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Abstract 

An Inverse Electromagnetic Design algorithm is presented that can efficiently solve for optimal shapes of 
electromagnetic devices, such as antennas, surface textures and gratings. The algorithm was implemented in 
software along with techniques to represent non-parametric or freeform shapes, which allow the optimization to 
explore non-intuitive solutions. This Inverse Design Software was then used to design optical antennas for Heat-
Assisted Magnetic Recording to efficiently deliver energy to a sub-wavelength spot. The optical system that is 
proposed here consists merely of a rectangular waveguide and a planar antenna, a simple and inexpensive solution 
that outperforms the complicated designs from the key players in the data storage industry. 
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1. Inverse Electromagnetic Design 
 
For electromagnetics problems, a computational algorithm that is capable of automatically designing optimal 
geometries of dielectric or metal objects within a given optical system is very desirable. Applications include 
designing antenna shapes to efficiently deliver optical energy to sub-wavelength spots, designing textures for 
optimal light-trapping in sub-wavelength thick solar cells, and designing efficient couplers between waveguides and 
devices in integrated photonics. The Inverse Electromagnetic Design method discussed here originates from work 
with Owen Miller [1], and some of its development and code implementation is in collaboration with him. 

 

 

Figure	  1:	  An	  Iterative	  and	  Creative	  Inverse	  Design	  of	  an	  Optical	  Antenna’s	  shape.	  
The	  antenna	  in	  the	  rightmost	  frame	  is	  not	  likely	  to	  be	  designed	  without	  computation	  

and	  achieves	  significantly	  stronger	  field	  localization.	  

Currently, a popular method to optimize very complex structures (i.e. in which there are many geometric 
parameters) is a genetic algorithm, which by definition is extremely inefficient. This can still be successful for 
problems where the simulation of the physics is very fast, but this method is not useful for electromagnetic problems 
since solving Maxwell’s Equations in 3-dimensional space is computationally intensive even by today’s 
standards.  A more efficient optimization can be achieved with the iterative method of gradient descent, in which 
one calculates the derivative of the Figure of Merit with respect to each geometric parameter and iteratively changes 
each parameter to step towards an optimum. This is essentially Newton’s Method for a function of many dependent 
variables. For a complex shape with N geometric parameters, this gradient descent approach requires roughly N 
simulations per iteration in order to calculate N independent derivatives, one per each geometric parameter. 
However, optimizing a complex shape with 1000 geometric parameters where each 3D simulation of Maxwell’s 
Equations takes one hour on a High-Performance Computing Cluster is still unfeasible. Thus, current designers in 



RF and Optics often limit themselves to simple structures and optimize in a brute force fashion by varying every 
geometrical parameter in the system (parameter sweeps). With our ability to manufacture devices with 
subwavelength features and new applications of metal optics today, we no longer should restrict ourselves to simple 
structures. 

The Inverse Electromagnetic Design algorithm proposed here improves on the simple iterative method of gradient 
descent, which requires N simulations per iteration to calculate a gradient or derivative for each of N geometric 
parameters. The proposed Inverse Design algorithm exploits symmetries in the solutions of Maxwell’s Equations 
such that the algorithm needs only 2 simulations of Maxwell’s Equations per iteration to optimize non-parametric 
shapes (when N tends to infinity). Because of this efficiency, this algorithm can solve for creative and unintuitive 
shapes that could not be conceived analytically or qualitatively by an engineer.  Figure 2 shows the traditional trade 
off between number of parameters and computation per iteration of an optimization algorithm. The goal of the 
proposed Inverse Design method is to break this trade off and greatly reduce the computation required to optimize 
non-parametric geometries. Figure 1 shows an optimization with the proposed Inverse Electromagnetic Design 
method that shows that creativity, which I define as exploiting every degree of freedom possible, allows for designs 
that could not be designed by hand and that offer significantly better performance. 

