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Abstract

Tools & Strategies for Social Data Analysis
by
Wesley Jay Willett
Doctor of Philosophy in Computer Science
University of California, Berkeley

Associate Professor Maneesh Agrawala, Chair

Data analysis is often a complex, iterative process that involves a variety of stakeholders and re-
quires a range of technical and professional competencies. However, in practice, tools for visual-
izing, analyzing, and communicating insights from data have primarily been designed to support

individual users.

In the past decade a handful of research systems like sense.us and Many Eyes have begun to ex-
plore how web-based visualization tools can allow larger groups of users to participate in analy-
ses. Commercial data visualization tools such as Tableau and Spotfire have also begun to embrace
the increasingly social web with support for sharing, discussion, and embedding for wider audi-
ences. Social data analysis tools like these mark the beginning of a great sea change in the way we
think aboutdata,its impact on our lives, and the ways in which we interact with it. These systems
point towards a future in which large teams, communities, and crowds can participate in the col-
lection, discussion, and analysis of data, and benefit from it. Collaborative tools will also improve
the quality of analyses by allowing analysis teams to work together more closely—sharing ideas,
hypotheses, and findings—and allowing groups with heterogeneous expertise to bring their indi-

vidual strengths to bear to solve data-driven problems.



However, tools for collaboratively authoring, sharing, and exploring visualizations remain embry-
onic. The design space of tools for collaborative visual analysis is still largely unexplored and mod-
els for understanding the collaboration between analysts, domain experts,and novice participants
are limited. This thesis contributes a suite of systems and experiments that explore key aspects
of social data analysis and investigate how collaborative data analysis tools can support multiple

classes of stakeholders.

First, we explore the design of asynchronous tools for team-based collaboration and analysis and
examine how they can facilitate more productive collaboration. We present an interactive tool,
CommentSpace, that allows analysts to discuss visualizations and other analytic content. Using
CommentSpace, we explore how lightweight collaboration mechanisms like tagging and linking

can help collaborators organize their indings and build common ground.

The growing ubiquity of sensing and analysis tools also opens the door to a range of new non-
traditional participants in data analysis. We explore the role of social data analysis tools in citizen
science—a domain where novice community members are increasingly engaged in data collection
and have the potential to contribute to analysis as well. We examine how analysis tools can be
tailored to scaffold novice users into the process of data analysis, encouraging participation and

understanding while contributing valuable local insights.

Finally, we explore mechanisms for scaling and parallelizing data analysis, even in the absence of a
dedicated community or team of analysts. We investigate how individual analysts can crowdsource
pieces of social data analysis tasks using paid workers in order to leverage the collective effort of
many participants. We demonstrate how large groups of workers can perform cognitively complex
tasks like generating and rating hypotheses, and provide tools to help analysts manage the results

of this process.

These tools and strategies, along with our evaluations of them, highlight the potential of social
data analysis in a variety of settings with different kinds of stakeholders. Moreover, our findings

suggest leverage points for future social data analysis systems.
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Chapter 1

Introduction

There is an overwhelming amount of data all around us. Big data. Personal data. Data that only
people can explain. Data that needs to be examined, considered, and evaluated at a scale larger
than that of a single analyst, and that requires more than one individual’s expertise. Visualization
and statistical analysis tools can augment the process of data analysis and can support cognition
and problem solving [17]. However, individuals often don't have the time, knowledge, technical
expertise, or diversity of perspectives to tackle large data analysis tasks on their own. As a result,
traditional data analysis tools and tools for visual analysis must evolve to support many types of
collaborators [46].

The need to collaborate around data can emerge in many different situations. Multiple analysts
working on a dataset may need to share questions or views of the data with one another or gather
their findings for presentation. Alternatively,communities with local knowledge oravested stake
in the data may wish to engage in the analysis process. Analysts may also wish to call upon domain
experts to answer specific questions about their data. For large datasets, analysts may enlist pools

of crowd workers to perform specific analysis tasks at scale.

Despite this, current state-of-the art analysis tools remain targeted mostly at trained data ana-
lysts—individuals with statistical and analytical expertise and proficiency with analysis tools
and methods. As we enter a world where sensor data, social information, business metrics, and
a multitude of other measures and models are ubiquitous, these analysis tools and the strategies
with which they are deployed need to transform. Future tools need to support social data analysis, in

which groups of people come together to explore and make sense of data in a collaborative fashion.



Social data analysis assumes that sensemaking is not only a perceptual and cognitive activity, but
also a social one, in which group interpretation and deliberation are essential components of the
social data analysis process. As analysts collaborate, they contribute their own contextual knowl-
edge and extend the work of others [48,104,82]. Such collaboration distributes the effort required

to examine large data sets and helps analysts develop a shared interpretation of the data.

While some recent tools have begun to offer analysts the ability to collaborate around visualiza-
tions and share their work via social media, researchers have just begun to explore how this col-
laboration impacts the outcomes of analysis. As a next step, we need to understand the kinds of
activities that take place during social data analysis and design tools that improve analytic out-

comes help analysts build common ground and connect important observations.

By focusing primarily on trained analysts, existing tools have also made little effort to engage new
and novice stakeholders or explore how analysis tools can support a variety of different users. Col-
laborative sensemaking tools must support group exploration and evidence gathering tasks by
helping users build on one another’s findings and pool their efforts to collectively organize and
synthesize them. However, current tools do little to support the integration of effort from multi-
pleindividuals. Moreover, current systems do not structure the analysis process in ways that make
iteasy to take advantage of large new pools of collaborators, including novice community members

and paid crowds.

Good collaborative analysis requires utilizing collaborators in ways that effectively allocate their
abilities. Making sense of datasets requires more than just looking at them. Rather, data analysis
is a complex, iterative process in which participants must search for important features in data,
generate and test hypotheses, make inferences, and evaluate relationships between sources and
datasets [83]. As such, the next generations of analysis tools must make it easier for collaborators
to engage in the analysis process in ways that leverage their relative strengths and encourage good

analytic outcomes.

This thesis focuses on supporting and understanding the process of collaboratively analyzing data.
We explore this process through the design of a series of social data analysis systems and via experi-
ments involving a variety of different user groups. To set the stage, we revisit prior work in collabo-
rative visual analysis. Next we explore each of our core research questions by iteratively designing,
building, and testing a set of collaborative visual analysis tools. We evaluate each of these systems
via experiments and live deployments using communities and crowds and we present new tools

and strategies for social data analysis based on our experience. This work is focused around three



core research thrusts, each of which examines the design of social data analysis tools through a

different lens:

1. Providing social tools that let analysts organize findings and facilitate deeper analytic reasoning.

We first consider the design of social data analysis tools intended to support teams of ana-
lysts. We introduce CommentSpace, a collaborative system in which analysts comment on vi-
sualizations and websites. In CommentSpace, we introduce comment tags and
links—lightweight organization tools that analysts can use to organize their findings and
identify others’ contributions. We then describe experiments that explore how tag and link
structure can facilitate productive collaboration. In a pair of studies comparing
CommentSpace to a system without support for tags and links, we find that a small, fixed
vocabulary of tags (question, hypothesis, to-do) and links (evidencefor, evidence-against) helps ana-
lysts more consistently and accurately classify evidence and establish common ground. We
also find that managing and incentivizing participation is important for analysts to progress
from exploratory analysis to deeper analytical tasks. Finally, we demonstrate that tags and
links can help teams complete evidence gathering and synthesis tasks and that organizing

comments using tags and links improves analytic results.

2. Scaffolding analysis in novice communities to enable participation and cultivate local insights.

As data collection and visualization tools become more widespread, non-professional users
and novicecommunity members are also increasingly becoming involved in sensing and anal-
ysis activities. This emergent “citizen sensing” movement has the potential to engage vast
communities of novice users and tap these communities’ unique local knowledge and expe-
rience. We explore how collaboration tools can be tailored to support novice communities
and scaffold novice users into the process of data analysis. We present design principles and
a framework for data collection and knowledge generation in citizen science settings. We
also describe Common Sense Community, a community tool for analyzing air quality data. Un-
like prior systems, ours breaks analysis tasks into small, discrete applications designed to
facilitate novice contributions. These applications use novices’ interest in their own expo-
sure to air qua]ity as an entry point and provide gateways to encourage users to annotate,
inspect, and validate their community’s data. An evaluation we conducted with community
members in an area with air quality concerns indicates that these applications help partici-

pants identify relevant phenomena and generate local knowledge contributions.



3. Parallelizing analysis by using paid crowds to generate and assess explanations.

Many datasets and analyses are too large to be managed by a single analyst or even a small
team. While some dataanalysis problems have natural communities of interest who can help
make sense of data, this is often not the case. Moreover, analysts often have no easy way of
motivating large numbers of users to participate or ensuring that users make high-quality
analytic contributions. Consequently, we also investigate methods for incorporating paid
crowd workers into the process of data analysis. We propose a workflow in which an analyst
selects a set of charts and asks paid crowd workers to explain specific visual features like
outliers, trends, and patterns. We expose this information in an explanation-management
interface that allows analysts to interactively filter and sort responses, select the most plau-
sible explanations and decide which directions to explore further. Based on our experiences
deploying this workflow, we outline strategies for increasing the quality of crowdsourced re-
sults, collecting explanation provenance, and handling redundancy and validate them

through a series of experiments.

Finally, we propose additional extensions and future work not addressed in the thesis, including
possible alternate models for crowdsourcing analysis, strategies for engaging domain experts, and
supporting ad hoc analysis via social media. We also consider how future social data analysis tools

might help users move beyond analysis to support data-driven presentations and storytelling.



Chapter 2

Related Work

This thesis builds on prior work in the analysis and information visualization communities, as

well as more recent work on citizen sensing and crowdsourcing,

2.1 Sensemaking

At the core of data analysis is sensemaking—the iterative process by which we collect, parse, filter,
organize, and manipulate data to solve problems, make decisions, and communicate results [83].
Prior research offers a number of lenses through which we can analyze the process of sensemaking
and design tosupportit. Earlywork by Russel etal. [88] introduced a formal model that segmented
the process of sensemaking into a four-stage “learning loop” in which users looking at a problem or
dataset (1) search for possible representations, (2) collect data and use it to instantiate those rep-
resentations, (3) shift, merge, and otherwise adjust representations, and (4) consume the results
to process data or make decisions. The learning loop model provides a very high-level overview for
describing a variety of problem solving tasks. It also highlights steps in the sensemaking process
(data extraction, clustering results, etc.) where automated tools can make a difference for many

kinds of learning tasks.

While Russel, et al. frame sensemaking broadly, Pirolli and Card [83] refine their model from a
data analysis perspective. Based on cognitive task analyses conducted with intelligence analysts,
Pirolli and Card introduce a more nuanced sensemaking model (Figure 2.1). This model breaks the

loop into two sub-cycles—a foraging loop and a sensemaking loop, each with discrete sub-steps,
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Figure 2.1: Pirolli and Card’s sensemaking cycle for intelligence analysts (originally published in [83]).
The model breaks the sensemaking process into two sub-cycles—a foraging loop and a sensemaking
loop, each with discrete sub-steps.

and highlights specific data mining and analysis tasks like generating hypotheses and colliecting
evidence. Meanwhile, Card et al. [17] underscore the importance of visualization and interaction
to the sensemaking process. They illustrate how data visualizations can bring human perception
to bear to identify trends and outliers, filter and refine datasets to identify key elements of interest,

and engage in iterative refinement to solve data-driven problems.

Together, this prior work [83,17] emphasizes the iterative and multi-stage nature of sensemak-
ing. This work also highlights how visualization and organization tools can serve a key role at
specific stages in the sensemaking process. Historically, the sensemaking literature tended to con-
sider sensemaking largely from a single-user perspective. However, because these models break the

analysis process into discrete steps, they can help developers identify opportunities for collabora-
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Figure 2.2: A screenshot of Heer et al’s Sense.us system (originally published in [48]). Sense.us pairs an
interactive visualization of the U.S. labor force (left) with discussion tools (right). The visualization is a
stacked time-series showing the U.S. labor force, broken down by occupation and gender. The current
view shows the percentage of the workforce employed in the military.

tion and parallelization within the analysis process. Analysis steps such as generating hypotheses,
searching for evidence, and organizing content are all amenable to parallelization and can benefit

from the diverse perspectives and expertise of multiple collaborators.

2.2 Social Data Analysis

The past half-decade has seen considerable research on tools for supporting sharing and collabora-
tion using visualizations, both in academia and in the commercial sector. Heer and Agrawala [46]
survey a wide range of asynchronous collaboration tools and discuss design considerations for

these collaborative visualization tools. Our work is positioned squarely in this space.



The systems and strategies we explore build upon prior web-based tools for social data analysis
including sense.us [48], Many Eyes [111, 27] that support forum-style discussion around interac-
tive data visualizations. Both of these tools pair interactive data visualizations with integrated
commenting and discussion tools. Sense.us (Figure 2.2) focuses on providing a set of highly-
interactive visualizations of US census data paired with threaded comments that can be attached
to individual views and graphical annotation tools that let users sketch and add highlights on top
of the visualizations. Many Eyes, in contrast, focuses on providing a set of visualization templates
that users on the web can populate with their own data. These visualizations appear on the Many
Eyes site, but can also be embedded in outside web pages. The tool makes complex visualizations
like interactive bubble charts and word diagrams available to a wide audience and, over the past
five years, has allowed many thousands of users to generate and share visualizations across the
web. Both Sense.us and Many Eyes demonstrate the power and potential of web-based data analy-
siswith many participants, but theyalso highlight some of the shortcomings associated with these
tools. Integrating commenting and discussion with visualization is difficult—Many Eyes places
commenting below-the-fold where it is often missed, while comments in Sense.us are attached to
individual views and can be difficult to find or organize. Incentivizing users and getting good an-
alytic results from groups can also be difficult, since users may not have a good understanding of

the analysis process and may not engage productively with one another.

Other recent tools and frameworks for systematizing the analysis process have also included a
social component. Perer and Schneiderman’s Systematic-Yet-Flexible (SYF) framework [80] walks
analysts step-by-step through a set of guided tasks in order to analyze a dataset. In the process,
SYF users can create and share annotations that are associated with free text discussion. Eccles,
et al’s GeoTime Stories [33] pairs a geospatial and timeline visualization tool and also adds sup-
port for annotation via a shared document editor. However, the social features in these tools have
tended to be ancillary, rather than the core thrust of the system. Thus far little research has ex-
plored the tradeoffs associated with including social tools or encouraging collaboration during the

analysis process.

At the same time,a number of commercial visualization tools allow users tocomment on visualiza-
tions online, but do so in a limited way. Tableau Server [102] allows analysts to share workbooks
that include annotation layers on top of visualizations, while SpotFire Decision Site Posters [105]
support comments alongside visualization posters on the web. The past half-decade has also seen
the rise of numerous “YouTubes for Data] including Data360.org [28], Swivel.com [101], Verifi-
able.com [110], and more recently BuzzData.com [16] and Visual.ly [113]. These sites have focused



on allowing users to share and comment on simple visualizations and infographics, but many have

failed to garner significant usage and a large number of these services have subsequently folded.

These efforts serve as a testament to the widespread enthusiasm for social data analysis, but also
illustrate some of the problems it poses. While adding support for sharing or commenting to web-
based visualizations makes collaboration possible, it does not ensure that collaboration will occur
or that it will be fruitful. To produce knowledge from shared observation, we must understand
how to organize users as well as the insights they produce. We need to identify points in the sense-
making process (Figure 2.1) that can benefit from the efforts of multiple users. Moreover, we must

learn how toscaffold both individual users and broader communities into the sensemaking process.

2.3 Designing for Collaboration and Analysis

Justas theories of perception guide the design of visualizations, we look to theories of social inter-
action to guide the design of the social analysis tools around them. Our thinking about collabora-
tion and analysis behavior draws heavily on the sensemaking literature, but builds on other social
theories as well. For example, Clark and Brennan’s [22] research on common ground—the shared
understanding needed for successful communication—implies that collaborators are more effec-
tive when they can refer to a shared visual environment to ground each other’s actions and com-
ments [39]. This observation has led designers of collaborative analysis systems to support syn-
chronous view sharing [5] as well as asynchronous sharing and reference through bookmarking

and graphical annotation of visualization states [33,61].

In the context of asynchronous collaboration, work is often broken down into units that can be
completed in parallel. In such situations, collaborators need mechanisms to maintain awareness [ 18,
31] of each other’s actions and to synthesize individual contributions [6]. In collaborative visual anal-
ysis, synthesis often means integrating comments and annotations associated with particular vi-
sualization states or data subsets. To reduce the cost of integration, recent systems have provided
keyword search of collected comments and tagging of datasets with arbitrary keyword labels [48,
80,102]. Others support the creation of “topic hubs™ [111] for organizing analyses around topical
themes. These systems simplify the process of finding commentary relevant to a topic of interest.
To facilitate more consistent results, contributions may also be made more formal; tag vocabularies
can be (partially) standardized to provide a shared lexicon for important features of the comments,

e.g,, to note the presence of a hypothesis or action item [30, 44].
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A different approach is to use a shared editing (wiki) model rather than a discussion model. For
example, Pathfinder [68] provides wiki-style semi-structured “Milestones” (akin to Wikipedia’s
Template Messages [118]) to encourage collaboration. More recent extensions to Many Eyes have
also included “wikified” service that enables visualizations to be embedded in wiki text [71]. Sim-
ilarly, Eccles et al’s GeoTime Stories uses a single text story that contains links to specific visual-
ization states as a means to share analysis stories [33]. These systems integrate contributions via
shared editing and the model remains largely informal: contributions can be arbitrary in nature

and analysts perform the integration manually in the text.

Researchers have also explored highly formalized schemes for integrating analytic work. Argumen-
tation systems [44,14,81] typically model hypotheses and evidence in a network structure but pro-
vide rigid constraints on the forms of input that analysts can make. These highly-formalized mod-
els can support computational aggregation and inference. However, formalized models can also
increase “viscosity” of the system—making it more difficult to reorganize and manipulate—and

place high cognitive demand on users [9], making it more difficult to contribute.

Some systems incorporate similar schemes in a more lightweight fashion: for example, the Ana-
lyst's Sandbox [123] allows analysts to tag observations as evidence for or against a hypothesis
using direct manipulation gestures. Tree Trellis and Table Trellis [21] support aggregation and
comparison of linked free-text claims, but are intended largely for introspecting existing sets of
claims rather than supporting ongoing analysis. Evidence matrices are a similar approach moti-
vated by the theory of Alternative Competing Hypotheses [8]. Multiple hypotheses constitute the
rows of the matrix, while collected evidence constitutes the columns. Similar to argumentation
structures, the cells of the matrix are populated with scores representing the degree to which the
evidence confirms or disputes the hypothesis. Such formal systems may lead to premature com-
mitment since they can force analysts to think synthetically from the start rather than building
on exploratory analysis. In contrast, we use a more lightweight model in which analysts can cat-
egorize and connect contributions in an ad hoc fashion, supporting both information foraging

and synthesis [82].
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2.4 Citizen Science and Environmental Monitoring

While early thinking on sensemaking and social data analysis originated largely in the context of
business and intelligence analysis, a more grassroots emphasis on data collection and analysis has

recently emerged under the banner of citizen science.

Community-based environmental monitoring efforts have adeep and varied history that has been
well documented in the environmental justice literature, illustrated by numerous examples of
“backpack studies” and volunteer monitoring programs [24]. These examples have demonstrated
the effectiveness of community participation in the collection of environmental data. O’Rourke
and Macey discuss the use of “bucket brigade” sampling in which a mix of participants in different
roles coordinate to carry out observation, sampling, and analysis of refinery emissions [78]. Other
work has documented the use of community air quality sensing to identify polluters and enforce
standards for diesel bus emissions [72, 66]. This citizen-centric ethos has also begun to surface in

government monitoring programs for water qu ahty and waste [74].

Over the past few years, the intersection of the citizen sensing movement and mobile technology
has produced an abundance of new tools for distributed, citizen-led collection of environmental
data[58,87,13,99]. However, these initiatives have primarily engaged citizens in the process of data

collection, deferring data analysis scientists and domain experts.

Luther et al’s Pathfinder [68] is unique in that it integrates both collaboration and visualization
tools to support citizen science tasks. Pathfinder allows communities to share data and use a set
of wiki-based collaboration tools to pose hypotheses and discuss findings. However, the system
focuses primarily on providing tools for organizing wiki discussions and including visualizations,

and does not attempt to scaffold novice users into the analysis process.

2.5 Crowdsourcing

The rise of online labor marketplaces such as Amazon’s Mechanical Turk (www.mturk.com) also
has deep implications for data analysis. Human computation—the integration of humans into
computational processes to solve problems that computers are not yet well suited for [86]—of-
fers a new set of tools, interaction models, and incentive structures that help us to parallelize and

systematize data-driven problem solving,
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In the human-computer interaction literature, researchers have focused on the use of paid crowd-
sourcing to supplement purely computational approaches to problem solving and user testing
[86,59,37]. In the context of visualization, recent work has used crowdsourced workers to perform
graphical perception experiments on the effectiveness of charts and graphs [47,62] and to annotate
data sets for computer vision [95]. Other work has examined how to incorporate human compu-
tation into larger workflows. Soylent [7] uses paid workers to perform document editing tasks
within a word processor, using a Find-Fix-Verify pattern to break editing tasks into smaller sub-
tasks. We also take inspiration from human computation frameworks like Crowd-Forge [60], Jab-
berwocky [1], and TurKit [67] that provide general-purpose MapReduce-style programming mod-
els for leveraging crowds to perform complex tasks. We explore how these kinds of techniques can
be applied directly to help break down complex data analysis operations into microtasks so that

an analyst can enlist many workers to perform in parallel.

Thus far, the use of paid crowdsourcing for data visualization and analysis has been limited almost
exclusively to graphical perception tests [47,62], social experiments [53], and data collection [107,
94]. However, a number of online websites have recruited volunteer workers to take part in small,
“Games With A Purpose”-style [2] visual analysis tasks. Sites like NASA Clickworkers (discussed
in[6]),GalaxyZoo[38],and Stardust@Home [115] use redundant workers to annotate visual plots
of crater locations while Planet Hunters [38] and DataMarket’s “Hot or Not, for Data” [29] allow
volunteers to highlight features in time series data or mark apply a binary “Interesting/Not Inter-
esting” label to a dataset. However, none of these sites allow workers to explain the features they

have marked or engage them in deeper analysis.

