
HTTP: An Evolvable Narrow Waist for the Future

Internet

Lucian Popa
Patrick Wendell
Ali Ghodsi
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-5

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-5.html

January 4, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

HTTP: An Evolvable Narrow Waist for the Future Internet

Lucian Popa∗ Patrick Wendell∗ Ali Ghodsi∗ Ion Stoica∗

Abstract
While the Internet is designed to accommodate multiple
transport and application layer protocols, a large and
growing fraction of Internet traffic runs directly over
HTTP. Observing that HTTP is poised to become the
de-facto “narrow waist” of the modern Internet, this
paper asks whether an HTTP narrow waist, compared
with the an IP-layer waist, facilitates a more evolvable
Internet. Evolvability is highly desirable for the Internet,
since communication patterns change must faster than
the underlying infrastructure. Furthermore, the narrow
waist plays in important role in enabling or preventing
architectural evolvability. We argue that HTTP is highly
evolvable, due to (i) naming flexibility, (ii) indirection
support, and (iii) explicit middleboxes. We point to
evolving uses of HTTP on today’s Internet, and design-
ing our own publisher/subscribe service, HTTP Relay
Service (HTTP-RS), on top of HTTP.

1 Introduction
During the past decade, we have witnessed an explosive
growth of HTTP traffic [28,37] and a massive increase in
HTTP infrastructure in the form of Content Distribution
Networks (CDNs), HTTP proxies, caches, and other
HTTP middleboxes. A variety of applications, such as
video and audio streaming, have migrated to HTTP,
abandoning protocols specifically designed for their
workloads (e.g., RTSP, RTMP) [1, 7]. This trend is
fueled by the ease of deploying new functionality on
the data path via reverse and forward proxies, a wide
distribution of HTTP client and server software libraries,
and HTTP’s ability to penetrate firewalls [32].

The growth of HTTP traffic also pushes infrastructure
providers to expand their HTTP footprint, creating a
positive feedback loop and accelerating HTTP traffic
growth. Taking this trend to its logical conclusion, it has
been argued [32] that HTTP has become the de facto
“narrow waist” of the Internet, as the vast majority of
traffic runs over HTTP instead of directly over IP.

A highly desirable property of a narrow waist is the
ability to evolve with the ever-changing needs of new ap-
plications. This ability is important since it is nearly im-
possible to predict the needs of future applications. If the
narrow waist can evolve and provide new functionality,

∗University of California, Berkeley

then all applications can take advantage of such function-
ality. If the narrow waist is not evolvable, the applications
have to either implement the functionality themselves,
or wait for their protocol of choice to implement it. In
fact, one could argue that the main motivation behind
the flurry of recent proposals for new network architec-
tures [9, 20, 26, 27, 39, 42] is a response to IP’s inability
to evolve and support features such as content dissemi-
nation, explicit support for middleboxes, and anycast. It
should come as no surprise that evolvability has recently
been singled out by several clean-slate proposals as the
most desirable feature of a future architecture [8, 19].

In this context, we ask the following natural question:
Is HTTP evolvable? Despite the fact that one could con-
vincingly argue that HTTP is already an “ossified” pro-
tocol1, we answer this question positively by arguing that
HTTP is surprisingly evolvable and a “narrow-waist”
well poised to serve the needs of the future Internet.

We argue that HTTP’s evolvability boils down to some
of the same properties that have led to its widespread
adoption: (i) flexible names, (ii) support for redirection
through name and address decoupling, and (iii) explicit
middlebox support. These properties enables HTTP to
evolve without protocol changes by enabling innovation
within its framework. For example, HTTP allows one
to encode arbitrary application information into names,
use new name resolution mechanisms to implement
anycast and redirection, and deploy new functionality at
middleboxes.

As proof points, we observe that these properties have
already enabled HTTP to provide services and func-
tionalities not envisioned at the time of its design. For
example, CDNs use HTTP redirection and middlebox
support in the form of reverse proxies, chunked video
streaming take advantage of naming flexibility, URL
tokenization leverage both redirection and name flexi-
bility, and, finally, anonymization and content-filtering
services take advantage of the ability of clients to point
the HTTP traffic to specialized middleboxes (proxies).

We explore the limits of HTTP’s flexibility by extend-
ing the HTTP communication model with a new service
that is fundamentally different from its original intended
use. In particular, while HTTP implements a client-
server pull-based communication model, where clients

1Indeed, the HTTP protocol specifications have been
stagnant since the specifications of HTTP 1.1 were published
in 1999, and there are no imminent plans for a new version.

1

pull content from servers, we aim to implement a generic
client-to-client push-based communication model. This
model is highly general as it provides a variety of
communication primitives, such as unicast, anycast, and
multicast. These primitives would enable HTTP to sup-
port a class of applications that it does not support well
today, i.e., low-latency applications, including voice,
video conferencing, and chatting. We believe that adding
such a generic client-to-client communication model to
HTTP represents not only a compelling proof point for
its evolvability, but also allows HTTP to handle virtually
any application that today uses TCP/IP, extending the
benefits of HTTP to an entirely new set of applications.

To realize this vision we design, deploy, and evaluate
HTTP Relay Service (HTTP-RS). The architecture of
HTTP-RS is similar to that of the Internet Indirection
Infrastructure (i3) [39], as it enables client-to-client
communication through an indirection point. Like i3,
this model enables a variety of communication models.
With HTTP-RS, a client can subscribe to an URI using
S-GET, an annotated GET request. Once it subscribes,
the client starts receiving data subsequently published
to that URI. The communication takes place through an
HTTP infrastructure that relays data between clients.
In response to demand, a number of ad-hoc solutions
have already been proposed to implement push based
communication from a single server to a single client
[6,14], HTTP-RS standardizes these efforts and provides
a more general client-to-client communication model.

Our HTTP-RS implementation requires no protocol
changes, and leverages two key HTTP properties: (a)
flexible naming to name the communication channels
and the data units exchanged by the clients, and (b)
HTTP redirection to perform relay selection. We evaluate
the performance of HTTP-RS and find that it incurs only
minor overhead in terms of latency and throughput. Fur-
thermore, stateful relays can be implemented in a scal-
able manner. Adding a fundamentally different commu-
nication model to HTTP without protocol changes rep-
resents a strong proof point of HTTP’s ability to evolve.

In summary, in this paper, we make two main points:

1. HTTP is a highly evolvable protocol. HTTP’s
evolvability, together with its widespread adoption,
opens ample opportunities to deploy new function-
ality in the Internet. In fact, we believe that some of
the functionalities proposed in the context of recent
clean-slate designs can be implemented at the
HTTP layer. We give one such example, HTTP-RS,
which implements the indirection functionality
proposed in [39].

2. HTTP’s evolvability can be traced to three prop-
erties: flexible naming, support for redirection,
and explicit middlebox support. We believe these

properties can represent a source of inspiration for
both researchers and practitioners designing new
protocols, and/or new network architectures.

This paper is organized as follows. The next section
(§2) describes the growth of HTTP traffic and motivates
a discussion of evolvability. Sections (§3) identifies
the fundamental properties of HTTP which promote
evolvability and (§4) presents examples. We introduce
HTTP-RS (§5) and describe its use (§6) and deployment
(§7). The next section (§8) evaluates the performance of
HTTP-RS. The final sections of the paper cover related
work (§9) and conclusion (§10).

2 Background
In this section, we summarize the main arguments for
HTTP becoming the de facto a narrow-waist of the In-
ternet [32]: (a) it’s explosive growths, and (b) its ability
to provide features, not supported by the existing IP, and
targeted by new Internet architecture proposals.2 We then
discuss the evolvability problem in the context of HTTP.

2.1 HTTP’s Growth
With the advent of the web in mid-90’s, HTTP became
a significant fraction of Internet’s traffic [31]. In the
intervening years, a handful of other application-layer
protocols have seen periods of popularity, including
proprietary streaming protocols (e.g., RTMP, RTSP) and
peer-to-peer technologies. With time, however, these
applications have mostly migrated to or been replaced
by services operating over HTTP. HTTP traffic today,
for instance, is driven by the growing popularity of
video traffic (Cisco forecasts that by 2013, 90% of the
consumer traffic will be video [4, 36]). To sustain such
growth, content providers and aggregators have recently
turned their attention to HTTP chunking, a technology
pioneered by Move Networks [1]. HTTP chunking
allows content providers to leverage their vast HTTP
infrastructure, and helps clients improve their perfor-
mance due to its ability to leverage corporate and ISP
proxies, and traverse firewalls. HTTP chunking is today
employed by all major video distribution platforms,
including Microsoft, Adobe, and Apple, and it is rapidly
growing to dominate the Internet video traffic.

