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ABSTRACT
An increasing number of consumer products include user in-
terfaces that rely on touch input. While digital fabrication
techniques such as 3D printing make it easier to prototype
the shape of custom devices, adding interactivity to such pro-
totypes remains a challenge for most designers. We intro-
duce Midas, a software and hardware toolkit to support the
design, fabrication, and programming of flexible capacitive
touch sensors for interactive objects. With Midas, designers
first define the desired shape, layout, and type of touch sen-
sitive areas in a sensor editor interface. From this high-level
specification, Midas automatically generates layout files with
appropriate sensor pads and routed connections. These files
are then used to fabricate sensors using digital fabrication
processes, e.g. vinyl cutters and circuit board printers. Us-
ing step-by-step assembly instructions generated by Midas,
designers connect these sensors to our microcontroller setup,
which detects touch events. Once the prototype is assembled,
designers can define interactivity for their sensors: Midas
supports both record-and-replay actions for controlling ex-
isting local applications and WebSocket-based event output
for controlling novel or remote applications. In a first-use
study with three participants, users successfully prototyped
media players. We also demonstrate how Midas can be used
to create a number of touch-sensitive interfaces.

ACM Classification: H.5.2 [User Interfaces (D.2.2, H.1.2,
I.3.6)]: Miscellaneous.

General terms: Design, Human Factors

Keywords: Fabrication, Prototyping, Design Tools, Capac-
itive Touch.

INTRODUCTION
Ubiquitous, cheap microprocessors have led to a vast in-
crease in consumer products with built-in digital user inter-
faces. Many of these devices — thermostats, kitchen ap-
pliances, game controllers, and personal medical devices, to
name a few — rely on touch sensing to provide input to their

Figure 1: Midas enables users to define discrete and
continuous touch sensors with custom shapes and lay-
out. It generates fabrication files and assembly instruc-
tions. Designers can also define the interaction events
of their prototype.

user interfaces.

Digital fabrication processes such as 3D printing and CNC
machining are making it easier to prototype the form of such
products, enabling designers to go directly from a 3D model
in software to a physical form. In addition, user interface
prototyping tools have lowered the threshold to connect new
sensors to graphical user interfaces. However, one main lim-
itation of current toolkits such as Phidgets [8], d.tools [11],
Calder [17] or Arduino [2] is that they rely on pre-packaged,
off-the-shelf sensors, such as momentary switches or slide
potentiometers. Using such pre-packaged sensors has im-
portant drawbacks. They constrain exploration: pre-defined
physical form factor restricts the space of realizable designs,
for example buttons may be too bulky or too small, or sliders
may be too long or too short. They lack physical flexibil-
ity: rigid sensors cannot be easily applied to non-planar sur-
faces or added to existing objects. A large gulf of execution
remains between digital design files and the physical proto-
type: physical sensors have to be manually placed, routed,
and wired. This process is tedious and error-prone; it is
easy for digital design files and physical prototypes to differ.
While recent research has introduced systems to create touch
sensors [12, 13, 30], their efforts have focused on rapidly



constructible, low-fidelity prototypes. In contrast, our work
leverages digital design tools and enables designers to use the
growing range of fabrication processes to create customized,
durable touch sensors.

We take inspiration from the success of Graphical User Inter-
face editors. These editors enable designers to specify layout,
size, and characteristics of widgets. They isolate designers
from having to specify the “plumbing” that connects widgets
to event callbacks. Our research goal is to make the creation
of physical touch-sensing interfaces as fluid as the creation
of graphical user interfaces in GUI editors.

