
Monte Carlo Methods for Multiple Target Tracking and

Parameter Estimation

Daniel Duckworth

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-68

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-68.html

May 9, 2012



Copyright © 2012, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
Stuart Russell



Monte Carlo Methods for Multiple Target Tracking and Parameter

Estimation

Daniel Duckworth

May 9, 2012



Contents

1 Introduction 1
1.1 Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Stating the Model 6
2.1 Bayesian Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Contingent Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Monte Carlo Methods Today 14
3.1 Importance Sampling (IS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Markov Chain Monte Carlo (MCMC) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Particle Filter (PF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Reversible Jump MCMC (RJMCMC) . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Resample Move (RM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Particle MCMC (PMCMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Multiple Target Tracking 30
4.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 CLEAR Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Contributions 37
5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Birth/Death and Data Association Model . . . . . . . . . . . . . . . . . . . . 38
5.1.2 Dynamics and Observation Models . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Particle MCMC Data Association (PMCMCDA) . . . . . . . . . . . . . . . . . . . . 40
5.3 Particle Filter Data Association (PFDA) . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Particle MCMC Data Association . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.2 Particle Filter Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Proofs 60
A.1 Resample Move gives unbiased estimates for observation likelihood . . . . . . . . . . 60
A.2 Particle MCMC Data Association targets the true posterior . . . . . . . . . . . . . . 65

1



Abstract

Multiple Target Tracking (MTT) is the problem of identifying and estimating the state of an
unknown, time-varying number of targets. A successful algorithm will identify how many unique
targets have existed, at what times they were active, and what sequence of states they followed
when active.

This work presents two novel algorithms for MTT, Particle Markov Chain Monte Carlo Data
Association (PMCMCDA) and Particle Filter Data Association (PFDA). These algorithms consider
MTT in a Bayesian Framework and seek to approximate the posterior distribution over track states,
data associations, and model parameters by combining Markov Chain Monte Carlo and Particle
Filtering to perform approximate inference. Both algorithms are evaluated experimentally on two
pedagogical examples, and proofs of convergence in the limit of infinite samples are given.



Chapter 1

Introduction

As humans, identifying and tracking the objects that surround is such an essential part of our

daily lives that we do so almost automatically. For example, when crossing an intersection, we wait

for the proper traffic light to turn green, avoid other pedestrians and bicyclists, and check to see if

turning vehicles are respecting our right of way. Each of these actions requires not only identifying

moving objects but also modeling how they interact such that we may predict their movements and

plan our own. Multiple Target Tracking (MTT) is the problem of computationally constructing

such a model.

Let us consider what an ideal MTT algorithm provided perfect measurements would be able to

do. First and foremost, the algorithm should be able to track the behaviour of all targets in view.

Secondly, it should be able to recognize new targets as they enter as well as identify when a target

is leaving. Third, it should be able to distinguish targets as separate entities.

This simple definition hides much of the complexity of MTT. A complete algorithm, for example,

does not know beforehand how many targets need to be tracked, and thus must be ready for any

number of new targets at any point in time. In addition, targets can become obscured even while

they are still of interest, and the algorithm must be able to track them even when they cannot be

viewed directly. Targets may also interact, altering each others’ behavior. Finally, the observations

given to an algorithm are not segmented into unique, identifiable objects beforehand, and thus how

observations correspond to targets must be inferred as well.

Let us consider a concrete example. Suppose we have camera at the top of a skyscraper over-

looking an intersection, as in Figure 1.1. The camera is tasked with identifying drivers who speed
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Figure 1.1: A camera overlooking an intersection. An MTT algorithm must track the position and
velocity of all moving cars.

or run a red light. In order to do so, the camera must first identify in each frame the speed and

velocity of each new car entering the scene. This is not as simple as looking for movement at the

top or bottom as cars may also come in and out of parking spaces. The dark shadows on the

left and right sides also obscure any vehicle passing under them. When multiple cars approach the

intersection, they line up in an orderly fashion, but when the road is clear they move independently.

Finally, many cars look almost identical, and the camera must ascertain what parts of the video

correspond to each individual car. This is particularly challenging when two cars enter an obscured

area simultaneously or when the video frame rate is too low to distinguish motion unambiguously.

In order to build robots capable of interacting intelligently with the world around them, we first

need algorithms capable of understanding the world they live in. This thesis introduces two new

algorithms that take a step in that direction.

