
A preliminary analysis of Cyclops Tensor Framework

Edgar Solomonik
Jeff Hammond
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-29

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-29.html

March 9, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A preliminary analysis of Cyclops Tensor Framework

Edgar Solomonik
Univ. of California, Berkeley

Department of EECS
solomon@eecs.berkeley.edu

Jeff Hammond
Argonne National Lab

Leadership Computing Facility

James Demmel
Univ. of California, Berkeley

Department of EECS

ABSTRACT
Cyclops (cyclic-operations) Tensor Framework (CTF) 1 is
a distributed library for tensor contractions. CTF aims to
scale high-dimensional tensor contractions done in Coupled
Cluster calculations on massively-parallel supercomputers.
The framework preserves tensor symmetry by subdividing
tensors cyclically, producing a highly regular parallel de-
composition. The parallel decomposition effectively hides
any high dimensional structure of tensors reducing the com-
plexity of the distributed contraction algorithm to known
linear algebra methods for matrix multiplication. We also
detail the automatic topology-aware mapping framework de-
ployed by CTF, which maps tensors of any dimension and
structure onto torus networks of any dimension. We employ
virtualization to provide completely general mapping sup-
port while maintaining perfect load balance. Performance
of a preliminary version of CTF on the IBM Blue Gene/P
and Cray XE6 supercomputers shows highly efficient weak-
scaling, demonstrating the viability of our approach.

1. INTRODUCTION
Coupled Cluster (CC) is a computational method for com-

puting an approximate solution to the time-independent
Schrödinger equation of the form

H|Ψ〉 = E|Ψ〉,

where H is the Hamiltonian, E is the energy, and Ψ is the
wave-function. In CC, the approximate wave-function is de-
fined in exponential form

|Ψ〉 = eT̂ |Φ〉

where Φ〉 is the Slater determinant. For an N -electron sys-

1Software and documentation publicly available under a
BSD license: http://www.eecs.berkeley.edu/~solomon/
cyclopstf/index.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

tem the Slater determinant is

|Φ〉 =
1√
N !
|φ1φ2...φN |〉.

The T̂ operator in CC has the form

T̂ = T̂1 + T̂2 + T̂3 . . .

where T̂n is a 2nth rank (dimension) 2 tensor represent-

ing nth level electron excitations. Each T̂n is computed
via a series of tensor contractions on tensors of rank r ∈
{2, 4, . . . 2n}. The specific tensor contractions depend on
the variation of the Coupled Cluster method and can be
derived differently. Calculating only T̂1 and T̂2 gives the
method commonly known as CCSD (Coupled Cluster Sin-

gles and Doubles). Additional calculation of T̂3 gives the

CCSDT (T - triples) method and T̂4 gives the CCSDTQ (Q
- quadruples) method.

Computationally, tensor contractions can be reduced to
matrix multiplication via index reordering (transposes). This
approach is efficient and commonly used for contractions
on fully dense tensors. However, the tensors which arise
in Coupled Cluster methods usually have high-dimensional
structure. In particular, permutational symmetry or anti-
symmetry among a set of indices implies that any reordering
of the index set within the tensor will give the same value
(with a potential sign change for anti-symmetry). For ex-
ample, given a 4D tensor A with permutational symmetry
among indices (i, j, and l but not k), we know

A[i, j, k, l] = A[i, l, k, j] = A[j, i, k, l] = A[j, l, k, i]

= A[l, i, k, j] = A[l, j, k, i].

Permutational symmetry is typically physically motivated
in Coupled Cluster, where matrix or tensor elements are
representative of interchanges among electrons or orbitals,
which may have symmetric or anti-symmetric effects on the
energy.

In general, permutational symmetry of d indices, implies
that only one of every d! values in the full tensor is unique.
This implies that it suffices to store only 1/d! of the tensor
data. In higher-order methods such as CCSDT and CCS-
DTQ, which have 3-dimensional and 4-dimensional symme-
tries as well as multiple symmetric index groups in some
tensors, this memory preservation becomes pervasive. Fur-
ther, any symmetry preserved within a contraction (e.g. the
output C contains indices that were symmetric in operands

2We will use the term dimension to refer to tensor rank or
order.

A or B), allows for a reduction in computational cost with
respect to a non-symmetric contraction.

The challenge in exploiting high-dimensional symmetry is
that the contractions can no longer be trivially reduced to
matrix multiplication. Further, since the number of possible
as well as encountered (partial) permutational symmetries
grows exponentially with tensor dimension, it is difficult to
generalize and tiresome to specialize. As a result, most im-
plementations exploit tensor symmetry to a limited extent
and perform redundant work and communication by unpack-
ing or padding tensors.

We present a general parallel decomposition of tensors
which exploits any partial or full tensor symmetry of any
dimension, within any contraction. Our method performs
minimal padding and has a regular decomposition that al-
lows the algorithm to be mapped to a physical network
topology and executed with no load imbalance. Along with
the algorithms, we detail a preliminary implementation of
Cyclops Tensor Framework (CTF), a distributed tensor con-
traction library suitable for symmetric high-dimensional ten-
sors. On 1,536 nodes of a Cray XE6 supercomputer, the par-
allel decomposition used by CTF maintains 50% efficiency
for symmetric 4D tensors and 25% efficiency for symmet-
ric 8D tensors with respect to the peak theoretical floating-
point performance. By exploiting symmetry for these ten-
sors, the memory footprint is reduced by a factor of 4 for
each 4D symmetric tensor, and by a factor of 576 for the 8D
symmetric tensors (symmetry also reduces computational
cost with respect to a nonsymmetric contraction by a large
factor, but only for certain contractions).

