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Abstract

Lightweight Specifications for Parallel Correctness

by

Jacob Samuels Burnim

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Koushik Sen, Chair

With the spread of multicore processors, it is increasingly necessary for programmers to write
parallel software. Yet writing correct parallel software with explicit multithreading remains
a difficult undertaking. Though many tools exist to help test, debug, and verify parallel
programs, such tools are often hindered by a lack of any specification from the programmer
of the intended, correct parallel behavior of his or her software.

In this dissertation, we propose three novel lightweight specifications for the parallelism
correctness of multithreaded software: semantic determinism, semantic atomicity, and non-
deterministic sequential specifications for parallelism correctness. Our determinism specifi-
cations enable a programmer to specify that any run of a parallel program on the same input
should deterministically produce the same output, despite the nondeterministic interleaving
of the program’s parallel threads of execution. Key to our determinism specifications are our
proposed bridge predicates — predicates that compare pairs of program states from different
executions for semantic equivalence. Our atomicity specifications use bridge predicates to
generalize traditional atomicity, enabling a programmer to specify that regions of a parallel
or concurrent program are, at a high-level, free from harmful interference by other threads.
Finally, our nondeterministic sequential (NDSeq) specifications enable a programmer to com-
pletely specify the parallelism correctness of a multithreaded program with a sequential but
nondeterministic version of the program and, further, enable a programmer to test, debug,
and verify functional correctness sequentially, on the nondeterministic sequential program.

We show that our lightweight specifications for parallelism correctness enable us to much
more effectively specify, test, debug, and verify the use of parallelism in multithreaded soft-
ware, independent of complex and fundamentally-sequential functional correctness. We show
that we can easily write determinism, atomicity, and nondeterministic sequential (NDSeq)
specifications for a number of parallel Java benchmarks. We propose novel testing techniques
for checking that a program conforms to its determinism, atomicity, or nondeterministic se-
quential specification, and we apply these techniques to find a number of parallelism errors
in our benchmarks. Further, we propose techniques for automatically inferring a likely de-
terminism or NDSeq specification for a parallel program, given a handful of representative
executions.
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Chapter 1

Introduction

The semiconductor industry has hit the power wall — performance of general-purpose single-
core microprocessors can no longer be increased due to power constraints. Therefore, to con-
tinue to increase performance, the microprocessor industry is instead increasing the number
of processing cores per die. The new “Moore’s Law” is that the number of cores will double
every generation, with individual cores going no faster [10].

The spread of multicore processors and the end of rapidly growing single-core performance
is increasing the need for programmers to write parallel software. Yet writing correct parallel
software with explicit multithreading remains a difficult undertaking. A programmer must
ensure not only that each part of his or her program computes the correct result in isolation,
but also that the uncontrolled and nondeterministic interleaving of the program’s parallel
threads cannot cause harmful interference, leading to incorrect final results. Thus, parallel
programs suffer from a host of new kinds of errors, such as data races, atomicity violations,
and deadlocks. The need to simultaneously reason about sequential functional correctness
and the correctness of parallel interleavings poses a great challenge both for programmers
writing, understanding, and testing their software and for tools analyzing and verifying such
software.

Thus, there has been great interest in techniques and tools to better test parallel software
and to automatically find parallelism errors. There has been much work on exposing errors
in parallel programs by testing such programs under a wider variety of thread schedules,
via stress testing, random scheduling [45, 140, 51, 131, 25], and systematic schedule explo-
ration [72, 24, 155, 35, 105, 152, 26, 133] (i.e. explicit model checking). Further, a number of
techniques have been developed to find parallel bug patterns, such as static [139, 59, 23, 54,
71, 49, 120, 107] and dynamic [44, 2, 130, 122, 38, 3, 132, 58, 136] techniques to detect and
predict data races. Similarly, techniques have been developed to detect high-level races [122,
9] and non-atomic methods [64, 158, 76, 3, 57, 159, 12, 62, 52, 37, 157]. Recent work has
proposed to combine these two approaches, first using a static or dynamic analysis to predict
the presence of certain parallel bug patterns in a program, and then controlling or biasing
the program’s thread scheduling in order to create real executions in which the bug patterns
occur. This approach, active testing [132, 85], has been successful in finding and reproducing,
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e.g., races [132], atomicity violations [116, 117, 138, 91], and concurrency-related memory
errors [167, 32] and assertion violations [168].

While such testing and program analysis tools have been very successful, they are often
hindered by the following problem: In practice, it can be quite difficult to determine whether
or not such a tool has truly found a program error. That is, when software testing leads to
a program crash or an assertion failure, we can be certain that a real error has been found.
Such tools, however, often find program behavior that is suspicious, but not unambiguously
erroneous. For complex programs, such tools may observe hundreds of real data races or
violations of method atomicity in program executions, none of which lead to assertion or
test failures, uncaught exceptions, or other clear program errors. Such low-level, suspicious
behaviors could be real errors, but they are often benign, having no effect on the high-level
correctness of the program. Thus, parallelism correctness tools must either ignore these
potential errors or must report them all to a user, forcing the user to laboriously determine
whether or not each observed program behavior is correct.

We argue that, in order to effectively test and verify parallel software, we must have
some kind of specification from the programmer of the intended, correct parallel behavior
of his or her software. Unfortunately, traditional functional correctness specifications —
e.g., formalizing the correct output of a program as a function of its input — can be very
complex and challenging to write. (Imagine, for example, specifying the correct output of an
application to render a fractal or of an application to compute a likely phylogenetic tree given
genetic sequence data.) We believe there is a need for easier-to-write specifications that focus
on just the correctness of a program’s use of parallelism. Such specifications should allow us
to specify, test, debug, and verify the parallelism correctness of a program without having
to grapple with a program’s complex and fundamentally-sequential functional correctness.

Contributions and Outline

In this dissertation, we propose three novel, lightweight specifications for the parallelism
correctness of multithreaded programs: semantic determinism [29, 30, 31], semantic atomic-
ity [28], and nondeterministic sequential (NDSeq) specifications for parallel correctness [27,
34, 33]. We claim that our lightweight specifications for parallelism correctness enable us to
effectively specify, test, debug, and verify the use of parallelism in multithreaded software,
independent of complex, sequential functional correctness.

Semantic Determinism Specifications

In Chapter 3, we describe our proposed semantic determinism assertions [29, 30], for spec-
ifying that two runs of a parallel program on the same input should give results that are
semantically the same, despite any nondeterministic interleaving of the program’s paral-
lel threads of execution. Key to our determinism specifications are our proposed bridge
predicates [29, 30] — predicates relating pairs of program states from different executions.
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Bridge predicates allow us to simply specify, at a high level, the way in which the results of
two different parallel executions should be equivalent. We show that we can easily specify
this high-level parallelism correctness property for a variety of parallel Java benchmarks,
including many for which we are unable to write any kind of useful functional correctness
specification. Further, by combining our determinism assertion library with existing tech-
niques [132, 85], we can effectively test our determinism specifications — e.g, identifying
races that lead to erroneous nondeterministic behavior and separating these races from the
many benign races found by previous techniques.

Automatically Inferring Likely Determinism Specifications

In Chapter 4, we propose Determin], our algorithm [31] to dynamically infer a likely de-
terminism specification for a parallel program, given a set of representative program exe-
cutions. We show that the simpler form of determinism specifications, compared to that
of traditional functional correctness specifications, enables us to efficiently compute useful
determinism specifications consistent with a set of program executions. We implement our
specification inference algorithm for parallel Java programs and apply our algorithm to the
Java benchmarks used in Chapter 3. Given only a handful of representative executions,
Determin can automatically infer equivalent or better determinism specifications than our
hand-written specifications for nearly all of our benchmarks. We argue that the inference of
determinism specifications can aid in understanding and documenting the deterministic be-
havior of parallel programs. Moreover, an unexpected determinism specification can indicate
to a programmer the presence of erroneous or unintended parallel behavior.

Semantic Atomicity Specifications

In Chapter 5, we describe our proposed semantic atomicity assertions [28], a generalization
of traditional atomicity, which uses our bridge predicates to specify critical, high-level non-
interference properties of parallel code. We also describe our novel technique [28] for testing
semantic atomicity on interruption-bounded executions, and show that we can effectively
specify and test semantic atomicity on a number of parallel and concurrent benchmarks,
finding several known and unknown atomicity errors with no false positives, while previous,
strict atomicity techniques would report many false warnings.

Nondeterministic Sequential Specifications

In Chapter 6, we describe our proposal for using a nondeterministic but sequential version of
a program as a complete specification for the correctness of the program’s use of parallelism.
If we can verify or otherwise gain confidence in the parallelism correctness of such a program,
we can then test, debug, and verify the program’s functional correctness on a version of
the program with controlled nondeterminism but with no interleaving of parallel threads.
We propose a novel technique [34] for runtime checking of our nondeterministic sequential



CHAPTER 1. INTRODUCTION 4

(NDSeq) [27] specifications, and we show that we can use NDSeq specifications both to
specify and to test the parallelism correctness of a number of parallel applications, including
those with quite complex sequential behavior.

Further, we discuss future work to use our NDSeq specifications and our runtime check-
ing technique to classify an erroneous program trace as containing either a sequential or a
parallel error, and, in the former case, allowing the error to be debugged on a nondetermin-
istic sequential trace, instead. And we discuss future work to statically verify parallelism
correctness, independent of a program’s complex and sequential functional correctness, by
verifying — via reduction [93] — that every parallel program behavior is also a behavior of
the nondeterministic sequential specification.

Automatically Inferring Likely NDSeq Specifications

In Chapter 7, we propose an algorithm [33], for automatically inferring a likely nondetermin-
istic sequential (NDSeq) specification for a parallel program, given a set of representative
program executions. Our technique combines dynamic data flow analysis and Minimum-
Cost Boolean Satisfiability (MinCostSAT) solving to find a likely NDSeq specification for
the correctness of a program’s parallelism — an NDSeq specification that captures all non-
determinism of the observed parallel executions. We implement our technique for Java in
a prototype tool called nDetermin. For a number of benchmarks, nDetermin infers
equivalent or stronger NDSeq specifications than those we previously wrote manually.
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Chapter 2

Overview of Lightweight
Specifications for Parallelism
Correctness

In this chapter, we give a high-level overview of our lightweight specifications for parallelism
correctness, using a simple parallel program as running example. We present this motivating
example in Section 2.1, and we discuss in Section 2.2 the challenges in checking the example’s
parallelism correctness. In Section 2.3, we will motivate and describe semantic determinism
specifications on this running example. In Section 2.4, we will show how the inherent nonde-
terministic behavior of our running example necessitates a second kind of partial, high-level
specification: semantic atomicity. Finally, in Section 2.5, we will show how to give a complete
specification of parallelism correctness for our running example using a nondeterministic se-
quential (NDSeq) specification. We will also briefly discuss our approaches to testing that a
program conforms to each of the above specifications, and we will motivate and describe our
techniques for automatically inferring likely determinism specifications and nondeterministic
sequential (NDSeq) specifications.

2.1 Running Example

Consider the generic, parallel branch-and-bound procedure given in Figure 2.1 on the next
page. The search procedure finds a minimum-cost solution in a given solution space. Initially,
the FIFO work-queue queue holds a single element representing the entire space to be
searched. The procedure repeatedly retrieves a unit of work — i.e. a region of the solution
space — from the queue and either: (1) prunes the region if the computed lower bound on
its minimum-cost solution (lower bound cost(work)) exceeds the best cost found so far
(Lines 2–3), (2) exhaustively searches for the minimal solution in the region when the region
is smaller than some threshold (Lines 5–11), or (3) splits the regions into smaller pieces for
later processing (Line 13). The output is a minimum-cost solution min cost soln, along
with the cost lowest cost of that solution.
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1: coforeach (work in queue) {

2: if (lower_bound_cost(work) >= lowest_cost)

3: continue;

4: if (size(work) < THRESHOLD) {

5: soln = find_min_cost_solution(work);

6: synchronized (lock) {

7: if (cost(soln) < lowest_cost) {

8: lowest_cost = cost(soln);

9: min_cost_soln = soln;

10: }

11: }

12: } else {

13: queue.add(split(work))

14: }

15: }

Figure 2.1: Our running example — a generic, parallel branch-and-bound procedure for
finding the minimum-cost solution in a given solution space. Variables queue, lowest cost,
and min cost soln are shared between parallel loop iterations, while variables work and
soln are thread local. Not shown is the code to read the input, to initialize queue, and, at
the end, to output lowest cost and min cost soln.

Our example procedure is a parallel search: the coforeach construct spawns a new
parallel iteration whenever queue contains a work item, continue ends its parallel iteration,
and the loop terminates when all spawned iterations have finished and queue is empty.
Further, the code synchronizes on lock lock to safely update shared variables lowest cost
and min cost soln in Lines 7–10. (The queue data structure must be thread-safe, as
well.) Note, however, that procedures lower bound cost and find min cost solution are
thread-local, operating only on data private to the calling thread.

2.2 The Challenge of Parallelism Correctness
The use of parallelism in our example in Figure 2.1 is quite simple: a single parallel construct
(coforeach) is used to run loop iterations in parallel, a thread-safe shared work queue is
used, and one shared lock is used to protect writes to the two shared variables (lowest cost
and min cost soln). Thus, we claim that we should be able to test, debug, reason about,
and verify the correctness of our example’s use of parallelism in similarly simple way — in
particular, without getting entangled in the complex details of the fundamentally-sequential
functional correctness of the benchmarks.

As discussed in Chapter 1, there exists a wide variety of techniques and tools to auto-
matically test and verify parallel programs. But we claim that such tools are not sufficient
for checking the parallelism correctness for our running example. Such tools typically fall
into two categories:



CHAPTER 2. OVERVIEW 7

1. Many techniques aim to find parallelism errors in a completely automated way, with
no additional specification from the user — for example, tools to detect data races
or potential atomicity violations. (Note that we can think of such tools as using an
implicit parallelism correctness specification — i.e., “a program with correct parallelism
contains no data races”.) But the issues reported by such tools are often not true
parallelism errors.

Such a tool might report, for example, that our branch-and-bound program has a
data race — lowest cost can be concurrently read at Line 2 and written at Line 8.
Similarly, such a tool might assume that body of the coforeach-loop is intended to
execute atomically, and then report that our example has a potential atomicity violation
— as a parallel loop iteration may read lowest cost at both Line 2 and Line 7, while
another thread can modify lowest cost in between these two reads. But, as we will
show later in this chapter, neither the data race nor the apparent atomicity violation
are bugs — the use of parallelism in our example program is correct.

2. To avoid the above problem of finding and reporting program behaviors that are sus-
picious but ultimately not erroneous, many techniques rely on some kind of functional
correctness specification from the user. Such techniques then report an error only when
a (potential) program execution has been found that violates the given specification.
The specification can range from low-level partial correctness assertions such as the
absence of null-pointer dereferences and other runtime errors, to unit tests (which, in
essence, specify that, for a specific input, the program’s output and behavior must sat-
isfy certain assertions), to full functional correctness specifications that specify exactly
what outputs are correct as a function of the program input.

But it can be extremely difficult to write the kind of functional correctness specifica-
tion that that is needed to effectively test or verify parallelism correctness with this
approach. Imagine, for example, writing postconditions to specify the correct output of
an application to render a fractal or of an application to compute a likely phylogenetic
tree given genetic sequence data.

For our branch-and-bound procedure, for example, writing a specification that the
returned min cost soln is a valid solution, let alone a solution achieving the minimum
cost, could be quite complex. Constructing even a single correct test input and output
may also be quite challenging, especially given that we often need fairly large test
inputs to exercise the most interesting and error-prone aspects of a parallel program.
In particular, one of our benchmark programs (phylogeny), which we examine in later
chapters, is a branch-and-bound search. We were unable to write any kind of useful
traditional functional correctness specification or unit test for this benchmark.

Note, however, the the above difficulties are all due to the sequential complexity
of our example program. That is, while functions find min cost solution and
lower bound cost may be very complex — e.g., finding a solution to an integer pro-
gramming problem and bounding such a solution with a linear programming relaxation
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— these functions perform sequential computations on thread-local data. And any er-
rors relating to these functions are sequential errors — i.e., a sequential version of our
example program, in which the main loop was a simple, sequential for-loop, would
have the same errors.

We claim there is a great need for easier-to-write specifications that focus on just the
correctness of a program’s use of parallelism. Thus, we propose two high-level and partial
parallelism correctness specifications: semantic determinism and semantic atomicity. Fur-
ther, we propose nondeterministic sequential (NDSeq) specifications, which allow us to give
a complete specification of the parallelism correctness of a program, using a sequential but
nondeterministic version of the program. In the remainder of this chapter, using our run-
ning example, we discuss how we can both effectively write, test, and automatically infer
such specifications without having to grapple with the complex and fundamentally-sequential
functional correctness.

2.3 Semantic Determinism Specification

A key correctness property for parallel programs is determinism. We say that a parallel
computation is deterministic if it always produces the same answer (i.e. the same output or
final result) when given the same input, no matter how the parallel threads of execution are
nondeterministically interleaved. If we can show that a parallel program is deterministic,
then we often have a strong signal that the program’s use of parallelism is correct. That is,
how can there be any parallelism errors if every different thread schedule produces the same
result?

Thus, in Chapter 3 we propose semantic determinism specifications to allow a program-
mer to specify that the final result of a computation should be the same, despite the un-
controlled nondeterministic interleaving of the parallel threads. Formally, for a block P of
parallel code, a programmer can write:

deterministic assume(Pre(s0, s
′
0)) {

P

} assert(Post(s, s′));

This specification asserts the following: Suppose P is executed twice with potentially
different schedules, once from initial state s0 and once from initial state s′0, yielding final
states s1 and s′1, respectively. Then, if the user-specified precondition Pre holds over s0 and
s′0, then s and s′ must satisfy the user-specified postcondition Post.

Note that this specification is quite different from a traditional functional correctness
specification, in which the precondition and postcondition would each refer to a single pro-
gram state — one at the beginning of P and one at the end of P . Such a traditional
specification would have to specify correct behavior by relating the final state to the initial
state. Our determinism specifications instead require only specifying equivalence between
pairs of initial states and between pairs of final states.
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For our example program in Figure 2.1, we can write the determinism specification:

deterministic assume(equalElements(queue, queue’)) {
... code from Figure 2.1 ...

} assert(lowest_cost == lowest_cost’);

That is, given two runs of our example code on queues which contain equal regions of the
solution space, we should get the same final output. Note the use of primed variables queue’
and lowest cost’ in our determinism specification. These variables represents the values of
variables queue and lowest cost in the corresponding state from a different execution. As
our precondition and postcondition each relate two different program states from different
program executions, we call such a predicate a bridge predicate.

Our semantic determinism specifications have several advantages. Our determinism speci-
fication for our example program is quite simple to write, while, as we discussed in Section 2.2,
writing a traditional functional correctness specification could be very difficult. The specifi-
cation clearly captures a natural and important correctness property of our example program
— if, for the same input, two different thread schedules could return answers with different
costs, there would clearly be an error in the program.

Further, the use of bridge predicates in our determinism specifications allow a program-
mer to specify that different thread schedules need not produce bit-by-bit identical final
states, but only need to produce results that are equivalent at the semantic level of his or
her application. We argue in Chapter 3 that this makes our determinism specifications much
more widely-applicable than previous, more strict approaches to specifying and checking de-
terminism. We allow programmers to write these bridge predicates using standard Java, in
order to take advantage of existing methods (i.e., equalsmethods) or to simply write custom
methods for checking for semantic equivalence. In our example determinism specification,
we use method equalElements to check queue and queue’ for semantic equivalence — this
method returns true if queue and queue’ contain the same set of elements, irrespective
of the order of the elements or of the internal structure or layout in memory of queue and
queue’. (And the elements themselves are similarly compared via equals methods, rather
than a low-level, bit-by-bit comparison.)

Note that, for our example program, we cannot use the specification:

deterministic assume(equalElements(queue, queue’)) {
... code from Figure 2.1 ...

} assert(lowest_cost==lowest_cost’
&& min_cost_soln.equals(min_cost_soln’);

Different thread schedules cause the solution space to be searched in different orders, chang-
ing which regions are pruned and changing which solution is found among multiple minimum-
cost solutions. Thus, different executions can correctly return completely different final
min cost soln. This nondeterminism is an intended and expected part of our example pro-
gram. (It is possible to restructure the example to return a fully-deterministic final answer,
but at a performance cost.)
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Testing Semantic Determinism Specifications

Suppose that we want to test that our example program conforms to its determinism speci-
fication from the previous section:

deterministic assume(equalElements(queue, queue’)) {
... code from Figure 2.1 ...

} assert(lowest_cost == lowest_cost’);

Suppose further that we have several test inputs for the program. For each test input,
suppose that we run our example program several times. Note that our determinism spec-
ification contains one specified deterministic block, around the main coforeach-loop in the
example program. When each test execution reaches the end of the specified deterministic
block, we would like to compare the final value of lowest cost to the final values from other
executions which started with equivalent values of queue.

In Chapter 3, we propose a simple technique for performing such testing of determinism
specifications. We implement a determinism specification library for Java that, at the be-
ginning and at the end of the execution of any deterministic block, serializes and records all
program state that is referenced by the determinism precondition and postcondition. That
is, in each of our runs of our example program, just before starting the coforeach-loop,
our determinism specification library serializes and saves to disk the contents of queue.
And, at the end of the coforeach-loop, our determinism library saves to disk the value of
lowest cost. Further, our library compares the saved values (queue, lowest cost) to the
values (queue′, lowest cost′) saved in all previous test executions. If we find any pairs for
which:

queue.equals(queue′) ∧ (lowest cost != lowest cost′)

then we report a determinism violation. That is, we warn the programmer, because we have
found that the program is not semantically deterministic as intended — we have two different
parallel executions that incorrectly produce nonequivalent results starting from equivalent
initial states.

To make our determinism testing more effective, we can combine the checking of our deter-
minism specification library with any existing technique for perturbing the thread scheduling
of a parallel program in order to more quickly find and expose bugs. In Chapter 3, we com-
bine our determinism testing with active testing [132, 85], which finds thread schedules with
real data races, non-atomic methods, etc.

Our experiments with determinism specifications and active testing highlight a key ad-
vantage of using lightweight specifications for parallelism correctness. On our benchmarks,
existing active testing techniques report 40 real data races, such as the data race between
Line 2 and Line 8 of our example program (on variable lowest cost). But only one of these
data races leads to a violation of our determinism specifications. By writing determinism
specifications, a programmer can quickly separate the real bugs (i.e., data races leading to
incorrect, nondeterministic program results) from benign data races, such as the one in our
example program, which are not actually parallelism errors.
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Automatically Inferring Determinism Specifications

We show in Chapter 3 that our determinism specifications allow a programmer to effectively
test and document the intended, high-level deterministic behavior of his or her application.
But, to see any benefit, the programmer must first write a determinism specification for the
target application. We could save programmer effort if we had a way to automatically write
determinism specifications for parallel applications. Further, being able to automatically
generate determinism specifications would enable automatic determinism checking, in which
we first generated and then tested a semantic determinism specification for an application.

We show in Chapter 4 that, if we observe a handful of representative executions of a
parallel program, it is possible to automatically infer a likely determinism specification for
the program. The key insight is that, although the space of possible determinism specifi-
cations is infinite, in practice determinism specifications have a very simple structure: the
precondition and the postcondition are conjunctions of a number of equality predicates —
predicates comparing a single variable to its primed counterpart for equality or approximate
equality. For example, for our branch-and-bound search, we would only consider determinism
preconditions and postconditions containing predicates such as:

• queue.equals(queue′)

• equalElements(queue, queue′)

• lowest cost == lowest cost′

• |lowest cost− lowest cost′| < ε

• min cost soln.equals(min cost soln′)

From representative executions, we can observe different min cost soln at the end of
the coforeach-loop for executions with identical states at the start of the coforeach-loop.
Thus, we see that the strongest postcondition consistent with our observations is:

lowest cost != lowest cost′

(If lowest cost was a floating-point value, approximate equality might be needed, instead.)
Further, we observe that the weakest precondition that guarantees that this postcondition

holds for all of our observed executions is:

equalElements(queue, queue′)

Thus, given a sufficiently representative set of program executions, we can automatically
infer our determinism specification for our running example.

In Chapter 4, we describe Determin, our proposed specification inference technique,
and we show that, for nearly all of our benchmarks from Chapter 3, Determin can produce
determinism specifications equivalent to or better than those we wrote by hand. Further,
one of the inferred specifications highlights an error in our previous, manual determinism
specification for one of our benchmarks.
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2.4 Semantic Atomicity Specifications
We find in Chapter 3 that our determinism specifications capture critical parallelism cor-
rectness properties for many applications. But, as discussed in the previous section, parallel
applications can intentionally have nondeterministic behavior — e.g., our branch-and-bound
example in Figure 2.1, which performs a nondeterministic search through its solution space.
Thus, although we can use a determinism specification to specify that any parallel behav-
ior that leads to non-equivalent final lowest cost is an error, we cannot specify anything
about parallelism errors that lead to incorrect min cost soln. For applications with such
algorithmic nondeterminism, we need some additional other kind of lightweight specification
in order to distinguish the nondeterministic interactions between parallel threads that are
expected from erroneous parallel interference between threads.

Similarly, for concurrent data structures and other “open” parallel libraries, there is no
primary parallel computation, with inputs and outputs, for which we can write a determinism
specification. Rather, parallelism correctness for such libraries means that the libraries
behave “correctly” when a parallel client makes concurrent calls into the library.

In both cases above, the key is the possibility of parallel interference. In our branch-
and-bound example, multiple iterations of the coforeach-loop may concurrently access and
modify shared variables queue, lowest cost, and min cost soln. Is our example written
such that each loop iteration behaves correctly for any possible concurrent accesses by other
iterations, or can there be harmful interference that leads to an incorrect program result?

1: coforeach (work in queue) {

@assert_atomic {

2: if (lower_bound_cost(work) >= lowest_cost)

3: continue;

4: if (size(work) < THRESHOLD) {

5: soln = find_min_cost_solution(work);

6: synchronized (lock) {

7: if (cost(soln) < lowest_cost) {

8: lowest_cost = cost(soln);

9: min_cost_soln = soln;

10: }

11: }

12: } else {

13: queue.add(split(work))

14: }

}

15: }

semantically atomic with respect to:

(lowest_cost == lowest_cost’)

&& min_cost_soln.equals(min_cost_soln’)

Figure 2.2: Our running example, with a semantic atomicity specification.
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A fundamental non-interference property for parallel programs is atomicity [64]. A block
of code is said to be atomic if it appears to execute all at once, indivisibly and without
interruption from any other program thread. Thus, in Chapter 5, we propose semantic
atomicity specifications, to allow programmers to specify that certain program regions are,
at a high-level, free from parallel and concurrent interference.

In Figure 2.2, we give a semantic atomicity specification for our example program. We
have enclosed the body of the coforeach-loop in an @assert atomic specification block.
This specification requires that, for any parallel execution of the branch-and-bound search,
producing lowest cost and min cost soln, there must exist an equivalent, serial execution:

• [Equivalent] This other execution must produce lowest cost’ and min cost soln’
that are semantically equivalent according to the given bridge predicate:

lowest cost==lowest cost’ && min cost soln.equals(min cost soln’)

• [Serial] In this other execution, each @assert atomic block executes all-at-once and
indivisibly — i.e., once some thread begins executing an @assert atomic block, no
other thread may execute any instructions until the first thread has finished executing
the entire @assert atomic block.

If our specification is satisfied, it means that, through the use of locking and a thread-safe
queue, we have successfully implemented the body of the coforeach loop so that it executes
as if it were atomic. That is, although multiple loop iterations may execute in parallel,
interleaving their instructions and concurrently accessing lowest cost, min cost soln, and
queue, we have used sufficient concurrency control to ensure that the final result is always a
result we could have gotten if each loop iteration were actually executed all-at-once, without
interruption by any other thread.

Unlike in our determinism specification in Section 2.3, in our semantic atomicity specifi-
cation we can say something about parallelism correctness with respect to min cost soln.
Recall that a determinism specification requires that, for any parallel execution, all other
parallel executions produce equivalent results. Thus, we could not say anything about
min cost soln, because our branch-and-bound search can correctly return different minimum-
cost solutions in different executions on the same input. But our atomicity specification only
requires that, for any parallel execution, there exists one execution that produces equiva-
lent results, although this execution must be serial. This difference allows us capture the
parallelism correctness of the nondeterministic aspects of our running example.

This difference also means, however, that we cannot capture desired determinism with
atomicity specifications. In particular, unlike our determinism spec, our semantic atomicity
spec in Figure 2.2 does not require that every parallel thread schedule return the same
lowest cost. Thus, our atomicity and determinism specifications complement each other.

Note that, as in our determinism specifications, the use of bridge predicates allows us
to specify atomicity with respect semantic equivalence, at the level of abstraction of our
application. We show in Chapter 5 that focusing on such high-level atomicity allows us
to write useful specifications for many more programs than if we used low-level bit-by-bit
equivalence typically used in traditional atomicity work.
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Testing Semantic Atomicity Specifications

Suppose that we want to test that our example program conforms to its semantic atomicity
specification in Figure 2.2. That is, given an execution of our parallel branch-and-bound
search, producing lowest cost and min cost soln, we want to check if any serial executions
produce equivalent final results. It is clear that, for most programs, we cannot perform such
a general check — there will be far too many possible serial executions for us to enumerate
all of them in order to compare their results to those of our original parallel execution.

In Chapter 5, we show that, with two key insights, we can effectively test semantic
atomicity specifications. First, we show that, for a given parallel execution, it is sufficient to
consider only strict serializations [115] of the execution when searching for equivalent, serial
behavior. For example, consider the parallel execution described in Figure 2.3 on the next
page. In this execution, two pairs of @assert atomic blocks execute concurrently, those for
loop iterations B and C and those for loop iterations E and F. In searching for equivalent
serial executions, we will examine only:

• Serial executions which run the exact same set of @assert atomic blocks. Such execu-
tions are serializations [115] of the original parallel execution, and with this restriction
we could be said to be checking the serializability of our specified atomic blocks.

Thus, for example, we will not consider the serial execution described by Figure 2.4
on the next page. In this trace, because of differences in execution order1, different
regions of the solution space are pruned and a different set of @assert atomic blocks
are run (i.e., on different elements work of queue).

• Serial executions which preserve the order of @assert atomic blocks that did not
overlap in the parallel execution. Such executions are strict serializations [115], or
linearizations [100], of the original execution, and with this additional restriction we
could be said to be checking the strict serializability, or linearizability, of our specified
atomic blocks.

Thus, for example, we will not consider the serial execution described in Figure 2.5, as
atomic blocks D, E, and F are all executed before atomic block C, whereas block C
was executed entirely before blocks D, E, and F in the original parallel execution.

Even restricted to strict serializations, however, we could have far too many serial ex-
ecutions to examine in checking the semantic atomicity of a given parallel execution. Our
second insight in Chapter 5 is that we can effectively test a program’s semantic atomicity
by only testing the strict serializability of parallel executions in which a small number of
atomic blocks overlap (i.e. execute concurrently). For example, in the parallel execution
in Figure 2.3, there are only two pairs of overlapping dynamic instances of atomic blocks:

1Note that elements of queue can be processed out-of-order in a serial execution because, although
loop iterations are started for each element of the queue in order, a later loop iteration can begin its
@assert atomic block before an earlier parallel iteration.
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B with C, and E with F. Thus, as the relative orderings of all other pairs of atomic blocks
are fixed, there are at most four possible strictly-serialized executions that we must examine
in our atomicity testing for this parallel execution. One such serial execution is shown in
Figure 2.6 — in this execution, the @assert atomic block B is executed before block C,
and block F is executed before block E.

In Chapter 5, we propose a novel testing technique that: (1) generates parallel execu-
tions with a small number of overlapping @assert atomic blocks, and (2) enumerates all
linearizations of the each generated parallel execution in order to test semantic atomicity. In
Chapter 5, we apply our testing technique to a number of parallel and concurrent Java bench-
marks and find several previously-unknown atomicity errors, including in the widely-used
java.util.concurrent library.

Note that, as with our determinism checking, we are testing semantic atomicity, compar-
ing only final program results and comparing those results with high-level bridge predicates.
As we discuss in Chapter 5, this is quite different than traditional approaches to atomicity
checking – in particular, conflict-serializability [115] checking [62], which imposes strict con-
ditions on all of the low-level shared reads and writes in a program. We show in Chapter 5
that our higher-level approach allows to specify and test the atomicity of a much wider range
of programs.

iteration A! iteration B!

iteration C!

iteration E!

iteration F! iteration D!

A! B!C! G! H!D! J!

A! B! C!E!F! D!

A! B! C! E!F! D!

Figure 2.3: A trace of a parallel execution of our running example from Figure 2.2,
showing when each @assert atomic block started and ended. The execution is shown
left-to-right — blocks that executed concurrently are shown overlapping vertically. Each
block is identified by the work item processed by its loop iteration (A, B, . . . ).

iteration A! iteration B!

iteration C!

iteration E!

iteration F! iteration D!

A! B!C! G! H!D! J!

A! B! C!E!F! D!

A! B! C! E!F! D!

Figure 2.4: A trace of a serial execution of our example program.

iteration A! iteration B!

iteration C!

iteration E!

iteration F! iteration D!

A! B!C! G! H!D! J!

A! B! C!E!F! D!

A! B! C! E!F! D!

Figure 2.5: A serial execution that is a serialization of the parallel trace from Figure 2.3.

iteration A! iteration B!

iteration C!

iteration E!

iteration F! iteration D!

A! B!C! G! H!D! J!

A! B! C!E!F! D!

A! B! C! E!F! D!

Figure 2.6: A serial execution that is a strict serialization of the trace from Figure 2.3.
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2.5 Nondeterministic Sequential Specifications
In Sections 2.3 and 2.4, we have shown that semantic determinism specifications and semantic
atomicity specifications both allow us to specify critical, high-level parallelism correctness
properties for our example parallel branch-and-bound program. But, these two specifications
are only partial specifications of parallelism correctness.

That is, imagine we had a formal proof that our running example program satisfied
both our semantic determinism specification from Section 2.3 and our semantic atomicity
specification from Figure 2.2. Is our example program definitely free from any errors in its
use of parallelism? Can we turn our attention to the functional correctness of the program —
i.e., whether or not it produce a correct output, given its input — knowing that we are done
addressing the parallelism correctness? And can we test, debug, and verify the functional
correctness in a sequential way, independent of the interleaving of parallel threads?

Unfortunately, the answer to the above questions is no. As we showed in the previous two
sections, our determinism specification tells us nothing about the parallelism correctness with
respect to the final min cost soln found. And, even knowing that every @assert atomic
block executes as if actually atomic, we are still left with a program with parallel threads
that interleave nondeterministically.

In Chapter 6, we propose nondeterministic sequential (NDSeq) specifications as a com-
plete specification for parallelism correctness for programs with structured parallelism (e.g,
parallel coforeach loops or cobegin blocks). The key idea is to specify the parallelism cor-
rectness of a parallel program using a version of the program that is sequential, but also has
some controlled nondeterminism. We say that a program’s use of parallelism is correct if, for
every execution of the program, there is an execution of the NDSeq specification program
that produces an equivalent result. Thus, if a program conforms to its NDSeq spec, then we
can test, debug, verify, etc., the program’s functional correctness on the nondeterministic,
sequential version of the program, without having to deal with parallel threads.

In Figure 2.7 on the next page, we give an NDSeq specification for our branch-and-
bound example program. The specification program is very similar to the original parallel
program, but the parallel coforeach loop has been replaced with a sequential nd-foreach
loop. That is, in the NDSeq specification, there are no parallel threads and only one loop
iteration ever runs at a time. In the NDSeq specification, we have replaced the uncontrolled
nondeterminism of parallel interleavings with two controlled, nondeterministic constructs:

• The nd-foreach loop at Line 1. Although the nd-foreach loop is sequential, unlike
a normal foreach loop, the nd-foreach can operate on the elements in queue in any
nondeterministic order. At the beginning of a loop iteration, the nd-foreach loop can
set work to any element chosen nondeterministically and removed from queue.

• The pruning check at Line 2. The star (“*”) added to the condition can evaluate
nondeterministically to true or false. Thus, when the NDSeq specification program
compares lower bound cost(work) to lowest cost, even when the lower bound ex-
ceeds the lowest cost found so far, the NDSeq specification can nondeterministically
choose not to prune, instead executing the rest of loop iteration from Line 4 onward.
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1: nd-foreach (work in queue) {

2: if (* && lower_bound_cost(work) >= lowest_cost)

3: continue;

4: if (size(work) < THRESHOLD) {

5: soln = find_min_cost_solution(work);

6: synchronized (lock) {

7: if (cost(soln) < lowest_cost) {

8: lowest_cost = cost(soln);

9: min_cost_soln = soln;

10: }

11: }

12: } else {

13: queue.add(split(work))

14: }

15: }

equivalence is with respect to:

(lowest_cost == lowest_cost’)

&& min_cost_soln.equals(min_cost_soln’)

Figure 2.7: A nondeterministic sequential (NDSeq) specification for our running example.

We now say that our example program’s use of parallelism is correct if, for every execution
of our parallel branch-and-bound search, there exists one execution of the NDSeq specifi-
cation program that produces equivalent results. As with our determinism and atomicity
specifications, we can use a bridge predicate to specify what it means for program results to
be equivalent — i.e. identical lowest cost and semantically equal min cost soln.

At first, NDSeq specifications may appear to be a restriction of our semantic atomicity
specifications, where the entire body of each thread must be enclosed in a specified atomic
block — so that a serial execution is, in fact, a sequential execution, with no interleav-
ing of threads. But NDSeq specifications are also a generalization of semantic atomicity
specifications, because the NDSeq specification contains nondeterministic constructs (i.e.,
nd-foreach and “*”) not present in the original, parallel program.

We think of an NDSeq specification as indicating all of the nondeterminism a programmer
expects in his or her parallel application — if the interleaving of parallel threads causes any
additional, unintended nondeterminism, leading to non-equivalent final results, then there is
a parallel error. For our branch-and-bound example, we specify that the nondeterminism of
thread scheduling should have no more effect on the final results than: (1) processing items
from the queue in a nondeterministic order, and (2) nondeterministically not pruning some
work items could have been pruned.

In Chapter 6, we formally describe our proposed NDSeq specifications. We also identify
several common patterns for writing NDSeq specs. Using these patterns, we were able to
write NDSeq specs for the complete parallelism correctness of a number of Java benchmarks,
even in cases where the functional correctness was far too complex for us to specify.
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Testing NDSeq Specifications

Suppose that we want to test that our example program conforms to its nondeterministic
sequential specification in Figure 2.7. That is, given an execution of our parallel branch-
and-bound search, producing lowest cost and min cost soln, we want to check if any
executions of our NDSeq specification produce equivalent final results.

We observe that this checking problem appears quite similar to the problem of checking
semantic atomicity, described in Section 2.4. Indeed, an NDSeq specification is like an
atomicity specification with added nondeterminism, except that the entire body of every
parallel thread must be declared to be atomic — e.g., in our example program, our NDSeq
specification, in essence, is entirely enclosing each loop iteration in an atomic block, including
the removal of an element from the queue.

The atomicity testing approach we described in Section 2.4, however, cannot easily be
applied to testing NDSeq specifications. Even if we could use a similar approach to limit
the number of orderings of nd-foreach loop iterations that we had to examine, we would
have far too many executions to enumerate because, in searching for an NDSeq execution
producing equivalent final results, we would have to try out all possible evaluations of the
nondeterministic star (“*”) construct at Line 2.

Rather, we attack the problem of testing against NDSeq specifications by using a tech-
nique from traditional atomicity testing [62]: conflict-serializability [115]. In traditional atom-
icity checking, one constructs a conflict graph, whose vertices are the dynamic atomic blocks
(often called “transactions”) run in a given parallel execution. One adds an edge from one
dynamic instance of any atomic block to another whenever:

• The first block accesses some shared variable v.

• The second block accesses the same shared variable v later in the execution.

• At least one of the accesses is a write.

In traditional atomicity checking, one further adds an edge from earlier atomic blocks to later
atomic blocks in the same thread. A classic theorem from the theory of database concurrency
control [115] states that, if there are no cycles in this conflict graph, then the atomic blocks
in the execution are serializable. In fact, the theorem shows that the parallel execution can
be rearranged — by swapping adjacent, non-conflicting instructions from different threads
— into an execution that behaves identically, but in which every atomic block is executed
all-at-once, without interruption by any other thread.

We show in Chapters 5 and 6 that conflict-serializability, on its own, is too strict for test-
ing the parallelism correctness of many real applications. But, in Chapter 6 we propose a way
to generalize conflict-serializability checking in order to effectively check parallel programs
against their NDSeq specifications. The key idea is that, by combining the nondetermin-
ism added to the NDSeq specification (i.e, the “*” construct) with a dynamic dependence
analysis, we can show that certain conflict accesses are irrelevant and can be safely ignored
during conflict-serializability checking.

For example, consider an execution of our parallel branch-and-bound procedure in which:
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R1. First, parallel loop iteration t1 reads shared variable lowest cost at Line 2, and does
not prune its region of the solution space.

W2. Then, a different parallel loop iteration t2 writes to shared variable lowest cost.

R3. Finally, iteration t1 reads lowest cost again, this time at Line 7.

In traditional conflict-serializability checking, we see a conflict edge from t1 to t2 —
because t1 reads lowest cost (R1) before t2 writes to it (W2) — and a conflict edge from
t2 to t1 — because t2 writes to lowest cost (W2) before t1 reads it (R3). Thus, we would
declare the execution non-serializable and a potential parallelism error.

But with our generalized conflict-serializability checking, we observe that:

1. The conflicting read (R1) of shared variable lowest cost is only used once — in
comparing lowest cost to lower bound cost(work).