2



(a) Detection Failure (b) False Detection

Figure 1.2: Detection errors an MTT algorithm must correct. Small circles are true positions and
larger, transparent circles of the same color are detections they generated. The larger grey circle is
a detection generated by clutter.

1.1 Past Work

Modern MTT algorithms must work in a variety of environments with a range of different

sensor types. For example, one may be tasked with tracking the positions of people in a hallway

given a video feed. What if one is then asked to perform the same task, but with an array of

microphones? To generalize to a wider range of sensor inputs, MTT algorithms are often designed

with the assumption that a secondary algorithm will transform the raw sensor signal into sets

of Detections discretized in time. Ideally, each detection will correspond to a potentially noisy

observation of exactly one target (e.g., a car), but there may be times when clutter is misidentified

as a target (False Detection) and when a target is not recognized at all (Detection Failure).

It is then up to the MTT algorithm to characterize each target’s behaviour and correct for these

mistakes.

Having transformed observations into sets of detections, an MTT algorithm must now also iden-

tify which detections corresponds to which target, a task known as Data Association. Formally,

we require that the set of all detections across all time is partitioned such that,

1. A target can only be associated with one detection at any given point in time

2. Each detection is associated with either one target or clutter

The number of legal data associations is exponential in the number of targets even when the
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latter is fixed, and identifying high probability data associations can become a task perhaps more

difficult than estimating the states of the targets themselves.

MTT algorithms can be categorized based on how they handle data association and target state

estimation. Algorithm designers may eschew data associations altogether and work with the raw

input signal, heuristically choose a single ‘reasonably likely’ data association to rely on, or maintain

a collection of likely associations pruned in some judicious way. When estimating state, designers

may assume additive Gaussian noise in order to apply some form of the Kalman Filter or may

instead handle a wider range of models by employing approximate methods such as those described

in Chapter 3.

However, each of these algorithms makes sacrifices in one aspect in order to gain more flexibility

in the other. The original Multiple Hypothesis Tracking (MHT) algorithm [Blackman, 1986], for

example, assumes each target moves independently under Linear-Gaussian dynamics. This allows

the algorithm to efficiently estimate the posterior distribution for each target given a data associ-

ation, and thus MHT is able to enumerate many likely data associations. Breitenstein et al. [2009]

on the other hand allows one to define an arbitrary target dynamics model but restricts itself to

a single, heuristically chosen data association in order to employ isolated Particle Filters for each

target. In addition, both algorithms assume model parameters are known and fixed before the

algorithm is initialized and are unable to recover them otherwise.

1.2 Overview

This work presents two new algorithms that give one the ability to infer target states, data as-

sociations, and model parameters simultaneously without being restricted to any form of dynamics

model. We do so by framing all of the above in single Bayesian model upon which we employ Par-

ticle Markov Chain Monte Carlo [Andrieu et al., 2010] and Resample-Move Particle Filters [Gilks

and Berzuini, 2001] to jointly infer all desired variables.

In order to understand these algorithms, we first present in Chapter 2 the tools necessary

to describe a Bayesian model with an unknown, time-varying number of targets and detections

with identity uncertainty. We present partially observable Markov models as the rough Bayesian

framework within which our algorithms operate. We describe the insufficiencies of this model,
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then present Contingent Bayesian Networks capable of describing the context-specific independence

necessary for defining the joint distribution. We finally formulate Multiple Target Tracking as a

Contingent Bayesian Network, then show via the work of Milch [2006] and Goodman et al. [2008]

that this distribution is well defined.

In Chapter 3, we review Monte Carlo algorithms employed in performing approximate inference

in Bayesian Models. We describe fundamental methods such as Importance Sampling, Markov

Chain Monte Carlo, and Particle Filters, as well as two recent algorithms, Particle MCMC and the

Resample-Move Particle Filter, for combining MCMC and Particle Filters. These latter two will

form the foundation of our new algorithms.

In Chapter 4, we review the latest work in Multiple Target Tracking (MTT). We describe the

modern algorithms employed, their strengths and weaknesses, and define a metric by which tracking

performance can be evaluated.

Finally, in Chapter 5, we define the conditional distributions required to fully specify the proba-

bilistic model upon which inference is being performed and introduce two novel algorithms, Particle

MCMC Data Association (PMCMCDA) and Particle Filter Data Association (PFDA). We prove

correctness of these two algorithms, then follow with experimental results on the performance of

these methods in two different dynamics models: a discrete, random walk and a two-dimensional

road network.
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Chapter 2

Stating the Model

Both Particle Markov Chain Monte Carlo Data Association (PMCMCDA) and Particle Filter

Data Association (PFDA) approximate the posterior distribution of a particular probability model.