To this end, we introduce Midas, a software and hardware
toolkit for rapidly designing, fabricating, and programming
flexible capacitive touch sensors (see Figure 1). With Midas,
designers first define the desired shape, layout, and type of
touch sensitive areas in a sensor editor interface. Design-
ers can choose from discrete inputs (buttons), sliders, and
two-dimensional grid sensors. For discrete inputs, design-
ers can import graphics to define custom shapes; other types
are adjustable in size and aspect ratio. Once a designer has
settled on a layout, Midas automatically synthesizes appro-
priate capacitive touch sensor pads and routes connecting
traces from sensor pads to a central touch sensing module
using a circuit board grid routing algorithm [16]. Midas then
generates appropriate machine instruction files and step-by-
step human instructions that designers use to fabricate the
sensors using rapid manufacturing techniques. Our proto-
type cuts sensors from adhesive-backed copper foil and in-
sulating mask layers from vinyl on a commercial vinyl cut-
ter. We also demonstrate how the process can be applied
to circuit board milling machines. Designers then transfer
their flexible, adhesive-backed sensors onto the target object;
and connect the fabricated sensors to a small microcontroller
using the routed connections. The microcontroller detects
touch events using charge-transfer sensing [24] and forwards
events to a connected PC. Once assembled, designers can
define interactivity on the PC using the sensor editor: Mi-
das supports both record-and-replay actions to control ex-
isting applications, and WebSocket event output to control
novel and remote applications. WebSockets enable design-
ers to write touch-sensitive applications using standard Web
technologies (HTML and Javascript).

We demonstrate the expressivity of Midas through a num-
ber of touch-sensitive interfaces. The authors used Midas to
create several touch-sensitive interfaces, including recreating
prototypes of existing and published systems. In an informal
first-use study, three participants successfully prototyped me-
dia player peripherals, also using Midas.

The main contributions of this paper are: 1) a novel method
to create custom-shaped, flexible capacitive touch sensors
based on synthesizing sensor pads and auto-routing connec-
tions from a high-level graphical specification; 2) a design
tool that uses this method to enable users to to both fabricate
and program custom-shaped sensors; 3) an evaluation that
demonstrates Midas’s expressivity and utility to designers.

The remainder of this paper is organized as follows: we first
review related work, then describe how designers work with

Midas. We present Midas’s architecture and important lim-
itations, describe interfaces created by the authors with Mi-
das, report on a first-use study, and conclude with a discus-
sion of future work.

RELATED WORK
Midas builds upon prior work in physical computing toolkits
and direct touch sensing. We also discuss alternative remote
touch sensing approaches for prototyping and Midas’s rela-
tion to circuit board design and fabrication tools.

Physical Computing Toolkits
A substantial body of work has introduced toolkits that fa-
cilitate connecting different types of sensors and actuators to
user interfaces. Some research targets software developers
and enable them to extend their reach into the physical world
via object-oriented wrappers to physical components [8, 19].
Other research has explicitly targeted prototyping by interac-
tion designers [3, 10, 11, 14, 17, 18, 21, 22]; such projects
employ direct manipulation interfaces or programming by
demonstration [7, 10] to enable experimentation by design-
ers who do not write code. A third set of projects are aimed
at hobbyists and learners: such systems focus on helping
users learn how to code, and on fostering amateur commu-
nities [5, 25].

Many prior toolkits rely on a library of prepackaged hard-
ware sensors, which bring physical constraints with them;
it is difficult to create touch sensors of custom sizes, and it
may be difficult to attach sensors to existing objects. Using
flexible multi-layer conductive substrates [28] or embedding
radio transceivers in every component [17] gives designers
more freedom of placement, but the components themselves
are still fixed in size and shape. In contrast, Midas focuses
on only one type of input – capacitive touch sensing – but
provides explicit support for defining arbitrary sensor shapes
and layouts.

Direct Touch Sensing
Most closely related to our project, BOXES [13] enables de-
signers to create custom touch sensors from office supplies
(e.g., thumb tacks); it also enables designers to program re-
sponses to sensor input using record-and-replay of GUI ac-
tions (e.g., mouse clicks). We leverage the same program-
ming approach but target higher-fidelity prototypes: Midas
supports continuous as well as discrete (step-wise) sliders, it
enables construction of more durable prototypes, and permits
designers to use digital design tools to create custom sensor
layouts. In addition, Midas can also output events to web
applications.