2. Further, because lowest cost < lower bound cost(work), iteration t1 did not prune.
As a result, Lines 2–3 have no persisting local or global side effects.

3. Thus, in the NDSeq specification we can get the exact same behavior of Lines 2–3 —
i.e., not pruning and having no side effects — if the “*” in the condition at Line 2
evaluates to false.

Thus, any conflicts involving the read R1 of lowest cost at Line 2 are irrelevant. In
rearranging the instructions of our parallel execution in order to form an equivalent
NDSeq execution, it is fine to swap the read R1 to after the write W2, because the
resulting NDSeq execution can reproduce the same behavior — i.e., not pruning in
iteration t1 — by evaluating its “*” as false and then not even reading lowest cost.

We prove in Chapter 6 that, if our checking technique can show that, after removing all irrel-
evant conflicts, no cycles remain in the conflict graph, then the observed parallel execution
does conform to the NDSeq specification.

Unlike our technique from Section 2.4 for testing semantic atomicity, our generalized
conflict-serializability checking for NDSeq specifications requires no enumeration of nonde-
terministic, sequential executions. Instead, we only need to determine which reads and
writes are relevant, via our dynamic dependence analysis, and then check for conflict-cycles
among the remaining accesses. One trade-off when using a technique focusing on low-level
reads and writes, however, is that we can no longer use any bridge predicates for specifying
equivalence in our NDSeq specifications. Rather, we specify the set of variables that hold the
final output (called focus variables), and our dynamic NDSeq checking analysis ensure that
all writes to the focus variables are preserved. Another trade-off is that our NDSeq checking
may give false warnings for parallel executions that are correct but not conflict-serializable,
even with our dynamic dependence analysis.

In Chapter 6, we find that our runtime checking technique is effective in testing our NDSeq
specifications for Java programs, eliminating nearly all of the false warnings traditional
conflict-serializability would report.
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Automatically Inferring NDSeq Specifications

In writing an NDSeq specification for a structured-parallel application, a programmer must:
(1) Identify the program’s focus variables, which hold the final result of the program, and
(2) Add nondeterministic star (“*”) constructs to some conditionals to specify the intended
and expected nondeterministic behavior2. For example, to write our NDSeq specification in
Figure 2.7 for our branch-and-bound application, we had to (1) identify lowest cost and
min cost soln as the focus variables, and (2) add a “*” to the conditional at Line 2. For
our benchmarks in Chapters 6 and 7, we found it fairly simple to identify the focus variables,
but often complex and time-consuming to identify every location where a nondeterministic
“*” had to be added in order to capture all of a program’s intended nondeterminism.

We could save programmer effort if we had a way to automatically complete this second
task of identifying all of the necessary nondeterminism in an NDSeq specification. We
must be careful, however, to not add too much nondeterminism, as we want an NDSeq
specification that captures all of the nondeterministic behavior of the corresponding parallel
program, but we do not want to add any additional, unnecessary nondeterminism, which
could complicate our efforts to sequentially test, debug, and verify functional correctness on
the NDSeq specification.

In Chapter 7, we show that it is possible to infer likely placements of “*” constructs for
an NDSeq specification for a parallel program, given a handful of representative executions
of the program and a specification of the focus variables. The key idea is to find a minimum
number of “*” that need to be added to the NDSeq specification so that the observed
parallel executions all conform to the specification. We find such “*” and their placement
in the NDSeq specification by encoding the specification inference problem as a minimum-
cost satisfiability instance (MinCostSAT). In particular, given a set of parallel executions,
we construct a SAT instance that corresponds to running our dynamic NDSeq checking
algorithm from Section 2.5 on each execution. That is, there are constraints corresponding
to running the dynamic dependence analysis to identify relevant and irrelevant reads and
writes, as well constraints to check for cycles in the conflict graph, and the constraints are
solvable only if there exists an NDSeq specification (i.e., “*” placements) to which all of the
observed executions conform. There is a variable in our instance for each location to which a
nondeterministic “*” construct could be added, so we can use a MinCostSAT solver to find
a solution in which a minimum number of “*” are added.

We implement nDetermin, our specification inference algorithm, in Chapter 7 and
prove it to be sound, as well as complete, relative to our NDSeq checking algorithm. We
apply nDetermin to the benchmarks from Chapter 6, and we find that nDetermin is
able to automatically infer, for nearly all of our benchmarks, equivalent or better NDSeq
specifications than those we previously wrote by hand. Further, for the two benchmarks
with parallelism errors, nDetermin correctly reports that no NDSeq specification exists
that either benchmark would satisfy.

2We automatically treat structured-parallelism constructs — e.g., coforeach — as nondeterministic
sequential constructs in the NDSeq specification — e.g., nd-foreach.
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Chapter 3

Asserting and Checking Determinism
for Multithreaded Programs

Despite the increasing need for programmers to write parallel software to take advantage
of multicore processors, parallel software remains more difficult to write and debug than its
sequential counterpart. A key reason for this difficulty is that parallel programs can show
different behaviors depending on how the executions of their parallel threads interleave.

The fact that executions of parallel threads can interleave with each other in arbitrary
fashion to produce different outputs is called internal nondeterminism or scheduler nonde-
terminism. Internal nondeterminism is essential to make parallel threads execute simultane-
ously and to harness the power of parallel chips. However, most of the sequential programs
that we write are deterministic — they produce the same output on the same input. There-
fore, in order to make parallel programs easy to understand and debug, we need to make
them behave like sequential programs, i.e. we need to make parallel programs deterministic.

A number of ongoing research efforts aim to make parallel programs deterministic by
construction. These efforts include the design of new parallel programming paradigms [143,
96, 83, 4, 92, 16, 82] and the design of new type systems and annotations that could retrofit
existing parallel languages [8, 20]. But such efforts face two key challenges. First, new
languages see slow adoption and often remain specific to limited domains. Second, new
paradigms often include restrictions that can hinder general purpose programming. For
example, a key problem with new type systems is that they can make programming more
difficult and restrictive.

Under the most widespread method for writing parallel programs, threads [80, 19, 41,
81], ensuring correct deterministic behavior can be very challenging. To aid programmers
in writing deterministic programs, a number of tools and techniques have been developed.
These tools attempt to automatically find sources of nondeterminism likely to be harmful
(i.e. to lead to nondeterministic output) such as data races and high-level race conditions.

c© ACM, 2009. A version of this chapter was published in the Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE ’09), http://doi.acm.org/10.1145/1595696.1595700

http://doi.acm.org/10.1145/1595696.1595700
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A large body of work spanning over 30 years has focused on data race detection. A data
race occurs when two threads concurrently access a memory location and at least one of
the accesses is a write. Both dynamic [44, 2, 130, 122, 38, 3, 132] and static [139, 59, 23,
54, 71, 49, 120, 107] techniques have been developed to detect and predict data races in
multithreaded programs. Although the work on data race detection has significantly helped
in finding determinism bugs in parallel programs, it has been observed that (1) the absence
of data races is not sufficient to ensure determinism [9, 65, 57], and (2) data races do not
always cause nondeterministic results. In fact, race conditions are often useful in gaining
performance, while still ensuring high-level deterministic behavior [14].

We argue that programmers should be provided with a framework that will allow them
to express deterministic behaviors of parallel programs directly and easily. Specifically, we
should provide an assertion framework where programmers can directly and precisely express
the necessary deterministic behavior. On the other hand, the framework should be flexible
enough so that deterministic behaviors can be expressed more easily than with a traditional
assertion framework. For example, when expressing the deterministic behavior of a parallel
edge detection algorithm for images, we should not have to rephrase the problem as a race
detection problem; neither should we have to write a state assertion that relates the output
to the input, which would be complex and time-consuming. Rather, we should simply be
able to say that, if the program is executed on the same image, then the output image
remains the same regardless of how the program’s parallel threads are scheduled.

In this chapter, we propose such a framework for asserting that blocks of parallel code be-
have deterministically. Formally, our framework allows a programmer to give a specification
for a block P of parallel code as:

deterministic assume(Pre(s0, s
′
0)) {

P

} assert(Post(s, s′));

This specification asserts the following: Suppose P is executed twice with potentially
different schedules, once from initial state s0 and once from s′0 and yielding final states s1
and s′1, respectively. Then, if the user-specified precondition Pre holds over s0 and s′0, then
s and s′ must satisfy the user-specified postcondition Post.

For example, we could specify the deterministic behavior of a parallel matrix multiply
with the following:

deterministic assume(|A− A′| < 10−6 and |B −B′| < 10−6) {
C = parallel_matrix_multiply_float(A, B);

} assert(|C − C ′| < 10−6);

Note the use of primed variables A′, B′, and C ′ in the above example. These variables
represent the state of the matrices A, B, and C from a different execution. As such the
predicates that we write inside assume and assert are different from state predicates written
in a traditional assertion framework — these special predicates relate a pair of states from
different executions. We call such a predicate a bridge predicate and an assertion using bridge
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predicates a bridge assertion. A key contribution of this work is the introduction of these
bridge predicates and bridge assertions. We believe that these novel predicates can be used
not only for determinism specification, but also be used for other purposes such as writing
regression tests.

Our determinism assertions provide a way to specify the correctness of the parallelism in
a program independently of the program’s traditional functional correctness. By checking
whether different program schedules can nondeterministically lead to semantically different
answers, we can find bugs in a program’s use of parallelism even when unable to directly check
functional correctness — i.e. that the program’s output is correct given its input. Inversely,
by checking that a parallel program behaves deterministically, we can gain confidence in
the correctness of its use of parallelism independently of whatever method we use to gain
confidence in the program’s functional correctness.

We have implemented our determinism assertions as a library for the Java programming
language. We evaluated the utility of these assertions by manually adding determinism
specifications to a number of parallel Java benchmarks. We used an existing tool to find
executions exhibiting data and higher-level races in these benchmarks and used our deter-
minism assertions to distinguish between harmful and benign races. We found it to be fairly
easy to specify the correct deterministic behavior of the benchmark programs using our
assertions, despite being unable in most cases to write traditional invariants or functional
correctness assertions. Further, our determinism assertions successfully distinguished the
two known harmful races in the benchmarks from the benign races.

3.1 Determinism Specification

In this section, we motivate and define our proposal for assertions for specifying determinism.
Strictly speaking, a block of parallel code is said to be deterministic if, given any particular

initial state, all executions of the code from the initial state produce the exact same final
state. In our specification framework, the programmer can specify that they expect a block
of parallel code, say P, to be deterministic with the following construct:

deterministic {
P

}

This assertion specifies that if s and s′ are both program states resulting from executing
P under different thread schedules from some initial state s0, then s and s′ must be equal.
For example, the specification:

deterministic {
C = parallel_matrix_multiply_int(A, B);

}

asserts that for the parallel implementation of matrix multiplication (defined by function
parallel matrix multiply int), any two executions from the same program state must
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reach the same program state — i.e. with identical entries in matrix C — no matter how
the parallel threads are scheduled.

A key implication of knowing that a block of parallel code is deterministic is that we
may be able to treat the block as sequential in other contexts. That is, although the block
may have internal parallelism, a programmer (or perhaps a tool) can hopefully ignore this
parallelism when considering the larger program using the code block. For example, perhaps
a deterministic block of parallel code in a function can be treated as if it were a sequential
implementation when reasoning about the correctness of code calling the function.

Semantic Determinism

The above determinism specification is often too conservative. For example, consider a
similar example, but where A, B, and C are floating-point matrices:

deterministic {
C = parallel_matrix_multiply_float(A, B);

}

Limited-precision floating-point addition and multiplication are not associative due to
rounding error. Thus, depending on the implementation, it may be unavoidable that the
entries of matrix C will differ slightly depending on the thread schedule.

In order to tolerate such differences, we must relax the determinism specification:

deterministic {
C = parallel_matrix_multiply_float(A, B);

} assert(|C − C ′| < 10−6);

This assertion specifies that, for any two matrices C and C ′ resulting from the execution
of the matrix multiply from same initial state, the entries of C and C ′ must differ by only a
small quantity (i.e. 10−6).

Note that the above specification contains a predicate over two states — each from a
different parallel execution of deterministic block. We call such a predicate a bridge predicate,
and an assertion using a bridge predicate a bridge assertion. Bridge assertions are different
from traditional assertions in that they allow one to write a property over two program
states coming from different executions whereas traditional assertions only allow us to write
a property over a single program state.

Note also that such predicates need not be equivalence relations on pairs of states. In
particular, the approximate equality used above is not an equivalence relation.
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This relaxed notion of determinism is useful in many contexts. Consider the following
example that, in parallel, adds two items to a synchronized set:

Set set = new SynchronizedTreeSet();
deterministic {

cobegin {
set.add(3);

set.add(5);

}

} assert(set.equals(set’));

If, for example, set is represented internally as a red-black tree, then a strict determinism
assertion would be too conservative. The structure of the resulting tree, and its layout in
memory, will almost certainly differ depending on which element is inserted first, and thus
the different executions can yield different program states.

But we can use a bridge predicate to assert that, no matter what schedule is taken, the
resulting set is semantically equal. That is, for objects set and set’ computed by two different
schedules, the equals method must return true because the sets must logically contain the
same elements. We call this semantic determinism.

Preconditions for Determinism

So far we have described the following construct:

deterministic {
P

} assert(Post);

where Post is a predicate over two program states in different executions resulting from dif-
ferent thread schedules1. That is, if s and s′ are two states resulting from any two executions
of P from the same initial state, then Post(s, s′) holds.

The above construct could be rewritten in the following way:

deterministic assume(s0 = s′0) {
P

} assert(Post);

That is, if any two executions of P start from initial states s0 and s′0, respectively, and
if s and s′ are the resultant final states, then s0 = s′0 implies that Post(s, s′) holds. The
above rewritten specification suggests that we can further relax the requirement of s0 = s′0
by replacing it with a bridge predicate Pre(s0, s

′
0). For example:

1Note that in the above construct we do not refer to the final states s and s′, but we make them implicit
by assuming that Post maps a pair of program states to a Boolean value.
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deterministic assume(set.equals(set’)) {
cobegin {

set.add(3);

set.add(5);

}

} assert(set.equals(set’));

The above specification states that if any two executions start from sets containing the
same elements, then after the execution of the code, the resulting sets after the two executions
must still contain exactly the same elements.

Comparison to Traditional Assertions

In summary, we propose the following construct for specifying deterministic behavior:

deterministic assume(Pre) {
P

} assert(Post);

Formally, it states that for any two program states s0 and s′0, whenever:

• Pre(s0, s
′
0) holds,

• an execution of P from s0 terminates and results in state s,

• and an execution of P from s′0 terminates and results in state s′,

then Post(s, s′) must hold.
Note that the use of bridge predicates Pre and Post has the same flavor as pre and

postconditions used for functions in program verification. However, unlike traditional pre and
postconditions, the proposed Pre and Post predicates relate pairs of states from two different
executions. In traditional verification, a precondition is usually written as a predicate over
a single program state, and a postcondition is usually written over two states — the states
at the beginning and end of the function. For example:

foo() {

assume(x > 0);
old_x = x;

x = x * x;

assert(x == old_x*old_x);
}

The key difference between a traditional postcondition and a Post predicate is that a
postcondition relates two states at different times along a same execution, whereas a Post
predicate relates two program states in different executions.
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Advantages of Determinism Assertions

Our determinism specifications are a middle ground between the implicit specification used
in race detection — that programs should be free of data races — and the full specification
of functional correctness. It is a great feature of data race detectors that typically no pro-
grammer specification is needed. However, manually determining which reported races are
benign and which are bugs can be time-consuming and difficult. We believe our determin-
ism assertions, while requiring little effort to write, can greatly aid in distinguishing harmful
from benign data races (or higher-level races).

One could argue that a determinism specification framework is unnecessary given that
we can write the functional correctness of a block of code using traditional pre- and post-
conditions. For example, one could write the following to specify the correct behavior of
parallel matrix multiply float:

C = parallel_matrix_multiply_float(A, B);

assert(|C − A×B| < 10−6);

We agree that, if one can write such a functional specification, then there is no need to
write determinism specification, as functional correctness implies deterministic behavior.

The advantage of our determinism assertions, however, are that they provide a way
to specify the correctness of just the use of parallelism in a program, independent of the
program’s full functional correctness. In many situations, writing a full specification of func-
tional correctness is difficult and time consuming. But, a simple determinism specification
enables us to use automated technique to check for parallelism bugs, such as harmful data
races causing semantically nondeterministic behavior.

Consider a parallel function parallel edge detection that takes an image as input and
returns an image where detected edges have been marked. Relating the output to the input
image with traditional pre- and postconditions would likely be quite challenging. However,
it is simple to specify that the routine does not have any parallelism bugs causing a correct
image to be returned for some thread schedules and an incorrect image for others:

deterministic assume(img.equals(img’)) {
result = parallel_edge_detection(img);

} assert(result.equals(result’));

where img.equals(img’) returns true iff the two images are pixel-by-pixel equal.
For this example, a programmer could gain some confidence in the correctness of the

routine by writing unit tests or manually examining the output for a handful of images.
He or she could then use automated testing or model checking to separately check that the
parallel routine behaves deterministically on a variety of inputs, gaining confidence that the
code is free from concurrency bugs.

We believe that it is often difficult to come up with effective functional correctness as-
sertions. However, it is often quite easy to use bridge assertions to specify deterministic
behavior, enabling a programmer to check for harmful concurrency bugs. In the Evaluation
section, we provide several case studies to support this argument.
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3.2 Checking Determinism

There may be many potential approaches to checking or verifying a determinism specification,
from testing to model checking to automated theorem proving. In this section, we propose
a simple and incomplete method for checking determinism specifications at run-time.

The key idea of the method is that, whenever a deterministic block is encountered at
run-time, we can record the program states spre and spost at the beginning and end of the
block. Then, given a collection of (spre, spost) pairs for a particular deterministic block in
some program, we can check a determinism specification, albeit incompletely, by comparing
pairwise the pairs of initial and final states for the block. That is, for a deterministic block:

deterministic assume(Pre) {
P

} assert(Post);

with pre- and post-predicates Pre and Post, we check for every recorded pair of pairs
(spre, spost) and (s′pre, s

′
post) that:

Pre(spre, s
′
pre) =⇒ Post(spost, s

′
post)

If this condition does not hold for some pair, then we report a determinism violation.
To increase the effectiveness of this checking, we must record pairs of initial and final

states for deterministic blocks executed under a wide variety of possible thread interleavings.
Thus, in practice we likely want to combine our determinism assertion checking with existing
techniques and tools for exploring parallel schedules of a program, such as noise making [45,
140], active random scheduling [131, 132], or model checking [156].

In practice, the cost of recording and storing entire program states could be prohibitive.
However, real determinism predicates often depend on just a small portion of the whole pro-
gram state. Thus, we need only to record and store small projections of program states. For
example, for a determinism specification with pre- and post-predicate set.equals(set’)
we need only to save object set and its elements (possibly also the memory reachable from
these objects), rather than the entire program memory. This storage cost sometimes can be
further reduced by storing and comparing checksums or approximate hashes.

3.3 Determinism Checking Library

In this section, we describe the design and implementation of an assertion library for speci-
fying and checking determinism of Java programs.

Note that, while it might be preferable to introduce a new syntactic construct for spec-
ifying determinism, we instead provide the functionality as a library for simplicity of the
implementation.

Figure 3.1 shows the core API for our determinism assertion library. Functions open and
close specify the beginning and end of a deterministic block. Deterministic blocks may be
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class Deterministic {

static void open()

static void close()

static void assume(Object o, Predicate p)

static void assert(Object o, Predicate p)

interface Predicate {
boolean apply(Object a, Object b)

}

}

Figure 3.1: Core determinism specification API.

nested, and each block may contain multiple calls to functions assume and assert, which
are used to specify the pre- and post-predicates of deterministic behavior.

Each call assume(o, pre) in a deterministic block specifies part of the pre-predicate by
giving some projection o of the program state and a predicate pre. That is, it specifies that
one condition for any execution of the block to compute an equivalent, deterministic result
is that pre.apply(o, o′) return true for object o′ from the other execution.

Similarly, a call assert(o, post) in a deterministic block specifies that, for any execution
satisfying every assume, predicate post.apply(o, o′) must return true for object o′ from the
other execution.

At run-time, our library records every object (i.e. state projection) passed to each assert
and assume in each deterministic block, saving them to a central, persistent store. We
require that all objects passed as state projections implement the Serializable interface
to facilitate this recording. (In practice, this does not seem to be a heavy burden. Most
core objects in the Java standard library are serializable, including numbers, strings, arrays,
lists, sets, and maps/hashtables.)

Then, also at run-time, a call to assert(o, post) checks post on o and all o′ saved from
previous, matching executions of the same deterministic block. If the post-predicate does
not hold for any of these executions, a determinism violation is immediately reported. De-
terministic blocks can contain many assert’s so that determinism bugs can be caught as
early as possible and can be more easily localized.

For flexibility, programmers are free to write state projections and predicates using the full
Java language. However, it is a programmer’s responsibility to ensure that these predicates
contain no observable side effects, as there are no guarantees as to how many times such a
predicate may be evaluated in any particular run.
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So that the library is easy to use, it tracks which threads are in which deterministic
blocks. Thus, a call to assume, assert, or close is automatically associated with the
correct enclosing block, even when called from a spawned, child thread. The only restriction
on the location of these calls is that every assume call in a deterministic block must occur
before any assert.

Built-in Predicates

For programmer convenience, we provide two built-in predicates that are often sufficient for
specifying pre- and post-predicates for determinism. The first, Equals, returns true if the
given objects are equal using their built-in equals method — that is, if o.equals(o′). For
many Java objects, this method checks semantic equality — e.g. for integers, floating-point
numbers, strings, lists, sets, etc. Further, for single- or multi-dimensional arrays (which
do not implement such an equals method), the Equals predicate compares corresponding
elements using their equals methods. Figure 3.2 gives an example with assert and assume
using this Equals predicate.

The second predicate, ApproxEquals, checks if two floating-point numbers, or the corre-
sponding elements of two floating-point arrays, are within a given margin of each other. As
shown in Figure 3.3, we found this predicate useful in specifying the deterministic behavior
of numerical applications, where it is unavoidable that the low-order bits may vary with
different thread interleavings.

Real-World Floating-Point Predicates

In practice, floating-point computations often have input-dependent error bounds. For ex-
ample, we may expect any two runs of a parallel algorithm for summing inputs x1, . . . , xn to
return answers equal to within 2Nε

∑
i|xi|, where ε is the machine epsilon. We can assert:

sum = parallel_sum(x);

bound = 2 * x.length * ε * sum_of_abs(x);
Predicate apx = new ApproxEquals(bound);
Deterministic.assert(sum, apx);

As another example, different runs of a molecular dynamics simulation may be expected
to produce particle positions equal to within something like ε multiplied by the sum of the
absolute values of all initial positions. We can similarly compute this value at the beginning
of the computation, and use an ApproxEquals predicate with the appropriate bound to
compare particle positions.

Concrete Example: mandelbrot

Figure 3.2 shows the determinism assertions we added to one of our benchmarks, a program
for rendering images of the Mandelbrot Set fractal from the Parallel Java Library [86].
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The benchmark first reads a number of integer and floating-point parameters from the
command-line. It then spawns several worker threads, which each compute the hues for
different segments of the final image, storing them in shared array matrix. After waiting for
all of the worker thread to finish, the program encodes and writes the image to a file given
as a command-line argument.

To add determinism annotations to this program, we simply opened a deterministic block
just before the worker threads are spawned and closed it just after they are joined. At the
beginning of this block, we added an assume call for each of the seven fractal parameters,
such as the image size and and color palette. At the end of the block, we assert that the
resulting array matrix should be deterministic, however the worker threads are interleaved.

Note that it would be quite difficult to add assertions for the functional correctness of
this benchmark, as each pixel of the resulting image is a complex function of the inputs (i.e.
the rate at which a particular complex sequence diverges). Further, there do not seem to be
any simple traditional invariants on the program state or outputs which would help identify
a parallelism bug.

main(String args[]) {
// Read parameters from command-line.
...

// Pre-predicate: equal parameters.
Predicate equals = new Equals();
Deterministic.open();
Deterministic.assume(width, equals);
Deterministic.assume(height, equals);
...
Deterministic.assume(gamma, equals);

// spawn threads to compute fractal
int matrix[][] = ...;
...

// join threads
...

Deterministic.assert(matrix, equals);
Deterministic.close();

// write fractal image to file
...

}

Figure 3.2: Determinism assertions for a Mandelbrot Set implementation from the Par-
allel Java Library [86].
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main(String args[]) {
// Read parameters from command-line.
...

// Pre-predicate: equal parameters.
Deterministic.open();
Predicate equals = new Equals();
Deterministic.assume(mm, equals);
Deterministic.assume(PARTSIZE, equals);

// spawn worker threads
double ek[] = ..., epot[] = ..., vir[] = ...;
...

// Deterministic final energies.
Predicate apx = new ApproxEquals(1e-10);
Deterministic.assert(ek[0], apx);
Deterministic.assert(epot[0], apx);
Deterministic.assert(vir[0], apx);
Deterministic.close();

}

void run() { // worker thread
... 100 lines of initialization ...
particle[] particles = ...;
double force[] = ...;

for (int i = 0; i < num_iters; i++) {
// update positions and velocities
...
synchronizeBarrier()
Predicate pae = new ParticleApproxEquals(1e-10);
Deterministic.assert(particles , pae);
synchronizeBarrier()

// update forces
... 100 lines plus library calls ...
synchronizeBarrier()
Predicate apx = new ApproxEquals(1e-10);
Deterministic.assert(force, apx);
synchronizeBarrier()

// temperature scale + sum energy
... 40 lines ...
synchronizeBarrier();
Deterministic.assert(ek, apx);
Deterministic.assert(epot, apx);
Deterministic.assert(vir, apx);
synchronizeBarrier();

}
}

Figure 3.3: Determinism assertions for moldyn, a molecular dynamics simulator from the
Java Grande Forum Benchmark Suite [46].
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Implementation

Due to the simple design, we were able to implement our determinism assertion library in
only a few hundred lines of Java code. We use the Java InheritableThreadLocal class to
track which threads are in which deterministic blocks (and so that spawned child threads
inherit the enclosing deterministic block from their parent).

Currently, pairs of initial and final states for the deterministic blocks of an application
are just recorded in a single file in the application’s working directory. Blocks are uniquely
identified by their location in an application’s source (accessible through, e.g., a stack trace).
When a determinism violation is detected, a message is printed and the application is halted.

3.4 Experimental Evaluation

In this section, we describe our efforts to validate two claims about our proposal for specifying
and checking deterministic parallel program execution:

1. First, determinism specifications are easy to write. That is, even for programs for which
it is difficult to specify traditional invariants or functional correctness, it is relatively
easy for a programmer to add determinism assertions.

2. Second, determinism specifications are useful. When combined with tools for exploring
multiple thread schedules, determinism assertions catch real parallelism bugs that lead
to semantic nondeterminism. Further, for traditional concurrency issues such as data
races, these assertions provide some ability to distinguish between benign cases and
true bugs.

To evaluate these claims, we used a number of benchmark programs from the Java Grande
Forum (JGF) benchmark suite [46], the Parallel Java (PJ) Library [86], and elsewhere.
The names and sizes of these benchmarks are given in Table 3.1. The JGF benchmarks
include five parallel computation kernels — for successive order-relaxation (sor), sparse
matrix-vector multiplication (sparsematmult), coefficients of a Fourier series (series),
cryptography (crypt), and LU factorization (lufact) — as well as a parallel molecular
dynamic simulator (moldyn), ray tracer (raytracer), and Monte Carlo stock price simu-
lator (montecarlo). Benchmark tsp is a parallel Traveling Salesman branch-and-bound
search [122]. These benchmarks are standard, and have been used to evaluate many previous
analyses for parallel programs (e.g. [111, 57, 132]). The PJ benchmarks include an app
computing a Monte Carlo approximation of π (pi), a parallel cryptographic key cracking
app (keysearch3), an app for parallel rendering Mandelbrot Set images (mandelbrot), and
a parallel branch-and-bound search for optimal phylogenetic trees (phylogeny). Note that
the benchmarks range from a few hundred to a few thousand lines of code, with the Parallel
Java benchmarks relying on an additional 10-20,000 lines of library code from the Parallel
Java Library (for threading, synchronization, and other functionality).
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Benchmark
Approximate
Lines of Code

(App + Library)

Lines of
Specification

(+ Predicates)
Threads

Data Races High-Level Races

Found
Determinism

Found
Determinism

Violations Violations

JGF

sor 300 6 10 2 0 0 0

sparsematmult 700 7 10 0 0 0 0

series 800 4 10 0 0 0 0

crypt 1100 5 10 0 0 0 0

moldyn 1300 6 10 2 0 0 0

lufact 1500 9 10 1 0 0 0

raytracer 1900 4 10 3 1 0 0

montecarlo 3600 4 + 34 10 1 0 2 0

PJ

pi 150 + 15,000 5 4 9 0 1+ 1

keysearch3 200 + 15,000 6 4 3 0 0+ 0

mandelbrot 250 + 15,000 10 4 9 0 0+ 0

phylogeny 4400 + 15,000 8 4 4 0 0+ 0

tsp 700 4 5 6 0 2 0

Table 3.1: Summary of experimental evaluation of determinism specifications. A single
deterministic block specification was added to each benchmark. Each specification was
checked on executions with races found by the CalFuzzer [132, 116, 84] tool.

Ease of Use

We evaluate the ease of use of our determinism specification by manually adding assertions
to our benchmark programs. One deterministic block was added to each benchmark.

The third column of Table 3.1 records the number of lines of specification (and lines
of custom predicate code) added to each benchmark. Overall, the specification burden is
quite small. Indeed, for the majority of the programs, we were able to add determinism
assertions in only five to ten minutes per benchmark, despite being unfamiliar with the
code. In particular, it was typically not difficult to both identify regions of code performing
parallel computation and to determine from documentation, comments, or source code which
results were intended to be deterministic. Figures 3.2 and 3.3 show the (slightly cleaned up)
assertions added to the mandelbrot and moldyn benchmarks.

The added assertions were correct on the first attempt for all but one benchmark. (For
phylogeny, the resulting phylogenetic tree was erroneously specified as deterministic, when,
in fact, there are many correct optimal trees. The specification was modified to assert only
that the optimal score must be deterministic.)

The two predicates provided by our assertion library were sufficient for all but one of the
benchmarks. For the JGF montecarlo benchmark, we had to write a custom equals and
hashCode method for two classes — 34 total lines of code — in order to assume and assert
that two sets, one of initial tasks and one of results, should be deterministic.
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Further Determinism Assertions

Three of the benchmarks — sor, moldyn, and lufact — use barriers to synchronize their
worker threads at many points during their parallel computations. These synchronization
points provide locations where partial results of the computation can be specified to be
deterministic. For example, as shown in Figure 3.3, we can assert in moldyn that the
deterministic particle positions and forces should be computed in every iteration. Such
intermediate assertions aid the early detection and localization of nondeterminism errors.

For these three benchmarks, we were able to add intermediate assertions at important
synchronization barriers in only another fifteen to thirty minutes per benchmark. This adds
roughly 25, 35, and 10 lines of specification, respectively, to sor, moldyn, lufact. Further,
for the moldyn benchmark, this requires writing a custom predicate ParticleApproxEquals
for comparing two arrays of particle objects for approximate equality of their positions
and velocities, as well as customizing the serialization of particle objects.

Note, however, that care must be taken with such additional assertions to not capture
an excessive amount of data. For example, it is not feasible to assert in every iteration of a
parallel computation that a large intermediate matrix is deterministic — this requires serial-
izing and checking a large enough quantity of data to have significant overhead. Checksums
or approximate hashes, however, can greatly reduce this cost. In the above example, rather
than storing and comparing the entire intermediate matrix, we can check only the row sums
or the sum of all entries

Discussion

More experience, or possibly user studies, would be needed to conclude decisively that our
assertions are easier to use than existing techniques for specifying that parallel code is cor-
rectly deterministic. However, we believe our experience is quite promising. In particular,
writing assertions for the full functional correctness of the parallel regions of these programs
seemed to be quite difficult, perhaps requiring implementing a sequential version of the code
and asserting that it produces the same result. Further, there seemed to be no obvious
simpler, traditional assertions that would aid in catching nondeterministic parallelism.

Despite these difficulties, we found that specifying the natural deterministic behavior of
the benchmarks with our bridge assertions required little effort.

Effectiveness

To evaluate the utility of our determinism specifications in finding true parallelism bugs,
we used a modified version of the CalFuzzer [132, 116, 84] tool to find real races in the
benchmark programs, both data races and higher level races (such as races to acquire a lock).
For each such race, we ran 10 trials using CalFuzzer to create real executions with these
races and to randomly resolve the races (i.e. randomly pick a thread to “win”). We turned
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on run-time checking of our determinism assertions for these trials, and recorded all found
violations.

Table 3.1 summarizes the results of these experiments. For each benchmark, we indicate
the number of real data races and higher-level races we observed. Further, we indicate how
many of these races led to determinism violations in any execution.

In these experiments, the primary computational cost is from CalFuzzer, which typi-
cally has an overhead in the range of 2x-20x for these kinds of compute bound applications.
We have not carefully measured the computational cost of our determinism assertion library.
For most benchmarks, however, the cost of serializing and comparing a computation’s in-
puts and outputs is dwarfed by the cost of the computation itself — e.g. consider the cost
of checking that two fractal images are identical versus the cost of computing each fractal in
the first place.

Determinism Violations

We found two cases of nondeterministic behavior. First, a known data race in the raytracer
benchmark, due the use of the wrong lock to protect a shared sum, can cause an incorrect
final answer to be computed.

Second, the pi benchmark can yield a nondeterministic answer given the same ran-
dom seed because of insufficient synchronization of a shared random number generator. In
each Monte Carlo sample, two successive calls to java.util.Random.nextDouble() are
made. A context switch between these calls changes the set of samples generated. Similarly,
nextDouble() itself makes two calls to java.util.Random.next(), which atomically gen-
erates up to 32 pseudo-random bits. A context switch between these two calls changes the
generated sequence of pseudo-random doubles. Thus, although Random.nextDouble() is
thread-safe and free of data races, scheduling nondeterminism can still lead to a nondeter-
ministic result. (This behavior is known — the Parallel Java library provides several versions
of this benchmark, one of which does guarantee a deterministic result for any given random
seed.)

Benign Races

The high number of real data races for these benchmarks is largely due to benign races
on volatile variables used for synchronization — for example, to implement a tournament
barrier or a custom lock. Although CalFuzzer does not understand these sophisticated
synchronization schemes, our determinism assertions automatically provide some confidence
that these races are benign because, over the course of many experiment runs, they did not
lead to nondeterministic final results.

Note that it can be quite challenging to verify by hand that these races are benign. On
inspecting the benchmark code and these data races, several times we believed we had found
a synchronization bug. But on deeper inspection, the code was found to be correct in all
such cases.
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The number of high-level races is low for the JGF benchmarks because all but montecarlo
exclusively use volatile variables (and thread joins) for synchronization. Thus, all observable
scheduling nondeterminism is due to data races.

The number of high-level races is low for the Parallel Java benchmarks because they
primarily use a combination of volatile variables and atomic compare-and-set operations
for synchronization. Currently, the only kind of high-level race our modified CalFuzzer
recognizes is a lock race. Thus, while we believe there are many (benign) races in the ordering
of these compare-and-set operations, CalFuzzer does not report them. The one high-level
race for pi, indicated in the table and described above, was confirmed by hand.

Discussion

Although our checking of determinism assertions is sound — an assertion failure always
indicates that two executions with matching initial states can yield non-matching final states
— it is incomplete. Parallelism bugs leading to nondeterminism may still exist even when
testing fails to find any determinism violations.

However, in our experiments we successfully distinguished the known harmful races from
the benign ones in only a small number of trials. Thus, we believe our determinism assertions
can help catch harmful nondeterminism due to parallelism, as well as saving programmer
effort in determining whether or not real races and other potential parallelism bugs can lead
to incorrect program behavior.

3.5 Discussion

In this section, we compare the concepts of atomicity and determinism. Further, we discuss
several other possible uses for bridge predicates and assertions.

Atomicity versus Determinism

A concept complementary to determinism in parallel programs is atomicity. A block of
sequential code in a multithreaded program is said to be atomic [65] if for every possible
interleaved execution of the program there exists an equivalent execution with the same
overall behavior in which the atomic block is executed serially (i.e. the execution of the
atomic block is not interleaved with actions of other threads). Therefore, if a code block is
atomic, the programmer can assume that the execution of the code block by a thread cannot
be interfered with by any other thread. This enables programmers to reason about atomic
code blocks sequentially. This seemingly similar concept has the following subtle differences
from determinism:

1. Atomicity is the property about a sequential block of code — i.e. the block of code for
which we assert atomicity has a single thread of execution and does not spawn other
threads. Note that a sequential block is by default deterministic if it is not interfered
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with by other threads. Determinism is a property of a parallel block of code. In
determinism, we assume that the parallel block of code’s execution is not influenced
by the external world.

2. In atomicity, we say that the execution of a sequential block of code results in the same
state no matter how it is scheduled with other external threads, i.e. atomicity ensures
that external nondeterminism does not interfere with the execution of an atomic block
of code. In determinism, we say that the execution of a parallel block of code gives the
same semantic state no matter how the threads inside the block are scheduled — i.e.
determinism ensures that internal nondeterminism does not result in different outputs.

In summary, atomicity and determinism are orthogonal concepts. Atomicity reasons about
a single thread under external nondeterminism, whereas determinism reasons about multiple
threads under internal nondeterminism.

Here we focus on atomicity and determinism as program specifications to be checked.
There is much work on atomicity as a language mechanism, in which an atomic specification
is instead enforced by some combination of library, run-time, compiler, or hardware support.
One could similarly imagine enforcing determinism specifications through, e.g., compiler and
run-time mechanisms [8, 20].

Other Uses of Bridge Predicates

We have already argued that bridge predicates simplify the task of directly and precisely
writing deterministic properties in parallel programs. However, we believe that bridge pred-
icates could provide us a simple, but powerful tool to express correctness properties in many
other situations. For example, if we have two versions of a program P1 and P2 and if we
expect them to produce the same output on same input, then we can easily assert this using
our framework as follows:

deterministic assume(Pre) {
if (nonDeterministicBoolean()) {

P1

} else {
P2

}

} assert(Post);

where Pre requires that the inputs are the same and Post specifies that the outputs will be
the same.
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In particular, if a programmer has written both a sequential and parallel version of a
piece of code, he or she can specify that the two versions are semantically equivalent with
an assertion like:

deterministic assume(A==A’ and B==B’) {
if (nonDeterministicBoolean()) {

C = par_matrix_multiply_int(A, B);

} else {
C = seq_matrix_multiply_int(A, B);

}

} assert(C == C’);

where nonDeterministicBoolean() returns true or false nondeterministically.
Recall the way we have implemented our determinism checker in Java — we serialize a

pair of projections of the input and output states for each execution to the file-system. This
particular implementation allows us to quickly write regression tests simply as follows:

deterministic assume(Pre) {
P

} assert(Post);

where Pre asserts that the inputs are the same and Post asserts that the outputs are the
same. In the above code, we simply assert that the input-output behavior of P remains
the same even if P changes over time, but maintains the same input-output behavior. The
serialized input and output states implicitly store the regression test on the file-system.

Further, we believe there is a wider class of program properties that are easy to write in
bridge assertions but would be quite difficult to write otherwise. For example, consider the
specification:

deterministic assume(set.size() == set’.size()) {
P

} assert(set.size() == set’.size());

This specification requires that sequential or parallel program block P transforms set so
that its final size is the same function of its initial size independent of its elements. The
specification is easy to write even in cases where the exact relationship between the initial
and final size might be quite complex and difficult to write. It is not entirely clear, however,
when such properties would be important or useful to specify/assert.

3.6 Related Work

As we discussed at the beginning of this chapter, there is a large body of work attacking
harmful program nondeterminism by detecting data races. There has also been recent work
on detecting or eliminating other sources of nondeterminism such as high-level races [122, 9]
and atomicity violations [64, 57, 62, 116].



CHAPTER 3. ASSERTING AND CHECKING SEMANTIC DETERMINISM 40

For more than forty years, assertions — formal constraints on program behavior em-
bedded in a program’ source — have been used to specify and prove the correct behavior
of sequential [66, 78] and parallel [113] programs. More recently, assertions have found
widespread use as a tool for checking at run-time for software faults to enable earlier de-
tection and easier debugging of software errors [127, 101]. In this work, we propose bridge
assertions, which relate pairs of states from different program executions.

Checking and Verifying Determinism. Siegel, et al., [135] propose a technique for
combining symbolic execution with model checking to verify that parallel, message-passing
numerical programs compute equivalent answers to their sequential implementations.

Sadowski, et al., [128] propose a different notion of determinism, one that is a generaliza-
tion of atomicity. They say that a parallel computation is deterministic if is both free from
external interference (externally serializable) and if its threads communicate with each other
in a strictly deterministic fashion (internal conflict freedom). That is, for a computation to
be deterministic not only must it contain no data races, but the partially-ordered sequence
of lock operations and other synchronization events must be identical on every execution.
These conditions ensure that every schedule produces bit-wise identical results. Further,
they propose SingleTrack [128], a sound dynamic determinism analysis that can identify
determinism violations in a single execution of a program under test.

This form of determinism used by SingleTrack [128] is much more strict than the deter-
minism proposed in this work. Our determinism specifications can be applied to programs,
such as those using locks or shared buffers, in which internal threads communicate nondeter-
ministically, but still produce deterministic final results. Further, we allow users to provide
custom predicates to specify what is means for the results of two different thread schedules
to be semantically deterministic.

