomes larger than the influx
term in the numerator (e.g. k; becomes too small), then x; will become too small for
equation 3-12 to remain true, and basal transcription will dominate x, driven
transcription and equation 3-13 will pass through an intractable regime before
reverting to the form of equation 2-19.

By contrast, if equation 3-12 also applies for c3, i.e. Spo0OB is under transcriptional
feedback from Spo0OA*, then equation 3-5 instead becomes

V1V3 VaFoFsky — ByB3VoV3Lly — BaVokn, ke, Va, 2 — FaVakn, ke, Vr, T2 (3-14)
FyF373Vakn,Vn,

Xy =

Now, the output is proportional to the difference between the kinase signal k; and
the quorum sensitive phosphatase activity k,, instead of being proportional to their
ratio. Furthermore, as soon as the subtractive term in 3-14 becomes significant, the
system will transition out of the regime where 3-12 is true, and will pass through an
intractable regime before reverting to the form of equation 2-19.

3.3.4 Feedback on RapA May Act as a Commitment Step

Prior work has suggested that 7, may be suppressed by x,[67]. Thus, 7, and x; may
form a cross repressive loop. In this case, we model 7, by equation 3-15

dm v 3-15
d—t2=Pn_2+ﬁ_dn_2T[2 ( )
1 +(x4)
Kr,
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Thus, m, is in equilibrium whenever

v -
A,y = Py, + ———— (3-16)
K,

This cross repressive feedback loop allows the possibility that the system will be
multistable, with the system maintaining its high output status in the event that r,
is made low by the phosphorelay. Indeed, time-lapse fluorescence microscopy
experiments have shown that cells enter a low m, state before sporulating, which
requires a high level of x; [49].

4 Thesis Conclusion

4.1 Thesis Summary

This research has expanded upon a long time hypothesis regarding the function of
the ubiquitous phosphorelay. Though it has long been suspected that a
phosphorelay acts as a signal integration module, this is the first work that provides
a concise mathematical statement of how signals are integrated. Specifically, the
output of a phosphorelay is found to be proportional to the aggregate influx signal
divided by the sum of various products of the aggregate efflux signals acting at each
stage of the relay. If all of the aggregate efflux signals are large, then the output is
simply proportional to their product.

The most obvious manner in which to use this multiplicative property is to multiply
signals that convey some useful information about the environment. In the context
of Bacillus subtilis where one of the aggregate efflux signals may be a measure of
population and the influx signal a measure of available nutrient, the phosphorelay
may be computing the amount of food per cell that is available in the environment.

The output function derived in Chapter 2 shows a complex dependence on growth.
Growth acts as both an efflux signal and as a controller of protein concentrations.
These proteins include both phosphate receiving proteins and phosphate inhibiting
proteins. As a result of these two effects, the output of the relay becomes
ultrasensitive to growth, and may exhibit either a positive or negative dependence
on growth. The degree to which these effects can be cleanly expressed in terms of
key physical parameters, including the number of stages in the relay, the number of
distinct proteins forming the relay, the number of proteins that are relatively stable
compared to growth, and the number and configuration of stable phosphatases.

4.2 Future Work

Above, I've shown that a phosphorelay can theoretically be used as an analog
calculation device, potentially allowing for a phosphorelay to compute the ratio of
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its influx signals to the sum of various products of the efflux signals, or in the large
efflux signal case, the ratio of the influx signal to the product of the efflux signals.
Though I've speculated above why such a function might be useful, a careful analysis
of the literature for phosphorelays which might be hiding such multiplicative
functions could be interesting. Likewise, the phosphorelay may be act as a growth
switch, and in section 2.10, I've proposed experiments that can be used to test this
theory.

The basic theory could also be enhanced through a rigorous proof that the SISBOL
phosphorelay is not only monotone, but also globally asymptotically stable. The
numerical support for the growth sensitivity hypothesis given in section 2.7.1 could
also be enhanced through a demonstration that a CME model can exhibit the

minimum theoretical elasticity of - N. This may necessitate the use of the Exact
Time Gillespie algorithm[56] in order to accurately model the phosphorelay at
growth rates that are high enough that the cell divides as fast or faster than
significant chemical reactions in the system. The numerical support for the
stochastic switching hypothesis given in section 2.7.2 could be enhanced by showing
that stochastic switching occurs even with a division based model of growth, as
opposed to the simplified model of growth explored in that section.