HTTP traffic is also increasing at the expense of
peer-to-peer (P2P) traffic [4, 30, 36]. One of the main
reasons for this has been the dramatical decrease in
cost of CDN delivery (e.g., by a factor of 10 between
2006 and 2010), which had considerably decreased the
appeal of P2P distribution. Today, virtually all major
content providers use CDNs instead of P2P for content
delivery. With the advent of HTTP chunking and with

2For an in-depth discussion see [32].
2

a continuous expansion of the HTTP infrastructure, we
expect that this trend will only intensify.

Given these trends and the massive investment in
HTTP infrastructure on today’s Internet, we believe that
HTTP traffic will dominate (at least in volume) Internet
traffic for the foreseeable future.

2.2 Evolvability
A highly desirable characteristic of any network archi-
tecture, Internet included, is the ability to evolve and
adapt to future applications with unexpected needs.
Indeed, many of the recent clean-slate proposals of
network architectures emphasize evolvability as the
centerpiece of their design [8, 19]. Given its position
as the common denominator in the protocol stack, the
narrow waist is the key to architecture evolvability. If the
narrow-waist doesn’t enable evolvability, the developers
have no choice but try to implement new functionality
at a different layer. If the new functionality starts being
used by the majority of applications, the layer providing
that functionality may become the new (de facto) narrow
waist. Arguably this is the path followed by HTTP.
As IP could not evolve to provide support for content
distribution, explicit selection of middleboxes, and
improved security, HTTP filled these gaps!

There at least two dimensions to evolvability. The first
dimension is the ability to easily transition from one
version of the protocol to another, e.g., from IPv4 to
IPv6. The second aspect is the ability to implement and
deploy new functionality without protocol changes. By
new functionality we mean functionality that protocol
designers did not consider at the onset. In this paper, we
focus on the second dimension, as it is arguably more
general and easier to evaluate. We emphasize that evolv-
ability does not imply protocol changes. For instance, at
one extreme, an active network is highly evolvable with-
out changing its specification. Similarly, in this paper,
we show that HTTP is highly evolvable despite the fact
that arguably HTTP is already an “ossified” protocol.
In particular, we argue that HTTP’s evolvability stems
from three basic properties that we discuss in Section 3.

3 An Evolvable Architecture
In this section, we identify three key properties that we
argue are responsible for HTTP’s evolvability.

3.1 Properties
Flexibility in naming: HTTP uses flexible naming to
identify resources. An HTTP resource is identified via
a URN; in practice, the most common use of URNs are
HTTP URL’s. HTTP leaves open how servers should in-
terpret a URN once a request is received. This lack of
semantic strictness allows flexible and evolving naming
schemes. Indeed, HTTP naming has changed dramati-

cally in the last ten years, from URL’s commonly identi-
fying file names to a more content-centric approach (e.g.,
http://cnn.com/politics).

Similarly, HTTP does not specify the mechanism by
which names are resolved into destination addresses.
This is an important decision, because it leaves the
door open for future resolution mechanisms, should the
need for them arise. In principle, it would be possible
to introduce an entirely different resolution step, along
with its own supporting architecture, and stay within
the bounds of the HTTP specification. While this would
be a monumental task, it would not necessitate altering
HTTP’s content retrieval infrastructure. Since name
resolution and content retrieval are decoupled in HTTP’s
design, one can evolve without affecting the other.
Indirection primitives: HTTP can leverage DNS to pro-
vide indirection. This allows applications such as CDNs,
to use dynamic DNS updates to offer anycast functional-
ity for content delivery. Indirection is not tied to DNS
however, as HTTP offers a robust, explicit redirection
primitives. HTTP indirection is generally more power-
ful, because redirectors base decisions on a full URN (not
just a hostname) and see true client IP address. The latter
is important since network topology may be a considera-
tion in such schemes [38].

Prior work argues that indirection, specifically any-
cast, is the single most important enabler of network
evolvability [33]. While earlier projects considered
such redirection at the network layer, we observe that
application-layer redirection provides many of the
same benefits. In particular, HTTP redirection allows
late-binding per flow connection decisions. Several
recent projects have proposed global control planes (4D,
SDN, Ethane) and these all require such functionality.
Redirection also enables incremental deployability,
since client requests can be routed to a subset of servers
with the corresponding functionality. Finally, redirection
supports inter-service delegation and allows dispatching
of clients from one HTTP service to another.
Explicit support for middleboxes: The HTTP protocol
provides explicit support for named middleboxes. This
facilitates end-middle-end applications, where third par-
ties explicitly participate in client-server exchange. Since
proxies are a first-class entity in HTTP, they need not
be deployed on the datapath for the clients and servers
to take advantage of their functionality. Since they are
explicitly named, a client can choose whether or not to
engage a particular middlebox (forward proxy) for each
request. Similarly, servers can use DNS or URL redi-
rection to make sure that the requests addressed to it
are processed by a particular middlebox (reverse proxy).
Furthermore, upon receiving a request, a server knows
whether that request has arrived via a particular middle-

3

box, and can generate responses accordingly.
Explicit middlebox support has been identified by sev-

eral previous works as an essential property to provide
flexible deployment of new functionality [20, 39, 42].

3.2 Discussion
As argued in [32], HTTP has three properties which
feature prominently in clean slate proposals. First,
HTTP is a content-centric protocol, where several
architectures have advocated for content identifiers in
packet headers [12,26,27]. Second, HTTP offers explicit
middlebox support, a feature argued for in numerous de-
signs [9,20,27,39,42]. Third, via DNS naming, HTTP al-
lows limited support for anycast communication and sin-
gle host mobility (as proposed in [15, 24, 35, 39, 42, 44])
Not surprisingly, there is a significant overlap between
these three properties and the evolvability properties dis-
cussed in this section. However, there are two important
differences which we emphasize next.

First, we single out the name flexibility as one of the
key evolvability properties. Virtually all evolvability
examples we discuss in Section 4, as well as HTTP-RS,
leverage the name flexibility property. In contrast, we
do not list the content-centric nature of HTTP among
the evolvability properties, as this property follows at a
large extent from the name flexibility property, i.e., the
ability to name the content.

Second, while decoupling the host identifiers from
addresses is necessary to provide indirection, this decou-
pling captures only part of the power of the indirection
primitives. The other critical aspect is that HTTP does
not mandate the resolution mechanism, i.e., how names
are mapped to addresses. This is a very important
decision, as it allows one to provide arbitrarily anycast
services by controlling the resolution mechanism.
For comparison, some of the previous proposals that
decouple names/identifiers from addresses dictate the
resolution mechanism, e.g., i3 uses a DHT mapping [39].

Finally, one legitimate question is whether the three
properties we have listed in this section are either
necessary or sufficient for achieving evolvability. Un-
fortunately, it is hard to give a definite answer to this
question given that the evolvability itself is not well
defined. Short of giving such an answer, we argue that
these properties are highly desirable, and the lack of
any of them would hamper the evolvability. As we have
already mentioned, the ability to provide indirection
has been singled out as the key property to provide
evolvability by [33], and [39] provides a convincing
proof-point for this property. Together with indirection,
the ability to explicitly name middleboxes allows the de-
velopers to incrementally deploy arbitrary functionality
at proxies. In the absence of this property, it would be
much more difficult for clients to direct their requests to

proxies that implement the desired functionality. Finally,
name flexibility allows clients to encode application
specific information to be interpreted by proxies and
servers. As demonstrated by various HTTP services,
such as CDNs and our own HTTP-RS, name flexibility
is critical to implement flexible anycast functionality.