Before stating the model, let us state the problem of MTT more formally,

Definition 1. A Multiple Target Tracking (MTT) algorithm is given, at each time step t, a set of

indexed detections {y(i)
t }

Ny
t

i=1 where Ny
t is the number of detections at time t. Ideally each detection

corresponds to a noisy observation attributable to precisely one target, but the algorithm must be

able to tolerate detection failures and false detections (see Section 1.1) as well. The goal of the

algorithms is to recover,

1. tstartk and tendk , the times target k enters and leaves the field of view, for all observable targets

k. If tstartk ≤ t ≤ tendk , we say that target k is ‘active,’ ‘in view’, or ‘alive.’ A target cannot

become active again after leaving the field of view.

2. x
(k)
t , the unknown state of target k at time t, for all time t and observable targets k. If a

target is outside of the field of view at time t, let x
(k)
t = null.

3. data associations at : N→ N such that at(i) = k if y
(i)
t was a detection generated by target k

at time t for all time.

In addition to the definition of at, we require that k be in the range of at only when tstartk ≤ t ≤

tendk . We denote at(i) = 0 if detection i at time t was generated by clutter. Furthermore, we require
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Figure 2.1: Hidden Markov Model. Observed variables are colored grey and unobserved variables
are colored white.

that with the exception of 0, at(i) is one-to-one. This allows us to denote a−1
t (k) = i when detection

i was generated by target k at time t and to set a−1
t (k) = 0 if k did not generate a detection.

Finally, an MTT algorithm need not give a point estimate but may instead provide a distribution

over possible values for unknown variables {x(k)
t }k,t, {at}t, and {(tstartk , tendk )}k.

With this definition in mind, we now seek to construct a Bayesian model we may employ to infer

{x(k)
t }t,k, {tstart

k , tend
k }k and {at}t given {y(i)

t }t,i for all t, k, and i. To do so, we will first describe

the Hidden Markov Model (HMM), a sequential model where the past and future are conditionally

independent given the present. By formulating MTT as an HMM, we will be able justify the

concept of ‘Filtering.’ We will then explain why the HMM formalism alone is insufficient, and

will then present a new formulation using Contingent Bayesian Networks. This new representation

will allow us to take advantage of context-specific conditional independence assumptions necessary

for representing samples from the model in finite space and for performing tractable approximate

inference.

2.1 Bayesian Filtering

We begin our discussion by presenting the Hidden Markov Model (HMM), a template for

describing a partially observable Markov process. This template is the basis of many models

where variables are naturally described sequentially; applications include single target tracking,

speech recognition, part-of-speech tagging, click-through prediction, and character recognition. The

HMM is defined by a Markov chain with an unknown hidden state Xt ∼ P (Xt|Xt−1) and noisy

observations Yt ∼ P (Yt|Xt). A graphical model representation is given in 2.1.

This model is special in that there exists a well-known, recursive method for estimating Xt
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given Y1:t := {Y1, . . . Yt} which is as follows,

P (Xt+1|Y1:t+1) =
P (Xt+1, Yt+1|Y1:t)

P (Yt+1|Y1:t)
(2.1)

=
P (Yt+1|Xt+1)P (Xt+1|Y1:t)∫

P (Yt+1|Xt+1)P (Xt+1|Y1:t)dXt+1
(2.2)

=
P (Yt+1|Xt+1)

∫
P (Xt+1|Xt)P (Xt|Y1:t)dXt∫

P (Yt+1|Xt+1)
[∫
P (Xt+1|Xt)P (Xt|Y1:t)dXt

]
dXt+1

(2.3)

In other words, a simple algorithm for computing P (Xt+1|Y1:t+1) for all Xt+1 is as follows,

1. Propagate: calculate P (Xt+1|Y1:t) =
∫
P (Xt+1|Xt)P (Xt|Y1:t)dX1:t

2. Reweight: calculate P (Xt+1, Yt+1|Y1:t) = P (Yt+1|Xt+1)P (Xt+1|Y1:t)

3. Normalize: calculate P (Yt+1|Y1:t) =
∫
P (Xt+1, Yt+1|Y1:t)dXt+1 and divide P (Xt+1, Yt+1|Y1:t)

by it to get P (Xt+1|Y1:t+1)

The above algorithm is known as ‘Filtering’ and, in spite of its simplicity, can become alarmingly

complex depending on what Xt and Yt represent. We have ‘swept under the rug’ the difficulty of

calculating the above integrals whose solutions are specific to P (Xt+1|Xt) and P (Yt|Xt).