The main contributions of Cyclops Tensor Framework are

• a symmetry-preserving algorithm for parallel tensor
contractions

• a completely load balanced regular communication with
minimal padding requirements

• an automatic topology-aware mapping framework for
symmetric tensor contractions

• highly optimized tensor redistribution kernels

• an efficient implementation of virtualized mapping

In Section 2, we detail previous and related work. In Sec-
tion 3, we describe the parallel tensor decomposition algo-
rithm. We explain the virtualization and mapping frame-
work in Section 4. Finally, we give preliminary performance
results and analysis on IBM Blue Gene/P and Cray XE6
architectures in Section 5 and conclude in Section 6.

2. PREVIOUS WORK
We provide an overview of existing applications and known

algorithms for distributed memory Coupled Cluster and ten-
sor contractions. We also discuss parallel numerical linear
algebra algorithms, in particular 2.5D algorithms [21], which
will serve as a design objective and integrand of Cyclops
Tensor Framework.

2.1 NWChem
NWChem [16] is a computational chemistry software pack-

age developed for massively parallel systems. NWChem in-
cludes implementations of Coupled Cluster and tensor con-
tractions, which are of interest in our analysis. We will detail

the parallelization scheme used inside NWChem and use it
as a basis of comparison for the Cyclops Tensor Framework
design.

NWChem uses the Tensor Contraction Engine (TCE) [5,
3, 9], to automatically generate sequences of tensor contrac-
tions based on a diagrammatic representation of Coupled
Cluster schemes. TCE attempts to form the most efficient
sequence of contractions while minimizing memory usage of
intermediates (computed tensors that are neither inputs nor
outputs). We note that TCE or a similar framework can
function with any distributed library which actually exe-
cutes the contractions. Thus, TCE can be combined with
Cyclops Tensor Framework since they are largely orthog-
onal components. However, the tuning decisions done by
such a contraction-generation layer should be coupled with
performance and memory usage models of the underlying
contraction framework.

To parallelize and execute each individual contraction,
NWChem employs the Global Arrays (GA) framework [17].
Global Arrays is a partitioned global-address space model
(PGAS) and allows processors to access (fetch) data which
may be laid out physically on a different processor. Data
movement within GA is performed via one-sided commu-
nication, thereby avoiding synchronization among commu-
nicating nodes, while fetching distributed data on-demand.
NWChem performs different block tensor sub-contractions
on all processors using GA as the underlying communication
layer to satisfy dependencies and obtain the correct blocks.
Since this dynamically scheduled scheme is not load bal-
anced, NWChem uses dynamic load balancing among the
processors. Further, since distribution is hidden by GA, the
communication pattern is irregular and possibly unbalanced.
Cyclops Tensor Framework attempts to eliminate the scal-
ability bottlenecks of load imbalance and irregular commu-
nication, by using a regular decomposition which employs a
structured communication pattern well-suited for torus net-
work architectures.

2.2 2.5D algorithms
Since tensor contractions are closely related to matrix

multiplication (MM), it is of much interest to consider the
best known distributed algorithms for MM. Ideally, the per-
formance achieved by any given tensor contraction should
approach the efficiency of matrix multiplication, and gener-
ally the latter is an upper-bound. In particular, we would
like to minimize the communication (number of words of
data moved across the network by any given processor) done
to contract tensors. Since any tensor contraction can be
transposed and done as a matrix multiplication, a lower
bound on communication for MM is also valid for tensors.

Given a matrix multiplication of square matrices of dimen-
sion n on p processors, with M words of memory on each
processor, it is known that some process must communicate
at least

W = Ω

(
n3

p ·
√
M

)
words of data [13, 4, 12]. If M = Ω(n2/p), so the matrices
just fit in memory the communication lower bound is

W2D = Ω

(
n2

√
p

)
.

We label this lower bound as W2D because it is achieved

by algorithms that are most naturally described on a 2D
processor grid. In particular, blocked Cannon’s algorithm [7]
and SUMMA [22] achieve this communication bandwidth
lower bound. We can also see that, assuming the initial
data is not replicated and load-balanced, there is an absolute
(memory-size insensitive) lower-bound [2],

W3D = Ω(M) = Ω

(
n2

p2/3

)
.

This communication lower-bound can be achieved by per-
forming 3D blocking on the computational graph rather than
simply distributing the matrices. An old algorithm known
as 3D matrix multiplication has been shown to achieve this
communication cost [8, 1, 2, 14].

However, in practice, most applications run with some
bounded amount of extra available memory. 2.5D algo-
rithms minimize communication cost for any amount of phys-
ical memory. In particular, given M = O(cn2/p), where

c ∈ [1, p1/3], the communication lower bound is

W2.5D = Ω

(
n2

√
cp

)
.

Using adaptive replication this communication lower-bound
can be achieved for matrix multiplication as well as other
dense linear algebra kernels via the algorithms presented
in [21]. Its also important to note that 2.5D algorithms
can map very efficiently to torus network architectures as
demonstrated in [20]. We would like to achieve the same
communication costs as well as retain good topological prop-
erties in the decomposition of tensors.

3. PARALLEL DECOMPOSITION OF SYM-
METRIC TENSORS

To consider the computational and communication costs
of tensor contractions we will define a model tensor contrac-
tion problem. We consider a partially-symmetric tensor of
dimension d with all sides of length n. Both the operands
and the result have 2 partial-symmetries among each half
(d/2) of their indices. We can consider the cost of calculat-
ing a contraction over d/2 indices, in fully packed form. We
can reduce the cost of the full contraction to some multiple
of the cost of a contraction where all unpacked elements are
assumed to be zero (to compute the full symmetric contrac-
tion might require one or multiple of such contractions). A
4D example of such a contraction looks like

Ck≤l
a≤b =

∑
ij

Ai≤j
a≤b ·B

k≤l
i≤j .