4 Evidence For Evolvability
In the decade since HTTP 1.1 was officially codified, the
nature and quantity of Internet traffic has changed dra-
matically. The Internet has welcomed a bevy of highly
interactive applications (e.g., online document editing)
which deviate from the model of static content retrieval.
Static content, in turn, has become orders-of-magnitude
greater in size, driven by the advent of high-definition
and often realtime video. Content is increasingly user-
customized, requiring unprecedented interoperability be-
tween websites to preserve user identity and capabili-
ties. One might expect these dramatic workload changes
to drive developers away from HTTP. Instead, the op-
posite has happened. New applications have leveraged
HTTP’s flexibility to build such functionality. This sec-
tion explores several representative examples of applica-
tions which use HTTP in unanticipated ways. Through-
out, we refer back to the principles outlined in section 3.
Content distribution networks (CDNs): The last
decade has seen an an increase in Internet bandwidth and
availability. In turn, aggregate demand for online content
has increased several fold. The bulk of this burden has
fallen to CDNs, who must maintain robust and highly
available infrastructure for serving HTTP content to mil-
lions of simultaneous users. In this role, CDNs have be-
come a necessary backbone, serving a large proportion of
all Internet traffic. The HTTP specification does not men-
tion or explicitly support CDNs; the industry was still in
its nascency when the protocol was standardized.

CDNs leverage two of the previously mentioned
properties of HTTP to construct robust third party
content-serving infrastructure. First, CDNs make exten-
sive use of HTTP’s support for explicit middleboxes,
relying heavily on both forward and reverse caching
proxies to serve data with minimal end-user latency.
Second, CDNs leverage flexible name resolution to
provide an “anycast” abstraction to HTTP clients, thus
minimizing deployment complexity. Redirection comes
both via extensive DNS dynamism (matching hostnames
to edge-caches) [17, 38] and HTTP-level redirection
between caches [43]. Unlike IP-layer anycast, however
such indirection lets CDNs consider server load, cache
locality, access control, and other application-specific
criteria in directing clients to replicas.
URL tokenization:. This technique leverages HTTP’s
flexible naming and indirection primitives to enables the

4

1. Login 2. URL= Hk (client, content,
timestamp)

k

CDN k
3. Verify URL

4. Content

Figure 1: URL Tokenization. A web client is authenticated
by an application server, then retrieves content via a
certified URL. The server and CDN share a secret key, k.

transfer of access control credentials between websites.
For example, assume a media company, foo.com, hosts
content at cdn.com. foo.com authenticates its own users
but wants that only authenticated users to access the
content hosted by cdn.com. One solution to this prob-
lem is as follows: foo.com and cdn.com share a sin-
gle secret key, k, which is disseminated out-of-band.
When an authenticated foo.com user X wants to watch
a video, foo.com embeds and signs [X,time, movie]k in
the HTTP URL. The client is then redirected (via explicit
redirection or content embedding) to that URL, which
the CDN can verify. This method, which is detailed in
Figure 4, has developed into a de-facto standard offered
by multiple CDN’s.

Embedding privileges in the URL has several ad-
vantages. First, it eliminates the need for realtime
coordination between applications and content dis-
tributers. Since CDN’s operate in a highly distributed
fashion with hundreds or thousands of cache locations,
this coordination can pose high overhead (or limit per-
formance, if the cache pool is decreased). Tokenization
requires only a single out-of-band agreement on keys,
which can then be propagated amongst caches. Second,
this strategy limits the possibility that a third-party
middlebox or cache will hold onto a piece of privileged
content and serve to unauthorized users, since URL
names are unique to the combination of content and
access. Naming obfuscation therefore provides a defense
against unauthorized dissemination of content. Variants
of the strategy have also been employed other contexts
where it is necessary to encode temporary privileges in
URL names, such as password recovery links.
HTTP chunking: As mentioned in Section 2, several
companies, including Move Networks [1] and Swarm-
cast, [2], have pioneered HTTP chunking, which enables
the delivery of video and audio over HTTP instead of
traditional streaming protocols. This technique chunks a
video stream into blocks of a few seconds each and then
distribute these blocks as individual files by leveraging
existing CDNs and HTTP proxies. Taking advantage of
HTTP’s flexible naming, file names convey both video
identifiers and chunk offsets. A client downloads chunks,
stitches them together, and plays the original stream.

HTTP chunking has several advantages over traditional

CDN A

CDN B Current Frame

Video Client

Chunk Buffer

Figure 2: HTTP Video Chunking. An HTTP client
retrieves and stitches video splices from multiple CDNs.

streaming protocols. First, it increases the distribution
scale and reduces the cost, as CDNs have more HTTP
servers than streaming servers, and they do not incur
licensing costs for the HTTP servers (these servers
are typically based on open-source software, unlike
the streaming servers). Furthermore, using HTTP to
distribute video can leverage the HTTP caching proxies
deployed by ISPs and enterprises. Second, it improves
availability: if an HTTP server fails, the client can mask
such a failure by requesting the subsequent chunks from
a different server or CDN. Third, it improves quality,
as a client can request multiple chunks simultaneously,
which leads to aggregating the throughput of multiple
TCP connections. In contrast, traditional streaming
protocols use one TCP connection for data transfer.
Middleboxes: Because HTTP middleboxes need not be
on the data path, they are easily deployed by third parties.
While this functionality was designed with simple prox-
ying and caching in mind, it has been extended to include
a litany of intelligent content-transforming middleboxes.
These include anonymizing HTTP proxies, content fil-
ters, intrusion detection boxes, web accelerators, layer-7
load balancers, and transcoders for mobile devices. Be-
cause HTTP explicitly names these middleboxes, their
use is not at odds with the correct functioning of the
protocol. Indeed, these services are often deployed only
for certain sets of HTTP clients, such as mobile users
or those seeking privacy, and specific clients can use
them intermittently request-to-request. In contrast, IP-
layer middleboxes represent an “all or nothing” proposal,
touching all traffic on the data path, often unbeknownst
to the sender or receiver.

In each of these examples, the properties of HTTP
discussed in section 3 are leveraged to enable unan-
ticipated functionality. These examples, while only a
small sample of HTTP’s modern use, suggest that the
migration towards HTTP traffic has not prevented a
dynamic and evolving Internet.

5 HTTP RELAY SERVICE
HTTP has evolved to meet the changing demands of
Internet applications to date, and this presents strong
evidence that an HTTP infrastructure is, in fact, evolv-

5

able. We next ask whether HTTP will evolve gracefully
in response to future application demands. This question
is difficult to answer, as we cannot definitively charac-
terize the workloads of future application. One strategy
would be to anticipate which application will dominate
tomorrow’s traffic, and then assess HTTP in the context
of that application. We take a more general approach,
and develop a new communication service between two
or more HTTP clients that supports a wide variety of
communication patterns. Our service, HTTP-RS, offers a
publisher/subscriber primitive on top of which a diverse
range of applications can be deployed, including those
for which HTTP has historically been a bad fit, such as
low-latency or client-to-client services. Since HTTP-RS
differs drastically from HTTP’s current communication
model, it presents an extreme experiment in evolvability.

5.1 HTTP-RS Communication Model
HTTP’s architecture is based on a client-server com-
munication abstraction. However, many of today’s
services—such as chat or VoIP—are in essence client-to-
client. There is a clear trend toward these services mov-
ing to HTTP, with Facebook chat as a popular example.
In our model, two or more HTTP clients send and receive
updates through intermediary HTTP servers, e.g., one
client sends a chat message that is relayed by the server
to another client. We use the term “client” in a general
sense, in that clients may send or receive data. A server
or relay is a host which relays traffic between clients.

To support client-to-client communication, we need to
address two distinct problems. First, the server needs to
provide a relay service between clients. This is supported
within today’s HTTP semantics: a client can publish data
to an HTTP server (via PUT or POST commands), and
another client can receive data from that server via GET.

Second, to support real-time applications such as voice
and video conferencing, there should be a low-latency
mechanism that allows a client to get the data as soon
as it is published to the server. Unfortunately, using
GET to periodically poll the server for new data may be
insufficient. Assuming the receiver checks for content
every T ms, the end-to-end latency may exceed T ms. If
an application wants to achieve an end-to-end latency on
par with cross country latencies, it needs to poll about
every 50 ms, which can be prohibitive both for the client
and the server.

The need for providing a low-latency fetching mech-
anism in HTTP has long been recognized by industry,
and several approaches commonly referred to as
“HTTP push” or “Comet” [6, 14] have been proposed.
These approaches typically leverage Javascript to send
asynchronous HTTP requests, which either delay the
response to a GET until data is available, or send a
stream of never-ending data. However, these solutions

are focused on server-to-client communication; they
provide no standardized mechanism to relay the packets
from one client to another.