We also draw inspiration from projects that introduce various
forms of “sensor tape” touch-sensitive material that can be
unrolled and cut to size to fit custom applications. Tactile-
Tape uses resistive graphite to create custom-sized slide po-
tentiometers [12], while Wimmer’s time-domain reflectome-
try approach [30] measures electric pulse reflections in a wire
to localize touch points. Both techniques lend themselves to
low-fidelity prototyping, but do not contribute design tools to
support arbitrary sensor shapes.



Figure 2: The Midas workflow: (A) A user creates and positions touch elements in the sensor editor. (B) Midas generates
fabrication files and instructions. (C) The user fabricates the sensor on a cutting machine. (D) The user adheres sensors
to his target object and connects the Midas touch controller. (E) The user authors interactivity in the sensor editor.

“Remote” Touch Sensing

A complementary approach is to sense touch remotely,
through sensors placed in the environment, instead of the
touched surface itself. Depth cameras can be used to seg-
ment fingers from background and detect touch events [29].
OmniTouch [9] uses this technique to make arbitrary surfaces
touch-sensitive. Real-time motion capture systems (e.g., Vi-
con cameras and marker) have also been used to detect touch,
e.g., in DisplayObjects [1]. Remote sensing has the advan-
tage that surfaces and objects do not have to be specially
prepared. The main disadvantages are that the technique
requires an instrumented environment, or additional body-
worn hardware. In addition, infrared-based systems often
do not work outdoors; they may struggle with occlusion;
they need significant processing power that may not be avail-
able in mobile scenarios; and their created prototypes’ soft-
ware has to be rewritten to change sensing technologies when
when moving towards production.

Design Tools for Fabrication

The placement of sensing areas and routing of connections
in Midas resembles the workflow of design tools for printed
circuit board design, e.g., Eagle [6]. We share the use of
auto-routing algorithms with such tools. However, circuit
board design tools are usually based on a library of fixed-
size components. Midas does not have these restrictions be-
cause pads are used for human input sensing, not for placing
electronic components. Users can resize and easily import
custom shapes in Midas. Finally, our work shares motiva-
tion with other applications that leverage digital fabrication
equipment. For example, Igarashi’s work on high-level de-
sign tools for plush toys [20] and chairs [26] also generate
fabrication files from high-level design specifications. Our
contributions are complementary to and independent from
this research.

DESIGNING WITH MIDAS

This section demonstrates the interface affordances and the
workflow of Midas (Figure 2) with a concrete running ex-
ample: A designer would like to explore back-of-device and
bezel interactions for a mobile phone. In particular, she
would like to explore scrolling through a list of emails with
a slider on the back of the device, and opening, replying and
deleting messages through touch sensitive areas on the bezel
under the phone user’s thumb.

Drawing Sensors
Users start by loading a 2D projection of the physical proto-
type they want to augment into Midas’s sensor editor. The
sensor editor (Figure 3) allows a user to create the sensor
layout, and define interactive behavior for each sensor. The
background device image helps designers with correct scal-
ing and positioning. Currently, Midas supports 2D projec-
tions for flat surfaces. Future work will investigate paint-
ing sensing areas onto 3D models. Sensor positioning works
analogously to a GUI editor; users choose touch sensor types
and drag them to the desired location on the canvas. Midas
supports individual discrete buttons, one-dimensional slid-
ers, and two-dimensional grids. Buttons can take on arbitrary
shapes users can import any desired graphics file (in PNG
format). Sliders and pads are currently restricted to rectangu-
lar shapes; however, their size, aspect ratio, and positioning
can be modified.

In our phone example, the designer creates one slider and
three discrete buttons. For the individual buttons, she loads
custom shapes that she created in a drawing program.

Fabricating and Applying Flexible Sensors
Once users have a complete layout, clicking on the print sen-
sors button generates fabrication files for the current layout.
First, certain components are automatically split into mul-

Figure 3: Midas’s sensor editor takes its cues from GUI
editors: designers first lay out sensing areas in the
sensor editor; they later define interactions for each
sensor using a property inspector.