There exist two primary cases where the above algorithm can be implemented exactly. The first

is when there are finitely many values for Xt; then the integrals above turn to sums, and as long

as the number of unique values for Xt is small, we may implement the algorithm word for word.

The second is when Xt+1 ∈ Rd is defined linearly in terms of Xt and Yt linearly in terms of Xt,

both with additive Gaussian noise (i.e., Xt+1 = AXt + εx and Yt = CXt + εy where A and C are

matrices and εx and εy are drawn from a Multivariate Normal distribution with known mean and

covariance). While less simple than the discrete case, a closed form solution exists known as the

Kalman Filter.

We have taken Xt so far to be something atomic and undecomposable, but often we may find

Xt to be made up of smaller, lower dimensional variables with additional conditional independence

assertions we can make. With this in hand, we may then design algorithms that can more effec-

tively perform inference. This is the basis of Dynamic Bayesian Networks (DBNs) [Dean and

Kanazawa, 1989, Murphy, 2002]. A simple example of this is that of a two independently moving

robots; then we can represent the state as Xt := {X1,t, X2,t} as in Figure 2.2.
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Figure 2.2: Decomposing the hidden state of two independently moving robots.

Let us now consider defining Multiple Target Tracking (MTT) within a Hidden Markov Model

(HMM) framework. Let Xt = ({x(k)
t }k∈N, at) and Yt = {y(i)

t }i≤Ny
t
. Note that tstart

k and tend
k are

fully determined by x
(k)
t being null or otherwise. In particular we may derive their values via,

tstart
k = inf{t : x

(k)
t 6= null} (2.4)

tend
k = inf{t : tstart

k < t, x
(k)
t = null} (2.5)

With Xt and Yt now defined, we may hope to apply some form of Filtering to infer the current

state given past detections. However, it is immediately clear that no tractable algorithm can

be derived from this representation; indeed, even representing a realization of Xt would require an

unbounded amount of memory as there are an unbounded number of targets. We may alternatively

hope to decompose Xt into a Dynamic Bayesian Network in hopes of exploiting other conditional

independence assumptions, but data association uncertainty requires the parents of each y
(i)
t to be

the infinite set {x(k)
t }k∈N. This alone makes the DBN representation ill defined as it prevents one

from defining the topological ordering of variables necessary for constructing a joint distribution.

Figure 2.3 presents a graphical model representation of this faulty model.

While the HMM formalism is insufficient for developing a reasonable representation of MTT,

it does provide us with the concept of Filtering. While we may not be able to apply it directly,

Filtering will be key to the implementation of Particle MCMC Data Association (PMCMCDA) and

Particle Filter Data Association (PFDA).
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Figure 2.3: A graphical model for Multiple Target Tracking as as Dynamic Bayesian Network. This

DBN does not correspond to a joint distribution as each y
(i)
t has an infinite number of parents.

2.2 Contingent Bayesian Networks

Before continuing, we must identify precisely what Dynamic Bayesian Networks lack and what

is needed to define a proper joint distribution. In particular, we begin by noting that although

any target could potentially influence detection y
(i)
t , at most one can have any direct influence. In

fact, by knowing at, we know precisely which target generated y
(i)
t , and all other targets become

irrelevant. Similarly, we may decide not to model target interactions outside of our field of view.

If we further limit queries to targets in the same way, we may be able to safely ignore all targets

except those directly in our field of view.

Each of the previously stated conditions is some form of Context-Specific Independence.

In other words, conditioned on the particular value of some variables, we may be able to make addi-

tional conditional independence assumptions that do not always exist. For example, if a−1
t (k′) = i,

we know that y
(i)
t is independent of all x

(k)
t for all k 6= k′. If we know which targets are ‘alive’ (that

is, within our field of vision), we may integrate away the states of all targets except those we may

potentially observe directly. By doing so, we limit the number of variables of interest in our model

to a finite number at any given time.

Finally, we note that the indexing used for targets k and detections i is entirely arbitrary and

exists only to uniquely identify the objects in the model. In other words, whether target 5 or 500
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started at time t is irrelevant, our only concern is that a new track started. By this simple idea,

we may exploit exchangeability of indices to aggregate realizations of the model which are identical

up to track and detection reindexing.