DICE [154] is a patent-pending static analysis for verifying determinism. DICE also
focuses on a very strict notion of determinism — no task or loop iteration may write to a
memory location than any parallel task or loop iteration can read or write. By combining
a flow-insensitive pointer analysis with abstract interpretation of array indices (using the
polyhedral or octagonal domain) to prove that the memory accesses of each parallel task are
independent, DICE can prove the determinism of simplified, structured-parallel versions of
several JGF benchmarks.

InstantCheck [110] checks determinism as we have proposed, using hashing to compare
final states from different executions. But InstantCheck proposes to perform such hashing
incrementally, rather than at the end of the computation, and to use hardware support to
accelerate the incremental hashing. InstantCheck’s approach is not able to check higher-level
semantic equivalence, and requires complex record and replay of allocated/remapped/etc.
memory addresses to deal with dynamic memory allocation.

Enforcing Determinism. A number of techniques been proposed for forcing existing
multithreaded programs to execute deterministically — i.e., to control program execution
so that, on a given input, every run takes an equivalent thread schedule. These techniques,
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including Kendo [112], DMP [42], CoreDet [15], Determinator [11], Dthreads [94], Calvin [79],
and RCDC [43], employ a variety of compiler, operating system, and hardware approaches
to achieve deterministic execution.

This kind of deterministic execution can be very useful in reproducing and debugging
parallel errors. Enforced deterministic execution can also make testing more effective, be-
cause if a program behaves correctly on a given input during test, then the program will
execute identically in production. The particular thread schedule chosen by such systems
typically depends on per-thread instruction counts, however, so even small program modifi-
cations can change the thread schedule of the entire application, uncovering unrelated and
previously-suppressed parallelism errors.

3.7 Summary

We have introduced bridge predicates and bridge assertions for relating pairs of states across
different executions. We have shown how these predicates and assertions can be used to
easily and directly specify that a parallel computation is deterministic. And we have shown
that such specifications can be useful in finding parallel nondeterminism bugs and in dis-
tinguishing harmful from benign races. Further, we believe that bridge assertions may have
other potential uses.
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Chapter 4

DETERMIN: Inferring Likely
Determinism Specifications for
Multithreaded Programs

In Chapter 3, we argued that programmers should have a way to directly and easily specify
that a parallel software application behaves deterministically, despite the nondeterministic
interleaving of program threads. We proposed a scheme for asserting that a block of parallel
code exhibits the intended, user-specified semantic determinism. Formally, our framework
allowed a programmer to give a specification for a block P of parallel code as:

deterministic assume(Pre(s0, s
′
0)) {

P

} assert(Post(s, s′));

This specification asserts the following: Suppose P is executed twice with potentially
different schedules, once from initial state s0 and once from s′0 and yielding final states s and
s′, respectively. Then, if the user-specified precondition Pre holds over s0 and s′0, then s and
s′ must satisfy the user-specified postcondition Post.

We argued that such assertions allow a programmer to specify the correctness of the
use of parallelism in an application independently of the functional correctness. That is,
one can specify that different executions of a parallel program on the same input cannot
erroneously produce non-equivalent outputs due to scheduling nondeterminism. This can be
accomplished without having to specify anything about the correctness of individual outputs
in terms of their corresponding inputs. Our experiments showed that if the determinism
specification of a parallel program is provided, we can distinguish true races from benign ones
in the program and find bugs in parallel programs that arise due to internal nondeterminism.

c© ACM, 2010. A version of this chapter was published in the Proceedings of the 2010 ACM/IEEE 32nd
International Conference on Software Engineering (ICSE ’10), http://doi.acm.org/10.1145/1806799.
1806860
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In this chapter, we propose to automatically infer likely determinism specifications for
parallel programs. Specifically, given a set of test inputs and thread schedules, for each
procedure P of a parallel program, we infer a determinism specification for the body of a
procedure P :

void P () {
deterministic assume(Pre(s0, s

′
0)) {

... body of P ...
} assert(Post(s, s′));

}

A key challenge in inferring likely determinism specification of a parallel program is that
there could be several specifications for the program; however, not all of the specifications
are interesting. For example, the following determinism specification holds for any parallel
program, where Pre is any predicate:

void P () {
deterministic assume(Pre(s0, s

′
0)) {

... body of P ...
} assert(true);

}

To address the problem of inferring “interesting” determinism specifications, we argue
that a (Pre,Post) pair is “interesting” if the following two conditions hold.

1. Pre is a weakest liberal precondition for Post and Post is a strongest liberal postcon-
dition for Pre, and

2. Post is the strongest liberal postcondition for any possible Pre, which we show to be
unique.

We give an algorithm, Determin, to compute one such “interesting” determinism specifi-
cation from a set of executions observed on a given set of inputs and schedules. We formally
prove that if the set of given inputs and schedules is the set of all inputs and schedules, then
we infer an actual “interesting” determinism specification of the program.

We have implemented Determin for Java and applied it to all of our benchmarks from
the previous chapter. We were able to infer specifications largely equivalent to or stronger
than our existing, manual assertions.

We believe that the inference of determinism specifications can aid in program under-
standing and documentation of deterministic behavior of parallel programs. Specifically,
a correct inferred specification documents for programmers the deterministic aspect of the
parallel behavior of an application. Moreover, an unexpected determinism specification can
indicate to a programmer the presence of buggy or otherwise unintended behavior. For ex-
ample, consider a specification indicating a critical component of the program output is not
deterministic; or consider a specification indicating that a program’s determinism hinges on
some believed-to-be insignificant portion of the input.
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Related Work

There is a rich literature on invariant generation – see, e.g., [50, 63, 7, 75, 163, 95, 165, 6,
144, 166, 98, 142, 69, 40, 70, 162]. Daikon [50] automatically infers likely program invariants
using statistical inference from a program’s execution traces. Csallner et al. [40] propose an
approach, called DySy, that combines symbolic execution with dynamic testing to infer pre-
conditions and postconditions for program methods. Hangal and Lam [75] propose DIDUCE,
which uses online analysis to discover simple invariants over the values of program variables.
Deryaft [98] is a tool that specializes in generating constraints of complex data structures.
Logozzo [95] proposed a static approach that derives invariants for a class as a solution of a
set of equations derived from the program source. Houdini [63] is an annotation assistant for
ESC/Java [55]. It generates a large number of candidate invariants and repeatedly invokes
the ESC/Java checker to remove unprovable annotations, until no more annotations are re-
futed. The problem of program invariant generation is related to the problem of automatic
mining of temporal specifications of programs. Previous work [7, 163, 144, 165, 6, 1, 73,
161] have approached this problem using both dynamic and static analysis techniques. The
above mentioned techniques mostly focuses on generation of traditional specifications. Our
approach is the first one to infer likely determinism specifications for parallel programs. Un-
like traditional specifications, our inferred specifications relate two program states coming
from different executions.

Discussion of related work on specifying, checking, and enforcing deterministic behavior
can be found in Section 3.6.

4.1 Formal Background

In this section, we review the key features of our previously proposed determinism speci-
fications [29], which are described in detail in Chapter 3. In summary, we previously pro-
posed [29] the following construct for the specification of deterministic behavior:

deterministic assume(Pre(s0, s
′
0)) {

P

} assert(Post(s, s′));

This specification states that for any two program states s0 and s′0, if

• the determinism precondition Pre(s0, s
′
0) holds

• an execution of P from s0 terminates and results in state s, and

• an execution of P from s′0 terminates and results in state s′

then the determinism postcondition Post(s, s′) must hold.
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More formally, let P (s0, σ) denote the resulting program state if we run procedure P on
initial state s0 and with thread schedule σ. Then, the above determinism specification states
that:

∀s0, s′0, σ, σ′. Pre(s0, s
′
0) =⇒ Post(P (s0, σ), P (s′0, σ

′))

We abbreviate this condition by:
Pre =⇒P Post

Note that, technically, only certain thread schedules are possible for each initial program
state. That is, schedules σ should not be universally quantified, but must come from the set
Σ(s0) of thread schedules for procedure P realizable from program state s0. And function
P (s0, σ) is defined only for σ ∈ Σ(s0). For simplicity, however, we omit any further references
to Σ(s0).

Note also that, for certain initial states s0 and thread schedules σ, procedure P may not
terminate. In this case, function P (s0, σ) is not defined, as there is no resulting program
state. We implicitly quantify over only terminating executions. Thus, our determinism
specifications are partial.

The advantage of our determinism specifications is that they provide a way to specify
the correctness of just the use of parallelism in a program, independent of the program’s
full functional correctness. In many situations, writing a full specification of functional
correctness is difficult and time consuming. But, a simple determinism specification enables
us to use automated technique to check for parallelism bugs, such as harmful data races
causing semantically nondeterministic behavior.

4.2 Overview of DETERMIN

In this section, we give an informal overview of our algorithm for dynamically inferring
likely determinism specifications. Consider a procedure, bestTree, which, given a collection
of DNA sequences, computes in parallel a most likely phylogenetic tree1:

void bestTree(int N, int[][] dna,
int &score, int[] &tree)

{

// Parallel branch-and-bound search (with N threads)

// for an optimal tree given DNA sequences.

...

}

Given two runs of this procedure on identical DNA sequence data, we would expect to
get identical final likelihood scores. Because the procedure is a parallel branch-and-bound
search, we cannot expect two different runs to necessarily compute the same phylogenetic

1A tree showing suspected evolutionary relationships — i.e. shared common ancestry — among a group
of species or individuals.
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tree — for the input data, there may be multiple trees with the same best score. Thus, we
might manually specify the deterministic behavior of procedure bestTree as:

void bestTree(int N, int[][] dna,
int &score, int[] &tree)

{

deterministic assume (dna == dna’) {
...

} assert (score == score’);
}

Data Collection

To infer a determinism specification for procedure bestTree, we must first collect some
sample of representative executions. Suppose the programmers who wrote the code have
also constructed two DNA sequence data sets, D1 and D2, which they use for testing. (In
the absence of hand-constructed test inputs, we could potentially use random or symbolic
test generation to construct test cases.) Then, suppose we execute the procedure, perhaps
as part of some existing application or test, twice on each input:

N = 10, dna = D1 7−→ score = 140, tree = t1

N = 10, dna = D1 7−→ score = 140, tree = t2

N = 10, dna = D2 7−→ score = 175, tree = t3

N = 10, dna = D2 7−→ score = 175, tree = t4

Specification Inference

In theory, there are infinitely many possible bridge predicates relating pairs of inputs (N, dna),
(N ′, dna′) or pairs of outputs (score, tree), (score′, tree′). But we care only about a very re-
stricted subset of these bridge predicates: predicates that compare only individual compo-
nents across pairs of inputs or outputs, and that compare those components only for certain
types of equality or approximate equality.

For example, for procedure bestTree, we are interested only in four bridge predicates as
preconditions:

true, N = N ′, dna = dna′, N = N ′ ∧ dna = dna′

and four bridge predicates as postconditions:

true, score = score′, tree = tree′, score = score′ ∧ tree = tree′

More generally, by focusing on equality between components of input and output states,
we only have to consider finitely-many possible determinism specifications. (Although the
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number of possible specifications is still exponential in the number of input and output
variables.)

Thus, we can think of the determinism specification inference problem as having two
parts. First, we should determine which of these possible determinism specifications is
consistent with our observed executions. Second, we must decide which of the consistent
specifications to select as the final inferred specification.

There are six possible determinism specifications consistent with the four above observed
executions. Four of these specifications are of the form Pre =⇒bT true — that is, each of
the four possible preconditions paired with the trivial postcondition. The other two possible
determinism specifications are:

(dna = dna′) =⇒bT (score = score′) (4.1)

(N = N ′ ∧ dna = dna′) =⇒bT (score = score′) (4.2)

In selecting one of these six potential determinism specifications, we are guided by two
principles: (1) First, we should select a specification with as strong of a postcondition as pos-
sible. Some parts of a procedures output may be scheduler-dependent and nondeterministic,
but we would ideally like a specification that captures all parts of the output that are deter-
ministic. (2) Second, for a given postcondition, we should select as weak of a precondition
as possible.

For our running example, two of the possible specifications (i.e. Equations 4.1 and 4.2
above) have the strongest consistent postcondition score = score′. (Of course, no consistent
postconditions contain tree = tree′ because we observed executions with identical inputs but
different final values of tree.) Selecting the weaker of the two possible consistent preconditions
for score = score′ gives us the determinism specification:

(dna = dna′) =⇒bT (score = score′)

For this example, the inferred determinism specification is exactly the one we would
have manually written. In general, however, there is always the danger that we will infer
a postcondition that is too strong because we have observed no executions showing the
nondeterminism of some output. Similarly, we may infer a precondition that is too weak
because we have observed no executions showing that the deterministic behavior depends
on a particular input. In the end, we must rely on having a sufficiently representative set
of test inputs and running on sufficiently-many possible thread schedules to defend against
inferring inaccurate determinism specifications.

4.3 Inferring Determinism Specifications

In this section, we formally describe the problem of inferring determinism specifications. Let
P be a procedure that executes atomically and with internal parallelism. A procedure P
in a given program is atomic [65] if, no other component of the program that can run in
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parallel with P can interfere with the execution of P . We say that procedure P has internal
parallelism if, when P is executed, P performs a computation in parallel and P returns only
after all parallel work has completed. For example, P may spawn several threads, but must
join all of the threads before returning.

For the body of a procedure P , we want to infer a determinism specification of the form:

void P () {
deterministic assume(Pre(s0, s

′
0)) {

... body of P ...
} assert(Post(s, s′));

}

Determinism Specification Model

In theory, the pre- and postconditions in a determinism specification can be arbitrary bridge
predicates. We restrict our attention, however, to a specific class of bridge predicates: con-
junctions of semantic equality predicates.

We treat programs as having a finite set M of disjoint memory locations {m1, . . . ,mk}.
Then, a program state s is a mapping from these global variables mi to values s(mi) from
set V of possible program values.

We further suppose that we have a finite set EQ of semantic equality predicates on
program values. We require these predicates to be reflexive and symmetric relations on
program values, and that this set include the strict equality predicate v = v′. (In our
implementation, for example, we also include a approximate numeric equality |v − v′| ≤ ε
and semantic object equality v.equals(v′).)

Then, we consider the class of bridge predicates characterized by subsets of M×EQ. For
some X ⊆M × EQ, we define a bridge predicate ϕX by:

ϕX(s, s′) =
∧

(m,eq)∈X

eq
(
s(m), s′(m)

)
That is, for each pair of memory location m and equality predicate eq we compare the value
of m from states s and s′ using eq. The bridge predicate is the conjunction of all such equality
predicates.

We justify this restriction by noting that this class of bridge predicates sufficed to man-
ually specify the natural deterministic behavior of the benchmarks examined in Chapter 3.

An advantage of this restriction is that there exist only finitely many bridge predicates
— one for each of the 2|M ||EQ| subsets of M × EQ. Thus, there are only 22|M ||EQ| possible
determinism specifications, consisting of one pre- and one postcondition, for a procedure P .
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Specification Inference Problem

As described above, every pair of subsets of M × EQ defines a possible determinism speci-
fication. For a given procedure P , many of these possible specifications may be true. That
is, there may be many pre, post ⊆M × EQ for which ϕpre =⇒P ϕpost.

Here we formally describe which of these true specifications, for a procedure P , we believe
is the most natural and interesting choice. In short, we should infer specifications ϕpre =⇒P

ϕpost only where ϕpost is the strongest liberal postcondition of ϕpre and ϕpre is a weakest
liberal precondition of ϕpost. Further, of such specifications, we should return one with the
unique, strongest possible postcondition ϕpost. (We will show that such a unique, strongest
postcondition must exist.)

Lattice Structure of Determinism Specifications

The subsets of M × EQ naturally form a complete lattice under the ordering ⊆ and with
join ∪. This induces a complete lattice on bridge predicates ϕX , with:

ϕX v ϕY ⇐⇒ X ⊇ Y , ϕX u ϕY = ϕX∪Y

Note that the lattice on predicates is reversed — larger sets yield smaller predicates, and
the meet of two predicates is the join of the corresponding sets. This lattice has least and
greatest elements:

⊥ = ϕM×EQ = ∀(m, eq) ∈M × EQ. eq(s(m), s′(m))

> = ϕ∅ = true

Note that, because every element of EQ is reflexive and symmetric, every predicate ϕX
is reflexive and symmetric on program states. In particular, ⊥(s, s) for any state s.

We now state several simple but important properties of these lattices and their relation
to the validity of determinism specifications.

Proposition 1. The lattice operations u and v on bridge predicates are exactly logical
conjunction and implication:

ϕX ∧ ϕY = ϕX u ϕY ( = ϕX∪Y )

ϕX =⇒ ϕY ⇐⇒ ϕX v ϕY ( = X ⊇ Y )

Proposition 2. Relation =⇒P distributes over the meet (u) operation on bridge predicates,
and the join operation on subsets of M × EQ, in the sense that:

ϕX ⇒P ϕY ∧ ϕX ⇒P ϕY ′ ⇐⇒ ϕX ⇒P (ϕY u ϕY ′)

or, equivalently:

ϕX ⇒P ϕY ∧ ϕX ⇒P ϕY ′ ⇐⇒ ϕX ⇒P ϕY ∪Y ′
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Proposition 3. Relation =⇒P is monotone in its second argument and anti-monotone in
its first argument with respect to the lattice on bridge predicates:

ϕX =⇒ ϕX′ , ϕY =⇒ ϕY ′

=⇒ (ϕX′ ⇒P ϕY =⇒ ϕX ⇒P ϕY ′)

In light of Proposition 3, we will say that a determinism specification (ϕX , ϕY ) is stronger
or more strict than another specification (ϕX′ , ϕY ′) — denoted (ϕX , ϕY ) v (ϕX′ , ϕY ′) —
when ϕX′ =⇒ ϕX and ϕY =⇒ ϕY ′ .

Strongest Liberal Postcondition

For any precondition ϕpre for a procedure P , we can define the strongest liberal postcondition
SLPP (ϕpre) of ϕpre as the least ϕpost such that ϕpre =⇒P ϕpost. We show below that there is
always a unique SLPP (ϕpre).

Proposition 4. Let ϕpre be a precondition for procedure P .

SLPP (ϕpre) =
l
{ϕpost | ϕpre =⇒P ϕpost}

Proof. First, note that ϕpre =⇒P > so the meet in the proposition is over a non-empty set.
Let ϕslp denote the meet over all postconditions that follow from ϕpre.

Then, ϕpre =⇒P ϕslp, because =⇒P distributes over u.
Further, ϕslp is clearly the least ϕpost such that ϕpre =⇒P ϕpost, because it is the meet of

all such postconditions.

Corollary 1. Operator SLPP is monotone.
That is, if ϕX =⇒ ϕY , then SLPP (ϕX) =⇒ SLPP (ϕY ).

Proof. Suppose ϕX =⇒ ϕY .
Because ϕY =⇒P SLPP (ϕY ) and by the anti-monotonicity of =⇒P , it must be the case

that ϕX =⇒P SLPP (ϕY ). Therefore, because SLPP (ϕX) is the strongest postcondition of ϕX ,
we have SLPP (ϕX) =⇒ SLPP (ϕY ).

By the monotonicity SLPP , the strongest postcondition that holds for P under any pos-
sible precondition, is SLPP (⊥). Note that, equivalently, this unique strongest postcondition
is the meet over all true postconditions:

l
{ϕpost | ∃ϕpre. ϕpre =⇒P ϕpost}

Thus, in particular, postcondition SLPP (⊥) is the conjunction of the most individual equality
predicates of any true postcondition.
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Weakest Liberal Precondition

We can similarly define the weakest liberal precondition of a postcondition ϕpost. However,
because we restrict our preconditions and postconditions to be conjunctions of equality
predicates on individual memory locations, there may not be a unique weakest (or largest)
precondition for a ϕpost. Thus, we must define WLPP (ϕpost) to be the set of all weakest liberal
preconditions:

Definition 2. ϕpre ∈ WLPP (ϕpost) — i.e. is a weakest liberal precondition of ϕpost — if and
only if both:

1. ϕpre =⇒P ϕpost , and

2. If there exists a ϕ′ such that ϕ′ =⇒P ϕpost and ϕpre =⇒ ϕ′, then ϕ′ = ϕpre.

Inferred Determinism Specification

With these formal definitions, we can say that the determinism specification inference prob-
lem for a procedure P is to compute, or to approximate as closely as possible, a determinism
specification ϕpre =⇒P ϕpost where ϕpost = SLPP (⊥) is the unique strongest possible post-
condition for any precondition and where ϕpre is a weakest liberal precondition of ϕpost.

4.4 DETERMIN Algorithm

In the previous section, we have defined the set of strongest true determinism specifications
for a given procedure P . When inferring a determinism specification from a limited number
of executions of a procedure P , however, we can only approximate the procedure’s true
specification.

Suppose we have a finite set R of observed executions {(s1, σ1, t1), . . . , (sn, σn, tn)} of
procedure P , where each ti is the state P (si, σi) resulting from executing P from initial state
si on thread schedule σi. A determinism specification (Pre,Post) is satisfied for the observed
executions R, which we abbreviate Pre =⇒P,R Post, when:

∀1≤i,j≤n. Pre(si, sj) =⇒ Post(ti, tj)

Note that this definition is identical to that of =⇒P , except that we only universally quantify
over the observed inputs and thread schedules, rather than quantifying over all possible
inputs and schedules. We can similarly define the strongest liberal postcondition SLPP,R
and weakest liberal preconditions WLPP,R over observed executions R.

Our overall inference algorithm is presented in Algorithm 1. Given a set of executions R
of a procedure P , we will infer a likely determinism specification (PreR,PostR).

The algorithm consists of two stages. First, we infer PostR by computing SLPP,R(⊥), the
strongest liberal postcondition, given executions R of P , of precondition ⊥. Recall that this
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is the strongest possible postcondition, given executions R, for any precondition. Second,
we infer PreR by computing WLPP,R(PostR), a weakest liberal precondition, given executions
R of P , of postcondition PostR.

Computing the Strongest Postcondition

Algorithm 2 computes the strongest liberal postcondition, given executions R, of some ϕpre.
The algorithm iterates over every pair of executions (si, σi, ti), (sj, σj, tj) that satisfy ϕpre.
For each such pair, it computes the set of all individual equality predicates that hold on the
resulting program states. The algorithm accumulates into post the intersection of all these
sets. Thus, at the end of the algorithm, ϕpost is the conjunction of all equality predicates
that hold for pairs of post-states resulting from pre-states matching ϕpre. That is, ϕpost is
the strongest liberal postcondition of ϕpre for the observed executions R.

Checking the condition at Line 3 and computing the set and the intersection in Line 4
can all be done in O(|M ||EQ|) time. Thus, as these steps must be performed once for each
pair of executions, the whole SLP computation requires O(|M ||EQ||R|2) time.

Algorithm 1 Infer a likely determinism specification for a procedure P , given a set R of
executions of procedure P .

1: PostR ← SLPP,R(⊥)
2: PreR ← WLPP,R(PostR)
3: return (PreR,PostR)

Algorithm 2 Compute the strongest liberal postcondition SLPP,R(ϕpre) of ϕpre.

1: post←M × EQ
2: for all (si, σi, ti), (sj, σj, tj) ∈ R×R do
3: if ϕpre(si, sj) then
4: post← post ∩ {(m, eq) | eq(ti(m), tj(m))}
5: end if
6: end for
7: return ϕpost

Algorithm 3 Compute a weakest liberal precondition WLPP,R(ϕpost) of ϕpost.

Require: ⊥ =⇒P,R ϕpost

1: pre←M × EQ
2: for all (m, eq) ∈M × EQ do
3: if ϕpre−{(m,eq)} =⇒P,R ϕpost then
4: pre← pre− {(m, eq)}
5: end if
6: end for
7: return ϕpre
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Computing a Weakest Precondition

Algorithm 3 computes a weakest liberal precondition, given executions R, for some ϕpost.
The algorithm begins with ϕpre = ⊥ = ϕM×EQ, and then greedily weakens ϕpre until it
can be made no weaker while remaining a precondition for ϕpost on the observed executions
R. Lines 3-5 check if the current ϕpre can be safely weakened by removing the conjunct
eq(s(m), s′(m)) from ϕpre(s, s

′).
It is sufficient to consider each (m, eq) only once during the computation. Suppose it

was not possible to weaken some pre1 by removing (m, eq), but it was possible to weaken
a later pre2 by removing the same (m, eq). Because pre2 comes later, pre1 ⊇ pre2 and thus
(pre1 − {(m, eq)}) ⊇ (pre2 − {(m, eq)}) But, then if ϕpre2−{(m,eq)} =⇒P,R ϕpost, we must also
have ϕpre1−{(m,eq)} =⇒P,R ϕpost, which is a contradiction.

Note that, depending on the order in which the algorithm considers the elements of
M ×EQ, it can return any of the possible weakest preconditions of ϕpost under the observed
executions.

Checking the condition at Line 3 requires O(|M ||EQ||R|2) time, to determine on every
pair of observed executions that ϕpre−{(m,eq)} =⇒ ϕpost. Thus, the entire computation of a
PreR requires O(|M |2|EQ|2|R|2) time.

Correctness

We now formally state several important properties of our determinism specification inference
algorithm.

Most importantly, we show in Proposition 5 that the Determin algorithm is correct.
That is, for any inferred determinism specification (PreR,PostR) for executions R of proce-
dure P :

1. PreR is a weakest liberal precondition for PostR and PostR is a strongest liberal post-
condition for PreR, given the executions in R.

2. PostR is the unique strongest liberal postcondition for any possible precondition given
the executions in R.

We further show (Corollary 4) that an inferred postcondition PostR will always be
stronger than the strongest true postcondition SLPP (⊥). And the more executions R we
observe, the weaker — i.e. closer to the true strongest postcondition — our inferred post-
condition will be (Proposition 6).

Example 5 shows that we cannot make analogous guarantee for our inferred precondi-
tion PreR. Rather, we can only guarantee that additional executions will only strengthen
the inferred precondition as long as they do not weaken the postcondition PostR (Proposi-
tions 7 and 8). And, if PostR is the true strongest postcondition for any precondition and for
all executions, then as we observe additional executions our stronger and stronger inferred
PreR will approach a true weakest precondition for PostR (Corollaries 6 and 7).
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In the results below, we make liberal use of the fact that all of properties shown in
Section 4.3 for =⇒P , SLPP , and WLPP all hold =⇒P,R, SLPP,R, and WLPP,R, respectively.
(We simply replace universal quantification in the proofs of the respective properties with
quantification over the set R.)

Proposition 5. Let (PreR,PostR) be the specification inferred for executions R of P . Then,
PreR ∈ WLPP,R(PostR) and PostR = SLPP,R(PreR).

Further, for any ϕpre =⇒P,R ϕpost, we have PostR =⇒ ϕpost.

Proof. We have already shown in Section 4.4 that Determin returns a PreR that is a weakest
liberal precondition of PostR under executions R.

We shown in Section 4.4 that Determin computes a PostR equal to SLPP,R(⊥). Because
⊥ =⇒ PreR and SLPP,R is monotone, PostR =⇒ SLPP,R(PreR). Therefore, it must be the
case that PostR = SLPP,R(PreR).

Further, suppose ϕpre =⇒P,R ϕpost for some ϕpre and ϕpost. Then, because ⊥ =⇒ ϕpre,
by the monotonicity of SLPP,R we have PostR =⇒ ϕpost.

Lemma 3. Let ϕX and ϕY be bridge predicates such that ϕX =⇒P,R′ ϕY . Then, ϕX =⇒P,R

ϕY for any R ⊆ R′.

Proof. Suppose ϕX =⇒P,R′ ϕY and R ⊆ R′.
Then, ϕX(si, sj) =⇒ ϕY (ti, tj) for all pairs of executions (si, σi, ti), (sj, σj, tj) ∈ R′×R′.

Thus, we also have ϕX(si, sj) =⇒ ϕY (ti, tj) for any pair of executions from R × R, as
R×R ⊆ R′ ×R′.

Therefore, ϕX =⇒P,R ϕY .

Proposition 6. Let PostR and PostR′ be the inferred postconditions for R ⊆ R′. Then,
PostR =⇒ PostR′.

Proof. Note that:

PostR =
l
{ϕpost | ⊥ =⇒P,R ϕpost}

PostR′ =
l
{ϕpost | ⊥ =⇒P,R′ ϕpost}

Because R ⊆ R′, by Lemma 3, for every ϕpost for which ⊥ =⇒P,R′ ϕpost, we also have
⊥ =⇒P,R ϕpost.

Therefore, PostR =⇒ PostR′ , because PostR is the meet over an equal or larger set of
bridge predicates.

Corollary 4. Let PostR be the inferred postconditions for observed executions R. Then,
PostR =⇒ SLPP (⊥). That is, PostR is stronger than the strongest true postcondition.
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Example 5. Consider the following contrived procedure operating on two global variables x
and y:

example() {
<x = x + 1> || <y = 0> || <y = y + 1>;

}

Procedure example runs three atomic statements in parallel: an increment of x, an as-
signment of y to zero, and an increment of y. Suppose we observe the executions:

x = 0, y = 0 7−→ x = 1, y = 0

x = 0, y = 1 7−→ x = 1, y = 1

x = 1, y = 1 7−→ x = 2, y = 0

Then, we will infer the specification precondition x = x′ ∧ y = y′ and postcondition x =
x′ ∧ y = y′.

But, suppose we observe the additional execution:

x = 0, y = 0 7−→ x = 1, y = 1

Then we will see that y = y′ cannot be guaranteed, and we will infer the true specification
x = x′ =⇒example x = x′, which has a weaker precondition.

Proposition 7. Let Post be the inferred postcondition for both R and R′, with R ⊆ R′.
Further, let PreR be an inferred precondition under R. Then, there is no strictly weaker
inferred precondition Pre′R.

Proof. Suppose there were some inferred precondition PreR′ =⇒P,R′ Post with PreR =⇒
PreR′ . By Lemma 3, we have PreR′ =⇒P,R Post. But PreR is a weakest precondition for
Post under observed executions R, so PreR′ = PreR.

Proposition 8. Let Post be the inferred postcondition for both R and R′, with R ⊆ R′. Fur-
ther, let PreR′ be an inferred precondition under R′. Then, there is a PreR from WLPP,R(Post)
— i.e. a possible inferred precondition for observed executions R — such that PreR′ =⇒
PreR.

Proof. By Lemma 3, we have that PreR′ =⇒P,R Post. Thus, either PreR′ is itself a weakest
liberal precondition for Post under R, or else there is some PreR ∈ WLPP,R(Post) such that
PreR′ =⇒ PreR.

Corollary 6. Let the postcondition inferred for executions R be Post = SLPP (⊥). Further,
let PreR be an inferred precondition under R. Then, there are no true preconditions of Post,
i.e. elements of WLPP (Post), strictly weaker than PreR.

Corollary 7. Let the postcondition inferred for executions R be Post = SLPP (⊥). Further,
let Pre be a true precondition for Post. Then, there is a PreR from WLPP,R(Post) — i.e. a
possible inferred precondition under observed executions R — such that Pre =⇒ PreR.
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A More Conservative Precondition

Our algorithm for computing a precondition from WLPP,R(PostR) finds a weakest liberal
precondition PreR such that no pair of executions from R falsifies PreR =⇒P PostR. When
only a small number of executions or procedure inputs are examined, such a precondition
may be too weak.

For example, consider a procedure P whose input consists of ten integers x0, . . . , x9 and
whose output is the sum sum of the integers. Suppose we observe executions R of this
method from only two distinct initial states — one where x0 = · · · = x9 = 0 and one where
x0 = · · · = x9 = 1. Then, the determinism specification x3 = x′3 =⇒P,R sum = sum′ is
consistent with the data. That is, we observe no pair of executions that falsifies that x3 = x′3
is a necessary precondition for determinism — i.e. a pair in which x3 = x′3, but because
some other input is not equal, the final sums are not equal.

To combat such an inadequate test set, rather than report any weakest liberal precon-
dition consistent with out observed executions, we can report a weakest occurring liberal
precondition. We say that a precondition occurs (or is occurring) if:

Definition 8. Precondition ϕpre occurs in a set R of observed executions iff there is a
pair (si, σi, ti), (sj, σj, tj) from R, with i 6= j, such that ϕpre is the strongest bridge predicate
satisfied by si and sj. That is, pre is the set {(m, eq) | eq(si(m), sj(m))}.

Algorithm 4 Compute a weakest liberal occurring precondition WLOPP,R(ϕpost) of determin-
ism precondition ϕpost.

Require: ⊥ =⇒P,R ϕpost

1: // Find the occurring preconditions of ϕpost.
2: occurs← ∅
3: for all (si, σi, ti), (sj, σj, tj) ∈ R×R do
4: pre← {(m, eq) | eq(si(m), sj(m))}
5: if ϕpre =⇒P,R ϕpost then
6: occurs← occurs ∪ {pre}
7: end if
8: end for
9: // Select a weakest occurring precondition of ϕpost.

10: for all pre ∈ occurs do
11: if ¬∃pre′ ∈ occurs. pre′ ⊆ pre then
12: return ϕpre

13: end if
14: end for



CHAPTER 4. INFERRING LIKELY DETERMINISM SPECIFICATIONS 58

We define the set WLOPP,R(ϕpost) of weakest liberal occurring preconditions for P of ϕpost

under observed executions R by:

Definition 9. ϕpre ∈ WLOPP,R(ϕpost) iff:

1. ϕpre =⇒P,R ϕpost,

2. ϕpre occurs in R, and

3. If ϕ′pre occurs in R and ϕ′pre =⇒P,R ϕpost and ϕpre =⇒ ϕ′pre, then ϕ′pre = ϕpre.

Algorithm 4 computes an element of WLOPP,R for a postcondition. We can compute an
occurring weakest precondition PreR by applying Algorithm 4 to PostR.

Note that, unlike with a WLP, observing additional executions may strengthen or weaken
WLOPP,R(PostR), even if PostR does not change. This is because additional observations can
now provide a weaker occurring precondition, in addition to falsifying a previous weakest
precondition. However, in the limit of observing all possible executions of P , there is clearly
no difference between WLOPP,R(PostR) and WLPP,R(PostR).

4.5 Experimental Evaluation

In this section, we describe our efforts to experimentally evaluate the effectiveness of our
algorithm for inferring likely determinism specifications. We aim to show that, given a small
number of representative executions, our algorithm can infer correct and useful determin-
ism specifications. That is, that our inferred specifications capture the intended natural
deterministic behavior of parallel programs.

To evaluate these claims, we implemented our specification inference algorithm Deter-
min for Java applications and applied Determin to the benchmarks to which we previously
had manually added determinism specifications in Chapter 3. We then compared the quality
and accuracy of the inferred and manual specifications.

Benchmarks

We evaluate Determin on the benchmarks previously examined in Chapter 3. These bench-
marks are primarily from the Java Grande Forum (JGF) benchmark suite [46] and the Par-
allel Java (PJ) library [86]. The names and sizes of the benchmarks are given in Table 4.1.
Benchmark tsp is a parallel Traveling Salesman branch-and-bound search [122]. The JGF
benchmarks include five parallel computation kernels — for successive order-relaxation (sor),
sparse matrix-vector multiplication (sparsematmult), computing the coefficients of a Fourier
series (series), encryption and decryption (crypt), and LU factorization (lufact) — as
well as a parallel molecular dynamic simulator (moldyn), ray tracer (raytracer), and Monte
Carlo stock price simulator (montecarlo). The Parallel Java (PJ) benchmarks include an
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app for computing a Monte Carlo approximation of π (pi3), an app for cryptographic crack-
ing a cryptographic key (keysearch3), an app for parallel rendering of a Mandelbrot Set
image (mandelbrot), and a parallel branch-and-bound search for an optimal phylogenetic
tree (phylogeny). These benchmarks range from a few hundred to a few thousand lines of
code, with the PJ benchmarks relying on an additional roughly 15,000 lines of library code
from the Parallel Java Library for threading, synchronization, and other functionality.

In Chapter 3, we added a single determinism specification block to each benchmark,
around the benchmark’s entire parallel computation.

Methodology

In order to apply the Determin algorithm to these benchmarks, we need: (1) to decide for
which regions in each benchmark to infer determinism specifications, (2) to select a set of
representative executions R of these regions as inputs to Determin, (3) to define the sets
of memory locations M and semantic equality predicates EQ for the benchmarks.

Regions for Determinism Specification Inference

In this chapter, we have proposed inferring determinism specifications for procedures — ei-
ther for all procedures detected to have internal parallelism or for some set of user specified
procedures. Our manual determinism specifications in Chapter 3, however, were written not
at procedure boundaries, but around certain hand-chosen syntactic blocks of code containing
internal parallelism. (Each such block is atomic because it is the only region in its benchmark
that performs a parallel computation.) Thus, to enable a fair and direct comparison, we use
Determin to infer determinism preconditions and postconditions at the beginning and end
of the single deterministic block manually identified in Chapter 3. That is, in each repre-
sentative execution we record the program state at the beginning and end of the manually
identified deterministic block.

Representative Executions

We similarly ran each PJ benchmark and tsp twenty times — ten on each of of two selected
inputs, half with five threads and half with ten threads. Benchmark tsp, all of the JGF
benchmarks, and many of the PJ benchmarks come with test inputs. When available, we
used two of these test inputs. Otherwise, we constructed inputs by hand. The representative
executions were run under the Sun JDK 6 on an eight-core Intel Xeon 2GHz Linux system.

Note that, due to the small number of test inputs, we compute the more conservative
weakest liberal occurring precondition (WLOP), described in Algorithm 4, for our inferred
postcondition, rather than a weakest liberal precondition (WLP).
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Memory Locations and Equality Predicates

For the Java program states recorded during the representative executions, we generate a
set M of memory locations by enumerating all paths of field dereferences, up to some fixed
length, through the programs’ memory graphs starting at the local variables and static
classes. (For example, n, this.results.bestScore, or AppClass.N THREADS.) For complete-
ness, we considered all paths of length up to 8, yielding from roughly 20 to 150 memory
locations for each benchmark.

We use several equality predicates to compare these memory locations: Primitive types
are compared using strict equality or approximate equality (equal to within 10−10) for
floating-point values. Objects are compared using their equals() methods. Object arrays,
Lists, and Iterables can be compared element-by-element or compared as sets of elements.

Implementation

To capture and record program states at desired points in our benchmarks, the data collection
component of our implementation uses the Java Reflection API to traverse and serialize a
running program’s memory graph. We manually instrumented the local variables in scope
at the open and close of each deterministic block.

The specification inference portion of our implementation takes a set of these serialized
and pre- and post-states as input and outputs an inferred strongest liberal postcondition
and weakest liberal occurring precondition for determinism. Both components together are
implemented in roughly 1000 lines of Java code.

Heuristics

The above approach generates a large number of memory locations and equality predicates,
leading to determinism specifications with too many conjuncts in their preconditions and
postconditions. We employ several heuristics to decrease the size and increase the relevancy
of our determinism specifications:

First, we remove from the inferred postconditions any locations not modified in at least
one execution by the region of code under examination. Without this heuristic, the strongest
postcondition (and thus also the precondition) for a region will contain a conjunct v = v′

for each variable v not modified by the region. While such an added conjunct is correct
— we can guarantee the determinism of variables that are not modified — it is generally
not relevant to computation being performed. On each of our benchmarks, this heuristic
removes roughly from 10 to 60 conjuncts.

Second, we remove from the inferred precondition and postcondition any conjuncts that
are satisfied by every pair of observed program executions. These locations tend to be global
constants, such as hard-coded parameters and Class objects. As above, predicates involving
such constants are typically not relevant. On each our benchmarks, this heuristic can remove
as many as 75 conjuncts from the precondition or postcondition.
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Third, we eliminate redundant conjuncts. For example, if a precondition contains the
conjunct o.equals(o) for an array o, then we will not include the redundant, weaker conjunct
o.f.equals(o.f ′). Or if our postcondition contains conjunct x = x′, we will not add the
redundant conjunct |x − x′| ≤ 10−10. On each our benchmarks, this heuristic removes only
a handful of conjuncts from the final preconditions and postconditions.

Results

The results of our experimental evaluation are shown in Table 4.1. We will argue the these
results provide evidence for our claims that Determin can automatically infer determinism
specifications that are both accurate and useful.

Accuracy: Postconditions

For every benchmark but lufact, our automatically inferred postcondition was at least as
strong as the corresponding manually-specified postcondition from Chapter 3. Further, the
inferred postcondition for lufact is actually more accurate than our manual one. When
writing the manual specification for lufact in Chapter 3, we wrote postcondition a =
a′ ∧ ipvt = ipvt′ ∧ x = x′. But, in fact, the lufact routine writes no output into variable
x. The relevant output — the solution to the linear system being solved — is written to
variable b. The correct postcondition, inferred by Determin, is a = a′∧ ipvt = ipvt′∧ b = b′

Of the other benchmarks, for all but three of them (sor, moldyn, and tsp), the inferred
postcondition is equivalent to the manual one. Although the inferred postconditions contain
more conjuncts, these postconditions hold for the same pairs of executions. For example,
the manual postcondition for mandelbrot is simply matrix = matrix′. That is, the resulting
image, stored as a matrix of hues, is deterministic. The inferred postcondition also contains
image.myWidth = image.myWidth′. But this field always holds the width of matrix, and
thus this conjunct does not strictly strengthen the postcondition.

Further, for benchmarks sor and moldyn, the inferred postconditions are still correct and
are only slightly stronger than the previous manual ones. Both benchmarks retain various
intermediate results past the end of their computations. Roughly speaking, our manual
assertions for these benchmarks specify that the final answer is independent of the number
of threads used, while the inferred specifications capture that these intermediate results are
also deterministic for any fixed number of threads.