 

 

Figure	  2:	  A	  C-‐Aperture	  Antenna	  can	  be	  represented	  by	  4	  (left)	  or	  N	  (right)	  geometric	  parameters.	  If	  confined	  to	  a	  
design	  methodology	  of	  parametric	  sweeps,	  then	  more	  parameters	  offer	  more	  degrees	  of	  freedom	  at	  the	  expense	  

of	  an	  unreasonable	  amount	  of	  computation	  (proportional	  to	  number	  of	  solves).	  
	  

The proposed Inverse Electromagnetic Design algorithm is described as Adjoint-Based Gradient Descent. 
‘Gradient Descent’ is essentially Newton’s Method. To find a local maximum or minimum, one simply needs to 
calculate an instantaneous derivative of a Figure of Merit (FOM) with respect to a Variable and iteratively increment 
or decrement the Variable until the derivative is zero.  A completely freeform shape can be described by having N 
Variables distributed around the shape’s perimeter, where N tends to infinity for an increasingly continuous 
representation of the shape’s boundary, like that in the right frame of Figure 1. ‘Adjoint-Based’ refers to using 
symmetries to calculate the derivative of the FOM with respect to all N Variables in an efficient manner.  For 
example, to characterize an antenna, there are two symmetric simulations of Maxwell’s Equations. The first involves 
the antenna being illuminated from the far-field and the localized electric field (the Figure of Merit) is calculated. 
The second involves the antenna being excited in the near-field and the far-field radiation is calculated. The latter 
scenario is the Adjoint simulation. How these two simulations can be used to calculate all N derivatives efficiently 
will be explained the following discussion. Figure 3 shows one iteration of the Adjoint-Based Gradient Descent 
method. The significant achievement is that only 2 simulations of Maxwell’s Equations are required to calculate the 
Gradient, a collection of derivatives with respect to changes in the shape’s boundary. Positive (red) and negative 
(blue) gradients indicate where the boundary should be pushed outward or inward in order to navigate toward a local 
optimum in the shape parameter space. 



 

Figure	  3:	  One	  iteration	  of	  Adjoint-‐Based	  Gradient	  Descent.	  

The inefficient way to implement a Gradient Descent optimization of a non-parametric or freeform shape in 
Electromagnetics is to simply simulate every possible boundary perturbation to a shape and evaluate a Figure of 
Merit (FOM), which could be any function of Electric and Magnetic fields, for each perturbation. After calculating 
the change in Figure of Merit (∆FOM) for every boundary change, one can iteratively change the shape’s geometry 
in a smart way to seek a local optimum. Figure 4 depicts a brute-force optimization of an antenna, where the FOM is 
function of electric field at location !!. To complete one iteration of Gradient Descent, one must calculate ∆FOM 
for every possible perturbation, which are represented here as boundary deformations at every point !′ around the 
antenna’s boundary. This requires N simulations to evaluate a perturbation at each of the N locations of !′. 

 

Figure	  4:	  An	  inefficient	  way	  to	  calculate	  the	  change	  in	  Figure	  of	  Merit	  due	  to	  every	  possible	  boundary	  change	  is	  the	  
brute-‐force	  method,	  ie.	  calculate	  and	  simulate	  every	  possible	  boundary	  perturbation.	  

Shown in Figure 5, the first key trick to simplify the size of this optimization problem is to approximate the effects 
of a perturbation to the shape’s geometry. The external source induces an electric field in the perturbation (a 
localized change in epsilon) that oscillates at the electromagnetic frequency. If the perturbation is small enough, then 
it will only support the dipole resonance mode and will thus act as a dipole scatterer. Hence, we can approximate 
the effect of a perturbation at any location !′ with a point current source J1 at !′ and solve Maxwell’s Equations to 
determine the electric field distribution !! everywhere in the volume. To evaluate ∆FOM for a perturbation at !′, 
one must simply observe !! !! , the electric field produced by the respective current source at !!. This simulation 
no longer requires simulating the light source and each physical geometric change as shown in Figure 4. 



 

Figure	  5:	  Model	  every	  possible	  perturbation	  (addition	  or	  removal	  of	  material)	  as	  a	  Dipole	  Scatterer,	  whose	  dipole	  
moment	  is	  proportional	  to	  the	  electric	  field	  induced	  in	  the	  perturbation.	  