The theory itself could be generalized to cover a broader class of relays than the
single branch relays discussed in this thesis. One obvious generalization would be to
consider multi-branch phosphorelays, where multiple relays act in parallel with
crosstalk at various stages. Such relays have been observed, for example, in
Arabidopsis[73]. Another important question is how the concept of growth
sensitivity generalize to other signaling cascades, particularly kinase cascades.
Preliminary work (not shown in this thesis) suggests that a kinase cascade should
have a growth elasticity whose magnitude increases exponentially with the length of
the kinase cascade in the most extreme case. Likewise phosphatases acting on early
stages of a kinase cascade seem to have a similar exponential effect of opposite sign.

Finally, this work can be used as a staging point for understanding the biology of
particular organisms which utilize the phosphorelay as one of their core signal
integration components. Bacillus subtilis is particularly interesting, as its stress
responses are driven by multiple phosphorelays under complex regulation by a
variety of phosphatases which are in turn modulated by a series of putative
extracellular communication factors produced under different circumstances,
effectively providing a series of putative parallel communication channels[68], [74],
[75]. Further, the communities it forms seem to be spatially and temporally
coordinated to maximize the fitness of the population as a whole[69], and it is
tempting to believe that this behavior is coordinates via these channels.
Understanding such relays requires a solid understanding of the simple
fundamental module that lies at the center.
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This work provides that baseline for understanding relays from the simple 2 protein
4 stage relay found in Bordetella pertussis[76], to the highly complex Bacillus subtilis
relay discussed above. Understanding the former organism, for example, would
provide insights into the control schemes utilized by dangerous pathogens to infect
humans and evade the immune system. Understanding the latter would provide an
understanding of how bacteria communicate and coordinate a community of
diversified cells, thus providing a model system for understanding how
sophisticated biological multicellular machines like ourselves develop from a single
cell, and how similarly complex systems may someday be designed.
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A

Expansion of w,

Above, we give that the output for the bidirectional relay as equation 2-19, which
includes efflux signal product weights w,. This in turn was derived from the set of
algebraic equations given as equation 2-18. The weights come directly from w,,.

There is no simple expression for w,, so we provide the following constructive
algorithm instead.

1. Given an efflux signal product A% =[]V, /1?1', we wish to compute the corresponding
weight w,

2. Special cases: w(g, oy = 0, Wy, 1)=1

3. Draw aset of N collinear circles

4. Ifa; = 1, fill in the circle at node N. If @; = 0 leave the circle empty

5. For every empty circle, draw an arrow pointing to either its left or right neighbor
subject to the rules below. Let the ith valid assignment for a be given by 4;(a). Note
that for some «, there are multiple valid assignments.

a. If an empty circle has an arrow pointing at it, its outward arrow must point
in the direction opposite of the incoming arrow (forming a path)
b. All arrows must point at a node (i.e. it may not point out of the graph)

6. The weight w, is given by Z?=1 F(A; (¢)), where Q is the number of valid

assignments for a and F is given by
Fa@) =] [&;] [Bes
JER kel
As a reminder, ¢; and fy are defined as the forward and backward transfer
rates of each stage, and are defined in section 2.3.2.
In our definition for F(A(a)) above, R is the set of integer indices of those
nodes which have an outward pointing arrow which points to the right, and L
is the set of integer indices of those nodes which have an outward pointing
arrow which points to the right.
Example

Consider the efflux signal product 4345, where N=6. We wish to know w(g ¢ 1,0,0,1)-
We first draw our six circles and fill in circles 3 and 6.

O O @& O O @O

Since nodes 1, 2, 4, and 5 are left unfilled, then each most have an outward pointing
arrow. There are three valid arrow configurations shown below, given as
A,(0,0,1,0,0,1), 4,(0,0,1,0,0,1), and A3(0,0,1,0,0,1).
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O0—0—>0 O—>0—0

For 4,(0,0,1,0,0,1), corresponding to the top left rectangle above, we have that
R ={1,2}and L = {4,5}. Thus F(4,(0,0,1,0,0,1)) = f, fob3b,

Repeating this for 4, (R = {2,3,5}, L = {4}) and 45 (R = {1,2,4,5}, L = {}), we finally
have that w 91,0,01) = P1928384 + 1028304 + P13,

Thus, if all of our phosphorelay domains lie on separate proteins, we have that
W(001,001) = FiF2B3ByCycicy + FiFyB3Fycyc5cs + FiF,FaFycycacycs