In this paper, we build on these solutions to provide a
client-to-client low-latency service. The key abstraction
to implement this service is Subscribe-GET (S-GET),
which allows a client to subscribe to a URI. Unlike
existing “HTTP push” approaches, S-GET provides
end-to-end semantics: any data that is published to a
URI is forwarded by the HTTP server to all clients sub-
scribing to that URI via S-GET. The HTTP servers do
not store the data published to an S-GET URI, they just
forward the data. This differentiates our solution from
client-to-client communication relying on traditional
PUT/POST and GET commands. It also removes one of
the main hurdles in providing a client-to-client service
today, i.e., the reluctance of HTTP servers to allow
storing data to avoid the risk of storage DoS attacks. We
refer to this as the HTTP Relay Service (HTTP-RS).

We note that HTTP-RS is similar to i3 (e.g., an S-GET
request is similar to a trigger), which was a DHT-based
architecture that could provide mobility, multicast, and
anycast [39]. While i3 never enjoyed wide adoption, we
believe HTTP-RS to have greater adoption potential due
to today’s massively deployed HTTP infrastructure and
associated business incentives.

5.2 Subscribe-GET (S-GET)
The format of an S-GET request is similar to that of a
traditional GET. However, unlike GET requests, HTTP
servers store S-GET requests up to an expiration timeout
associated with the request. As long as the S-GET is
stored at the server, any updates (through PUTs) to the
URI of the S-GET are sent to the client that issued the
S-GET. A server removes an S-GET request after the
timeout expires or when a client closes the underlying
TCP connection. Each update is sent to the client
through a regular HTTP response.

S-GET only returns content published after the S-GET
has been received by the server. Thus, S-GET provides
a publish/subscribe abstraction, where a receiving client
subscribes to a URI through S-GET, and a sending client
publishes application data units (ADU) to that URI us-
ing either POST or PUT. Note that there can be multiple
senders as well as receivers for the same URI.

The S-GET request contains the desired timeout as a
header attribute. For security purposes, the server may
not accept large timeout values, in which case, it returns
an error response containing the maximum allowed
timeout. To extend their duration, S-GET requests need
to be “refreshed” before their expiration. If the server
accepts the timeout of the refresh S-GET, it updates
the timeout of the stored S-GET. If it cannot accept the
timeout of a refresh S-GET, it sends an error response

6

 A B proxy server A B proxy server
ti

m
e

ti
m

e

(a) HTTP Proxy (b) S-GET Proxy
 response caching request caching

Figure 3: Dual proxy modes. (a) GET responses are
cached for future requests. (b) S-GET requests are cached
for future pushes. Circles represent cache events.

but keeps the stored S-GET unmodified.
Low-latency communication through HTTP-RS is

naturally implemented using S-GET. Consider com-
munication between two clients, A and B. To start
communicating, client B sends an S-GET request to
a URI, and subsequently client A publishes ADUs to
that same URI though HTTP PUT requests. All ADUs
can share the same URI, because S-GET provides a
named-pipe abstraction. For example, the URI can
be S.com/from/A/to/B, where S.com is the
DNS name of server S. Since publishing a new ADU
through PUT is equivalent to modifying the content
at S.com/from/A/to/B, the server will forward
each ADU to B. For clarity, throughout this section, we
structure URIs similarly to above, but in practice A and
B can use arbitrary URIs. Also, for brevity, we typically
use S for the server’s DNS name (instead of S.com).

The efficiency of delivering HTTP-RS content can
be increased with the use of caching proxies. Whereas,
today’s proxies cache GET responses and deliver them
to subsequent GETs for that URL, S-GET, proxies cache
S-GET requests rather than responses, i.e., the dual of
what is done today (see Figure 5.2). If the proxy receives
multiple S-GETs for the same URI, it need only forward
the first to the server. The remaining S-GETs can be
served using copies of the reply; this behavior is similar
to that of an IP multicast router, creating a (reverse path)
distribution tree. When a proxy receives a new S-GET
request with a timeout expiring later than its current
subscription, it will send a refresh request to the server
with the newly requested timeout.

Today’s HTTP is deployed on top of TCP. In our
current implementation, an S-GET request maintains
an open TCP connection to the server, thus allowing
the server to send data even when the subscribing client
is behind firewalls or NATs. While S-GET partially
departs from the stateless model of HTTP, it represents
a design pattern relied on heavily by nearly all of

today’s interactive web applications, including GMail
and Facebook Chat. These applications scale gracefully
to large numbers of simultaneous users. Finally, we note
that S-GET uses soft state, which leaves the HTTP’s
failure semantics largely unchanged.

5.3 Buffering Semantics
Buffer management is an important consideration in
HTTP-RS, since senders and S-GET receivers for the
same URI may operate at different rates. HTTP-RS al-
lows two approaches to buffering: (1) reliable relay, and
(2) real-time relay. Reliable relay is useful when there
is a single receiver, while the real-time relay is useful
for live audio/video streaming to multiple receivers. In
both cases, the server maintains a queue for each S-GET
request and enqueues ADUs to be sent to the respective
request. Having one queue per S-GET request serves to
isolate the performance of different receivers.

For reliable relay, a server always enqueues the ADU
in the queues of all the S-GET receivers registered for
the URI of the PUT request. The server does not read
new resources from the sender until it has enqueued the
current request to all receivers. Therefore, in case of
multiple receivers, the sender is transmitting at the rate
of the slowest receiver. Note that the reliable relay is
not guaranteed to be reliable in the strict sense, since an
HTTP server may fail. End-to-end reliability still needs
to be implemented by applications, though failover is
assisted by a rendezvous layer discussed in Section 7.1.

For real-time relay, the server only enqueues the ADU
of a PUT to receivers with room in their queue. A
receiver with a full queue will not get ADUs sent on
that URI. Thus, for real-time relay, only the receivers
that are able to keep up with the sender’s rate receive all
ADUs. In addition, the server reports back in the HTTP
response header how many requesters the URI has, as
well as how many of them it enqueued the ADU to. The
sender may then adjust its rate to ensure that enough
ADUs are being enqueued.3 This model is useful in the
case of delay sensitive traffic, such as live video or VoIP,
where it is preferred to drop ADUs instead of incurring
large latencies. A slow requester may then choose to
switch its S-GET to a slower stream, as is currently done
in commercial HTTP video solutions.

The two buffering options HTTP-RS are distinguished
through a header field alongside PUT requests. If the
field is unspecified, real-time relay is assumed.

6 Applications on top of HTTP-RS
Our primary intention in designing HTTP-RS is to en-
able new communication patterns over HTTP. Therefore,

3Note that this is similar to ICMP source quench messages,
but with information about multiple receivers.

7

S GET S/li t /A2 S GET S/li t /B 1

A
S

BS‐GET S/from/B/to/A

PUT S/listen/B
S d d t t

4

S‐GET S/listen/A2

S‐GET S/from/A/to/B

PUT S/listen/A
Send me data at: 6

S‐GET S/listen/B 1

3 5

PUT S/from/A/to/B
ADU

Send me data at:
S/from/B/to/A

7
PUT S/from/B/to/A

ADU

Send me data at:
S/from/A/to/B

6

8

Figure 4: Connection through HTTP-RS with S-GET calls.

HTTP-RS’s success is, in some sense, tied to the number
of applications contexts which it supports and how much
those applications deviate from HTTP’s functionality
today. In this section, we present increasingly complex
examples of how connection oriented communication
can be built on top of HTTP-RS.

6.1 Connection Oriented Primitives
Connection oriented communication primitives such as
listen, communication management (e.g., open, close)m
and reliability can be implemented on top of HTTP-RS.
Figure 5.3 illustrate this process for two clients A and B.
Listen: A client B can emulate the listen function by reg-
istering a listen channel through an S-GET request with
a public URI, e.g., S/listen/B (Figure 5.3 steps 1
and 2). Every other client can contact B through its listen
channel, S/listen/B, to open a connection.
Connection Management: To receive ADUs, A and B
need to create communication endpoints. For example,
A can send an S-GET request for the URI S/from/B/
to/A (Figure 5.3 step 3) to open its communication end-
point. Then, A sends this URI to B by sending a PUT
request to B’s listen channel at URI S/listen/B (Fig-
ure 5.3 step 4). Upon receiving this URI, B will make an
S-GET request to S/from/A/to/B (Figure 5.3 step 5)
to open its communication endpoint. This URI is sent to
A via A’s listen channel, S/listen/A (Figure 5.3 step
6). Once A receives this URI, A and B can start sending
data to each other through the endpoints (Figure 5.3 steps
7–8).