Both context-specific independence and exchangeable indices are two concepts which cannot

be expressed in vanilla Bayesian Networks. Thus, we instead consider Contingent Bayesian

Networks (CBNs) [Milch, 2006], a modified form of Bayesian Networks that introduces a new

tool, labeled edges.

Labeled edges allows us to specify when an edge v → u is active in a Bayesian Network given

some other variables {v′}. One may think of these labeled edges as choosing which version of a

Bayesian Network to use. Care must be taken when designing CBNs to avoid edge labels that make

deciding an ordering among variables impossible. In particular, a CBN is well defined as long as

1. No consistent path in the CBN forms a cycle

2. No consistent path has a variable with infinitely many ancestors

3. No variable has a consistent, infinite number of parents

These three conditions imply a CBN has a supportive numbering (i.e., the variables can be

made into a DAG for each consistent realization of the model) and in consequence a well defined

joint probability distribution exists [Milch, 2006, Theorem 3.17].

Let us now construct a Contingent Bayesian Network model of Multiple Target Tracking (Figure

2.4). Let alivet be the set of indices of all targets that are in view at time t, #newt be the

number of new tracks at time t, and #clutt be the number of clutter detections at time t. We

will assume that both of the latter depend only on the time step t. As we are only interested in

active tracks, we will implicitly integrate away the states of all targets outside of view and only

consider {x(k)
t }k∈alivet . As we have assumed targets outside of view do not interact with other

targets until they come within view, {x(k)
t }k∈alivet is conditionally independent of all other targets

except those in view at time step t−1. Furthermore, as only visible objects can generate detections,

at is conditionally independent of all targets except those in {x(k)
t }k∈alivet . For the same reasons,

{y(i)
t }i≤Ny

t
is conditionally independent of all other targets except those in {x(k)

t }k∈alivet . Finally,

since the indexing of tracks is exchangeable, alivet is dependent only on alivet−1 and {x(k)
t−1}k∈alivet−1
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as new tracks will be given arbitrary, unique indices.

We present an alternative, procedural view of the Multiple Target Tracking CBN in Algorithm

1. This random function defines how one may sample one time slice from the generative model

defined by Figure 2.4 given the set of active targets and their respective states at the previous time

step. As this procedure may also be encoded in Church, a stochastic variant of Lisp, it also serves

as proof of the existence of both a joint distribution over all variables and a posterior distribution

over all other variables given detections [Goodman et al., 2008, Lemma 2.2, Theorem 2.3].

While the model presented here is not a Hidden Markov Model (HMM), it retains the same

Markov property between time steps. In other words, if we define

Xt = (alivet,#newt,#clutt, at, {x
(k)
t }k∈alivet) (2.6)

Yt = {y(i)
t }i≤Ny

t
(2.7)

then all of the conditional independence assumptions in an HMM are satisfied. This will allow us to

perform (approximate) filtering, the core idea in Particle MCMC Data Association (PMCMCDA)

and Particle Filter Data Association (PFDA).

The model presented in Figure 2.4 is still incomplete; after all, we have yet to define the forms of

the conditional distributions. As these are problem-specific, we leave the definition of the complete

model to Section 5.1.

Algorithm 1 Sampling from the Contingent Bayesian Network version of Multiple Target Tracking

Input: alivet, {x(k)
t }k∈alivet

Output: #newt+1, #clutt+1, alivet+1, at+1, {y(i)
t+1}i≤Ny

t+1

1: Sample #newt+1 ∼ P (·) and #clutt+1 ∼ P (·)
2: Sample alivet+1 ∼ P (·|alivet, {x(k)

t }k∈alivet ,#newt+1)

3: Sample {x(k)
t+1}k∈alivet+1 ∼ P (·|alivet, alivet+1, {x(k)

t }k∈alivet)

4: Sample at+1 ∼ P (·|alivet+1, {x(k)
t+1}k∈alivet+1 ,#clutt+1)

5: Sample {y(i)
t }i≤Ny

t+1
∼ P (·|at, {x(k)

t+1}k∈alivet+1)

12



Figure 2.4: Multiple Target Tracking represented as a Conditional Bayesian Network.
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Chapter 3

Monte Carlo Methods Today

With the basic form of the Bayesian model for Multiple Target Tracking (MTT) defined in

Section 2.2, we now turn to methods for inferring the unobserved variables given sets of detections

at each time step t. While there exists a range of algorithms for performing exact inference in

Bayesian Networks, we cannot hope that any will be efficient in our model formulation. Even if

all detections and target states are discrete and the set of active targets is known and fixed, the

number of potential data associations is exponential in the number of active targets. Instead, we

will turn to methods for approximate inference.