Accuracy: Preconditions

For all but two benchmarks (sor and sparsematmult), our inferred preconditions are also
as strong as our previous manual determinism specifications. Further, these inferred precon-
ditions, except for moldyn’s and keysearch3’s, are equivalent to the manual ones although
they contain more conjuncts.
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Benchmark
Approximate
Lines of Code

(App + Library)

Precondition Postcondition

# Manual # Inferred As Strong # Manual # Inferred As Strong

Conjuncts Conjuncts As Manual? Conjuncts Conjuncts As Manual?

JGF

sor 300 3 2 No 1 7 Yes

sparsematmult 700 4 4 No 1 2 Yes

series 800 1 3 Yes 1 1 Yes

crypt 1100 1 5 Yes 2 2 Yes

moldyn 1300 2 14 Yes 3 7 Yes

lufact 1500 4 9 Yes 3 3 No∗

raytracer 1900 2 3 Yes 1 1 Yes

montecarlo 3600 1 2 Yes 1 1 Yes

PJ

pi3 150 + 15,000 2 3 Yes 1 1 Yes

keysearch3 200 + 15,000 3 5 Yes 1 3 Yes

mandelbrot 250 + 15,000 7 11 Yes 1 5 Yes

phylogeny 4400 + 15,000 3 5 Yes 2 11 Yes

tsp 700 1 3 Yes 1 2 Yes

Table 4.1: Results of our experimental evaluation of Determin. For each benchmark,
we report the approximate size of the benchmark and the number of conjunctions in the
manual determinism precondition and postcondition added to the benchmark in Chapter 3.
We also report the number of conjuncts in the strongest liberal postcondition (SLP) and
weakest liberal occurring precondition (WLOP) of the determinism specification inferred by
Determin for each benchmark. Further, we indicate whether each inferred precondition
and postcondition is at least as strict as its corresponding hand-specified condition.

The inferred precondition for moldyn contains nthreads = nthreads′, making it stronger
than in our manual specification.

The stronger precondition for keysearch3 actually highlights an error in the manual
specification from Chapter 3. One of the inputs (partialkey) to the main computation is
missing from the manual precondition. But the conjunct partialkey = partialkey′ correctly
appear in the inferred precondition.

Limitations

For the sor benchmark, our inferred precondition is missing two input parameters on which
the deterministic behavior depends. Determin fails to include these two parameters because
they each take on the same value in all of JGF test inputs for sor. Thus, Determin sees
no evidence that these parameters are important for determinism and removes them via our
second heuristic. This example shows the need for a sufficiently diverse set of test inputs
and executions in order to infer accurate determinism specifications.

Similarly, the postcondition for tsp is incorrectly too strong, requiring that two runs on
the same input return the same tour. In fact, two such runs could return different tours with
the same minimal cost, but our particular test inputs appear to have unique solutions.
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Discussion

For nearly all of our benchmarks, Determin infers determinism preconditions and postcon-
ditions equivalent to, slightly stronger than, or more accurate than those in our previous,
manual specifications. Thus, we argue that Determin can capture the intended and natural
deterministic behavior of parallel programs.

Further, although our automatically inferred specifications are somewhat larger than the
manual ones from Chapter 3, the total number of inferred conjuncts remains quite small. In
particular, we believe that pre- and postconditions with 5 to 15 conjuncts are small enough to
be fairly easily understood by a programmer. Thus, we argue that such inferred specifications
can help document the deterministic behavior of a routine or application for a programmer.
For example, the inferred specification for lufact corrected our misunderstanding of the
benchmark’s behavior.

Further, we argue that such automatically-inferred determinism specifications can be
useful in discovering parallelism bugs through anomaly detection. That is, from observing
“normal” program executions, Determin infers a specification of the typical, expected
deterministic behavior of a program. Then, if more in-depth testing finds executions that
are anomalous — i.e. that violate the inferred specification — then those executions may
exhibit bugs.

In Chapter 3, we combined determinism specifications with a parallel software testing tool
in order to distinguish benign from harmful races in these benchmarks. The specifications
inferred by Determin in this chapter are sufficiently similar to those manual specifications
to serve the same purpose. In particular, these specifications would allow us to distinguish
the harmful data race that exists in the raytracer benchmark from the other benign races.

4.6 Summary

We have proposed Determin, an algorithm to dynamically infer a likely determinism spec-
ification for a parallel program given a set of example executions. We have implemented
Determin in a tool for Java and applied it to several parallel Java benchmarks. The de-
terminism specifications automatically inferred by Determin for these benchmarks were
found to mostly be equivalent to or more accurate than determinism specifications written
manually in previous work. Thus, we believe that inferred determinism specifications can
aid in program understanding, as well as bug detection, for parallel programs.
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Chapter 5

Specifying and Checking Semantic
Atomicity for Multithreaded
Programs

In Chapter 3, we used our bridge predicates [29] to specify and to test the natural and in-
tended deterministic behavior of parallel software. But, as we discussed in Chapter 2, some
parallel applications can intentionally have nondeterministic behavior, correctly returning
different results for different thread schedules. We cannot specify the correctness of such
nondeterministic parallelism with our determinism specs. Further, determinism specifica-
tions are applicable only to closed programs — i.e., those that use parallelism internally to
perform some specific computation, producing an output given an input. We cannot write
determinism specifications for open programs or libraries, such as, e.g., a concurrent list data
structure. Thus, in this chapter, we propose semantic atomicity specifications — lightweight
specification for parallelism correctness that use bridge predicates to generalize atomicity.

Atomicity [64] is a fundamental parallel correctness property for multithreaded programs.
A block of code is atomic if it appears to execute all at once, indivisibly and without in-
terruption from any other program thread. The behavior of an atomic code block can be
understood and reasoned about sequentially, as no parallel operations can interfere with its
execution.

Many researchers have proposed using transactional memory hardware, libraries, and/or
language constructs to implement such atomic blocks. But in much existing multithreaded
code, desired atomicity is implemented using a variety of synchronization techniques, includ-
ing coarse or fine-grained locking and non-blocking synchronization with primitives such as
atomic compare-and-swap. Correctly implementing atomicity using these techniques can be
difficult and error-prone. Thus, as we discuss in Section 5.5, there has been great interest
in techniques enabling programmers to specify what fragments of their concurrent programs

c© ACM, 2011. A version of this chapter was published in the Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating Systems (APLOS ’11),
http://doi.acm.org/10.1145/1950365.1950377

http://doi.acm.org/10.1145/1950365.1950377
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behave as if atomic, and in techniques for testing or verifying that such programs conform
to their atomicity specifications.

Traditional notions of atomicity are often too strict in practice, however, because they
require the existence of serial executions that result in an state identical to that of the in-
terleaved execution. We propose an assertion framework [28] that allows programmers to
specify that their code is semantically atomic — that any parallel, interleaved execution of
an atomic block will have an effect semantically equivalent to that of executing the block se-
rially. Programmers specify this semantic equivalence using bridge predicates [29] (described
in Chapter 3) — predicates relating pairs of program states from the interleaved and the
equivalent serial execution. Such predicates allow the equivalence of executions to be defined
at the level of abstraction of an application.

We further propose an approach [28] to check our semantic atomicity specifications by
testing whether or not specified programs are semantically linearizable. We choose to check
linearizability because (1) this stronger notion is significantly easier to check since the re-
striction on allowed serial executions significantly reduces the space of serial executions that
we must search, and (2) the notion of linearizability is often used to describe the parallel
correctness of various concurrent data structures. Essentially, to test linearizability for a par-
ticular interleaving we need to consider only permutations of atomic blocks that overlapped
in the interleaved execution.

The key to the efficiency of our approach is based on two observations. First, lineariz-
ability can be checked efficiently for a parallel execution in which only a small number of
atomic blocks overlap, since we need to examine only a small number of similar sequential
executions. Second, our experience shows that most atomicity bugs can be reproduced with
a small number of overlapping atomic blocks. Thus, we test linearizability of a program by
generating parallel executions with only a small number of interrupted atomic blocks. Our
experiments show that we can effectively find serious atomicity errors in our benchmarks by
testing such interruption-bounded executions.

To further reduce the search space for the linearized execution, we propose a set of sound
heuristics and optional user annotations. We show in our experiments that in the presence
of such annotations we can often find the linearized execution in the first attempt.

We have implemented our assertion framework for Java and used it to specify the intended
atomicity of a number of benchmarks. We found that the ability to specify atomicity at the
semantic level, using bridge predicates, is crucial for capturing the intended atomic behavior
of many of our of the benchmarks. Such benchmarks contain sections of code that, while
semantically atomic, are not atomic under more strict, traditional notions of atomicity.

In summary, we describe the following contributions:

• We propose using bridge predicates to specify that regions of parallel programs are
intended to be semantically atomic. Our notion of semantic atomicity is more general
than traditional strict notions of atomicity and is applicable to a wider range of parallel
programs.
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• We propose an approach to test efficiently and effectively a program’s semantic atom-
icity specification by checking the linearizability of program executions with a bounded
number of interrupted atomic sections. We further propose program annotations and
corresponding heuristics to reduce significantly the search space that must be explored
during testing, without sacrificing any ability to find atomicity errors.

• We implement an assertion framework for Java for specifying and testing semantic
atomicity specifications and evaluate our approach on a number of Java benchmarks.
We find that bridge predicates are required in a majority of the examples. We show
that the heuristics we propose make the testing approach both reasonably efficient and
effective at finding bugs.

• We find a number of previously unknown atomicity errors, including several in Java’s
built-in data structure libraries.

5.1 Specifying Semantic Atomicity

In this section, we informally describe atomicity and motivate our proposal for semantic
atomicity specifications. We first describe a real-world motivating example. We then expand
on semantic atomicity specifications using two simpler examples. In Section 5.1, we discuss
the effort involved in programmers writing such atomicity specifications.

We consider parallel programs in which certain regions of code are annotated as atomic
blocks. This annotation specifies the programmers belief or intention that each atomic
block is written so that, however the block is actually executed, the effect is as if the
block’s execution occurred all-at-once, with no interference or interruption from other parallel
threads. For simplicity, we consider each indivisible program instruction that is not in a user-
annotated atomic block to be in its own implicit, single-instruction block.

Example 1: Concurrent Queue

Consider the example program in Figure 5.1 using Java’s ConcurrentLinkedQueue data
structure, an implementation of Michael and Scott’s non-blocking queue [102]. The Java
class ConcurrentLinkedQueue, from the java.util.concurrent package, is implemented
in a lock-free, non-blocking manner, updating its internal structure using compare-and-swap
operations. If two parallel queue operations conflict, one of the operations will detect the
conflict and retry.

The implementation of ConcurrentLinkedQueue is designed to ensure that, when multi-
ple queue operations occur concurrently, their result is the same as if all queue operations had
been executed atomically. We specify this intended atomicity in Figure 5.1 by enclosing each
parallel call to remove(1) in a specified atomic block, which we write as @assert atomic
{...}.
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Queue q = new ConcurrentLinkedQueue();

q.add(1); q.add(1);

thread 1: thread 2:

@assert_atomic { @assert_atomic {
q.remove(1); q.remove(1);

} }

bridge predicate:

q.equals(q’)

Figure 5.1: Example program with a highly-concurrent queue. The queue initially con-
tains two copies of the value 1, and two parallel threads each try to remove a 1 from the
queue. These remove operations are specified to execute as if atomic. The program is
not strictly atomic, but is semantically atomic with respect to the given bridge predicate.

head:!

head:! null!null!

head:! null!

null! 1!1!

head:! null! 1!

head:! null!null!

head:! null!

Figure 5.2: The initial internal structure of queue q.

head:!

head:! null!null!

head:! null!

null! 1!1!

head:! null! 1!

head:! null!null!

head:! null!

Figure 5.3: The internal structure of queue q after any serial execution of the example
program.

head:!

head:! null!null!

head:! null!

null! 1!1!

head:! null! 1!

head:! null!null!

head:! null!

Figure 5.4: A possible internal structure of queue q after a parallel, interleaved execution
of the example program.
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If our specification was a strict atomicity specification, it would assert: for any parallel
execution of the program, in which the calls to remove(1) can interleave, there there must
exist a serial execution, in which each call to remove(1) occurred atomically, producing an
identical final state. But this strict atomicity specification does not hold.

Internally, a ConcurrentLinkedQueue is a linked list. Nodes in the list can be lazily
deleted — i.e. a remove operation can set the data field of a node to null, indicating that
the corresponding data element is no longer in the queue, but leave removing the node to
some future operation.

A call to the remove(x) method performs three basic steps: (1) Removes all nodes from
the head of the list with null data fields, (2) Iterates through the rest of the list, searching
for a node with data field equal to x, and (3) Removes x by setting the data field of the
found node to null with a compare-and-swap. Steps (2) and (3) are repeated until the
compare-and-swap succeeds or until the end of the internal list is reached.

Before the parallel threads execute remove, the internal list structure is as shown in
Figure 5.2. In any serial execution of the two calls to remove, the second call will lazily
delete the node null’ed by the first call, yielding the final internal queue structure shown
in Figure 5.3. But in a parallel execution in which the two calls to remove are interleaved,
it is possible for neither call to clean up after the other, yielding the final internal state of
the queue shown in Figure 5.4.

Thus, under a traditional, strict definition of atomicity, the removemethod is not atomic,
as a non-serial, interleaved execution can yield a program state not reachable by any serial
execution. But in either case the abstract, semantic state of queue q is the same — the
queue is empty! That is, the code is atomic, but only at the semantic level of the contents
of the queue.

To capture this kind of parallel correctness property, we propose semantic atomicity.
Blocks of code are semantically atomic when, however their execution is interleaved with that
of other code, their effect is semantically equivalent to their effect when executed serially.
The desired semantic equivalence is specified by a programmer using a bridge predicate. For
this program, semantic equivalence is given by the bridge predicate Φ(σ, σ′):

q.equals(q′)

This bridge predicate compares two program states, σ and σ′, the first from an interleaved,
parallel execution of our example program and the second from a serial execution. The
unprimed q refers to the queue in state σ and the primed q′ refers to the queue in state σ′.
This bridge predicate specifies states σ and σ′ are semantically equivalent when the equals
method of ConcurrentLinkedQueue returns true on the queues from the two states — that
is, when the two queues contain the same elements, independent of their internal structure.

This semantic atomicity specification does hold for our example program. For any parallel
execution of the program, there exists a serial execution that produces an equivalent final
queue q.
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int balance = 0;

void deposit1(int a) {
@assert_atomic {
int t = balance;
t += a;
balance = t;

}
}

int balance = 0;

void deposit2(int a) {
@assert_atomic {
int t = balance;
while (!CAS(&balance, t, t+a)) {
t = balance;

}
}
}

int conflicts = 0;
int balance = 0;

void deposit3(int a) {
@assert_atomic {
int t = balance;
while (!CAS(&balance, t, t+a)) {
conflicts += 1;
t = balance;

}
}
}

bridge predicate:
balance == balance’

Figure 5.5: Three different implementations of a function to make a deposit into a bank
account. Implementation deposit1 is not atomic, while deposit2 is atomic. Imple-
mentation deposit3 is not strictly atomic, but it is semantically atomic with respect to
the bridge predicate balance==balance’.

Example 2: Bank Account

Consider the code in Figure 5.5 for function deposit1 for making a deposit into a bank
account whose balance is stored in variable balance. The atomic specification in deposit1
does not hold because there is an interleaved execution for which there is no equivalent serial
execution. Suppose two threads call deposit1(100) in parallel, with balance initially 0.
Under certain interleavings, both calls to deposit1 can read a balance of 0 and then both
can write 100 to balance, producing a wrong final result: balance=100. In contrast, any
serial execution of the two threads, in which the body of deposit1 cannot be interleaved
with any other code, must produce the final result balance=200.

Note that atomicity violations can occur even in code that is free of data races. For
example, if deposit1 held a shared lock while reading and writing to balance, but released
the lock in between when executing “t += a”, then the procedure would be free of data
races but would still not be atomic.

Consider instead the implementation deposit2 in Figure 5.5, which uses an atomic
compare-and-swap (CAS) operation to modify variable balance. In this implementation, the
atomicity specification does hold. Each call to deposit reads balance into a temporary t
and then attempts to atomically update balance to t+a, succeeding if balance still equals
t. If some other thread interferes, changing balance between the read of balance and the
CAS, then the atomic update fails and deposit re-reads balance and tries again.

Note that, while atomic, this code is not conflict-serializable [115]. Every parallel exe-
cution will produce the same result as a serial execution, but in a serial execution the CAS
operation can never fail and the body of the retry loop will never be run.

Finally, consider deposit3 in Figure 5.5. An approximate1 count is kept, in shared

1Such performance counters are often not synchronized, as developers reason that the cost of synchro-
nization is too great and approximate counts are often suitable for performance debugging.
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variable conflicts, of the number of failed compare-and-swap operations during runs of
deposit3. Otherwise the code is identical to deposit2.

Due to the introduction of shared counter conflicts, the atomic specification no longer
holds. In a parallel execution with two calls to deposit3(100), if the execution of the
methods interleave, it is possible for conflicts to be incremented to 1. But in any execution
in which the methods are executed serially, the value of conflicts will be 0.

The deposit3 implementation is semantically atomic, however, w.r.t. bridge predicate:

balance == balance′

That is, if some interleaved execution produces a final balance, there will exist a serial
execution producing a final balance′ such that balance and balance′ are equal.

Example 3: Multiset Stored as a List

Consider the example program in Figure 5.6, in which two threads accumulate integers into
a shared list. If the programmer cares about the exact order of the final elements in
list, then this code is not atomic. Although method add of Vector is synchronized, an
interleaved execution of this example program can yield a final list of [1,3,2,4], while a
serial execution of the two atomic blocks could yield only [1,2,3,4] or [3,4,1,2].

But this code can be thought of as atomic if the programmer cares only about the multi-
set of elements in the final list. That is, the example program in Figure 5.6 is semantically
atomic with respect to some bridge predicate like equalMultisets(list,list’), where
equalMultisets is a function that compares two collections to see if they have equal mul-
tisets of elements.

List list = new Vector();

thread1: thread2:

@assert_atomic { @assert_atomic {
... ...

list.add(1); list.add(3);

... ...

list.add(2); list.add(4);

} }

bridge predicate:

equalMultisets(list, list’)

Figure 5.6: Example program in which two atomic blocks, running in parallel, insert
elements into a thread-safe list.



CHAPTER 5. SPECIFYING AND CHECKING SEMANTIC ATOMICITY 72

Writing Semantic Atomicity Specs

Our above examples demonstrate that we can reap the benefits of atomicity as a specification
and reasoning tool in many more contexts if we consider the more relaxed form of semantic
atomicity with respect to an application-specific bridge predicate. But how much effort is
involved in writing such a specification for a parallel program?

To write a semantic atomicity specification for a program, a programmer must: (1) Indi-
cate with @assert atomic which static blocks of code are intended to execute as if atomic,
and (2) Write a bridge predicate to define when two final states of the program are seman-
tically equivalent. We believe neither task should be difficult for the author of a parallel
program.

We believe that, when writing multithreaded software, programmers must already be
thinking about the possible interference between parallel tasks and how to prevent harmful
interference using, for example, thread-safe data structures, locks, or atomic primitives such
as compare-and-swaps. That is, programmers are already thinking about how to ensure that
program tasks are atomic at some semantic level. Thus, it should not be difficult to specify
which blocks of code are intended to behave equivalently whether or not other program tasks
are run concurrently — for example, a modification to concurrent queue data structure or a
deposit to a bank account. Further, in our experimental evaluation (Section 5.4), we found
it to be quite simple to identify the intended atomic blocks in our benchmark programs. We
specified between one and eight atomic blocks for each such benchmark.

We similarly believe that it is straightforward to specify when two program results are
semantically equivalent using a bridge predicate. This specification task does not require
reasoning about possible program interleavings, but simply identifying which variables or
objects hold the final result of a program and considering when two such final results are
semantically the same — for example, that two queues are equivalent if they contain the
same elements in the same order, independent of the structure of their internal linked lists.
Further, in our experimental evaluation (Section 5.4), we found that writing such bridge
predicates required only a few lines of specification for each benchmark.

5.2 Semantic Atomicity and Linearizability

In this section we elaborate on several possible interpretations of atomicity specifications.
We first describe these notions at a high level, and compare them to other notions of parallel
correctness and non-interference. Later in this section we give the precise formal foundations
on which we developed the checking algorithm described in the rest of this chapter.

Overview

At a high-level, we think of a parallel program annotated with atomic blocks as having two
different execution semantics: (1) In the interleaved or non-serial semantics, the atomic
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annotations have no effect — the parallel operations of different threads can be freely in-
terleaved. (2) In the serial or non-interleaved semantics, when one program thread enters
an atomic block, no other thread may execute until the first thread exits that atomic block.
(Because we treat every instruction as being in an implicit single-instruction atomic block,
we can think of the serial semantics as having a global re-entrant lock that each thread must
acquire to enter any atomic block and that is released on exiting a block.)

Traditional parallel correctness properties such as atomicity, serializability, or lineariz-
ability hold for a program when, for any interleaved execution of the program, there exists
a similar serial execution that produces an identical final program state. The differences
between these correctness properties are in their definitions of similar executions:

• Atomicity [64] requires only that, for each interleaved execution, there exists a serial
execution yielding the same final program state. The interleaved and serial executions
need not be similar in any other way.

• Serializability [115] requires that, for each interleaved execution, there exists a serial
execution which both yields the same final program state and in which all the same
atomic blocks are executed.

Conflict-serializability [115] further requires that all corresponding atomic blocks per-
form the same conflicting read and write operations in the interleaved and parallel
execution, and that all pairs of conflicting operations occur in the same relative order.
Conflict-serializability, though very strict, can be checked efficiently, and is thus used
in many atomicity testing and verification tools, (e.g., [65, 64, 57, 159, 62]).

• Linearizability [100], like serializability, requires that, for each interleaved execution,
there exists a serial execution which both yields the same final program state and in
which the same atomic blocks are executed. Further, it requires that any pair of atomic
blocks whose execution does not overlap in the interleaved execution must occur in the
same order in the serial execution.

Note that this definition of linearizability is somewhat different than that of [100]
and later generalization [103], which formalize atomic blocks as having distinguished
responses or return values and compare program states via observational equivalence —
i.e. whether sequences of atomic blocks would return the same values. Our definition
is appropriate for general atomic blocks without distinguished return values, while
capturing the key requirement that a serial execution is equivalent only if it preserves
the ordering of non-overlapping atomic blocks.

All three properties defined above require that, for each interleaved execution, there exists
some serial execution producing an identical final state. As discussed in Section 5.1, such
strict state equality is too restrictive to capture critical noninterference properties for many
programs. For such programs, we propose employing a user-specified bridge predicate [29]
— a predicate relating a pair of program states from an interleaved and a serial execution
— to define a semantic equivalence between final program states.
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That is, we can define semantic atomicity, semantic serializability, and semantic lin-
earizability, all with respect to a user-specified bridge predicate Φ, by allowing in the above
definitions that, for any interleaved execution with final state σ, the equivalent serial execu-
tion can have any final state σ′ such that Φ(σ, σ′).

The checking algorithm described in Section 5.3 tests semantic linearizability, primarily
because linearizability is significantly easier to check, as it constrains the search space of
similar serial executions to those that preserve the ordering of non-overlapping atomic blocks.
But before describing out testing algorithm, we will briefly formalize in Section 5.2 these three
parallel correctness properties.

Formal Definitions

In this section, we briefly formalize the above definitions of semantic atomicity, serializability,
and linearizability.

Let Thread denote the set of program threads, Σ denote the set of program states in-
cluding the thread-local states, Atomic denote the set of static program block annotated as
atomic, and Op denote the set {begin(a) : a ∈ Atomic} ∪ {end, ε} of atomic block opera-
tions. Intuitively, the operations are used to label the state transitions as follows. begin(a)
marks the beginning of a dynamic instance of the static atomic block a, end marks the end
of the last open atomic block, and ε is used for all other state transitions. We assume that
atomic blocks are properly nested, and all instructions are inside one atomic block. If an
instruction is not inside a programmer-annotated atomic block, then we assume that there
is an implicit atomic block containing just that instruction.

Definition 10. A program P consists of initial program state σ0 and transition relation →:

−→ ⊆ Σ× Thread×Op× Σ

We write σ
t:op−−→ σ′ when the program can transition from state σ to σ′ by executing the

atomic block operation op by thread t.

Definition 11. An execution of program P = (→, σ0) is a sequence of transitions in the
operational semantics →:

σ0
t1:op1−−−→ σ1

t2:op2−−−→ · · · tn:opn−−−→ σn

An execution is complete if all begin(a) have a matching end operation in the same thread.

Definition 12. An execution E is serial iff, for each matched t : begin(a) and t : end
transition in E, there are no transitions between the two by any other thread s 6= t.

Definition 13. A transition t : op in an execution E is a top-level transition if it does not
occur between any matched t : begin(a) and t : end by the same thread.
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Note that a top-level transitions must be a begin or end since we assume that all in-
structions are part of atomic blocks.

Definition 14. Two top-level atomic blocks overlap in an execution E if either of the
blocks’ begin or end transition occurs between the begin and end transition of the other
block.

Note that a complete execution is serial if and only if it contains no overlapping, top-level
atomic blocks.

Definition 15. A complete execution E = σ0
···−→ σn of program P is semantically lin-

earizable with respect to Φ iff there exists a serial execution E ′ = σ0
···−→ σ′n′ of P such

that:

(1) Φ(σn, σ
′
n′),

(2) for every thread t ∈ Thread, the sequence of top-level operations performed by t is the
same in E and E ′.

(3) non-overlapping top-level atomic blocks in E appear in the same order E ′.

A program P is semantically linearizable with respect to Φ iff every execution of
P is semantically linearizable.

Note that if we remove conditions (2) and (3) above we obtain the notion of semantic
atomicity. Similarly, if we remove only the condition (3) above we obtain the notion of se-
mantic serializability. And when the bridge predicate Φ(σ, σ′) is strict state equality σ = σ′,
we obtain traditional linearizability, atomicity (removing conditions 2 and 3), and serializ-
ability (removing condition 3). We prefer to work with the stronger notion of linearizability
because it is significantly easier to check.

Note that, for the purpose of checking similarity between the parallel and the serial
executions, we identify the dynamic instances of atomic blocks by the combination of the
thread that runs them, the static label of the atomic block, and the index of the dynamic
occurrence in the execution.

5.3 Testing Semantic Linearizability

Now that we have defined semantic linearizability for programs with atomic block specifica-
tions, we can address the problem of checking the linearizability of such atomicity specifica-
tions. Suppose P is a program with atomic blocks specified to be semantically linearizable
with respect to bridge predicate Φ. Checking the linearizability of P consists of two problems:

(1) Given an interleaved execution E of a program P , is E semantically linearizable with
respect to Φ?
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(2) Is program P semantically linearizable with respect to bridge predicate Φ? That is, is
every interleaved execution of P semantically linearizable?

Given a solution to the first problem, we can in theory solve the second by enumerating
all interleaved executions of P and checking if each is linearizable. In practice, however, it
is typically not feasible to enumerate all executions of a parallel program.

Instead, we resort to checking the linearizability of only a subset of the interleaved exe-
cutions of P . Such a checking procedure will be sound — if we discover any executions of
P that are not linearizable, then P cannot be linearizable — but incomplete — even if all
checked executions are linearizable, we cannot know for certain that P itself is linearizable.

There are a number of existing techniques and tools that can be applied to generate a
subset of the parallel, interleaved executions of a program for testing and verification —
for example, a preemption-bounded model checker [105] such as CHESS [106] or an active
testing [132, 116] tool such as CalFuzzer [85]. We describe in Section 5.4 the details of our
technique for generating the interleaved executions to test.

The key to the effectiveness of our approach, however, is to consider only those inter-
leaved executions in which only a small number of atomic blocks either have their execution
interrupted by the operations of other threads or themselves interrupt the atomic blocks of
other threads.

We show in the Sections 5.3 and 5.3 that we can efficiently check the linearizability
of such interruption-bounded executions. And in Section 5.3 we will describe a technique,
leveraging optional programmer-supplied hints to further increase the efficiency of such test-
ing. Our experimental results demonstrate that testing a program for linearizability only on
interruption-bounded interleaved executions is sufficient to find real atomicity errors.

Interruption-Bounded Executions

Let E be an interleaved execution of some program P :

E = σ0
t1:op1−−−→ σ1

t2:op2−−−→ · · · tn:opn−−−→ σn

We say a top-level atomic block t : begin(ai), . . . , t : end in thread t in E is interrupted
if any operations by other threads occur between t : begin(ai) and t : end in E. The
interrupting operations in the other threads are part of atomic blocks that interrupt the
atomic block t : begin(ai), . . . , t : end.

Suppose an execution E has R interrupted atomic blocks and K interrupting atomic
blocks. (Note that a single block may be both interrupted and interrupting). We ask the
question, how many possible linear orderings are there of the top-level atomic blocks of E
that preserve the order of non-overlapping atomic blocks in E?

We show below in Theorem 16 that such an execution E has no more than (K+1)R pos-
sible linear orderings of its top-level atomic blocks that preserve the order of non-overlapping
atomic blocks. As we discuss in the next section, to check that an execution E is semantically
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linearizable, we will examine linear orderings of the top-level atomic blocks of E that preserve
the ordering of non-overlapping blocks in E. Thus, if execution E is interruption-bounded —
i.e. has no more than R interrupted atomic blocks and no more than K interrupting blocks
— then there will be no more than (K + 1)R serial schedules that need to be examined.

Theorem 16. Suppose an execution E has R top-level interrupted atomic blocks and K top-
level interrupt ing atomic blocks. There are no more than (K + 1)R possible linear orderings
of the top-level atomic blocks of E that preserve the order of non-overlapping atomic blocks.

Proof. The proof is by induction on R. For the base case R = 1, the bound is K+1, because
the K interrupting blocks are themselves non-overlapping and thus their linear order is fixed.
The interrupted block can be placed in K + 1 positions in the order.

Suppose E has R interrupted atomic blocks and K interrupting atomic blocks. There
exists some set S of c ≥ 1 blocks in E such that: (1) every block in S is interrupted, and
(2) no block in S interrupts any block not in S.

Suppose that such an S exists with c = |S| = 1. Then, there are no more than (K+1)R−1

linear orderings of the remaining blocks, with the single block in S removed. And there are
no more than K + 1 ways to add back the single block into any such order, yielding the
desired bound.

Suppose instead that an S exists only with c = |S| > 1. Then every block in S is both
interrupted and interrupting. (If any block were not interrupting, then it would be an S with
c = 1.) Thus, there are no more than (K+1−c)R−c linear orderings of the remaining atomic
blocks, of which R − c are interrupted and no more than K − c are interrupting. Consider
the number of distinct ways in which the c blocks of S could appear in such an ordering of
the remaining blocks. There are c! linear orderings of the c blocks of S. And, relative to the
remaining K − c interrupting blocks, there are no more than K − c + 1 possible positions
for each of the c blocks in S. Thus, the number of ways to add one linear ordering of the
c blocks of S to one linear ordering of the remaining blocks is no more than K!/c!(K − c)!,
which is the the number of ways to partition a sequence of length c into K− c+ 1 segments,
allowing empty segments. The desired bound holds, as:

(K + 1− c)R−c · c! · K!

c!(K − c)!
≤ (K + 1)R

Testing Linearizability of Interruption-Bounded Executions

Algorithm 5 lists CheckLinearizable(P,Φ, E), our algorithm for testing the semantic lineariz-
ability, with respect to Φ, of an execution E of a program P .

Recall that an interleaved execution E of program P is semantically linearizable w.r.t.
Φ iff there exists a serial execution E ′ of P such that: (1) the final states of E and E ′ are
equivalent w.r.t Φ, (2) each thread t contains the same sequence of top-level atomic blocks
in E and E ′, and (3) if two blocks do not overlap in E, then they must occur in the same
order in E ′. How do we determine whether such a serial execution exists?
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Algorithm 5 CheckLinearizable(P,Φ, E)

σ ← final state of execution E
for s ∈ Linearizations(E) do

if Execute(P, s) succeeds, yielding σ′ then
if Φ(σ, σ′) then

return true
end if

end if
end for
return false

We say that a schedule is a sequence (t1, a1), . . . , (tn, an) of pairs of thread identifiers ti
and atomic block labels ai. We assume that all sources of nondeterminism in a program
P , besides the scheduling of parallel threads, have been eliminated. For example, the input
to P and the environment in which P runs must be fixed. Thus, the behavior of the serial
executions of P , in which no atomic block interrupts the execution of any other block, are
uniquely identified by the schedule in which the top-level atomic blocks occur.

Then, let Linearizations(E) be a procedure computing the set of all schedules of the
top-level atomic blocks in E that preserve the order of non-overlapping atomic blocks in E.
A serial execution can be a witness to the linearizability of E only if it corresponds to one
of the schedules in Linearizations(E). By Theorem 16, the number of such schedules, and
thus the number of such serial executions, is bounded by the number of interruptions in E.

We need only a mechanism for controlling the execution of a program P to force it along
a schedule s. Let Execute(P, s) denote such a procedure. At a high level, for a program P
and a schedule s = (t1, a1), . . . , (tn, an), procedure Execute(P, s) will, for each i from 1 to n:

• If thread ti is not active or the next top-level atomic block to be started by ti is not
labeled ai, then Execute(P, s) fails.

• Otherwise, we let thread ti execute begin(ai) and let it continue to run until it executes
a matching end. If thread ti blocks, Execute(P, s) fails. Similarly, Execute(P, s) fails
if ti runs forever without ever reaching a matching end. As the termination of ti is
undecidable, the best we can do is for Execute(P, s) to fail after ti does not reach a
matching end in a specified number of instructions.

Hints for More Efficient Testing

In testing the semantic linearizability of the atomic blocks in a program P , we expect to
have to test the linearizability of many interleaved executions of P . We expect that the
great majority of these tested interleavings will be linearizable — concurrency errors such
as atomicity violations tend to occur only on a small fraction of executions, especially in
well-tested and widely-used software. (Our experimental results match this expectation.)
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If an interleaved execution E is not linearizable, then we will have to look at all serial
ways to schedule the top-level atomic blocks of E that are consistent with the ordering
of non-overlapping blocks in E. But if an interleaved execution E is linearizable, we can
determine this fact by finding a single equivalent serial execution. This raises the possibility
that, for executions that turn out to be linearizable, we could make the testing procedure
described in Section 5.3 more efficient by prioritizing the order in which we examine the
possible linearizations of E.

Thus, we propose two kinds of optional hints that a programmer can add to their multi-
threaded code, along with their semantic atomicity specification. For an interleaved execu-
tion E, the hints will suggest which serial orderings of the overlapping atomic blocks should
give equivalent results. Before falling back to a complete search of all linearizations of E, we
will first try the linearizations consistent with these hints from the programmer.

Our optional hints take two forms: (1) linearization points, and (2) distinguished reads
and writes.

Linearization Points

First, a user can specify linearization points (also called commit points) for atomic blocks.
Any dynamic execution of an atomic block should reach at most one annotated linearization
point. This hint indicates that, if two atomic blocks overlap and both execute a linearization
point, then the block that executed its linearization point first should be ordered first in any
serial execution.

Manually-annotated linearization points are often used in efforts to prove or verify the
correctness of concurrent data structures [164, 56, 39, 153]. However, it has been observed [39,
153, 26] that it may be very difficult to identify or annotate all linearization points for some
programs.

Distinguished Reads and Writes

Second, a user can annotate certain reads and writes of shared variables as distinguished
reads and writes. When linearization points cannot be identified statically, one could often
identify some distinguished shared memory accesses (i.e. reads and writes) whose ordering
determines the ordering between the atomic blocks. For example, if an atomic block inserts
(i.e. writes) an item to a list and another overlapping atomic block gets (i.e. reads) the same
item from the list, then the ordering between the write and read accesses determines the
ordering between the atomic blocks. If a CAS operation succeeds, then a shared memory
write performed by the CAS is considered distinguished. On the other hand, if a CAS
operation fails, then the shared memory read performed by the CAS operation can be ignored
(i.e. not considered distinguished). In several of our benchmarks, we have found that even if
we cannot identify the linearization points of all atomic blocks, we can identify distinguished
reads and writes and use them to determine the ordering among overlapping atomic blocks.
We next describe how we use distinguished operations to order atomic blocks.
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Given distinguished operations op1 and op2 on the same shared variable, we say that op1

is ordered before op2 if at least one of the two operations is a write and if op1 is executed
first. Suppose atomic blocks B1 and B2 overlap. These hints indicate that B1 should be
ordered before B2 in any serial execution if, for any variable v, some distinguished write to
v in B1 or the last distinguished read to v in B1 is ordered before a distinguished write to v
in B2 or the last distinguished read of v in B2.

These hints may indicate that B1 should come before B2 and that B2 should come before
B1, in which case we ignore the distinguished reads/writes for ordering B1 and B2 with
respect to each other.

Using Hints in Testing Linearizability

Given an interleaved execution E, we use a depth-first search to find a serial ordering con-
sistent with the annotated hints in E. And if no execution is consistent including both the
linearization points and the distinguished reads and writes, we find an ordering consistent
with just the linearization points. We test this single serial ordering to see if it is a witness
to the semantic linearizability of E, and, if not, we fall back to the exhaustive search in
Section 5.3.

Our experimental results demonstrate that these hints can improve our linearizability
testing to the point where the first serial execution to be examined is found to satisfy
the bridge predicate. Furthermore, using these optimizations is sound because the testing
procedure falls back to searching all other possible serial linearizations when a programmer’s
hints do not guide us to a witness to linearizability.

5.4 Experimental Evaluation

In this section, we describe our efforts to experimentally evaluate our approach to specify-
ing and checking semantic atomicity for multithreaded programs. Specifically, we seek to
demonstrate that:

1. We can find real atomicity errors in multithreaded programs by testing the semantic
linearizability of random interleaved executions with a small number of interrupted
and overlapping atomic blocks.

2. In the common case where a tested interleaving is linearizable, we can soundly increase
the efficiency of our testing using optional programmer annotations.

Implementation

In order to evaluate our claims, we implemented our approach for Java programs. Our
implementation consists of several components: (1) an annotation and assertion library for
specifying which blocks of code in a Java program are intended to be semantically atomic, as
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well as for specifying the bridge predicate with respect to which the blocks are intended to be
atomic; (2) a component to generate random, interruption-bounded interleaved executions
of a multithreaded test program; (3) a component to test the semantic linearizability of
a given interleaved execution by generating and examining all serial executions that are
linearizations of the interleaved execution.

Atomicity Assertion Library

Figure 5.7 shows the core API of our atomic assertion library. A programmer indicates the
beginning and end of a semantic atomic block in their code by calling Atomic.open() and
Atomic.close(). Each call to open is uniquely identified by its location in the program
source (accessible by, e.g., examining a call stack trace).

The bridge predicate giving the desired semantic equivalence between interleaved and
serial executions is specified via Atomic.assert. In an interleaved execution, a sequence
of calls to Atomic.assert(obj,pred) indicates that there must exist some serial execu-
tion — a linearization of the interleaved execution — in which, for each corresponding call
Atomic.assert(obj’,pred), predicate pred.apply(obj,obj’) returns true.

That is, suppose the nth call to Atomic.assert(obj,pred) in an interleaved execu-
tion records the serialized value of object obj. (We require that all objects passed to
Atomic.assert implement the Serializable interface so that this recording is possi-
ble. Most common objects in the Java standard library can be serialized in this way.)
Then, in a serial execution, while testing the linearizability of this interleaved execution,

class Atomic {

static void open()

static void close()

static void assert(Object o, Predicate p)

interface Predicate {
boolean apply(Object a, Object b)

}

}

Figure 5.7: Core atomicity specification API.
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the nth call to Atomic.assert(obj’,pred) reads the previously serialized object obj and
checks if pred.apply(obj,obj’) holds. The serial execution is reported to be equivalent
to the interleaved execution iff the same number of Atomic.assert calls are made and
pred.apply(obj,obj’) returns true for each one.

Sampling Interleaved Executions

Our tool for randomly generating interleaved executions of a multithreaded test program is
built on top of the publicly-available and open-source CalFuzzer [85] framework for testing
concurrent Java programs. CalFuzzer uses Soot [150] to instrument Java bytecode, adding
calls to a user’s analysis/testing code on every read, write, lock, unlock, etc. — we use these
calls to take control of the parallel scheduling of a Java program and replace it with our own
scheduler.

Our thread scheduler is parameterized by a maximum number R of atomic blocks to
interrupt, a numberK of other atomic blocks to execute while the atomic block is interrupted,
and a bound C on the number of times to interrupt at each distinct program statement. After
any statement executes in the test program, the scheduler picks the next thread to execute
a statement as follows:

• If the last statement was a top-level Atomic.close and no thread has an open atomic
block, then pick the next thread randomly from among all active threads.

• If the last statement was by thread t and thread t has an open atomic block, then
subject to certain constraints, we interrupt the atomic block thread t is executing,
selecting a random different active thread to run next.

The constraints are: (1) We perform no more than R interruptions during an execution.
(2) For each statement in each possible calling context, we interrupt at that statement
only if it is in the first C occurrences in the current execution of the statement and
calling context, and only if we have not interrupted at that statement, calling context,
and occurrence combination in any other run.

• If the last statement was a top-level Atomic.close and other threads have open,
interrupted blocks:

If we have executed K complete atomic blocks since interrupting the longest-open
atomic block, we select, if possible, a random active thread in an interrupted atomic
block to run next. Otherwise, randomly select to execute next any active thread not
in an interrupted atomic block.

Note that, barring situations in which an interrupted atomic sections becomes blocked,
each interrupted atomic block will be interrupted by an expected K non-overlapping atomic
blocks, although these blocks could themselves also be interrupted.