More recently, researchers have begun to explore the application of distributed collaborators to
sensemaking and analysis tasks. Fisher, et al. [36] examine how distributed collaborators it-
eratively build an understanding of information by organizing their work in shared knowledge
maps. However, they focus on small groups of collaborators performing open-ended tasks thatare
less data-oriented. Other researchers have also explored “instrumenting the crowd” [89, 93] by
augmenting crowd-based tasks to track workers’ behavior and automatically assess the quality of

their work.
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Chapter 3

Structured Support for Collaborative Visual Analysis

As we design tools for social data analysis, we must consider how the systems for discussing and
communicating questions, observations, and findings support the analysis process. Prior web-
based collaborative visual analysis systems—including sense.us [48], Many Eyes [111], and De-
cisionSite Posters [105]—facilitate such collaboration by allowing analysts to link freeform text
comments and graphicannotations to specific views or states of an interactive visualization. How-
ever, these systems have primarily focused on using comments to share questions and observations
in exploratory analysis, while ignoring more complex analytical tasks such as gathering evidence,
organizing findings, weighing alternatives, and synthesizing results. They provide only basic tools
for navigating and organizing the comments, either via bookmark trails [48] or general-purpose
tags/topic hubs [102, 111]. As the number of comments grow, making sense of them can become
a daunting task. Late-joining collaborators must read through lengthy discussion streams and

manually synthesize results.

We explore how visualization tools can provide stronger support for multi-user analysis via the
design of CommentSpace (Figure 3.1), a collaborative visual analysis system that enables analysts

to annotate visualizations and apply additional kinds of structure. In CommentSpace, analysts

Portions of this chapter previously published by the author, Jeffrey Heer,
Joseph M. Hellerstein, and Maneesh Agrawala in [121].
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Figure 3.1: CommentSpace provides a threaded discussion area with search and filtering controls (a,
b) alongside an interactive visualization (c). This visualization shows data from the Billboard Hot 100
chart—the current view shows the rise and fall of all top 100 hits between 1964 and 1980 by members of
the Beatles. Color-coded bars on comments indicate tags and links (e.g. hypothesis, evidence-for, etc.).

can organize discussions by adding (1) tags that consist of descriptive text attached to comments
orviews;and (2) links thatdenote relationships between two comments or between acommentand
a specific visualization state or view. The resulting structure can help analysts navigate, organize,

and synthesize the comments, and move beyond exploration to more complex analytical tasks.

In particular, we focus on tags and links that support hypothesis generation and evidence gath-
ering—helping analysts collect and organize new evidence, identify important findings made by
others, and synthesize their collective insights. For example, an analyst may tag a comment as a
question or a to-do, indicating a point of interest or contention. Another analyst might then respond
by posting a hypothesis, towhich other analysts mightlink additional comments orviews, specifying
evidence-for or evidence-against relationships. Visualizing hypotheses and support within threaded
discussions (Figure 3.1b) can help analysts identify related comments and views and then connect
them into coherent arguments and narratives. Tags and links also make it easier to locate com-
ments that are relevant to particular analysis tasks. For instance, a new analyst might filter the

comments by the question tag to see a list of unanswered questions and check if she can contribute
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answers based on her own expertise. Analysts can also use tags and links to organize existing com-
ments and gather scattered evidence for or against a hypothesis in one location. Such structured

organization can help them weigh competing evidence and synthesize related comments.

We designed CommentSpace as a modular software component for authoring, structuring, and
navigating text comments. CommentSpace can run in conjunction with any interactive visual-
ization system or website that treats each view of the data as a discrete state. The system must
produce a vector of state parameters for each view it generates and be able to render a view from a
given state vector. Thus, the state vector serves as a bookmark for returning to a view and for link-
ing a view to comments. Using this mechanism, CommentSpace supports discussions that span a

variety of websites and visualization systems.

31 CommentSpace

CommentSpace (Figure 3.1) consists of a threaded, forum-like list of comments (a) along with
search and filtering tools (b) paired with an interactive visualization (c). The visualization pic-
tured in Figure 3.1 shows data from the Billboard Hot 100 music chart and is based on a design
from the New York Times [10]. It depicts the chart rankings of songs by various artists over time.
Viewers can observe the rise and fall of individual songs as well as long-term trends in the ranking
of artists and genres. They can interactively browse the visualization, hiding and showing artists

and filtering to highlight individual songs.

To illustrate the use of CommentSpace, we consider a scenario in which a group of analysts are

carrying out an analysis task using this visualization.

While reading through existing comments, Jessica wonders if the breakup of popular groups often
spawns successful solo careers for their members. She clicks the + comment button to open a new

comment and posts her hypothesis.

' Do breakups spawn successes?

The breakups of popular groups often spawn successful solo carrers
for thelr members.

+*
@ Add Current View | sSave || Cancel |
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She then tags the comment as a hypothesis by clicking the blue tagging menu icon on the comment.

Do breakups spawn successes?

The breakups of popular groups often spawn successful solo careers
for thelr members.
Hypothesis(1) +

— Jesses . 0412 Hypothesis ]
Hypothesis
Question
To-Do

Each tag in our vocabulary is associated with a unique color. A yellow tag marker helps analysts
visually identify Jessica’s hypothesis as they browse and indicates that the commentis a candidate
for further evidence or argument. A tally next to the marker (in this case (1)) indicates the number

of analysts who have applied the same tag to this comment.

CommentSpace also supports links thatindicate relationships between pairs of comments and be-
tween comments and views. Later, a second analyst, Jake, spots Jessicas hypothesis and, intrigued,
begins to hunt for supporting evidence. He browses the visualization and builds a view showing
the chart success of the former members of California hip-hop group N'W.A. that supports Jessicas
claim. He then replies to the original hypothesis, specifying an evidencefor relationship, and de-

scribes this new view with a comment.

Do breakups spawn successes? | The
breakups of popular groups often spawn oo e _Sep6

Here's an example

Although N.W.A. never made the charts,
Eazy-E, Ice Cube, MC Ren, and Dr. Dre all
had top 100 hits.

+

= s sasen + [E] o (RGN

His new observation is threaded into the discussion. It appears below the original hypothesis and
is labeled with a small green evidence-for link marker on its left side. Jake adds the current view,
so a thumbnail of the current visualization state appears next to the comment. Clicking on this

thumbnail loads the view into the visualization panel, allowing users to quickly return to it.
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Later, Jessica searches for additional evidence relevant to her hypothesis. Using the search controls
at the top of the comment panel (Figure 3.1a), she filters to show only those comments containing
the words “broke up”. By clicking the legend below the search box, she can refine her search further

to show, for example, only comments that are flagged as hypotheses or evidencefor.

Search "‘broke up” ‘ x
e I
All Comments Current View l Frlends Only L * ment

AN Filtering. O nly matching comments and their parents are visible. L clear filters

The Beatles and after =

After they broke up in 1970, every single one of the Beatles
T had a string of very popular solo singles. Each of them had

at lasct nna cinnla that had #1 An tha rharee . avan

Her search uncovers another observation that shows along string of hits by John, Paul, George, and
Ringo after the breakup of the Beatles (also shown in Figure 3.1). Jessica then drags this observation

to her initial comment and links it as evidence-for her original hypothesis.

Do breakups spawn successes? | The
breakups of popular M 'ps often spawn

Ko.

Sep 6

5

‘"he Beatles and after

fter they broke up In 1970, every single one of

e Beatles had a string of very popular solo
gles. Each of them had at least one single that
ched #1 on the charts - even Ringo!

+
B

CommentSpace also provides a copy-paste mechanism for linking comments that are distant from

one another or visible under different filtering conditions.

The linked comment now appears below her hypothesis in the threaded discussion. Unlike in
standard threaded discussions, such linked comments can appear in multiple places in the com-
ment tree, as the linking makes them part of multiple threads. Thus, the original hypothesis serves
as a hub for multiple discussions and observations. Other analysts may reply to it or link in addi-

tional comments and views from elsewhere. As the set of comments grows over time, Jessica can
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quickly return to her original hypothesis comment and filter to see the evidence for and against
it. Later, when the analysts begin to organize their findings and synthesize results, they can use
tags and links to organize its children into separate chains that contain only the comments that

are relevant to their result.

3.2 Tags and Links

CommentSpace introduces a general model in which analysts can tag comments and create links
between comments, between visualizations, and between comments and visualizations. Analysts
can link comments to multiple visualization states and situate them in not just one, but many
threaded discussions. For exarnple, the same comment can appear in an ongoing discussion as
well as in a collection of evidence for a particular claim. When multiple analysts apply the same
tag or link to a comment, the tags tally increases—indicating agreement on that classification

or relationship.

We focus on exploring the impact of a small, fixed vocabulary of tags and links identified through
content analyses in prior collaborative visualization systems [48, 112]. Using a breakdown of the
comment types generated in sense.us and Many Eyes as a guide, we selected a minimal set of tags
that were common, descriptive, and actionable. The set we selected is tailored towards hypothesis
generation and evidence gathering tasks and includes tags for identifying questions and hypotheses as
well as links for indicating evidence-for and evidence-against a hypothesis. We also include a to-do tag
for indicating unfinished work. Implicit reply-to links are used to maintain the threaded conversa-
tion structure and created-on relationships are generated between comments and the views they are
attached to. We used this small, fixed vocabulary because more flexible free tagging vocabularies
can take time to evolve and establish tag meanings [20,40]. A fixed, task-specific vocabulary also
limits analysts’ ability to apply tags or links whose meaning is ambiguous or generic and forces
them to articulate consistent kinds of structure. Using a fixed vocabulary allowed us to explore
the impact of tags and links on particular analysis behaviors without the added complexity of an

evolving, community-specific vocabulary.

CommentSpace supports “doubly-linked discussion” [48], whereby authors can follow links be-
tween comments and views and only the comments associated with the current view are visible.

Doubly-linked discussion can facilitate serendipitous discovery of new comments as users interact
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Figure 3.2: Using the Firefox extension, CommentSpace can facilitate discussion across the web. Here,
a discussion begins on (a) a custom Flash visualization of medal counts from the Winter Olympics and
incorporates information from (b) Wikipedia, (c) a specific view from Google Public Data Explorer, (d) a
chart from swivel.com, (e) an official Olympics webpage, and (f) a view from Google Maps. Replies are
shown as grey arrows (a—d,d—e,e—f) and evidence-for links are illustrated as green arrows (a—b,b—c).

with the visualization, but makes it more difficult for discussions to span multiple views. To ad-
dress this limitation, CommentSpace allows analysts to toggle between a doubly-linked comment
panel that shows only comments for the current view and a version that shows all comments. Un-
like in sense.us, this master commentlistis visible alongside the visualization and users can toggle
between the two comment panels using tabs directly above the panel (Figure 3.1b). This approach
encourages discussions that span multiple views and makes it easier to investigate other views
without losing track of the current thread.

3.3 Design Details

CommentSpace is implemented as an Adobe Flash application that can be embedded in web pages
containing interactive visualizations or run as an extension for the Firefox web browser. When

embedded with a set of visualizations on a site, CommentSpace provides a browser-independent
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commenting environment that can be tightly coupled with those particular visualizations. When
used as a Firefox extension, the commenting panel is accessible via a browser sidebar rather than
embedded within the page. This version supports linking to and commenting on visualizations as
well as any view of a web page with a unique URL. Thus, it enables social discussion and evidence
gathering across the web and allows collaborators to incorporate information from outside sources

in their analyses, as seen in Figure 3.2.

3.3.1 State Saving and Visualization Support

CommentSpace can be paired with any visualization thatimplements a simple interface for setting
and getting visualization state. The visualization must be able to produce a vector of state parame-
ters for each view it generates, and also render a view from any state vector it produced. These state
vectors serve as bookmarks for returning to views or for linking views to comments. Whenever
a state change occurs, the visualization must dispatch an event, notifying CommentSpace of the
change. Whenever a tag is applied to a comment or a comment is linked to a view, CommentSpace
serializes and saves a copy of the state in JavaScript Object Notation (JSON). The CommentSpace
web service stores and indexes these state vectors and passes them back to the visualization when-

ever a state needs to be reloaded.

The browser extension treats URLs as the state vector and thereby makes it possible to link com-
ments toany web page. Theextension listens for changes to the current URL (including changes af-
ter the fragment identifier,“#”) and generates a state vector incorporating the URL. This approach
is well suited for rich Internet applications like Google Public Data Explorer [43] that provide
unique URLs at every visualization state, and makes a compelling argument for designers to build
visualizations that provide stateful URLs which update dynamically when the view changes [46].
However, we also include site-specific code to extract state vectors from some useful sites like

Google Maps that can generate stateful URLs but don't automatically update the address bar.

3.3.2 Social Sharing and Filtering

As Viégas et al. [112] observed, discussions and continued interactions around visualizations on
the web are often more fruitful when they occur within existing communities. To support and
encourage analysis within existing groups, CommentSpace also provides several social sharing and

filtering tools. Users who log into CommentSpace using a Facebook account can share individual



21

Post this to your Facebook Stream along with a comment:

i These movies have high ratings on Rotten Tomatoes, ‘
but haven't made any money at all. Itd be interesting |
to drill deeper and see why they haven't been more

profitable if they’re good. I

Your comment

Aso add as a comment in CommentSoace [Z

ol Wiy e B o

Figure 3.3: Share dialog from a version of CommentSpace with Facebook integration. Copies of com-
ments posted to Facebook via this share dialog are also retained in the CommentSpace comment stream
for later analysis.

comments and visualization views via their Facebook stream (Figure 3.3) and can generate unique
URLs to share views by email or IM. They can also filter the comment graph using their Facebook

contacts, showing only comments generated by neighbors in their social network.

3.4 Evaluation

We conducted two controlled studies and a live deployment to test whether tags and links would
improve users performance on common analysis tasks. In the first study, we tested the impact
of tags and links on two specific analysis subtasks: (A) classifying comments left by others and
(B) gathering evidence using comments. We also examined usage in a live deployment to assess
commenting behavior during exploratory analysis. Finally, we conducted a smaller, qualitative
study in which analysts used CommentSpace to perform a complex, multi-stage analysis with ex-

ploration, organization, and synthesis phases.
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Figure 3.4: Versions of the interface seen in the tag (left) and no-tag (right) conditions. Users in the tag
condition gain tag filtering controls and see colored tag and link markers on comments.

In both studies we compared a version of CommentSpace with tags and links (the tag condition) to
aversion similar to sense.us [48] that provided little support for structuring discussion (the no-
tag condition). In the no-tag condition participants could author new comment threads, reply to
existing comments and perform text searches but could not author or view tags and links. In the
tag condition, participants could add hypothesis, question, and to-do tags along with evidence-for and
evidence-against links. Additionally, tag participants could search and filter the comments by their

tags and links. Figure 34 shows the commenting interfaces for the two conditions.

3.41 Study 1: Tagging and Linking in Analysis Subtasks

We first explored the effect of tags and links on two evidence gathering subtasks: (A) classifying

comments made by others and (B) authoring comments when gathering evidence.

Methods

We recruited 24 paid participants (15 female, 9 male) via mailing lists and a research participation
pool. Subjects were university students from avariety of majors. We conducted a between-subjects

study in which 12 participants used the no-tag interface, while the other 12 used the tag interface.
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Figure 3.5: Interactive visualization of occupation data used in tasks A and B. This stack graph shows the
size of the U.S. workforce since 1850, broken down by occupation and gender.

Task A: Identifying and Classifying Comments. Our first task examined how late-joining
analysts navigate existing discussions to find comments relevant to a given hypothesis. It also
tested whether the presence of tags and links helps users classify those comments more accurately.
We anticipated that tags would provide common ground, leading to more consistent categoriza-
tion of comments, and would make filtering and search more productive. Specifically, we hypoth-

esized that:

(1) Users will identify evidence relevant to a particular claim with greater accuracy when tags and

links are present.

(2) Users of a tag-enabled system will use filtering and search tools more extensively to identify

relevant evidence.

We gave participants a visualization of US. occupation data similar to the one used in sense.us
(Figure 3.5) and a corpus of 181 tagged seed comments drawn from that system [48]. The author
tagged all hypotheses, questions, or to-dos in this set and added links between each hypothesis and ev-

ery comment that provided evidence-for or evidence-against it. During the study, we asked participants
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toidentify as many comments as possible that provided evidence for or against one specific hypoth-
esis: Stereotypically male jobs have remained almost entirely male even as women have joined the work force. The
version of the seed corpus shown to participants contained 10 comments linked as evidencefor or

evidence-against this hypothesis. It also included another 12 comments linked to other hypotheses.

We gave participants 15 minutes to examine and categorize comments that provided evidence for,
provided evidence against, or were otherwise related to the claim. Since participants in the no-
tag condition could not mark comments by tagging them, we asked all participants to write the
three-digit identification number of each comment in the appropriate column of a paper work-
sheet. Subjects were not allowed to add comments, tags, or links during this task. The total num-
ber of comments was large enough that reading every comment individually in the allotted time

was difficult.

Asa baseline, three experts (the author and two research collaborators) also independently coded
the comments using the same guidelines as the participants, but with no time limit. Out of 181
comments, the experts identified 9 comments as evidence for the claim, 24 comments as evidence

againstit,and 19 comments as related but not evidence.

Task B: Gathering Evidence as Comments. We designed the second task in Study 1 to ex-
plore comment authoring in an evidence-gathering task. We instructed participants to spend 20
minutes locating views and generating comments that provided evidence for or against the claim
they investigated in Task A. We told subjects that subsequent users would see their comments
when attempting to carry out Task A, and encouraged them to organize their comments so that
later users could easily find the relevant ones. All participants began the task with the same set of

seed comments they had seen in Task A.

We hypothesized that tags would help users identify unanswered questions and other relevant
comments more easily, and that they would encourage users to organize their discussions around
those comments. Specifically, users in the tag condition would be more likely to reply to existing
threads and—in particular—more likely to reply to comments identified as hypotheses

or questions.



Within Group Agreement

Group Evidence Evidence Related Unrelated | Average
For Against Kappa
(E)xpert 0572 0.553 0400 0.839 0.590
(Tag 0273 0417 0.113 0405 0302
(N)o-tag 0.264 0.285 0.136 0.363 0.262
Between Group Agreement
Pair Evidence Evidence Related Unrelated | Average
For Against Kappa
ET 0335 0425 0.151 0444 0.339
EN 0314 0302 0.183 0412 0.303
TN 0.276 0.338 0.105 0.384 0.276

Table 3.1: Average Fleiss’s kappa values showing within- and between-group agreement for expert, tag,
and no tag groups. A kappa of O indicates no agreement, while a kappa of 1indicates perfect agreement.
Color redundantly encodes kappa values—darker colors correspond to higher agreement.

Results

ClassifyingComments. Totestour firsthypothesis,we compared thelists of comments classi-
fied by each participant in Task A. Because the dataare not normally distributed, we report median
and median absolute deviation (MAD) and we use the non-parametric Mann-Whitney U-test for
significance.  Participants classified a similar number of comments in both conditions,
(Median = 26.5,MAD = 4.5) in the tag condition and (Median = 25,MAD = 5) in no-tag and there
was no significant difference. However, participants in the tag condition categorized significantly
more (U = 32.5, p < 0.024) comments as evidence-against (Median = 15, MAD = 3) than those in

no-tag (Median = 10, MAD = 3), showing that tags and links impacted categorization.

To assess the accuracy of users’ categorizations, we compared the level of agreement between com-
ment categorizations made by our subjects and those made by the experts. We measured consis-
tency (agreement with others in the same condition) and daccuracy (agreement with the experts) by
computing average within- and between-group Fleisss kappa values based on subjects’ and ex-
perts’ categorizations (Table 3.1). In general, the experts were the most consistent, followed by

subjects in the tag and then no-tag conditions. More importantly, the tag group was more accu-
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Figure 3.6: Timing of search and filtering operations in Task 1 (in seconds since the beginning of the task).

rate—agreeing with the experts more than the no-tag group across each of the categories, with the
level of agreement on evidence-against being the most pronounced. This improvement indicates that
tags and links encourage consistent labeling and improve shared understanding of comments for

late-joining participants.

Filtering and Search  Because they had access to additional tag and link metadata relevant to
their task, we had hypothesized that participants in the tag condition would filter and search

more extensively.

The activity logs for Task A show more total search and filtering operations by participants in the
tag condition (Median = 10, MAD = 6) than the no-tag condition (Median = 4, MAD = 2), but
this difference was not significant (U = 46.5, p = 0.0749). However, participants in the tag condi-
tion were far more likely to search and filter early in the task. On average, more than half the search
and filtering operations in the tag condition came in the first four minutes of the task, while par-
ticipants in the no-tag condition took until almost the ten minute mark to complete half of their
filtering and search operations (Figure 3.6). Participants using tags searched and filtered signifi-

cantly earlier than participants in the no-tag condition (U = 2937, p < 0.0005).

This data provides a possible hypothesis for the increased level of consistency and accuracy in the
tag condition. Because subjects in the tag condition filtered and searched earlier, they were more
likely to find clearly marked pieces of evidence early on. This evidence may have helped calibrate
their categorization, making them more likely to mark pieces of evidence forand against the prompt
consistently and accurately. Meanwhile, our observations of activity traces indicate that no-tag
subjects were more likely to scroll sequentially through the list of comments, marking comments

as evidence-for even if they were only marginally related.
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Gathering Evidence In Task B, we had hypothesized that users in the tag condition would be
more likely to respond to existing threads, especially those containing hypotheses or questions.
Our results showed that participants generated similar numbers of comments in both the tag
(Median = 12, MAD = 4) and no-tag (Median = 12.5, MAD = 4) conditions, but those in the tag
condition generated significantly more replies (Median =7, MAD = 3.5) than those in no-tag
(Median =2, MAD = 1.5) (U = 32, p = 0.0226). Moreover, a chi-square test shows that par-
ticipants were significantly more likely to reply to existing discussions when tags were present
()(2(1,308) =27.45, p < 0.001), confirming our hypothesis. These results suggest that tags and
links helped tag participants identify and build upon interesting observations and encouraged

them to organize their findings.

3.4.2 Live Deployments and Exploratory Analysis

We also conducted two, one-month live deployments of CommentSpace to test its social sharing
and fltering features. During these deployments, we paired CommentSpace with ten different
interactive Flash visualizations (including those shown in Figures 3.1,3.2,3.5, and 3.7) and made
them publicly available at www.commentspace.net. While tagging and linking were available during
most of the deployment and were explained on a help page, we did not specifically instruct users

to apply tags and links during their analysis.

Over the course of deployment, the site received about 6,000 page views from over 850 unique vis-
itors. Of those visitors, 180 created an account on the site or logged in using a Facebook ID; 32 of
those users left a total of 123 comments. While the number of registered users and comments is
relatively small, the ratio of comments per user (0.68) is higher than for Many Eyes (0.31), the only
comparable social data analysis site for which statistics covering a similar time period after launch

were readily available [111].