	  

 

Figure	  6:	  Two	  types	  of	  geometrical	  perturbations:	  a)	  change	  in	  epsilon	  from	  the	  inclusion	  of	  an	  isolated	  island	  of	  
material;	  b)	  change	  in	  epsilon	  from	  the	  small	  deformation	  of	  the	  boundary	  of	  a	  large	  object	  of	  material.	  



As shown in Figure 6, there are two types of geometric perturbations in a two material system, consisting of 
permittivities !!  and !!. For the perturbation shown in Figure 6a, if !!"#$  is the electric field induced by a light 
source at location !′, then the dipole moment from the inclusion of a sphere of !!  at !′ is proportional to the !!"#$ by 
the Clausius–Mossotti factor, as shown by the popular Jackson’s Classical Electrodynamics [2], 

! = 3
!! −   !!
!! + 2!!

!!"#$!!"!!"! 

For the boundary perturbation shown in Figure 6b, the simplest approximation for the dipole moment induced by a 
boundary deformation at location !′ is calculated as followed. The electric field !!"# in the boundary deformation 
of !! is the original electric field plus some change in field, while taking into account boundary conditions of the 
parallel and perpendicular components of electric field. 

!!"# = !!"#!∥ +   !!∥ +
1
!!

!!"#$! + !!!    

The dipole moment induced in the boundary deformation follows as the change in dielectric constant in the volume 
of the perturbation multiplied by this !!"#. The changes in field, !!∥ and !!!, tend to zero in the limit of the 
deformation being small, and hence the dipole moment of a boundary perturbation at !′ is given by 

! ≅ !! − !! !!"#$∥ +
1
!!

!! − !! !!"#$! !!"#$%#&'$()* 

A similar expression is also found, albeit in a more complicated form, by Johnson et. al. in studying perturbation 
theory of Maxwell’s Equations [9] and roughness losses in waveguides [10]. In order to calculate the dipole moment 
induced in every possible perturbation, one only requires to know !!"#$ at every !′, which can be calculated in one 
simulation of the geometry illuminated by the light source (the left most frame in Figure 5). After performing this 
first key trick, one still needs to perform many simulations to calculate the electric and magnetic field at the 
observation point !! due to the approximate dipole moment at every !′, to calculate the ∆FOM due to the 
perturbation. 

 

Figure	  7:	  A	  simulation	  of	  Maxwell’s	  Equations	  to	  model	  an	  insertion	  of	  material	  under	  an	  incident	  light	  source	  can	  
be	  modeled	  by	  two	  separate	  simulations:	  one	  excited	  with	  the	  incident	  light	  source	  and	  the	  other	  excited	  by	  a	  

dipole	  to	  mimic	  the	  material	  change.	  



 

Figure 8: Reciprocity parallelizes the calculation of the Green’s Function between !′ and !!. 

Shown in Figure 8, the second key trick uses Lorentz Reciprocity to greatly simplify the calculation of the electric 
and magnetic field contributions to location !! from every possible perturbation or dipole scatterer. Consider the 
scenario of two possible current sources !! and !! that independently produce electric field distributions !! and !!, 
respectively, in a volume of arbitrary materials. The simplest form of Lorentz Reciprocity dictates 

!! ∙ !!  !" =    !! ∙ !!  !V 

The induced dipole moment in a geometrical perturbation at !′ is equivalent to a point current source !!  at !′, which 
produces the electric field distribution !! in the entire simulation volume. Also, consider the same volume instead 
excited with a point current source !! at the observation point !! which produces the electric field distribution !!. 
The previous Reciprocity relationship becomes 

!! ∙ !! !′ =    !! ∙ !! !! 	  

Rather than solving for the electric fields !! everywhere in the volume V produced by a current source at !′ to 
evaluate !! !! , one could alternatively solve for the fields !! from a current source at !!.  Using the relationship 
above, one can calculate !! !!  by instead observing !! !′  and knowing the currents !! and !!. The advantage is 
that from one simulation with a current source !! at !!, one knows !! !′  for every !′ in the simulation volume. 
Hence, from this one simulation one can calculate !! !!  and therefore evaluate ∆!"# !! !!  for all 
perturbations at any !′ in the volume. Now, the problem has been greatly simplified as we can calculate the gradient 
everywhere in space from one simulation where we excite the geometry with current sources at the same locations 
as where the Figure of Merit is evaluated. 