The fundamental goal of inference is to calculate Eπ[f(X)] =
∫
f(X)π(X)dX for some function

f and distribution π. Often, we will be able to evaluate π̄(x) = Cπ(X) pointwise for some unknown

constant C but will be unable to evaluate the previous integral exactly. A common special case of

this goal is when π̄(X) = P (X,Y = y), π(X) = P (X|Y = y), and f(X) = 1[X ∈ A].

Our modus operandi for approximating these integrals will be Monte Carlo Methods; that

is, methods based on random sampling. By generating more and more samples, we hope to better

approximate Eπ[f(X)], and ideally guarantee that our approximation converges to its true value

as the the number of samples approaches infinity.

As an aside, we will often write E[f(X)] instead of Eπ[f(X)] except when it is unclear which

distribution we are taking an expectation with respect to.

Looking forward, we will begin by reviewing three standard methods in Monte Carlo: Im-

portance Sampling (IS), Markov Chain Monte Carlo (MCMC), and the Particle Filters (PF). We

will then describe Reversible Jump Markov Chain Monte Carlo (RJMCMC), a method extending
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MCMC to distributions of variable dimension. We conclude with two newer methods that com-

bine MCMC and PFs, the Resample-Move Particle Filter and Particle Markov Chain Monte Carlo

(PMCMC). These final two methods form the basis of Particle Filter Data Association (PFDA)

and Particle MCMC Data Association (PMCMCDA) respectively.

3.1 Importance Sampling (IS)

The first such method we will describe is perhaps the simplest and most intuitive. Suppose we

are able to sample from π(X) directly. Then by generating Xi ∼ π(X), we will always have an

unbiased estimate for Eπ[f(X)] given by,

E[f(X)] =

∫
f(x)π(x)dx (3.1)

≈ 1

N

N∑
i=1

f(Xi) (3.2)

Indeed, E[f(Xi)] = E[f(X)] for all i, so the average does as well. The Law of Large Numbers also

guarantees convergence to E[f(X)] as N → ∞ as long as the expectation is defined in the first

place (i.e., E[|f(X)|] <∞).

Of course, sampling from π(X) is a luxury we rarely have, so suppose instead we are only

able to evaluate π(X) pointwise and have some other distribution q(X) we can draw samples from

and evaluate pointwise. Henceforth we will refer to q as a Proposal Distribution as it is the

source from which samples are proposed. We may then derive an unbiased estimate for Eπ[f(X)]

by sampling Xi ∼ q(X) and ‘weighting’ our samples by w(x) = π(x)
q(x) like so,

Eπ[f(X)] =

∫
f(x)π(x)dx (3.3)

=

∫
f(x)

π(x)

q(x)
q(x)dx (3.4)

≈ 1

N

N∑
i=1

w(Xi)f(Xi) (3.5)

Intuitively, the weight function w(X) ‘corrects’ our samples based on how likely they are under

π(X). One must be careful to ensure that π(X) > 0⇒ q(X) > 0 as violating this would imply that

Eq[w(X)f(X)] = ∞ (the Law of Large Numbers then no longer applies), but otherwise choice of
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q(X) is unrestricted. However, one’s choice of q can greatly affect how accurate one’s approximation

is; in particular, the higher the variance, the more unreliable the estimates. The variance of the

approximation can be derived to be,

Varq(f(X)w(X)) = Eq[(f(X)w(X))2]− Eq[f(X)w(X)]2 (3.6)

=

∫
f(x)2π(x)2

q(x)2
q(x)dx−

(∫
f(x)

π(x)

q(x)
q(x)dx

)2

(3.7)

=

∫
f(x)2π(x)

q(x)
π(x)dx−

(∫
f(x)π(x)dx

)2

(3.8)

= Eπ[f(X)2w(X)]− Eπ[f(X)]2 (3.9)