Most of the analytic behavior reflected in these comments was exploratory. Users authored ques-
tions and made observations, but few posited hypotheses or responded to prior comments with
pieces of related evidence. The lack of evidence gathering behavior was accompanied by a low level
of tagging and linking. During our deployments, users with access to tagging and linking tools

authored only 5 tags and a single link.

Based on these experiences in the live deployment as well as earlier pilot studies, we suspect that
participants in our open-ended exploratory tasks did not have enough incentive to tag or link com-

ments. Because participants in such tasks have no specific reason to revisit their own comments or
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those of others, they have little motivation to organize or label comments during exploration. The
superficial nature of users’comments suggests that more specific tasks and incentives are required
to facilitate the transition from exploration to more complex modes of analysis. We revisit this ob-
servation in Chapter 5, where we demonstrate how analysts can use small monetary incentives to

encourage crowd workers to generate explanations and candidate hypotheses en masse.

3.4.3 Study 2: Exploration, Organization and Synthesis

Neither Study 1 nor the live deployment examined how analysts might use tags and links to syn-
thesize new findings and make decisions. In addition we found that users do not have strong in-
centives to author tags and links during open-ended exploratory analysis. Heer and Agrawala [46]
suggest that managing the division of work and providing appropriate incentives are important
considerations in designing collaborative visual analysis systems. We designed a second study to

investigate these issues.

In Study 2, teams of participants completed acomplex three-phase analysis task, consisting of adi-
rected exploration phase,an explicit organization phase in which participants were encouraged to
tag and link their comments as evidence for or against specific hypotheses, and a synthesis phase
in which they used the organized comments to make decisions and explain them in writing. We
managed each phase more explicitly and gave participants greater incentives than in Study 1 or
the live deployments. In particular, we gave participants smaller more specific tasks, especially in
the organization phase. As a form of social-psychological incentive, we explained how team mem-
bers would benefit from one another’s work and told participants that the best-written synthesis

results would receive an extra monetary reward.

Methods

We recruited 12 paid participants via campus mailing lists. We divided participants into two six-
person teams; one team worked together using the full, tag version of CommentSpace while the
other team used the no-tag version. We asked teams to carry out a series of exploration, organiza-
tion and synthesis tasks using an interactive visualization (Figure 3.7) of estimated return on in-
vestment for US college students [116]. Each team shared a comment workspace populated with

70 seed comments drawn from earlier pilot studies.
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Figure 3.7: Interactive visualization of college return on investment data used in Study 2. This view plots
universities according to their graduation rate and annualized return on investment. Color indicates public
(in-state or out-of-state) and private universities.

We paid all participants an initial fixed amount ($20) for participating in the study. In order to en-
courage participants to actively engage in the tasks, we also promised an additional, larger mone-
tary reward ($50) to the two participants who produced the best-written results (as scored judged

by a team of experts).

In the exploration phase, we instructed participants to explore the visualization and the existing
discussion, then leave comments documenting their findings. We encouraged participants to fo-
cus on two general areas of inquiry: “The relationship between graduation rate, the total cost of attendance,
and return on investment” and “The distribution of schools from each of the university systems in California.” We
gave participants 36 hours to complete the task, and we instructed each participant to leave at least

10 comments.

In the organization phase, we instructed participants in the tag condition to organize their team’s
comments. We asked subjects to organize comments by topic, tag them, and link evidence to re-

lated hypotheses. To focus the task, we provided two hypotheses as prompts: “Thereis a clear corre-
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lation between graduation rate, the total cost of attendance, and return on investment” and “There are consistent
differences in the graduation rates, tuition, and return on investment between the University of California schools,
California State schools, and private universities in California” We instructed the tag participants to add
links and tags until they were satisfied with the overall organization of the workspace. Because it
was not possible to organize content in the no-tag condition, we instead asked no-tag participants
to spend time reviewing the comments left by their team members. Members of each team carried
out the task asynchronously over a 24-hour period. During that time they were free to iterate and

build upon one another’s work.

Finally, in the synthesis phase, we asked all participants to complete a decision-making task us-
ing the visualization and the comments generated by their team. We posed two decision mak-
ing tasks based on the earlier prompts. In the first, we asked each subject to “Produce a ranking of
the top schools based on the relationship between graduation rate, the total cost of attendance, and return on invest-
ment”” In the second, we asked students to “Distribute a pool of imaginary funds amongst the public, in-state,
and out-of-state schools in California” We chose these questions to force participants to think critically
and construct an argument that built on the exploratory analysis and organization they had com-
pleted. We asked participants to provide a short (1-2 paragraph) response to each prompt and to
cite the ID numbers of each of the comments that informed their decision. Participants authored
their synthesized responses in a web form, rather than in CommentSpace itself. During this task,
participants used CommentSpace to revisit comments and views. They could also copy and paste
references to comments directly into their responses. These citations, along with post-study sur-
veys and interviews with select participants, allowed us to connect the synthesis behavior in this

phase to the exploration and organization in the earlier phases.

Results

All 12 of our recruits completed the exploration and organization tasks. Of these, ten (6 tag, 4 no-
tag) completed the synthesis task. The two remaining participants dropped out due to scheduling
conflicts. We examined all comments generated by the participants and scored them to assess their
length, quality, and relevance to topic. We removed one participant in the tag condition who pro-

duced short, incomplete comments after the task deadlines had expired.

Because of the scope and duration of Study 2, we used a smaller number of participants than in

Study 1. Due to the small sample size, most numerical results of this study do not achieve statisti-
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cal significance. Nevertheless, we believe the qualitative results and feedback from interviews are

indicative of real- world usage by teams of analysts.

Exploration. During exploratory analysis, participants in both conditions authored roughly
the minimum number of comments (Median = 10, MAD = 0). Three tag subjects applied at least
one tag, but no participants tagged heavily, and none authored links. This mirrors the results from
ourlive deployment and suggests that organization requires additional motivation. However, our
current study does not rule out the possibility that these low numbers could be the result of us-

ability issues or a cognitive mismatch between the task and the tool.

Organization. In the organization task, the five tag participants applied 84 tags and 15 links
across 00 of the 138 comments in the workspace. Tag participants added the majority of their tags
(83%) to comments authored by other users, indicating that they actively considered comments
other than their own. There was also very little disagreement when tagging. Two or more users
added identical tags to 14 comments, but no two users ever added competing tags or links to the
same comment. This result suggests that, even without explicit coordination, users can author

tags and links that organize the content without conflicting with one another.

While we also asked participants in the no-tag condition to review the comments left by other par-
ticipants during the second phase, our logs show that no-tag participants spent less time in this
phase (Median = 12 minutes, MAD = 6 minutes) than tag participants (Median = 23 minutes,

MAD = 13 minutes) and examined fewer comments.

Synthesis. We found that tag participants produced longer responses in the synthesis task
(Median = 3082 total characters, MAD = 574) than those in the no-tag condition (Median = 1480
total characters, MAD = 487). To compare the quality of the responses, three independent expert
evaluators (one of whom was an author) rank-ordered the anonymized responses from best (1) to
worst (9) based on their clarity, consistency,and use of comment citations. The average Spearman’s
rank correlation coefficient between the evaluators was 0.70, indicating good inter-rater reliability.
For each response, we averaged the rankings from all three evaluators to compute an average rank.
Comparing the average ranks of all responses, we found that tag participants ranked significantly
better (Median = 3.83, MAD = 0.5) than those in the notag group (Median = 6.17, MAD = 1) us-
ing a Mann-Whitney U test (U = 5.5, p < 0.0013). Tag participants also cited more comments in
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their responses (Median = 10, MAD = 3) than the no-tag participants (Median = 6, MAD = 1).
In addition, 79% of the comments cited by tag participants had been tagged or linked in the organi-
zation step and comments that had been tagged or linked were nearly three times more likely to be
cited than those that had not. These results mirror our post-study interviews, which suggest that
the organization task helped tag participants gain a better understanding of the findings, which

they carried over to the synthesis task.

The stronger synthesis responses authored by tag participants reflect both their use of tags and
link structures during synthesis and the increased awareness of the comments they gained in the
organization task. Tag participants spent more time in the organization task than their no-tag coun-
terparts and visited more comments and views while doing so. However, tag participants also cited
comments that had been linked together during organization, but had not previously been adja-
cent to one another, suggesting that they used the tag and link structure directly when generating

their result.

3.5 Discussion

Our studies demonstrate that tags and links can help participants identify and organize informa-
tion in a collaborative visual analysis tool. We offer a few concrete takeaways regarding the use of

tags and links for collaborative evidence gathering and synthesis tasks:

1. Analysts using tags and links were more consistent and more accurate when classifying comments. This re-
sult suggests that tags and links are useful when establishing common ground and can help
late-joining participants get up to speed in ongoing discussions. We note however, that con-
sensusamong analysts is notalways desirable and may be symptomatic of groupthink. Com-
peting and divergent interpretations are often desired, in which case tag vocabularies need

to be designed to encourage this.

2. Analysts using tags and links searched and filtered significantly earlier and classified content more accurately
than no-tag participants. Tags and links affect how analysts explore and help them calibrate
the way they categorize findings. Developers should be careful to select tags and links that

encourage desired types of contributions.
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3. Analysts were significantly more likely to reply to existing discussions when tags were present. This result
shows that tags and links encourage contribution and continued discussion and can be used

in collaborative visual analysis systems to promote more focused dialog,

4. Inourlive deployments and pilots studies, analysts did not have enough incentive to tag or link comments dur-
ing open-ended exploration. Because analysts in such tasks often have no immediate reason to
revisit their comments, they have little motivation to author additional structure, even if
that structure may be useful later. Developers and managers need to guide participation us-
ing explicit tasks and incentives in order to facilitate the shift from exploratory analysis to
deeper analytical tasks like organization and synthesis. We consider one approach to incen-
tivizing participation in Chapter 5, in which we pay paid crowd workers to perform highly-

structured hypothesis-generation and organization tasks.

5. Tagging and linking resulted in better synthesis when conducted as part of an explicit organization task than
when conducted during emergent exploratory analysis. This result suggests a staged approach to col-
laborative analysis, wherein users first explore a data set, identifying interesting patterns
and outliers, then organize those observations to facilitate deeper analysis. Such behaviors
have precedent in Wikipedia, where an entire class of contributors categorize articles writ-
ten by other editors [114]. The lightweight structure provided by tags and links makes this
staging possible.

The stronger results produced by tag participants likely reflect both their use of tags and link
structures during synthesis and the increased awareness of the comments they gained in the
organization task. In Study 2, Tag participants spent more time in both the organization and
synthesis task and visited more comments and views while doing so. In several cases, tag par-
ticipants cited comments that had been linked togetherin the organization step, but had not
previously been adjacent toone another, suggesting that they used the tagand link structure
directly when generating their result. One direction for future work is comparing the impor-
tance of authoring the structure versus referencing it. For example, would participants perform
as well if the task of organizing the data was performed by a single moderator, rather than

distributed amongst the entire team?

Finally, while we have considered a small set of tags and links tailored to hypothesis generation
and evidence gathering, other tasks may be better served by free tagging or by other custom vo-

cabularies. Tasks like clustering, for example, might benefit from tags like interesting and links like
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related-to that serve as flags or bookmarks and allow collaborators to quickly organize ideas but im-
ply less about the comments’ content or relationships between them. In very large workspaces,
tags and links like irrelevant and unrelated could allow analysts to dismiss comments and prune un-
wanted structure. These dismissal tags could also help combat groupthink and errant tagging by

providing analysts asked to curate an entire workspace with an alternate meaningful action when

no tags apply.



Chapter 4

Scaffolding Mobile Sensing and Analysis for Novices

The addition of social tools to data analysis environments allows analysts to exchange ideas and
pool their analytic effort. However, as tools for collecting and distributing data grow more
widespread, new social data analysis applications seem likely to emerge outside of traditional anal-
ysis environments and with non-traditional, potentially novice users. Due to the increased avail-
ability of sensing technologies, citizens and novice users have new opportunities to pursue the
kinds of data collection and analysis that were once handled almost exclusively by professional
scientists and analysts [26]. Leveraging this citizen engagement effectively, however, requires not
only tools for data collection but also mechanisms for understanding and utilizing citizens’“local
knowledge”—the experiential and cultural context, insights, and expertise unearthed through
collaboration between locals and experts [ 24 ]. For example, while sensing systems may be able to
detect the presence of a pollution source, local insight may be required to identify the source or

reveal populations affected by it.

However, in the domain of air quality monitoring, most mobile monitoring systems [34, 57, 79|

have tended to emphasize improving environmental awareness, or have taken creative approaches

Previously published by the author, Paul Aoki, Neil Kumar, Sushmita Subramanian, and Allison Woodruff in [119].
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Figure 4.1: A personal air quality sensor (left). Community members with sensors (right).

to presenting and collecting this data through artful visual presentation [84], provocative plat-
forms [25], and gameplay [76]. These systems have not focused on enabling direct citizen engage-

ment in the data analysis process.

Meanwhile, most tools for viewing and analyzing sensed data do not explicitly support collabo-
ration and are not designed to elicit or compile these kinds of local insights. Analysis tools are
generally not accessible to novice users, since they tend to assume a high level of technical and sci-
entific literacy. We seek to understand how interactive systems for supporting citizen science can
facilitate input from novice users and provide scaffolding that allows them to make greater local

knowledge contributions.

This research was conducted as par of the broader Common Sense project [4,32],a mobile sensing
program that aimed to deploy distributed air quality sensors in the service of practical action. The
Common Sense project served as a research testbed to explore participatory sensing, examining
issues such as the relative accuracy and resolution of community-sensed data versus data collected
in professional fixed installations. The project also focused on developing models for facilitating
engagement and cooperation between community members, citizen scientists, activists,and other

stakeholders in the air quality ecosystem.

Whereas traditional air quality monitoring organizations utilize coarse, representative measure-
ments from a relatively small network of fixed sensors, we focus instead on a mobile participatory
sensing [15] approach in which large numbers of personal, mobile sensors are deployed within

communities. This approach allows the community members impacted by poor air quality to en-
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gage in the process of locating pollution sources and exploring local variations in air quality. It
leverages citizens’ desire to understand personal exposure and knowledge of their communities

to help effect change.

4.1 Motivating Fieldwork

Before deploying our mobile sensing platform with community members, we wanted to under-
stand how those members factor into discussions about air quality and what roles they could play
in data collection, analysis, and outreach. To gauge this, we conducted a concentrated investiga-

tion of the communities we hoped to engage with.

411 Methods

Over the course of several months, we interviewed novice community members as well as scien-
tists, remediation consultants, government representatives and other stakeholders in order to un-
derstand their perspectives on air quality and assess the role that technological interventions could
play in their environmental decision-making processes [4]. This included 14 formal, in-person in-
terviews and approximately 30 informal interviews conducted either in person, by phone, or at
community meetings. In these interviews, we discussed existing practices and used prototype
sensors and interface mockups to explore people’s reactions to potential mobile sensing tools. We
recorded the formal interviews and took detailed field notes describing all of our interactions. Us-
ing these, we performed affinity clustering to identify a general set of emergent themes and design
principles. We also performed more targeted clustering to identify common user needs, tasks, and

motivations for community participation and engagement with environmental data.

41.2 Personas

Based on this fieldwork, we developed a set of personas to characterize the relevant stakeholders
and identified a set of common tasks and questions associated with each. Because the system pre-
sented here is targeted primarily at community members and novice users, we will limit our dis-
cussion to the three most relevant personas: an activist or community organizer responsible for orches-
trating actions and publicizing environmental issues, a browser who has an interestin environmen-

tal quality but is not directly involved with sensing, and a novice community member who might
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act as a data collector (Table 4.1). While we focus here on tools for these community members and
novice users, we believe it is also valuable to provide tools for (and promote dialog with) expert

stakeholders with different needs, including scientists and government regulators.

Activist/Organizer Browser Data Collector
. Likely to be interested
Specific concerns about , .
the community with an in environmental Likely to have personal
Motivation . yw and/or societal issues. Y P
emphasis on political , health issues.
Possibly concerned
change. , .
with political change.
Prove there is a problem. | Understand broader See personal, immedi-
Goals | Determine neighborhood | environmental and ate data. Modify per
exposure. Pursue societal impacts. See sonal behavior. Pursue
political change. trends. political change.
Tool for community Summaries, Glanceable summarics
Desired Tools understanding and Interactive tools for , ’
. , Alarms, Forecasting.
presentation. exploring data.

Table 4.1: Some of the key personas derived from our initial fieldwork.

41.3 Design Principles

Based on our fieldwork, we also extracted a set of design principles for developing tools to support

visual analysis of sensed data. Some of the key issues are:

Support specific, goal-directed tasks. Participants were highly goal-oriented and motivated by specific
issues such as “What is my personal exposure throughout the day?” or “What are hotspots in this

2 cc

area?”. “General” exploration did not engage them. As one interviewee put it, “You don’t want to

look at the interface and say, "What is this supposed to tell me?”

Show local and personally relevant data. Participants were most interested in data close to their homes
and other locations they frequented, rather than the aggregate regional data typically provided by
current air quality monitoring solutions. The interviews further suggest that many users may not

engage unless they aredriven by health concerns or some otherissue that personally connects them
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to the data. As one participant said, “Make the data as local as possible. People want to see their

house, their block, not a general neighborhood, not a general area”

Elicit latent explanations and expectations. Community members have local knowledge and expertise,
such as beliefs about sources of pollution in their neighborhood. However, our interviews sug-
gest thatitis often difficult for them to translate this knowledge into specific queries. While com-
munity members were good at generating high-level or vague questions (e.g. “How does the free-
way impact air quality?”), they had fewer immediate instincts about how to break these questions
down. Therefore,itis important to provide tools that help community members draw on their per-
sonal knowledge, for example by proactively prompting users with possible queries or by walking

them step-by-step through an exploration of the data.

Prompt realizations. As mentioned above, community members have significant local knowledge
thatcould be helpfulininterpreting local environmental data. Accordingly,itis valuable to present
views of the data thatare perceptually suggestive of various possible patterns, and therefore prompt
spontaneous realizations that draw on the users’local knowledge. For example, a view that aligns
readings from multiple days may prompt a user to realize that repeated spikes at a site are the re-

sultof a recurring event—for example, a delivery truck unloading,

Beware of “language” barriers. Current tools to which community members have access, such as the
EPA EnviroMapper [35], are technically complex and require a moderate level of scientific knowl-
edge (for example an understanding of pollutant concentrations in parts per million). Novice
users may benefit from scaffolding to introduce scientific language, and tools that target novice

users should not require an understanding of such language.

Avoid inundating users. Understandably, participants did not want to be overwhelmed with unnec-
essary information and complexity (particularly if the information was somewhat new to them or

was beyond their level of expertise). Therefore, staged or gradual presentation of information is

desirable.

41.4 A Framework for Knowledge Generation in Citizen Science

Drawing on our personas and design principles, we derived a framework (Figure 4.2/Table 4.2)
for describing data collection and local knowledge generation in a citizen science setting, This

framework does not just describe the existing ecosystem or citizen science applications. Rather,



40

it builds on the key findings and user needs we indentified in our fieldwork and describes opera-

tions an ideal citizen science solution might address. As such, the framework serves as a potential

blueprint for designing new citizen science tools and for assessing existing ones.

PERSONAS PHASES

Synthesize

Validate

Activist / Organizer

Infer/Predict

Browser

Question/Observe

Annotate

Novice / Data Collector

Collect

Figure 4.2: Our framework for knowledge generation in
citizen science (right). Personas (left) are shown in

their intended phases.

In this framework, we divide the pro-
cess of collecting, analyzing, and syn-
thesizing environmental data and local
insights into six phases: collect, anno-
tate, question/observe, predict/infer, validate,
and synthesize. While these phases can
build on one another, they are not nec-
essarily linear and individual partici-
pants do not necessarily participate in
all of them. Rather, each involved stake-
holder may engage in the process at a
few phases and the various members of
the community together carry out ac-
tivities atall phases. Thevarious phases
each serve different functions and can
build on one another but do not always
do so. These phases may also be it-
erative—for example, answering ques-
tions and validating predictions may

require additional data collection.

The phases detailed here dovetail with formulations of the scientific method, and some steps (ques-

tion, predict, and validate) echo the question-hypothesize-test formulations seen in the science edu-

cation literature. The collection, inference, validation, and synthesis stages in the framework also

have analogues in the sensemaking cycle (Section 2.1). Rather than describe the process of sense-

making, however, our framework outlines stages through which novice users may progress as they

engage with the process of citizen science. We developed the framework to help developers and or-

ganizers envision the stages at which various stakeholders participate in citizen science and iden-

tify leverage points for scaffolding novices into the analysis process. As a result, the framework’s

stages are more general than those in the scientific method or sensemaking cycle, and describe ac-

tivities that need not necessarily be formulated in the language of scientific discourse. Questions,
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6. Synthesize.

Participants, with professional analysts, domain experts, and regula-
tors, integrate data and knowledge generated in prior phases to pro-
duce summary documentation that can support activism, inform pol-
icy decisions, and impact regulations.

5. Validate.

Greater overlap between participants collecting data and other stake-
holders. Participants may look for additional data to corroborate their
own findings and organizers may also make requests foradditional data
or enlist the help of outside entities including domain experts and pro-
fessional analysts to help verify insights and predictions.

4. Infer/Predict.

Building on questions and observations, participants make predic-
tions and inferences about the observed phenomena (“I think values
get worse around rush hour”, “Higher counts here seem to indicate a
nesting site”). These may be less clearly articulated than in a formal
analysis, but can contain local insights. In these predictions, regard-
less of their precise formulation, lie some of the most important pieces

of local knowledge that community members can contribute.

3. Question/Observe.

Using their own data and data collected by other participants, partici-
pants can begin to ask basic questions and identify trends. These can be
introspective (“What is my personal exposure to pollutants?”, “Is there
graffiti near my home?”) or generally inquisitive (“Are there parcel by
parcel trends in the appearance of a particular bird species?”).

Participants add additional insights to contextualize and supplement

2. Annotate. | dara (e.g. when, where, and under what conditions was the data col-
lected) and provide indicators of data quality.
Participants use sensors to record raw data or observe phenomena
1. Collect.

and make manual observations. Most existing citizen science places a
strong emphasis on this collection phase.

Table 4.2: Framework phases in detail.
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predictions, and inferences generated by community members can contribute valuable insights
that inform a more formal and rigorous process of scientific analysis without necessarily being

framed as such.

Finally, while we frame this process in terms of air quality monitoring for the sake of this discus-
sion, the framework itself is applicable to a broad range of citizen science projects including other

environmental and health monitoring efforts.

Collect

In this phase, data collectors engage in various data collection activities, including using sensors
to record raw data or observing phenomena and manually recording observations (as in traditional
citizen science activities like the Christmas Bird Count [50]). Most existing citizen science places

a strong emphasis on this collect phase.