There are two points worth noting. First, A and B can
register the two URIs associated to the connection at
different servers, e.g., S1/from/B/to/A, and S2/
from/A/to/B, respectively. Second, both A and B can
piggyback their first data units on the URI exchanges.

Timeouts and handshaking can be used for failure-
detection and connection-termination. For brevity, we
omit the details.

6.2 Advanced Communication Patterns

Multicast and Large Scale Data Distribution: With S-

GET, one can easily implement a multicast channel with
multiple senders, by having each receiver in the group
register an S-GET request for the same URI, which plays
the role of the multicast address or identifier. When a
sender PUTs an ADU to this URI, the server will forward
the response to any client which previously registered via
S-GET. By default, this implements an open group mul-
ticast model, similar to IP multicast.

HTTP has already been proven highly successful for
streaming data to large audiences. The proposed S-GET
method can further improve this service for live stream-
ing by reducing the end-to-end latency. S-GET can be
used to receive the chunks with lower latency, or can be
used as a control channel for signaling the availability
Mobility: Since ADUs are relayed through indirection
points, both end-hosts can change their address and still
be able to continue their current HTTP-level communi-
cation. Thus, HTTP-RS supports simultaneous mobility.
Multi-homing: Multi-homed clients could setup differ-
ent S-GET receive channels for each network interface,
in this way using multiple links for the same communi-
cation. Thus, if a link goes down, rendering one of its
addresses unreachable, a multi-homed host can be con-
tacted through its other receiving channel. To further in-
crease reliability and ensure multiple paths, the sender
can choose different servers for its different receiving
channels. This approach can also be used to increase
throughput and reduce latency.
Multiple paths: Even clients with a single network in-
terface can use multiple paths by registering multiple
S-GET requests at different servers. Such an approach
could be used to increase reliability or throughput by
leveraging uncorrelated failures and disparate perfor-
mance of multiple links. Implementations with highly
distributed relays would increase the likelihood of clients
finding distinct paths. Support is limited, of course, if a
bottleneck link exists at the edge of the network.
NAT/Firewall Penetration and a Default-Off Archi-
tecture: All HTTP requests are client-initiated and hence
automatically traverse NATs and firewalls. The server

8

used in HTTP-RS is a mediator that enables two hosts be-
hind firewalls to communicate, making techniques such
as hole punching unnecessary. More generally, HTTP-
RS defines an architecture with two types of entities,
“clients”, which are off-by-default (behind NATs/fire-
walls) and “servers”, which can be contacted by any-
one. This is similar to the architecture envisioned in [21],
with the addition that in our proposal, clients can still
communicate among themselves and can use access con-
trol mechanisms to only receive packets from approved
senders (see §7.2 for restricting access to sending/receiv-
ing ADUs). In this way, DDoS attacks can be alleviated
since resource-weak hosts can be off by default and re-
ceive data through HTTP-RS channels opened at multi-
ple resourceful servers and data centers.

7 Deploying HTTP-RS
HTTP-RS offers a simple, but powerful abstraction to ap-
plication developers. The benefits of HTTP-RS are only
realized, however, if the service can be effectively de-
ployed at the HTTP layer. At a minimum, we can identify
two requirements for a deployment of HTTP-RS: First,
HTTP-RS requires an indirection layer to intelligently
assign client requests to relays. Second, as HTTP-RS en-
ables new modes of communication between clients, it
must present corresponding security features. In this sec-
tion, we discuss how HTTP-RS leverages the underlying
flexibility of HTTP to provide these features.

The design of HTTP-RS does not constrain which
party operates relay servers. In today’s Internet, CDNs
seem to offer the most viable candidate given their
existing role as providers of third-party infrastructure.
We therefore consider deployment in the context of
CDN infrastructure, though we emphasize this is only
one possible deployment scenario.

7.1 Relay Selection and Migration
HTTP-RS leverages HTTP’s redirection support to per-
form relay selection and migration. Server selection is
a well studied problem [18] and is facilitated today in
CDNs using massive indirection frameworks. Factors
such as network proximity, server load, and access con-
trol influence which server will handle a request for a
given client. Solutions to the server selection problem
can be loosely categorized along two axes: First, they
vary in which protocol is used, relying on either DNS-
based or HTTP-based indirection. DNS-based server se-
lection is more transparent but suffers from inaccuracy,
whereas HTTP-based server selection is more accurate
but incurs additional latency. Second, solutions opt for
different policies governing how to dispatch clients to
servers. Relay selection in HTTP-RS introduces addi-
tional constraints, as a CDN must minimizes latency (and
maximizes throughput) between multiple clients. In ad-

dition, the relay assigned to a URI must stay constant on
short time horizons, since the relays are stateful.

Our current implementation of HTTP-RS performs
HTTP-layer server selection via a stateful rendezvous
layer. The rendezvous layer tracks the current set of live
relays and stores as soft state the mapping of URIs to re-
lays. Figure 7.1 depicts an HTTP client performing an S-
GET for foo.com/ch1. The domain name, foo.com,
resolves to one of many caching rendezvous servers,
RV , via DNS delegation from its owner to the CDN.
The rendezvous servers keeps track of (channel→relay)
mappings via a shared datastore. In this example, RV
has a cached entry mapping from foo.com/ch1 to
relay R3, since the channel is already in use by two other
clients (far right), RV responds with a 302 Redirect
explicitly forwarding the request to S3.

If, alternatively, RV did not have an existing entry
for this channel, it would forward to the nearest relay
and add a corresponding entry to the shared state store.
Prior work has observed that choosing a relay close to
one party provides a good approximation for the optimal
relay [39], and that policy serves as the default in our
current implementation.

HTTP-layer indirection offers us many advantages
over a more transparent DNS approach. For instance, a
client can actively request a particular relay via an HTTP
header in the S-GET request, and the rendezvous will
direct to that relay if the URI is otherwise unassigned.
This could be because the client has a better idea than the
rendezvous service which relay will offer it best perfor-
mance or that the client wants explicit control over paths
(such as with multipath HTTP) but still wants to store
state in the rendezvous layer for future subscribers. In the
limit case, a client can completely ignore the rendezvous
layer and perform relay selection using some out-of-band
mechanism. This is possible since relay hosts are ex-
plicitly named and promotes flexibility for applications
which prefer their own relay selection models.

HTTP-RS also allows for client-initiated migration of
relay assignments. A special HTTP header present in ei-
ther an S-GETor POSTconveys intention to migrate a
URI to another relay. Granting this request requires the
relay coordinate with rendezvous layer (not pictured in
Figure 7.1) to update the URI mapping. If the migration
request is accepted by the relay, it redirects all partici-
pants to the new relay location.

Relay failures are recognized by the rendezvous
layer via heartbeat timeouts. After failure, clients must
re-establish their connection with the rendezvous service
in order to find the new relay. This preserves the failure
semantics of current HTTP clients.

We further find that, for the long-lived channel con-
nections of HTTP-RS, the startup cost of an extra TCP
connection with the rendezvous is outweighed by the

9

R3

RV

(2)
(1)

(3)

S-GET foo/ch1
HTTP 302 r3.foo/ch1
S-GET r3.foo/ch1

1.
2.
3.

Figure 5: A client performs an S-GET for foo/ch1 and is
redirected to the correct relay (R3) via a rendezvous node
(RV). Two other clients are already assigned to R3.

benefit of finding a good relay server. This tradeoff is
explored in more detail in Section 8.

7.2 Security of HTTP-RS
Broadly speaking, HTTP-RS faces three types of attacks:
impersonation, eavesdropping and DoS attacks. First, a
malicious node could attempt to impersonate the sender
by putting ADUs at the URI on which the receiver gets
the ADUs. Second, an attacker could eavesdrop on a
communication by simply issuing an S-GET request
to the receiver’s endpoint URI. With a similar attack
mounted on the receiver’s listen channel, the attacker
can impersonate the receiver by responding with its own
receiving endpoint to connection requests. Finally, a
denial-of-service (DoS) attack could be launched against
the HTTP-RS service by registering many S-GET
requests to use up memory and bandwidth resources
at servers. We discuss solutions for all these challenges
which can be implemented in today’s HTTP.