The dependence of that variance on the query function f is unfortunate, and it is thus often

assumed f(X) = 1[X ∈ A] ≤ 1 in which case Varq(w(X)) = Eπ[w(X)]− 1. If we are able to choose

q(x) = π(x), we see that w(x) = 1 for all x and thus Varq(w(X)) = 0. Even if we cannot sample

from π(x) directly, using proposal distributions as ‘close’ to π(x) as possible is valuable; indeed, if

w(X) ≤Wmax for all X and f(X) = 1[X ∈ A], then we may apply Hoeffding’s Inequality,

P

(∣∣∣∣∣ 1

N

N∑
i=1

w(Xi)f(Xi)− Eπ[f(X)]

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−2ε2N

Wmax

)
(3.10)

This shows that our estimate for E[f(X)] converges exponentially in the number of samples

with a constant depending only on how large w(X) can be. While the upper bound Wmax can

rarely be evaluated directly, it gives us proof that Importance Sampling is a sound method.

Finally, we consider the case where we may only evaluate π̄(x) = Cπ(X) pointwise for unknown

C and use proposal distribution q(X) from which we can both sample and evaluate pointwise. In

this case, we can design an estimate of Eπ[f(X)] by self-normalizing,

Eπ[f(X)] =

∫
f(x)π̄(x)dx∫
π̄(x)dx

(3.11)

=

∫
f(x) π̄(x)

q(x) q(x)dx∫ π̄(x)
q(x) q(x)dx

(3.12)

≈
1
N

∑N
i=1w(Xi)f(Xi)

1
N

∑N
i=1w(Xi)

(3.13)

One important side-effect of self-normalization is that we now have a biased approximation to
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Eπ[f(X)]. To see this, simply consider the case when N = 1; the approximation always yields one

sample with expectation Eq[f(X1)] instead of Eπ[f(X1)]. In spite of this, it can be shown [Whiteley,

2011] that the approximation is still consistent; that is, it converges to Eπ[f(X)] as N →∞.

While Importance Sampling (IS) is attractive for its simplicity, it is often only practical to use

when π(X) is no more than 10 dimensions. Identifying provably efficient q(X) requires significant

mathematical insight, and choices based on intuition rarely scale. However, IS is the basis of

Particle Filters (PFs) which have proven effective in many high-dimensional scenarios, particularly

those involving HMM-style models.

3.2 Markov Chain Monte Carlo (MCMC)

The next method we shall describe is considerably more complex than Importance Sampling

but has been invaluable in performing inference in high dimensional distributions. Markov Chain

Monte Carlo works by generating a sequence of variables from a specially crafted Markov Chain.

Unlike Importance Sampling where each Xi is independent, MCMC relies on the fact that after a

sufficiently long time, the output of this MCMC chain has the same distribution as π(X).

Suppose once again we have target distribution π(X) = π̄(X)/C for which we may only evaluate

π̄(X) pointwise. Suppose further that X = (X(1), . . . , X(n)) where n is in the range of hundreds to

thousands. While one may use intuition to choose an adequate proposal distribution for importance

sampling when n is small (proving how ‘close’ π(X) and q(X) are is rarely possible), designing q(X)

to match π(X) in higher dimensions becomes increasingly difficult.

Instead of generating each sample Xi independently, MCMC works by generating a sequence

of samples where each Xi depends on Xi−1 via an MCMC kernel K(Xi|Xi−1). Typically, K will

generate Xi that differs from Xi−1 in only a handful of components by sampling X ′ from an MCMC

proposal distribution q(X ′|Xi−1) and ‘accepting’ or ‘rejecting’ this proposal based on a how likely

it is in under π̄(X) compared to Xi−1. This is the method used in one of the most popular MCMC

techniques called the Metropolis-Hastings Algorithm [Metropolis et al., 1953]. A single iteration

of this algorithm is presented in Algorithm 2.

In order to understand MCMC, we must first explain what it means for a Markov Chain defined

by a transition distribution K(X ′|X) to have a Stationary Distribution. Mathematically, π(X)
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Algorithm 2 One iteration of the Metropolis-Hastings algorithm

Input: input state Xi

Output: output state Xi+1 such that E[f(X)] ≈ !
N

∑
i f(Xi) as N →∞

1: Sample X ′ ∼ q(X ′|Xi)
2: Calculate acceptance ratio

α(Xi, X
′) = min

(
π̄(X ′)q(Xi|X ′)
π̄(Xi)q(X ′|Xi)

, 1

)
(3.14)

3: Sample u ∼ Unif(0, 1). If u < α(Xi, X
′) let Xi+1 = X ′, else Xi+1 = Xi

Algorithm 3 One iteration of Gibbs Sampling

Input: input state Xi = (X(1), . . . , X(n))
Output: output state Xi+1 such that E[f(X)] ≈ !