Figure 4: Auto-generated step-by-step instructions in
HTML format lead the user through the fabrication and
assembly process. Relevant design files are hyper-
linked to specific steps; instructions also include gen-
eral help on process, e.g., how to use transfer tape to
apply a sensor onto an object.

tiple sensing pads. For instance, the slider in our example
generates four interdigitated pads (see 6, third template) for
continuous finger tracking, while 2D grids result in two dif-
ferent layers of triangular pads. Second, Midas generates
conductive traces that will connect each of the pads to Mi-
das’s small hardware touch controller. Such connection rout-
ing determines the exact position of each touch area. Should
the user want to experiment with positioning, Midas can also
skip the routing step and only generate the individual touch
pads. However, the user must then manually connect hook-
up wires to each touch pad and register them in the interface.

The pad creation and routing step generates a set of graph-
ics files (in SVG format) and an instruction sheet (in HTML)
which appears in the user’s browser (see Figure 4). This sheet
contains step-by-step instructions describing how to fabricate
the generated files. For our implementation, instructions in-
clude which SVG files to cut in which material and how to
transfer the cut designs to the prototype object.

In our phone example, the designer generates one SVG file
for the touch areas, and one mask file to cover traces, which
can prevent accidental touch events. Following the generated
instruction web page, she first feeds a sheet of copper foil
into her vinyl cutter and cuts the corresponding SVG file.
She then substitutes a vinyl roll for the copper foil and cuts
a mask layer. As both materials have adhesive backing, she
sticks the copper and vinyl layers onto the phone she wishes
to modify. Once the adhesive layers are applied, she tapes
the end of the routing leads to the Midas touch controller
module, which is plugged into her computer via USB.

Connecting Hardware to Software
Touch sensing is performed by a dedicated touch controller
circuit board. Users do not have to program or assemble any
electronics - they may treat the entire setup as a prototyping
“dongle”. Users do have to connect the end of the traces to
the controller through a short rainbow ribbon cable, either
by taping the cable leads onto copper traces, or by soldering
them.

To complete a prototype, users return to the sensor editor. In
many toolkits, mapping hardware components to named ob-
jects in software can be error-prone it is easy to swap wires
or connect to an incorrect pin. If the user prints a fully routed

Figure 5: Users start to record GUI interactions in the
sensor editor (A); they can for example activate the
browser, enter text (B), and click on a search result (C);
before concluding the recording (D). This sequence of
actions can then be triggered by a touch event.

design, Midas already knows and generates instructions for
how pins are mapped onto touch areas. If the user decided to
wire the design herself, this mapping has to be authored. Mi-
das uses guided demonstration to assist with authoring this
mapping. For buttons, the user selects an input element in the
UI and clicks the tie to stickers button; next she touches the
corresponding copper sticker. Midas listens for status change
events and assigns the correct hardware pins to that button.
Midas registers sliders similarly: users are asked to simply
swipe a finger along the slider.

Adding Interactivity
Designers have two options for authoring interactivity: record-
and-replay of mouse and keyboard events (a strategy adopted
from BOXES [14] and Exemplar [10]), or touch event out-
put to control other applications over WebSockets. To record
and replay interactions, designers select a sensor in the ed-
itor, then click on the record interaction button. They can
then control any open application (e.g., start or stop a media
player application, or drag a volume slider). Midas records
the generated keyboard and mouse events and can replay
them later in response to touch input (Figure 5).

The types of desktop UI actions that can be executed depend
on the button type. Individual buttons can be tied to an in-
teraction script, a sequence of keyboard and mouse events
recorded by the user. Sliders are linked to exactly one hori-
zontal or vertical line on the screen to be controlled by clicks
along its length. 2D grids can control a 2D area on the screen
analogous to a slider area. For sliders and grids, the user must
capture the location on the screen that she wishes to control
with the slider or grid. This is done by simply clicking at
each end of the slider or in opposite corners of the grid, as
Midas prompts. As the user adjusts the sensitivity (in num-
ber of discrete buttons) of the slider or pad to be printed, the
interaction with the captured on-screen slider or pad becomes
more fine-grained, as well

Record-and-replay does not require programming, but it is
brittle; changes in application layout or response latency
can break a recorded sequence. To let users author more
robust interactions, Midas uses WebSockets to send touch
events into other applications. This option requires program-
ming, but Midas’s use of WebSockets enables users to work
with the languages many are most familiar with: HTML and
JavaScript.