This relationship is also well understood from the study of Green’s Functions. Essentially, every time one models a 
perturbation at !′ as a dipole scatterer or current source, one solves Maxwell’s Equations to determine the function 
!!!→!! ! , that relates a current ! at !′ to an electric field at !!. The reciprocity of Green’s Functions is essentially a 
simplified case of Lorentz Reciprocity as well. !!!→!! !  and !!!→!! !  are equivalent for an arbitrary volume of 



geometries and materials, and one can perform either simulation to determine the other. As depicted in Figure 9, this 
simply means that the field observed at !!  from a current ! at !′ is the same as the field observed at !′ from a current 
! at !!. 

 

Figure	  9:	  Rayleigh-‐Carson	  Reciprocity	  (a	  simple	  case	  of	  Lorentz	  Reciprocity)	  dictates	  that	  the	  locations	  of	  a	  current	  
source	  and	  observation	  point	  are	  interchangeable	  in	  an	  arbitrary	  system	  of	  objects	  and	  materials.	  

Figure 10 shows why there is an efficiency to be gained in solving for the gradient of many geometric parameters in 
Electromagnetics. The inefficient method from Figure 4 requires solving Maxwell’s Equations everywhere in the 
volume for every possible perturbation at all !′, even though the Figure of Merit is only a function of the fields at !!. 
Essentially, in each of these simulations we are calculating and throwing away field data that is not of interest. 
However, in this reciprocal or adjoint simulation, every field data point that is calculated is used to evaluate the 
gradient at those respective !′ locations. 

 

 

Figure	  10:	  An	  information	  theory	  viewpoint	  of	  the	  Inverse	  Electromagnetic	  Design	  method,	  which	  cleverly	  avoids	  
intensive	  computation	  for	  unneeded	  data	  and	  parallelizes	  the	  calculations	  for	  all	  necessary	  quantities.	  



In a joint software project with Owen Miller, I developed code to exploit these two key tricks to implement an 
efficient Inverse Electromagnetic Design algorithm. I do not discuss here, but to take advantage of the gradients 
calculated by this Inverse Design algorithm, much of my work was to develop software techniques to represent 
geometries in a completely non-parametric way without using the signed-distance function and the popular Level 
Set Method. This way of representing ‘freeform’ geometries allows for the Inverse Design software to design nearly 
all types of electromagnetic devices. Results from applying this software specifically to Optical Antenna designs 
toward Heat-Assisted Magnetic Recording are discussed in the third section. 

 
2. Heat-Assisted Magnetic Recording (HAMR) 

Less well known than Moore’s Law is Kryder’s Law that states that areal storage density increases exponentially, 
historically, at an even faster rate than that of transistor counts. In magnetic storage, the core of this growth comes 
from shrinking the size of magnetic domains. The simple Scientific American [11] cartoon in Figure 11a shows an 
electromagnet, a magnetic yolk excited by a current loop, floating above concentric rings (tracks) of bits. In reality, 
the surface of a magnetic hard disk consists of sea of randomly sputtered islands of magnetic material (ex: FePt). 
Due to the variation of the sizes and shapes of these magnetic islands, a group of neighboring islands are used 
collectively represent a single bit. In the case of perpendicular recording as shown, each collective domain has a 
static magnetization directed up or down. In order to rewrite data, the electromagnet that flies above the rotating disk 
must produce a magnetic field greater than the magneto-crystalline anisotropy field contained in the domain, the 
strength of which is quantitatively described by the coercivity of the material. The difficulty in scaling areal density 
is that the integral of the anisotropy field per domain correspondingly decreases with smaller sizes of magnetic 
domains. This causes the domains to be thermally unstable, meaning stored data would not be retained. Hence, to 
continue scaling, one must increase the coercivity of the magnetic material and, respectively, increase the magnetic 
field applied by the electromagnet to preserve the functionality of writing data. Recently, current technology has 
reached magnetic field saturation in the metal comprising of the tip of the electromagnetic write-pole, and hence a 
stronger electromagnet cannot be created for an ever-shrinking bit size. Figure 11b shows a cartoon of Heat-Assisted 
Magnetic Recording (HAMR), a technique to use light to heat a single bit to temporarily allow the relatively weak 
electromagnet to successfully change the magnetization direction of the magnetic domains. Considering that the size 
of each bit is on the order of 30 x 30 nm2, delivering intense light to a deep sub-wavelength spot is not a trivial 
endeavor as suggested in this popular-press depiction [11].  Although this level of confinement cannot be achieved 
through conventional optics, it is well within the reach of plasmonics. The dispersion relation for a surface wave on 
a metal-dielectric interface allows for wavelengths less than 10 nm. 

