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Abstract – Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems in 

a number of different application areas. In this report, we explore communication-avoiding implementations of 

Geometric Multigrid on Nvidia GPUs. We achieved an overall gain of 1.2x for the whole multigrid algorithm over 

baseline implementation. We also provide an insight into what future GPUs need to have in terms of on chip and 

shared memory for these kinds of algorithms to perform even better. 

 

1. Introduction  

Traditionally, algorithm design focuses on minimizing floating point operations as the key to performance. 

However, as the gap between interprocessor communication and computation continues to grow [8], focus has 

shifted to the problem of reducing data movement between various levels of a memory hierarchy or between 

different nodes on a parallel machine. Thus, the idea of a “communication-avoiding” (CA) algorithm has become 

a concept of critical research importance. CA algorithms may differ from traditional flop-minimizing approaches 

as they asymptotically minimize communication, sometimes at the cost of extra flops. Solving a problem in a CA 

manner may involve a significant amount of algorithmic innovation. 

2. Related Work 

 

We explore the Geometric Multigrid on GPU’s. Bell et al. have explored the performance of algebraic (sparse 

rather than structured) multigrid on GPUs [9]. Sellapa et al. explore constant coefficient elliptical partial 

differential equations on structured grids [11]. Perhaps the most closely related work is that performed in 

Treibig’s, which implements a 2D GSRB on SIMD architectures by separating and reordering the red and black 

elements [10], additionally a 3D multigrid on an IA-64 (Itanium) is implemented via temporal blocking. Our work 

expands on these efforts by providing a unique set of optimization strategies for GPUs.  

 

3. Multigrid methods 

 

Multigrid (MG) methods provide a powerful technique to accelerate the convergence of iterative solvers for 

linear systems and are therefore used extensively in a variety of numerical simulations. Conventional iterative 

solvers operate on data at a single resolution and often require too many iterations to be viewed as 

computationally efficient. Multigrid simulations create a hierarchy of grid levels and use corrections of the 

solution from iterations on the coarser levels to improve the convergence rate of the solution at the finest 



level. Ideally, multigrid is an O(N) algorithm; thus, performance optimization on our studied multigrid 

implementation can only yield constant speedups. 

 

 

 

Figure 2 shows the three phases of the multigrid V-cycle for the solve of Lu
h
 = f

h
. First, a series of smooths 

reduce the error while restrictions of the residual create progressively coarser grids.  

  

            

 

 

The smoother is a conventional relaxation such as Jacobi, successive over-relaxation (SOR), or Gauss-Seidel with 

Red-Black ordering (GSRB) which we used in our study as it has superior convergence properties. The 

restriction of the residual (f
h
 - Lu

h
) is used to define the right-hand side at the next coarser grid. At each 

progressively coarser level, the correction (e.g. u
2h

) is initialized to zero. Second, once coarsening stops (the grid 

size reaches one or terminated for performance when the whole grid fits into cache), the algorithm switches to 

a bottom solver like CG/BiCGStab. But in our case, instead of doing a bottom solver we do a lot of GSRB 

relaxations which is equivalent to a bottom solve. Finally, the coarsest correction is interpolated back up the V-

cycle to progressively finer grids where it is smoothed. 

Fig 1 : Multigrid Overview 

Fig 2 : V-cycle 



Nominally, one expects an order of magnitude reduction in the residual per V-cycle. As each level performs 

O(1) operations per grid point and 1/8 (in 3D) the work of the finer grid, the overall computation is O(N) in the 

number of variables in u. The linear operator can be arbitrarily complex as dictated by the underlying physics, 

with a corresponding increase in runtime to perform the smoother computation. 

 

4. Experimental Setup  

 

We use NVIDIA’s GPUs to do our experiments. NVIDIA provides CUDA as the programming paradigm to write 

programs on GPU. For our experiments we use Dirac GPU cluster at National Energy Research Scientific 

Computing Center (NERSC). Dirac is a 50 node GPU cluster with NVIDIA Fermi chips. Each GPU node also 

contains 2 Intel 5530 2.4 GHz, 8MB cache, 5.86GT/sec QPI Quad core Nehalem processors (8 cores per node) 

and 24GB DDR3-1066 Reg ECC memory. We use Tesla C2050 Fermi GPU whose specifications are given below in 

table 1. 