In our phone example, the designer chooses WebSockets as
she wants to demonstrate how touch events can control an



Figure 6: Midas can generate four different types of
sensors: discrete buttons, discrete sliders, continuous
sliders, and 2D pads. The pad uses row-column scan-
ning and requires multi-layer construction because
traces cross.

Figure 7: 2D grid sensors are fabricated in two differ-
ent layers that are then superimposed. Because each
copper layer has a vinyl backing, no other inter-layer
masking is required.

mobile email application. She creates a mockup in HTML
and writes JavaScript functions to receive touch events.

ARCHITECTURE AND IMPLEMENTATION
This section describes the architecture and algorithms under-
lying the Midas system.

Generating Sensor Pads
The Midas sensor editor supports placement of four types of
touch sensors: discrete buttons, two types of one-dimensional
sliders, and 2D grids. The resolution of pads and segmented
sliders can be set through a parameter in the sensor editor.
The current editor is written in Java using the Swing GUI
Toolkit. Figure 6 shows example templates for each sen-
sor type. The two types of sliders are based on different
sensing approaches. The first, segmented slider, is made up
of individual rectangular touch segments. Users can spec-
ify how many segments the slider should have. Continuous
sliders offer finer resolution, but require a different detection
approach. We use Bigelow’s design of interdigitated elec-
trodes [4]. In this design, as the finger slides across the pads,
the surface area of the pads underneath the finger changes
as pad digits get smaller or larger. Because capacitance is
proportional to contact surface area, the capacitance of each
segment changes throughout the finger’s slide. While finer
in resolution, only one such slider is supported by our cur-
rent sensing hardware. Increasing the number of supported
sliders is possible with additional engineering effort.

2D pads leverage row-column scanning to reduce the num-

ber of connection traces necessary. For example, a 5x5 ar-
ray would need 25 individual traces, but only 5 + 5 = 10
traces in row-column mode. This design requires a dual-
layer construction where horizontal traces are isolated from
vertical traces. We feed copper foil applied to vinyl foil into
our cutter, so each layer is already on an insulating substrate.
Designers thus first apply the bottom conductive layer, then
place the top layer directly over it (see Figure 7).

To generate a mask layer that covers the topmost copper
traces, we generate a design file that contains pads from all
layers, but without any traces. This layer is cut in vinyl.
Whereas for other layers, designers transfer the pads and
traces, for the mask layer they peel and transfer the surround-
ing, “background” shape (see Figure 12, left).

Routing Pads to the Touch Controller
Midas employs an auto-routing algorithm to generate con-
ductive traces that connect electrodes to the Midas touch
controller. We implement Lee’s maze routing algorithm for
single layer paths [16]. For 2D pads, we perform two in-
dependent routings: once for the row layer, and once for
the column layer. Our current algorithm does not generate
vias (connections between two different conductive layers).
When autorouting fails, we employ an iterative search by ad-
justing the position where traces connect to sensor pads, rout-
ing the sensors in a different order, or moving the position
where target traces connect to the touch controller. In our
experience, this basic routing algorithm has performed ade-
quately; it could also be replaced it with more sophisticated
routing techniques in the future.