We study this type of contraction because it has the com-
bined complexity of high-dimensional symmetry as well as
partial-symmetry. Further, this contraction can actually be
folded into a matrix multiplication, so we can conveniently
analyze the overhead of high-dimensional blocking with re-
spect to the completely optimal approach of matrix multi-
plication (which is of course not suitable for general sym-
metries). In this model contraction, the packed size of each
tensor per processor is

S(n, d, p) = Θ

(
nd

p · ((d/2)!)2

)
and the total number of multiplications (flops which must

be performed) per processor is

F (n, d, p) = Θ

(
n3d/2

p · ((d/2)!)3

)
.

Efficient parallelization as well as sequential execution re-
quires blocking of computation. For matrix multiplication,
it is well known that blocking the matrices gives a communication-
optimal algorithm when no extra memory is available. Block-
ing the computational graph gives communication-optimality
when each processor has an unlimited amount of memory.
Generally, the blocking should be done to minimize the surface-
area to volume ratio of each computational block. For ma-
trix multiplication of square matrices, this is achieved by
picking out square blocks. For dense tensor contractions, it
is ideal to pick out blocks for which the accumulated block-
size of all dimensions which are contracted over is the same
or near the accumulated block-size of all dimensions which
are not contracted over. If half the indices are being con-
tracted over (as in our model contraction), then to achieve
optimality, it suffices to pick the same block-size in each
dimension.

3.1 Padding overhead of blocking
Tensor symmetry complicates the process of blocking, since

a symmetric packed tensor is not decomposable into equiv-
alent contiguous blocks. One approach is to decompose the
packed tensor into full and partially-full blocks and deal
with each case-by-case. However, it becomes very difficult to
maintain and specialize for each type of partially-full block
that arises given some blocking of a tensor of some symme-
try. Further, computation on partially-full blocks produces
load-imbalance and an irregular decomposition. Therefore,
to greatly simplify implementation, partially-full blocks are
typically padded with zeros and treated as fully dense blocks.
A block size of b implies that O(b) padding is required along
each dimension.

In matrix computations, padding is almost always a triv-
ially low-order cost but in tensors of high-dimension it can
incur a significant computational overhead. Given a padding
thickness of one in each dimension, the padding has a total
size proportional to the surface area of the tensor. The sur-
face area of a tensor is one-dimension less than the tensor
itself, so the surface-area to volume ratio grows with respect
to tensor dimension. In particular, for our model problem,
given blocking (padding) of size b, the computational cost
grows in proportion to

Fpadded(n, d, p, b) = O

(
b3d/2

(1 + n
b

)3d/2

p · ((d/2)!)3

)

= O

(
n3d/2

p · ((d/2)!)3
+

(3d/2)b · n3d/2−1

p · ((d/2)!)3
+ . . .

)
= O ((1 + (3d/2)b/n) · F (n, d, p)) .

Thus, padding can increase the computation performed sig-
nificantly if b ≈ n.

3.2 Cyclic distribution of blocks
A blocked distribution implies each processor owns a con-

tiguous piece of the original tensor, while a cyclic distribu-
tion implies that each processor owns every element of the
tensor with a defined cyclic phase. In a cyclic distribution,
a cyclic phase defines the periodicity of the set of indices

Figure 1: A cyclic decomposition of a 3D symmetric tensor into symmetric blocks on a 4-by-4-by-4 topology.

whose elements are owned by a single processor. For exam-
ple, if a vector is distributed cyclically among 4 processors,
each processor owns every fourth element of the vector. For
a tensor of dimension d, we can define a set of cyclic phases
(p0, p1, · · · , pd−1), such that processor Pi0,i1,··· ,id−1 owns all
tensor elements whose index (j0, j1, · · · , jd−1) satisfies

jk = ikmod(pk)

for all k ∈ {0, 1, · · · , d}. A block-cyclic distribution general-
izes blocked and cyclic distributions, by distributing contigu-
ous blocks of any size b cyclically among processors. Cyclic
decompositions are commonly used in parallel numerical lin-
ear algebra algorithms and frameworks such as ScaLAPACK
(block-cyclic) [6] and Elemental (cyclic) [18].

Like matrix multiplication, tensor contractions are invari-
ant with respect to a similarity permutation on A and B,

PCPT = PA ·BPT = (PAPT) · (PBPT)

This invariance means that we can permute the ordering of
rows in columns in a matrix or slices of a tensor, so long as
we do it to both A and B and permute PCPT back to C.
This property is particularly useful when considering cyclic
and blocked distributions of matrices and tensors. We can
define a permutation, P , that permutes a tensor elements
from a blocked to a cyclic layout. Conversely, we can run
an algorithm on a cyclic distribution and get the answer in
a blocked distribution by applying a permutation, or run
exactly the same algorithm on a blocked distribution and
get the cyclic answer by applying a permutation.

The main idea behind Cyclops Tensor Framework is to
employ a cyclic distribution to preserve symmetry in sub-
tensors, minimize padding, and generate a completely reg-
ular decomposition, susceptible to classical linear algebra
optimizations. Each processor owns a cyclic sub-tensor,
with a symmetric choice of cyclic phases in each dimen-
sion. By maintaining the same cyclic phase in each dimen-
sion, the algorithm insures that each the sub-tensor owned
by any processor has the same symmetry and structure as
the whole tensor (Figure 1). Further, minimal padding on
each sub-tensor insures that every sub-tensor has the exact
same dimensions, now only with different values. Figure 2
demonstrates the difference in padding (or load-imbalance)
required to store exactly the same sub-tensors on each pro-
cessor. It is evident that only a cyclic layout can preserve
symmetry as well as maintain load balance. Overall the
amount of padding required for CTF, is equivalent to setting
the block size b = p1/d, since we must add up the padding
on each processor.