Form Factor 9.75" PCIe x16 form factor 

# of CUDA Core 448 

Frequency of CUDA Cores 1.15 GHz 

Double Precision floating point 
performance (peak) 

515 Gflops 

Single Precision floating point performance 
(peak) 

1.03 Tflops 

Total Dedicated Memory 3GB GDDR5 

Memory Speed 1.5 GHz 

Memory Interface 384-bit 

Memory Bandwidth 144 GB/sec 

Power Consumption 238W TDP 
 

 

 

 

5. Problem Specification 

The problem size is fixed to 256
3
 nodes on the finest grid. We construct a compact multigrid solver benchmark 

on GPU that creates a global 3D domain partitioned into subdomains sized to proxy those found in real MG 

applications. So, the 256
3 

nodes are divided into sixty four, 64
3 

subdomains. All subdomains must explicitly 

exchange ghost zones with their neighboring subdomains, ensuring an effective communication proxy of MG 

codes. 

We use a single-precision, finite volume discretization of the variable-coefficient operator  L = aαI + b∇β∇ with 

periodic boundary conditions as the linear operator within our test problem. Here a and b are scalar variable 

coefficients while α and β are vectors. Variable-coefficients are an essential (yet particularly challenging) facet 

as most real-world applications demand it. The right-hand side (f) for our benchmarking is sin(πx)sin(πy)sin(πz) 

on the [0,1] cubical domain. The u, f, and α are cell-centered data, while the β’s are face centered. Figure 3 

shows the 3-D stencil representation of the grid.  

Table 1 :- Specifications of Tesla C2050 Fermi GPU 



 

 

We structure a truncated V-cycle where restriction stops at the coarsest level of 4
3
. We fix the number of V-

cycles at 10 and perform two relaxations at each level down the V-cycle, 24 relaxations at the bottom, and two 

relaxations at each level up the V-cycle.  

Our relaxation scheme uses Gauss-Seidel Red-Black (GSRB) which offers superior convergence compared to 

other methods. It consists of two grid smooths per relaxation each updating one color at a time, for a total of 

eight smooths per subdomain per level per V-cycle. The pseudocode for the resultant inner operation is shown 

in Figure 4. A similar calculation is used for calculating the residual. Nominally, these operators require a one 

element deep ghost zone constructed from neighboring subdomain data. However, in order to leverage 

communication aggregation and communication avoiding techniques, we also explore a 4-deep ghost zone that 

enables optimization at the expense of redundant computation. 

The data structure within a level for a subdomain is a list of equally-sized grids (arrays) representing the 

correction, right-hand side, residual, and coefficients each stored in a separate array. Our implementations 

 

  

 

ensure that the core data structures remain relatively unchanged with optimization. Although it has been 

shown that separation of red and black points into separate arrays can facilitate SIMDization [25], our 

benchmark forbids such optimizations as they lack generality and challenge other phases.  

 

Fig 4 : Smoothing Operation 

Fig 3 : 3-D stencil representation of grid 



6. Single Precision Implementation 

 

Baseline :- 

 

The baseline implementation refers to the 1 deep ghost zone implementation. Our 256
3
 grid is divided into 64 

sub-grids of size 64
3
 at finest level. The levels go down till the size of each subgrid is 4

3 
. So with 1 deep ghost 

zones the grid sizes and array sizes at each level are :- 

 

Level Grid Size Array Size 

0 64
3
 66

3
 

1 32
3
 34

3
 

2 163 183 

3 8
3
 10

3
 

4 4
3
 6

3
 

 

 

 

At each level the smoothing operation (figure 3) is done 4 times. After each smoothing the ghost zone cells are 

explicitly communicated with neighboring sub-grids. To do a smoothing operation at level 0, 663 subgrid is 

divided into smaller regions of 18x18x66 grids. Each of these 18x18x66 grids is updated by 18x18 thread block. 

Note that this 18x18 thread block is responsible for updating the inner 16x16x64 block. The mapping is shown 

schematically in figure 5. Each 18x18 thread block sweeps over 66 elements in the z direction in wavefront 

approach. Figure 6 shows the wavefront approach wherein only one smoothing operation is shown. We load in 3 

planes into local register memory and do computation for the central plane of 18X18 points before loading in 

the next plane. The time taken for smoothing at the finest level was 1.03 seconds whereas total time to solve 

multigrid was 1.83 seconds. 