Fabrication
Midas generates vector graphics files in SVG format for the
different electrode and mask layers. These files can then be
used to control digital fabrication processes. Our prototype
currently cuts conductive, adhesive-backed copper foil on a
commercial vinyl cutter a plotter with a cutting knife in-
stead of a pen. This medium has multiple advantages. First,
it is cost-effective and readily available: vinyl cutters are in
the same price range as laser printers (ours, a tabletop model
with a 14-inch bed) cost $200); and copper foil costs a few
dollars per foot. Second, copper has excellent conductivity.
Third, flexible, adhesive foil is easy to apply to non-planar
surfaces. However, there are important drawbacks as well.
Most importantly, the subtractive cutting process and man-
ual weeding (removing background material) determines a
minimum feature size for traces as thin geometric features
can break during transfer, and the weeding process can be te-

Figure 8: Example of a capacitive touch sensor manu-
factured through an alternative process of circuit board
milling.



dious and time-consuming. We found the most success came
from adhering the copper sheets to vinyl sheets and cutting
both layers at once. This setup has the added benefit of al-
lowing designers to prototype capacitive touch interactions
on conductive surfaces (e.g., the backside of an iPhone) be-
cause the vinyl is an excellent insulator.

Alternative fabrication processes may be preferable to copper
foil cutting when higher precision or durability is required.
Two promising approaches are circuit board milling, which
can produce smaller features but is limited to rigid boards;
and conductive inkjet printing, which can produce the small-
est features, but is not yet available to many end users. As
a proof of concept, we produced a touch sensor on an LPKF
circuit board milling machine (see Figure 8).

Capacitive Touch Sensing
The Midas touch controller (Figure 9) is based on an At-
mel microcontroller board [27] and capacitive touch sens-
ing chips from Quantum (QT1106) and Freescale (MPR121)
Semiconductors. For discrete inputs, both chips rely on
charge-transfer sensing using single-wire electrodes: the elec-
trodes are part of a simple RC circuit in which an output pin
is set high, and time is measured until an input pin also reads
high. This time is proportional to the capacitance of the cir-
cuit: when a person touches an electrode, the circuit capaci-
tance and the charge transfer time both increase. The Quan-
tum chip also implements Bigelow’s design to extract con-
tinuous position readings from interdigitated electrodes [4].
The microcontroller runs software written in embedded C to
interface with the sensor chips and communicates touch data
to a connected computer using the USB HID protocol. It re-
calibrates the touch sensing chips periodically to ensure float-
ing sensor values do not lead to erroneous touch readings.

Event Output
Once interface scripts are assigned to buttons, Midas’s Ar-
duino connection listens for events from the printed touch
sensors. When a signal matching one of the saved interac-
tions is encountered, the associated script is activated.

Record-And-Replay. In record-and-replay, the user demon-
strates a touch interaction and then records a corresponding

Figure 9: The Midas touch controller board uses a
commercial capacitive charge transfer detection chip
to sense touch events. Events are relayed to a com-
puter via a mini USB connection on the back. The
ribbon cables are used to connect to the end of routed
traces. A US quarter is shown as a size reference.

action on their desktop that should be triggered by the touch
action. Early prototypes of Midas used Sikuli, a visual script-
ing language based on computer vision analysis of screen-
shots to define desktop actions [33]. While more robust to
GUI changes than hardcoded click locations, Sikuli was de-
signed for automation scripts rather than interactive control,
and the latency of invoking and executing scripts was too
high. Our current prototype, uses the Java Robot API [15]
for literal click captures as in the BOXES system [14]. The
Robot captures and replays both click locations and typing.

WebSocket Communication with Web Applications. Record-
and-replay is restricted to applications that run on the same
machine as the sensor editor, and it is limited to mouse and
keyboard event injection. To surmount these limitations, Mi-
das can also export touch events via a built-in server to re-
mote clients using the WebSockets API. For example, an ap-
plication running on a smart phone can open a WebSocket
connection to Midas and receive a callback whenever any
Midas button, slider or grid changes. The callback function
will also receive an event object that describes which sensor
changed state, and the value of that new state (e.g., on/off, or
a slider value).