As another sub-example, if our first four domains lie on the same protein, and the
last two domains are on a second protein, then we have from our definitions of
¢H abci[ﬂ tha¢

W(0,0,1,0,01) = F1F2B3Bs¢4 + F1F3BsFycs + FiFo F3Fycs

B Full ODE for Complexing Model

d/dt (x1) = -xl*kappatsigA*sigA x1 transRate-

x1*x2P*x1 x2P bindRate+xl x2P*x1 x2P unbindRate-

x1*Pil*x1 Pil bindRate+x1l Pil*x1 Pil unbindRate-

x1*x2*x1 x2 bindRate+xl x2*x1 x2 unbindRate- (d+deg) *x1+L1*x1P

d/dt (x1P) = +xl*kappa-x1P*x2*x1P_x2 bindRate+x1P_ x2*x1P_x2 unbindRate-

x1P*P11*x1P Pil bindRate+x1P Pil1*x1P Pil_ unbindRate- (d+deg) *x1P-L1*x1P

d/dt(xl_xZP) = +x1 x2P bindRate*x1*x2P-x1 x2P unbindRate*xl x2P-

x1 x2P phosphotransferRate*xl x2P+x1P_x2 phosphotransferRate*x1P x2-(d+deg) *x1 x2P
d/dt(le_xZ) = +x1P x2 bindRate*x1P*x2-x1P x2 unbindRate*x1P x2-

x1P x2 phosphotransferRate*x1P x2+x1 x2P phosphotransferRate*xl x2P- (d+deg) *x1P x2
d/dt (Pil) = +sigA*sigA Pil transRate-Pil*x1P*x1P Pil bindRate+x1P Pil*x1P Pil unbindRate-
Pil*x1*x1 Pil bindRate+x1l Pil*x1 Pil unbindRate- (d+deg) *Pil

d/dt (x1P_Pil) = +x1P_Pil bindRate*x1P*Pil-x1P_Pil unbindRate*x1P_Pil-

x1P Pil dephosphoRate*x1P Pil- (d+deg) *x1P Pil

d/dt (x1_Pil) = +x1 Pil bindRate*x1*Pil-

x1 Pil unbindRate*xl Pil+x1P Pil dephosphoRate*x1P Pil- (d+deg)*x1 Pil

d/dt (x1_x2) = +xl x2 bindRate*x1*x2-xl x2 unbindRate*xl x2-(dt+deg)*xl x2

d/dt (x2) = +sigA*sigA x2 transRate-x2*x1P*x1P x2 bindRate+xlP x2*x1P x2 unbindRate-
x2*x3P*x2 x3P bindRate+x2 x3P*x2 x3P unbindRate-

x2*P12*x2 P12 bindRate+x2 Pi2*x2 P12 unbindRate-

x2*x1*x1 x2 bindRate+xl x2*x1 x2 unbindRate-x2*x3*x2 x3 bindRate+x2 x3*x2 x3 unbindRate-
(d+deqg) *x2+L2*x2P

d/dt (x2P) = -x2P*x1*x1 x2P bindRate+xl x2P*x1 x2P unbindRate-

x2P*x3*x2P x3 bindRate+x2P x3*x2P x3 unbindRate-

x2P*P12*x2P P12 bindRate+x2P Pi2*x2P Pi2 unbindRate- (d+deg) *x2P-L2*x2P

d/dt (x2_x3P) = +x2 x3P bindRate*x2*x3P-x2 x3P unbindRate*x2 x3P-

x2 x3P phosphotransferRate*x2 x3P+x2P x3 phosphotransferRate*x2P x3-(d+deg) *x2 x3P

d/dt (x2P_x3) = +x2P x3 bindRate*x2P*x3-x2P x3 unbindRate*x2P x3-

x2P x3 phosphotransferRate*x2P x3+x2 x3P phosphotransferRate*x2 x3P-(d+deg) *x2P x3

d/dt (Pi2) = +sigA*sigA Pi2 transRate-Pi2*x2P*x2P Pi2 bindRate+x2P Pi2*x2P Pi2 unbindRate-