 

 
 

 

 

 

Fig 5 : Division of 66 cubed grid Fig 6 : Wavefront approach for 

baseline implementation 

Table 2 :- Grid and array sizes at different levels  for baseline 



Communication Avoiding (CA) implementation :- 

 

In our CA version we have 4 deep ghost zones for every sub-grid we have. So the sub-grid size at each level is:- 

 

Level Grid Size Array Size 

0 64
3
 72

3
 

1 32
3
 40

3
 

2 16
3
 24

3
 

3 8
3
 16

3
 

4 4
3
 12

3
 

 

 

 

Our smoothing kernel does 4 smooths in one pass. So we save on loading grids 4 times from global GPU memory 

to local memory of each thread. Ideally one should attain a decrease in memory bandwidth consumption for the 

smoothing operation by 0.25 and hence a speedup of 4 times for the smoothing operation only, but we have to 

account for extra ghost zones to be loaded. So even if we attain the maximum possible bandwidth our ideal 

speedup for the smoothing kernel should be (4*66*66*66)/(72*72*72) which is nearly equal to 3x. The time 

consumed in other operations such as restriction and interpolation remains same as we don’t have to deal with 

ghost zones for these operations (Table 4 and 5). 

 

The maximum thread block size on Nvidia GPUs can be 1536. So, we can’t have the entire grid assigned to one 

thread block. We also need to have multiple thread blocks for maximum utilization of GPU cores. While dividing 

the smoothing operation into different thread blocks we have to load ghost zones for each sub-divided portion. 

Hence we also have to pay the price to load more extra memory in our thread blocks to save on inter-thread 

block communication for each of the CUDA thread blocks. For example, at level 0, 72
3 

is divided into small 

nx*ny*72 thread blocks. For nx = 16 and ny = 16 the mapping is as shown below in figure 7. This 16x16x72 block 

is only responsible for updating inner 8x8x64 thread block. So, just to do smoothing on 8x8x72 grid we have to 

load in nearly 4 times the size of this block. There is no other way to save on inter thread block computation in 

CUDA but to do these redundant computations. 

 

For nx = 16 and ny = 16, the amount of global memory accessed at level 0 is 16*16*72*(8*8) (words per 

variable). The baseline implementation accesses 4*66*66*66 in 4 smoothing operations which is fixed.  So, by 

changing nx and ny we can change the ratio of memory accessed in CA versus memory accessed in baseline. 

Figure 8 shows the theoretical ratio (data to be loaded) and the measured ratio of time to solve. The data 

normalized series is the amount of data we have to load in our CA version compared to the baseline 

implementation. This data normalized curve is similar our time normalized curve which shows the measured run 

times. But we could not go beyond 24*24 thread block size. The Fermi GPU which we use has a maximum of 32K 

registers per streaming multiprocessor. To store in all the running planes (wavefront approach) we use about 56 

registers per thread. Also as per CUDA programming guide each thread block is run on a single streaming 

multiprocessor only. So, the maximum number of threads we can have in a thread block are 32K/56 ~ 585. So 

we could only run a maximum of 24*24 = 576 threads in a thread block. The figure however also shows the 

expected data to be loaded for bigger thread block sizes and we believe the run time should also vary according 

to that. The points shown with red dotted lines are hypothetical as such the current GPU’s cannot run such big 

thread blocks. Also the ideal time to run a CA version should be ¼ times that of baseline. 

 

Table 3 :- Grid and array sizes at different levels  for CA 



 

 
 

 

 

 

 

Fig 7 : Mapping of grid onto thread blocks 

Fig 8 : Results and Prediction 



 

Table 4 and Table 5 show our best CA implementation and baseline time analysis for different operations at 

different levels respectively. We were able to decrease the total smoothing time by 1.6x (1.1861/0.7425). The 

time for other kernels (residual, restriction and interpolation) is almost same within the errors of experiment  

  

level 0 1 2 3 4 

 size 72^3 40^3 24^3 16^3 12^3 Total 

smooth (s) 0.6287 0.0774 0.0112 0.0063 0.0188 0.7425 

avoiding RAW (s) 0.0549 0.0100 0.0026 0.0011 0.0000 0.0687 

residual (s) 0.1158 0.0143 0.0022 0.0006 0.0000 0.1328 

restriction (s) 0.0112 0.0019 0.0006 0.0004 0.0000 0.0141 

interpolation (s) 0.0232 0.0036 0.0009 0.0005 0.0000 0.0283 

communication (s) 0.3101 0.1162 0.0625 0.0416 0.0792 0.6095 

Total (s) 1.0890 0.2134 0.0775 0.0494 0.0980 1.5272 

 

 

 

level 0 1 2 3 4 

 size 66^3 34^3 18^3 10^3 6^3 Total 

smooth (s) 1.0343 0.1062 0.0191 0.0056 0.0209 1.1861 

residual (s) 0.1149 0.0129 0.0018 0.0005 0.0000 0.1301 

restriction (s) 0.0103 0.0017 0.0006 0.0004 0.0000 0.0129 

interpolation (s) 0.0218 0.0035 0.0009 0.0005 0.0000 0.0266 

communication (s) 0.2305 0.0833 0.0440 0.0327 0.0804 0.4710 

Total (s) 1.4118 0.2075 0.0663 0.0397 0.1014 1.8268 

 