Annotate

After data has been recorded, data collectors provide additional insights that contextualize and
supplement it. Collectors can include additional information that helps explain the data; for ex-
ample, if a peak in the data corresponds to an event they observed during collection. They can also
include information about the data gathering process (when, where, and under what conditions

was the data collected) or comments about data quality.

Question/Observe

Using their own data and data collected by other participants, data collectors (as well as browsers
and activists) can begin to ask basic questions and identify trends. These questions can be in-
trospective (“What is my personal exposure to pollutants?”, “Is air quality bad at my home?”) or
generally inquisitive (“Where is air quality good and bad?”, “Are there block-by-block trends in air
quality?”). Some of these questions, including those dealing with personal exposure, can often be
answered directly using the collected data, while others are more abstract. These questions can be
implicit or explicit and may be driven by the data or by existing assumptions and expectations.
Users may also observe and note apparent trends (for example, higher levels of a pollutant at dif-

ferent times of day) or other phenomena of interest (high levels at an unexpected intersection).
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Infer/Predict

Building on these questions and observations, data collectors, browsers, and activists can begin
to make predictions and inferences about the observed phenomena (“I think values will get worse
towards this intersection”, “Higher readings here seem to indicate a source”). The observations
and inferences made by community members may be less clearly articulated than in a formal anal-
ysis, but can contain local insights. While this phase often resembles the “hypothesize” stage seen
in formulations of the scientific method, participants’ predictions and insights may not necessar-
ily be framed as clearly testable hypotheses. They may only suggest the existence of a trend or its
repeatability rather than proposing a mechanism for it. In these predictions, regardless of their
precise formulation, lie some of the most important pieces of local knowledge that community

members can contribute.

Validate

At this phase, contributions from data collectors are more likely to overlap with those of activists
and organizers. Here, data collectors, browsers, and organizers may look for additional data to cor-
roborate their own findings and organizers may also make requests for additional data. Addition-
ally, organizers may enlist the help of outside entities including domain experts and professional

analysts to help verify insights and predictions generated by collectors and browsers.

Synthesize

At the highest level, activists and organizers must integrate the data and knowledge generated
in prior phases to produce documentation, reports and other deliverables. Again, organizers may
involve domain experts and professional analysts, along with administrators and regulators, in
order to generate summary documentation that can be used to support activism, inform policy

decisions, and enforce regulations.

This framework (and particularly the annotate, question/observe, and infer/predict phases) provides a
blueprint for scaffolding novice users’ progression from initial elicitation through more involved
and integrated questions and contributions. In this chapter, we focus on applications that engage
novice users and guide them through these initial phases. We defer discussion of validation and

synthesis, which tend to utilize more specialized sets of tools for more expert users.
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4.2 The Common Sense Community Site

Building on the framework and our design principles, we designed and built the Common Sense
Community site, a suite of task-oriented applications that allow community members to partic-
ipate in the collaborative analysis of local air quality data. While the site is targeted primarily at
novice data collectors in a low-income urban area, it is also designed to be accessible to more spe-
cialized participants (browsers, organizers, scientists, administrators, and regulators) who may

engage in the analytic process at different phases.

The set of visualizations is designed specifically to facilitate the incremental progression of novice
community members through multiple phases of analysis. A person may begin by collecting data
orasking questions aboutdatacollected by other community members and progress through struc-
tured phases, triggering new kinds of insights. Over time, engaging in this process can allow novices

to become more adept contributors.

Providing a suite of simple task-oriented applications rather than a more general analysis tool has
several benefits. First, it lowers barriers to entry. Participants do not need to learn a complicated
tool in order to contribute. In turn, engaging in this process encourages legitimate peripheral par-
ticipation [64] and allows novice users and participants with little computing experience to take
part. Whereas more general analysis tools such as Excel, Tableau [102], or Matlab require greater
familiarity with formal analysis processes, these individual applications allow users toanswer spe-
cific questions and can guide them towards particular kinds of insights. Figure 4.3 shows approx-

imate mapping between our applications and the framework discussed previously.

4.21 Collecting Data

Users collect air quality data using mobile sensors designed as part of the broader Common Sense
project [32]. These sensors (Figure 4.1) are designed to be self-contained and unobtrusive moni-
toring devices that can be clipped to a bag or carried as an accessory. The units feature a custom
board design and embedded software that can be deployed with commercial carbon monoxide, ni-
trogen oxides, and ozone gas sensors. As users carry these sensors with them throughout the day,
the units transmit live sensor reading and GPS data to a database server over a GSM data network

connection. Users can also upload data from offline air quality sensors.
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Figure 4.3: Our framework for knowledge generation in citizen science with our applications (right) shown
in their intended phases.

4.2.2 Applications

To display this data, we built simple visual analysis applications (Figure 44) that target com-
mon, representative tasks and questions that we identified through our fieldwork. These applica-
tions included: monitoring personal exposure, inspecting recorded tracks, identifying locations
with poor air quality, and eliciting possible sources. These targeted applications exemplify our ap-
proach to designing for citizen science—modular, accessible applications that serve specific needs
and which together scaffold the process of local knowledge production. Users begin by selecting
an application that serves a particular need (e.g. “see my personal exposure”) from a portal site.
They then move between applications via a tabbed interface. We also provide gateways designed
to allow participants to build familiarity with simpler, more targeted tools and then transition
in a natural way to more complex tools designed to elicit different types of insights. This facili-
tates the transitions between annotation and questioning or questioning and inference we described in

our framework.
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Figure 4.4: The Common Sense Community Site showing data collected by a single user. The My Exposure
widget (a) and Tracks visualization (b) are visible along with the commenting panel (c).

In each of these applications, users can record their questions and insights by leaving comments
attached to individual views of data. Each application includes an embedded version of the Com-
mentSpace commenting panel (Figure 44c) that participants can use toannotate and discuss their
findings. To encourage deeper participation we augmented the default CommentSpace panel with
dynamic prompts designed to elicit questions and observations, along with educational prompts
designed to help scaffold novice users understanding of the domain. We describe several applica-

tions in detail below.

My Exposure

Our first application is a widget that helps users answer one of the most common questions we
observed in our fieldwork: “What is my exposure to a pollutant?” Many of the community members
we interviewed suffered from allergies or respiratory disease exacerbated by the poor air quality

in their neighborhood, and expressed a desire for tools that would help them gauge and mitigate
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their exposure. To meet this need, we developed the My Exposure widget (Figure 4.5, Figure 44a).
My Exposure shows a single aggregated measure of the pollutants measured by a participant’s sen-
sor, normalized over time to the EPA’s Air Quality Index (AQI) [73]. Because the majority of people
are not familiar with raw pollutant concentrations, all of the visualizations on the site also use the
AQI color encodings and category descriptors—"Good” (green [l ),“Moderate” (yellow  ),“Un-
healthy for Sensitive Groups™ (orange [l ), “Unhealthy” (red [l] ), “Very Unhealthy” (purple [ll),

and “Hazardous” (maroon Jl] )—in addition to providing actual values.

For community members carrying our air quahty Sensors,
eno0 this application acts as an entry point to the site and

Ll Ll O htp://commons serves an ongoing need that is likely to garner repeat vis-

its. To encourage participants who are initially only curi-

™ - ( { . .
: oD 8 ous about their exposure to further explore their data, we
Your Alr Qualty Index aver the
i placed the My Exposure view adjacent to the Tracks applica-
comment learn more
p—— tion (discussed momentarily).
®00
u "] ) http://commons
= Tracks
~ MODERATE The Tracks application (Figure 44b) provides a simple way
gl b e for novice users to observe and ask questions about pollu-
iy e y tion data from their own sensor. In this visualization, pol-

lution measurements are plotted on a map and also appear
_ in a timeline below the map view. The application behaves
Figure 4.5: Two views of the

My Exposure application. like a media player and provides a play/pause button, a play-
back speed control, and a draggable thumb on the timeline

that can be used to scrub back and forth in the dataset.

As mentioned above, in each of our applications, participants use the commenting panel (Fig-
ure 44c) to annotate and discuss their findings. This panel is collapsed by default to avoid over-
whelming the user, but expands to display intelligent prompts designed to elicit questions and
observations. For example, when a participant plays back data from their own sensor in the Tracks
application, the interface pauses briefly whenever a dramatic spike occurs in the data and actively
prompts the user to document the change. The user can choose to either enter acomment or con-
tinue playback. If no action is taken, playback resumes after a brief interval. Users can also pause

playback at any point to enter comments or questions.



48

Places

Our fieldwork indicated that users’ initial inquiries about air quality are often location-centric
(“What is air quality like in my neighborhood?”, “Are we protecting our 'treasures’, our schools,
hospitals,libraries, parks,etc.?”). To help facilitate questions and observations of this type, we pro-
vide alocation-centric Places visualization. When a user starts the visualization, they are prompted
to enter an address and a time range. The application then produces an interactive map showing
all data collected by any sensor near the specified address during those times. Whereas the Tracks
application is designed to mimic the functionality of a media player, Places is designed to feel sim-
ilar to online mapping tools like Google Maps [41]. The map can be panned and zoomed and the
data points plotted on it can be played back chronologically.

We include gateways that allow users to enter the Places view from within otherapplications. When
using another application, a user can click a “see more for this location” button to transition to the

Places view, centered on the location visible in their current application.

Hotspots

The Hotspots visualization (Figure 4.6) helps usersidentify regions with the bestand worstair qual-
ity over a period of time. The application is intended to help users answer questions about where
and when levels are high and low. It draws on the notion, frequently seen in our initial interviews,
that “worse things are exciting” and uses this to provoke insights regarding new locations and

unexpected sources.

Using a range slider, users select whether to show regions with high or low pollution levels. Read-
ings that match the specified thresholds are then plotted on a map similar to the one used in the
Places view. Users can also transition to this visualization by clicking the “see other places with

readings this high/low” gateway from within the Tracks or Places applications.

Comparisons

The Comparisons visualization (Figure 4.7) is designed to support inference and help users identify
repeated sources and relationships between them. The Comparisons visualization presents users
with a set of discrete “episodes”—short windows of time in which some notable event occurred
in the recorded air quality data. These episodes can be the largest spikes seen in an area over the

course of a period of time, or the periods of time with the highest variance.
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Figure 4.6: The Common Sense Community Hotspots visualization. Users can adjust a range slider to find
areas where readings from multiple different sensors are regularly high or low.

Two observations from our fieldwork led us to focus on identifying spikes. First, we noted that
people often wanted to “examine an event, not a timeline] seeing detailed data at the scale where
the event was apparent, rather than at the level of the entire dataset. Second, we anticipated that
by grouping together sets of episodes that would otherwise appear separately, this view would
prompt noticings and inferences that might not emerge otherwise. In the Comparisons view, these
episodes are displayed as a set of small multiples [108] alongside a map that also plots that same
data. The small multiples are linked to the map so that brushing a plot focuses that event in both

views. This allows users to compare the events spatially as well as temporally.
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Figure 4.7: The Common Sense Community Comparisons visualization. Small multiples of the timeline
(right) showing the 10 highest episodes recorded during the past day. Hovering a timeline jumps to the
portion of the map showing those readings. The commenting panel is hidden at right.

Discussions

In addition to the collapsible commenting pane that accompanies each one of the visualizations,
the site features a Discussions view—a separate instance of CommentSpace that serves as a cen-
tral location for viewing all comments and provides a forum-like interface for further discussion.
All comments and annotations left by users in the other applications are visible here as separate

threads and users can compare and build on observations and insights from multiple applications.



4.3 Evaluation

We deployed an early version of the site with community members in alow-income urban neighbor-
hood with poor air quality. There, we carried out interviews and think-aloud assessments to help
characterize participants’ use of the tools. We wanted to understand which visualizations were
perceived to be useful and approachable and assess whether this set of tools facilitated activities

at the various phases identified in our framework, such as emergent prediction and observation.

4.31 Methods

During our assessment we carried out seven interviews with nine community members. We re-
cruited participants through a local non-profit organization that focuses on environmental mon-
itoring and awareness. Five of the participants were affiliated with the non-profit and had partic-
ipated in air quality monitoring activities through the organization. Most of the participants we
surveyed were members of a small and relatively tightly knit community and the majority knew
one another in some capacity. Participant ranged in age from the mid-teens to late 40’s and had a
variety ofeducation levels, including four middle-and high-school students and some participants

without high school degrees.

We conducted all of the interviews at the office of the non-profit. We started each session with a
briefinterview designed toassess participants knowledge of airquality issues and the impactofair
quality on their community. In our discussions, we emphasized the impacts of particulate matter
and described its sources. We then gave the participants a particulate matter sensor and asked
them to take samples in a several block radius around the office. We asked participants to choose
aroute that they thought would maximize the amount of particulate matter detected. During the
sampling process, the interviewer walked with the participants and asked them to describe their
route choice and identify potential sources in the area. We used a commercial particulate matter
sensor rather than our custom hardware since particle pollution is of particular interest in the

target neighborhood.

Once they returned to the non-profit, participants used an early version of the Common Sense
Community site to examine their data as well as data gathered by other participants. We con-
ducted a one-hour think-aloud evaluation with each participant in which they were instructed
to interact with the site and verbally relate their thought processes and any questions or insights

that occurred to them. Participants used a version of the site that included the Tracks, Places, and
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Comparisons visualizations detailed above. In the Places and Comparisons views, each participant had
access to his or her own measurements as well as measurements taken by all of the previous par-
ticipants. Because users only had access to data collected by a small group of participants in short
windows over the course of a few days, we were unable to test the Hotspots visualization, which was

designed to leverage larger datasets.

We recorded each of these interviews and coded participants’ interactions with the site to assess
whetheror not they fit within our framework. We also performed clustering to extract key findings

that emerged.

4.3.2 Scaffolding and Navigation Strategies

Most participants were able to explore the visualizations and inspect the data that they had col-
lected without much confusion. The majority began by identifying their current location on the
map and followed the track they had recorded, looking for peaks either on the map or in the time-
line. Most voiced questions and observations about the data and a few made additional inferences

or predictions. We report key observations that correspond to each of the phases in our framework.

Collect. During theirinterviews,almostall of the usersidentified a nearby freeway and trucking
lots as the most likely sources of pollution and most chose routes that took them along a nearby
frontage road. The students we interviewed all observed the readouts on their sensors attentively
as they walked, looking for spikes and actively seeking out areas with higher readings. All other
participants used the sensor more passively and traversed areas that they predicted would be more

polluted without actively noting the levels there.

Annotate. Using the Tracks view, several participants observed distinct peaks and verbally as-
cribed them to events that occurred or features that they passed while they were walking (“All the
trucks [get on the highway there]”,“Thats the new construction there”). Participants also tended
to note readings taken adjacent to locations that interested them (“At least we don't have any red
marks near the park..”). In two cases, participants had observed increased particulate matter levels

on the sensor as they walked and directly attributed a peak to a particular source.
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Question/Observe. Most participants asked questions and made remarks about locations
(“Where was that again?”), data (“Was [that spike] at an intersection?”), and other participants
(“Where did she go?”,"Which person did that come from?”). Participants also asked broader ques-
tions about day-to-day and month-to-month trends. For example, one wondered whether pollu-
tion levels would change during the rainy season and another asked “Would it be different if there
was wind?” A few participants also noted locations on the map without data and contributed ad-

ditional anecdotes and pieces of information about them.

Infer/Predict. Based on the data and their initial questions and observations, several partici-
pants made inferences about the behavior of phenomena they observed. For example, one partici-
pant compared her readings with those from a participant earlier in the day and noticed that her
own were higher. She inferred that the level of particulate matter might be impacted by the change

In temperature.

Another participant investigated the data he had collected and extrapolated from it to predict air
quality readings furtheralong the frontage road saying, “Iwouldn’t doubt that it gets worse around
the bend” Talking abouta several-block radius, he also made a prediction about the health impacts
of pollutants in the area. He noted, “Just in this radius I can honestly say [...| at least half the kids
have asthma. At least half” He supplemented this prediction with a quick calculation, “Fifteen

residences per area so ... that's probably about a good 500 kids”

Validate and Synthesize. Thissetofinterviewsinvolved only novice community members and
incorporated only data collected during those participants’ sessions. As such, we did not empha-

size the validate and synthesize phases in this study.

4.3.3 Usability

Based on our fieldwork, we were mindful in our design process of the computer literacy of the tar-
get population. As one participant in our initial interviews noted, “Theres still that big digital
divide in [our city] and all poor neighborhoods?” Therefore, we were pleased that the system was
generally usable by all participants. The study did reveal a few straightforward usability issues,
which we are addressing, such as the need to make the playback controls more visible. These is-

sues did not appear to impact the results discussed below.



4.4 Discussion

Here we discuss trends and activities we observed across all of our interviews.

4.41 Health and Personal Safety

As expected, displays tailored to personal use seemed to be an effective tool for engaging users in
the process of citizen science. The mostinterested and receptive participants each had a personal or
family health concern (asthma, allergies, or some other reaction) that they attributed to air quality.
One asthmatic participant who bicycles and does not own a car expressed a desire to use the data
to vet safe cycling routes, stating, “This has brought to mind—you're gonna get exercise, but what
are you breathing in?” Participants with small children also expressed a strong desire to use the

tool on a regular basis to help minimize exposure.

4.4.2 Socializing

Although we conducted interviews separately and the sequential nature of the interviews did not
facilitate conversations or dialogues using the commenting tools, we did see social interactions
between participants when they viewed one another’s data. Several participants asked questions
like, “Which person did these come from?” and “Whose was whose?” and were eager to compare
their tracks against those recorded by previous participants. In particular, those from the same
social circle were interested in knowing which of their friends had collected data, where they had
walked, and how “well” they had done. For example, one participant located a friend’s track and
followed it for the entire length, noting each location she had visited and commenting, “She was
pretty good, [she found a few orange ones]” Comparing tracks in a competitive way was also com-
mon, particularly among the students we interviewed. One group of younger students, for exam-
ple, was excited to discover that their readings were higher than those of other participants. This
excitement suggests a competitive impulse that we might also leverage to encourage participa-

tion—possibly by introducing game-like elements to the collection and annotation processes.

During the interviews, several participants attributed their continued awareness and investment
in air quality to a particular community organizer. One participant observed, “You could say she’
our resource when things are happening. If she feels we need to know, then it’s up to us to get
involved”” These comments suggest that, at least within this community, maintaining long-term

interest and investment depends, in part, on leveraging these kinds of key community members.
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While we observed users reactions toone another’s data, the linear nature of our interviews did not
allow us to observe exchanges or evolving social use of the system. Alongitudinal study with more
users is needed to understand these social aspects of the system and to gauge the impact of larger

amounts of data and discussion on the analyses that participants undertake.

4.4.3 Exposing Preconceived Notions

A number of our participants approached the data not from an inquisitive standpoint, but rather
expecting to find validation of their expectations about air quality. We noted comments from a
number of participants that suggested implicit assumptions about areas (“On Fourth Street, that
makes sense”—referring to an area adjacent to a major freeway) and expectations about how bad
pollution levels would be (“[If you sampled this area] youd see lots of red”). One participant,
in particular, was surprised that the level of particulate matter she recorded was low, stating, 1
feel like it should be a little stronger with picking up certain particulates and fumes. I know there
should be a lot more out there because there are a lot of businesses and industrial stuff” To test
their assumption, the participant requested to take the sensor out again and collected

additional data.

In some cases these kinds of assumptions may function as implied hypotheses and predictions that
participants can immediately begin to validate and build on. However, as in the case of the latter
participant, preconceptions can sometimes generate mistrust in sensors and tools that do not re-
inforce these existing notions. Understanding how to circumvent these preconceptions and help
novices build an informed understanding of these tools remains an important area for

future work.

4.4.4 Visualizations as a Catalyst for Discussion

We also observed several participants who used the map extensively as a catalyst for discussion.
These users would point and navigate to areas with strong personal relevance including their
homes, schools,and publicareas,even when noair quality data for that particular region was present.
Oneinterviewee, in particular, used the map todiscuss pollution sources outside thezone in which
he had collected data and to make predictions about sources and impacts there. He first predicted
that there might be “really high values” in main intersections adjacent to a nearby port and ship-
ping terminal, stating, "I can only imagine [it gets worse toward the intersections.|” He then con-

tributed a number of anecdotes about locations in and around the port including spots where
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diesel trucks idle, areas where water quality has been impacted by dredging, and an isolated resi-
dential building in the industrial zone. These anecdotes were often very specific and drew on his

experience as a port worker and volunteer air monitor—for example:

“Here—definitely thisintersection—wedid some of the surveyin this arealastyear. Here, right here—this
isa fuel station. Its atruck fuel station. This iswhere all the trucks get on the freeway. All the trucks are
always right here—along [Street 1] and [ Street 2] and um, [Street 3] and [Street 2]. T know for sure,
these monitors are not going to catch moderate here. Lucky enough, nobody lives on these blocks. All

business, allindustry”

These kinds of observations are key examples of the types of local insights community members

may bring to the table and which we hope to elicit.

4.5 Additional Design Considerations

While we have explored community analysis and sensemaking in the context of air quality moni-
toring, we believe our framework is applicable across a wider range of citizen science domains. De-
pending on the nature and limitations of a particular community and domain, several additional

considerations may impact the application of our framework.

451 AQualitative vs. Quantitative data collection

In cases where the data collection occurs manually or where it is qualitative rather than quantita-
tive, participants can annotate the data as they collect it. As aresult, the collect and annotate steps
may overlap. In all cases, allowing participants to annotate data with additional contextual infor-
mation (notes, photos, or other metadata) at the time of collection can provide additional insights

that may be lost if data is annotated post-hoc.

4.5.2 Privacy and Security

Privacy and data security are serious system-level concerns in citizen sensing tasks [24] and also
affect how users access and explore community data. In some cases, the personal nature of the data

collected may make it problematic to share data among participants, making it more difficult to
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transition from observing one’s own data to asking questions and making inferences about broader
trends. For example, epidemiological monitoring in which information about participants’ med-
ical histories are collected would require further levels of anonymization or authorization. Any
activity in which participants’ location or activities are either explicitly or implicitly tracked may
also require anonymization—which may limit participants’ability to ask questions and make pre-
dictions—or require participants to agree to make their data open to the community. Similarly, if
citizen-sensed data is sensitive in nature, it may be difficult to share openly, even within the com-
munity. For example, the precise locations of vulnerable archaeological sites or endangered species
may need to be protected in order to ensure that the cultural or environmental resources being

tracked are not further disturbed.