7.2.1 Impersonation and Eavesdropping

We consider two contexts: (1) unencrypted traffic and
(2) encrypted traffic. When traffic is not encrypted, hosts
can protect against impersonation and eavesdropping
attacks by using URIs that contain sufficiently long,
hard-to-guess (htg), random strings. Initial exchange of
these htg URIs must occur over a secure channel. For
this purpose, the endpoints can use encrypted HTTP-RS
channels (described below) or any other secure channel.

Encryption prevents impersonation and eavesdropping
attacks if the endpoints are authenticated. Encryption
can take place at the application level or at the transport
layer to/from the indirection server, depending on
whether the application trusts the relay service.

For transport layer encryption, we introduce the notion
of a self-certified URI, in short sc URI. A sc URI is
one that contains a public key, e.g., S.com/pk/P
where P is the public key; in practice, a hash of the key
could be used for efficiency. sc URIs can be used to
authenticate the receiver or the sender in an HTTP-RS
communication; this is similar to YURLs [3] today.

Application level encryption can be set up using digital
certificates or public (or secret) keys. Public keys can
be learned directly from sc URIs or through out of band
mechanisms. After knowing the public key of the other
endpoint, traditional encryption and key establishment
techniques can be used on top of HTTP-RS (e.g., similar
to those used by TLS but at the application level).

Note that encrypted ADUs can be used on the control
plane and htg URIs on the data plane. For example, host
A can listen on a sc URI, and host B can send it an htg
URI on which B is receiving messages, encrypted with
the public key used by A in the sc URI.

7.2.2 DoS attacks

We identify two types of DoS attacks in the context of
HTTP-RS: (1) DoS attacks directly against clients and
(2) DoS attacks against one or more HTTP-RS relays.
DoS clients: HTTP-RS allows a client-to-client commu-
nication even when hosts are behind NATs and firewalls.
This enables a default-off architecture [10, 22] and lim-
its the effectiveness of any DoS attempt against a client
gateways (they will simply drop unrecognized flows).
DoS the HTTP-RS service: Attackers might also try to
DoS HTTP-RS servers (on bandwidth, memory, CPU) to
disrupt the HTTP-RS service. We contend that DoS at-
tacks on an HTTP-RS server do not fundamentally differ
from attacks on today’s servers. While HTTP-RS server-
sore more state than a basic HTTP proxy (multiple open
TCP connections and small per-connection buffers), they
are on-par with RTMP servers and existing HTTP servers
supporting long-polled connections. HTTP-RS servers
are therefore amenable to current techniques for detect-
ing and suppressing DoS behavior which are widely used
in CDNs. Although HTTP-RS servers fare no better or
worse than the status quo, the broader HTTP-RS archi-
tecture does migrate the DoS threat from the clients to re-
lay providers. Historically, infrastructure providers such
as CDNs have proved best equipped to detect and miti-
gate such threats, so this division of labor arguably pro-
vides maximal security.

8 Evaluation
Applications using HTTP are often performance con-
scious. As a result, HTTP servers are heavily optimized
to handle many concurrent connections [5], while
content caches are pervasively deployed inside CDNs
and large scale ISPs [11, 40] to mitigate request load.
Since HTTP-RS data is not persistent, it is not amenable
to caching. Therefore, HTTP-RS relays must themselves
offer good performance, at very least comparable to
an equivalent service implemented over raw sockets.
We now evaluate the proposed HTTP-RS service, and
the overhead HTTP-RS clients experience in terms of

10

B

A

C

D
4ms

83

155ms
89ms

83ms

Figure 6: Topology of test setup.

latency, throughput, scalability, data overhead, jitter. We
also evaluate the performance of one example applica-
tion, VoIP, on top of HTTP-RS. Last, we briefly analyze
the role of relay selection in improving performance.

Our evaluation provides two important results about
HTTP-RS. First, latency-sensitive applications can
achieve latencies on the order of the IP-level latency
through the relay server by using small ADUs (<
5-10kB). Second, throughput-intensive applications,
can achieve throughput on the order of the available
bandwidth through the relay server by using large
resources (> 50kB).

8.1 Implementation and Setup
We have implemented S-GET support in our own web-
server—which we call 3S (Simple S-GET Server)—as
well as in the popular open-source HTTP server
Lighttpd. We use 3S to assess the upper bound of
the performance for HTTP-RS and we use Lighttpd
demonstrate that it is easy to build S-GET support incre-
mentally in an existing commercial web server, without
changing HTTP. The latter shows what performance
can be obtained for HTTP-RS without optimizing or
modifying existing web servers. We have also built
support for S-GET in an custom-built HTTP proxy.

S is implemented in C++ and in roughly 3000 lines.
The server responds to an S-GET request using the same
TCP connection on which the S-GET request was re-
ceived and keeps the connection open up to the expira-
tion of the S-GET request. Each S-GET request is asso-
ciated with an in-memory output queue. When the server
receives a PUT request, it enqueues the PUT resource
into the output queues of the matching S-GET requests.

The Lighttpd implementation builds on the FastCGI
module4. FastCGI extends the CGI concept to an event-
based model, where multiple requests can be multiplexed
by a process that handles the requests. The implementa-
tion of our FastCGI application is very similar to 3S, in
which each SGET requests has its own queue, and PUT
requests are enqueued to the corresponding queues.

We have also implemented multiple HTTP clients that
use S-GET. The clients are also implemented in C++ (ca.
2500 lines). The clients refresh their S-GET subscription
by sending new requests on the same TCP connection.

We evaluate HTTP-RS in two contexts. First, we
evaluate in a cluster environment to understand the
fundamental limitations and upper bounds on the per-

4FastCGI support exists for most major web servers, e.g.,
Apache

Scenario Direct Indirect HTTP-RS - 3S HTTP-RS - Lighttpd
Cluster 0.114 0.228 0.455 1.303
A-B-C 84.3 87.6 88 88.3
A-C-D 152 176.5 178.3 176.7
B-C-D 156 172.5 173.5 173.7

Table 1: Ping RTT Comparison (ms)

formance of HTTP-RS and S-GET. Our second setup
consists of several machines distributed around the
world as depicted in Figure 8.1. Machine A is located
at a university on the west coast of US, B is a server
located in the geographical proximity, C is located inside
the data center of a cloud provider on the east coast of
US and D is located in Europe.

8.2 Latency
We now compare the end-to-end latency of HTTP-RS
with that of IP datagram communication. There are
three types of latency that HTTP-RS adds: (1) the extra
network latency due to using an off-path relay server,
(2) the HTTP processing overhead at end-hosts and the
relay server, and (3) the delay introduced by the “store–
and–forward” model used by the relay server (i.e., the
entire HTTP resource needs to be received before being
forwarded). We focus to the second and third type of
latencies described above (for the first see §7.1).

We compare the regular network latency, obtained
using ping, with the latency of a ping application imple-
mented on top of HTTP. The HTTP level ping between
two machines X and Y is implemented as follows. Both
X and Y make an S-GET request to a server Z. X sends a
small PUT request matching Y’s S-GET; this represents
the ”ping”. After receiving this HTTP message, Y sends a
PUT response to X’s S-GET; this represents the ”pong”.

We do not differentiate between propagation delay and
transmission delay and use small packets of 100Bytes
with a 165Byte PUT HTTP header and 75Byte GET
HTTP header.5 Table 8.2 compares the direct client-
to-client latency, the indirect latency through the relay
server, and the HTTP-level ping latency. The first is
most relevant, as it performed in a low-latency cluster
and is indicative of the real latency added by HTTP-RS
compared to the latency through the relay server. As
expected, the latency added by the HTTP servers is
small. The next lines present a few data points using the
wide area topology from Figure 8.1. In the experiments
labeled by three letters such as ”A-B-C”, the endpoints
are A and C and the middle server is B. In general, we
expect the additional latency added by HTTP-RS in
any experiment to equal that observed in the cluster.

5We do not account for TCP setup and assume that S-GET
requests have been set up. This is the common case we care
about when evaluating latency, as setup occurs only once per
communication.