Pi2*x2*x2 Pi2 bindRate+x2 Pi2*x2 Pi2 unbindRate- (d+deg) *Pi2
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d/dt (x2P_Pi2) = +x2P Pi2 bindRate*x2P*Pi2-x2P Pi2 unbindRate*x2P Pi2-

x2P Pi2 dephosphoRate*x2P Pi2- (d+deg) *x2P Pi2

d/dt (x2_Pi2) = +x2_ Pi2 bindRate*x2*Pi2-

x2 Pi2 unbindRate*x2 Pi12+x2P Pi2 dephosphoRate*x2P Pi2- (d+deg) *x2 Pi2

d/dt (x2_x3) = +x2_x3 bindRate*x2*x3-x2 x3_unbindRate*x2 x3-(d+deg)*x2_x3

d/dt (x3) = +sigA*sigA x3 transRate-x3*x2P*x2P x3 bindRate+x2P x3*x2P x3 unbindRate-
x3*x4P*x3 x4P bindRate+x3 x4P*x3 x4P unbindRate-

x3*Pi3*x3 Pi3_bindRate+x3 Pi3*x3 Pi3 unbindRate-

x3*x2*x2 %3 _bindRate+x2 x3*x2 x3_unbindRate-x3*x4*x3 x4 bindRate+x3 x4*x3 x4 unbindRate-
(d+deg) *x3+L3*x3P

d/dt (x3P) = -x3P*x2*x2 x3P bindRate+x2 x3P*x2 x3P unbindRate-

x3P*x4*x3P x4 bindRate+x3P x4*x3P x4 unbindRate-

x3P*P13*x3P_Pi3_bindRate+x3P Pi3*x3P_Pi3_unbindRate- (d+deg) *x3P-L3*x3P

d/dt(x3_x4P) = +x3_x4P bindRate*x3*x4P-x3 x4P unbindRate*x3 x4P-

x3_x4P phosphotransferRate*x3 x4P+x3P_ x4 phosphotransferRate*x3P x4-(d+deg) *x3 x4P
d/dt(x3P_x4) = +x3P_x4 bindRate*x3P*x4-x3P x4 unbindRate*x3P x4-

x3P_ x4 phosphotransferRate*x3P x4+x3 x4P phosphotransferRate*x3 x4P- (d+deg) *x3P x4
d/dt (Pi3) = +sigA*sigA Pi3 transRate-Pi3*x3P*x3P Pi3 bindRate+x3P Pi3*x3P Pi3 unbindRate-
Pi3*x3*x3 Pi3 bindRate+x3_ Pi3*x3 Pi3 unbindRate- (d+deg) *Pi3

d/dt (x3P_Pi3) = +x3P_Pi3 bindRate*x3P*Pi3-x3P_Pi3 unbindRate*x3P_Pi3-

x3P Pi3 dephosphoRate*x3P Pi3- (d+deg) *x3P Pi3

d/dt (x3_Pi3) = +x3_Pi3_bindRate*x3*Pi3-
x3_Pi3_unbindRate*x3 Pi3+x3P_Pi3_ dephosphoRate*x3P Pi3- (d+deg) *x3_Pi3

d/dt(x3_x4) = +x3 x4 bindRate*x3*x4-x3 x4 unbindRate*x3 x4-(d+deg) *x3 x4

d/dt (x4) = +sigA*sigA x4 transRate-x4*x3P*x3P x4 bindRate+x3P x4*x3P x4 unbindRate-

x4*Pi4*x4 Pi4 _bindRate+x4 Pi4*x4 Pi4_unbindRate-
x4*x3*x3 x4 bindRate+x3 x4*x3 x4 unbindRate- (d+deg) *x4+L4*x4P

d/dt (x4P) = -x4P*x3*x3 x4P bindRate+x3 x4P*x3 x4P unbindRate-

x4P*P14*x4P Pi4 bindRate+x4P Pi14*x4P Pi4_unbindRate- (d+deg) *x4P-L4*x4P

d/dt (Pi4) = +sigA*sigA Pi4 transRate-Pi4*x4P*x4P Pi4 bindRate+x4P Pi4*x4P Pi4 unbindRate-
Pid*x4*x4 Pi4 bindRate+x4 Pid4*x4 Pi4 unbindRate- (d+deg) *Pi4d

d/dt (x4P_Pid) = +x4P Pi4 bindRate*x4P*Pi4-x4P_Pi4 unbindRate*x4P_Pi4-

x4P Pi4 dephosphoRate*x4P Pid- (d+deg) *x4P Pi4d

d/dt (x4_Pid) = +x4_Pi4 bindRate*x4*Pid-

x4 Pi4 unbindRate*x4 Pi4+x4P Pi4 dephosphoRate*x4P Pi4- (d+deg)*x4 Pi4
d/dt (sigA) = 0
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