 

Figure	  11:	  Cartoons	  by	  Scientific	  American	  [11]	  of	  (a)	  perpendicular	  recording	  (b)	  heat-‐assisted	  magnetic	  recording.	  

Previous work achieved the focus of optical energy to a 10 nm spot size with gold-coated tapered optical fibers, now 
used in Near-Field Scanning Optical Microscopes (NSOMs). However, tapered fibers are remarkably inefficient, 
and typical optical transmission to a sub-100 nm spot is on the order of 10-5 to 10-7 which severely limits the scan 



rate to 10 µm/s or less [3]. The HAMR data-recording scheme relies on focusing optical energy to locally heat the 
area of a single datum, approximately a hundred square nanometers on the hard disk. In order to write data with a 
scan rate of up to 10 m/s, the optical system must heat the media by 200 K within 1 ns which amounts to ~1 mW 
delivered to a 30 nm spot [4,5]. Hence, for practical diode laser powers, the system must achieve an energy coupling 
efficiency of at least 5% or 105 times the transmission of tapered fiber. This also represents 102 to 104 times more 
power than typical electron-beams, which provide 0.1 to 10 µW [6]. Figure 12 shows a rough comparison of the 
power requirements of various systems that provide highly confined energy delivery. Moreover, the optical system 
for HAMR must be fabricated on the same integrated chip containing the electrical and magnetic elements of the 
hard drive’s read/write head. After all, the optical hot spot and the magnetic hot spot must be perfectly aligned. 

 

Figure	  12:	  HAMR	  requirements	  for	  sub-‐wavelength	  energy	  delivery	  

In Figure 13, we show several optical antenna geometries investigated for application to HAMR [4,5,7,8]. The peg 
or ridge of these antennas would be exposed to the air-bearing surface several nanometers away from the hard disk 
media, such as that shown in Figure 20, with the goal of heating a small volume of the storage layer. Among the 
presented antennas, the planar lollipop or disk antenna is the simplest to fabricate. Seagate’s experimentally 
demonstrated disk antenna is sized to support the quadrupole mode, which requires illumination from two directions 
with a 180o relative phase shift between the two beams. Shown in Figure 14, Seagate demonstrated a planar solid 
immersion mirror [4,5], which is a parabolic dielectric slab with reflective gold-coated edges. Light is coupled into 
this parabolic condenser by two phase-shifted grating couplers. However, this scheme is challenging to realize 
because of the difficulty in controlling the phase of two beams of 800 nm light through a 100 µm slab waveguide. 
Although the C-Aperture [7] and 3-Dimensional Taper [8] can be excited simply via butt coupling a rectangular 
waveguide, fabricating the non-planar antenna itself is very challenging. 

	  
	  

Figure	  13:	  Various	  optical	  antenna	  geometries	  investigated	  for	  HAMR	  [4,5,7,8].	  



 

Figure	  14:	  Seagate’s	  HAMR	  optical	  system:	  a	  parabolic	  slab	  waveguide	  that	  focuses	  with	  two	  beams	  with	  a	  180O	  
relative	  phase	  offset	  and	  excites	  a	  quadrupole	  disk	  antenna	  coupled	  to	  the	  hard	  disk	  media	  [4,5].	  