4.5.3 Stakeholder Goals and Competing Interests

Multiple communities,and even members within the same community may have goals thatare not
compatible. For example, both hunters and recreational bird watchers may be interested in track-
ing and understanding the ranges, movements, and condition of a bird species, but the communi-
ties may be ideologically incompatible. If a clear, unambiguous community goal can be articulated,
the validation and synthesis phases can be designed explicitly to support it. Otherwise it may be
important to ensure the verifiability of collected data— particularly in the validation phase—in

light of competing interests.

4.5.4 Importance of Discussion Tools

The presence of tightly integrated discussion features in community-oriented tools is critical in or-
der for constructive community-driven knowledge generation to proceed. Persistent commenting
tools enable participants to transition between the annotate, question/observe, and predict/infer
phases while still retaining access to all prior discussions and contributions. By coupling discus-
sion to the visualizations and analysis tools (and ultimately to the raw data), a system can pro-
mote fluid discussion that is grounded in the underlying data, even as the community’s analysis

becomes increasingly abstract.
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Chapter 5

Crowdsourcing Social Data Analysis

Many datasets and analyses are simply too large to be managed easily by a single analyst or even a
small team. Automated data mining tools can find recurring patterns, outliers and other anoma-
lies in the data, and help analysts find potential points of interest in big datasets. However, only
people currently can provide the explanations, hypotheses, and insights which are necessary to un-
derstand them [83, 88]. While tools like Sense.us [48], Many Eyes [111], and CommentSpace
(Chapter 3) are designed to support large-scale analysis involving many participants, but such

analyses do not typically occur in the wild.

Outside the lab, in real-world web-based deployments, the vast majority of the visualizations in
these social data analysis tools yield very little discussion. Even fewer visualizations elicit high-
quality analytical explanations that are clear, plausible, and relevant to a particular analysis ques-
tion. To illustrate the lack of emergent analysis, we conducted a survey in April 2012 examining
the commenting behavior on visualizations in the Many Eyes site. We found that from 2006 to
2012, Many Eyes users published 294,646 data sets but generated only 128478 visualizations and
left only 17340 comments. We then randomly sampled 100 of the visualizations containing com-
ments and found that just 11% of the discussions provided a plausible hypothesis or explanation

for the data in the chart. This low rate of commenting may represent a shortage of viewers or may

Portions of this chapter previously published by the author, Jeffrey Heer, and Maneesh Agrawala in [120].
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Figure 5.1: Comments on social data analysis on sites like Many Eyes (a,b) often add little value for analysts.
We show that crowd workers can reliably produce high-quality explanations (c) that analysts can build
upon as part of their broader analyses.

be due to lurking—a common web phenomenon in which visitors explore and read discussions,
but do not contribute to them [117, 75]. When comments do appear, they are often superficial or
descriptive rather than explanatory (Figures 5.1a, 5.1b). Higher-quality analyses sometimes take
place off-site [27] but tend to occur around limited (often single-image) views of the data curated

by a single author.

Controlled studies of social data analysis systems like sense.us [48] and CommentSpace (Chapter
3) have shown that analysts and enthusiasts in more structured environments can share the pro-
cess of exploring datasets, proposing hypotheses, and seeking out new insights. However, in these
cases, eliciting high-quality explanations of a visualization required seeding the discussion with
prompts, examples, and other starting points designed to encourage high-quality contribution.
Moreover, depending on ad-hoc exploration by loosely-coupled cadre of users can give poor cover-
age of a dataset. Users may miss important views if they only flock to the most popular or easily
accessible views of the data. Ultimately, marshaling the analytic potential of crowds calls for a
more systematic approach to social data analysis—one that explicitly encourages users to gener-

ate high-quality hypotheses and explanations.

In this chapter we show how key sensemaking tasks like generating explanations can be broken
down and performed systematically by paid crowd workers. We develop an analysis workflow (Fig-
ure 5.2) in which an analyst first selects charts, then uses crowd workers to carry out analysis microtasks

and rating microtasks to generate and rate possible explanations of outliers, trends and other features
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in the data. Our approach makes it possible to quickly generate large numbers of good candidate
explanations like the one in Figure 5.1c, in which a worker gives several specific policy changes as
possible explanations for changes in Iran’s oil output. Such analytical explanations are extremely

rare in existing social data analysis systems.

Although the simplest form of the analysis microtask asks crowd workers to “Explainwhy a chartisin-
teresting” prompting users this way can result in irrelevant, unclear or speculative explanations of
variable quality. The explanation may be irrelevant to the analyst—charts often contain many in-
teresting features (e.g. peaks, valleys, steep slopes, flat regions, overall trends) thata worker could
explain, but the analyst often cares about one, specific feature. The worker may attempt to scam
the task or may not attend to the relevant visual features of the chart. The worker may not know
what views of the datalook like or what is required of a high-quality explanation. The explanation

may also be based on speculation or assumptions that are not supported by outside sources.

Select Gene.zrate
Chart Explanations and
arts Locate Sources
b
Analyst
Data :
[ Rate Explanation ]
Examine Quality
Explanations [ Identify Redundancy ]
| CheckSources |

Figure 5.2: Our workflow for crowdsourcing data analysis. In our workflow an analyst first selects charts,
then uses crowd workers to generate possible explanations for outliers, trends and other features in the
data. Other workers then rate the explanations, check their sources, and identify redundancies, before
returning results to the analyst.
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To address these concerns, we propose a set of seven strategies that address problems encountered

when eliciting responses and improve the quality of the worker-generated explanations of data.

We also focus on helping analysts make sense of the large sets of explanations generated by crowd
workers. Workers operating in parallel often produce many redundant responses that give the
same general explanation for a trend or outlier. Analysts must spend time filtering and condens-
ing these redundant responses to identify unique explanations and determine if redundant ex-
planations corroborate one another. Because individual workers have different competencies and
domain knowledge, some of the explanations they produce are more plausible—more likely to be
true—than others. Determining which explanations are plausible and which are not is often dif-
ficult, in part, because workers’ explanations often lack detailed provenance—information about
the sources used to produce the explanation. In these cases, analysts cannot determine whether a
worker’s explanation is derived from a reputable source or is merely the worker’s own speculation.
We explore a range of criteria that analysts may use to filter and organize explanations and decide
whether or not they are plausible. We then demonstrate two sets of techniques to help analysts

manage crowdsourced explanations:

(1) We explore two strategies (distributed comparison and manual clustering) that use crowd workers to
detectredundantexplanations. Using our manual clustering approach—in which multiple work-
ers cluster explanations and we select the most-representative clustering—we can reliably generate

clusterings that are as good as those produced by experts.

(2) We help analysts gauge the plausibility of explanations by exposing more detailed explanation
provenance. We record workers’ browsing behavior in an embedded web browser. We also intro-
duce highlighting tasks that allow workers to make finer-grained citations by marking paragraphs
and sentences on the web pages they cite. Additionally, we show how workers can help verify the

provenance of others’ explanations via source-checking tasks.

Finally, we provide an explanation-management interface that allows analysts to interactively ex-
plore clustered explanations and examine their provenance. Using this interface, analysts can
quickly group and filter responses, in order to determine which explanations should be

further considered.
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51 A Workflow for Crowdsourcing Data Analysis

Hypothesis (or explanation) generation is a key step of the sensemaking model (Chapter 2) and
requires human judgment. Developing good hypotheses often involves generating a diverse set of
candidate explanations based on understanding many different views of the data. When analyzing
adataset,an analyst may need to explore many different views of the dataand build an understand-
ing of them. Developing such understanding usually requires generating a diverse set of candidate
explanations and hypotheses. Our techniques allow the analyst to parallelize the work of generat-
ing explanations by dividing it into smaller microtasks and efficiently distributing these microtasks

across a large pool of workers.

We propose a four-stage workflow (Figure 5.2) for crowdsourcing data analysis. In our workflow,
an analyst first selects charts relevant to a specific question they have about the data. Crowd workers
then examine and explain these charts in analysis microtasks. Optionally, an analyst can ask other
workers to review these explanations in rating microtasks. Finally, the analyst can view the results of
the process, sorting and filtering the explanations based on workers’ ratings. The analyst may also
choose toiterate the process and add additional rounds of analysis and rating to improve the qual-

ity and diversity of explanations.

Selecting Charts

Given a dataset, an analyst first selects a set of charts for analysis. The analyst may interactively
peruse the data using a visual tool like Tableau [102] to find charts that raise questions or warrant
furtherexplanation. Alternatively, the analyst may apply datamining techniques (e.g., [ 54, 65,122])
toautomatically identify subsets of the data that require further explanation. In general, our work-

flow can work with any set of charts and is agnostic to their source.

In our experience, analysts often know a priori that they are interested in understanding specific
features of the data such as outliers, strong peaks and valleys, or steep slopes. Therefore, our im-
plementation includes R scripts that apply basic data mining techniques to find these three kinds
of features in time-series data. Given a set of time-series charts these scripts identify and rank the
series containing the largest outliers, the strongest peaks and valleys and the steepest slopes. The
analyst can then review these charts personally or post the charts directly to crowd workers to be-

gin eliciting explanations.
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Generating Explanations

For each selected chart, our system creates an analysis microtask asking for a paid crowd worker to
explain thevisual features within it. Each microtask contains asingle chartand a series of prompts
asking the worker to explain and/or annotate aspects of the chart (Figure 53). The analyst can
present each microtask to more than one worker to generate a more diverse set of responses. Pre-

senting microtasks to multiple workers costs more and may also take more time.

5.11 Rating, Clustering, and Checking Explanations

If alarge number of workers contribute explanations, the analyst may not have the time to read all
of them and may instead wish to focus on just the clearest, unique explanations, or explanations
based on the most reliable sources. In the third stage, the analyst enlists crowd workers to aid in

this sorting and filtering process.

If the quality of the explanations generated by crowd workers is inconsistent, an analyst can have
a second group of workers complete rating microtasks (Figure 54) in which they score the explana-
tions. Each rating microtask includes a single chart along with a set of explanations authored by
other workers. Workers rate explanations by assigning each a binary (0-1) relevance score based on
whether it explains the desired feature of the chart. Workers also rate the clarity and readability of
each response on a numerical (1-5) scale. We combine these ratings into a numerical quality score

(0-5) that measures how well a worker’s response explains the feature they were asked to focus on.

quality = (clarity X relevance)

Multiplying by the binary relevance score gives irrelevant responses a quality score of O, while all

relevant responses receive a 1-5 quality score based on their clarity.

Multiple workers operating in parallel often generate duplicate or overlapping explanations and
can create additional work for the analyst. We include redundancy microtasks in which we ask
workers to identify and consolidate these redundant explanations. Analysts may also need to de-
termine whether or not each explanation came from a reliable source. We include source-checking
microtasks in which crowd workers check the explanations and sources generated by others and

identify direct citations.
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This chart shows Number of Employed Workers by Year. The view is filtered by Gender to show
only "Women" and by Occupation to show only "Actor".

Show Instructions

1. What occupation(s) are shown in this chart? Actor

2. What gender(s) are shown in this chart? Women

3. Click a{ld d:’ag on the chart to highlight strong peaks and/or valleys (if any exist).
V4 | Remove Last Highlight |

h | Clear Highlights |

. Explain why the strong peak or valley highlighted in the chart might have occurred.

The peak in 1930 (A) may reflect the Golden Age of Hollywood as well as a large number of
actors in traditional theater. The valley afterward (B) may show the decreasing number of
stage actors as well as the decline of the studio system in Hollywood.

5. Provide the url of a specific web page (not just a site) that supports vour explanation.
| http://en.wikipedia.org /wiki/Cinema_of_the_United_States#Decline_of_the_studio_system

Submit

@ @06

Figure 5.3: An example analysis microtask shows a single chart (a) along with chart-reading subtasks
(b) an annotation subtask (c) and a feature-oriented explanation prompt designed to encourage workers
to focus on the chart (d). A request for outside URLs (e), encourages workers to check their facts and
consider outside information.
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Figure 5.4: An example rating microtask showing a single chart (a) along with explanations (b) from
several workers. The task contains a chart-reading subtask (c) to help focus workers’ attention on the
charts and deter scammers, along with controls for rating individual responses (d), indicating redundant
responses (e), and summarizing responses (f).
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5.1.2 Examining and Managing Explanations

Finally, once workers have generated explanations, the analyst can view the responses in an
explanation-management interface. Using the tools provided by our management environment,
analysts can filter, sort, and organize the crowd commentary and decide which explanations and
areas of the dataset to pursue further. An analyst may also choose to have workers iterate on a
task, generating either additional unique explanations or explanations that improve on the best

responses from a prior round.

5.2 Strategies for Eliciting Good Explanations

Simply asking workers to look at a chart and explain why it is interesting may not produce good
results. We consider five types of problems that can reduce the quality of these explanations and

discuss strategies (S1-S7) designed to mitigate these problems.

Note: For illustration we focus our discussion of strategies around two time series datasets (Fig-
ure 5.5); historical data on world oil production by nation from 1965-2010, and US census counts

of workers by profession from 1850-2000. We consider more datasets later in Section 5.6.

5.21 Problem 1: Irrelevant Explanations

A chart may be interesting for many reasons, but analysts are often interested in understanding
specific visual features such as outliers or overall trends. Without sufficiently detailed instruc-
tions, workers may explain aspects of the chart that are irrelevant to the analyst. For example,

workers may comment on the visual design of the chart rather than the features of the data.

SL. Use feature-oriented explanation prompts . Refining the prompt to focus on the spe-
cific features that interest the analyst increases the likelihood that workers will provide relevant
explanations. Consider the line charts in Figure 5.5. An analyst may be interested in peaks and val-
leys or steep slopes and flat regions in the oil production chart because such features indicate significant
events in the oil market. Alternatively, the analyst may be interested in longer-term tendencies of
the labor market as indicated by the overall trend of the census chart. For other charts, analysts may
be interested in more complex features such as clusters, repeating patterns, and correlations be-

tween multiple dimensions.
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Figure 5.5: Sample charts from the oil production and US census datasets used in our examples and
experiments. Depending on their interests analysts may with to focus workers’ attention on a variety of
different features of a chart, including slopes, valleys, and overall trends.

Afeature-oriented prompt might ask workers to “explain the peaks and/orvalleysin the chart (if any exist) .
A specific prompt like this can increase the chance that workers will refer to peaks and valleys in

their explanations, and also makes it easier for workers to note the absence of these features.
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5.2.2 Problem 2: Unclear Expectations

Workers may not understand what typical and atypical charts look like or what kinds of explana-
tions they are expected to produce. Similarly, they may not know how to identify specific features

like peaks or slopes.

S2. Provide good examples . To introduce users to a dataset or feature type before they begin,
analysis microtasks can include example charts showing several representative views. Similarly,
including example responses may help to establish expectations and calibrate workers to the style
and level of detail expected in their response [12]. In our implementation, analysts can generate
examples by selecting a small set of charts (typically 2-3) and performing the analysis microtask
themselves. We then package the example charts with the analyst’s responses and present them to
workers before they begin their first microtask. To reduce the amount of work an analyst needs to
do before launching a new dataset, the examples may come from datasets analyzed earlier. How-
ever, the data, chart type, and desired features should be similar to the new dataset. More interac-
tive training, in which workers complete the example tasks themselves and then compare their re-
sponses against the example responses provided by an analyst, could also be used to more strongly

communicate the style and content of a desirable response.

5.2.3 Problem 3: Speculative Explanations

Explanations of datainvariably depend on outside information not presentin the dataitself. Often

interpretations are speculative or based on assumptions from prior experience.

S3. Include reference gathering subtasks. To encourage validation, an analysis microtask
can require workers to provide references or links to corroborating information on the web (Fig-
ure 5.3e). Requiring such links may encourage workers to fact-check more speculative answers,
uncover useful resources that the analyst can use later in the analysis process. It also provides in-
formation about the provenance of the explanation that analysts can use when assessing the expla-
nation’s quality. However, asking workers to gather outside references may also increase the time
and effort associated with a microtask, and may increase worker attrition. This strategy is best-
suited to domains with public data and broad accessibility such as demographics, economics, and
campaign finance, or where clear citations are important to the analyst. However, finding refer-

ences may be more difficult in niche domains where web resources are limited.
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5.2.4 Problem 4: Inattention to Chart Detail

In an effort to increase their payment, workers may proceed quickly through the microtask with-
out thoughtfully considering the prompt. They may also attempt to scam the task by entering
junk responses. Even well-intentioned workers may not attend to the chart features specified in

the instructions.

$4. Include chartreadingsubtasks. Chartreading questions (Figure 5.3b) can focus workers
by requiring them to inspect axes, legends or series (“What country is shown in this chart?"), to extract
avalue from the chart (“Inwhatyear did the number of workers peak?”), or perform a computation based

on the chart (“"How many more workers were there in 2000 than in19002™).

Such questions force workers to familiarize themselves with thedataand can draw attention toim-
portant aspects of a particular chartlike missing data or anon-zero baseline. Additionally, because
“gold standard” answers to such chart reading questions are known a priori, we can automatically
check workers’ answers and eliminate incorrect responses that indicate spam or workers who do
not understand the instructions. Including such gold standard questions is a well known tech-
nique for improving result quality in crowdsourcing tasks [77,95]. In our case these questions also

help workers pay attention to chart details.

S5. Include annotation subtasks . Requiring workers to visually search for and mark fea-
tures in the chart can further focus their attention on those details. For example, the microtask
may ask that workers first annotate relevant features of a chart and then explain those features
(Figure 5.3¢). Such annotations encourage attention to details and support deixis [49], allowing
workers to ground their explanations by pointing directly to the features they are explaining. In
our implementation each annotation is labeled with a unique letter (“A”B”“C"....) so workers
can refer to them in their text explanations. The worker-drawn annotations are also amenable to
further computation. For example, when summarizing responses, a system could aggregate marks
from multiple workers to highlight hot spots on a particular chart, or to calculate a collective “best

guess” for the overall trend of a time series [46].

S6. Use pre-annotated charts . Alternatively, the analyst can pre-annotate visual features

in the chart (Figure 5.5) so that workers pay attention to those details. Such annotations help
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focus workers on specific chart details and also reduce irrelevant explanations (Problem 1). Al-
though pre-annotating charts greatly reduces the possibility that workers will attempt to explain
the wrong feature, creating such annotations may require the analyst to perform additional data

mining or manual annotation on the dataset.

5.2.5 Problem 5: Lack of Diversity

Multiple workers may generate similar explanations for a trend while leaving the larger space of

possible explanations unexplored.

S7. Elicit explanations iteratively. Analysis microtasks can be run in multiple, sequential
stages, in which workers see a chart along with the best explanations generated in prior stages.
The analyst may elicit more diverse explanations by asking workers to generate explanations that
are different from the earlier explanations. Alternately, the analyst can increase explanation qual-

ity by asking workers to expand and improve upon the earlier explanations.

5.3 Assessing Explanation Plausibility

Even if workers produce clear, relevant, and well-grounded explanations, it is still up to the an-
alyst to examine each one to determine if it is plausible and if she should explore it further. Be-
cause workers can generate dozens or even hundreds of candidate explanations, identifying the
most promising ones can become a time-consuming process that requires considerable effort from

the analyst.

However, we can leverage the fact that workers’ explanations are often redundant and are usually
supported by known sources on the web. Information about explanation redundancy and prove-
nance can help an analyst prioritize sets of redundant answers and quickly assess the plausibil-
ity of the possible explanations for the same phenomenon. We present a set of additional crowd-
sourcing techniques for identifying redundant explanations and providing provenance informa-

tion that can help analysts evaluate candidate explanations.

When considering explanations for trends or outliers, an analyst’s key task is to determine if each

explanation is likely to be true and decide whether it should be discarded, retained, or explored
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further. Analysts use a number of criteria to assess how plausible a candidate explanation is. We

enumerate several key criteria:

Cl: Text Clarityand Specificity. Some fraction of crowd workers typically satisfice—they per-
form the minimum amount of work to complete the task—and may generate poorly-constructed,
unspecific, or logically implausible results. By comparison, well- written explanations that appear

internally consistent can instill greater confidence in the explanations’ veracity.

C2: Explanation Frequency. Ifan explanation is proposed multiple times by different work-
ers, it may indicate that the explanation is more likely to be a good one [100]. Conversely, a lack of
redundantexplanations may signal that there are many likely answers, and the odds that the work-
ers have found the most plausible one are lower [107]. Clustering redundant explanations and in-
dicating the frequency with which each explanation occurs can help analysts make

these assessments.

C3: Explanation Provenance. Ananalystcanalsouseinformationabout the source from which
an explanation was taken, in order to help determine if it is plausible. To make this judgment, the
analyst needs to understand both where the explanation originated and how it was collected or
generated by the worker. An analyst may use provenance data to answer a number of specific ques-

tions about an explanation:

C3.1: Does the explanation cite a reputable source? If an explanation draws from a source
the analyst is familiar with, the analyst can also leverage his or her knowledge of the source to help
decide if an explanation is plausible. Citing a source that an analyst recognizes and trusts (for
example a known news organization or reference) may bolster the explanation’s credibility, while
citing an unknown or disreputable source may diminish it. Similarly, surfacing details about the
cited source and other resources used by the worker as they derived the explanation can help ana-

lysts make this assessment.
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C3.2: Does the content of the explanation come from the source or the worker? Inour
experience, workers who are not domain experts (including most workers on crowd marketplaces
like Mechanical Turk) are more adept at extracting good explanations from sources than they are
at producing explanations on their own. As a result, explanations that repeat or paraphrase facts
and inferences from a good source tend to be more credible than explanations based on facts or
inferences produced entirely by the worker. As such, an indication of whether or not the content

is copied or paraphrased directly from the source can help analysts assess plausibility more easily.

C33: Is the explanation corroborated by multiple sources? If multiple versions of the ex-
planation cite the same source, it indicates a reliance on that source. If the source is known and
trusted, this reliance can increase confidence in the explanation. Alternatively, if multiple expla-
nations cite an unknown source, it can suggest that the source is one that the analyst may wish to
consider directly. Finally, multiple versions of an explanation that cite different reputable sources

may increase confidence even further, since sources can corroborate one another [124].

5.4 Identifying Redundancy via Crowdsourcing

Grouping redundantexplanations together can keep analysts from spending time considering du-
plicate explanations and can help analysts see which explanations are frequent or corroborated by
multiple sources. However, determining whether multiple explanations are redundant is a diffi-

cult and somewhat subjective task.