Overall, generated interleaved executions will have roughly KR expected possible lin-
earizations. In our experiments, we use parameters R = 1, K = 4, and C = 4.
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Checking if an Interleaving is Linearizable

Recall from the previous section that we can use CalFuzzer [85] to control the scheduling of a
parallel Java application. We use this ability to implement procedure Execute(P, s), described
in Section 5.3, for executing a program P along a serial schedule s = (t1, a1), . . . , (tn, an).

We then implement Algorithm 5, given this Execute(P, s) procedure and using the atomic
assertion library described above to check the specified bridge predicate.

Benchmarks

We evaluated our approach on a number of Java benchmarks. The name, size, and number
of static blocks specified as atomic is given for each of these benchmarks in Table 5.1.

The first group of benchmarks are concurrent data structures from the Java standard
library java.util.concurrent and elsewhere. The benchmarks ConcurrentLinkedQueue,
ConcurrentSkipListMap, ConcurrentSkipListSet, and CopyOnWriteArrayList are from
the Oracle Java SDK 6 (update 20). LockFreeList is a concurrent, lock-free list from [99],
used as a benchmark by [152]. Benchmark LazyList is a concurrent set, implemented as a
linked list with lazy deletion, from [153].

As our technique is designed to be applied to whole, closed programs, we must create a
test harness for each data structure benchmark. Each harness creates one instance obj of
the data structure and then calls four to eight methods on the instance in parallel, recording
the return values. Each method call is specified to be semantically atomic with respect to a
bridge predicate requiring both that obj.equals(obj’) and that all method return values
be the same.

The other group of benchmarks are from the Parallel Java (PJ) Library [86]. The PJ
benchmarks include an app for computing a Monte Carlo approximation of π (pi), a parallel
cryptographic key cracking app (keysearch3), an app for parallel rendering of Mandelbrot
Set images (mandelbrot), and a parallel branch-and-bound search for optimal phylogenetic
trees (phylogeny). Each of these benchmarks relies on roughly 15,000 lines of PJ library
code for threading, synchronization, etc.

Experimental Setup and Results

For each benchmark, we execute our systematic random scheduler, described in Section 5.4 to
generate a number of interleaved, interruption-bounded executions. We test each generated
execution to see if it is semantically linearizable.

The number of interruption-bounded executions generated for each benchmark is listed in
Column 4. Column 5 lists the number of executions found to not be semantically linearizable.
We found non-linearizable executions for four of the data structure benchmarks and two of
the PJ application benchmarks. In Column 6, we report the number of distinct bugs exposed
by these atomicity-violating executions. We discuss some of these errors in detail in the
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Benchmark
Approx. LoC
(Benchmark
+ Library)

# Static
Atomic
Blocks

Interruption-Bounded
Interleavings

Avg. # of Serial
Executions

Conflicts

total
non-

errors linear.
linear. non-

linear. (heuristics) linear.

ConcurrentLinkedQueue 200 6 241 7 2 2.96 1.20 4.29 4

ConcurrentSkipListMap 1400 6 487 6 2∗ 2.54 - 4.83 4

ConcurrentSkipListSet 100 6 463 5 2∗ 2.57 - 4.6 4

CopyOnWriteArrayList 600 6 222 0 0 6.23 1.0 - 0

CopyOnWriteArraySet 60 6 221 0 0 4.39 1.0 - 0

LockFreeList 100 6 319 57 1 2.08 - 3.46 2

LazyList 100 8 231 0 0 2.46 1.02 - 2

PJ pi 150 + 15,000 1 20 5 1 1.0 - 4.8 1

PJ keysearch 200 + 15,000 1 904 0 0 1.0 - - 0

PJ mandelbrot 250 + 15,000 1 73 0 0 1.0 - - 0

PJ phylogeny 4400 + 15,000 2 605 27 1 1.0 - 125.56 2

Table 5.1: Summary of our experimental evaluation of semantic atomicity specifications.

next section. Note that every violation of the linearizability of our semantic atomic blocks
indicated a true error.

For the linearizable executions of each benchmark, Columns 7 and 8 report the average
number of serial executions that had to be examined to find a witness to the linearizability,
without and with heuristically using any hints from programmer annotations.2 Our anno-
tations greatly reduce the number of serial executions that must be examined for several of
the data structure benchmarks.

Column 9 reports the number of serial executions examined for non-linearizable inter-
leavings. For most benchmarks, this number is small, as expected, because we are testing
the linearizability of interruption-bounded executions.3

Finally, Column 10 reports the number of atomic blocks in each data structure that are
not conflict-serializable. We discuss these numbers in the next section.

Atomicity Errors Found

We now discuss several atomicity errors found by our testing.

ConcurrentLinkedQueue

Our automated testing of our semantic atomicity specification for ConcurrentLinkedQueue
found two errors. As far as we can determine, these errors have not previously been reported.

2Note that, for the PJ benchmarks, because the different atomic blocks are largely independent, it is
usually the case that the first serial execution we examine witnesses the linearizability.

3Difficulties controlling the Java scheduler benchmark phylogeny, however, lead to extra, unwanted
interruptions and thus a larger number of serial executions that must be examined.
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Queue q = new ConcurrentLinkedQueue();

q.add(1); q.add(2);

int sz = 0;

thread1: thread2:

@assert_atomic {
q.remove(1); @assert_atomic {

} sz = q.size();

@assert_atomic { }
q.add(3);

}

bridge predicate:

q.equals(q’) && (sz == sz’)

Figure 5.8: Simple harness for ConcurrentLinkedQueue that reveals an atomicity error
involving add, remove, and size. The annotated blocks are not semantically linearizable
with respect to the bridge predicate.

The code in Figure 5.8 gives a simple test harness that exposes one of the two errors.
Initially, queue q contains elements 1 and 2. We expect that, because methods add, remove,
and size should all be atomic, in any parallel, interleaved execution the call to q.size()
must return that the queue contains one element (after q.remove(1) but before q.add(3))
or two elements (before the remove or after the add). However, it is possible for q.size()
to incorrectly report that the queue q contains three elements!

This source of this error is that computing the size of a ConcurrentLinkedQueue requires
traversing its internal linked list structure and counting the number of elements. Suppose
thread2’s call to q.size() begins its traversal, finding and counting elements 1 and 2. But,
before the call sees that it is at the tail of the list, it is interrupted by thread1. The calls
by thread1 to q.remove(1) and then q.add(3) eliminate element 1 from the head of the
list and insert element 3 at the tail of the list. Then, when thread2’s call to q.size()
continues, it finds and counts element 3 and returns that queue contains three items.

Our testing found a similar error for the toArray method of ConcurrentLinkedQueue.
Further, while our test harness only exercised the add, remove, size, and toArray methods
of ConcurrentLinkedQueue, manual inspection of its source code revealed that methods
equals and writeObject can similarly return non-atomic results due to iterating over the
elements of the queue without checking for concurrent modifications.
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We note that although ConcurrentLinkedQueue’s documentation4 specifies that itera-
tion through such a queue is only “weakly consistent”, no such warning is given for methods
size, toArray, equals, or writeObject. In fact, the documentation for the size method
states:

“Beware that, unlike in most collections, this method is NOT a constant-time
operation. Because of the asynchronous nature of these queues, determining the
current number of elements requires an O(n) traversal.”

which seems to specify that size, although it requires O(n) time, will return a consistent
value (i.e., be linearizable). We thus judge that the unexpected behaviors of these methods
are errors.

ConcurrentSkipListMap and Set

Our testing of benchmarks ConcurrentSkipListMap and ConcurrentSkipListSet found
two violations of our semantic atomicity specifications for each benchmark. In particu-
lar, our test harnesses for these benchmarks each concurrently performs two insertions,
two deletions, a call to size(), and a call to toArray() (or keySet().toArray() for
ConcurrentSkipListMap). Our specification asserts that all six method calls execute se-
mantically as if atomic, and our testing finds that neither method size nor method toArray
is semantically atomic.

Note that the documentation5 for ConcurrentSkipListMap and ConcurrentSkipListSet
do warn for method size:

“Additionally, it is possible for the size to change during execution of this method,
in which case the returned result will be inaccurate. Thus, this method is typi-
cally not very useful in concurrent applications.”

Thus, our specification is too strict in this case, as method size is not expected to be
semantically atomic. Further, the documentation makes it clear that some bulk methods
such as equals, putAll, etc., are not intended to be atomic. It is not clear from this
documentation whether or not toArray is intended to be atomic.

Lock-Free List

Our automated testing of our semantic atomicity specification for the lock-free list from [99]
found one previously known error. In this lock-free list, two concurrent calls to remove can
incorrectly both report that they have successfully deleted the same single element from a
list. The online errata to [99] corrects this error.

4http://download.oracle.com/javase/6/docs/api/java/util/concurrent/

ConcurrentLinkedQueue.html
5http://download.oracle.com/javase/6/docs/api/java/util/concurrent/

ConcurrentSkipListMap.html and Set.html

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
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parallel-for (t in trees) {
@assert atomic {

cost = compute cost(t)

synchronized (min cost) {
min cost = min(min cost, cost)

}
if (cost == min cost) {

min tree = t

}
}

}
bridge predicate:

min tree.equals(min tree’) && (min cost == min cost’)

Figure 5.9: Simplified version of PJ phylogeny benchmark highlighting the nature of
the atomicity error found by our technique.

PJ phylogeny Branch-and-Bound Search

We also found a previously-unknown atomicity error in Parallel Java benchmark phylogeny.
Figure 5.9 presents a very simplified, high-level version of the benchmark that illustrates the
nature of the error. Benchmark phylogeny is a parallel branch-and-bound search to find
a minimum-cost phylogenetic tree for a given collection of DNA sequences. The search is
nondeterministic — there may exist multiple minimum-cost trees and the search could return
different minimum-cost trees on different runs, depending on the thread schedule and the
resulting order in which the candidate trees are evaluated.

The benchmark can be thought of as parallel for-loop over possible phylogenetic trees.
For each tree t, the cost is computed and the global minimum cost min cost is updated.
This update is safe, as proper synchronization is used to protect updates to the minimum
cost. Thus, the final value of min cost will always be correct.

Updates to min tree, however, are not properly synchronized. Suppose one parallel loop
iteration finds a new minimum-cost tree, updates min cost, and enters the body of the if-
statement with condition cost == min cost, but is then interrupted by some other parallel
loop iteration. The other iteration could further decrease min cost and write to min tree.
But then when the first loop iteration continued, it would incorrectly overwrite min tree
with a tree no longer of minimal cost. Such an inconsistent value for min tree cannot occur
in a serial execution in which each parallel for-loop occurs atomically.6

6The error in the phylogeny source is that each worker thread’s call to
globalResults.addAll(results) is not atomic. This method updates the global list of minimum-
cost trees with each worker thread’s list of locally-minimum-cost trees.
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Discussion

Comparison to Conflict-Serializability

Most existing tools for detecting atomicity violations check whether executions of a test
program are conflict-serializable. As discussed in Section 5.2, conflict-serializability is a strict
notion of atomicity, requiring that, for each interleaved execution, there exist a serial run in
which every atomic block executes the same set of conflicting read and write operations, all
in the same relative order.

Column 10 of Table 5.1 shows that several of the data structure benchmarks had atomic
blocks that were not conflict-serializable, despite being semantically linearizable. Note that
this column reports the number of static atomic blocks found to not be conflict-serializable in
at least one dynamic, parallel execution. When run on all of the interruption-bounded inter-
leavings in our experiments, a traditional atomicity analysis based on conflict-serializability
would report 100+ dynamic atomicity violations for most of these benchmark. These would
all be false positives (except for the few also violating semantic atomicity) that a user would
have to examine. Burckhardt et al. [26] have also found that traditional atomicity analyses
produce hundreds of false warnings for similar concurrent data structures.

Every atomicity violation reported by our approach, on the other hand, indicated a real
atomicity violation, leading to program results not equivalent to those of any serial execution.

Effectiveness of Interruption-Bounded Testing

Our experimental results demonstrate that we can find many real semantic atomicity errors
by testing linearizability on interleaved executions with a small number of interruptions.
There are some errors, however, that require more interruptions to detect. For example,
there is a known7 atomicity violation in the version of Java’s ConcurrentLinkedQueue
we tested (JDK 6, update 20), involving concurrent calls to poll() and remove(o). In
particular, it is possible for a call to remove(o) to return true — indicating that it removed
object o from the queue — while a parallel call to poll() appears to remove and return
the same object o. But this error can occur only if the call to remove(o) locates o at the
head of the queue, then poll() interrupts and starts to (non-atomically) remove o from the
queue, and then remove(o) interrupts poll() and finishes its remove.

Comparison to Determinism

The error we detect in the Parallel Java (PJ) phylogeny benchmark was missed by our
previous work [29], described in Chapter 3, which attempted to verify the semantic deter-
ministic behavior of this and other benchmarks. For this benchmark, we previously checked
a semantic deterministic specification like:

7http://bugs.sun.com/view_bug.do?bug_id=6785442

http://bugs.sun.com/view_bug.do?bug_id=6785442
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deterministic {
// Phylogenetic branch-and-bound search.

...

} assert (min_cost == min_cost’);

This specification asserts the following. For any pair of executions E and E ′ of this code
pair from initial state σ0 to final states σ and σ′, it must be the case that min cost in σ
equals min cost in σ′. That is, letting Φdet denote bridge predicate min cost == min cost,
it asserts:

∀σ0
E−→ σ. ∀σ0

E′−→ σ′. Φdet(σ, σ
′)

To compare, let Φatm denote our bridge predicate for semantic linearizability:

min tree.equals(min tree’) ∧ (min cost == min cost’)

Then, our semantic atomicity specification is that, for any execution E from σ0 to σ, there
exists at least one serial execution E ′ from σ0 to σ′ such that Φatm(σ, σ′) and E ′ is a lin-
earization of E. That is:

∀σ0
E−→ σ. ∃σ0

E′−→ σ′. Φatm(σ, σ′) ∧ E ′ a linearization of E

This difference between existential and universal quantification in the specification is the
core difference between the complementary notions of atomicity and determinism. Many par-
allel programs are intended to be deterministic — that is, to always produce semantically
equivalent output for the same input, no matter the thread schedule. Deterministic specifi-
cations can exactly capture this intended determinism. But many parallel programs employ
algorithms that are inherently nondeterministic and which can correctly return different fi-
nal results in different runs on the same input. For example, the branch-and-bound search
PJ phylogeny, which can correctly return different minimum-cost trees depending on the
nondeterministic scheduling of its threads.

For such programs, a semantic atomicity specification can be thought of as specifying
the nondeterministic behavior that is acceptable or intended — the results of any serial
execution of the program, in which the atomic blocks may execute in a nondeterministic
order but their executions cannot be interleaved. At the same time, the specification asserts
that no additional nondeterminism — from the nondeterministic interleaving of specified
atomic blocks in a parallel execution — should appear in the final results of the program.
That is, the result of any interleaved execution must be semantically equivalent to the result
of some serial execution.

The bridge predicate for semantic atomicity can be more strict, because it asks only: given
some parallel, interleaved behavior, can the same behavior occur in any serial execution?
But the bridge predicate for determinism specifies a kind of equivalence that must hold
between any two results of correct but arbitrarily-different parallel executions.

As the final min tree is nondeterministic — different runs can give completely different
resulting trees — there is no simple way to say anything about the correctness of min tree
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in a deterministic assertion. On the other hand, the deterministic assertion is able to specify
that no nondeterminism resulting from parallel thread scheduling should effect the final cost
min cost. Our semantic atomicity specifications could potentially miss errors, concurrent
(perhaps if our specified atomic blocks are not large enough) or sequential, that result in
incorrect final values for min cost for some fraction of parallel executions.

Future Work

Our experimental results provide promising evidence both that it is feasible to write seman-
tic atomicity specifications for parallel applications and data structures, and that we can
effectively test such specifications by checking them on interruption-bounded executions.
Our parallel application benchmarks are of somewhat limited size, however, and much work
remains to validate our approach on a wider range of programs. In particular, we must inves-
tigate what challenges larger applications pose to writing semantic atomicity specifications
and to the scalability of our testing technique.

5.5 Related Work

A large body of work has focused on verifying and testing atomicity in multithreaded pro-
grams, including static verification via type systems [65, 64], dynamic detection and predic-
tion of atomicity violations [158, 57, 3, 159, 12, 62, 52, 37, 157], model checking of atom-
icity [76, 157], and active testing [132, 85, 117, 138, 91] for atomicity violations. These
generally have focused on verifying that program regions are conflict serializable [115].

Some efforts have focused on verifying and testing notions of atomicity that are less
strict than conflict-serializability of atomic sections. For example, [56] uses model checking
to verify linearizability of atomic sections, but requires all atomic sections to be annotated
with a linearization point which specifies the linear order in which the atomic sections must be
executed in the matching serial execution. Similarly, [61] generalizes type-based verification
of conflict-serializability (via reduction [93]) to account for non-conflict-serializable but side-
effect-free operations like a failing compare-and-swap in a busy-waiting loop.

Another such weaker notion is atomic-set serializability [151], which groups storage lo-
cations into atomic sets and requires, for each atomic set, all atomic blocks are conflict-
serializable with respect to the locations in the set. Violations of atomic-set serializability
are detected dynamically by [74, 141] and found through active testing [132, 85] by [91].

A related area of research is verifying and testing linearizability[100] for concurrent ob-
jects. A concurrent object is linearizable if, for any client program which interacts with
the object only through its methods and for which all such method calls are specified to be
atomic, all executions of the client are linearizable. Several efforts have manually proved
linearizability for certain highly-concurrent data structures [149, 39, 148]. Further, [164],
[153], Line-Up [26], and CoLT [152, 133] model check linearizability of concurrent objects
and libraries.
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At a high level, our approach to testing semantic linearizability of atomic blocks is similar
to the approach of Line-Up [26]. Line-Up generates all serial executions of a test harness
using a given concurrent object, and then uses preemption-bounded model checking [105] to
enumerate interleaved executions and to test that each such execution is equivalent to one of
the pre-generated serial ones. Our approach, however, works on larger programs for which it
is neither feasible to pre-generate all serial executions or to perform exhaustive preemption-
bounded model checking, even with a small preemption bound. Rather, we randomly sample
interruption-bounded interleaved executions and, for each such execution, examine only the
corresponding serial executions (i.e. those with the same ordering of non-overlapping atomic
blocks). Further, our approach is applicable to any program with annotated atomic blocks,
not just concurrent objects, and our approach checks semantic linearizability.

Fonseca et al. developed a technique much like our semantic atomicity testing in PIKE [67],
which they applied to MySQL’s MyISAM storage engine — a large, core component of the
MySQL database. PIKE tests the linearizability of methods of the storage engine, check-
ing that both the values returned from each method and the final program state can be
reproduced with a serial, linearized execution. But, rather than check for strict, bit-by-bit
equality, Fonseca et al. write a semantic state summary function, which “captures an ab-
stract notion of the state in a way that takes into consideration the semantics of the state
and allows for a logical comparison, instead of a low-level physical comparison” [67]. PIKE’s
comparison of these abstract state summaries is analogous to evaluating one of our bridge
predicates for semantic atomicity. Fonseca et al. found such semantic linearizability testing
very effective for MySQL, uncovering a number of concurrency bugs, including several errors
that silently (i.e. without a crash) leave the database in a state in which queries can return
incorrect results.

A large body of work on transactional memory has developed hardware and software
techniques for implementing atomic blocks. While such work provides hardware support, li-
braries, or language constructs that guarantee that blocks of code intended to be atomic are,
in fact, executed atomically. Our work focuses instead on testing that a program correctly
implements its intended atomicity. The kind of of semantic atomicity we test is analo-
gous to transactional memory work on open nesting [109], transactional boosting [77], and
coarse-grained transactions [87]. These lines of work achieve greater concurrency in running
transactions in parallel by ignoring conflicts at the low level of reads and writes and focus-
ing on whether data structure operations abstractly/semantically commute or conflict. For
example, two calls to the add method of a concurrent list may conflict at both the level of
individual reads and writes and when the data structure is viewed as an abstract list. But
such calls can be seen to commute if the list is instead viewed as an abstract multiset.
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5.6 Summary

The traditional notions of atomicity and linearizability require each interleaved execution
to correspond to a serial execution that produces an identical final state. Our experiments
show that the traditional interpretation of these properties is often too strong. Instead, we
propose to allow the programmer to specify a bridge predicate that expresses a more relaxed,
application-dependent notion of equivalence between the allowable final states.

The resulting semantic linearizability property is not only widely applicable but also
effectively testable. We described and demonstrated experimentally one possible testing
strategy, based on the observation that most atomicity bugs can be reproduced in parallel
executions with a small number of atomic block interruptions, executions for which the set
of candidate linear schedules is also small. This set of candidates can be further reduced
by using programmer-annotated commit points in atomic blocks, to the point where in the
common case we find the desired serial schedule on the first try. In our experiments all
instances when a serial schedule could not be found were atomicity violations.
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Chapter 6

NDSeq: Nondeterministic Sequential
Specifications and Runtime Checking
for Parallelism Correctness

In Chapters 3 and 5, we have shown that semantic determinism specifications and semantic
atomicity specifications both allow us to specify critical, high-level parallelism correctness
properties of multithreaded programs. But, these two specifications are only partial specifi-
cations of parallelism correctness.

In this chapter, we propose nondeterministic sequential (NDSeq) specifications [27] as
a means to completely specify the correctness of a program’s use of parallelism, separate
from its sequential functional correctness. The key idea is for a programmer to specify
the intended or algorithmic nondeterminism in a program using annotations, and then the
NDSeq specification is a version of the program that is sequential but includes the annotated
nondeterministic behavior. The only valid parallel behaviors are those allowed by the NDSeq
specification — any additional nondeterminism is an error, due to unintended interference
between interleaved parallel threads, such as data races or atomicity violations. Thus, a
program with such annotated nondeterminism serves as its own NDSeq specification for the
correctness of its parallelism.

Showing that a parallel program conforms to its NDSeq specification is a strong state-
ment that the program’s use of parallelism is correct. The behavior of the program can be
understood by considering only the NDSeq version of the program, as executing the program
in parallel cannot produce any different results. Testing, debugging, and verification of func-
tional correctness can be performed on this sequential version, with no need to deal with
the uncontrolled interleaving and interference of parallel threads. We show in this work that
NDSeq specifications for parallel applications can be both written and checked in a simple
manner, independent of an application’s complex functional correctness.

c© ACM, 2011. A version of this chapter was published in the Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11), http://doi.acm.org/10.
1145/1993498.1993545

http://doi.acm.org/10.1145/1993498.1993545
http://doi.acm.org/10.1145/1993498.1993545
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In this chapter, we propose several patterns [34] for writing NDSeq specifications, and
we apply these patterns to specify the parallelism correctness of a number of Java bench-
marks. We find that, with a few simple constructs for specifying intended nondeterministic
behavior, adding such specifications to the program text was straightforward for a variety
of applications. This is despite the fact that, for many of these applications, writing a
traditional functional correctness specification would be extremely difficult. (Imagine, for
example, specifying the correct output of an application to render a fractal, or to compute a
likely phylogenetic tree given genetic sequence data.) For many of our benchmarks, verifying
that the final output is correct even for a single known input is challenging.

We propose a novel sound runtime technique [34] for checking that a structured parallel
program conforms to its NDSeq specification. Given a parallel execution of such a program,
we perform a conflict-serializability check to verify that the same behavior could have been
produced by the NDSeq version of the program. But first, our technique combines a dynamic
dependence analysis with a program’s specified nondeterminism to show that conflicts in-
volving certain operations in the trace can be soundly ignored when performing the conflict-
serializability check. Our experimental results show that our runtime checking technique
significantly reduces the number of false positives versus traditional conflict-serializability in
checking parallel correctness.

6.1 Overview of NDSeq Specifications

In this section, we discuss an example program in detail to motivate NDSeq specifications
and to informally describe our runtime checking that a parallel program is parallelized cor-
rectly with respect to its NDSeq specification. In Section 6.2, we then give a formal definition
of parallelization correctness. In Section 6.3, we illustrate the generality of these specifica-
tions and of our checking approach on several examples highlighting different parallelization
patterns. Section 6.4 describes the details of the runtime checking algorithm. We discuss the
experimental results in Section 6.5 and conclude in Section 6.7 by pointing out significance
and possible future applications of NDSeq specifications.

Motivating Example

Consider the simplified version of a generic branch-and-bound procedure given in Fig-
ure 6.1(a). This program takes as input a list of N possible solutions and computes
lowest cost, the minimum cost among the possible solutions, and best soln, the index of
a solution with minimum cost. Function expensive compute cost(i) computes the cost of
solution i. Because this computation is expensive, the program first computes a lower bound
for the cost of solution i with lower bound cost(i). If this lower bound is no smaller than
the lowest cost found so far (i.e. lowest cost), then the program skips computing the exact
cost for solution i.
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The program is a parallel search — the coforeach loop allows different iterations to ex-
amine different potential solutions in parallel. Thus, updates to lowest cost and best soln
at Lines 8–11 are enclosed in an atomic block, a synchronization mechanism that enforces
that these lines be executed atomically — that is, all-at-once and without interruption by
any other thread. Functions expensive compute cost and lower bound cost have no side-
effects and do not read any mutable shared data (i.e., lowest cost or best soln), and thus
require no synchronization.

Nondeterministic Sequential Specifications

We would like to formalize and specify that the search procedure in Figure 6.1(a) is paral-
lelized correctly, and we would like some way to verify or test this parallel correctness.

If we could specify the full functional correctness of our example program — i.e. specify
precisely which outputs are correct for each input — then this specification would clearly
imply that the parallelization of the program was correct. But writing a full functional
correctness specification is often a very difficult task. For our example search procedure, the
cost of a possible solution may be a complex function whose behavior we are unable to specify,
short of re-implementing the entire expensive compute cost in a specification/assertion
language. Even if we could write such a specification, verifying the full functional correctness
could similarly require very complex reasoning about the internals of the cost and lower
bound computations.

We argue that we should seek to specify the correctness of the parallelism in our example
program independently of the program’s functional correctness. More generally, we aim to
decompose our effort of verifying or checking the correctness of the program into two parts:
(1) addressing the correctness of the parallelism, independent of the complex functional
correctness and (2) addressing the functional correctness independent of any reasoning about
the interleaving of parallel threads.

A natural approach to specifying parallel correctness would be to specify that the program
in Figure 6.1(a) must produce the same results — i.e. compute the same lowest cost and
best soln — as a version of the program with all parallelism removed. But if we simply
replace the coforeach with a traditional foreach-loop that iterates i sequentially from 1
to N, we do not get an equivalent program. Rather, the parallel program has two “freedoms”
the sequential program does not:

ND1 First, the parallel search procedure is free to execute the parallel loop iterations in any
nondeterministic order. If there are multiple solutions of minimum cost, then different
runs of the procedure may return different values for best soln, depending on the
order in which the loop iterations are scheduled.

The hypothetical sequential version, on the other hand, would be deterministic — it
would always first consider solution 1, then solution 2, ..., up to solution N.
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ND2 Second, the parallel program is free, in a sense, to not perform the optimization in
Lines 2–5, in which the rest of an iteration is skipped because the lower bound on the
solution cost is larger than the minimum cost found so far.

Consider two iterations with the same cost and with lower bounds equal to their costs.
In the hypothetical sequential version, only one of the iterations would proceed to
compute its cost. In the parallel code in Figure 6.1(a), however, both iterations may
proceed past the check in Line 3 (as lowest cost is initially ∞).

We propose to specify the correctness of the parallelism by comparing our example parallel
program to a version that is sequential but contains the nondeterministic behaviors ND1 and
ND2. Such a version of the program is a nondeterministic sequential (NDSeq) specification for
the program’s parallel correctness. For the program in Figure 6.1(a), our NDSeq specification
is listed in Figure 6.1(b). The NDSeq specification differs from the parallel program in two
ways:

1. The parallel coforeach loop at Line 1 is replaced with a sequential but nondetermin-
istic nd-foreach loop, which can run its iterations in any order.

2. The “* &&” is added to the condition at Line 4. This expression “*” can nondeter-
ministically evaluate to true or false, allowing the sequential specification to run the
rest of a loop iteration even when lower bound cost(i) ≥ lowest cost.

This specification is a completely sequential version of the program, executing its loop
iterations one-at-a-time with no interleaving of different iterations. It contains only the
controlled nondeterminism added at the two above points. We say that a parallel program
conforms to its NDSeq specification when every final result of the parallel program can also
be produced by an execution of the NDSeq specification. Section 6.2 elaborates the semantics
of NDSeq specifications and our precise definition of parallelism correctness.

Note the close similarity between the parallel program in Figure 6.1(a) and its NDSeq
specification in Figure 6.1(b). Rather than maintaining our parallel search procedure and
its NDSeq specifications as separate artifacts, we embed the NDSeq specifications into the
parallel code, as shown in Figure 6.1(c). Here we show in boxes the coforeach and “true*
&&” to indicate that these two constructs are interpreted differently when we consider Fig-
ure 6.1(c) as a parallel program or as nondeterministic sequential one. That is, in the parallel
interpretation, coforeach is a standard parallel for-loop and “true*” always evaluates to
true, yielding the exact behavior of Figure 6.1(a). But when interpreted as nondeterministic
sequential constructs, coforeach is treated as a nd-foreach and “true*” can nondetermin-
istically evaluate to true or false, yielding exactly the behavior of Figure 6.1(b). With these
annotations, the example program in Figure 6.1(c) embeds its own NDSeq specification for
the correctness of its parallelism.
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Runtime Checking of Parallel Correctness

We now give an overview of our proposed algorithm for the runtime checking that a parallel
program conforms to its NDSeq specification. We will present the algorithm in full formal
detail in Section 6.4.

Figure 6.2 illustrates a possible parallel execution of our example program in Figure 6.1(c)
on N = 3 possible solutions. The three iterations of the parallel for-loop are shown in separate
boxes, with the i = 1 iteration running in parallel with the i = 2 iteration, followed by
the i = 3 iteration. Although the i = 1 compute a lower bound and compare it against
lowest cost, iteration i = 2 is first to compute the full cost of its solution and to update
lowest cost = 4 and best soln = 2.

We would like to verify that the parallelism in this execution is correct. That is, the final
result produced is also possible in an execution of the NDSeq specification. The key will be
to show that parallel loop iterations together are serializable [115, 114] — i.e. there exist
some order such that, if the iterations are executed sequentially in that order, then the same
final result will be produced.

 e1:  b = lower_bound(i) (=4)!
 e2:  t = lowest_cost (=")!

 e5:  if (true*) {!
 e6:    branch b < t!
       }!

 e14: c = compute_cost(i) (=4)!
 e15: t = lowest_cost (=4)!
 e16: branch c >= t !

 e3:  b = lower_bound(i) (=4)!
 e4:  t = lowest_cost (=") !

 e7:  if (true*) {!
 e8:    branch b < t!
       }!
 e9:  c = compute_cost(i) (=4)!
 e10: t = lowest_cost (=") !
 e11: branch c < t!
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 e13: best_soln = i (=2)!
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       }!
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       }!
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i=3!

  Solutions:!
   lower_bound(1) = 4   cost(1) = 4!
   lower_bound(2) = 4   cost(2) = 4!
   lower_bound(3) = 5   cost(3) = 9!

Figure 6.2: A parallel execution of three iterations
(i=1,2,3) of the parallel search procedure. The ver-
tical order of events shows the interleaving. Each
assignment shows in parentheses the value being as-
signed. The thin dotted arrows denote data depen-
dencies. The thick solid and thick dashed arrows
denote transactional conflicts. Our analysis proves
that the transactional conflict e2 99K e12 can be
safely ignored for the serializability check.
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       }!

i=1!

i=2!

i=3!

  Solutions:!
   lower_bound(1) = 4   cost(1) = 4!
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Figure 6.3: An execution of the nondeterminis-
tic sequential version of the search procedure. This
execution is a serialization of the parallel execution
in Figure 6.2, producing the same final result. The
thick solid and thick dashed arrows denote trans-
actional conflicts. Note that the order of conflicts
e12 → e15 and e12 → e18 is the same as in Figure 6.2,
while conflict e12 99K e2, involving irrelevant event
e2, has been flipped.
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A common restriction of serializability that can be efficiently checked and is thus often
used in practice is conflict-serializability [115]. Given a collection of transactions — in this
case, we think of each parallel loop iteration as a transaction — we form the conflict graph
whose vertices are the transactions and with a conflict edge from transaction tr to tr′ if
tr and tr′ contain conflicting operations op and op′ with op happening before op’. (Two
operations from different threads are conflicting if they operate on the same shared global
and at least one of them is a write; in our example the conflicts are shown with thick solid
or thick dashed arrows.) It is a well-known result [115] that if there are no cycles in the
conflict graph, then the transactions are serializable.

But conflict-serializability is too strict for our example in Figure 6.2. There are three
pairs of conflicting operations in this execution: a read-write conflict between e2 and e12, a
write-read conflict between e12 and e15, and a write-read conflict between e12 and e18. In
particular, the i = 1 and i = 2 transactions are not conflict-serializable because the i = 2
transaction’s write of lowest cost at e12 comes after the read of lowest cost at e2 but
before the read at e15.

In this chapter, we generalize conflict-serializability by determining, using a dynamic
data dependence analysis, that the only use of the value read for lowest cost at e2 is in the
branch condition at e6. (The data dependence edges in each thread are shown in Figure 6.2
with the thin dashed arrows.) But because of our added nondeterminism at Line 4 of our
example program, this branch condition is gated by the nondeterministic condition at e5. Our
data dependence analysis tells us that no operation performed inside the if(true∗) opened
at e5 has any local or global side-effects — thus, in the equivalent sequential execution whose
existence we are trying to show, we can choose this nondeterministic condition to be false,
in which case the read of lowest cost at e2 will never be used. This shows that the read-
write conflict involving e2 and e12 is irrelevant, because, once we choose the nondeterministic
condition to be false, the value read at e2 has no effect on the execution.

With only the remaining two relevant conflicts, the conflict graph has no cycles, and thus
we will conclude that the loop iterations are serializable. Figure 6.3 shows a serial execution
whose existence we have inferred by verifying that there are no conflict cycles. Note that
the two relevant conflicts, e12 → e15 and e12 → e18, are preserved — they both appear in the
serial execution in the same order. But the irrelevant conflict has been flipped. The write
of lowest cost at e12 now happens before the read at e2, but this change does not affect
the final result of the execution, because the value read for lowest cost does not affect the
control-flow or any writes to global variables.

Now suppose that the execution in Figure 6.2 produces an incorrect result — i.e., vi-
olates a functional specification of the parallel program. Because we showed above that
this execution is equivalent (with respect to the final relevant state) to the computed serial
execution in Figure 6.3, then the nondeterministic sequential execution exhibits the same
functional bugs as the parallel execution. Thus, we can simply debug the serial execution
without worrying about thread interleavings.
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6.2 Parallelism Correctness with Nondeterministic

Sequential Specifications

In this section, we formally define our programming model, our nondeterministic sequential
(NDSeq) specifications, and our notion of parallel correctness. As discussed in Section 6.1, we
embed the NDSeq specifications for a parallel program in the program itself. We achieve this
both by overloading parallel language constructs and by adding a couple of new constructs.
The syntax for the language is shown in Figure 6.4.

To simplify the presentation we consider a program P to consist of a single procedure.
We omit discussion of multiple procedures and object-oriented concepts, and we assume
that each global variable refers to a distinct location on the shared heap and that each local
variable refers to a distinct location on the stack of a thread. We also omit unstructured
control-flow such as break and continue. Handling these details in our dynamic analysis is
straightforward.

For each program P , we define two sets of executions ParExecs(P) and NdSeqExecs(P),
described below. The correctness of a parallel program is then given by relating ParExecs(P)
and NdSeqExecs(P).

Parallel Executions. Set ParExecs(P) contains the parallel executions of P where each
cobegin and coforeach statement implicitly creates new threads to execute its body. State-
ment cobegin s1; ...; sn is evaluated by executing each of s1, ..., sn on a separate, newly created
thread. coforeach is evaluated by executing each iteration of the loop on a separate, newly
created thread. Following structured fork/join parallelism, a parallel execution of a cobegin
and coforeach statement terminates only after all the threads created on behalf of the state-
ment terminate. Assignments, the evaluation of conditionals, and entire atomic statements,
are executed as atomic steps without interruption by other threads. In the parallel semantics,
true∗ always evaluates to true.

g ∈ Global l ∈ Local x ∈ Var = Global ∪ Local

s ∈ Stmt ::= l = l op l | l = constant | l = l | g = l | l = g | s; s
| if(l) s else s | while(l) s | for (l in l) s

| coforeach (l in l) s | cobegin s; ...; s

| atomic s | if(true∗) s

Figure 6.4: Selected statements of our language. The constructs with a different semantics
in the parallel program and the sequential specification are shown in boxes.
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Sequential Executions. NdSeqExecs(P) contains the (nondeterministic) sequential exe-
cutions of P where all statements are evaluated sequentially by a single thread. Under the
sequential semantics, the statements other than if with ∗, cobegin, and coforeach are in-
terpreted in the standard way. Each evaluation of cobegin s1; ...; sn is equivalent to running
a nondeterministic permutation of statements s1, ..., sn, where each si∈[1..n] executes sequen-
tially. A statement coforeach is evaluated similarly to its deterministic version (for) except
that the elements of the collection being iterated over are processed in a nondeterministic or-
der. This, in essence, abstracts the semantics of the collection to an unordered set. Keyword
atomic has no effect in the sequential case, so atomic s is simply equivalent to s. Finally, a
true∗ expression yields a nondeterministic boolean value each time it is evaluated.

Parallelism Correctness. We describe executions of P using a standard notion of small-
step operational semantics extended with nondeterministic evaluation of cobegin, coforeach,
and nondeterministic branches (i.e., if(true∗)).

The parallelism correctness for P means that every final state reachable by a parallel exe-
cution of the program from a given initial state is also reachable by an NDSeq execution from
the same initial state. Therefore, parallel executions have no unintended nondeterminism
caused by thread interleavings: either the nondeterminism is prevented using synchroniza-
tion, or it is expressed by the nondeterministic control flow in the sequential specification.

While defining parallel correctness, we distinguish a set of global variables as focus vari-
ables, which contain the final results of a program. Then, we reason about the equivalence
of executions on the final values of the focus variables.1

Definition 17 (Parallelism correctness). A program P conforms to its NDSeq specification
with respect to a set Focus⊆Global iff for every parallel execution E ∈ParExecs(P), there
exists a nondeterministic sequential execution E ′∈NdSeqExecs(P), such that the initial states
of E and E ′ are the same and the final states agree on the values of all variables in Focus.

6.3 Nondeterministic Specification Patterns
The use of nondeterministic sequential specifications is an attractive way to specify parallel
correctness, yet it is not immediately clear where to introduce the nondeterministic constructs
into the specification (1) without breaking the functional correctness while (2) capturing the
nondeterminism due to thread interleavings.

Figure 6.5 shows the pseudo-code for three common patterns that we encountered re-
peatedly in our experiments. Each of these patterns considers parallel worker tasks where
there is a potential for conflicting accesses to shared data. In contrast, applications where
shared data is distributed strictly disjointly between tasks do not require use of if(true∗)
specifications. Next, we discuss these patterns in detail.

1Focusing only on global variables and the final states does not affect the flexibility of our method; one
can make use of auxiliary global variables to keep track of valuations of local variable or the history of
valuations during the course of the execution.
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Optimistic Concurrent Computation

This pattern is like a manually-implemented analogue of software transactional memory
(STM) [134]. A parallel task performs its work optimistically in order to reduce the synchro-
nization with other threads. It reads the shared data (shared) required for its work to a
local variable (local) and performs the computation (do work) without further access to
shared data. Before committing the result of the computation back to the shared space, it
checks if the input it read previously has been modified by another thread ( is conflict).
In that case it retries the work. This pattern is used when the time spent for the local
computation dominates the time for checking conflict and committing, and the contention
on the same regions of shared memory is low.

Such fail-retry behaviors are not normally conflict-serializable when another thread up-
dates shared during do work. The update conflicts with the read of shared before and
after do work. However, in those situations we expect is conflict to return true and the

Optimistic Concurrent Computation Pattern

while (true) {

local = shared;

local’ = do_work(local);

atomic {

if ( true∗ && !is_conflict(local,shared)) {
shared = local’; // commit result

break;

}

}

}

Redundant Computation Optimization Pattern

if ( true∗ && is_work_redundant(shared)) {
// work is unnecessary; skip the work

} else {

do_work(); // accesses shared

}

Irrelevant Computation Pattern

do_work(local, shared);

if ( true∗ ) {
do_irrelevant_work();

}

Figure 6.5: Common concurrency patterns, with their expected nondeterminism specified
via the true∗ construct.
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commit to be skipped. The true∗ && allows the NDSeq program to nondeterministically
skip the conflict checking and the commit. This captures that (1) it is acceptable from
a partial-correctness point of view to skip the commit nondeterministically even without
checking is conflict, and (2) if the commit is skipped then the read of shared data before
and after do work are irrelevant and can be ignored for conflict serializability purposes.

Examples. This pattern is used in non-blocking data structures, e.g., stacks and queues,
to implement optimistic concurrent access to the data structure without locks. These data
structures implement the atomic block in the pseudo code using a compare-and-swap (CAS)
operation [99]. We have also encountered this pattern when parallelizing a mesh refinement
program from the Lonestar benchmark suite (see Section 6.5). Our parallelization instanti-
ates the pattern in Figure 6.5 as follows:

// Processing cavity of a node N:
while (true) {

local_cavity = read cavity of N from shared mesh;

refined_cavity = refine the cavity locally;

atomic {
if ( true∗ && mesh still contains all nodes in local_cavity) {

replace old cavity in mesh with refined_cavity;

break;

}

}

}

Later in this section, we give more examples of NDSeq specifications for non-blocking
implementations following the same pattern.