3.3 Communication cost
Since the dense version of this contraction is equivalent

to multiplication, we can employ the matrix multiplication
communication lower bound. In particular, given any block
of data of each of A, B, and C of size O(M), no more than

Fblk(M) = O(M3/2)

meaningful computational work can be performed [13, 4,
12]. Therefore, the amount of communication required to
perform the contraction can be lower bounded by the num-
ber of blocks (of size equal to processor memory) needed to
perform the contraction

W (n, d, p,M) = Ω(F (n, d, p) ·M/Fblk(M))

= Ω

(
n3d/2

p ·M1/2 · ((d/2)!)3

)
.

If we assume the tensor is the same asymptotic size as the
available memory, the block size is

M = S(n, d, p)

= Θ

(
nd

p · ((d/2)!)2

)
,

which gives us a lower bound on the number of words moved
as a function of n, d and p,

W (n, d, p) = Ω

(
nd

√
p · ((d/2)!)2

)
.

3.3.1 Communication in Cyclops Tensor Framework
For this model tensor contraction, the number of words

moved by Cyclops Tensor Framework (CTF) the size of a
packed tensor block, multiplied by the number of times it
is broadcast during the contraction. The CTF decompo-
sition employs a d-dimensional processor grid, where each
edge-length of the processor grid is p1/d. The algorithm em-
ployed would be a blocked recursive SUMMA (d/2 levels of
recursion, one per contraction index), with each block of size
equal to the packed tensor size per processor. The number
of words communicated per processor is then

WCTF(n, d, p) = O(S(n, d, p) · (p1/d)d/2)

= O

(
nd

√
p · ((d/2)!)2

)
.

So the amount of data sent is optimal. We note that this is
not necessarily the case for any given tensor contraction, but

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

Figure 2: Padding or load-imbalance in tensor mapped with different block-sizes.

is true for the model problem. In general, CTF can have a
small theoretical communication overhead (with respect to
the lower-bound) if the flop-to-byte ratio in the symmetric
contraction is smaller than the flop-to-byte ratio of a dense
matrix multiplication.

The only other significant communication costs in Cyclops
Tensor Framework are the all-to-all communication neces-
sary for tensors redistribution. Since this communication
requires no processor to send more words than its local sub-
tensor size, it is a low order cost with respect to the con-
traction.

3.3.2 Communication in NWChem
In NWChem, a tile-size b is selected in each dimension of

the tensors. For each tile sub-contraction, the data is re-
trieved via one-sided communication from its location. In
our model contraction, tiles with edge-length of b in each di-
mension can be contracted by performing b3d/2 flops. There-
fore, the amount of data communicated by each processor
is

WNW(n, d, p) = O

(
n3d/2

p · b3d/2 · ((d/2)!)2
· bd
)

= O

(
n3d/2

p · bd/2 · ((d/2)!)2

)
.

To achieve communication optimality, this block-size must
be picked to be b = Ω(n/p1/d),

WNW(n, d, p) = O

(
n3d/2

p · (n/p1/d)d/2 · ((d/2)!)2

)
= O

(
nd

√
p · ((d/2)!)2

)
.

However, picking this block size implies that NWChem needs
to perform a large amount of padding, increasing the com-
putational cost by a factor of

FNW-padded(n, d, p) = O
(

(1 + (3d/2)/p1/d) · F (n, d, p)
)
.

This factor grows with tensor dimension and has a significant
overhead for tensors of high dimension in practice. On the
other hand, CTF has a padding computational overhead of

FCTF-padded(n, d, p) = O
(

(1 + (3d/2)p1/d/n) · F (n, d, p)
)
.

Since n grows proportionally to p1/d with both p as well as
d, this overhead is significantly smaller.

4. TOPOLOGY-AWARE MAPPING
To preserve symmetry in sub-tensor of a tensor we must

ensure that the parallel decomposition uses the same cyclic
phase among symmetric dimensions of that tensor. However,
simultaneously its necessary to enforce the same cyclic phase
among a dimension of two tensors which is being contracted
over (shared index). Such parameters severely limited the
possible block decompositions that are available. However,
we would like to have the flexibility of mapping onto any
physical topology. This motivates a virtualized mapping
of the tensors, which overdecomposes the tensors and then
maps the blocks onto the processing grid.

4.1 Virtualized mapping scheme
Cyclops Tensor Framework performs virtualization to cre-

ate a level of indirection between the task decomposition and
the physical network topology. We provide a virtualization
scheme that is guaranteed to generate a load balanced de-
composition for any given tensor contraction (tensors of any
symmetry, any dimension, and any index map defining the
contraction). Further, we parameterize the virtual decompo-
sition so that it is effectively a multiple of the processor grid,
which insures that each processor owns the same number of
sub-blocks. This scheme effectively reduces the problem of
mapping a tensors with symmetry to mapping padded ten-
sors with no symmetry. For example, in Figure 3 the 3D
virtualized mapping is decomposed among the processors so
that each processor is contracting a matrix of symmetric
tensors with a vector of symmetric tensors into a matrix of
symmetric tensors. The mapping is defined so that by the
time the distributed contraction algorithm is executed, it
need not be aware of the symmetry of the sub-tensors but
only of their size.