11

HTTP resource size
100B 1kB 2kB 3kB 4kB

0.1ms

1ms
2ms

10ms

100ms

200ms

A cluster − 3S

A cluster − Lighttpd

B−A−C − 3S

B−A−C − Lighttpd

A−C−D − 3S

A−C−D − Lighttpd

(a) Ping RTT vs ADU size

Inter−packet arrival time (cdf)

ms
16 18 20 22 24

%

0

20

40

60

80

100

Direct UDP
HTTP−RS

(b) VoIP Traffic

LAN Throughput

HTTP resource size (Bytes)
10k 40k 100k 400k 1M 4M 10M

1Gbps

2Gbps

5Gbps

8Gbps

10Gbps

Direct TCP

Indirect TCP

HTTP−RS 3S

HTTP−RS Lighttpd

(c) Throughput Cluster

B−C−D Throughput

HTTP resource size (Bytes)
10k 40k 100k 400k 1M 10M

M
bp

s

0

25

50

75

100

125

150

Direct TCP

Indirect TCP

HTTP−RS 3S

HTTP−RS Lighttpd

(d) Throughput B-C-D

Figure 7: Impact of HTTP Relay Service on latency and throughput

The other differences arise because of the routes taken
(e.g., the route between C and D exhibited a bi-modal
distribution of latencies) and router queuing delays.

Figure 7(a) shows the results for the HTTP-level ping
when we vary the size of the ADUs exchanged by the
end-hosts. The additional HTTP-RS latency is small for
ADUs < 10kB. For larger sizes, the store–and–forward
latency starts to matter. We note, however, that ap-
plications using large ADUs are typically throughput-
intensive rather than latency-sensitive, and hence latency
is less of a concern. Throughput is evaluated below.

Finally, we evaluate HTTP-RS’ impact on latency for
VoIP-like traffic. Most VoIP clients send packets at a
constant packet rate, e.g., one packet every 20ms. The
size of the packets varies with the audio codec and be-
tween the talkspurt and quiescent periods. For example,
the G.711 [41] codec adopted as a worldwide standard
in fixed line telephony specifies a sampling rate of 8000
times/second using 8 bits per sample. VoIP clients which
use G.711 aggregate the samples into packets of (at
most) 160 bytes at a rate of 50 packets per second.6

We use this traffic to assess the impact of HTTP-RS on
VoIP applications. We use the hosts B and D as clients
and compare the round-trip delay and inter-arrival times
between direct UDP traffic and HTTP-RS sent through
node C. We use instances of several minutes of simulated
conversation. We compare against UDP since it has
traditionally been the protocol used by VoIP clients7. In
our experiments, the round-trip times were not affected
(same as those presented in Table 8.2).

Figure 7(b) compares the inter-packet arrival times for
the VoIP traffic. As one can see, in our experiments, the
inter-arrival time of HTTP datagrams had actually lower
jitter on average than for UDP. Very few UDP packets
were lost, and less than 0.1% of the HTTP datagram
packets exhibited inter-arrival times higher than 30ms or

6Note that G.729, more popular for VoIP, has lower network
bit-rate requirements and HTTP-RS’ results can only improve.

7More recently, VoIP clients are migrating more and
more towards TCP to handle firewall traversal and bandwidth
elasticity.

lower than 10ms.

8.3 Throughput
In this section, we evaluate HTTP-RS’s throughput.
Figures 7(c) and 7(d) show throughput for four sce-
narios: direct communication using the iperf utility,
indirect communication using a TCP forwarder, and
reliable-transfer relay using 3S and Lighttpd. To achieve
higher throughput, we use pipelining with HTTP-RS.

We first want to estimate the upper bound of HTTP-
RS’s throughput. For this purpose, in Figure 7(c) we use
a controlled environment consisting of two machines
(with Xeon X5560 CPUs) connected through a 10Gbps
link. This experiment shows that a single communication
over HTTP-RS can achieve throughput of over 7Gbps
when using a server optimized for S-GET, and over
2Gbps even with an standard web server leveraging
existing technologies. When smaller resources are used,
the throughput decreases due to the overhead of parsing
and processing each resource at the server. We expect
these results to hold for the wide-area scenario as well.

Figure 7(d) presents a wide-area example where nodes
A and D communicate through the relay server C (see
Figure 8.1). Interestingly, in this setup, the bandwidth
available through the indirection server was significantly
higher than the direct bandwidth. As expected from the
results in the cluster, for large ADUs, HTTP-RS can uti-
lize the full available bandwidth, which is relatively low
for wide-area networks.

We next explore how throughput is affected by S-
GET-aware proxies. We let a set of clients receive the
same data from a server through S-GET, i.e., the server
multicasts the data. Figure 8(a) compares the average
throughput observed by clients when receiving the data
directly from a server to the case when receiving the
data through an S-GET-aware HTTP proxy. Receivers
are located on a set of machines in the same organization
as host A, while the server is located on host C. The
proxy is co-located with the receivers. We send 50MB
using ADUs of 50kB. As expected, the throughput is
significantly higher when using the proxy because the

12

Receiver Throughput

receivers
0 25 50 75 100 125 150

M
bp

s
80

50

10

5

2

1 No Proxy

Proxy

(a) S-GET Proxy

3S Server Throughput

S−GET receivers
1 2 5 10 20 50 125 400 1000

M
bp

s

100

200

500

1000

(b) Throughput Multicast

3S Server Throughput

Parallel communications
1 2 5 10 20 50 125 400 1000

M
bp

s

100

200

500

1000

(c) Throughput Parallel Comm.

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1 1.5 2 2.5 3

C
D

F
 o

f T
ra

ns
fe

rs

Increase in Throughput using Rendezvous

Transfer Size
1k

10k
100k

1M

(d) Using Rendezvous

Figure 8: Throughput

bandwidth between the proxy and the receivers is much
higher than the one between the source and the receivers.

8.4 Scalability
We now evaluate the throughput of HTTP-RS in the
presence of multiple senders and receivers.

Figure 8(b) shows the total throughput for 3S in the
case of multiple S-GET receivers and a single sender for
several machines inside a cluster at our university con-
nected through 1Gbps links. Figure 8(c) shows the server
throughput in the case of multiple client-pairs using the
same server; these transfers are executed in parallel at
the same time. The communicating participants are dis-
tributed on multiple machines and senders are synchro-
nized.

These results show that 3S performance degrades
gracefully as the number of senders and receivers of
HTTP-RS increases. That is, the total server throughput
is mainly limited by the link bandwidth and CPU. As
expected, we have found that the scalability of 3S is lim-
ited by the one-thread-per-client model rather than the
support for S-GET. The throughput of the active HTTP-
RS communications is not affected when there are 20k
inactive S-GET requests (chart omitted for brevity).

8.5 Size Overhead
We now consider the overhead due to the HTTP header
size. The typical HTTP header used in our experiments
is 70-80Bytes for the S-GET requests and 160-170B for
the PUT requests (e.g., varying with resource name, host
name, parameters). Thus, for example, the PUT HTTP
header adds an 8% overhead on a 2 KB ADU. Since
bandwidth is becoming cheaper, we argue this overhead
is manageable in the vast majority of cases.

8.6 Server Selection
In our current deployment of HTTP-RS, a rendezvous
step selects the optimal relay server based on client
location. The rendezvous step itself, which consists of
an HTTP request and redirection response, introduces
the overhead of an additional round-trip. An alternative

design could avoid this step (for instance by using a
consistent hashing scheme) at the cost of converging at
a sub-optimal relay. To evaluate this design decision, we
studied the effects of the rendezvous step on transfer time
between 90 (sender, receiver) pairs across five possible
relay choices. In our experiment, a sender sends a single
ADU to a receiver who is already listening on the chan-
nel. We evaluate the throughput of this transfer both (i)
when the sender and receiver chose a random relay and
(ii) when the sender and receiver first rendezvous then
chose the optimal relay. This experiment is extremely
simple, but conservative in its evaluation of using an up-
front rendezvous. For longer-lived sessions, the RTT cost
would be further amortized over subsequent transfers.