Redundant Computation Optimization

In contrast with optimistic computation where each parallel task must complete its work, in
the redundant computation pattern, each thread may choose to skip its work when it detects
that the work is no longer necessary (is work redundant). Here synchronizing the check
for redundancy and the actual work may not be practical when the latter is a long running
operation.

Threads operating under this pattern are not conflict serializable if another thread up-
dates the shared state while our thread calls is work redundant and finds that it returns
false. Those updates conflict with the shared read before calling is work redundant and
while executing do work.

The true∗ && allows the NDSeq program to nondeterministically skip the call to
is work redundant and do the work anyway. This expresses that (1) it is acceptable from
a partial-correctness point of view to skip the redundancy check and to do the actual work,
and also that (2) if we skip the redundancy check, then the initial read of shared state is not
relevant to the computation and can be ignored for conflict-serializability purposes.
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Examples. This pattern is often used when a solution space is examined by multiple
threads to improve convergence to an optimal solution. Our running example in Section 6.1
follows this pattern: Lines 2–5 in Figure 6.1 test the lower bound of the current solution
to decide if the computation at Line 6 can produce a better solution. The phylogeny
benchmark from the Parallel Java Library follows a similar bound check to prune the search
space for optimal phylogenetic trees. Programs using caches to avoid multiple computations
of a function for the same input also use this pattern.

Irrelevant Computation

This pattern generalizes tasks that perform some computation (shown in the if(true∗)
branch) that does not affect the rest of the execution path and does not produce a result
that flows into shared state that is relevant to core functional correctness. One can ignore the
irrelevant part of the program when reasoning about the program in the sequential semantics,
since either (1) it does not affect the focus state, or (2) it is only necessary for the parallel
executions of the program.

Examples. A prevalent instance of case (1) is when updating a statistic counter to profile
the procedures of a program. For example, in the following we use if(true∗) to mark the
increment of a statistic counter as an irrelevant operation. Updates to counter do not affect
the final result (with respect to focus variables) of the program. However, without using the
if(true∗), conflicts due to counter will not be ignored by our analysis. By surrounding the
if statement with if(true∗), the programmer indicates that the if branch is not relevant
for the final result, and conflicts due to the accesses to counter when executing the branch
should not affect the parallel correctness of the program. In fact, one can easily prove
statically that, given counter is not a focus variable, skipping the conditional at all is safe
for the functionality.

do_work(shared, local); // access shared variables exclusively

if ( true∗ ) {
if (counter < MAX_INT) {

counter = counter + 1;

}

}

Moreover, rebalancing a tree, garbage collection and compaction, maintaining a cache,
and load balancing are operations that are performed to improve the performance of a
parallel program, but –when implemented correctly– do not affect the core functionality of
the program and thus are considered irrelevant.

An instance of (2) is when using a locking library to ensure atomicity of the relevant
computation. In contrast with the statistics counters, locks are essential for the correctness
of the parallelism, though the locking-state is often irrelevant for reasoning about the core
functionality of the program in a sequential run.
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1: coforeach (i in 1,...,N) {

2: while (true) {

3: if ( true∗ ) {
4: int prev = x;

5: int curr = i*prev + i;

6: if (CAS(x,prev,curr))

7: break;

8: }

9: }

10: }

11: mark_focus(x) ;

Figure 6.6: A simple parallel reduction with an embedded NDSeq specification.

Specification Example I: Non-blocking Concurrent Reduction

Consider the simple parallel program in Figure 6.6. The program consists of a parallel for-
loop, denoted coforeach — each iteration of this loop attempts to perform a computation
(Lines 4-6) based on the shared variable x, which is initially 0. In particular, each iteration
uses an atomic compare-and-swap (CAS) operation to update the shared variable x. If mul-
tiple iterations try to concurrently update x, some of these CAS’s will fail and those parallel
loop iterations will recompute their updates to x and then will try again.

The NDSeq specification of the program, which is embedded in the parallel program in
Figure 6.6, indicates two nondeterministic aspects. First, the box around the coforeach
construct in Line 3 specifies that the loop iterations can run in any permutation of the set
1,...,N. This part of the specification captures the intended nondeterministic behavior of
the parallel program: x can be updated by threads in an arbitrary order due to nondeter-
ministic scheduling of threads. Second, the if(true∗) annotation in Line 3 specifies that
the iteration body may be skipped nondeterministically, at least from a partial correctness
point of view; this is acceptable, since the while loop in this program fragment is already
prepared to deal with the case when the effects of an iteration are ignored following a failed
CAS statement.

The mark focus annotation in Line 11 indicates that x is the only focus variable. That
is, the functional correctness of the program depends only on the final value of x after all
the threads created by coforeach terminate.

Specification Example II: Non-blocking Concurrent Stack

In Figure 6.7, we give Java-like code for the NDSeq specification of our non-blocking stack
benchmark. The stack is represented as a null-terminated, singly-linked list of Node objects.
The head of the list is pointed by the TOP field of the stack. In order avoid the ABA problem,
we use a version number (TOP version), which is increased whenever TOP is updated.
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The push and pop methods implement the Optimistic Concurrent Computation pattern,
using a loop that iterates until the operation succeeds. Each method first reads the TOP of the
stack without any synchronization and then uses an atomic CAS2 (double compare-and-swap)
operation to check for conflicts by comparing TOP and TOP version with local top and
local v. If TOP=local top and TOP version=local v then CAS2 commits the operation
by writing new top to TOP and incrementing TOP version and returns true. Otherwise,
CAS2 returns false and the operation retries.

In the specification, an if(true∗) statement is placed around the critical CAS2 in push,
and around the check whether or not local top is null in pop. These if(true∗)’s indicate
that the sequential version of the program is free to nondeterministically retry as if there
had been a conflict. This added nondeterminism enables our dynamic analysis to mark as
irrelevant the reads of TOP and TOP version by loop iterations in which the CAS2 fails.

The harnessmethod creates a number of threads, each of which calls push with a random
input or calls pop. In the code, we mark the focus variables using mark focus . The focus
variables are: (1) the values popped by the harness threads (marked after each call to pop),
and (2) the last contents of the stack (marked at the end of the harness).

class Stack :
Node TOP;
int TOP_version;

}

void Stack::push(int x) {
Node local_top, n;
int local_v;

n = new Node();
n.value = x;
while (true) {
atomic {
local_top = TOP;
local_v = TOP_version;

}
n.next = local_top;
if ( true∗ ) {
if (CAS2(TOP, TOP_version,

local_top, local_v,
n, local_v+1))

return;
}

}
}

class Node {
int value;
Node next;

}

int Stack::pop() {
Node local_top, n;
int local_v;

while (true) {
atomic {
local_top = TOP;
local_v = TOP_version;

}
if ( true∗ ) {
if (local_top == null)
return EMPTY;

n = local_top.next;
if (CAS2(TOP, TOP_version,

local_top, local_v,
n, local_v+1))

return local_top.value;
}

}
}

void harness() {
Stack stack = new Stack();

coforeach (i = 1 .. 30) {
// make a call to stack
if(randomBoolean()) {
stack.push(rand());

} else {
int t = stack.pop();

mark_focus(t) ;

}
}

// traverse the stack and
// mark the final
// contents relevant

mark_focus(stack.TOP) ;

Node n = stack.TOP;
while(n != null) {

mark_focus(n.next) ;

mark_focus(n.value) ;
n = n.next;

}
}

Figure 6.7: A non-blocking stack implementation with an embedded NDSeq specification.



CHAPTER 6. NDSEQ SPECIFICATIONS FOR PARALLELISM CORRECTNESS 107

6.4 Runtime Checking of Parallel Correctness

Among the various possible techniques for checking parallelization correctness, we describe
here a runtime checking algorithm. We use dynamic dataflow analysis to determine parts
of the executions that are not relevant to the final valuation of the focus variables. At
the same time the analysis determines appropriate assignments of boolean values to the
if(true∗) nondeterministic branches in the NDSeq execution, in order to eliminate as many
serialization conflicts as possible. Therefore, dataflow analysis and NDSeq specifications
play key roles in improving the applicability of conflict serializability for reasoning about
parallelism in real programs, for which the standard notion of serializability would be too
strict. In the rest of this section, we describe the details of the checking algorithm and we
sketch its correctness.

In order to simplify the presentation of the runtime checking algorithm for parallelism
correctness we make the following assumptions about the parallel program being checked:

A1. Branch predicates are either true∗ or a local variable.

A2. The body of an if(true∗) does not contain unstructured control flow (e.g., continue,
break, return), and there is no else clause.

These assumptions can be established using standard program refactoring. For example,
Lines 4–5 from Figure 6.1(c) can be translated to:

bool cond = false;

if( true∗ ){ l = (b >= t); if(l){ cond = true; } }
if(cond) continue;

where cond and l are new local variables.
Our checking algorithm operates on an execution trace described as a sequence of exe-

cution events. Let τ denote a trace and e an event. For each event e we have the following
information:

• Type(e) is the type of the event, defined as follows:

T ::= x = x′ | branch(l) | branch(true∗)

The “x = x′” event type corresponds to the assignment and binary operation state-
ments in our language (shown in Figure 6.4; recall that metavariable x stands for both
locals and globals). We use a simple assignment in our formal description to simplify
the presentation; unary and binary operators do not pose notable difficulties. We as-
sume that an event can read a global, or write a global, but not both. The “branch(l)”
event marks the execution of a branch operation when the boolean condition denoted
by local l evaluates to true. The case of a branch when the negation of a local is true
is similar. Finally, the “branch(true∗)” marks the execution of an if(true∗) branch,
which in the parallel execution is always taken. Our algorithm does not require specific
events to mark the start and end of procedures or atomic blocks.
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We write e : T when e has type T .

• Thread(e) denotes the thread that generates the event e. Recall that new threads are
created when executing cobegin and coforeach statements.

• Guard(e) denotes the event of type branch(true∗) that corresponds to the most recent
invocation of the innermost if(true∗) that encloses the statement generating e. For
events outside any if(true∗) this value is nil.

For example, in the trace shown in Figure 6.2, Guard(e6) = e5, Guard(e8) = e7,
Guard(e20) = Guard(e21) = e19, and Guard(e) = nil for all other events e.

The checking algorithm operates in two stages, shown in Figure 6.8. The first stage
computes a subset of the events in the trace that are relevant (Section 6.4), and the second
stage determines whether the relevant part of the trace is conflict serializable (Section 6.4).

Selecting Relevant Events

A standard conflict-serializability algorithm [115] considers all events in a trace. We observed
that in many concurrent programs it is common for partial work to be discarded when a
conflict is later detected. In such cases, some of the computations based on previously read
values of shared variables are discarded and are not relevant to the rest of the execution.
If we can ignore such irrelevant reads of shared variables we can prove that more paths are
conflict serializable. Similarly, we can ignore writes that do not affect a relevant control flow
and do not flow into the final state of the focus variables. Our experiments show that this
makes a difference for most benchmarks where traditional conflict serializability reports false
alarms.

Informally, an assignment event is relevant if it targets a location that is eventually used in
the computation of a final value of a focus variable, or in the computation of a deterministic
branch. To track this relevance aspect we compute a dynamic data-dependence relation
between events. For trace τ , we define the dependence relation 99K as follows:

D1. (Intra-Thread Data Dependence). For each local variable read ej : x = l or branch
ej : branch(l), we add a dependence (ei 99K ej) on the last ei : l = x′ that comes before
ej in τ . This dependence represents an actual dataflow through local l from ei to ej in
the current trace. Both of these events are in the same thread (since they operate on
the same local) and their order and dependence will be the same in any serialization
of the trace. These dependence edges are shown as thin dashed arrows in Figure 6.2.

D2. (Inter-Thread Dependence). For each global variable read ej : l = g we add
dependencies (ei 99K ej) on events ei : g = l′ as follows. From each thread we pick
the last write to g that comes before ej in τ , and the first write to g that comes
after ej in τ . This conservative dependence is necessary because the relative order of
reads and writes to the global from different threads may change in a serialization of
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the trace. Section 6.4 explains the importance of this detail for correctness. In the
example shown in Figure 6.2, we have such dependence edges from e12 to all events
that read lowest cost: e2, e4, e10, e18.

Let 99K∗ denote the transitive closure of 99K.
Figure 6.8 lists the algorithm ComputeRelevant to compute the set of relevant events.

We seed the set of relevant events with all the events that assign to the global focus variables
(Line 1) and the deterministic branches outside any nondeterministic blocks (Line 2). In
Line 5 we add the assignment events on which existing relevant events have data dependence.

The crucial factor that allows us to find a significant number of irrelevant events is that we
can choose to skip the events (assignments and branches) corresponding to nondeterministic
if(true∗) blocks, as long as those blocks are irrelevant in the trace. We extend the relevance
notion from assignment events to branches as follows. A branch(true∗) event is relevant if
and only if it corresponds to the execution of an if(true∗) block with at least one relevant
assignment event (Line 6). For this step we use the previously introduced Guard function to
relate events inside if(true∗) blocks with the corresponding branch(true∗) event. We also
say that a branch(l) event is relevant if it represents control flow that must be preserved (it
is not nested inside an irrelevant if(true∗) block). This is enforced in Lines 2 and 7. The
computation in Lines 5–7 must be repeated to a fixed point since the additional relevant
deterministic branches added in Line 7 can lead to new relevant assignments due to data
dependencies.

For example, in the trace in Figure 6.2, relevant events are e9−13 from thread with i = 2,
e14−16 from thread with i = 1, and e17−21 from thread with i = 3. Since the nondeterministic
branch events e5 and e7 are irrelevant (no events in the rest of the trace data-depend on their
bodies), the branch events e6 and e8 are not marked as relevant. Thus, events e1−2 from
thread with i = 1 and e3−4 from thread with i = 2 have no data-dependents in Relevant and
they remain as irrelevant.

Checking Serializability of Transactions

The final stage in our runtime checking algorithm is a conflict serializability check, imple-
mented as cycle detection similar to [12, 62]. Our added element is that we ignore the conflicts
induced by irrelevant events, and we have the flexibility to alter the nondeterministic control
flow in order to remove conflicts.

First we define the conflict relation on the individual events of a trace, with respect to a
subset E of events from the trace.

Definition 18 (Conflicting events in a set of events E). Given a set E of events from a trace
τ , two events e, e′ ∈ τ are conflicting in E (written e ;E e′) iff (a) e, e′ ∈ E, and (b) e occurs
before e′ in τ , and (c) both events operate on the same shared global variable, and at least
one of them represents a write, and (d) the events are generated by different threads.
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Algorithm ComputeRelevant(τ,Focus)
Inputs: Trace τ and focus variables Focus

// All writes to in-focus global variables are relevant
1 Relevant = {e : g = l ∈ τ | g ∈ Focus ∧ e is last write to g in Thread (e)}

// All top-level, deterministic branches are relevant
2 Relevant = Relevant ∪ {e : branch(l) ∈ τ |Guard(e) = nil}
3 Compute data dependence relation 99K from τ
4 repeat

// Add all events on which some relevant event is data-dependent
5 Relevant = Relevant ∪ {e ∈ τ | ∃e′ ∈ Relevant. e 99K∗ e′}

// Add all nondeterministic branches enclosing a relevant event
6 Relevant = Relevant ∪ {e : branch(true∗) ∈ τ | ∃e′ ∈ Relevant. Guard(e′) = e}

// Add all deterministic branches enclosed inside a relevant if (true∗)
7 Relevant = Relevant ∪ {e : branch(l) ∈ τ | Guard(e) ∈ Relevant}
8 until Relevant does not change
9 return Relevant

Algorithm CheckCycle(τ,Focus)
Inputs: Trace τ and focus variables Focus

// Check serializability of trace with respect to the given NDSeq specification
10 E = ComputeRelevant(τ,Focus)
11 Compute conflict relation ; between threads
12 if exists a cycle t ;E t′ ;∗E t
13 Report unserializable thread t
14 else
15 Declare the execution serializable
16 end if

Figure 6.8: Our two-part algorithm for checking whether or not an execution trace of a
parallel program conforms to the program’s nondeterministic sequential specification.

Next we lift the conflict relation from events to threads. When comparing two threads
for conflicts we need to consider their events and all the events of their descendant threads.
Thus, for a thread t we define its transaction as the set of events Trans (t) that includes all
the events of t and of the descendant threads of t.

Definition 19 (Conflicting threads with respect to a set of events E). Given a set E of
events from a trace τ , two threads t, t′ are conflicting in trace τ (written t;E t

′) iff (a) their
transaction sets are disjoint (i.e., one is not a descendant of the other), and (b) there exist
two events e ∈ Trans (t) and e′ ∈ Trans (t′) that are conflicting (e ;E e′). The relation
t;∗E t

′ is the transitive and reflexive closure of the thread conflict relation.
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The main runtime checking algorithm for parallelism correctness is shown in Lines 10–16
in Figure 6.8.

For the example trace shown in Figure 6.2 the event e2 is not relevant, which allows the
algorithm CheckCycle to ignore the conflict between e2 and e12 (shown with thick dashed
arrow in Figure 6.2). Without the dependence analysis we could not show that the trace is
serializable.

Algorithm Correctness

The correctness of our runtime checking algorithm can be argued by showing that when
the CheckCycle algorithm succeeds, the input trace τ ∈ ParExecs(P) can be transformed
incrementally into a trace τ ′ ∈ NdSeqExecs(P) such that the final states in both traces
agree on the values of the focus variables. Each incremental transformation preserves the
validity of the trace and the final condition on focus variables. Some of the intermediate
traces in this process will belong to the larger space of nondeterministic parallel executions
NdParExecs(P), which allow both interleavings (as in ParExecs(P)) and nondeterministic
branches (as in NdSeqExecs(P)). For these executions nondeterministic true∗ branches are
resolved at runtime nondeterministically to true or false.

The first trace transformation that we perform is to eliminate the events corresponding to
if(true∗) blocks that were found irrelevant by ComputeRelevant. The second transfor-
mation is to commute adjacent events from different threads that are not in conflict, either
because they do not operate on a shared global, or because one of them is irrelevant. The
correctness of these steps — i.e., they preserve the validity of the trace and the final values
of focus variables — is established by Lemma 20 and Lemma 21.

The rest of the correctness algorithm builds on a standard result from database theory:
a trace is conflict serializable if it can be transformed into an equivalent serial trace by
commuting adjacent, non-conflicting operations of different threads. This is possible if and
only if the transactional conflict graph is acyclic [115].

Lemma 20 (Skip irrelevant nondeterministic blocks). If τ ∈ ParExecs(P), let τ ′ be the sub-
trace of τ obtained by eliminating all e such that Guard(e) /∈ ComputeRelevant(τ,Focus).
Then τ ′ is a valid trace in NdParExecs(P), meaning that τ ′ reflects the correct control flow of
the program P with the corresponding irrelevant true∗ resolved to false, and τ ′ agrees with τ
on the final values of Focus variables. Furthermore, ComputeRelevant(τ ′,Focus) returns
the same answer as for trace τ .

The proof of this lemma relies first on the assumption (A2) stated earlier that the body
of any if(true∗) has only normal exits and no else clause. This means that by removing all
the events in any such body results in a trace where control flows properly to the statement
after the skipped if(true∗). All assignment events eliminated in this step are irrelevant
since their guard is irrelevant (Line 6 in Figure 6.8). Therefore subsequent control flow and
the final value of focus variables are preserved. The set of relevant events does not change
through this transformation because its computation does not depend on irrelevant events.
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Lemma 21 (Commutativity of irrelevant events). Consider a trace τ ∈ NdParExecs(P)
and two adjacent events e1 and e2 in τ , such that the events are from different threads, they
operate on a shared global g, at least one is a write event, and at least one is irrelevant —
i.e., not in ComputeRelevant(τ,Focus). Then the trace obtained by commuting e1 and e2
is still a valid trace in NdParExecs(P) and it agrees with τ on the final value of all of the
Focus variables.

Proof Sketch: Considering the types of events we can have in the trace and the conditions
of the Lemma, we have three possible cases:

• Read-after-write: e1 : g = l and e2 : l′ = g. If e2 were relevant then e1 would also be
relevant (Line 5 in the algorithm, with data-dependence rule D2). Thus it must be
that e2 is irrelevant, hence the value of l′ does not affect the subsequent control flow
or final values of Focus variables. Therefore we can commute the events and the trace
remains in NdParExecs(P). The relevant events computation does not change, since
l 6= l′ (different threads), and the relative order of relevant reads and writes to global
does not change.

• Write-after-read: e1 : l = g and e2 : g = l′. If e1 were relevant then e2 would also
be relevant (Line 5 in the algorithm, with data-dependence rule D2; this is a crucial
part of the correctness argument that depends on the conservative form of the data-
dependence rule D2). Thus, e1 is irrelevant, and the rest of this case follows the same
arguments as in the read-after-write case.

• Write-after-write: e1 : g = l and e2 : g = l′. It must be that there is no nearby relevant
read of the global g in the trace, or else both events would be relevant (again due to
data-dependence rule D2). This means that it does not matter what we write to g. The
relevant set does not change after the swap because we do not change the dependence
relation 99K. It is for this reason that we require the dependence rule D2 to consider
the nearest write to a global from each thread. 2

With these results it is straightforward to prove our main correctness result given below
using standard conflict-serializability results using our relaxed notion of conflicts, as proved
adequate in Lemma 21.

Theorem 22 (Correctness). Let τ be the trace generated by a parallel execution of E ∈
ParExecs(P) of a program P. If CheckCycle(τ,Focus) does not report any unserializable
transaction, then there exists a nondeterministic sequential execution E ′∈NdSeqExecs(P),
such that the initial states of E and E ′ are the same and the final states agree on the value
of all variables in Focus.

The theorem implies that if we explore, using a model checker, all parallel executions of
the program and show that all these executions are serializable, then we can conclude that
the parallel program conforms to its NDSeq specification.
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6.5 Experimental Evaluation

In this section, we describe our efforts to experimentally evaluate our approach to specifying
and checking parallel correctness using NDSeq specifications. We aim to evaluate two claims:

(1) That it is feasible to write NDSeq specifications for the parallel correctness of real Java
benchmarks,

(2) Our runtime checking algorithm produces significantly fewer false positives than a tra-
ditional conflict-serializability analysis in checking parallel correctness of these bench-
marks.

To evaluate these claims, we wrote NDSeq specifications for the parallel correctness
of a number of Java benchmarks and then used our runtime checking technique on these
specifications.

Benchmarks

We evaluate our technique on a number of benchmarks that have been used in previous
research [12, 62] on parallel correctness tools, as well as in earlier chapters of this work. Note
that we focus here on parallel applications, which use multithreading for performance but
fundamentally are performing a single computation that can be understood sequentially. We
do not consider concurrent benchmarks, such as reactive systems and stream-based systems,
because it is not clear whether or not such programs can be understood sequentially.

The names and sizes of the benchmarks we used are listed in Table 6.1. Several bench-
marks are from the Java Grande Forum (JGF) benchmark suite [46]: five parallel compu-
tation kernels — for successive order-relaxation (sor), sparse matrix-vector multiplication
(sparsematmult), coefficients of a Fourier series (series), cryptography (crypt), and LU
factorization (lufact) — as well as a parallel molecular dynamic simulator (moldyn), ray
tracer (raytracer), and Monte Carlo stock price simulator (montecarlo).

Four benchmarks are from the Parallel Java (PJ) Library [86]: an app for comput-
ing a Monte Carlo approximation of π (pi), a parallel cryptographic key cracking app
(keysearch3), an app for parallel rendering of Mandelbrot Set images (mandelbrot), and a
parallel branch-and-bound search for optimal phylogenetic trees (phylogeny). Each of these
benchmarks relies on 15K lines of PJ library code for threading, synchronization, etc.

We also applied our tool to two large benchmarks in the DaCapo benchmark suite [18],
the raytracer sunflow and the XML to HTML converter xalan. Benchmark meshrefine
is a sequential application from the Lonestar benchmark suite [88] that we have parallelized
(by converting the application’s main loop into a parallel loop). Benchmarks stack [145]
and queue are non-blocking concurrent data structures. For each data structure, we con-
struct a test harness that performs several insertions and removals in parallel (i.e., in a
cobegin). The queue is similar to the Michael and Scott queue [102], but eagerly updates
the queue’s tail with a 4-word compare-and-swap. This change simplified significantly the
NDSeq specification.
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We report on all benchmarks that we looked at except tsp [122], for which we have not
yet found an easy way to write the NDSeq specification (see Section 6.5).

Implementation

Although these benchmarks are written in a structured parallel style, Java does not pro-
vide structured parallelism constructs such as coforeach or cobegin. Thus, we must anno-
tate in these benchmarks the regions of code corresponding to the bodies of parallel loops
and cobegin’s. Typically, these regions are the bodies of run methods of subclasses of
java.lang.Thread. Similarly, some of these benchmarks use barrier synchronization. As
barriers have no sequential equivalent, we treat these programs as if they used a series of
parallel coforeach constructs, ending one parallel loop and beginning another at each bar-
rier. (This is a standard transformation [154] for such code.) We similarly treat each PJ
benchmark, which employ sequential loops inside each of a fixed number of worker threads,
as instead consisting of structured parallel loops.

In order to write NDSeq specifications, we implemented a simple library for annotating
in Java programs the beginning and end of the bodies of if(∗), coforeach, and cobegin
constructs, as well as which locations (fields, array elements, etc.) are focus variables.
Columns 4, 5, and 6 of Table 6.1 list, for each benchmark, the number of such annotated
parallel constructs, annotated if(∗), and statements added to mark focus variables.

We implemented our checking technique in a prototype tool for Java, which uses bytecode
instrumentation via Soot [150]. In addition to the details described in Section 6.4, for Java
it is necessary to handle language features such as objects, exceptions, casts, etc. Any Java
bytecode instruction that can throw an exception — e.g., a field dereference, an array look-
up, a cast, or a division — must be treated as an implicit branch instruction. That is,
changing the values flowing into such an instruction can change the control-flow by causing
or preventing an exception from being thrown.

Limitations. While our implementation supports many intricacies of the Java language,
it has a couple of limitations:

• First, our implementation tracks neither the shared reads and writes nor the flow
of data dependence through uninstrumented native code. Thus, we may report an
execution as having correct parallelism despite unserializable conflicts appearing in
calls to native code.

• Second, our tool does not instrument all of the Java standard libraries. This may
cause our tool to miss data dependencies carried through the data structures in these
libraries, as well as shared reads and writes inside such data structures. To address
this limitation, for certain shared data structure objects we introduced fake shared
variables and inserted reads or writes of those variables whenever their corresponding
objects were accessed. This allows us to conservatively approximate the conflicts and
data dependencies for certain critical standard Java data structures.
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Benchmark

Approximate
Lines of

Code (App
+ Library)

# of
Parallel

Constructs

Size of Spec Size of Trace Distinct Serializability
Warnings

# of # of focus All Irrelevant Conflict- Our

if(*) stmts Events Events Serializability Technique

JGF

sor 300 1 0 1 1,600k 112 0 0

matmult 700 1 0 1 962k 8k 0 0

series 800 1 0 5 11k 140 0 0

crypt 1100 2 0 3 504k 236 0 0

moldyn 1300 4 0 1 4,131k 79k 0 0

lufact 1500 1 0 1 1,778k 6k 0 0

raytracer 1900 1 0 1 6,170k 44k 1 1 (b)

montecarlo 3600 1 0 1 1,897k 534k 2 0

PJ

pi3 150 + 15k 1 0 1 1,062k 141 0 0

keysearch3 200 + 15k 2 0 4 2,059k 91k 0 0

mandelbrot 250 + 15k 1 0 6 1,707k 954 0 0

phylogeny 4400 + 15k 2 3 8 470k 5k 6 6 (b)

DaCapo
sunflow 24,000 4 4 3 24,250k 2,264k 28 3 (fw)

xalan 302,000 1 3 4 16,540k 887k 6 2 (fw)

stack 40 1 2 8 1,744 536 5 0

queue 60 1 2 8 846 229 9 0

meshrefine 1000 1 2 50 747k 302k 30 0

Table 6.1: Summary of our experimental evaluation of NDSeq specifications and our runtime
checking technique. The warnings for raytracer and phylogeny are all true violations,
indicated with (b), caused by a single bug in each benchmark. The warnings for xalan and
sunflow are false warnings, indicated with (fw).

Results: Feasibility of Writing Specifications

Writing an NDSeq specification for each benchmark program consisted of two steps: (1) adding
code to mark which parts of the program’s memory were in focus — i.e. storage locations
whose values are relevant in the final program state, and (2) adding if(∗) constructs to
specify intended or expected nondeterminism.

For all of our benchmarks besides tsp, it was possible to write an NDSeq specification
for the benchmark’s parallel correctness. The “Size of Spec” columns of Table 6.1 lists the
number of if(∗) constructs added to each benchmark and the number of statements added
to mark storage locations as in focus. These numbers show that, overall, the size of the
specification written for each benchmark was reasonably small. We further found adding
nondeterminism via if(∗) to be fairly straightforward, as all necessary nondeterminism fell
under one of the NDSeq specification patterns discussed in Section 6.3. Identifying which
storage locations were relevant to the final program result was similarly straightforward.
As an example, we show in Section 6.3 the complete NDSeq specification for the stack
benchmark.
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Though further work is needed to evaluate the general applicability of NDSeq specifica-
tions for parallel correctness, we believe it is promising preliminary evidence that we were
able to easily write such specifications for a range of parallel applications.

Results: Runtime Checking

For each benchmark, we generated five parallel executions on a single test input using a simple
form of race-directed parallel fuzzing [132]. On each such execution, we checked our NDSeq
specification both using our technique and using a traditional, strict conflict-serializability
analysis [62].

We report in Column “Size of Trace; All Events” of Table 6.1 the size of a represen-
tative execution trace of each benchmark. The size is the number of reads and writes of
shared variables and the number of branches executed during the run. Note that most of
our benchmarks generate a few hundred thousand or a few million events during a typical
execution on a small test input. For a dynamic analysis, this is a more relevant measure of
benchmark size than static lines of code. Column “Size of Trace; Irrelevant Events” reports
the number of these events found to be irrelevant by our algorithm ComputeRelevant in
Figure 6.8. The fraction of events found to be irrelevant, and therefore not considered during
our algorithm’s serializability checking, range from 0-40%.

The “Distinct Serializability Warnings” columns of Table 6.1 report the number of seri-
alizability warnings produced by a traditional conflict-serializability check and by our tech-
nique. Note that, in a trace of a benchmark, a conflict involving a few particular lines of
code may generate many cycles among the dynamic events of the trace. We report only the
number of distinct cycles corresponding to different sets of lines of code.

Both techniques find the two real parallelism bugs — a data race in raytracer due to
the use of the wrong lock to protect a shared checksum, and an atomicity violation in the
phylogeny branch-and-bound search involving the global list of min-cost solutions found.
(The six warnings for phylogeny are all real violations caused by this single bug.) Because
of these bugs, neither raytracer nor phylogeny is equivalent to its NDSeq spec.

A traditional conflict-serializability analysis also gives false warnings for six benchmarks
— incidents where there are cycles of conflicting reads and writes, but the parallel code is
still equivalent to its NDSeq specification. In four of these cases, our algorithm leverages
its dynamic dependence analysis and specified nondeterminism and focus variables to verify
that these conflicts involve reads and writes irrelevant to the final program result. In this
way, our algorithm eliminates all false warnings for benchmarks montecarlo, stack, queue,
and meshrefine.

For benchmarks sunflow and xalan, our checking algorithm eliminates 25 and 4 false
warnings, respectively, produced by strict conflict-serializability checking, but generates 3 of
the same false warnings for sunflow and 2 for xalan. We discuss in greater detail below
these false warnings that our analysis was and was not able to eliminate.

Note that previous work on atomicity checking, such as [62], typically evaluate on such
benchmarks by checking whether or not each individual method is atomic. Thus, a single
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cycle of conflicting reads and writes may lead to multiple warnings, as every method con-
taining the cycle is reported to be non-atomic. (Conversely, multiple cycles may be reported
as a single warning if they all occur inside a single method.) Our numbers of reported viola-
tions are not directly comparable, as we are interested only in whether each execution of an
entire parallel construct is serializable and thus equivalent to an execution of its sequential
counterpart.

montecarlo Benchmark. Each parallel loop iteration of the montecarlo benchmark con-
tains several conflicting reads and writes on shared static fields. (The reads and writes
occur inside the constructor of a temporary object created in each iteration.) To a näıve,
traditional conflict-serializability analysis, these reads and writes make it appear that no
equivalent serial execution exists. However, it turns out that the values written to and read
from these static fields are never used — they affect neither the control flow nor the final
program result. Thus, our analysis determines that these events are irrelevant and need not
be considered during serializability checking. The remaining, relevant events are serializable,
and thus our technique reports that the observed executions of montecarlo conform to its
nondeterministic sequential specification.

phylogeny Benchmark. Our motivating example in Figure 6.1 is a simplified version of
the branch-and-bound search phylogeny. Each parallel iteration of this benchmark decides
whether or not to skip (or prune) its unit of work based on a computed lower bound and
a shared lowest cost variable. When an iteration does not prune its work, it may later
read and possibly update the lowest cost variable. This leads to violations of conflict-
serializability when another thread writes to lower cost in between. But this pruning
check is an instance of the Redundant Computation Optimization pattern described in Sec-
tion 6.3. We enclose the prune check in an if(∗), indicating that a sequential program is
free to nondeterministically choose not to prune. Our analysis can then verify that conflicts
involving the read of lowest cost are irrelevant, and thus avoids the false warning a strict
conflict-serializability analysis would report.

stack, queue, and meshrefine Benchmarks. Benchmark meshrefine employs the Op-
timistic Concurrent Computation pattern described in Section 6.3. Each parallel iteration
reads from the shared triangular mesh that is being refined, and then optimistically com-
putes a re-triangulation of a region of the mesh. It then atomically checks that no conflicting
modifications have been made to the mesh during its computation and either: (1) commits
its changes to the mesh if there are no conflicts, or (2) discards its optimistic computation
and tries again. When conflicting modifications occur, an execution of meshrefine is clearly
not strictly conflict-serializable. However, when we specify with an if(∗) that the sequential
execution is free to nondeterministically discard its optimistic computation and retry, even
when there are no conflicts, our analysis can verify that conflicts involving these shared reads
and optimistic computation are not relevant when the optimistic work is discarded. And the
remaining relevant events are serializable, so our analysis reports no false warnings here.
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The stack and queue benchmarks are also instances of the Optimistic Concurrent Com-
putation pattern, where shared reads are performed, but these reads are only relevant when
a later compare-and-swap operation succeeds. Conflicts leading to failing CAS operations in
these benchmarks lead to false positives for a strict conflict-serializability analysis, but our
technique determines that these conflicts are not relevant to the final program result.

sunflow and xalan Benchmarks. Benchmarks sunflow and xalan cause false alarms
due to the following lazy initialization pattern:

1: if ( true∗ && flag == true) {
2: // skip initialization

3: } else {

4: atomic {

5: if (flag == false) {

6: initialize shared object

7: flag = true;

8: }

9: }

10: }

In the above pattern, each thread checks if some shared object has been initialized and,
if not, initializes the object itself. The flag variable, which is initially false, indicates
whether the object has been initialized.

This pattern has two potential sources of false alarms:

1. One thread may read that flag is false at Line 1, and then another thread may
initialize the object and set flag to true, so that the first thread then reads that flag
is true at Line 5. This is a violation of conflict-serializability.

This is an instance of the Redundant Computation Optimization Pattern described in
Section 6.3, as a thread can always choose to skip the check at Line 1, since flag will
be checked again at Line 5. By annotating the first check with true∗ &&, our analysis
ignores irrelevant conflicts involving threads reading that flag is false at Line 1 and
eliminates this kind of false warning.

2. When one thread initializes the shared object and sets flag to true, and then other
threads read both flag and the shared object, our analysis sees conflict edges from
the initializing thread to the other threads. These can lead to conflict cycles if the
initializing thread later performs any relevant reads of data written by other threads.
Our technique will report these cycles as violations.

But such reports are false warnings, because it does not matter which thread performs
this kind of lazy initialization, and it is possible to serialize such executions despite
outgoing conflicts from the initialization code. Future work is needed to handle this
pattern in our NDSeq specifications and dynamic checking.
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Caveats

While we could easily write the specifications for our benchmarks, NDSeq specifications must
be used with care. First, one must be careful to not introduce so much nondeterminism
that the resulting NDSeq program exhibits undesired behavior. Our catalog of specification
patterns in Section 6.3 can aid programmers in using NDSeq specifications without breaking
functional correctness. Second, we note that when introducing if(true∗) one can easily
introduce nontermination (as shown in several examples in this chapter). This is safe as long
as we consider only the partial correctness properties of the NDSeq specification.

In order to tackle these issues, in Chapter 7 we discuss techniques for automatically
inferring a minimal nondeterministic sequential specification such that the serializability
checking described in Section 6.4 succeeds. The value of a minimal specification — i.e.,
with a minimal number of if(true∗)— is that it makes it more likely that the inferred
specification matches the intended functionality of the program.

Our runtime algorithm reduces the number of false positives compared to a standard
notion of conflict serializability. However, it can still give false positives because:

• We do not apply semantic-level analyses, such as commutativity analysis [126]. How-
ever, there are parallel patterns that rely on commutativity, in which it is necessary
to ignore low-level conflicts that are part of larger, commutative operations (such as
reductions). Two commutative updates on a focus variable (e.g., addition) can have
conflicts yet still be serializable when the updates are considered at a semantic level.
We are exploring ways to address this limitation.

• We only search for NDSeq executions for which the control-flow path outside if(true∗)
branches is the same as in the parallel execution. Thus, we might miss an equivalent
NDSeq path and falsely report a violation. One can eliminate this source of imprecision
by exploring executions of the program with different control flows.

tsp Benchmark. For reasons stemming from the limitations given above, we have not
found an easy way to write and check the NDSeq specification for the tsp [122] benchmark.
Figure 6.9(a) gives the original form of the main search routine. Each thread is implemented
as a loop (Lines 2–10): At each iteration it obtains a work w from the shared queue Q (Line 4),
searches the region represented by w (Line 6) and updates the shared variable MinTourLen
(Lines 8–9). In order to show that each thread as implemented in Figure 6.9(a) is serializable,
one needs to prove that executions of get work are commutative. This requires a nontrivial
reasoning because procedure get work may split the work items in Q and submit new work
items to Q, which creates a dependency from a thread processing a work item created by a
call to get work by another thread. We found that Figure 6.9(a) has equivalent functionality
to the rewritten form of the search in Figure 6.9(b), where each thread performs only one
iteration of the while loop. In this case, one can show that each iteration at Lines 2–9 in
Figure 6.9(b) is serializable, as procedure recursive solve is a thread-local operation and
the (atomic) update of MinTourLen at Lines 7–8 is commutative.
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1: cobegin <1,...,N> {

2: while (!isEmpty(Q)) {

3: atomic {

4: w = get_work(Q);

5: }

6: s = recursive_solve(w);

7: atomic {

8: if (s < MinTourLen)

9: MinTourLen = s;

10: }

11: }

12: }

(a) Original search routine

1: cowhile (!isEmpty(Q)) {

2: atomic {

3: w = get_work(Q);

4: }

5: s = recursive_solve(w);

6: atomic {

7: if (s < MinTourLen)

8: MinTourLen = s;

9: }

10: }

(b) Rewritten form of the search

Figure 6.9: Simplified version of our TSP benchmark. We were not able to easy write an
NDSeq specification for the original version (a), but can write an NDSeq specification for a
slightly modified version (b).

6.6 Related Work

Several generic parallel correctness criteria have been studied for shared memory parallel
programs that separates the concerns about functionality and parallelism at different gran-
ularities of execution. These criteria include data-race freedom [108, 122], atomicity [64],
linearizability [100]. All these criteria provides the separation between parallel and func-
tional correctness partially, as the restriction on thread interleavings is limited, for example,
to atomic block boundaries. NDSeq develops this idea up to a complete separation between
parallelism and functionality so that the programmer can reason about the intended func-
tionality by examining a sequential or nearly sequential program. NDSeq specification differs
from determinism specification and checking [29, 21, 128] in that NDSeq not only allows to
specify that some part of the final state is independent of the thread schedule, but also allows
to specify that the part of the final state that depends on thread schedule is equivalent to
the state arising due to nondeterministic choices in the NDSeq.

We formulate the checking of parallelism correctness to a general notion of atomicity. Var-
ious static [64, 149, 39, 148] and dynamic [164, 160, 97, 12, 62, 153, 37, 157, 26] techniques
for checking atomicity and linearizability has been investigated in the literature. The main
challenge in these techniques is to reason about conflicting accesses that are simultaneously
enabled but ineffective on the rest of the execution. In the Purity work [60] Flanagan et al.
provide a static analysis to rule out spurious warnings due to such conflicts by abstracting
these operations to no-op’s. Elmas et al. generalize this idea in a static proof system called
QED [48]. They progressively transform a parallel program to an equivalent sequential pro-
gram with respect to functional specifications expressed using assertions. They abstract reads
and writes of shared variables; however, they need to consider functional specification when
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applying the abstractions to guarantee that the abstraction does not introduce functional
bug in the new program. In addition, both Purity and QED are based on Lipton’s reduction
theory [93], whereas we apply the idea to relax the checking of conflict-serializability [115]
for nondeterministic specifications.

Atomic-set serializability [151] is an weaker notion of atomicity, which groups storage
locations into atomic sets and requires, for each atomic set, all atomic blocks are conflict-
serializable with respect to the locations in the set. Dynamic techniques for detecting viola-
tions of atomic-set serializability has been proposed [74, 91].