We do not use a dynamically scheduled virtualization ap-
proach such as the overdecomposition embodied by the
Charm++ runtime system [15]. Instead, we define the vir-
tualization so that its dimensions are a multiple of the phys-
ical torus dimensions and generate a regular mapping. This
approach maintains perfect load-balance and achieves high
communication and task granularity by managing each vir-
tualized sub-grid explicitly by a single process.

Figure 3: Virtualization as used in CTF to perform contractions.

A tensor mapping decomposed by Cyclops Tensor Frame-
work maintains the following properties

• If two indices i, j belong to a tensor and have symmetry
(i ≤ j), they must be mapped with the same cyclic
phase.

• If a contraction index i belongs to both tensors A and
B, the i-index dimension of A and B must be mapped
with the same cyclic phase and not along the same
physical processor grid dimension.

• If a contraction index i belong to either A and C or B
and C the i-index dimension of A and C or B and C
must have the exact same mapping.

• Each tensor is distributed or along the entire processor
grid.

Obeying the above mapping conditions allows for efficient
generation of a symmetry-oblivious contraction algorithm
that computes the solution following the redistribution. The
generated distributed contraction algorithm simply applies
known matrix multiplication distributed algorithms recur-
sively for each index which is contracted over. Since we
do not allow dimensions of A and B which are contracted
over to be mapped onto the same physical dimension, they
must form a 2D decomposition (with one or both dimen-
sions potentially virtualized). Further, since each index of
C is mapped onto the same dimension as a corresponding
index of A or B, we know that the answer will end up in the
right place.

4.2 Mapping heuristics
Currently, Cyclops Tensor Framework assumes the phys-

ical topology is a torus and attempts to find the best vir-
tualized mapping for the given torus. No assumptions are
made about the dimension of the torus or lengths of any
torus dimension. Further, the torus is folded in all possible
ways that maintain the original dimensional ordering (this
assumption is not very restricting and is made for conve-
nience). If no topology is specified, the processor count is
fully factorized p = p1 · p2 · . . . · pd, to form a d-dimensional
torus processor grid with edge lengths p1, p2 . . . pd. This

fully unfolded processor grid is then folded back-up so as to
generate the largest amount of different potential decompo-
sitions.

Once a tensor is defined or a tensor contraction is in-
voked, CTF searches through all topologies and selects the
best mapping which satisfies the constraints. The search
through mappings is done entirely in parallel among proces-
sors then the best mapping is selected across all processors.
The mapping logic is done without reading or moving any
of the tensor data and is generally composed of integer logic
that executes in a trivial amount of time with respect to the
contraction. Once a mapping is decided upon, the tensors
are redistributed.

When trying to select a mapping of a tensor or of a con-
traction of tensors onto a physical processor grid, a greedy
algorithm is used. The longest tensor dimension is mapped
along the longest dimension of the processor grid. For each
such mapping of a dimension, CTF enforces all other con-
straints by mapping all other symmetric or related dimen-
sions to available physical or virtual dimensions with the
same phase. For contractions, dimensions which are con-
tracted over are mapped first and combined together span
the entire processor grid (this is necessary to insure A and B
are distributed over the whole processor grid). The remain-
ing dimensions (dimensions which are not contracted over
and belong to C) are mapped so that C is distributed over
the whole processor grid, again insuring no constraints are
violated. Enforcing the constraints is done by iterating over
all dimensions and increasing virtualization when necessary.

The best mapping can be selected according to many con-
ditions, such as whether a redistribution of data is required,
how much memory the distributed algorithm will use, how
much virtualization is required and so forth. The current
heuristic is to maximize the amount of computational work
done in each sub-contraction. This heuristic effectively max-
imizes the volume of computation in each block, which is a
condition that ensures communication optimality.

4.3 Tensor redistribution
Each contraction can place unique restrictions on the map-

ping of the tensors. Therefore, to satisfy each new set of
restrictions the mapping must change and tensor data must

be reshuffled among processors according to the new map-
ping. Since the redistribution can potentially happen be-
tween every contraction, an efficient implementation is nec-
essary. However, the data must first be given to CTF by the
user application. We detail a scheme for input and output of
data by key-value pairs, as well as a much more efficient algo-
rithm for mapping-to-mapping tensor redistribution. Since
Coupled Cluster and most other scientific applications are
iterative and perform sequences of operations (contractions)
on the same data, we assume input and output of data will
happen less frequently than contractions.

To support general and simple data entry, CTF allows the
user to write tensor data bulk-synchronously into the tensor
object using key-value pairs. This allows the user to write
data from any distribution that was previously defined, and
to do so with any desired granularity (all data at once or by
chunks). Redistribution happens by calculating the cyclic
phase of each key to determine which processor it belongs
on. Once counts are assembled the data is redistributed
via all-to-all communication. After this single redistribu-
tion phase, each process should receive all data belonging to
its sub-tensors, and can simply bin by virtual block then sort
it locally to get it into the right order. This key-value bin-
ning scheme is essentially as expensive as a parallel sorting
algorithm.

When transitioning between distributions, which we ex-
pect to happen much more frequently than between the ap-
plication and user, we can take advantage of existing knowl-
edge about the distribution. To be more precise, such a
redistribution must manipulate the local tensor data, which
is laid out in a a grid of virtual blocks, each of which is
a symmetric tensor of the same size. The dimensions and
edge-lengths of the virtual and physical processor grid can
change between mappings and therefore must be accounted
for during redistribution. CTF supports such redistributions
generally using the following algorithm

1. Iterate over local tensor data and compute the virtual
sub-tensor destination of each element.

2. Consider the assignment of virtual sub-tensors to phys-
ical processes to compute how many elements are re-
ceived by each process into each of its virtual buckets.