 

 

level 0 1 2 3 4 

Raw CA Gflops 34.91 45.37 60.84 27.88 40.85 

Useful CA Gflops 13.34 13.54 11.70 2.60 1.31 

Baseline (Gflops) 8.11 9.87 6.86 2.93 1.23 

 

 

level 0 1 2 3 4 

Raw CA GB/s 43.21 48.78 50.55 26.63 22.59 

Useful CA GB/s 24.31 33.87 50.55 26.63 22.59 

Baseline GB/s 45.53 60.36 50.02 29.25 10.15 

 

 

runs as all these  operations are exactly identical for both the versions. The avoiding RAW time in the CA version 

depicts the time we have to copy back our data to the original grid from a redundant grid used for concurrency 

purposes while doing 4 smooths in a GPU kernel. The communication time refers to the explicit exchange of 

ghost zones between different subgrids. The communication time is a bit more in the CA version because we 

have to communicate 4 deep ghost zones compared to 1 deep ghost zones in case of baseline version. Overall 

Table 4 :- Time spent at different stages by CA version 

Table 5 :- Time spent at different stages by baseline version 

Table 6 :- Gflops for the smoothing operation 

Table 7 :- Bandwidth utilization 



we were able to make some improvement in the total running time of multigrid solve. Table 6 shows the floating 

point operations done per second in the smoothing kernel of both the CA and baseline version. Raw flops 

include the operations done on ghost zones. The useful flops are the flops done on actual grid points divided by 

two because we commit only one of either red or black at each point. With other stages forming a significant 

time for the overall multigrid solve, even if we achieve ideal speedup for the CA version we can reduce the 

smoothing time to 0.395 sec (1.1861/3)  and the total time to solve the multigrid to 1.18 sec (instead of 1.5272 

seconds). So, the net speedup in the ideal case would be around 1.55x (1.8268/1.18) only. With limited 

resources on GPU, we achieve an overall speedup of 1.2x only. Note that our baseline implementation is itself 

optimized in the sense that it uses a wavefront approach to do the smoothing operation. Table 7 shows the 

bandwidth utilization of the smoothing operation at different levels. The peak bandwidth of the machine we use 

is 97.6 GB/s with ECC on.  

 

7. Comments 

We also explored the Double Precision implementation but with so many registers required in the single 

precision implementation itself, the DP version performed very poorly. Table 7 shows the run time of double 

precision CA version. One would expect to see a two-fold increase in runtime (due to doubling of memory to be 

level 0 1 2 3 4 

 size 72^3 40^3 24^3 16^3 12^3 total 

smooth (s) 3.360116 0.472085 0.069302 0.009616 0.027259 3.938378 

avoiding RAW (s) 0.04511 0.006516 0.001823 0.000933 0 0.054381 

residual (s) 0.092837 0.013105 0.002034 0.000564 0 0.10854 

restriction (s) 0.010477 0.001715 0.000547 0.000366 0 0.013105 

interpolation (s) 0.025945 0.003732 0.000712 0.000461 0 0.03085 

communication (s) 0.176513 0.064105 0.034783 0.023547 0.050514 0.349462 

Total (s) 3.665889 0.554742 0.107379 0.034553 0.077791 4.440354 
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Table 7 :- Time spent at different stages by double precision CA version 



loaded), but the run time of this double precision version is nearly three times that of single precision 

implementation due to register spilling on GPU cores. We speculate that if in future GPUs more registers are 

available to address this issue, then our DP version would also perform well. Also for such multigrid algorithms 

and higher order stencil operations GPUs need to have much large memory space in terms of local registers and 

some mechanism to tackle inter-thread block communication to save redundant memory operations. Figure 9 

shows the working set of data for CPU and GPU for different ghost zones. The working set is different because 

for the GPU we have to load in extra elements for each thread block to avoid inter-thread block communication. 

We don’t have to deal with that issue on a CPU. If we try this CA approach on a Sandy Bridge CPU which has 20 

MB of L3 cache, almost all data fits in L3 cache. Moreover the L2 cache (256 KB) and L1 cache (64 KB) are also 

very large compared to what GPU’s have (48 KB of shared + L1 cache) per streaming multiprocessor. This shows 

GPU’s are starved for on-chip memory and for writing efficient higher order stencil algorithms GPU’s need to 

have a larger set of on-chip memory. 
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