The research community has produced numerous automated text similarity and topical clustering
methods [69 ]. However, automated approaches tend to rely on the assumption that similar expla-
nations will use similar language. These measures of explanation similarity can fail when expla-
nations use different terms to describe the same phenomenon (e.g,, “layoffs” instead of “downsiz-
ing”) or when the connection between two comments requires outside knowledge (e.g;, the notion
that widespread “layoffs” may be related to an “economic downturn”). Moreover workers’ expla-
nations are typically short and the total number of explanations for a single feature can be small
(sometimes less than 10 in our examples). Small text corpuses like these present a challenge for
text similarity algorithms, since word co-occurrences tend to be very sparse, making it difficult to

produce reliable clusters [96].
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In contrast to automated approaches, human workers can leverage semantic information and out-
side knowledge to cluster sets of textual explanations. However, the limits of human attention en-
sure thatindividual workers can only examine alimited number of explanations atone time. Work-
ers may also cluster explanations differently from one another, making it challenging to integrate
clusterings obtained from multiple workers. As aresult, crowd-based clustering approaches must

provide a means of distributing the clustering tasks across workers and combining their efforts.

We explore twodifferent crowdsourced approaches for clustering explanations: (1) In our distributed
comparision approach, workers compare responses two at a time and mark any pairs of responses
that give the same explanation. Our system then aggregates results from multiple workers to clus-
ter the complete set of explanations. (2) In our manual clustering approach, multiple workers con-
sider all of the responses (around 10 in our examples) and organize them into clusters. Our system

automatically selects the best clustering from amongst those produced by the workers.

5.41 Distributed Comparison

In the distributed comparison approach (Figure 56), we ask crowd workers to examine pairs of expla-
nations and indicate whether or not they are redundant . Using multiple workers, we collect at
least 5 judgments for every pair of explanations, then average the binary similarity judgments to
produce an average similarity score for the pair. To limit the impact of workers who attempt to
game the task, we include pairs of gold standard explanations with known similarity, and remove
results from workers who fail to mark them correctly. We then use these similarity scores to group

the explanations in to a fixed number of clusters using k-means clustering,

One challenge when using k-means is picking the number of target clusters, k. We chose a heuristic
for selecting k based on our own experiences clustering sets of explanations generated by workers.
We found that the median number of clusters in the sets of explanations we considered was k =
0.7 «n,wheren is the number of total explanations in the set. Because the proportion of redundant
explanations can vary from set to set and is dependent on the semantics of the data, rules of this
form arean imperfect solution. However, in our experience, our heuristic typically produces avalue
closer to the actual number of redundant clusters we observed than other common heuristics do
(Tibshirani et al. [106] provide an overview of a number of methods for selecting k). We use our

method to set k in all of our experiments that use k-means.
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Prompt: Explain why the strong peak or valley highlighted in the chart
might have occurred.

Response: " During that time the Ef paso government had a lot of
maoney going in to new projects, fort bragg was becoming the home of
several new troops and their families, 1.3 billion dollars went to
improving their roadways and school systems. "(Reference:
newspapertree.com/opinion/3561 }

Response: " The University of Texas at El Paso (UTEP) started
construction in that time period. The military base outside El Paso
continued to hire contractors to support the base for the Iraq and
Afghanistan support. And the Department of Transportation was
expanding in the area at that time. "(Reference:
http://newspapertree.com/opinion/3561 )

Do these two responses give the same general explanation for the
peaks and valleys in the chart?
(JY¥es. Both responses give the same general explanation.

()No. The responses do not give the same explanation.

5, cc
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Figure 5.6: In the distributed comparison approach, we show workers pairs of explanations for a phe-
nomenon and ask them to decide whether or not the two explanations are redundant.

While this approach decomposes clustering into small tasks that are easy for workers to perform,
it scales poorly as the number of explanations increases. Assessing redundancy for all pairs re-
quires (5) operations and the number of comparisons grows quadratically as the number of ex-
planations grows. Framing these tasks as triplet-based comparison tasks and sampling to build

crowd kernel” [103]) can reduce the number of
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total comparisons. Another solution may be to use a matrix completion approach similar to the
one proposed by Yi et al. [125] to build similarity matrices without asking workers to compare all
pairs of items. However, both of these approaches create approximations of the complete worker-
generated similarity matrix, and may produce similarity scores for some pairs that were not in-
tended by workers. As a result, we opt to build the complete similarity matrix by eliciting mul-
tiple worker comparisons for every pair of explanations. In the future, we hope to evaluate and
employ approaches like these to reduce the number of worker comparisons necessary to build the

similarity matrix.

Additionally, because workers never see all of the explanations at once, they may miss redundan-
cies that require context from other explanations in the set. For example, four responses attribut-
ing employment growth in El Paso to (A) “a new medical complex”, (B)“a new medical center at UTEP”,
(C) “construction on the university campus”, and (D) “constructions of new building on campus™ might be split
into two separate clusters if considered in isolation. If presented as a series of binary comparisons,
workers are likely to group A and B together because they both mention the medical complex, and
are likely to group C and D because they discuss university construction. However, seeing the
larger set of explanations together could give a worker the opportunity to realize that all four ex-

planations are actually attributing growth to the same hospital construction project.

5.4.2 Manual Clustering

Due to the many issues of distributed comparison, we developed a second clustering approach in
which workers examine all of the explanations forachartand group them manually. Displaying the
full set of explanations gives workers the opportunity to identify clusters (like the one described

above) that may not be obvious without additional context.

To simplify the task of specifying clusters, we created a system where workers group comments by
color-coding them. In each manual clustering task (Figure 5.7), workers see the full set of explana-
tions for a chart and can color code each explanation by clicking in the palette attached to it. When
aworker assigns the same color to multiple responses, the system moves the responses next to one
another, creating visually distinct clusters. These clusters allow workers to see their clusters as
they create them and compare similar comments side by side without having to rely as strongly on

their working memory.
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Prompt: Assign each response a color by clicking the color bar below it.

If multiple responses give the same general explanation,
assign the same color to each of them. Items with the same
color will be moved together to help you compare them.

R

Raspulﬁa R3:It is possible that employment rate grew a little due to
Rick Perrys strategies of creating jobs especially government jobs.
(Reference: www.usnews.com/...perry-created-jobs-in-texas )

_HE B NN

Figure 5.7: In the manual approach, we show workers all explanations for a chart and ask them to cre-
ate clusters by marking redundant explanations with the same color. Similarly-colored explanations are
grouped together on-screen, allowing workers to see their clusters in context.

Clustering explanations is a subjective task and the boundaries between clusters can vary depend-
ing on subtle interpretations of the explanation text. As a result, multiple workers—even well-
intentioned and well-informed ones—may produce different clusterings. Because many different
clusterings may be valid, it is difficult to identify one clustering as the most correct or to combine

the clusterings produced by multiple workers into a single clustering,
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Figure 5.8: lllustration of our algorithm to select good worker clusterings from a larger set of possible
clusterings. Workers’ manual clusterings (left) are transformed into similarity matrices (center-left) and
averaged to create an average similarity matrix (center). Individual clusterings are then compared against
the average to choose the most representative (center-right), which typically strongly resembles cluster-
ings generated by experts (right).

Todesign an algorithm for selecting the best clustering from a set, we built on several observations:

1. If multiple workers agree that a particular group of explanations should be clustered to-
gether, there is a high likelihood that that grouping indeed reflects similarities in the ex-
planations content [100]. As a result, we assume that the clusterings that are the most dis-
similar from all other clusterings for a given chart are likely to be bad, while the clusterings

that are the most similar to all the others are likely to be good.

2. Most systematic errors (e.g,, a worker satisficing by lumping all explanations into a single
cluster) can be caught by including gold-standard tests and by eliminating workers who
complete the task in less time than it would take for a fast reader to parse all of the expla-
nations. Other errors tend to be noisy (e.g., a worker satisficing by randomly clusterings

explanations) and are not usually duplicated by multiple workers.

3. Asingle workers clustering is more likely to be internally consistent and understandable to
the analyst, because it reflects a single set of judgments made in-context with one another.
Therefore, choosing a single worker’s clustering is preferable to combining results from mul-

tiple workers.

Based on these insights, we designed a procedure for extracting the most-representative clusterings

from a set of clusterings generated by multiple workers (Figure 58). The rating scheme we use is
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based purely on the correspondences between workers’ clusterings, without any a priori knowl-

edge of the content or quality of the explanations.

First, we ask a multiple workers to cluster the explanations for a chart using the manual cluster-
ing interface (Figure 58 left). We then construct a separate cluster similarity matrix for each worker’s
clustering (Figure 58 center-left). Each row and column in this matrix corresponds to one of the
explanations in the set. We initialize all elements in this matrix to O, then assign a 1 to each ele-
ment where the worker placed the explanation on the corresponding row and the explanation on

the corresponding column into the same cluster.

Next, we average together the matrices from all of the workers who clustered the set. This produces
a single average similarity matrix, which we normalize to a range of -1 to 1 (Figure 5.8 center). Positive
values in this matrix correspond to pairs of explanations that were clustered together by the ma-
jority of workers, while negative values correspond to pairs that the majority of workers did not
putin the same cluster. This matrix gives a sense which pairs of explanations are highly likely to

belong in the same cluster and which are unlikely to belong together.

Finally, we select the most-representative clustering—the clustering from a single worker that most
closely matches the average similarity matrix. We treat the positive and negative values in the av-
erage similarity matrix as rewards and penalties for a single worker’s clustering as follows. We
individually multiply each worker’s binary similarity matrix with the average similarity matrix
element-wise, and sum the values of all the elements in the product to obtain a final score (Fig-
ure 58 center-right). We retain only the clustering which produced the highest total score. The
resulting clustering groups together the most pairs of explanations in a similar way to the major-
ity of workers, and is thus the most likely to be correct. We surface only this most representative

clustering to the analyst.

5.5 Explanation Provenance

To make judgements based on source reputability, analysts need information about the websites
workers use to produce their explanations. We consider a set of techniques to help analysts make

these assessments.
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Figure 5.9: An analysis microtask (A) is paired with an proxied web browser embedded inside the task
(B). The explanation prompts in the interface (C) are linked to highlighting tools (D) that let workers cite
specific sections of source documents.

5.51 Logging Activity and Sources

In addition to the basic analysis microtasks introduced previously (Figure 5.3), we also developed
aversion with an embedded web browser (Figure 59) that provides a record of workers' browsing

activity during each task.

Recording the sites workers visit as they perform microtasks is difficult to implement in practice
because the same-origin policy [90] implemented by modern web browsers prevents code from one
internet domain from accessing web pages loaded from other domains. As a result, our microtasks
cannot monitor activity that occurs in browser windows or tabs that do not originate from our
site. This restriction would normally make it impossible to capture workers web browsing and

search activity as they complete the task.
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We circumvent the restriction by having workers browse and search for sources using a custom
web browser embedded within the analysis microtask (Figure 59B). This custom browser consists
of a set of browser controls and an IFrame that loads web pages via our own custom proxy server.
Requesting and then serving pages via our server (Figure 5.10) allows us to log each page workers

visitand track any web searches they make as they forage for sources and candidate explanations.

For technical and security reasons, we do not proxy content served using protocols other than
HTTP and do not handle third-party cookies. As a result, we cannot load content from sites that
require users to authenticate or log in. Additionally, we cannot guarantee that workers perform all
of their browsing within our proxied interface rather than in another browser window. However,
our analysis of log data suggests that most of the sites workers visit are rendered appropriately via
the proxy and that workers are active within our browser window for the majority of the time they

spend on the task.

5.5.2 Supporting Fine-Grained Citations

Typically, when a worker cites a web page to support an explanation, only a small portion of the
page (a paragraph or even a few sentences) is directly relevant to their explanation. Page-level ci-
tations can make it difficult for analysts or workers in rating microtasks to assess as source, since
they may need to examine the entire web page to find the relevant text. We support finer-grained

source citations by allowing workers to highlight specific blocks of text within pages as sources.

3

Proxy Server

+Source ?K

Highlighting v
Code
Worker Log

4P (

Embedded
Browser

Analysis
Task

Figure 5.10: In our instrumented tasks, analysis microtasks are loaded from our web server (1). When
workers look for evidence using the embedded web browser inside the task, page requests are redirected
via our proxy server (2). The proxy server requests pages from their source (3), then logs them and injects
custom highlighting code (4). Workers can then highlight text in embedded browser to have it included
directly in their explanations (5).
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We add highlighting controls to existing web pages by injecting custom code into each page as it
is delivered by our proxy server. When a worker identifies a block of text on a proxied page that
provides or supports their explanation, they can highlight the text and then click on an overlay
(Figure 59D) to mark it as a source. We save the selected text and the URL of the page along with

the explanation.

5.5.3 Detecting Copying and Paraphrasing

Understanding whether an explanation came directly from the source or the worker can be impor-
tant when assessing the plausibility of a response. In general, we know relatively little about the
domain expertise of workers recruited in a marketplace like Mechanical Turk. Therefore, our de-
fault assumption is that explanations that directly paraphrase a reputable source are likely to be
plausible and are more desirable for the analyst. When workers add their own ideas and inferences
to an explanation, we assume the explanation is less likely to be plausible, and the analyst may

wish to either disregard the explanation or check the source themselves.

While people can generally identify whether or not an explanation is derived or paraphrased from
a source, paraphrasing is difficult to detect automatically. However, these source-checking tasks

are readily amenable to crowdsourcing,

In our workflow, we use source-checking microtasks to determine whether or not explanations are
drawn directly from a source. In these microtasks, workers examine an explanation generated by
another worker, along with the source document from which they derived it,and indicate whether

the explanation “is copied or paraphrased from the cited source”.

5.6 Deployment

We have deployed our crowdsourced data analysis workflow on Amazon's Mechanical Turk and

used workers togenerate 850 explanations for 60 different charts drawn from 15 different datasets.

Our deployment included the jobs and oil production datasets described earlier, as well as data
on world development (UN food price indices, life expectancy data by nation), economics (US for-

eign debt, employment and housing indices for major US cities, return on investment data for US
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Date

% of Foreign-held US Debt held by Courtry

“UK holding of US debt has risen dramatically over the one year period of 10/2009 to 10/2010. Speculation is
that China is using UK brokers to purchase more US securities.”

url: http://www.davemanuel.com/2011/02/17/the-largest-foreign-holders-of-us-debt-in-december-were/

Figure 5.11: An example of an high-quality explanation generated by a crowd worker for a chart showing
changes in foreign holdings of US sovereign debt since 2006. Here, a worker provided a novel hypothesis
for the dramatic increase in UK holdings of US debt and cited a web site that provided further detail.

universities),and sports (team winning percentages from the NBA and MLB, historical batting av-
erages of professional baseball players, olympic medal counts by nation, and Tour de France stand-
ings). These datasets are examples of a rich class of public-interest datasets that contain valuable
insights but do not require extensive domain knowledge. As a proof-of-concept, we generated a
setof 4 or 5 charts for each dataset that exhibited a particular characteristic, such as sharp peaks,
valleys or steep slopes. In some cases we selected charts by hand, while in others we used our data-

mining scripts to automatically select the charts.

Three experts (the author, along with two other researchers with analysis experience) sampled
332 of the responses generated by workers and scored their relevance and clarity. We then gen-
erated quality scores for each explanation using the quality metric described in the Section 5.1.1.
We assigned quality >= 3.5 to 220 responses (66%), indicating that most explanations were very
good. Throughout the deployment, we found that workers consistently generated high-quality ex-
planations for all datasets and provided numerous explanations that we had not previously been

aware of.
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“Grove City College is Christian based and strives
to keep tuition rates affordable for most students.
They have a much higher graduation rate in com-
parison to other schools that offer an education
for a similar cost. This fact may be due to the fact
that the school is located in a rural community
and has a fairly small enrollment. The school is
also fairly selective with the students that they
accept, so the academic quality of the majority of
the students, in comparison to other schoals, is
much higher. "

Reference: www.stateuniversity.com/...college.htm
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“Germany has only been absent from two of the Winter Olympic games, 1924 and 1948.
They have [won]128 Gold medals which is the third highest ranking number of gold Medals.
Since Germany was not always one unit they are different from the other groups
because they have combined all of the information into one line on the graph.”

Reference: http://www.socialstudiesforkids.com/.../winter_olympics_first1.htm
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“During 2001 John Mabry played for two different baseball teams - the Cardinals and then
the Marlins. With the career move he had only 154 combined at-bats during 2001. Prior
to this he had typically 200-500 at bats. With fewer at bats he had fewer opportunities
to hit. This, combined with the drawbacks of switching teams mid-season, resulted
in a downward spike of his batting average.

Reference: http://www.baseball-almanac.com/players/player.php?p=mabryjo01

Figure 5.12: Sample explanations generated for charts showing university tuition and graduation rates (a),
olympic medal counts by country (b), and historical batting averages (c). In each case we asked workers
to provide explanations for a single outlier on a pre-annotated chart.
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For example, one worker examining the US debt dataset suggested that a large spike in British
purchases of US debt might be due to Chinese purchases through British brokers (Figure 5.11).
Other novel insights are shown in Figure 5.12. Figure 5.12a shows one of a number of outliers in a
visualization comparing cost to graduate versus graduation rate for major US universities. Work-
ers posed common hypotheses for several low-cost, high graduation rate universities (including
the one shown in the figure—noting that they had religious ties and were often subsidized and
selective. Figure 5.12b, shows how a worker identified an anomaly in the dataset behind a visual-
ization of Winter Olympics medal counts by nation. The dataset combined counts from East and
West Germany, which competed separately for much of the 20th century. Figure 5.12¢, shows one
worker'’s explanation for a valley in baseball player John Mabry’s batting average in 2001. Five dif-
ferent workers all independently attributed this prominent valley to a midseason trade in 2001
that reduced his at-bats and impacted his performance. While these kinds of detailed, analytic
responses and hypotheses are extremely rare in systems like Many Eyes, our approach is able to

reliably elicit them for a wide range of datasets.

5.7 Evaluation

We conducted a series of experiments to test our strategies for eliciting good explanations, and

evaluate our approaches for detecting redundancy and gathering explanation.

A full factorial experiment to evaluate all seven strategies for eliciting explanations would be pro-
hibitively large. Instead we evaluated the strategies as we developed them. We first tested five
initial strategies (S1-S5) together to gauge their overall impact. We then examined the more sub-
tle effects of three strategies—SI1, S2, and S5—in a factorial experiment. Based on these results,
we added three additional experiments to compare reference gathering (S3), annotation strategies
(S5and S6), and iteration (S7). We also evaluated workers performance on rating and redundancy-
detection microtasks, and tested their ability to detect copying and paraphrasing to verify expla-

nation provenance.

5.71 Experiment 1. Strategies S1-S5 in Two Worker Pools

To evaluate the cumulative impact of the first five strategies (S1-S5) we asked one pool of workers
to complete analysis microtasks that included all of them (strategies condition) while a second pool

completed the same microtasks but without the strategies (no-strategies condition).
p g g
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Non-US workers represent a large portion of the workers on Mechanical Turk [55] and can often
provide results more quickly and cheaply than US-based workers, but studies of Mechanical Turk
have shown that workers from outside the United States exhibit poorer performance on content
analysis [92] and labeling tasks [19]. We designed this experiment to determine if a similar per-
formance gap exists for data analysis tasks and whether our strategies could improve results from

these workers.

We hypothesized that (1) results from USworkers would be of higher quality than results from non-
USworkers, but (2) employing strategies S1-S5 would increase the quality of explanations produced
by workers in both groups.

Methods

Over the course of the first experiment, we ran 200 analysis microtasks using Mechanical Turk.

We divided these microtasks into 8 experimental conditions:

2 strategy variants X 2worker pools X 2datasets = 8

The microtask in the no-strategies condition asked workers to “explain why any interesting sections
of chart might have occurred”. In the strategies condition, the microtask (Figure 5.3) included a
feature-oriented prompt (S1) asking workers to “explain why any strong peaks and/or valleys
in the chart might have occurred”. The microtask was preceded by instructions thatincluded three
example charts (S2) with annotations and explanations. The strategies condition also included a
reference-gathering subtask (S3) that required workers to provide the URL of a website that
corroborated their explanation. To help safeguard against scammers, we included chart-reading
(S4) subtasks in both conditions. We also included an annotation subtask (S5) that instructed
workers to highlight the peaks and valleys they explained. We also asked workers to fill out a de-

mographic questionnaire.

We used both the oil production and US census datasets and selected five charts from each dataset
with the largest variance. All of the resulting charts exhibited a range of features including peaks,

valleys, slopes, and large-scale trends.
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We collected five explanations for each of the charts. We also restricted each worker to a single con-
dition (either strategies or no-strategies) and allowed workers to explain each chart only once, for a
maximum of 10 responses per worker. We paid workers $0.05 per microtask during some early tri-
als, but later increased the pay rate to $0.20 per microtask to reduce completion time. We based
these rates on prior studies [47, 70| which have shown that while pay rate impacts completion

time, it has little impact on response quality.

Results

Over the course of the experiment, 104 different workers produced responses for the 200 micro-
tasks. Toassess how well workers performed the tasks, three experts (including the author) scored
each response and assigned it a quality score (as described in Section 5.1.1). The experts also an-
alyzed the content of the responses, labeling each one as either an “explanation” if it explained the
chartfeaturesora “description”ifit simply described the features. Finally, the expertslabeled whether

ornoteach responsereferred to “peaksorvalleys”, steepslopesor flatregions”, or an “overall trend” in the data.

We observed no significant difference in response quality, completion time, or length between the
census and oil productions datasets in either worker population, indicating that producing ex-
planations was of similar difficulty across both datasets. Thus, we combine the results from both

datasets in all subsequent analyses.

WorkerPools. We found that worker pool had a significant main effecton quality (Fj 198 = 12.2,
p < 0.01). Response quality scores assigned by the experts were higher for US workers (u = 2.23,
o = 1.79) than for non-US workers (1 = 1.37, 6 = 1.87) (Figure 5.13), confirming our first hy-
pothesis. Quality scores for US workers were higher, in part, because 83% of US responses con-
tained relevant explanations, while only 42% of responses from non-US workers did so (per Sec-
tion 5.1.1,irrelevantexplanations receive aquality score of 0). Non-USworkers frequently described
the chart (34% of responses) rather than explaining it, or produced responses that were so poorly
written we could notclassify them,and (24% of responses). The poor performance of non-USwork-
ers may reflect their lack of familiarity with the datasets as well as a language barrier. In our de-
mographic questionnaire, only 35% of non-US workers in the census conditions could accurately
describe the US census, versus 100% of US workers. Less than 20% of non-US workers reported

English as their native language, versus 95% of US workers.
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Figure 5.13: Percent of responses containing an explanation(top) and average explanation qual-
ity(bottom), by worker group (US / non-US workers) and strategy condition (strategies / no-strategies)
in Experiment 1. Error bars give 95% confidence intervals.

We also found that across both the US and non-US groups, workers in the strategies condition pro-
duced higher quality responses (4 =2.27, 6 =2.00) than those in the no-strategies condition
(u=133,0=1.62) (F 198 = 14.5, p < 0.01), confirming our second hypothesis. However, the
improvement in average quality of responses for non-US workers (196%)was much larger than for
US workers (28%).