3. Iterate over sub-tensor data and the virtual grid (in
inverse hierarchical order with respect to the data) so
as to preserve global element order, and move each
element to the correct send buffer.

4. Exchange the data among processes with all-to-all com-
munication.

5. Iterate over the new sub-tensor data and the new vir-
tual grid (again in inverse hierarchical order with re-
spect to data), preserving global element order, and
reading out of received buffers (which are accordingly
ordered).

The above redistribution algorithm is complex due to the
necessity of maintaining global element order within the
buffers. By maintaining global element ordering, we elim-
inate the need for keys, since this ordering is preserved in
the old and the new mapping.

After threading the redistribution algorithm with OpenMP,
we found the integer logic running time to be negligible

with respect to contraction time. Threading the redistri-
bution kernel required iterating over different parts of the
sub-tensor when writing data to and from buffers. Over-
all, the redistribution kernels are the most complex part of
Cyclops Tensor Framework implementation, because they
must explicitly and efficiently deal with the representation
of the symmetric sub-tensors as well as the virtualization.
However, after the redistribution, the parallel contraction
kernel only takes into account the virtualized grid, while
the sequential contraction kernels need to only consider the
sub-tensor, creating a vitally important software engineering
separation.

5. PARALLEL PERFORMANCE
Cyclops Tensor Framework is still under development but

much of the infrastructure is in-place and functional. The
framework can already decompose tensors of dimension at
least up to 8 (though no dimensional limit exists in the
code) with partial or full symmetries of at least up to 4
indices. However, no optimized sequential symmetric con-
traction kernels have been coupled with CTF yet. Further,
some optimizations, such as adaptive replication are not yet
in-place. We give scalability results for the model contrac-
tion problem, using matrix multiplication as the sequential
kernel but employing high-dimensional of parallel decompo-
sitions of symmetric tensors of dimension 4,6, and 8. The
framework achieves highly efficient weak-scaling on multiple
supercomputer architectures demonstrating the viability of
our approach.

5.1 Implementation
Much of the logic and kernels contained by CTF has been

described in the previous sections. Here, we summarize and
describe the overall work-flow of the contraction library. At
a high-level CTF has the following execution mechanism,

1. Describe or automatically detect the physical network
topology.

2. Define distributed tensor objects with symmetries and
map the tensors.

3. Write data to tensors bulk-synchronously via (global
index, value) pairs.

4. Invoke contraction/summation/scale/trace operation
on tensor(s).

5. In parallel, determine best mapping for the operation
and define operational kernel.

6. Redistribute tensors to the selected decomposition and
topology.

7. Run the contraction kernel on the tensors, computing
the solution.

8. When requested, read data out via (global index, value)
pairs.

Tensors are treated as first-class objects and direct access
to data is hidden from the user. The data must be writ-
ten and read bulk-synchronously by global index. This data
entry mechanism is necessary to be able to remap and ab-
stract away the data decomposition from the user. While
the initial redistribution is somewhat slower than a mapped

redistribution, the assumption is that the data will be read
and written infrequently and contractions will be done in
sequences.

The implementation uses no external libraries except for
MPI [10], BLAS, and OpenMP. We used vendor provided op-
timized BLAS implementations (IBM ESSL and Cray Lib-
Sci) on all architectures for benchmarking. All code is tightly
integrated and written in C/C++. Computationally ex-
pensive routines are threaded and/or parallelized with MPI.
Performance profiling is done by hand and with TAU [19].

5.2 Architectures
Cyclops Tensor Framework targets massively parallel ar-

chitectures and is designed to take advantage of network
topologies and communication infrastructure that scale to
millions of nodes. Parallel scalability on commodity clusters
should benefit significantly from the load balanced charac-
teristics of the workload, while high-end supercomputers will
additionally benefit from reduced inter-processor communi-
cation which typically becomes a bottleneck only at very
high degrees of parallelism. We collected performance re-
sults on two state-of-the-art supercomputer architectures,
IBM Blue Gene/P and Cray XE6.

We benchmarked our implementations on a Blue Gene/P
(BG/P) [11] machine located at Argonne National Labo-
ratory (Intrepid). BG/P is an interesting target platform
because it uses few cores per node (four 850 MHz Pow-
erPC processors) and relies heavily on its interconnect (a
bidirectional 3D torus with 375 MB/sec of achievable band-
width per link). Therefore, interprocessor communication
and topology-awareness are key considerations on this ar-
chitecture.

Our second experimental platform is ‘Hopper’, which is
a Cray XE6 supercomputer, built from dual-socket 12-core
“Magny-Cours” Opteron compute nodes. This machine is
located at the NERSC supercomputing facility. Each node
can be viewed as a four-chip compute configuration due to
NUMA domains. Each of these four chips have six super-
scalar, out-of-order cores running at 2.1 GHz with private
64 KB L1 and 512 KB L2 caches. Nodes are connected
through Cray’s ‘Gemini’ network, which has a 3D torus
topology. Each Gemini chip, which is shared by two Hop-
per nodes, is capable of 9.8 GB/s bandwidth. However, the
NERSC Cray scheduler does not allocate contiguous parti-
tions, so topology-aware mapping onto a torus cannot cur-
rently be performed.