	  
	  

3. A Simple Solution for Sub-Wavelength Energy Delivery  

This final section discusses results from FDTD electromagnetic simulations and the application of the proposed 
Inverse Electromagnetic Design algorithm to finding a better solution for HAMR. A simpler optical system for 
HAMR may be a planar antenna excited by a rectangular waveguide, as shown in Figures 15 and 16. There are 
many advantages to using a rectangular waveguide versus Seagate’s parabolic condenser: easier coupling from a 
Laser, simpler fabrication and no requirement of phase matching. Another advantage, not shown in this paper’s 
graphics, is that a single waveguide can easily circumnavigate the magnetic write-pole, which is integrated on the 
same chip as the optical system. The magnetic write-pole in Seagate’s HAMR system in Figure 14 actually pokes 
through the middle of the parabolic slab waveguide between the grating couplers and the antenna, partially blocking 
the intended light path. 

The difficulty in designing an optical system that uses a rectangular waveguide is to determine what antenna will 
radiates with a mode profile similar to a waveguide mode. This seemingly simple question has prevented previous 
works from implementing a simple planar antenna but rather studying more complicated shapes like the 3D taper or 
C-Aperture antenna [7,8], neither of which can be made in a simple top-down process. The key design decision for a 
useful planar antenna to couple with the waveguide is to use a large antenna, one that supports a higher-order 
resonance mode like the hexapole or octopole modes. Antennas used by Seagate are commonly a quadrupole. These 
higher-order resonance modes offer opportunity for a very directive antenna and offer a better impedance match 
between the waveguide and the antenna’s high-impedance load, a tiny volume of the hard disk media. The initial 
antenna shapes that were supplied to the Inverse Electromagnetic Design software was a flat 40 nm gold layer with 
the simple pattern of a 650 x 150 nm2 rectangle (antenna arm) and a 50 x 50 nm2

 square (antenna peg or tip), shown 
floating above the waveguides in Figures 15 and 16. 

The shapes of the optical antennas were optimized for both cases of illumination, TE and TM rectangular waveguide 
modes. The Figure of Merit to characterize antenna performance for HAMR was taken as electromagnetic 
absorption in 100 x 100 x 10 nm3 of the storage layer of the hard disk media, whose layers are shown in Figure 20,  



 

Figure	  15:	  A	  simple	  solution	  for	  Heat-‐Assisted	  Magnetic	  Recording.	  The	  proposed	  system	  consists	  of	  a	  planar	  gold	  
antenna	  floating	  20	  nm	  above	  a	  TE	  rectangular	  waveguide.	  The	  magnetic	  write-‐pole	  tip	  is	  modeled	  as	  a	  tapered	  

chunk	  of	  Iron	  approaching	  the	  hard	  disk	  10	  nm	  above	  the	  antenna.	  
	  

 

Figure	  16:	  The	  sister	  design	  to	  that	  in	  Figure	  15,	  an	  optical	  system	  consisting	  of	  a	  planar	  gold	  antenna	  floating	  
above	  a	  TM	  rectangular	  waveguide.	  



divided by the incident power injected into the waveguide mode. The only part of the geometry that was changed 
was the 2D cross-sectional shape of the antenna. In all of the optimizations shown here, the width of the peg, the 
dimension that ultimately determines the optical hotspot dimension, was fixed to 50 nm to allow for better 
comparison with other work. 

Figure 17 shows the iterative evolution of optical antenna shapes for both the TE (above) and TM (below) excitation 
modes. Note that coupling to the TE mode requires an asymmetric antenna. In both cases, an improvement in 
absorption within the optical hotspot of the hard disk’s storage layer increased from approximately 3% to 8%. These 
calculations take into account the effects of a large Iron write-pole whose tip is 10 nm above the top surface of the 
antenna. In Figure 18, cross-sections of the simulated electric field intensity inside the storage layer show the optical 
hotspot of the initial and optimal antennas, excited by the TM waveguide. 