These results suggest that using strategies S1-S5 makes a bigger difference when workers are cul-

turally unfamiliar with the task and/or dataset.

Referencing Chart Features. The introduction of strategies S1-S5 greatly increased workers’
attention to peaks and valleys in the data. Workers in the strategies condition, which included a
feature-oriented “peaks andvalleys” prompt (S1) along with examples (S2) and annotation subtasks
(S5) thatreinforced the prompt, referred to peaks and valleys very consistently (90% of US and 68%
of non-US responses). Workers in the no-strategies condition, however, referenced very few of these
features (16% of US and 6% of non-US responses). The no-strategies workers often referred to overall

trends or slopes in the data or failed to provide an explanation atall.
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Completion Times and Attrition. Across both pools, workers took significantly longer to
complete each microtask in the strategies condition (Median=4 minutes 11 seconds) than theydid in
the no-strategies condition (Median=2 minutes 48 seconds) (1 = —3.668, p < 0.01). We computed
attrition as the percentage of participants who began a microtask but quit without completing it
and found an attrition rate of 66% for workers in the strategies condition. Attrition was less than
24% in the no-strategies condition. These results suggest that workers are less willing to complete

analysis microtasks that include additional subtasks like chart reading and reference gathering.

Because non-US workers generated such low quality explanations, we used only US workers in our
subsequent experiments. Also, because we saw similar results in Experiment 1 across both the oil

production and US census datasets, we used only the census dataset in Experiments 2-5.

5.7.2 Experiment 2: Exploring Individual Strategies

Ourexperiencein Experiment1led us to believe that three strategies, feature-oriented prompts
(S1), examples (S2), and annotation subtasks (S5), had the greatest impact on response qual-
ity. To better understand the effect of these strategies, we conducted a factorial experiment that

varied each independently. We hypothesized that:

(1) Feature-oriented explanation prompts (S1) would improve quality by increasing the propor-

tion of responses that explained the specified feature.

(2) Examples (S2) would improve quality, especially when paired with a feature-oriented promprt,
by familiarizing workers with the prompt and chart type as well as the expected length, style, and

content of good responses.

(3) Annotation subtasks (S5) would encourage workers to refer to specific points in the chart and

improve quality by increasing the number of responses that explained prompted features.

Methods

In Experiment 2, we ran 160 explanation microtasks divided into 16 conditions:

4 prompts X 2 examples variants X 2 annotation variants = 16
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Figure 5.14: Percent increase in the number of references to the prompted feature (left) and the average
explanation quality score(right) for each feature-oriented prompt (S1) condition in Experiment 2 over the
control condition.

Our 4 promptsincluded three feature-oriented prompts (S1) prompt-slopes, prompt-trend, and prompt-
peaks, and one control prompt, prompt-control. In the prompt-slopes conditions, we asked workers to
“explain why any sharp slopes and/or flat regions in the chart might have occurred”, while in the
prompt-trend conditions we asked workers to “explain why the overall trend in the chart might have
occurred”. The prompt-peaks and prompt-control conditions used the same prompts as the strategies

and no-strategies conditions from Experiment 1, respectively.

To test the examples strategy (S2), we included an examples condition that showed workers three
examples of high-quality explanations and a no-examples conditions that provided only short text
instructions. To test annotation subtasks (S5), we included a worker-annotation condition that re-
quired workers to mark features in the charts and a no-annotation condition that did not. For con-
sistency with Experiment 1, we included reference-gathering subtasks (S3) and chart-reading sub-
tasks (S4) in all conditions.

Results

Prompts. Including afeature-oriented prompt (S1) increased the percentage of responses that
referred to that feature by between 60% and 250% compared to the control condition, depending
on the feature (Figure 5.14). Workers in the prompt-peaks (x> = 8.455), promptslopes (x? = 5.952),
and prompt-trend (% = 37.746) were all significantly more likely (all p < 0.02) to explain their
prompted feature than workers in prompt-control. Similarly, including prompts increased response
quality by between 69% and 236% compared to the prompt-control. This increase was significant for
workers in prompt-trend (U = 372.0, p < 0.001) and prompt-peaks (U = 564.5, p = 0.008), confirm-
ing our hypothesis for those two conditions. The increase in prompt-slopes (U = 624.5, p = .064)



90

Prompt-Trend Examples _ 2??5
MNo-Examples _2351]
Prompt-Peaks Examples _ 2.350
Mo-Examples _ 1.350
Prompt-Slopes Examples — 2.000
Mo-Examples — 1.800
Prompt-Control  Examples _ 2500
No-Examples _ztzﬁ 5

0 1 2 3 4 5
Aggregate Quality

Figure 5.15: Average response quality by prompts (prompt-trend, prompt-peaks, prompt-slopes, or
prompt-control) and examples (examples, no-examples). Error bars show 95% confidence intervals.

was not quite significant, probably because prompt-control workers were already more likely to

explain slopes.

Providing Examples. Workers in the examples conditions produced higher quality responses
(4 =2.41,0 = 1.78) than workers in the no-examples conditions (u = 1.91,6 = 1.77) (Figure 5.15),
but the difference in quality was not significant (U = 2717.5, p = 0.09). Anecdotally, we ob-
served that providing examples improved the consistency with which workers marked and an-
notated charts. Workers in the worker-annotation condition who saw examples of high-quality re-
sponses with annotated features, emulated those examples (Figures 5.1c and 54), usually mark-
ing a few clear peaks, slopes, or trends. Workers who did not see such examples created annota-
tions that were more difficult to interpret and often annotated a larger number of features than

they explained.

Annotation. In the worker-annotation condition, workers annotated chart features that were rel-
evant to the prompt in 60 of the 80 trials. Most workers added either one or two annotations to
the chart as they completed the microtask, but a few added as many as eight. Workers who re-
ceived a feature-oriented prompt as well as an annotation subtask referred to the feature specified
in their prompt more frequently (S1 and S3: 85%) than workers who received a feature-oriented
prompt without an annotation subtask (SI only: 72%), but the difference was not quite signifi-

cant (y? = 3.142, p = 0.076). Many worker-annotation workers also referred to their annotations
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by letter in their responses, providing deictic references to features. Neither the average time to
complete the explanation microtask nor the attrition rate were significantly different between the

worker-annotation and no-annotation conditions.

Reference-Gathering. In Experiment 2, we asked workers in all 16 conditions to gather refer-
ences from the web to support their responses. Out of the 160 responses, 151 included valid URLs,
of which 137 were unique. We assigned each reference a quality score from 1-5 based on how well
it supported the explanation. Workers in the examples condition generated higher quality URLs
(u =2.73,06 = 0.96) than those in the no-examples case (U = 2.4, 6 = 1.0) but these differences
were not significant (U = 3018, p = 0.08).

5.7.3 Experiment 3: Reference Gathering

Based on results from Experiments 1 and 2, we hypothesized that including reference gathering
(S3) would increase response quality. However we also hypothesized that the additional effort
required to complete reference gathering tasks would contribute to high attrition. To test these
hypotheses, we ran an additional experiment with 50 trials split between two conditions. The
gathering condition was identical to the strategies condition in Experiment 1, while the no-gathering

condition omitted the reference gathering subtask but was otherwise identical.

Results

The 25 responses in the gathering condition produced 20 unique URLs and URL quality was simi-
lar to Experiment 2 (u = 2.67, 6 = 1.02). Surprisingly, however, the no-gathering condition pro-
duced significantly higher-quality explanations (u = 3.38, 6 = 1.55) than the gathering condi-
tion (u = 2.22, 06 = 1.94) (U = 211.5, p = 0.046). The attrition rate was lower (46%) in the
no-gathering than in the gathering condition (64%) but the difference was not significant ( x> =2.209,
p = 0.137). Finally, we observed that the median completion time for no-gathering microtasks was
only 2 minutes 36 seconds, significantly faster than the 3 minutes 45 second median for gathering
tasks (U = 175.5, p = 0.008). Together, these results suggest that while reference gathering tasks
produce useful references, they do so at the cost of speed and quality. As a result, more passive

techniques for assessing provenance like those discussed in Section 5.5, may be preferable.
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574 Experiment 4: Annotation Strategies

In our first two experiments, we found that annotation subtasks (S5) helped workers focus
on chart features and facilitated deixis. In some cases, however, the analyst may wish to pre-
annotate charts (S6) to focus workers’ attention on specific features. To compare the trade-
offs between these two strategies, we conducted another study with 50 trials split between two
conditions—worker-annotation, in which we asked workers to mark the prompted feature before
they explained it, and pre-annotation, in which the feature was pre-marked. We hypothesized that
workers in the pre-annotation condition would generate more responses that explained the

prompted feature than those in the worker-annotation condition.

Results

We found no significant differences between the worker-annotation and pre-annotation conditions.
However the number of responses that explained the prompted feature (“peaks and valleys™) was
high in both the pre-annotation (88%) and worker-annotation (96%) cases. In 84% of the trials in the
worker-annotation condition, workers marked the exact same peak or valley that we had highlighted
in the pre-annotation condition, suggesting that if the features of interest are known a priori, both

strategies perform well.

5.7.5 Experiment 5: lteration

In our fifth experiment, we tested whether eliciting explanations iteratively (S7) could im-
prove the diversity of workers’ explanations. First, we asked one group of workers (the initial con-
dition) to generate explanations for a dataset. After a second group rated these explanations, we
asked a third group of workers (the iteration condition) to generate additional explanations that
were different from the first set. We hypothesized that (1) the iteration condition would produce
mostly new explanations, but (2) would have a higher rate of attrition, since later workers might

feel unable to author a response that differed from the initial explanations.

We conducted 25 trials in the initial round, producing five explanations each for the five US cen-
sus charts. In the iteration round, we conducted 25 more trials, in which we showed new workers
the same five charts, along with the initial explanations. We instructed iteration workers to gen-
erate new explanations that were “different from the explanations already shown”. Both condi-
tions included pre-marked charts (S6), but were otherwise identical to the strategies condition in

Experiment 1.
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Results

Participants in theinitial condition generated 36 explanations, while those in theiteration condition
generated 35 (many responses contained more than one explanation). Of theiteration explanations,
71% had not been proposed in the first round. The attrition rate for the iteration condition (75.3%)
was also slightly lower than theattrition rate in the initial round (80.2%),indicating thatiteration

can increase the diversity of explanations without increasing attrition.

5.7.6 Experiment 6: Rating

For rating microtasks to provide an effective means for sorting explanations, workers must be able
to generate consistent ratings. To test consistency, we conducted a final experiment in which we
asked workers to rate a subset of the explanations generated during our broader deployment. We

hypothesized that quality ratings assigned by workers would be similar to our own quality ratings.

Methods

We asked 243 Mechanical Turk workers to rate 192 different explanations across 37 charts. Using
the interface shown in Figure 54, workers rated each response according to the criteria (relevance,
clarity, and plausibility) described in Section 5.1.1. We compared these ratings against our expert

quality ratings for the same results.

Results

In total, the workers produced 1,334 individual ratings for 192 different explanations.

A Pearson’s chi-square test showed very strong agreement (2 = 78.81, p < 0.01) between work-
ers’ relevance scores and our own, indicating that workers were good at identifying responses that
did notexplain the requested feature. A Spearman’s rank correlation coefficient showed that work-
ers’ quality scores and the experts scores for each explanation were moderately correlated

(average p = 0.415).

However, we found that we could produce results that were more strongly correlated with our
own by instead using the mean score from multiple raters. We estimated the number of raters nec-

essary toobtain arobust overall quality score by sampling from one to ten worker quality scores for
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Figure 5.16: Agreement between workers’ ratings and our own increases if we use the mean or median
quality score from multiple workers. Using the mean from 5 or more workers gives strong (p > 0.7)
agreement.

each response. For each number of workers, we averaged all of the selected workers’ quality scores
for each response, then computed the correlation between the mean quality scores and the expert
scores (Figure 5.16). We found that averaging results from five raters produced quality scores that
were strongly correlated with the expert scores (average p = 0.726), but adding additional work-

ers gave diminishing returns.

5.77 Experiment 7: Redundancy

Wealso conducted an experiment to evaluate our two approaches for detecting redundant explana-
tions. To compare our distributed comparison (Section 54.1) and manual clustering (Section 54.2) tech-
niques we used both methods to cluster explanations for 12 different charts (each with between
10 and 20 explanations). We then compared the workers' clusterings against clusterings produced

by the same three experts who scored explanation quality (Section 5.7.1).

In the distributed comparison condition, we created a comparison task for each pair of explanations
given for each the 12 charts. This produced a total of 1,064 comparison tasks. We grouped tasks into
batches of 20 and asked five unique workers to complete each batch. We paid workers $0.20 foreach
batch. A total of 96 workers produced 5,032 comparisons. We then averaged all five workers’ scores
for each comparison and used k-means clustering to produce a final set of clusters (as described in

Section 54.1).
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In the manual clustering condition, we asked ten different workers to cluster the complete set of ex-
planations for each of the 12 charts. Again, we paid workers $0.20 for each task. A total of 91 work-
ers participated, producing 120 total clusterings. We then extracted the single most-representative

clustering for each chart.

To prevent workers from gaming the task, we included gold standard explanations in both condi-
tions. In each task we added two stock explanations that we knew to be redundant and a third
which we knew to be unique. We eliminated workers who failed to group the known redundant

explanations together or who grouped the unique pair.

As a baseline, we also included an unclustered explanations condition, in which we kept the com-
plete set of explanations for each chart without any clustering. We also compared our strategies
against an automated condition in which we calculated the similarity between explanations based
on the word overlap between them (using cosine similarity [96]), then clustered the explanations

using k-means.

Results

Because clustering is subjective and no objective “best” clustering exists, we compared the results
against manual clusterings generated by the the expert raters. We hypothesized that the manual
method would produce the clusterings that were the closest to the experts. We based our hypoth-
esis on the observation that workers in the manual clustering conditions could see the complete
sets of explanations at once and make clustering decisions with more complete context. We also
expected results from the manual clustering method to be more similar to the experts because they
are produced by a single worker, and are likely to be more internally consistent than results pro-

duced by aggregating multiple workers’ comparisons.

We compare clusterings against the expert clusterings using the F-measure, a symmetric similar-
ity metric thatis tolerant to small errors on large clusters, but intolerant to bi-directional impuri-
ties [3]. The F measure of a single cluster is the maximal harmonic average of the precision and the
recall, and the F measure of an entire clustering is the weighted average of the F measures of all the

clusters. Given two clusterings L and R, their F measure is:
|Li]

F(L,R) =
wr-yt

where n is the total number of clustered elements, i ranges over the number of clusters in L and j

-maxF(Li,Rj)
J

ranges over the clusters in R, and L; is the i’th clusterin L and R} is the j’th clusterin R.
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The function F(L;,R;) is defined as:

2-Recall(L;,R) - Precision(L;, R ;)

F(Li,R;) =
(LiR)) Recall(L;,Rj) 4 Precision(L;, R )
where:
. L[ OR)|
Precision(L;,R;) = 7
i
LiiNR;
Recal](L,-,Rj) = %
J

The F-measure similarity for two clusterings is reported on a range from O to 1, where 1 indicates
that the clusterings are identical and O indicates that they are completely dissimilar. We scored
each clustering by computing the F-measure between it and each of the three expert clusterings,

then averaging the three results (Figure 5.17).

To calibrate our expectations, we compared the three experts clusterings against one another. On aver-
age, we found that their clusterings were quite consistent with one another (F = 0.84). Pairwise
comparisons between the individual experts (EI-E2: F = 0.84,E1-E3: F = 0.85,E2-E3: F = 0.83)

revealed that no one expert was an outlier.

An ANOVA showed a significant effect for clustering method on the average F-measure score
(F344 =4.97, p < 0.01). Pairwise t-tests also showed that selecting the most-representative manual
clustering produced results that were significantly closer to the experts than the average manual clus-
tering (p < 0.01). Most-representative manual clustering also produced clusters that were significantly
closer to the experts than clusters produced in the distributed comparison (p = 0.04) and automated

(p < 0.01) conditions or the results from the unclustered (p < 0.01) condition.

On average, the unclustered results were were the least similar to the experts (average F = 0.68).
This value is non-zero because even the clusters of explanations generated by experts often con-
tain a number of singletons—explanations that do not cluster with any other. As a result, even an
unclustered set gets the clustering right for these clusters of size one. Clusterings from the auto-
mated approach received a similarly low scores (average F = 0.67), confirming our intuition that
text-based techniques are not well suited for clustering sparse, noisy data. Clusterings produced

by the distributed comparison condition were somewhat more closely aligned with the experts’ scores
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Figure 5.17: Results for each of our clustering selection methods. Each mark shows the average F-measure
similarity between the experts’ clusterings and the clusterings produced by the given clustering method.
A separate mark is shown for each chart. The black line and grey bars give the average and standard
deviation for each method.

(average F = 0.74) than the unclustered results. The clusterings produced by workers in the man-
ual clustering condition were also a bit better (average F = 0.73). Choosing the most-representative
manual clustering using the procedure in Section 54.2, however, produced better results across all
12 of our charts (average F = 0.86). For almost every chart, the most-representative selection algo-
rithm chose the worker clustering that was the best possible match to the three experts. Moreover,
the most-representative clustering was closer, on average, to all three of the experts than the three
experts were to one another (average inter-expert F = 0.84). These findings suggest that choosing

the most-representative clustering provides a reliable way of selecting high-quality clusterings.
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5.7.8 Experiment 8: Copying and Paraphrasing

We also evaluated how well workers were able to identify paraphrasing from sources. Toestablish a
baseline for how often workers’ explanations are copied or paraphrased from the sources they cited,
two of our three expert raters examined a sample containing 70 explanations from our deployment
that included citations. The two experts individually examined each explanation and the source
it cited and coded the explanation as either “copied or paraphrased from the cited source” or “not
copied or paraphrased from the cited source”. Afterward, the two experts worked together to re-
solve any differences, and produced a single gold standard. Of the 70 explanations, the experts

marked 60% as copied or paraphrased from the source.

We then conducted an experiment to determine how reliably workers could detect paraphrasing.
We randomly sampled 20 explanations of the explanations scored by the experts and presented
each as a source-checking microtask to the crowd. Five crowd workers examined each explanation and
source and voted whether the page was or was not “copied or paraphrased from the source”. We

then tallied these votes and assigned the winning label to each explanation.

The workers’ final result matched the experts’ for 75% of the explanations. All of the incorrect cases
we observed were false negatives—workers indicated that results were not drawn from the source,
while the experts deemed that they were paraphrased. The high number of false negatives suggests

that workers as a whole used a more conservative definition of paraphrasing than the experts.

5.8 The Explanation Management Interface

Once workers have rated and clustered a set of explanations, we must surface that information in
away that allows the analyst to quickly browse the explanations and assess them. To this end, we
developed an explanation-management interface (Figure 5.18 and 5.19) that provides a number of

tools and visual cues intended to help analysts quickly find unique explanations and judge their
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Figure 5.18: The explanation-management interface. Explanations (A) can be clustered and collapsed by
chart, topic, and source. Filtering (B) and clustering (C) controls allow the analyst to hide low-scoring
clusters and control how they are nested. Explanations, clusters, and charts, can be dragged to the
shoebox (D) and annotated for later review. Figure 5.19 shows additional detail for a single cluster.

plausibility. We tailored the interface based on the criteria (C1 through C3) that we identified in
Section 5.3:

C1 Text Clarity and Specificity
C2 Explanation Frequency

C3 Explanation Provenance

C3.1 Source Reputability
C3.2 Paraphrasing and Worker Additions

C3.3 Corroboration

Analysts can use this interface to browse, filter, and organize explanations generated by workers.
Using the explanation-management tools, they no longer need to read through each and every ex-
planation in order. Instead, they can explore clustered results, filter them by quality and frequency,
and get a sense of their provenance. This section describes the various features of the interface in

terms of the criteria they surface.
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By default, the interface displays a list of explanations grouped first by chart view and then by
cluster. Clusters are initially collapsed, so that only the explanation in the cluster with the high-
est quality score is visible. The clusters are also sorted based on their quality scores, so that the
clusters containing the clearest, most plausible explanations are shown first. The analyst can ex-
pand clusters to inspect their individual members, and can filter the set of clusters based on a va-
riety of attributes. In many cases, the analyst may wish to save interesting explanations to a “shoe-
box™ [83] in order to revisit them later in the sensemaking process. Our interface allows analysts
to save good explanations or groups by dragging them to a shoebox panel at the right of the screen
(Figure 5.18D).

Each cluster in the interface includes a set of visual indicators designed to allow the analyst to
quickly make judgements about the explanations in it, often without even reading them. These
include explanation quality and frequency information (e.g, cluster size) as well as visual indica-

tors that allow analysts to quickly determine explanation provenance.

5.8.1 Surfacing Explanation Clarity and Specificity

The interface displays the average quality scores generated by workers in rating microtasks (Section
5.1.1). We display the quality score in the upper right corner of each explanation (Figure 519G)
and color the score using a red-yellow-green color scale. These quality indicators allow an ana-
lyst to quickly determine which explanations are more likely to be clear and specific (criteria C1).
Analysts can also reduce the number of visible explanations by using the filtering controls at the
top of the interface to hide explanations and clusters that do not contain explanations with high

quality scores.

5.8.2 Surfacing Explanation Frequency

By default, the system collapses clusters of redundant explanations so that each cluster displays
just the highest-quality version of the explanation. Each clusteralso contains a count showing the
total number of explanations in the cluster and how many are currently visible (Figure 5.19D). The
highest-quality explanation serves as a summary of the cluster and reduces the amount of effort an
analyst must expend to examine the explanation. An analyst can also use the cluster size to gauge
the frequency and level of support for the explanation (criteria C2). If the analyst wants to inspect
other versions of the explanation, they can expand a collapsed cluster by clicking on the cluster

size indicator. Clicking on the indicator a second time re-collapses the cluster.
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Figure 5.19: A closeup of the explanation-management interface introduced in Figure 5.18. Here we high-
light a single chart (A) with two explanation clusters. Each chart includes an indicator (B), showing the
number clusters of explanations for the chart. Each cluster (C) displays a count showing explanations it
contains (D) and an indicator showing whether the explanation is corroborated by multiple sources (E).
Each individual comment displays a source URL and provenance indicator (F) along with a color-coded
quality score (G).

5.8.3 Surfacing Explanation Provenance

Each explanation also displays an abbreviated link to any web pages it cites (Figure 5.19F). These
short links allow the analyst to quickly determine if the explanation is drawn from a source that
they trust. The analyst can also click the link to view the source page along with any sections of

the page highlighted by the worker (criteria C3.1).