5.3 Results
All benchmark scaling results are collected for the model

tensor contraction problem with square tensors of dimension
2,4, and 8, using matrix multiplication as the sequential sub-
contraction kernel. Testing of the parallel decomposition
has been done for all types of contractions using a sequen-
tial kernel that unpacks each symmetric sub-tensor. Full
results for tensor contraction sequences and actual Coupled
Cluster methods will require integrated sequential symmet-
ric contraction kernels. However, the study detailed here
tests the full complexity of the parallel component, which
has no awareness that it is working on a model contraction
rather than any given Coupled Cluster contraction (an 8D
model contraction has as high dimension and as much sym-
metry as any CC contraction done in methods up to CCS-
DTQ). Further, we defined the contractions so as to force

each tensor to be redistributed between every contraction,
benchmarking the worst case scenario for our redistribution
kernels.

Figure 4(a) demonstrates weak scaling performance of CTF
on a Blue Gene/P supercomputer. The scalability is good,
but a significant amount of extra computation is done for 8D
tensors (less so for 6D and very little for 4D). The amount
of padding done for an 8D tensor, quadruples the compu-
tational cost in the worst observed case. This overhead
is correlated with the fact that each sub-tensor gets to be
very small and the padded/surface area dominates. How-
ever, this padding does not grow with processor count and
stays bounded. The performance dip for 8D tensors at 512
nodes is due to increased virtualization going up from 256
nodes (256 nodes can be treated as an 8D hypercube). On
512 nodes, the mapping must have more virtualization and
therefore more padding. However, this increase levels off
and the virtualization necessary actually decreases from 512
nodes onward (it should continue decreasing until reaching
2 · 48 = 131, 072 nodes). In this preliminary benchmark,
topology-aware mapping is not done onto the torus dimen-
sions. In any case, it is difficult to map 6D and 8D tensors
to a 3D physical processor grid. A 5D or 6D processor grid
such as the ones employed by the newer BG/Q and the K-
computer, respectively, will be much more fit for mapping
of these tensors.

Weak scaling on the Cray XE6 architecture (Figure 4(b))
has similar characteristics as the scaling on BG/P. In fact,
the padding overhead for 6D and 8D tensors is significantly
decreased, since each process (4 per node, 6 cores per pro-
cess) handles much larger granularity (sub-tensor size) than
BG/P nodes can, due to the difference in on-node memory
size. Despite the lack of precise topology-aware mapping,
communication overhead is small at the given node counts.
For both BG/P and XE6, most of the execution time is spent
inside sequential matrix multiplication, which demonstrates
that the parallel efficiency is very high (≥ 50%).

We do not detail strong scaling performance, since mem-
ory replication is not yet fully implemented inside CTF.
Given 2.5D-like replication schemes within CTF the strong
scalability will significantly improve. When running the
same size problem on more nodes, more memory becomes
available, allowing for more replication and reduced commu-
nication. A theoretical analysis and a detailed performance
study of strong scaling done in this fashion is given in [20].

6. FUTURE WORK
Cyclops Tensor Framework is currently in development

with several major components existing and some missing.
In particular, there are no integrated efficient symmetric se-
quential contraction routines. Currently only unoptimized
routines are employed for verification and optimized ma-
trix multiplication is employed for benchmarking of certain
contractions. Since CTF preserves any tensor symmetry, it
allows for any sequential contraction kernel to be seamlessly
parallelized, by using it as a function pointer and calling
it many times on sub-tensors. We will explore general and
auto-generated routines for sequential tensor contractions.
Further, we will couple the sequential contraction design
with the virtual decomposition by exploiting the blocking
implicitly provided by virtualization.

Adaptive replication and memory awareness will be inte-
grated into CTF. Part of the mapping process will involve

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

1024 2048 4096 8192

G
ig

af
lo

ps

#cores

Cyclops TF weak scaling on BG/P

theoretical peak
4D sym (CCSD)

6D sym (CCSDT)
8D sym (CCSDTQ)

(a) IBM BG/P

 16

 64

 256

 1024

 4096

 16384

32 64 128 256 512 1024

G
ig

af
lo

ps

#cores

Cyclops TF weak scaling on XE6

theoretical peak
4D sym (CCSD)

6D sym (CCSDT)
8D sym (CCSDTQ)

(b) Cray XE6

Figure 4: Preliminary weak scaling results of CTF

calculating the necessary buffer space needed to perform
a contraction and selecting the algorithm which performs
the least amount of communication without surpassing the
memory limits. This methodology has been employed in
2.5D algorithms for linear algebra and shown to significantly
improve strong scaling as well as allow more flexibility in the
decomposition.

Different types of sparsity in tensors will also be consid-
ered in Cyclops Tensor Framework. Tensors with banded
sparsity structure can be decomposed cyclically so as to pre-
serve band structure in the same way CTF preserves sym-
metry. Completely unstructured tensors can also be decom-
posed cyclically, though the decomposition would need to
perform load balancing in the mapping and execution logic.

Cyclops Tensor Framework will also be integrated with a
higher-level tensor manipulation framework as well as Cou-
pled Cluster contraction generation methods. Currently,
CTF performs contractions on tensors in a packed symmet-
ric layout. However, multiple packed contractions are re-
quired to compute the full symmetric contraction and the
higher-level Coupled Cluster equations can be decomposed
into contractions in different ways. We will integrate CTF
vertically to build a scalable implementation of Coupled
Cluster methods. In particular, we are targeting the CCS-
DTQ method, which employs tensors of dimension up to
8 and gets the highest accuracy of any desirable Coupled
Cluster method (excitations past quadruples have a negli-
gible contribution). In this report we’ve given preliminary
results demonstrating the scalability of CTF decomposition
of 4 to 8-dimensional tensors on massively parallel super-
computers. We will implement further optimizations and
infrastructure that will improve strong scalability and allow
for efficient execution of Coupled Cluster methods rather
than just selected tensor contractions.