Recently, several systems and languages have been developed to guarantee that parallel
programs give deterministic results. Techniques such as Kendo [112], DMP [42], CoreDet [15],
Determinator [11], Dthreads [94], Calvin [79], and RCDC [43], employ a variety of compiler,
operating system, and hardware approaches to force a multithreaded program to determin-
istically execute the same schedule for the same input. In the Deterministic Parallel Java
(DPJ) [21] language, programmers can write parallel programs that are deterministic by
construction, ensured at compile time via a static type system. DPJ also allows program-
mers to explicitly mark parallel constructs with nondeterministic sequential semantics and
compose them safely with other deterministic constructs [22]. See Chapter 3 for a discussion
of other other deterministic programming languages.

On the other hand, efforts such as the Galois project [90, 89, 118], Praun et al. [121], and
Prabhu et al. [119] aim to exploit nondeterminism in irregular, sequential programs in order
to efficiently parallelize them. The sequential model ensured by these systems allows nonde-
terministic ordering of parallel loops and pipelines. The Galois system provides a runtime
with programming constructs and data structures allowing to build parallel, worklist-based
applications (e.g., graph algorithms) where each iteration on the worklist is treated a coarse
grained transaction. The system performs conflict detection at the object level and based on
the semantics of the object and performs rollback upon unspecified conflicts. Similarly, AL-
TER [147] has programmers annotate loops which may be executed nondeterministically and
shared reads which may nondeterministically read stale values, and uses these annotations to
automatically parallelize sequential programs. The resulting program uses STM-style tech-
niques to detect conflicts, to respect the sequential semantics, and to achieve deterministic
execution. Praun et al. [121] propose the programming model IPOT that allows programmers
to explicitly mark portions of the program for speculative multithreaded and transactional
execution. Its tryasync construct resembles our cobegin construct. IPOT allows internal
nondeterminism in that intermediate states may differ from the corresponding sequential
execution, but guarantees external determinism where the final state only depends on the
inputs, not the thread interleavings. Their runtime technique aims to preserve, rather than
checking, sequential semantics. Prabhu et al. [119] propose speculative composition and
iteration as programming constructs to parallelize parts of the program with explicit de-
pendencies. They guarantee the obedience to sequential semantics by running a sequential
version of the program that verifies the speculated values of each parallel part. Saltz et
al. [129], and Rauchwerger et al. [125] present runtime checks for parallelizing executions of
loops. Their runtime techniques complement static transformations by tracking at runtime
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data dependencies across parallel loop iterations similarly to our runtime algorithm does to
identify true conflicts between threads. HAWKEYE [146] similarly is a dynamic dependence
analysis, for identifying data dependencies that prevent parallelization (i.e., “dataflow im-
pediments” to achieving identical results with a parallelized version). But HAWKEYE can
compute dependencies at the semantic level of a program’s abstract data structures, taking
commutativity into account, rather than only examining dependencies at the low-level of
individual memory accesses.

6.7 Summary

We proposed the use of nondeterministic sequential specifications to separate functional
correctness from parallelism correctness of parallel programs. Our proposal has several ad-
vantages.

First, NDSeq specifications are lightweight. Unlike traditional mechanisms for functional
specification, e.g., invariants and pre/post-conditions, NDSeq specifications do not require
one to learn a complex logic or language. The original parallel program along with a few
if(true∗) serves as the specification and can be used alone to detect various parallelism-
related bugs.

Second, once we verify parallelism correctness, proving the functional partial correctness
of the parallel program amounts to checking the functional correctness of the NDSeq pro-
gram. Threads being absent, this can be done using well-developed techniques for verifying
sequential programs. Note that verification of sequential programs (even with nondetermin-
ism) is much simpler than verification of parallel programs. For example, model checking of
Boolean multithreaded programs is undecidable [123], whereas model checking of Boolean
nondeterministic sequential programs is decidable [53]. The latter fact has been exploited
by several well-known model checkers for nondeterministic sequential programs [13, 36, 17].
Similarly, NDSeq specifications also simplify the reasoning about other concurrency-related
properties such as determinism and linearizability.

Third, NDSeq specifications can simplify debugging of functional correctness bugs. When
investigating a parallel execution that exhibits a bug, the programmer can be presented with
the equivalent, hence similarly buggy, NDSeq execution. This allows the programmer to
analyze the bug by examining a sequential behavior of the program, which is much easier to
debug than its parallel counterpart.

We proposed a runtime checking algorithm for parallelism correctness. Our algorithm
is based on a combination of simple dynamic dataflow analysis and conflict serializability
checking. The NDSeq specification is the key factor that improves the precision of conflict
serializability by indicating the conflicts that can be safely be ignored by the analysis. We
believe that a similar verification can be done statically; such an extension remains a future
work. A key aspect of our checking algorithm (unlike static proof systems [48] and type
systems [64]) is that it does not need to refer to functional invariants which often complicates
the verification process.
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Chapter 7

NDetermin: Inferring Likely
Nondeterministic Sequential
Specifications for Parallelism
Correctness

In Chapter 6, we proposed nondeterministic sequential (NDSeq) specifications [27, 34] as a
way to separately address the correctness of a program’s parallelism and a program’s sequen-
tial functional correctness. The key idea is to use a sequential version of a structured-parallel
program as a specification for the program’s parallel behavior. That is, the program’s use of
parallelism is correct if, for every parallel execution of the program, their exists an execution
of the sequential version that produces the same result. But, to capture all intended behav-
iors of a parallel program, the sequential version may have to include some limited, controlled
nondeterminism. Thus, a programmer specifies the intended or algorithmic nondeterminism
in their parallel application, and the nondeterministic sequential (NDSeq) specification is
a sequential version of the program, with no interleaving of parallel threads but with this
annotated nondeterminism. Any additional nondeterminism is an error, due to unintended
interference between interleaved parallel threads, such as data races or atomicity violations.
Further, the functional correctness of a parallel program can then be tested, debugged, and
verified sequentially on the NDSeq specification, without any need to reason about the un-
controlled interleaving of parallel threads.

We also proposed in Chapter 6 a sound runtime technique [34] for checking that a
structured-parallel program conforms to its NDSeq specification. The technique general-
izes traditional conflict-serializability checking, by using a dynamic dataflow an analysis and
the NDSeq specification’s nondeterminism to safely ignore irrelevant conflicting program op-
erations. This technique was able to check the parallelism correctness of a number of complex
Java benchmark programs. However, writing NDSeq specifications for parallel programs can
be a time-consuming and challenging process, especially to a programmer unfamiliar with
such specifications. A programmer can easily forget to include some correct nondeterministic
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behaviors, forcing them to iterate between checking their program against its NDSeq speci-
fication and inspecting violating executions in order to add such missing nondeterminism to
the specification.

While NDSeq specifications enable one to check serializability properties of parallel pro-
grams where traditional conflict-serializability checking fails, the technique given in Chap-
ter 6 is not fully automatic — it requires the user to provide an NDSeq specification of the
parallel program. Although we provides in Chapter 6 a list of patterns for writing NDSeq
specifications in common cases, we observe that coming up with a NDSeq specification for
a parallel program can be tedious and time-consuming for programs with complex synchro-
nization and communication. The user has to follow a manual approach where he or she
observes a few parallel execution traces of the program, spends some time to analyze them,
and then comes up with a plausible NDSeq specification. After producing a first NDSeq
specification, the user runs the proposed runtime checking algorithm from Chapter 6. If
the checking algorithm finds any violation of the specification, the user needs to go back
to analyze the trace that violated the specification and try to manually verify if the trace
contains a real parallel bug. If not, the user has to try to improve the specification with
insights obtained from the analysis of the failing trace. Although this iterative approach
can be effective in finding NDSeq specifications for small benchmarks, for large and complex
programs it can be highly time consuming and tedious.

In this chapter, we propose a technique [33] for automatically inferring a likely NDSeq
for a structured-parallel program. Given a representative set of correct parallel executions,
plus some simple annotations about which program locations contain the final program
result, our algorithm infers a NDSeq specification with a minimal amount of added nonde-
terminism necessary to capture all behavior seen in the observed parallel executions. Our
inference algorithm combines dynamic dataflow analysis, conflict-serializability checking, and
Minimum-Cost Boolean Satisfiability (MinCostSAT) solving.

We have implemented our NDSeq specification inference algorithm in a prototype tool
for Java, called nDetermin. We applied nDetermin to the Java benchmarks from Chap-
ter 6 for which we previously hand-wrote NDSeq specifications, and nDetermin correctly
inferred all the hand-written specifications. This provides promising preliminary evidence
that nDetermin can infer correct and useful NDSeq specifications for parallel applications.

We believe that automatically inferring NDSeq specifications can save programmer time
and effort in applying NDSeq specifications. In particular, using an inferred specification as
a starting point is much simpler than writing a whole specification from scratch. Further,
our inference algorithm can detect parallel behaviors that no possible NDSeq specification
would allow, which often contain parallelism bugs. More generally, inferred specifications
can aid in understanding and documenting a program’s parallel behavior. Finally, inferring
NDSeq specs is a step towards an automated approach to testing and verification of paral-
lel programs by decomposing parallelism and sequential functional correctness — where a
program’s parallelism would be checked against its inferred NDSeq spec, while functional
correctness would be checked sequentially on the NDSeq specification using any of a wide va-
riety of powerful techniques for testing and verifying sequential, nondeterministic programs.
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7.1 Overview

In this section, we give an overview of our algorithm for inferring NDSeq specifications for
parallel programs on a simple example. To provide context, we also recap some background
material from Chapter 6 on writing and checking NDSeq specifications.

Running Example

Consider the simple parallel program in Figure 7.1. The program consists of a parallel for-
loop, written as coforeach— each iteration of this loop attempts to perform a computation
(Line 6) on shared variable x, which is initially 0. Each iteration uses an atomic compare-and-
swap (CAS) operation to update shared variable x. If multiple iterations try to concurrently
update x, some of these CAS’s will fail and those parallel loop iterations will recompute their
updates to x and try again.

Consider the parallel execution shown in Figure 7.3. In this execution, the i=1 iteration
reads and computes an updated value for shared variable x. But before the i=1 iteration can
update x, the i=2 iteration (in another thread) runs and sets x to 2. The first compare-and-
swap (CAS) operation in the i=1 iteration then fails, and the iteration redoes its computation
before successfully updating x.

Background: Nondeterministic Sequential Specifications

Instead of testing or verifying a parallel program directly against a functional specification,
we would like to separate this end-to-end reasoning into two simpler tasks: (1) the check-
ing of whether the program is parallelized correctly independent of the complex functional
correctness, and (2) the checking of whether the program satisfies a functional correctness
criteria independent of any interleaving of threads.

A natural approach to specifying parallelism correctness would be to specify that the
program in Figure 7.1 must produce the same final value for x as a version of the program
with all parallelism removed — i.e., the entire code is executed by a single thread. (Note that,
this condition is independent of which final values of x are correct, which is specified and
checked separately as the functional correctness of the program.) However, in this case we
do not get a sequential program equivalent to the parallel program. For example, the parallel
program in Figure 7.1 is free to execute the computations at Line 6 in any nondeterministic
order. Thus, for the same input value of x, different thread schedules can produce different
values for x at the end of the execution. On the other hand, executing the loop sequentially
from 1 to N will always produce the same, deterministic final value for x. Suppose that such
extra nondeterministic behaviors due to thread interleavings are intended; the challenge here
is how to express these nondeterministic behaviors in a sequential specification.

In Chapter 6, we addressed this challenge by introducing a specification mechanism that
the programmer can use to declare the intended, algorithmic notions of nondeterminism in
the form of a sequential program. Such a nondeterministic sequential specification (NDSeq)
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1: coforeach (i in 1,...,N) {

2: bool done = false;

3: while (!done) {

4:

5: int prev = x;

6: int curr = i * prev + i;

7: bool c = CAS(x, prev, curr);

8: if (c) {

9: done = true;

10: }

11:

12: }

13: }

Figure 7.1: A simple parallel reduction on
{1,. . . ,N}, done in arbitrary order.

1: nd-foreach (i in 1,...,N) {

2: bool done = false;

3: while (!done) {

4: if (*) {

5: int prev = x;

6: int curr = i * prev + i;

7: bool c = CAS(x, prev, curr);

8: if (c) {

9: done = true;

10: }

11: }

12: }

13: }

Figure 7.2: A nondeterministic sequential
specification for the program in Figure 7.1.

for our example program is shown in Figure 7.2. This specification is intentionally very close
to the actual parallel program, but its semantics are sequential with two nondeterministic
aspects. First, the nd-foreach keyword in Line 1 specifies that the loop iterations can run
in any permutation of the set 1, . . . , N. This part of the specification captures the intended
nondeterministic behavior of the program, caused in the parallel program by running threads
with arbitrary schedules. Second, the if(true∗) keyword in Line 4 specifies that the itera-
tion body may be skipped nondeterministically, at least from a partial correctness point of
view; this is acceptable, since the loop in this program fragment is already prepared to deal
with the case when the effects of an iteration are ignored following a failed CAS statement.
In summary, all the final values of x output by the parallel program in Figure 7.1 can be
produced by a feasible execution of the NDSeq specification in Figure 7.2. Then, we say
that the parallel program obeys its NDSeq specification. In fact, there exists a sound algo-
rithm [34] that checks for a given representative interleaved execution trace τ of the parallel
program, whether there exists an equivalent, feasible execution of the NDSeq specification.

Inferring NDSeq Specifications

The key difficultly with the previous approach is that writing such specifications, and espe-
cially the placement of the if(true∗) constructs, can be difficult in many practical situa-
tions. If we place too few if(true∗) constructs, we may not be able to specify some intended
nondeterministic behaviors in the parallel code. However, if we place too many if(true∗)
constructs, or if we place them in the wrong places, the specification might allow too much
nondeterminism, which will likely violate the intended functionality of the code.

Our contribution in this chapter is to give an algorithm, running on a set of input
execution traces, for inferring a minimal nondeterministic sequential specification such that
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 e1:  done = false!
 e2:  while (done) {!
 e3:    prev = x (0)!
 e4:    curr = i*prev + i (1)!
!
!
!
!
!
!
!
!
!
!
 e13:   c = CAS(x,prev,curr) (false)!
 e14:   if (c) {!
          }!
        }!
 e15:  while (done) {!
 e16:   prev = x (2)!
 e17:   curr = i*prev + i (3)!
 e18:   c = CAS(x,prev,curr) (true)!
 e19:   if (c) {!
 e20:     done = true!
          }!
        }!
 e21: while (done) { }!

 e5:  done = false!
 e6:  while (done) {!
 e7:    prev = x (0)!
 e8:    curr = i*prev + i (2)!
 e9:    c = CAS(x,prev,curr) (true)!
 e10:   if (c) {!
 e11:     done = true!
         }!
       } !
e12: while (done) { }!

i=1!

i=2!

 e1:  done = false!
 e2:  while (done) {!
 e3:    prev = x (0)!
 e4:    curr = i*prev + i (1)!
 e13:   c = CAS(x,prev,curr) (false)!
 e14:   if (c) {!
          } !
        }!
 e15:  while (done) {!
 e16:   prev = x (2)!
 e17:   curr = i*prev + i (3)!
 e18:   c = CAS(x,prev,curr) (true)!
 e19:   if (c) {!
 e20:     done = true!
          }!
        }!
 e21: while (done) { }!

 e5:  done = false!
 e6:  while (done) {!
 e7:    prev = x (0)!
 e8:    curr = i*prev + i (2)!
 e9:    c = CAS(x,prev,curr) (true)!
 e10:   if (c) {!
 e11:     done = true!
         }!
       } !
e12: while (done) { }!

i=1!

i=2!

Figure 7.3: A parallel execution of two it-
erations (i=1,2) of the example parallel pro-
gram from Figure 7.1. The vertical order of
events shows the interleaving. Each assign-
ment shows in parentheses the value being
assigned. The thin dotted arrows denote data
dependencies between events. The thick solid
arrows denote transactional conflicts.

 e1:  done = false!
 e2:  while (done) {!
 e3:    prev = x (0)!
 e4:    curr = i*prev + i (1)!
!
!
!
!
!
!
!
!
!
!
 e13:   c = CAS(x,prev,curr) (false)!
 e14:   if (c) {!
          }!
        }!
 e15:  while (done) {!
 e16:   prev = x (2)!
 e17:   curr = i*prev + i (3)!
 e18:   c = CAS(x,prev,curr) (true)!
 e19:   if (c) {!
 e20:     done = true!
          }!
        }!
 e21: while (done) { }!

 e5:  done = false!
 e6:  while (done) {!
 e7:    prev = x (0)!
 e8:    curr = i*prev + i (2)!
 e9:    c = CAS(x,prev,curr) (true)!
 e10:   if (c) {!
 e11:     done = true!
         }!
       } !
e12: while (done) { }!

i=1!

i=2!

 e1:  done = false!
 e2:  while (done) {!
 e3:    prev = x (0)!
 e4:    curr = i*prev + i (1)!
 e13:   c = CAS(x,prev,curr) (false)!
 e14:   if (c) {!
          } !
        }!
 e15:  while (done) {!
 e16:   prev = x (2)!
 e17:   curr = i*prev + i (3)!
 e18:   c = CAS(x,prev,curr) (true)!
 e19:   if (c) {!
 e20:     done = true!
          }!
        }!
 e21: while (done) { }!

 e5:  done = false!
 e6:  while (done) {!
 e7:    prev = x (0)!
 e8:    curr = i*prev + i (2)!
 e9:    c = CAS(x,prev,curr) (true)!
 e10:   if (c) {!
 e11:     done = true!
         }!
       } !
e12: while (done) { }!

i=1!

i=2!

Figure 7.4: An equivalent serialization of the
parallel execution in Figure 7.3. This seri-
alization is an exection of the NDSeq spec-
ification in Figure 7.2. The vertical order
of events shows the interleaving. Each as-
signment shows in parentheses the value be-
ing assigned. The thick solid arrows denote
transactional conflicts.

the checking approach described in Chapter 6 suceeds on the input traces. Choosing a
minimal specification — i.e., with a minimal number of if(true∗), is a heuristic that makes
it more likely that the inferred specification matches the intended behavior of the program.
Our key idea is to reformulate the runtime checking algorithm (Figure 6.8) of Chapter 6
as a constraint solving and optimization problem, in particular a Minimum Cost Boolean
Satisfiability (MinCostSAT) problem.

Runtime Checking Parallelism Correctness. Consider the parallel execution shown in
Figure 7.3. The algorithm from Chapter 6 checks if this trace can be serialized with respect
to the NDSeq specification — i.e. whether the final result (the value of the shared variable
x) can be obtained by running the loop iterations sequentially in some nondeterministic
order. For our example trace, the algorithm discovers the serialization in Figure 7.4. This
serialization is a witness to the correctness of the parallelism in the trace in Figure 7.3.

The algorithm in Chapter 6 determines whether or not such an NDSeq execution exists
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by generalizing conflict-serializability [114] checking. We now describe conflict-serializability
on our motivating example to show why and how conflict-serializability must be generalized
for checking NDSeq specifications. Given a collection of transactions — in this case, we
think of each parallel loop iteration as a transaction — we form the conflict graph whose
vertices are the transactions and with a conflict edge from transaction tr to tr′ if tr and
tr′ contain conflicting operations op and op′ with op happening before op′. Two operations
from different threads are conflicting if they operate on the same shared global and at least
one of them is a write; in Figure 7.3 and Figure 7.4 the conflicts are shown with thick solid
arrows. It is a well-known result [114] that if there are no cycles in the conflict graph, then
the transactions are serializable.

Because the conflict arrows from the i=1 iteration to the i=2 iteration (from e3 to e9)
and vice versa (e.g., from e9 to e13, e16, or e18) form a cycle, these two iterations are not
conflict-serializable. Yet, this execution trace is serializable, since its result is the same as
if we run first the iteration i=2 followed by i=1. Therefore, we need a more general notion
than conflict-serializability.

In order to report this execution serializable, we must be able to show that all conflict
cycles between iteration i=1 and i=2 can be safely ignored. Assuming that we are given the
specification in Figure 7.2, we give next the basic reasoning behind how the NDSeq specifi-
cation is used to ignore the conflict cycles in the parallel execution. Then, we explain how
we encode this reasoning in a MinCostSAT formula in order to infer the NDSeq specification
that will enable us to ignore the conflict cycles. For this, we perform a dynamic dataflow
analysis and use the if(true∗) in the program’s NDSeq specification in this analysis. In
particular, we need to identify relevant events in the traces: (1) final writes to the shared
variable x, and (2) all events on which events in (1) are (transitively) dependent. Then, we
check if there is any conflict cycle formed by only relevant events; we can safely ignore the
cycles that contain irrelevant events.

Computing Relevant Events. When computing the set of relevant events, we consider
all data dependencies between events (shown with thin dotted arrows in Figure 7.3). For the
trace in Figure 7.3, we first include events e9 and e18 in the relevant events, as both write to
shared variable x. We then include e7, e8, e16, and e17, as e9 and e18 are data dependent on
these events.

The way we consider control dependencies is subtle. By default, a deterministic branch
event is considered relevant and all events that flow into its branch condition become rel-
evant. For example, in Figure 7.3, the events e2, e6, e10, e12, e19, and e21 are considered
relevant, and we include events e1 and e5, as e2 and e6 are data dependent on the writes of
local variable done. Exceptionally, a branch event can be considered irrelevant if that event
is executed by a statement s enclosed within if(true∗) in the program’s NDSeq specification
and all the events generated by that execution of s are irrelevant. Intuitively, this means that
in the corresponding execution of the NDSeq specification, that particular execution of s can
be entirely ignored without affecting the final outcome of the execution (by considering that
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the nondeterministic if(true∗) will be resolved to if(false) in the corresponding NDSeq
execution). Therefore, when inferring the NDSeq specification, we need to look for state-
ments to add if(true∗) so that we can ignore events that are involved in conflict cycles. In
the presence of the data dependencies between events, this becomes a combinatorial search
problem.

In order to show that the execution Figure 7.3 is serializable, we need to ignore the
conflict cycles formed by the thick solid arrows in the figure. For this, possible candidate
events to ignore are: (1) the read e3, (2) the write e9, or (3) all three of e13, e16, and e18.
But, since the events e9, e16, and e18 affect the computation of x, they are relevant for the
final result of the trace and they could not be eliminated in a matching serialization even
if they were guarded by if(true∗). Thus, our inference algorithm must focus on placing
if(true∗) around events e3 and e13.

If we enclose an if(true∗) around Lines 5–10 as shown in Figure 7.2, we can safely mark
event e14 irrelevant, because the branch e14 corresponds to is not evaluated, and thus, does
not affect the rest of the execution. This also makes the events e3, e4, and e13 irrelevant
because these events flow into only each other and e14. Therefore, we can ignore the events
e3, e4, e13, and e14 together with the conflict cycles they are involved in. In fact, the only
conflict cycles in the execution are formed by the events e3 and e13, and after ignoring these
cycles, we can declare the execution in Figure 7.3 serializable. Serializing this execution
respecting the remaining conflict edges gives us the execution trace in Figure 7.4. This trace
can also be generated by a nondeterministic execution of the NDSeq specification given in
Figure 7.2 by choosing false for if(true∗) in the first iteration of i=1.

MinCostSAT Solving for if(true∗) Placements. Having explained how a given par-
allel execution trace is checked against an existing NDSeq specification, we next explain how
to infer such a specification. For this, we observe a set of representative parallel execution
traces for which the standard conflict serializability check gives conflict cycles. Since we are
inferring an NDSeq specification for the program, not for a single trace, using multiple traces
allows us to observe variations in the executions and improves the reliability of the inferred
NDSeq specification.

We then construct and solve a MinCostSAT formula that takes as input the events in the
input traces and the conflict cycles detected by the standard conflict serializability check.
While generating the formula, we encode the reasoning about relevant events and conflict
cycles described above as constraints in the formula. In particular, the constraints enforce the
data dependencies between the events and conditions to ignore all observed conflict cycles in
the input traces. The MinCostSAT formulation contains variables corresponding to possible
placement of if(true∗)s in the program, and the sum of these variables is minimized, so
that as few if(true∗) as possible are added. If this formula is satisfiable, then the solution
gives us a minimal set of statements S∗ in the program, such that the input traces are all
serializable with respect to the NDSeq specification obtained by enclosing all statements in
S∗ with if(true∗). In other words, if there exists NDSeq specifications using which the
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conflict cycles in the given traces can be safely ignored, our formulation gives us one of those
specifications with the minimum number of nondeterministic branches.

Constraints are added to impose a number of conditions:

1. For each cycle of transactional conflicts, at least one of the events involved in the cycle
must be made irrelevant. For example, we would add constraint (Xe3 ∨Xe9 ∨Xe13) for
the cycle between the i=1 and i=2 iterations by conflicts e3 7→ e9 and e9 7→ e13. This
constraint enforces that at least one of the variables Xe3 , Xe9 , and Xe13 be 1 in the
solution.

2. Each event e can be made irrelevant only if all events that are data or control dependent
on e are also irrelevant. For example, e3 can be made irrelevant only if e4, e13, and e14
are made irrelevant, as well. For example, (Xe3 =⇒ Xe4) is among the constraints
added to model this requirement. The constraint enforces that whenever Xe3 is 1 in
the solution, Xe4 be also 1 in the same solution.

3. For each event e, we add a constraint indicating that e is made irrelevant only if
some if(true∗) is added such that both: (a) some dynamic instance of the if(true∗)
contains e, and (b) no event contained by that dynamic instance is relevant.

For example, an if(true∗) around Line 5, Lines 5–7, or Lines 5–10 would make e3
irrelevant, because none of events e4, e13, or e14 (which depend on e3) are relevant.
But an if(true∗) around the entire while statement would not, because the dynamic
if(true∗) containing e3 would also contain the relevant event e18.

4. Finally, we forbid adding overlapping if(true∗) constructs. For example, we forbid
adding both an if(true∗) around Lines 5 and 6 and one around Lines 6 and 7, as this
would not be a well-structured program.

These constraints allow any solution that covers all of Lines 5–10, and no more, with
some number of if(true∗) constructs. (Because events e3, e4, e13, and e14 all must be made
irrelevant, and any larger if(true∗) including these events would include relevant events).
The minimal such solution places a single if(true∗) that encloses Lines 5–10. Thus, our
algorithm produces the correct NDSeq specification for this example.

7.2 Background: NDSeq Specifications

In this section, we recap some of the formal details from Chapter 6 of both NDSeq spec-
ifications and of our runtime algorithm for checking that a parallel execution conforms to
its NDSeq specification. For this, we will assume that we are given an NDSeq specifica-
tion a priori. We show in the next section how to infer such a specification with minimal
nondeterminism.
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g ∈ Global l ∈ Local x ∈ Var = Global ∪ Local

s ∈ Stmt ::= l = l op l | l = constant | l = l | g = l | l = g | s; s
| if(l) s else s | while(l) s | for (l in l) s

| coforeach (l in l) s | cobegin s; ...; s

| atomic s | if(true∗) s

Figure 7.5: Selected statements of our language. The constructs with a different semantics
in the parallel program and the NDSeq specification are shown in gray color.

NDSeq Specifications and Parallelism Correctness

Given a parallel program P , we specify the correct behavior of a parallel program by writing
an equivalent nondeterministic sequential (NDSeq) program as a specification of P , instead
of explicitly giving a specification of the required input-output behavior. Informally, the
equivalence means that for any input and thread schedule of P there exists an execution
of the NDSeq program that produces the same output. We formalize these concepts next
after describing the language constructs that we use to write parallel programs and their
specifications.

We embed an NDSeq specification in the parallel program itself. The syntax for our
language is shown in Figure 7.5. To simplify the presentation we consider a NDSeq program
P to consist of a single procedure, with each global variable (in Global) referring to a distinct
location on the shared heap and each local variable (in Local) referring to a distinct stack
location of a thread.

Given a parallel program P , the NDSeq specification is obtained by (a) overloading the
parallel constructs that create threads (coforeach and cobegin) in a sequential context,
and (b) introducing nondeterministic control flow with if(true∗). Specifically, given an
statement s in the parallel program, the user can modify the statement to if(true∗){s}
in the NDSeq specification. For each program P , given a set of statements to enclose with
if(true∗), we define two sets of executions ParExecs(P) and NdSeqExecs(P), described
below. The correctness of the parallel program is then given by relating ParExecs(P) and
NdSeqExecs(P).

Parallel Executions. ParExecs(P) contains the parallel executions of P where each
cobegin and coforeach statement spawns new threads to execute its body. cobegin s1; ...; sn
is evaluated by executing each of s1, ..., sn on a separate, newly created thread. coforeach
is evaluated by executing each iteration of the loop on a separate, newly created thread.

NDSeq Executions. NdSeqExecs(P) contains the (nondeterministic) sequential execu-
tions of P where all statements are evaluated by a single thread. Under the sequential
semantics, the statements other than cobegin and coforeach are interpreted in the standard
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way. Statement atomic s is simply equivalent to s. Each evaluation of cobegin s1; ...; sn is
equivalent to running a nondeterministic permutation of statements s1, ..., sn. A statement
coforeach is evaluated similarly to its deterministic version (for) except that the elements of
the collection being iterated over are processed in a nondeterministic order. This, in essence,
abstracts the semantics of the collection to an unordered set. Finally, if(true∗) indicates
a nondeterministic branch. That is, each time a statement if(true∗){s} is evaluated, a
boolean value is chosen for true∗ nondeterministically.

Parallelism Correctness. The parallelism correctness for P means that every final state
reachable by a parallel execution of the program from a given initial state is also reachable
by a NDSeq execution from the same initial state. Therefore, parallel executions have no
unintended nondeterminism caused by thread interleavings: either the nondeterminism is
prevented using synchronization, or it is expressed by the nondeterministic control flow in
the sequential specification.

While defining correctness, we distinguish a set of global variables as focus variables,
which are considered to be effective on the functionality of the program. Then, we reason
about the equivalence executions by referring to the final valuation of the focus variables. For
example, consider a parallel search algorithm. The variable pointing to the best (optimal)
solution found is a focus variable, while statistics counters, which do not affect the final
outcome of the search, are non-focus variables.

Definition 17 (Parallelism correctness). A program P conforms to its NDSeq specification
with respect to a set Focus⊆Global iff for every parallel execution E ∈ParExecs(P), there
exists a nondeterministic sequential execution E ′∈NdSeqExecs(P), such that the initial states
of E and E ′ are the same and the final states agree on the values of all variables in Focus.

Runtime Checking of Parallel Executions

Recall that our our dynamic algorithm from Chapter 6, for checking whether or not an exe-
cution of parallel program conforms to its NDSeq specification, consists of two components:
(1) a dynamic dataflow analysis to determine which parts of the execution are relevant to
the final program result, and (2) a conflict-serializability [114, 12, 62] check on the relevant
parts of the execution. We briefly recap these components here.

Execution Traces. Our checking algorithm operates on parallel executions traces τ , which
are sequences of events. An event e : T is one of:

T ::= x = x′ | branch(l) | branch(true∗)

indicating an assignment (of a local expression to a local or global variable, or of a global
variable to a local variable), a branch (i.e., while(l) or if(l) on a local variable l), or a
nondeterministic branch (an if(true∗)).
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For any event, Thread(e) denotes the thread that generated the event e and Guard(e)
denotes the event of type branch(true∗) that corresponds to the most recent invocation of
the innermost if(true∗) that encloses the statement generating e. For events outside any
if(true∗) this value is nil.

Dynamic Data Dependence. In order to compute relevant events, we define the dynamic
data-dependence relation 99Kτ (and its transitive closure 99K∗τ ) on the events of trace τ by1:

D1. (Data Dependence). For each local variable read ej : x = l or branch ej : branch(l),
we add a dependence (ei 99Kτ ej) on the last ei : l = x′ that comes before ej in τ .

This dependence represents an actual dataflow through local l from ei to ej in the
trace. Both of these events are in the same thread (since they operate on the same
local) and their order and dependence will be the same in any serialization of the trace.
These dependence edges are shown as thin dashed arrows in Figure 7.3.

D2. (Inter-Thread Dependence). For each global variable read ej : l = g we add
dependencies (ei 99Kτ ej) on events ei : g = l′ as follows. From each thread we pick
the last write to g that comes before ej in τ , and the first write to g that comes after
ej in τ . This conservative dependence is necessary because the relative order of reads
and writes to a global variable from different threads may change in a serialization of
the trace. In this way, dependencies are preserved while reordering the accesses.

Relevant Events. In Chapter 6, we describe an algorithm (ComputeRelevant in Fig-
ure 6.8) for computing the set of relevant events given an execution trace τ of program and
an NDSeq specification for the program — consisting of the set S∗ that are immediately
enclosed with if(true∗) and the set Focus of global variables containing the final result of
the program’s computation.

Here we define the set Relevant(τ,S∗,Focus) of relevant events computed by algorithm
ComputeRelevant. Let Es denote the set that contains exactly the events generated by a
dynamic instance of statement s in trace τ . Let NdBlock(e) return the smallest set Es such
that e ∈ Es and s ∈ S∗. In other words, NdBlock(e) gives the execution of the smallest
statement that generated e and is enclosed with if(true∗) in the NDSeq specification of the
program. If e is not generated by a statement enclosed with if(true∗), then NdBlock(e) is
undefined. Then:

Definition 23 (Relevant events). Define Relevant(τ,S∗,Focus) as the smallest set of events
from trace τ such that:

R1. If e : g = l is a write to global g ∈ Focus and e is the last write to g in Thread(e), then
e ∈ Relevant(τ,S∗,Focus).

1We omit the subscript when τ is clear from the context.
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R2. If e : branch(l) is a branch and NdBlock(e) is undefined, then e ∈ Relevant(τ,S∗,Focus).

R3. If e : branch(l) is a branch, NdBlock(e) = Es, and there is an event e′ ∈ Es such that
e′ ∈ Relevant(τ,S∗,Focus), then e ∈ Relevant(τ,S∗,Focus).

R4. If exists an e′ ∈ Relevant(τ,S∗,Focus) with e 99K∗τ e
′, then e ∈ Relevant(τ,S∗,Focus).

(Note that, in this case e is an assignment event.)

R1 makes all final writes to focus variables relevant. R2 and R3 state the condition for
a (deterministic) branch event e to become relevant: either if e is not part of any execution
of a statement enclosed with if(true∗) in the NDSeq specification, or if the smallest such
execution generating e already contains another relevant event. R4 makes an event relevant
if it flows into another relevant event. Notice that, a dynamic instance of a statement s ∈ S∗
becomes totally irrelevant, if it does not contain a final write to a focus variable and none of
the events generated by that instance flow (through 99K) into other relevant events outside
the instance.

Conflict-Serializability Checking. In Chapter 6, we defined the conflict relation be-
tween individual events with respect to a set of events, denoted E . For traditional conflict
serializability checking E is instantiated as the set of all events in a trace.

Definition 18 (Conflicting events in a set of events E). Given a set E of events from a trace
τ , two events e, e′ ∈ τ are conflicting in E (written e ;E e′) iff (a) e, e′ ∈ E, and (b) e occurs
before e′ in τ , and (c) both events operate on the same shared global variable, and at least
one of them represents a write, and (d) the events are generated by different threads.

Further, we lifted the conflict relation from events to threads. When comparing two
threads for conflicts we need to consider their events and all the events of their descendant
threads. Thus, for a thread t we define its transaction as the set of events Trans (t) that
includes all the events of t and of the descendant threads of t.

Definition 19 (Conflicting threads with respect to a set of events E). Given a set E of
events from a trace τ , two threads t, t′ are conflicting in trace τ (written t;E t

′) iff (a) their
transaction sets are disjoint (i.e., one is not a descendant of the other), and (b) there exist
two events e ∈ Trans (t) and e′ ∈ Trans (t′) that are conflicting (e ;E e′). The relation
t;∗E t

′ is the transitive and reflexive closure of the thread conflict relation.

We can then restate Theorem 22 from Chapter 6 as:

Theorem 24. Let τ be a parallel execution of P, with NDSeq specification (S∗,Focus). If
the transactional conflict relation ;Relevant(τ,S∗,Focus) is acyclic on the threads of τ , then τ
conforms to the NDSeq specification of P. That is, there exists a nondeterministic sequential
execution of P’s NDSeq specification from the same initial state as τ and with a final state
that agrees with τ on the values of all Focus variables.
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7.3 Inferring a Suitable NDSeq Specification

Having explained our runtime approach to reasoning about whether a program obeys its
NDSeq specifications, as well as the role of if(true∗) annotations, the key question is where
should users add such if(true∗) annotations? We propose an algorithm to automatically
infer the correct placement of if(true∗). In particular, our goal is, given a set of traces T of
P , to come up with a set S∗ of statements so that if we immediately enclose the statements
in S∗ with if(true∗) and compute the relevant events in T (as in Definition 23), conflict
serializability checking over these relevant events gives no serializability violations, showing
that all the traces in T conform to the NDSeq specification obtained from S∗. We assume
that the user still indicates which variables are in Focus.

In order to infer the NDSeq specification, we formulate the computation of relevant events
as solving a Boolean Satisfiability (SAT) instance. In contrast to our original algorithm for
computing Relevant(τ,S∗,Focus) in Chapter 6, formulating our reasoning as a constraint
solving problem allows us to not only check that a given trace conforms to an NDSeq speci-
fication. It also enables us to perform such checking without giving an NDSeq specification.
Instead, the SAT solver finds a suitable set S∗ of statements to enclose with if(true∗), so
that, with respect to the resulting relevant events, all traces in T are conflict serializable.

We also need to be careful with the set S∗, because if(true∗)s could add extra behaviors
to the NDSeq specification of the program and those extra behaviors should not violate the
functional correctness of the program. Therefore, we need to find the minimum set S∗ to
which all traces in T conform. For this, we then turn the problem into a Minimum-Cost
Boolean Satisfiability Problem (MinCostSAT).

SAT Formulation for Inferring NDSeq Specification

We start with a program P where a set Focus of focus variables are marked by the pro-
grammer, but no statement is enclosed with if(true∗) — i.e., the set S∗ is empty. We
are given a set T of parallel execution traces, and our goal is to determine if there exist an
NDSeq specification that encloses statements S∗ with if(true∗), with which we can show
that all the conflict cycles can be ignored safely — i.e., each conflict cycle contains at least
one irrelevant event, so all traces in T conform to the NDSeq specification. For this, we
construct and solve a SAT instance on the following (boolean) indicator variables:

• Xs, for each statement s in P .

• Xe, for each event e in any of the traces in T . Note that these dynamic events are
uniquely identified, both in a trace and across all traces.

• XEs , for each dynamic execution of a statement s generating exactly the events in Es
in any of the traces in T .

Let X denote a solution to a SAT instance. We refer to the values (from the set {0, 1})
of indicator variables Xe, Xs, and XEs in solution X by Xe, Xs, and XEs , respectively.
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We will construct our constraints to guarantee that, if our instance has a solution X,
then there exists an NDSeq specification for P to which all traces in T conform, and the
following hold:

1. The set S∗ = {s |Xs = 1} contains the statements we need to surround with if(true∗)
in the inferred NDSeq specification.

2. For each event e in a trace τ ∈ T , if Xe = 1 then event e is irrelevant in τ — i.e.,
e 6∈ Relevant(τ,S∗,Focus) with respect to the inferred NDSeq specification.

3. For each XEs , if XEs = 1, then Xs = 1, and thus, statement s will be enclosed with
an if(true∗), and that if(true∗) around s will make events in E all irrelevant (i.e.,
Xe = 1 for all e ∈ E).

4. For each conflict cycle C in some trace τ ∈ T , Xe = 1 for at least one event e in C.
This means, cycle C will not be observed when checking conflict serializability over
Relevant(τ,S∗,Focus) computed using the set S∗ given by solution X.

We construct the full SAT instance as follows. The conditions R1 through R4 are from
Definition 23 of relevant events.

(A) Condition R1 dictates that if an event e is a final write to a variable in Focus, then e
is relevant. Thus, for each such event e, we add the constraint:

¬Xe (7.1)

For efficiency, we actually just substitute 0 for each such Xe.

(B) Conditions R2 and R3 dictate that a branch event e — i.e., of type branch(l) for
some local l– becomes irrelevant only if (a) e is generated by a dynamic instance of a
statement s which is directly enclosed by an if(true∗) and (b) all the events generated
by that instance are irrelevant. To ensure (a) and (b) we add the following constraints.

• For each branch event e we add the constraint:

Xe =⇒
∨
e∈Es

XEs (7.2)

• For each dynamic instance of statement s, producing events E, we add constraint:

XEs =⇒ Xs (7.3)

• For each dynamic instance of s, producing events E, and for each e ∈ E, we add:

XEs =⇒ Xe (7.4)
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Therefore, if a branch event e needs to be irrelevant, the solver must find a dynamic
instance of some s where all of its events (including e) are irrelevant, and s must be
enclosed with an if(true∗). Together these constraints ensure that some dynamic
branch(true∗) event, corresponding to an if(true∗) directly enclosing statement s,
can be made irrelevant only if an if(true∗) has been added around statement s (that
is, Xs = 1) and if every event e guarded by the branch(true∗) is irrelevant.

(C) Condition R4 dictates that if an event e′ is relevant and if there is another event e such
that e 99K∗τ e

′, then e must also be relevant. In other words, if e needs to be irrelevant,
e′ must be irrelevant, too. To ensure this, we add the following constraint for each pair
of events e, e′ such that e 99K∗τ e

′ for some τ :

Xe =⇒ Xe′ (7.5)

(D) Given two statements s and s′, we say that s overlaps with s′ if s is not nested inside
s′, s′ is not nested inside s, and there is a statement s′′ nested inside both s and s′.