Figure 8(d) gives a CDF of the change in throughput
using a rendezvous server compared with a random8 re-
lay. As expected, very small transfers fare worst, since
the time spent on the initial rendezvous is comparable to
the actual transfer time. At a transfer size of 1k, more
than 50% of connections benefited from using an up-
front rendezvous. At sizes above 100k, it is nearly always
optimal to use a rendezvous. Since most throughput-
sensitive applications transfer at least this quantity of
data, we are confident the rendezvous service provides
a substantial performance boost. The latency of the ren-
dezvous step was determined entirely by RTT between
the client and the state store (via the rv node). Distribut-
ing the state store would decrease this latency.

9 Related Work
Clean slate architectural designs have had a large influ-
ence on this work (cf., §2 for a comprehensive overview).
Recent clean slate proposals have argued that the most
desirable feature of an architecture is the capacity for
evolution [8,19]. This is achieved by designing protocols
with disentangled features which can evolve in isolation
from components. Upgrades to such features can be

8To qunatify the throughput of a “random” relay, we
measured all possible relays, and used the relay with median
performance.

13

implemented by a subset of the parties on the Internet,
avoiding the need for forklift upgrades or wholesale
replacement of protocols which have historically proved
difficult. Viewed in this context, the properties of HTTP
outlined in §3 can be seen as disentangling various
protocol functions (via naming and resolution flexibility)
and uses (via named middleboxes).

Our design and implementation of HTTP-RS is heav-
ily influenced by work on publish/subscribe (pub/sub)
architectures. Demmer et al. advocate for pub/sub as
a network primitive [13]. In HTTP-RS, an S-GET to
a URI represents a topic subscription and PUTs serve
as publish events. Along these lines, our work can be
seen as implementing i3 [39] on top of HTTP. While
i3 depended on a global DHT infrastructure, we have
essentially implemented i3 triggers through S-GET.

Many have observed that functionality should move
up the protocol stack. Some propose transport protocols
have become the new narrow waist [34], while others
suggest evolving transport will require moving pieces
of their functionality to higher layers [16, 25]. In this
paper, we argue that this is already happening through
evolution on top of HTTP.

Finally, industrial efforts are transforming HTTP with
modifications that share features with HTTP-RS. Exam-
ples of this include BOSH to enable avoiding long-lived
TCP connections [23], reverse HTTP to enable easier
configuration of HTTP servers [29], and Comet for re-
ducing latency [6, 14]. While we share goals with many
of these efforts, we offer a more general service, HTTP-
RS, which partially subsumes more targeted approaches.

10 Conclusion
We have argued that the nascent narrow waist of the
Internet, HTTP, provides an evolvable Internet archi-
tecture. Three fundamental properties of HTTP make it
evolvable: (i) flexible names, (ii) support for redirection
through name and address decoupling, and (iii) explicit
middlebox support. We demonstrate that HTTP extends
well to new communication patterns, through the
deployment of HTTP-RS, a high performance HTTP
pub/sub service. The success of HTTP-RS suggests that
proposals advocating new Internet functionality might
do well positioning themselves at the HTTP layer.

References
[1] Move Networks. http://www.movenetworks.com.
[2] Swarmcast. http://swarmcast.com.
[3] YURL. http://waterken.com/dev/YURL/.
[4] Cisco Visual Networking Index: Forecast and Methodology, 2009-2014,

2010. http://tinyurl.com/3p7v28.
[5] WhatsApp Blog - One Million, 2011.

http://blog.whatsapp.com/index.php/2011/09/one-million/.
[6] A. Russell. Comet: Low Latency Data For Browsers.

http://tinyurl.com/5st8ztz.
[7] Adobe Systems. Rtmp specification. http://www.adobe.com/devnet/rtmp/.

[8] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu,
A. Akella, D. Andersen, J. Byers, S. Seshan, and P. Steenkiste. XIA: An
Architecture for an Evolvable and Trustworthy Internet. In HotNets, 2011.

[9] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Sto-
ica, and M. Walfish. A layered naming architecture for the internet. In
ACM SIGCOMM, August 2004.

[10] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker. Off by
Default! In ACM HotNets, 2005.

[11] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications. In IEEE
INFOCOM, 1999.

[12] D. R. Cheriton and M. Gritter. Triad: A scalable deployable nat-based in-
ternet architecture. In Stanford Computer Science Technical Report, 2000.

[13] M. Demmer, K. Fall, T. Koponen, and S. Shenker. Towards a modern
communications api. In HotNets-VI, 2007.

[14] Egloff, Andreas. Ajax Push (a.k.a. Comet) with Java Business Integration
(JBI), 2007. JavaOne, San Francisco, California.

[15] K. Fall. A Delay-Tolerant Network Architecture for Challenged Internets.
In ACM SIGCOMM, 2003.

[16] B. Ford and J. Iyengar. Breaking Up the Transport Logjam. In HotNets ’08.
[17] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content

publication with Coral. In NSDI ’04, Mar. 2004.
[18] M. J. Freedman, K. Lakshminarayanan, and D. Mazières. Oasis: anycast

for any service. In NSDI, 2006.
[19] A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and J. Wilcox.

Intelligent Design Enables Architectural Evolution. In HotNets, 2011.
[20] S. Guha and P. Francis. An End-Middle-End Approach to Connection

Establishment. In ACM SIGCOMM, 2007.
[21] M. Handley and A. Greenhalgh. Steps towards a dos-resistant internet

architecture. In FDNA ’04, 2004.
[22] M. Handley and A. Greenhalgh. Steps towards a dosresistant internet

architecture. In ACM SIGCOMM Workshops, 2004.
[23] I. Paterson and D. Smith D. Saint-Andre and J. Moffitt. XEP-

0124: Bidirectional-streams Over Synchronous HTTP (BOSH).
http://xmpp.org/extensions/xep-0124.html.

[24] Internet Draft. RFC3344 - IP Mobility Support for IPv4, 2002.
[25] J. Iyengar, B. Ford, D. Ailawadi, S. Amin, M. Nowlan, N. Tiwari, and

J. Wise. Minion—an All-Terrain Packet Packhorse to Jump-Start Stalled
Internet Transports. In PFLDNET, 2010.

[26] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard. Networking Named Content. In CoNEXT, 2009.

[27] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network
architecture. In ACM SIGCOMM, 2007.

[28] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jaha-
nian. Internet Inter-domain Traffic. In ACM SIGCOMM, 2010.

[29] M. Lentczner and D. Preston. Reverse HTTP. http://tinyurl.com/627dmrq.
[30] Nate Anderson. P2P traffic drops as streaming video grows in popularity.

http://bit.ly/eQse7V.
[31] A. M. Odlyzko. Internet traffic growth: sources and implications. volume

5247, pages 1–15. SPIE, 2003.
[32] L. Popa, A. Ghodsi, and I. Stoica. Http as the narrow waist of the future

internet. In HotNETS 2010.
[33] S. Ratnasamy, S. Shenker, and S. McCanne. Towards an evolvable internet

architecture. In SIGCOMM ’05.
[34] J. Rosenberg. UDP and TCP as the New Waist of the Internet Hourglass.

In Internet Draft, 2008. http://tinyurl.com/6fqy4mt.
[35] S. Deering. Multicast Routing in a Datagram Internet., 1991. PhD thesis.
[36] E. Schonfeld. Cisco: By 2013 Video Will Be 90 Percent Of All Consumer

IP Traffic And 64 Percent of Mobile, 2009. http://tinyurl.com/nw8jxg.
[37] H. Schulze and K. Mochalski. Ipoque internet study 2008/2009.

www.ipoque.com/resources/internet-studies/internet-study-2008_2009.
[38] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of dns-based

server selection. In In Proceedings of IEEE Infocom, 2001.
[39] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet

Indirection Infrastructure. In ACM SIGCOMM, 2002.
[40] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante. Drafting

behind Akamai (travelocity-based detouring). ACM SIGCOMM, 2006.
[41] I. T. Union. Recommendation G.711, Telecommunication Standardization

Sector of ITU, Geneva, Switzerland, Nov. 1998.
[42] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and

S. Shenker. Middleboxes no longer considered harmful. In OSDI, 2004.
[43] L. Wang, V. Pai, and L. Peterson. The effectiveness of request redirection

on cdn robustness. SIGOPS Oper. Syst. Rev., 36:345–360, December 2002.
[44] W. Xu and J. Rexford. MIRO: Multi-path Interdomain ROuting. In ACM

SIGCOMM, 2006.

14