Acknowledgments
The first author was supported by a Krell Department of
Energy Computational Science Graduate Fellowship, grant
number DE-FG02-97ER25308. This research was supported
in part by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discov-

ery (Award #DIG07-10227). It was also supported by U.S.
Department of Energy grants numbered DE-SC0003959, DE-
SC0004938, DE-FC02-06-ER25786 and DE-SC0001845. This
research used resources of the Argonne Leadership Comput-
ing Facility at Argonne National Laboratory, which is sup-
ported by the Office of Science of the U.S. Department of
Energy under contract DE-AC02-06CH11357. This research
used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Sci-
ence of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

7. REFERENCES
[1] R. C. Agarwal, S. M. Balle, F. G. Gustavson,

M. Joshi, and P. Palkar. A three-dimensional approach
to parallel matrix multiplication. IBM J. Res. Dev.,
39:575–582, September 1995.

[2] A. Aggarwal, A. K. Chandra, and M. Snir.
Communication complexity of PRAMs. Theoretical
Computer Science, 71(1):3 – 28, 1990.

[3] E. A. Auer, G. Baumgartner, D. E. Bernholdt,
A. Bibireata, D. Cociorva, X. Gao, R. Harrison,
S. Krishnamoorthy, H. Krishnan, C. chung Lam,
Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam, and
E. Sibiryakov. Automatic code generation for
many-body electronic structure methods: The tensor
contraction engine. 2006.

[4] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Minimizing communication in linear algebra. SIAM J.
Mat. Anal. Appl., 32(3), 2011.

[5] G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata,
V. Choppella, D. Cociorva, X. Gao, R. Harrison,
S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam,
Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam,
P. Sadayappan, and A. Sibiryakov. Synthesis of
high-performance parallel programs for a class of ab
initio quantum chemistry models. Proceedings of the
IEEE, 93(2):276 –292, feb. 2005.

[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo,
J. Demmel, I. Dhillon, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.

ScaLAPACK user’s guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997.

[7] L. E. Cannon. A cellular computer to implement the
Kalman filter algorithm. PhD thesis, Bozeman, MT,
USA, 1969.

[8] E. Dekel, D. Nassimi, and S. Sahni. Parallel matrix
and graph algorithms. SIAM Journal on Computing,
10(4):657–675, 1981.

[9] X. Gao, S. Krishnamoorthy, S. Sahoo, C.-C. Lam,
G. Baumgartner, J. Ramanujam, and P. Sadayappan.
Efficient search-space pruning for integrated fusion
and tiling transformations. In Languages and
Compilers for Parallel Computing, volume 4339 of
Lecture Notes in Computer Science, pages 215–229.
Springer Berlin / Heidelberg, 2006.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
portable parallel programming with the message-passing
interface. MIT Press, Cambridge, MA, USA, 1994.

[11] IBM Journal of Research and Development staff.
Overview of the IBM Blue Gene/P project. IBM J.
Res. Dev., 52:199–220, January 2008.

[12] D. Irony, S. Toledo, and A. Tiskin. Communication
lower bounds for distributed-memory matrix
multiplication. Journal of Parallel and Distributed
Computing, 64(9):1017 – 1026, 2004.

[13] H. Jia-Wei and H. T. Kung. I/O complexity: The
red-blue pebble game. In Proceedings of the thirteenth
annual ACM symposium on Theory of computing,
STOC ’81, pages 326–333, New York, NY, USA, 1981.
ACM.

[14] S. L. Johnsson. Minimizing the communication time
for matrix multiplication on multiprocessors. Parallel
Comput., 19:1235–1257, November 1993.

[15] L. V. Kale and S. Krishnan. CHARM++: a portable
concurrent object oriented system based on C++. In
Proceedings of the eighth annual conference on
Object-oriented programming systems, languages, and
applications, OOPSLA ’93, pages 91–108, New York,
NY, USA, 1993. ACM.

[16] R. A. Kendall, E. Apra, D. E. Bernholdt, E. J.
Bylaska, M. Dupuis, G. I. Fann, R. J. Harrison, J. Ju,
J. A. Nichols, J. Nieplocha, T. Straatsma, T. L.
Windus, and A. T. Wong. High performance
computational chemistry: An overview of NWChem a
distributed parallel application. Computer Physics
Communications, 128(1-2):260 – 283, 2000.

[17] J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global arrays: A nonuniform memory access
programming model for high-performance computers.
The Journal of Supercomputing, 10:169–189, 1996.
10.1007/BF00130708.

[18] J. Poulson, B. Maker, J. R. Hammond, N. A. Romero,
and R. van de Geijn. Elemental: A new framework for
distributed memory dense matrix computations. ACM
Transactions on Mathematical Software. in press.

[19] S. S. Shende and A. D. Malony. The TAU parallel
performance system. International Journal of High
Performance Computing Applications, 20(2):287–311,
Summer 2006.

[20] E. Solomonik, A. Bhatele, and J. Demmel. Improving
communication performance in dense linear algebra
via topology aware collectives. In Supercomputing,

Seattle, WA, USA, Nov 2011.

[21] E. Solomonik and J. Demmel. Communication-optimal
2.5D matrix multiplication and LU factorization
algorithms. In Lecture Notes in Computer Science,
Euro-Par, Bordeaux, France, Aug 2011.

[22] R. A. Van De Geijn and J. Watts. SUMMA: scalable
universal matrix multiplication algorithm.
Concurrency: Practice and Experience, 9(4):255–274,
1997.