If we have two overlapping statements, then we cannot surround both of them by
if(true∗) because such an action would result in an invalid program. For example,
consider the sequential composition of three statements s1; s2; s3. Then statements
s1; s2 and s2; s3 overlap with each other and it is easy to see that we cannot sur-
round both of them with if(true∗) simultaneously. Our constraint system ensures
this restriction by adding, for every pair of overlapping statements s, s′:

Xs =⇒ ¬Xs′ (7.6)

(E) Finally, we need to ensure that ;Relevant(τ,S∗,Focus) is acyclic on the threads of τ . We
encode in our SAT instance the check for transactional conflict cycles – that is:

• For all threads t, t′ in τ , introduce variables Xt,t′ to indicate whether or not
t;Relevant(τ,S∗,Focus) t

′.

• For each triple of distinct t, t′, and t′′, we add the constraint:

Xt,t′ ∧Xt′,t′′ =⇒ Xt,t′′ (7.7)

• For each pair of distinct threads t and t′ for which Trans (t) and Trans (t′) are
disjoint, and for each pair e ∈ Trans (t) and e′ ∈ Trans (t′) for which e ; e′, we
add the constraint:

¬Xe ∧ ¬Xe′ =⇒ Xt,t′ (7.8)

That is, if e and e′ are both relevant, then t;Relevant(τ,S∗,Focus) t
′.

• For each threat t, we add the constraint that there can be no cycles from t back
to t:

¬Xt,t (7.9)
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We prove in Section 7.4 that any solution to the above constraints gives us an NDSeq
specification to which all the traces in T conform. In particular, if X is a solution to the
constraint system, then S∗ = {s | Xs = 1} is the set of statements to enclose with if(true∗)
in the NDSeq specification.

A noteworthy implication of this fact is that, if there is no way to show that a trace in T
is serializable by adding if(true∗) around program statements, then the solver must report
that the constraints are unsatisfiable. Thus, an unsatisfiable instance indicates that one of
the traces in T is likely to contain parallelism errors, such as atomicity violations.

MinCostSAT Solving for a Minimal NDSeq Specification

The SAT formulation above guarantees that if there is an NDSeq specification, in which
a set S∗ of statements are enclosed in if(true∗), to which the traces in T conform, then
there exists a solution X that selects S∗ — i.e., forall s ∈ S∗, Xs = 1. But, we have not
guaranteed that such a solution selects exactly S∗. In other words, the solution may tell us to
enclose with if(true∗) more statements than those in S∗. In this case, there is a risk that
some statements can be unnecessarily surrounded by if(true∗). Since adding if(true∗)
may cause adding more behaviors to the program, one could end up adding if(true∗)s that
violate functional correctness. Therefore, we need a mechanism to find a solution to the
constraint system so that functional correctness is not broken. We noticed that if we add
a minimal number of if(true∗)s then there is a lower chance of breaking the functional
correctness. For this, we re-formulate the SAT problem above as a MinCostSAT problem.

MinCostSAT is a special form of SAT, where, in addition to the constrains above, a cost
function C assigns each variable a non-negative cost. The solver is asked to find a solution
that not only satisfies all the constraints, but also minimizes the sum of the costs of the
variables that are assigned 1 in the solution.

Our MinCostSAT formulation contains all the constraints (A)–(E) given above. In addi-
tion, we define the cost function C such that for each Xs, C(Xs) = 1, and for other variables
X•, C(X•) = 0. Therefore, the solver optimizes the objective2:

minimize
∑
s in P

Xs (7.10)

In this formulation, Xs is assigned 1 only when a branch event e must be marked irrelevant
to discharge a conflict cycle, and for this, s must be surrounded with if(true∗). Otherwise,
Xs is assigned 0 to minimize the cost.

Note that, adding only the minimum number of necessary if(true∗)s to the inferred
NDSeq specification is a heuristic to reduce the risk of violating the functional specification.
In other words, if we find a solution to our MinCostSAT formulation above, then we have

2This formulation can also be mapped to a Partial Maximum Satisfiability problem (PMAX-SAT), which
contains our constraints in (A)–(E) as hard constraints and for each variable Xs a soft constraint (¬Xs); the
objective is to satisfy all hard constraints and maximum number of soft constraints.
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inferred a likely NDSeq specification of the parallel program, and that specification may
still violate the functional correctness specification of the program. If we find no solution,
then probably there is no NDSeq specification for the parallel program. Thus, we foresee a
repetitive process for finding the right NDSeq specification, in which the user sequentially
checks the functional correctness specification (e.g., assertions) after inferring an NDSeq
specification, and if any functional correctness criterion is violated, rules out the current
placement of if(true∗)s for the next iteration of NDSeq specification inference.

Optimizations

We conclude this section by presenting two optimizations that we observed to have significant
effect in simplifying the constraint system, and thus reducing the MinCostSAT solving time
from minutes to several seconds.

Using Dynamic Slicing. Recall that in Constraint 7.1 we pre-assign 0 to each Xe if e is a
final write to a focus variable; the values for indicator variables of other events are computed
during the SAT solving. By using the dynamic slice [5] of the trace, we can improve this by
providing values for more variables before the SAT solving.

Let ↪→τ denote the control dependence between the events in trace τ , and −→∗τ denote
the transitive closure of (99Kτ ∪ ↪→τ ). Recall that 99Kτ denotes data dependence defined in
Section 7.2. (See Section 7.5 for the formal definition of ↪→τ .)

A dynamic slice of a trace τ with respect to the focus variables, denoted by DSlice(τ,Focus),
is the set of events from τ such that e ∈ DSlice(τ,Focus) iff there exists an event e′ : g = l
in τ , e′ is the last write to g ∈ Focus in Thread(e′), and e −→∗τ e′.

We prove in Section 7.5 that:

∀S∗. DSlice(τ,Focus) ⊆ Relevant(τ,S∗,Focus)

That is, given an input trace τ ∈ T to our MinCostSAT formulation, the set of relevant
events in τ given by a solution will always be a superset of the dynamic slice of τ ; this result
holds for any inferred NDSeq specification. In other words, if e ∈ DSlice(τ,Focus) then e
must be relevant. Thus, we can safely modify (A), which pre-assigns 0 to Xe only if e is a
final write to a focus variable, in Section 7.3 as follows.

(A’) For each event e ∈ DSlice(τ,Focus), we add the constraint:

¬Xe (7.1’)

Thus, we substitute 0 for each such e in the constraint system.

Grouping Events. The formulation of MinCostSAT in Section 7.3 considers all the events
in the execution and the dependencies between those events. This could lead to large Min-
CostSAT instances that are expensive to solve. We address this situation by grouping events
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into disjoint sets. Whenever we see an execution of a statement that is completely excluded
from the dynamic slice, we treat all the events e = {e1, ..., en} in that dynamic execution
instance of the statement as a single (compound) event. For each i ∈ [1, n], we then replace
the variable Xei in all constraints of the MinCostSAT by the variable Xe and we lift the con-
straints described in Section 7.3 to sets of events. In this way, we can ignore the dependency
relationship between the events within a group and concentrate on inter-group dependen-
cies. Although grouping events in this way may result in less optimal solutions (with higher
cost than the original and more general formulation in Section 7.3), in our experiments we
confirmed that this optimization did not affect the inferred specification for our benchmarks.

7.4 Correctness of Specification Inference Algorithm

Let T be a set of parallel execution traces of program P , and Focus be a set of focus
variables. Let X be a satisfying solution to the SAT formulation in Section 7.3, and S∗
contain the set of statements to enclose with if(true∗) in the inferred NDSeq specification
— i.e., s ∈ S∗ iff Xs = 1.

Note that we have already proved in Theorem 22, in Chapter 6, that it is sound to check
conflict serializability for each trace τ in T only on the events in Relevant(τ,S∗,Focus). That
is, if we find no conflict cycles after omitting irrelevant events, then each τ conforms to the
inferred NDSeq specification.

To prove the soundness of our inference algorithm, we first prove the soundness of its
embedded relevance calculation:

Lemma 25. Let T be a set of parallel execution traces of program P. Let S∗ be a set of
if(true∗) inferred by the above algorithm, given T and focus variables Focus – that is, S∗
corresponds to a solution X of the constraint system built by the inference algorithm.

For each event e in τ ∈ T , if e ∈ Relevant(τ,S∗,Focus), then Xe = 0.

Proof. Recall the conditions R1–R4 in Definition 23 for an event e ∈ τ to be in the set
Relevant(τ,S∗,Focus). Given these conditions, think of an iterative procedure to com-
pute the relevant events: Relevant(τ,S∗,Focus) is initialized to an empty set, and at each
step, one of the rules R1-R4 is applied to add a new event to Relevant(τ,S∗,Focus), until
Relevant(τ,S∗,Focus) does not change. We do the proof by induction on the length of this
iteration. The base case where Relevant(τ,S∗,Focus) = ∅ is trivial. In the following, we do
a case split on the condition that causes event e to be added to set Relevant(τ,S∗,Focus).

R1 In this case, e is the last write to a focus variable by one of the threads. Therefore, by
Constraint 7.1, Xe is always set to 0.

R2 In this case, e is a branch(l) event and NdBlock(e) is undefined — i.e., e is not generated
by a statement enclosed with if(true∗). Consider each XEs term in Constraint 7.2:

Xe =⇒
∨
e∈Es

XEs
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For each dynamic execution Es such that e ∈ Es, s is not enclosed with if(true∗)
— otherwise NdBlock(e) would be defined. Thus, s 6∈ S∗ so Xs = 0. Therefore, by
Constraint 7.3 each such XEs is 0. Therefore, by Constraint 7.2, we have Xe = 0.

R3 In this case, e is a branch(l) event, NdBlock(e) = Es, and there is an event e′ ∈ Es
such that e′ ∈ Relevant(τ,S∗,Focus). By the inductive hypothesis, Xe′ = 0.

Let E ′s′ contain e — that is, XE′
s′

appears in the disjunction in Constraint 7.2 for e:

Xe =⇒
∨
e∈E′

s′

XE′
s′

We will show by case analysis that XE′
s′

= 0 for any such E ′s′ . Thus, Xe = 0.

Suppose e′ ∈ E ′s′ , then XE′
s′

= 0 by Constraint 7.4.

Suppose instead that e′ 6∈ E ′s′ , and that E ′s′ ⊆ Es. Then, because e ∈ E ′s′ and because
NdBlock(e) = Es is the minimal Es both containing e and for which Xs = 1, it must
be the case that Xs′ = 0. Thus, by Constraint 7.3, we have XE′

s′
= 0.

Suppose instead that e′ 6∈ E ′s′ and that E ′s′ 6⊆ Es. Then, statements s and s′ must be
overlapping (i.e., they contain a common statement, but neither statement contains
the other), and as Xs = 1, by Constraint 7.6 we have Xs′ = 0. Thus, by Constraint 7.3,
we have XE′

s′
= 0.

R4 In this case, e 99K∗ e′ for some e′ already in Relevant(τ,S∗,Focus). Therefore, by
inductive hypothesis, Xe′ = 0. Then, Xe = 0 by Constraint 7.5.

Theorem 26 (Soundness of Inference). Given a set T of parallel execution traces of program
P and focus variables Focus, suppose that our SAT instance is satisfiable and let S∗ be the
set of statements, inferred from the solution, to be enclosed with if(true∗). Then, every
trace in T conforms to the NDSeq specification given by Focus and S∗.

Proof. Suppose some τ ∈ T does not conform to the inferred NDSeq specification. That is,
there exist events e1, . . . , ek from τ that are all relevant and that form a cycle of conflicts
between the threads of τ . (Note that the e1, . . . , ek are all events of type “x = x′”, and all
read from or write to a global variable.)

The inferred if(true∗) locations S∗ correspond to a solution X to the constraint system
built by our inference algorithm. By Lemma 25, because e1, . . . , ek are all relevant:

Xe1 = Xe2 = · · · = Xek = 0

Because e1, . . . , ek form a cycle of conflicts, we have e1 ; e2, e2 ; e3, . . . , ek ; e1.
Thus, as all Xei = 0, by Constraint 7.8, we have:

XThread(e1),Thread(e2) = XThread(e2),Thread(e3) = · · · = XThread(ek),Thread(e1) = 1
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Thus, by repeated application of Constraint 7.7, we have XThread(e1),Thread(e1) = 1. But
this contradicts Constraint 7.9, which requires ¬XThread(e1),Thread(e1).

Thus, all τ ∈ T must conform to the inferred NDSeq specification.

We similarly prove that our inferrence algorithm is complete with respect to our runtime
checking algorithm from Chapter 6.

Theorem 27 (Completeness of Inference). Given a set T of parallel execution traces of
program P with focus variables Focus, suppose that there exists some NDSeq specification
S∗, Focus to which every trace τ in T conforms. Then, there exists a solution to the SAT
instance generated by our inference algorithm, and thus the inference algorithm will infer a
NDSeq specification for P, T , and Focus.

Proof. Consider the following valuation of X:

• Xs = 1 iff s ∈ S∗

• Xe = 0 iff e ∈ Relevant(τ,S∗,Focus) for some τ ∈ T

• XEs = 1 iff s ∈ S∗ and e 6∈ Relevant(τ,S∗,Focus) for all e ∈ Es and τ ∈ T

• Xt,t′ = 1 iff t;∗Relevant(τ,S∗,Focus) t
′ for some τ ∈ T

We will show that X is a solution to the SAT instance generated by our specification inference
algorithm – that is, X satisfies all of Constraints (7.1)–(7.9).

(7.1) Let e is the final write in its thread to a Focus variable. Then e ∈ Relevant(τ,S∗,Focus)
by condition (R1) in the definition (Definition 23) of relevant events. Thus, Xe = 0 by
construction, satisfying Constraint 7.1.

(7.2) Let e be a branch(l) event. If e is relevant, then Xe = 0 by construction and Con-
straint 7.2 is trivially satisfied. Suppose instead that e is not relevant, and thus Xe = 1
by construction. Then, there must exist some Es such that NdBlock(e) = Es, or else
e would be relevant by (R2) of Definition 23. Thus, s ∈ S∗. Further, there can be no
relevant e′ in Es, or else e would be relevant by condition (R3). Thus, XEs = 1 by
construction, satisfying Constraint 7.2.

(7.3) Let Es be the events produced by some dynamic instance of statement s. If Xs = 1,
then Constraint 7.3 is trivially satisfied. Suppose instead that Xs = 0 — that is,
s 6∈ S∗. Then, XEs = 0 by construction, satisfying Constraint 7.3.

(7.4) Let e ∈ Es. If Xe = 1, then Constraint 7.4 is trivially satisfied. Suppose instead that
Xe = 0 — that is, that e is relevant. Then, by construction XEs = 0, so Constraint 7.4
is satisfied.
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(7.5) Let e 99K∗τ e
′ for some τ ∈ T . If Xe′ = 1, then Constraint 7.5 is trivially satisfied.

Suppose instead that Xe′ = 0 — that is, e′ is relevant. Then, by (R4) of Definition 23,
event e is also relevant. Thus, Xe = 0 by construction, satisfying Constraint 7.5.

(7.6) If s and s′ are overlapping statements, then it cannot be the case that both s and s′

are in S∗, as S∗ corresponds to a valid NDSeq specification. Thus, by construction
Xs = 0 or Xs′ = 0, satisfying Constraint 7.6.

(7.7) Relation ;∗Relevant(τ,S∗,Focus) is transitive, so Constraint 7.7 is always satisfied.

(7.8) Let t and t′ be two threads from some τ ∈ T . If Xt,t′ = 1, then Constraint 7.8 is
trivially satisfied. Suppose instead that Xt,t′ = 0 — that is, it is not the case that
t ;∗Relevant(τ,S∗,Focus) t

′. Then, by the definition of the transactional conflict relation

(Definition 19), for any e ∈ Trans (t) and e′ ∈ Trans (t′), either e or e′ is irrelevant.
Thus, by construction Xe = 1 or Xe′ = 1, satisfying Constraint 7.8.

(7.9) Each trace τ ∈ T conforms to the NDSeq specification Focus,S∗, so for no t is it the
case that t;∗Relevant(τ,S∗,Focus) t. Thus, Constraint 7.9 is always satisfied.

7.5 Correctness of Dynamic Slicing Optimization

To introduce the dynamic slicing, we need to define the control dependence relation ↪→τ

between events of a trace τ .

Definition 28. Let ei and ej be events from trace τ . Event ej is control dependent on ei,
denoted ei ↪→τ ej, iff:

1. ei is a branch(l) event generated by the execution of a if(l), while(l), or for statement,

2. ej is generated by the execution of a statement s′ nested inside the above conditional
statement s statement, and

3. the statement s′ generating ej is not nested inside any other conditional/loop statements
that are themselves nested inside the above statement.

Let −→∗τ denote the transitive closure of (99Kτ ∪ ↪→τ ).

Note that our definition of control dependence is particularly simple, because we describe
our dynamic slicing optimization on a language with no unstructured control flow (i.e., break
or continue). As with our NDSeq runtime checking algorithm and NDSeq specification
inference algorithm, control dependence and our dynamic slicing algorithm can be easily
adapted to standard unstructured control flow.
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Definition 29. A dynamic slice of a trace with respect to focus variables Focus is defined as
follows. Let Target(τ,Focus) denote the set of all evennts that directly affect the final output:

Target(τ,Focus) = {e : g = l ∈ τ | g ∈ Focus ∧ e is last write to g in Thread (e)}
Then a dynamic slice of a trace τ , denoted by DSlice(τ,Focus), is the set:

DSlice(τ,Focus) = {e ∈ τ | ∃e′ ∈ Target(τ,Focus) such that e −→∗τ e′}

Lemma 31 below, enables us to improve the efficiency of solving our MinCostSAT in-
stances by performing the optimization given in Section 7.3 — that is, setting Xe = 0 for
any event e in DSlice(τ,Focus). Further, Lemma 30 allows us to modify Constraint 7.5 in
Section 7.3 by replacing 99K∗τ with −→∗τ :

(C’) Condition R4 and Lemma 30 dictate that if an event e′ is relevant and if there is
another event e such that e −→∗τ e′, then e must also be relevant. In other words, if e
needs to be irrelevant, e′ must be irrelevant, too. To ensure this, we add the following
constraint for each pair of events e, e′ such that e −→∗τ e′ for some τ :

Xe =⇒ Xe′ (7.5’)

Lemma 30. Let τ be a parallel execution trace of program P, with NDSeq specification
S∗,Focus, and let e be a relevant event in τ — i.e., e ∈ Relevant(τ,S∗,Focus). Then, for
any e′ such that e′ −→∗τ e, event e′ must also be relevant.

Proof. We prove by induction that, for any e′ such that e′ −→∗τ e, event e′ is relevant.
The base case, in which e′ = e, trivially holds.
Suppose e′ −→τ e

′′ for some e′′ such that e′′ −→∗τ e and e′′ is relevant. We will prove by
case analysis that e′ must also be relevant.

• Suppose that e′ 99Kτ e′′. Then, by (R4) in Definition 23, event e′ is also relevant.

• Suppose instead that e′ ↪→τ e
′′. In this case, e′ must be a branch(l) event generated by

some conditional or loop statement, and e′′ must be generated by some statement in
the body of that conditional/loop.

Suppose that NdBlock(e′) is undefined. By (R2) in Definition 23, event e′ is relevant.

Suppose instead that NdBlock(e′) = Es. Then, we must have that e′′ ∈ Es, because
event e′ ∈ Es and e′′ is generated by a statement in the body of the conditional/loop
statement that generated e′. Thus, by (R3) in Definition 23, event e′ is relevant.

Lemma 31. Let τ be a parallel execution trace of program P, with NDSeq specification
S∗,Focus. Then, DSlice(τ,Focus) ⊆ Relevant(τ,S∗,Focus).

Proof. Suppose event e ∈ DSlice(τ,Focus). Then, there exists some event e′ ∈ Target(τ,Focus)
such that e −→∗τ e′.

By (R1) in Definition 23, event e′ is relevant because e′ is the last write in its Thread to
some Focus variable. Thus, by Lemma 30, event e is relevant.
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Note that the above two optimizations cannot affect the soundness of the inference al-
gorithm. Both only add constraints to our MinCostSAT instance (and simplify the instance
by substituting Xe = 0 for some e for which the constraint ¬Xe = 0 is added). Thus, any
solution to the optimized instance is also a solution to the original instance, and Theorem 26
from Section 7.5 applies. What we have proved above in Lemmas 30 and 31 is that the two
optimizations also do not affect the completeness of our inference algorithm. Consider the
solution X found by our inference algorithm in Theorem 27. By Lemma 31, solution X must
also satisfy the optimized constraint (7.1’), because DSlice(τ,Focus) ⊆ Relevant(τ,S∗,Focus)
and, by construction, Xe = 0 for all relevant e. And solution X must also satisfy the op-
timized constraint (7.5’), because whenever e −→∗τ e′ and Xe′ = 0, then e′ is relevant by
construction, e is relevant by Lemma 30, and thus Xe = 0 by construction.

7.6 Experimental Evaluation

In this section, we describe our experimental evaluation of our approach to inferring likely
nondeterministic sequential (NDSeq) specifications for parallel programs. In particular, we
aim to evaluate the following claim: By examining a small number of representative exe-
cutions, our specification inference algorithm can automatically generate the correct set of
if(true∗) annotations for real Java programs.

To evaluate this claim, we implemented our technique in a prototype tool for Java, called
nDetermin, and applied nDetermin to the set of Java benchmarks for which we man-
ually wrote NDSeq specifications in Chapter 6. We compared the quality and accuracy of
our automatically-inferred if(true∗)s to the ones in their manually-written NDSeq specifi-
cations.

Implementation

Our prototype tool nDetermin uses bytecode instrumentation via Soot [150]. nDetermin
works in the following four phases:

1. Annotating focus variables. In the first phase, the programmer marks the focus
lvalues (e.g. objects fields, array elements, local variables, class fields etc.) whose final
state compos the program output. We use the simple Java library for annotating focus
variables from Chapter 6.

2. Instrumenting the program. nDetermin uses Soot to inject calls throughout the
target program to our analysis code, in order to generate a trace of the events and of
the −→ dependence relation at runtime.

During the instrumentation phase, we compute control dependencies between state-
ments and identify candidate static blocks that could be annotated with if(true∗).
For this computation, we use off-the-shelf static intra-procedural control flow graph
analyses available in Soot, as well as the Indus program slicer framework [124]. While
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Section 7.3 describes our algorithm over a language without unstructured control flow,
our implementation handles break, continue, early return, etc.

Note that any Java bytecode instruction that can throw an exception — e.g., a field
dereference, an array look-up, a cast, or a division — must be treated as an implicit
branch instruction. That is, changing the values flowing into such an instruction can
change the control flow by causing or preventing an exception from being thrown.
While analyzing the program during the instrumentation phase, our tool identifies
control dependencies due to potential branches upon such exceptions.

3. Collecting runtime information. We run the program under analysis multiple
times (e.g., five in our experiments) and generate parallel execution traces using nDe-
termin’s instrumentation described above. We use active random testing [132] to
generate parallel execution traces.

4. Inferring the if(true∗) annotations. Using the collected runtime information,
nDetermin generates a MinCostSAT instance as described in Section 7.3 and solves
the instance using MinCostChaff [68] and MiniSat+ [47]. (nDetermin can also encode
the constraints as a Linear Programming (LP) instance and solve the instance using
lp solve3.) nDetermin maps the solution of the problem back to the program,
pointing to the statements that need to be surrounded by if(true∗).

Limitations. In Java, it is necessary to handle language features such as objects, excep-
tions, casts, etc. While our implementation supports many intricacies of the Java language,
it has a couple of limitations. First, our implementation tracks neither the shared reads and
writes made by uninstrumented native code, nor the flow of data dependence through such
native code. Second, in order to reduce the runtime overhead, our tool does not instrument
all of the Java standard libraries. Thus, we could miss conflicts or data dependencies carried
out through the native code and the Java libraries, and fail to include some events in our
inference algorithm. To address the second limitation, for certain shared data structure ob-
jects we introduced shared variables and inserted reads or writes of those variables whenever
their corresponding objects were accessed. This allowed us to conservatively approximate
the conflicts and data dependencies for certain critical standard Java data structures. We
did not observe any inaccuracy in our experimental results due to these limitations.

Experimental Setup

We evaluate nDetermin on the benchmarks previously examined in Chapter 6, which are
originally from benchmarks are from the Java Grande Forum (JGF) benchmark suite [46], the
Parallel Java (PJ) Library [86], the Lonestar benchmark suite [88], and implementations of

3http://lpsolve.sourceforge.net/

http://lpsolve.sourceforge.net/
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[145] and [102]. The names and sizes of the benchmarks are listed in Table 7.1. Descriptions
of the benchmarks can be found in Section 6.5 in the previous chapter.

Note that we focus here on parallel applications, which use multithreading for perfor-
mance but fundamentally are performing a single computation that can be understood se-
quentially. We do not consider concurrent benchmarks because it is not clear whether or
not such programs can be understood sequentially.

For our benchmarks, we use the same focus variable and parallel region annotations as in
Chapter 6. (Although these benchmarks are written in a structured parallel style, they use
explicit Java threads as Java does not provide cobegin or coforeach constructs. Thus, the
code was annotated to indicate which regions of code correspond to the bodies of structured
cobegin’s or coforeach’s.)

Note also that benchmarks raytracer and phylogeny both contain parallelism errors.
Thus, we apply nDetermin to both the original version of each benchmark, and a version
in which the error has been fixed. For raytracer, we modify a synchronized block to use
the correct shared lock to protect the key global variable checksum1. For phylogeny, we
make one method synchronized in order to eliminate an atomicity error.

We execute each benchmark five times on a single test input, using a simple implementa-
tion of race-directed active random testing [132]. For each benchmark, nDetermin analyzes
all five executions and either infers a placement of if(true∗) for the benchmark’s NDSeq
specification or reports that the benchmark satisfies no possible NDSeq specification due to
a parallel error.

We performed our experiments on a 64-bit Linux machine with a dual Quad-Core/HT In-
tel(R) Xeon(R) CPU (2.67GHz) processor, 24MB L3 cache and 48GB of DDR3/1066 RAM.
For each experiment, we measured the time for solving both SAT instances (without mini-
mizing the number of if(true∗)s) using ZChaff [104] and MiniSat [137], and MinCostSAT
instances using MinCostChaff and MiniSat+ generated during the experiment. We observed
that for the benchmarks that do not require nondeterministic branches in their NDSeq spec-
ifications, the solving time for SAT and MinCostSAT are very close to each other, as the
solver can satisfy all the constraints without needing to optimize the number of if(true∗)s.
For most of the benchmarks, the solving time was in terms of milliseconds, and few large
benchmarks required several seconds to solve the constraints.

Experimental Results

The results of our experimental evaluation are summarized in Table 7.1. The column labeled
“All”, under “Size of Trace (Events)”, reports the number of total events seen in the last
execution (of five) of each benchmark, and the column labeled “Sliced Out” reports the
number of events removed by our dynamic slicing. nDetermin searches for if(true∗)
placements to eliminate cycles of transactional conflicts involving the remaining events.

The second-to-last column of Table 7.1 reports the number of if(true∗) constructs in-
ferred for the NDSeq specification for each benchmark. We manually determined whether
each of the inferred if(true∗) annotations was correct — i.e., captures all intended non-
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Benchmark

Approximate
Lines of

Code (App
+ Lib)

# of
Parallel

Constructs

Size of Manual
NDSeq Spec

Size of Trace
(Events)

Inferred NDSeq
Specification

# of
if(*)

# focus
stmts

All
Sliced
Out

# of
if(*)

Correct?

JGF

sor 300 1 0 1 905k 561k 0 yes

matmult 700 1 0 1 962k 8k 0 yes

series 800 1 0 5 2008k 1215 0 yes

crypt 1100 2 0 3 493k 100k 0 yes

moldyn 1300 4 0 1 4517k 4300k 0 yes

lufact 1500 1 0 1 1048k 792k 0 yes

raytracer 1900 1 0 1 9125k 8960k - -

raytracer (fixed) 1900 1 0 1 9125k 8960k 0 yes

montecarlo 3600 1 0 1 1723k 731k 0 yes

PJ

pi3 150 + 15,000 1 0 1 1062k 141 0 yes

keysearch3 200 + 15,000 2 0 4 1062k 1049k 0 yes

mandelbrot 250 + 15,000 1 0 6 576k 330k 0 yes

phylogeny 4400 + 15,000 2 3 8 29k 24k - -

phylogeny (fixed) 4400 + 15,000 2 3 8 29k 24k 1 yes

stack 40 1 2 8 1050 356 2 yes

queue 60 1 2 8 325 114 2 yes

meshrefine 1000 1 2 50 930k 845k 2 yes

Table 7.1: Summary of experimental evaluation of our NDSeq specification inference algo-
rithm. All inferred if(true∗) annotations were verified manually to be correct.

determinism, so that the parallel program is equivalent to its NDSeq specification, with no
extraneous nondeterminism that would allow the NDSeq version of the program to produce
functionally incorrect results. All of the inferred specifications were correct.

For many of the benchmarks, nDetermin correctly infers that no if(true∗) constructs
are necessary. All but one of these benchmarks are simply conflict-serializable. As discussed
in in Chapter 6, montecarlo is not conflict-serializable, but the non-serializable conflicts
afftect neither the control flow nor the final result of the program.

For benchmarks stack, queue, and meshrefine, nDetermin infers an NDSeq specifi-
cation exactly equivalent to the manual specifications from Chapter 6. That is, nDetermin
infers the same number of if(true∗) constructs and places them in the same locations as
in previous manually-written NDSeq specifications. We note that nDetermin finds spec-
ifications slightly smaller than the manual ones, which include a small number of adjacent
statements in the if(true∗) that do not strictly need to be enclosed, although in each case
the overall behavior of the NDSeq specification is the same whether or not these statements
are included in the if(true∗).

Further, for benchmark phylogeny (fixed), while the previous manual NDSeq specifica-
tion included three if(true∗) constructs, nDetermin correctly infers that only one of these
three is actually necessary. The extra if(true∗) appear to have been manually added to
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address some possible parallel conflicts that, in fact, can never be involved in non-serializable
conflict cycles. These two extraneous if(true∗) do allow the NDSeq specification to per-
form several nondeterministic behaviors seen during parallel execution of the benchmark.
But nDetermin correctly determines that these behaviors are possible in the NDSeq spec-
ification even without these if(true∗).

Note that for two benchmarks, raytracer and phylogeny, nDetermin correctly reports
that no NDSeq specification exists — i.e., the SAT instance has no solution (indicated by
“-” in Table 7.1). That is, nDetermin detects that the events of the dynamic slice (i.e.,
those not removed by dynamic slicing) are not conflict-serializable. These conflicts exist
because both benchmarks contain parallelism errors (atomicity errors due to insufficient
synchronization). As a result of these errors, these two parallel applications can produce
incorrect results that no sequential version could produce.

Discussion. These experimental results provide promising preliminary evidence for our
claim that nDetermin can automatically check serializability by way of inferring if(true∗)
necessary for the NDSeq specification of parallel correctness for real parallel Java programs.
We believe adding nondeterministic if(true∗) constructs is the most difficult piece of writing
a NDSeq specification, and thus our inference technique can make using NDSeq specifications
much easier. Further, such specification inference may allow for fully-automated testing
and verification to use NDSeq specifications to separately address parallel and functional
correctness.

7.7 Related Work

Several parallel correctness criteria, including data-race freedom [108], atomicity [64], lin-
earizability [100], and determinism [29, 21] have been studied for shared memory parallel
programs that separate the reasoning about functionality and parallelism at different gran-
ularities of execution. All these criteria provide the separation between parallel and func-
tional correctness partially, as the restriction on thread interleavings is limited, for example,
to atomic block boundaries. NDSeq specifications develop this idea up to a complete sepa-
ration between parallelism and functionality so that the programmer can reason about the
intended functionality by examining a sequential, but nondeterministic, program.

Reasoning about conflicting accesses that are simultaneously enabled but ineffective on
the rest of the execution is the main challenge in both static [64, 149, 39, 148] and dy-
namic [164, 160, 97, 12, 62, 74, 153, 91, 26] techniques for checking atomicity and lineariz-
ability. Both QED [48] and work on purity [60] for atomicity provide static analyses to
rule out spurious warnings due to such conflicts by abstracting these operations to no-ops.
Their abstraction techniques resemble identifying irrelevant events by a dependency analy-
sis. However, lack of dynamic information during the static verification is a bottleneck in
automating their overall approach
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There is a rich literature on generating invariants, temporal specifications, and other
kinds of specifications for sequential programs – see Chapter 4 for a discussion of this work.

ALTER [147] is a system in which programmers annotate loops which may be executed
nondeterministically and shared reads which may nondeterministically read stale values, in
order to enable automatic parallelization of their sequential programs. ALTER [147] also
has a test-driven algorithm for inferring likely annotations for sequential loops.
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Chapter 8

Conclusion

The semiconductor industry has hit the power wall — performance of general-purpose single-
core microprocessors can no longer be increased due to power constraints. Instead, the new
“Moore’s Law” is that the number of cores is doubling every generation, but individual
cores are going no faster [10]. Thus, to take advantage of current and future processors,
programmers increasingly must write parallel software. But writing correct parallel software
remains a challenging task.

Though there have been many advances in techniques to test, debug, and verify parallel
software, we have argued that such approaches are often hindered by a lack of any specifica-
tion from the programmer of the intended, correct parallel behavior of his or her software.
And writing formal specifications for software has often been viewed as excessively difficult
and time-consuming. Indeed, we have discussed a number of programs for which writing a
traditional functional correctness specification was beyond our grasp.

In this dissertation, we have developed novel lightweight specifications that focus on the
correctness just of a program’s use of parallelism. We have shown that our lightweight
specifications enable us to specify, test, debug, and verify the parallelism correctness of a
program, without having to grapple with a program’s complex and fundamentally-sequential
functional correctness.

We have proposed semantic determinism specifications for specifying that any run of
a parallel program must give semantically-equivalent results, despite the nondeterministic
scheduling of the program’s parallel threads. We proposed bridge predicates — predicates
relating pairs of program states from two different program executions — to simply specify,
at a high level, what it means for the results of two different parallel executions to be the
same. We showed that it was easy to write determinism specifications for a variety of Java
benchmarks. We further proposed a simple technique for testing that a parallel program
conforms to its determinism specification, by recording and comparing, across pairs of test
executions, the program states at the start and end of deterministic blocks. This technique,
combined with active testing [132, 85], was effective in finding real parallel determinism
errors and separating these errors from many benign program races. Finally, we proposed
an algorithm for automatically inferring a likely determinism specification for a program,
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given a handful of representative program executions, and showed that our algorithm could
automatically generate equivalent or better determinism specifications than those we wrote
by hand for nearly all of our benchmarks.

We have proposed semantic atomicity specifications, showing that our bridge predicates
can be used to generalize traditional atomicity specifications, in order to capture critical
high-level noninterference properties of parallel and concurrent code. We showed that it was
simple to write semantic atomicity specifications for a number of parallel and concurrent
Java benchmarks. We also proposed a technique for testing that a program conforms to
its semantic atomicity specification, by generating test parallel test executions in which
only a small number of specified atomic blocks overlap, and by testing the semantic strict
serializability (i.e., semantic linearizability) of such executions. With our testing technique,
we found several known and previously unknown atomicity errors with no false positives,
where previous, strict atomicity techniques would have reported many false warnings.

Finally, we have proposed nondeterministic sequential (NDSeq) specifications for par-
allelism correctness, showing that we can give a complete specification for the parallelism
correctness of a parallel program with a version of the program that is sequential but con-
tains some limited, controlled nondeterminism. We argued that, if we can verify or otherwise
gain confidence in the parallelism correctness of such a program, we can then test, debug,
and verify the program’s functional correctness on a version of the program with some non-
determinism but with no interleaving of parallel threads. We described several patterns for
writing NDSeq specifications and showed that, using our patterns, it was fairly simple to
write NDSeq specifications for a number of parallel Java benchmarks. We also proposed
a testing technique for checking that an execution of a parallel program conforms to the
program’s NDSeq specification. Our technique generalizes traditional conflict-serializability
checking, by combining the nondeterminism in the specification with a dynamic dependence
analysis to safely ignore some conflicting operations. We applied our technique to test our
NDSeq specifications, finding the real parallelism errors and eliminating nearly all of the
false positives of traditional atomicity checking. We further proposed a technique for auto-
matically inferring a likely NDSeq specification for a parallel program, given a handful of
representative executions, and we showed that our hand-written NDSeq specifications could
all be reproduced by our inference algorithm. We also proposed two future directions of
work for NDSeq specifications: (1) to use our runtime checking technique to classify an erro-
neous program trace as containing either a sequential or a parallel error, and, in the former
case, allowing the error to be debugged on a nondeterministic sequential trace, instead, and
(2) to statically verify parallelism correctness, using reduction [93] to show that every parallel
program behavior is also a behavior of the NDSeq specification.
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[152] Pavol Černý et al. “Model Checking of Linearizability of Concurrent List Implemen-
tations”. In: Proceedings of the 22nd International Conference on Computer Aided
Verification (CAV). Springer, 2010, pp. 465–479.

[153] Martin Vechev, Eran Yahav, and Greta Yorsh. “Experience with Model Checking
Linearizability”. In: Proceedings of the 16th International SPIN Workshop on Model
Checking Software. Springer, 2009, pp. 261–278.

[154] Martin Vechev et al. “Verifying Determinism of Structured Parallel Programs”. In:
Static Analysis Symposium (SAS). 2010.

[155] W. Visser et al. “Model Checking Programs”. In: 15th International Conference on
Automated Software Engineering (ASE). IEEE, 2000.

[156] W. Visser et al. “Model checking programs”. In: Automated Software Engineering
10.2 (2003), pp. 203–232.



BIBLIOGRAPHY 165

[157] C. Wang et al. “Trace-based symbolic analysis for atomicity violations”. In: Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Springer, 2010, pp. 328–342.

[158] L. Wang and S. D. Stoller. “Run-Time Analysis for Atomicity.” In: 3rd Workshop on
Run-time Verification (RV’03). Vol. 89. ENTCS 2. 2003.

[159] Liqiang Wang and Scott D. Stoller. “Accurate and Efficient Runtime Detection of
Atomicity Errors in Concurrent Programs”. In: Proc. ACM SIGPLAN 2006 Sym-
posium on Principles and Practice of Parallel Programming (PPoPP). ACM Press,
Mar. 2006, pp. 137–146.

[160] Liqiang Wang and Scott D. Stoller. “Runtime Analysis of Atomicity for Multithreaded
Programs”. In: IEEE Transactions on Software Engineering 32 (2 2006), pp. 93–110.

[161] Andrzej Wasylkowski and Andreas Zeller. “Mining Temporal Specifications from Ob-
ject Usage”. In: Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering. ASE ’09. 2009, pp. 295–306.

[162] Y. Wei et al. “Inferring better contracts”. In: Proceedings of the 33rd International
Conference on Software Engineering (ICSE). ACM. 2011, pp. 191–200.

[163] J. Whaley, M. C. Martin, and M. S. Lam. “Automatic Extraction of Object-Oriented
Component Interfaces”. In: Proceedings of ACM SIGSOFT ISSTA’02 (International
Symposium on Software Testing and Analysis). 2002.

[164] Jeannette M. Wing and Chun Gong. “Testing and verifying concurrent objects”. In:
Journal of Parallel and Distributed Computing 17.1-2 (Jan. 1993), pp. 164–182.

[165] Jinlin Yang and David Evans. “Dynamically inferring temporal properties”. In: PASTE
’04. Washington DC, USA: ACM, 2004, pp. 23–28.

[166] Jinlin Yang et al. “Perracotta: mining temporal API rules from imperfect traces”. In:
Proceedings of the 28th International Conference on Software Engineering. ICSE ’06.
ACM, 2006, pp. 282–291.

[167] Wei Zhang, Chong Sun, and Shan Lu. “ConMem: detecting severe concurrency bugs
through an effect-oriented approach”. In: ASPLOS ’10: Proceedings of the 15th inter-
national conference on Architectural Support for Programming Languages and Oper-
ating Systems. Pittsburgh, Pennsylvania, USA: ACM, 2010, pp. 179–192.

[168] Wei Zhang et al. “ConSeq: Detecting Concurrency Bugs through Sequential Errors”.
In: ASPLOS ’11: Proceeding of the 16th international conference on Architectural
Support for Programming Languages and Operating Systems. New York, NY, USA:
ACM, 2011.


	Contents
	Introduction
	Overview of Lightweight Specifications for Parallelism Correctness
	Running Example
	The Challenge of Parallelism Correctness
	Semantic Determinism Specification
	Semantic Atomicity Specifications
	Nondeterministic Sequential Specifications

	Asserting and Checking Determinism for Multithreaded Programs
	Determinism Specification
	Checking Determinism
	Determinism Checking Library
	Experimental Evaluation
	Discussion
	Related Work
	Summary

	Inferring Likely Determinism Specifications for Multithreaded Programs
	Formal Background
	Overview of DETERMIN
	Inferring Determinism Specifications
	DETERMIN Algorithm
	Experimental Evaluation
	Summary

	Specifying and Checking Semantic Atomicity for Multithreaded Programs
	Specifying Semantic Atomicity
	Semantic Atomicity and Linearizability
	Testing Semantic Linearizability
	Experimental Evaluation
	Related Work
	Summary

	Nondeterministic Sequential Specifications for Parallelism Correctness
	Overview of NDSeq Specifications
	Parallelism Correctness with Nondeterministic Sequential Specifications
	Nondeterministic Specification Patterns
	Runtime Checking of Parallel Correctness
	Experimental Evaluation
	Related Work
	Summary

	Inferring Likely Nondeterministic Sequential Specifications
	Overview
	Background: NDSeq Specifications
	Inferring a Suitable NDSeq Specification
	Correctness of Specification Inference Algorithm
	Correctness of Dynamic Slicing Optimization
	Experimental Evaluation
	Related Work

	Conclusion
	Bibliography