Our WebSockets server is implemented in node.js using the
socket.io library. We chose WebSockets because it offers
full-duplex communication at low latencies, and, more im-
portantly, they are supported by modern web browsers. This
means that designers can author user interfaces that respond
to Midas touch input in HTML and JavaScript. There are two
main benefits to these technologies: (1) many designers are
already familiar with them from web design; (2) developed
interfaces can be deployed on any device that has a compat-
ible browser, even if that device does not offer a way to di-
rectly connect external hardware. For example, it is difficult
to directly connect sensors to mobile devices such as Apple’s
iPhone or iPad.

With our WebSockets architecture (Figure 10), designers
open their phone’s web browser, and enter the URL of an
HTML file they have placed in the Midas server directory.
This file opens a socket connection from the phone browser
to the server. When the server receives events from the Mi-
das touch controller, it forwards them to the client, which can
then show visual feedback.

LIMITATIONS
Our current prototype has some important limitations. A few
are inherent to our chosen approach, while others could be
mitigated with additional engineering.

First, the current manufacturing process places certain phys-
ical constraints on realizable designs. Both the accuracy of
the vinyl cutter on copper and challenges in weeding and
transferring cut designs currently restrict traces to approx-
imately 2mm minimum thickness. A higher-quality cutter
could reduce this threshold. Our cutter also has difficulties
cutting acute angles such as those in the interdigitated slider.

Second, the touch sensing chips have limited capacity. The
QT1106 has 7 discrete sensing pins and additional pins for
one continuous slider; the MPR121 has 13 discrete inputs.



The sensor editor keeps track of resources required by the
current design and notifies designers if they have exceeded
the capacity of the touch controller dongle. While we cur-
rently do not support using multiple touch controllers or mul-
tiple touch chips on a single controller, a future circuit board
revision could offer such support. In addition, continuous
sliders use different hardware resources than other inputs and
therefore need to be treated differently by the designer.

Third, our touch controller must be tethered to a computer.
This reduces mobility: prototypes cannot currently be tested
outside the lab. Direct connections to mobile devices or inte-
grated wireless radios could address this constraint.

Finally, Midas only supports printing of flat designs. While
the resulting sensors are flexible and can be applied to non-
planar surfaces, the sensor editor does not yet support design-
ers in correctly laying out shapes and traces on such objects.

EVALUATION
To understand the user experience of working with Midas,
and to assess its expressivity, we implemented some touch-
sensitive applications and conducted an informal first-use
study of Midas with three participants.

Example Applications
To demonstrate the expressivity of Midas as a prototyping
tool, we re-implemented several touch-based interactive sys-
tems that would test the full extent of Midas’s components:
WebSockets, record-and-replay, and a range of sensor types.

Text Entry. Wobrrock’s EdgeWrite [32] is a unistroke text
entry technique based on activating a series of corner points
of a rectangle. Wobbrock demonstrated that this technique
can be implemented using four discrete capacitive touch sen-
sors [31]. We printed four discrete buttons and a mask with
Midas, attached them to the back of a smartphone, and im-
plemented the EdgeWrite recognition algorithm in Javascript
(Figure 11). Using socket events, we demonstrated how
EdgeWrite can be used to enter text on the back of a mo-
bile device, leaving the screen unobstructed. The implemen-
tation is functional, though latency for detecting single but-
ton presses was higher than expected (>100ms). We plan
to investigate ways to increase responsiveness for buttons in
future work.

Figure 10: Midas’s socket event output enables de-
signers with programming knowledge to create web
applications in HTML and Javascript that react to touch
input outside the screen area of a phone or tablet.

Figure 11: We implemented Wobbrock’s Edgewrite on
the back of a cell phone using a 2-by-2 grid and Web-
Socket events sent to a web page.

Figure 12: Our music postcard lets users sample
tracks by different artists. Left: Circuit and mask layer;
Right: assembled postcard.

Game Controller. To test the responsiveness of Midas’s con-
tinuous slider sensing, we created a simple game controller
for the video game Breakout, in which players horizontally
position a paddle to bounce a ball into layers of blocks. In
less than fifteen minutes, we attached the slider that we fab-
ricated on the circuit board milling machine to a non-touch-
sensitive 7-inch monitor and mapped slider position to pad-
dle position using Midas’s record-and-replay system. The
slider is more responsive than individual buttons, and we
were able to control the paddle accurately enough for game-
play. The slider’s response is non-linear across certain re-
gions, however, and accounting for this is left to future work.