If an explanation is of particular interest to the analyst, he or she can expose additional prove-
nance information by clicking the “view sources” link on the comment. Clicking the link exposes
the complete set of web pages the worker visited while generating the explanation along with de-

tailed timing information. The analyst can use this list to locate and inspect other sources that
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informed the explanation and help build an understanding of how a worker came to a conclusion
(criteria C3.2).

If the analyst determines that a specific domain or web page is a good source, he or she may wish
to directly explore other explanations that are drawn from that source. In our own experience,
the sources which provide the best explanation for one chart may also provide good explanations
for others (for example pages from the Bureau of Labor Statistics provide good explanations for
changes in employment in many different US cities). Therefore, our interface also allows the an-
alyst to group explanations based on the sources they cite to quickly find multiple explanations

drawn from the high-quality sources.

5.8.4 Surfacing Paraphrasing and Worker Additions

In the explanation-management interface, we provide a provenance indicator next to the source
URL (Figure 5.19F) of each explanation that more than 50% of source-checking workers identified
as being either copied or paraphrased directly from the source. This indicator allows analysts to
quickly identify explanations that are drawn directly from a source before reading them. Know-
ing an explanation was copied or paraphrased from a known source can allow an analyst to make
confidence judgments based on that source’s reputation (criteria C3.2). High-quality paraphrased
explanations also serve as leads to help analysts identify good web resources that they may wish

to utilize directly.

5.8.5 Surfacing Corroborating Explanations

An explanation that cites multiple reliable sources is more likely to be credible than one that sites
only a single reliable source (criteria C3.3). Therefore an analyst may wish to know if multiple ver-
sions of an explanation in a cluster cite the same source or refer to multiple independent ones. In
our interface, workers can assess this directly by expanding a cluster and grouping the responses
within in by URL or domain. We also provide a “multiple sources” indicator in the heading of clus-
ters that contain corroborating citations. Mousing over this indicator displays a list of sources
along with the number of explanations in the group that cite them. This indicator serves as a
shortcut for analysts, allowing them to quickly make confidence judgments based on corroborat-

ing sources without examining explanations or sources individually.
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5.9 Discussion

Based on our experience collecting, clustering, and exploring crowdsourced explanations, we offer

a few additional observations.

5.91 Explanation Segmentation

Our current implementation asks workers to separate distinct explanations into separate fields in
the explanation microtask and allows them to select a different source text for each. However, in
practice, many workers still give multiple candidate explanations as part of a single paragraph or
sentence. Responses that contain multiple explanations can be difficult to group, since a each one

may include several distinct explanations that each belong in disparate clusters.

We addressed the issue of segmentation by creating the explanation-generation tasks that encour
aged workers to enter each explanation in a separate text box. Providing separate text boxes and
clear instructions reduced the number of responses that mixed multiple explanations. However,
clean segmentation remains difficult to enforce, especially because explanations are often interre-
lated. Another possible approach might be to ask workers in intermediate segmentation microtasks to
break apart compound responses into their constituent explanations. However, these tasks intro-
duces the potential for information or intent to be lost as workers break apart or alter responses

generated by other workers.

All of these issues are related to the broader issue of task granularity when crowdsourcing open-
ended tasks. Breaking tasks into small, modular components makes it easier to compose tasks
together and process results systematically. Small, straightforward tasks also reduce the potential
for worker error, and make it easier to identify and discard poor results. However, small tasks may
inhibit contributions from talented or knowledgable workers, since they are not free to explore,
author, or contribute outside the constraints of the task and cannot bring their expertise to bear
on areas of the problem where it might be beneficial. As a result, balancing task simplicity and
flexibility in a way that suits the expertise and trustworthiness of a worker pool remains a key

challenge when designing new tasks.

5.9.2 Defining Redundancy

While we assume a particular definition of redundancy when clustering explanations, other types

of clustering may be useful for analysts. We define redundant explanations as explanations that
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give “the same general explanation for a trend or outlier”. This means that only explanations that
make the same assertion about the trend and provide the same level of detail will be clustered.
However, we observed that workers often produce explanations that are not strictly redundant,
butare hierarchically related (for example, one explanation mightattribute a drop in employment
statistics to “an economic downturn” while another cites job losses in a specific industry). Clus-
tering explanations hierarchically would allow analysts to consider high-level explanations and

make confidence assessments about them before examining lower-level details.

5.9.3 Crowd Composition

Our approach assumes a crowd composed largely of non-expert workers whose responses may be
of variable quality—for example, workers recruited in online task markets like Mechanical Turk.
However, more complex analyses or datasets that require specific domain knowledge may call for
the use of private crowds. We believe a similar workflow could be used to systematically collect and
integrate findings from large crowds of trusted workers. In trusted crowds, some quality-control
mechanisms could be relaxed, reducing the number of post-processing steps and giving workers
more freedom to explore. For example, trusted workers could be given the freedom to manipulate
the visualization and explore alternate views of the dataset that might inform their explanations.
Trusted workers could also self-assess the quality of their explanations and sources, reducing the
number of steps in workflow while still providing metadata that analysts can use to filter and re-

organize their results.

5.9.4 Economics of Crowd Work

Because crowd markets remain a new phenomenon, many questions remain about the economic
efficiency of crowd-based systems [52]. For example, it remains unclear whether it will be econom-
ical for analysts to employ large-numbers of novice workers on a short-term basis rather than cul-
tivate a trained cadre of analysis specialists. Designers of social data analysis systems that employ
crowd workers will also need to consider the ethical implications of using paid crowds and work to
ensure that workers are compensated fairly and enjoy sufhcient protections. This is especially im-
portant given that many proposed crowdsourcing platforms (including [63,45]) employ workers
in developing regions, where income levels are lower and fewer worker protections exist. A con-
siderable body of recent research has focused on reducing the cost of crowd-based work, largely by
minimizing the amount paid toworkers [51]. However, future systems will need to strike a balance

between cheaply and accurately performing analyses and ensuring that workers are treated fairly.
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Chapter 6

Future Work

This dissertation has focused on several core research questions regarding social data analysis.
However, many additional aspects of social data analysis remain to be explored. Future work be-
yond this thesis will support stakeholders not addressed in our examples and make the process of

organizing, presenting, and sharing analysis more accessible.

6.1 Alternate Models for Crowdsourcing Analysis

In Chapter 5, we demonstrated that paid crowd work can be a viable tool for generating and rating
hypotheses—one key component of the data analysis process. However, other steps in the sense-
making cycle—including organizing content, comparing hypotheses, and searching for relations
between observation—may also be amenable to crowdsourcing. Until now, we have considered
parallel and iterative processes in which workers collaborate to produce and group evidence. How-
ever, competitive models of analysis—in which workers are offered incentives for producing bet-
ter results than their peers or for disproving explanations and hypotheses created by others—also
present a fruitful are for exploration. What are the relative benefits and tradeoffs associated with competitive

models of analysis?

For example. we may able to produce stronger explanations by providing incentives that encour-
age workers to evaluate, challenge, and validate one another’s explanations and compete to gen-
erate the most likely or more diverse opinions. Techniques for hypothesis validation like Analy-

sis of Competing Hypotheses [8] provide a systematic way of integrating many (sometimes com-
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peting) contributions and controlling against bias. Moreover, they can be used to operational-
ize hypothesis testing into hypothesis generation, evidence collection, and cross-validation tasks
that can be carried out by multiple users working in parallel (as in CACHE system [23]). We be-
lieve there is great potential for using similar techniques to perform hypothesis testing using on-
line labor markets. For example, crowd workers could be instructed to carry out CACHE-style
tasks in which they generate new hypotheses and search for evidence that invalidates the hypothe-
ses generated by other workers. This approach could be paired with financial or social incentives
that reward the workers who successfully disprove hypotheses and who produce hypotheses that

survive elimination.

Kaggle[56] and other competition-based platforms foranalysis representanotherinteresting point
in the space. These tools allow individuals and teams of experts to compete to produce solutions to
well-scoped data mining and prediction challenges—for example, developing the best algorithm
to predict consumer shopping behavior on a website or identify celestial objects in high resolu-
tion telescope imagery. Typically these competitions are targeted at small groups of analysis ex-
perts and provide monetary rewards to the winners. Kaggle’s approach is less fine-grained than
ours, with each team or individual completing the entire analysis in isolation and comparing only

their results.

We suspect that fertile ground exists in the scales between our crowdsourcing work, which relies
largely on small-scale novice labor in microtask markets, and these sorts of expert-level competi-
tions. For example, it may be more productive to have teams compete for financial incentives on
smaller pieces of the analysis, but periodically share findings and strategies. Future work should
also focus on comparing rewards structures for competitive analysis and understanding which

kinds of tasks are best suited to different competitive models.

6.2 Engaging Domain Experts

While our work has focused largely on analysts (Chapter 3), community members (Chapter 4),and
crowd workers (Chapter 5), making sense of more complex, domain-specific datasets may require
the input of domain experts. One promising thread of future research involves developing tools
and strategies for identifying domain experts and incorporating their efforts. How canwe engage with

outside domain experts and integrate their contributions into analyses?
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Domain experts provide valuable insights and expertise. Moreover, they may be able to answer
questions about technical subjects that other workers and even analysts cannot. However, find-
ing and engaging expert users on the web can be difficult. For example, during the development
of CommentSpace, we deployed several versions of the tool live on the web—both on our own site
and within news stories. Despite an effort to target these visualizations at particular communi-
ties and recruit experts to use them, very few visitors commented or contributed to the analysis.
These efforts may have failed for a number of reasons. One possibility is that because the com-
menting was situated within our own site, rather than in the context of their existing commu-
nity, expert users lack sufficient incentive to contribute. This observation is consistent with Da-
nis et al’s finding [27] that the most productive discussions in Many Eyes took place not in the
context of the site, but offsite on blogs and forums where the visualizations were used as a “com-
munity component”. Users may also have been deterred by the relative complexity of the interface
and the fact that the task (asking questions and generating hypotheses and evidence) was often
ambiguous. These early deployments violated important design principles that emerged during
our subsequent work with novice communities and crowd workers—they failed to provide clear,

feature-oriented prompts.

One approach for eliciting input from outside experts is to extend a system like CommentSpace
so that analysts can embed simple visualization views anywhere on the web, and collect responses
and explanations in situ. On websites with a dedicated commenting mechanism, an analyst could
embed only a visualization view and the system could collect responses by scraping the page and
extracting comments. Where no commenting mechanism exists, analysts could elicit expert feed-
back by embedded question prompts similar to our analysis microtasks (Chapter 5) along with
the visualizations. We hypothesize that embedding visualizations and questions directly in Q&A
sites, forums, blogs, and other existing communities will allow analysts to engage domain experts
and elicit feedback more easily. These new tools could lower the barrier to entry by incorporating

strategies from the feature-oriented microtasks that proved successful in our crowd research.

For example, a simple embeddable CommentSpace web widget (Figure 6.1) could be used to elicit
feedback from domain experts. Rather than directing experts to the CommentSpace site or em-
bedding the entire CommentSpace interface in an outside site, an expert would export a single
CommentSpace comment and its associated visualization views a self-contained widget. The wid-
get could be embedded directly in forums, blog posts, Q&A sites, social media, and even interper-
sonal communications like email. Each widget would feature a clear prompt and would resem-

ble the analysis microtasks used in our crowdsourcing work (Figure 5.3). On sites where no com-
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Figure 6.1: Mockup of a possible design for an embeddable CommentSpace web widget designed to
be embedded in Q&A sites, forums, and personal communications to elicit insights and feedback from
domain experts.

menting mechanism exists, the widget would also include an answer field along with the prompt.
Responses entered in the answer field could be submitted directly to CommentSpace as new com-
ments or sent to crowd workers for rating and iteration. In Q&Assitesor forums, a separate answer
field would duplicate the existing functionality of the site. In these cases, we could embed only the

visualization view(s) and the prompt, then extract experts’ responses directly from the site.

This line of research still presents a number of challenges. Identifying domain experts qualified to
explore a given dataset and an appropriate venue for eliciting explanations from them remains a
difficult task. One possible approach for identifying experts may be to use data analysis and ma-
chine learning techniques to mine the content on Q&A sites in order to identify the people most
likely to give a good response to an analysis question. Future research will also need to test a range
of monetary and social-psychological incentives in order to better understand how to motivate ex-

perts to contribute.

6.3 Supporting Ad Hoc Social Data Analysis

While experimental tools like sense.us [48], Many Eyes [111], and CommentSpace make visualiza-

tion tools more social by supporting embedding and commenting, they still build primarily on
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proprietary visualization and commenting tools that make it difficult to share, combine, and build

stories around data on the web.

However, a number of compelling recent examples of social data analysis have begun to occur out-
side these kinds of tools. One example which we have explored is the Google Books Ngram
viewer [42], an interactive visualization of data from the Google Books corpus (Figure 6.2). After
it was released in December 2010, the Ngram viewer elicited thousands of tweets, Facebook posts,
and blog entries from users noting trends, commenting on data quality issues, and building nar-
ratives around their findings. This fountain of discourse was made possible by the designers’ de-
cision to provide unique, stateful URLs for every possible view of the visualization. These stateful
URLs allowed users to share, save, and refer back to specific visualization views on Twitter, in blog

posts, and elsewhere.

The volume of discussion and participation generated by tools like the Ngram viewer illustrates
the value of designing visualization and analysis tools such that they are compatible with existing
social media practices. Because views of the visualization were easy to produce and share, users
notonly shared them extensively, but also began to collect interesting or topical Ngrams views us-
ing lightweight blogging platforms like Tumblr [109]. Others used these as the starting point for
more detailed blog posts and explorations of particular aspects of the data relevant to particular
disciplines. This echoes one of the key findings from Many-Eyes [ 27 ]—that web visualizations of-
ten work best when they serve as a “community component” that communities can readily adopt,
repurpose, and use within the context of their existing discourse. How canwe streamline the process of

designingvisualizations that are easy toannotate, share and embed, and which play nicely with existing social media?

Developers can easily add stateful linking to simple visualizations, but adding them to visualiza-
tions that support complex navigation and filtering often requires considerable effort. Developers
may have a hard time deciding which pieces of information about the visualization state are impor-
tant to maintain and which are not. Moreover, information needed to reproduce the state of the vi-
sualization is often spread between the visualization definition, interface widgets, and event han-
dlers, making itdifficult to manage. There are also many other aspects of the chart beyond the state
that users and analysts may wish to refer to—for example, the underlying data, selections, even in-
dividual datapoints. Providing ways of linking directly to selections, data points, and other chart
elements supports deixis [49 ] and may enable deeper discussion, but implementing these linking

mechanisms per-visualization requires considerable effort on the part of developers.
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Figure 6.2: Several views of the Google Books Ngram viewer [42], an interactive visualization of the entire
Google Books corpus, paired with Twitter messages discussing the views. The Ngram viewer displays
the changing use of multi-word phrases in printed English over time. Using it, users noted and shared
observations such as the sharp rise and gradual decay in references to decennial years (top) and linguistic
artifacts like the pronounced usage of the word “Guillotine” during the period surrounding the French

Revolution (bottom).
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The lack of strong pointing and linking tools in most current web visualizations suggests a need
for standards and best practices that make it easier for users to share, annotate, and build upon
datasets and visualizations within the ecosystem of the web. Currently, D3 [11], Processing [85],
and other frameworks provide easy platforms for developing visualizations. One promising ap-
proach may be to extend these of frameworks to provide toolkit-level support for deep linking,
annotation, sharing, and data provenance out-of-the-box. For example, it may be useful to provide
libraries for serializing and deserializing visualization state and providing deep linking with less

developer effort.

More research is also necessary to understand what sorts of pointing interactions have the most
valueduring collaborative analysis and establish best practices and guidelines for supporting them.
Visualization development environments that help designers and analysts construct new visual-
izations could also increase the consistency of sharing, pointing, and linking behaviors available
across visualizations. Providing tools like these that make it easier for designers, journalists, and
other end-users to add these capabilities to their visualizations could enable social discussions

around data in a wider range of disciplines.

Another key challenge involves capturing the ad hoc discussion that occurs around visualizations
on the web and extracting meaning from it. How can we make it possible to find and collect comments about

avisualization from the web and what can we dowith these large sets of insights once we have them?

One common strategy is to provide or suggest unique identifiers like hashtags, or shortened URLs
that can be included in comments and social media posts. Comments with these identifiers can
then be retrieved by searching the target networks and via platform APIs, where they exist. Mark-
ing and then searching for content this way works well for public services like Twitter. A related
approach involves integrating tools for publishing, commenting, and sharing via social media di-
rectly into visualizations. Integrated sharing tools can make it easy for users to post visualization
views to services like Facebook and Twitter in a standardized way, and can simultaneously log the
views or comments that are published for later analysis. Figure 3.3 shows a custom sharing inter-

face implemented within CommentSpace.

However, even if it is possible to capture large amounts of ad-hoc discussion and exploration of
a dataset, it may be difficult to extract useful information from it. Ad hoc analyses like the one
spawned by the Ngrams viewer can produce thousands of potential observations spread across as

many different views of a dataset. Moreover, these observations may be much less organized than
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Figure 6.3: The CommentSpace slideshow extension allows authors to organize comments and visualiza-
tion views to tell a story, then converts the sequence into an interactive slideshow. Here, a sequence of
posts on a visualization comparing the cost of production against critic’s ratings for major motion pictures
(left) becomes an interactive slideshow (right).

observations generated by our more systematic crowdsourcing framework. Such corpora call for
new tools for mining discussions and performing meta-analysis to extract high-level concepts and

identify the most useful and well-supported observations..

6.4 Visualization, Presentation, and Storytelling

Finally, social interactions around data, like most other human interactions, involve storytelling.
In fact, most of the data visualizations presented on the web and in the media are constructed in
the service of a particular story [91]. Storytelling serves a dual role in visual analysis. For the ana-
lyst, storytelling represents the final phase of sensemaking—where observations, hypotheses, and
conclusions are synthesized into data-driven stories that communicate the results of the process.
Simultaneously, storytelling provides a means for introducing new users to a dataset or topic and
encouraging them to explore and engage with it. Yet few tools exist to support data-driven story-
telling. Canwe provide systems that allow users to navigate, curate, and build stories out of the collective observa-
tions of many users? Canwe make it easier to transform the products of social data analysis into reports, news stories,

and presentations that allow them to communicate?

We have begun to explore this problem in the context of CommentSpace by building an exten-

sion that provide more explicit support for storytelling. The extension provides tools that allow
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users to organize sets of comments and visualization views and then convert them into interactive
slideshows (Figure 6.3). Using the tool, authors can connect a sequence of views from one or more
visualizations and pair each view with captions that explain and contextualize it. The tools also
allows authors to control whether or not the interactive controls for each view should be enabled.
By disabling interaction on early views that provide context and background, then enabling inter-
action on later views, authors can create “Martini Glass™-style narrative structures [91] that guide

viewers gradually into a visualization.

However, this extension provides a very limited set of tools with which to author narratives based
on analytic findings. Authors can connect views together, but have little control over the content
or styling of views. Moreover, our tools don’t provide any unified mechanism for highlighting, em-
phasizing, and deemphasizing particular points in a visualization—selection, editing, and high-
lighting tools are limited to those provided in the visualizations. Because visualizations them-
selves cannot be edited or reformatted to fit the narrative, it can be difficult for authors to repur-
pose them to accentuate the important parts of the story or integrate them intoa broader narrative.
Future tools will need to offer more powertul publishing and sharing functionality that makes it

casy for authors to create and present many different kinds of data-driven stories.

Social media reporting tools like Storify [97] and Storyful [98] allow users to create stories by col-
lecting posts from Twitter and other social media streams and embedding them into news stories
and blog posts. These tools take the process of gathering social media, selecting relevant content,
and integrating it into a news story, and provide a streamlined interface that allows authors to lo-
cate content and quickly construct a story around it without writing code or dealing with layout.
In doing so, these tools enable non-expert users to quickly build on pieces of social media content
and them as core building blocks for news stories, reports, and presentations. Analogous tools
for data visualization could allow analysts and journalists to gather comments, annotations, and
other findings from data analysis and integrate them, along with tailored views of their analytic

visualizations, into their stories and presentations.

Like social media reporting tools, data visualization reporting tools should allow authors to easily
collect and organize multiple views of visualizations, social media posts and other content. Un-
like social media content, however, visualizations designed for analysis tasks often are not well
suited for public consumption. Instead, they tend to be visually complex and readers generally
need considerable context and training to interpret them. As a result, a core challenge for data

visualization reporting tools is to provide flexible end-user tools that allow authors and analysts
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to tailor visualizations for public consumption. These tools must ease the process of annotating
visualizations, selecting individual views, generating simplified and restyled representations of

interactive graphics, and simplifying interaction to illustrate specific points.



115

Chapter 7

Conclusion

Human attention and domain knowledge are inherently finite. Therefore, we expect that single-
user models of analysis will always limit analysts’ ability to make sense of datasets that are large,
complex, and span disciplinary boundaries. However—as we have noted throughout this the-
sis—the design of multi-user systems for data analysis is complex and nuanced. Designers and
developers must tailor social data analysis tools to suit the interests and competencies of their
various stakeholders, and each system often requires considerable tuning to produce the desired

analytic results.

Over the course of this thesis we have explored several points in the design space of collaborative
data analysis tools. By focusing on a few key user groups—small analysis teams, novice communi-
ties, and paid crowds—this work illustrates the range and diversity of useful approaches to social
data analysis. Some analysis scenarios—for example, a journalist scouring a large public-interest
dataset—may benefit greatly from the parallelization that crowdsourcing can bring to bear. Oth-
ers—like analyses of small-scale environmental quality data—can benefit greatly from the local
knowledge of community members, even if they lack analysis expertise. Teams of more expert an-
alysts working in concert, meanwhile, can benefit from more robust techniques for organizing,

discussing, and building on one another’s findings.

The volume of data generated by governments, institutions, and individuals continues to grow
unabated. As a result, the tools we use to explore data must continue to evolve. Advances in vi-

sualization, data mining, machine learning, and information retrieval will undoubtedly improve
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the effectiveness of individual analysts. However, collaborative tools that multiply the impact of

many stakeholders promise to compound these gains even further.

This dissertation and the three social data analysis tools presented herein point towards a future
in which big data analysis tasks might engage not just one or two collaborators, but tens, hun-
dreds, or millions. Moreover, the diversity of these systems suggest that future analysis tools will
be anything but homogeneous. Rather, each new dataset or analytic problem brings with it new
constraints and new stakeholders, but also new potential. This work offers just a few possible
visions of these future tools, and suggests models for how we might pool our collective effort to

tackle the next generation of big, data-driven problems.
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