A challenge for all plasmonic devices is that metals are extremely lossy at optical frequencies. The TM-coupled 
antenna absorbs ~30% of the light injected into the waveguide (comparable to the Seagate’s lollipop antenna). 
Interestingly, after the Inverse Design of the antenna, the absorption in the antenna did not increase. Hence, the ratio 
of antenna absorption by hard disk media absorption decreased from approximately 10 to 4, which suggests that a 
less aggressive heatsink may be used to prevent the antenna from melting under operation. 

Figure 19 shows a comparison of the optical antennas studied and designed in this work with other published 
designs. In this comparison, the media absorption efficiency is shown for a range of lengths of the antenna’s tip. In 
all HAMR integrated optical and magnetic chips, the antenna abuts the air-bearing surface, which is exposed by a 
lapping process. Hence, the antenna’s performance for a +/- 10 nm tolerance of this lapping depth is an important 
metric for practical use by the data storage industry. 

 

Figure	  17:	  The	  iterative	  Inverse	  Design	  of	  the	  cross-‐sectional	  shape	  of	  Optical	  Antennas	  for	  HAMR.	  The	  Figure	  of	  
Merit	  that	  is	  optimized	  is	  the	  efficiency	  of	  absorption	  within	  the	  optical	  hotspot	  in	  the	  storage	  layer	  given	  a	  fixed	  
power	  injected	  into	  the	  waveguide.	  The	  optical	  system	  was	  modeled	  in	  Lumerical	  FDTD	  as	  shown	  in	  Figure	  #	  for	  

both	  the	  TE	  and	  TM	  rectangular	  waveguide	  systems.	  



 

Figure	  18:	  The	  initial	  and	  optimal	  shapes	  for	  an	  optical	  antenna	  coupled	  to	  a	  TM	  waveguide.	  On	  the	  right,	  electric	  
field	  intensity	  through	  a	  cross-‐section	  of	  the	  storage	  medium	  is	  shown.	  Absorption	  more	  than	  doubles	  within	  the	  

hotspot	  inside	  the	  storage	  layer,	  while	  the	  antenna’s	  losses	  increase	  marginally.	  
	  

 

Figure	  19:	  A	  comparison	  of	  the	  media	  coupling	  efficiency	  of	  the	  optical	  systems	  based	  on	  various	  optical	  antennas.	  
For	  any	  HAMR	  antenna,	  the	  tip	  of	  the	  antenna	  is	  exposed	  to	  the	  air-‐bearing	  surface	  and	  is	  manufactured	  by	  

lapping	  with	  a	  possible	  tolerance	  within	  +/- 10	  nm.	  



	  
	  

Figure	  20:	  Important	  material	  properties	  for	  HAMR:	  Optical	  antenna	  or	  Near-‐Field	  Transducer	  (NFT),	  air	  bearing	  
surface	  and	  various	  layers	  of	  the	  hard	  disk	  media.	  

 
 

4.  Conclusion  

The proposed Inverse Electromagnetic Design method of Adjoint-Based Gradient Descent is capable of very 
efficiently optimizing non-parametric shapes for many electromagnetic applications. The non-parametric approach 
is important to allow the optimization to exploit every degree of freedom possible and would require orders of 
magnitude more computation with traditional methods of optimization. It is thus capable of designing non-intuitive 
shapes that perform better than those designed by simple hand-analysis or parametric sweeps. Software developed to 
implement the Inverse Design method accompanied with a non-parametric geometry representation was successfully 
applied to the design of Optical Antennas for Heat-Assisted Magnetic Recording. This data-recording scheme 
requires the delivery of significant optical power to sub-wavelength spots with great efficiency, orders of magnitude 
greater than that of gold-coated optical fibers for Near-Field Optical Microscopes. The data storage industry has 
demonstrated very complicated approaches to HAMR, and instead a simple solution for HAMR was proposed here. 
The simple optical system merely consists of a rectangular waveguide and a planar optical antenna, which are easy 
to implement and manufacture. The Inverse Design software successfully designed the shapes of optical antennas 
(coupled to either TE or TM waveguide modes) that deliver ~8% of incident power to a small volume in the hard 
disk media, significantly outperforming previously-studied approaches. 
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