Music Postcard. At a recent media festival, a promotional
poster printed with conductive ink enabled passersby to se-
lect and play music from a number of artists by touching
corresponding areas on the poster [23]. We implemented a
postcard-sized version of this poster (Figure 12). We scaled
back our implementation of the poster to conserve resources;
large designs are possible and only restricted by the cutter’s
bed width. Our version uses six discrete buttons and one
continuous slider to control playback and volume of music
clips on a desktop computer. We again cut a vinyl mask layer
to prevent stray touch events. We used Midas’s record-and-
replay function to remote control the iTunes music player.

Informal Evaluation
To gauge the usability of Midas, we recruited three partici-
pants to prototype a media-controlling computer peripheral.
Two participants were graduate students at our university (in
Computer Science and Mechanical Engineering), one was a
software engineer at a local technology company. All had
some prior experience with prototyping and electronics.



Procedure. Participants first received a walkthrough of the
Midas UI including a simple record-and-replay task to launch
a browser based on a single button input. Participants were
then asked to design a physical control interface for a me-
dia player (iTunes). No other constraints were given as we
wanted to encourage exploration. Each session lasted up to
60 minutes. Participants completed a post-task questionnaire
with open-ended questions about interface usability and util-
ity of the workflow.

Results. All participants successfully completed the task
and designs of media players (Figure 13). Participants com-
mented positively on how Midas aided them with the task
of physical construction — both by routing connections, as
well as through the auto-generated instructions. Record-and-
replay was easy to comprehend and effective for the given
task. Even though the task did not require programming, two
participants expressed interested in receiving touch events in
their own applications. We take this as corroboration for the
utility of our WebSocket server.

Participants identified several areas for improvement. Two
participants felt that the instructions, while helpful, did not
provide sufficiently detailed information for certain steps
(e.g., removing the extra material around the printed pads).
Two participants requested videos in addition to static im-
ages; creating such videos would be straightforward and can
likely address this challenge.

Midas’s routing algorithm could not find a successful solu-
tion for one version of one participant’s design. This par-
ticipant was unable to identify the underlying problem that
caused the failure since he was unfamiliar with auto-routing
and the interface did not provide any additional information
about the algorithm. In future versions of the interface we
plan to include instructions how a user might adapt their de-
sign for a successful routing.

Finally, all participants requested that we provide richer feed-
back in the interface to convey information about touch events
the hardware controller was transmitting. The identified
challenges are not fundamental to our architecture and can
be addressed in a future design iteration.

CONCLUSION AND FUTURE WORK
This paper presented Midas, a software and hardware toolkit
to support the design, fabrication, and programming of ca-
pacitive touch sensors. Midas leverages the familiar paradigm

Figure 13: A study participant’s sensor layout for a PC
peripheral.

of the GUI editor to define shape layout and interactivity of
capacitive touch sensors. To help designers bridge the gap
between digital designs and their physical realization, Midas
auto-routes connections, generates instruction sheets and of-
fers sensor registration by demonstration. Our informal eval-
uation suggests that working interactive applications can be
built with our current implementation and that the interface
is accessible for prototyping.

Our plans for future work seek to address some of the iden-
tified limitations, and also expand into new application ar-
eas. First, we would like to explore methods to paint touch-
sensitive areas directly onto 3D CAD models and then cor-
rectly synthesize pads and routes for such 3D objects. Such
a function could be delivered as a plugin for CAD software
such as SolidWorks or AutoCAD. In addition, we are actively
investigating different fabrication processes and plan to con-
tinue our exploration of conductive ink printing. Finally, we
would like to expand our scope beyond capacitive charge-
transfer sensing. For the longer term, we are interested in
more closely integrating user interface design tools with dig-
ital fabrication tools.
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