N

∑
i f(Xi) as N →∞

1: Sample index k uniformly from 1 . . . n

2: Sample X
(k) ∼ P (X(k)|X(1), . . . X(k−1), X(k+1), . . . , X(n))

3: Let Xi+1 = (X(1), . . . X(k−1), X
(k)
, X(k+1), . . . , X(n))

is the stationary distribution of a Markov Chain with transition density K(X ′|X) if π(X ′) =∫
K(X ′|x)π(x)dx for all X ′. In other words, if X is drawn from π(X), then X ′ ∼ K(X ′|X) is as

well. Furthermore, if Xi ∼ K(Xi|Xi−1) for i = 1 . . . n, then for any starting distribution of X0, the

distribution of Xn approaches π(X) as n→∞.

The question then becomes “Under what conditions does K have a stationary distribution?”

and “How can we ensure K’s stationary distribution is our desired π(X)?” One way of answering

both is via Detailed Balance; that is, requiring that π(X)K(X ′|X) = π(X ′)K(X|X ′) for all X

and X ′. This is the approach taken in Metropolis-Hastings and Gibbs Sampling (Algorithm 3),

another common MCMC method. For example, consider Algorithm 2. In this case,

K(X ′|X) = α(X,X ′)q(X ′|X) + (1− α(X,X ′))δ(X = X ′) (3.15)

We may verify detailed balance by assuming α(X,X ′) < 1 (then α(X ′, X) = 1) and observing,

π(X)q(X ′|X)α(X,X ′) = π(X ′)q(X|X ′)α(X ′, X) (3.16)

= π(X ′)q(X|X ′) (3.17)

⇒ α(X,X ′) =
π(X ′)q(X|X ′)
π(X)q(X ′|X)

(3.18)
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As in IS, a good choice of proposal distribution q(X ′|X) is vital to ensuring convergence of

Xi to π(X) in a reasonable number of iterations. Intuitively, we would like to choose q such that

α(X,X ′) is relatively high; having Xi = Xi−1 for many iterations does not provide good sample

diversity. On the other hand, α(X,X ′) being close to 1 all the time may imply that we are taking

relatively ‘conservative’ steps in the domain X and thus will not explore the space sufficiently. If

the state space of X is finite and discrete, we may characterize the rate of convergence via how

close the second eigenvalue of the transition matrix Pi,j = K(X ′ = i|X = j) is to 1 [Andrzejewski

and Chawla, 2007], but in most scenarios such calculations are impossible to perform directly. As

with IS, the choice of q(X ′|X) is often left to intuition.

In practice, care must be taken when designing q(X ′|X) to ensure that high probability regions

of the state space are easy to transition within. If such is the case, the MCMC algorithm will

be able to traverse the ‘most important’ parts of the state space with ease; on the other hand, a

proposal distribution that requires the chain to traverse low probability regions in order to pass

between two high probability ones will intuitively require a large number of iterations to transition.

Assessing what set corresponds to a ‘high probability’ region of the state space is a difficult problem

in itself.

In spite of these difficulties, MCMC has proven effective in performing inference on a variety

of complex models in Statistics, Bioinformatics, and the Social Sciences [Diaconis, 2009]. Except

when working with naturally sequential models, MCMC is often the only reasonable method for

performing Bayesian inference, and even then MCMC has shown significant promise [Marthi et al.,

2002].

3.3 Particle Filter (PF)

Turning back to IS, we now consider an alternative to MCMC for sampling from high di-

mensional distributions. Unlike MCMC, where adding a new variable to a model makes reusing

previously generated samples unclear (e.g. when extending P (Xt|Y1:t) to P (Xt+1|Y1:t+1)), Particle

Filters work by maintaining a collection of partial instantiations of the model, augmenting those

instantiations with values for new variables, then reweighting those samples, and finally resampling

from those proposals.
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Figure 3.1: A Hidden Markov Model

Algorithm 4 One iteration of a vanilla Particle Filter

Input: particles X
(p)
t weighted by w

(p)
t approximating P (Xt|Y1:t) and Yt+1

Output: particles X
(p)
t+1 weighted by w

(p)
t+1 approximating P (Xt+1|Y1:t+1)

1: Propose X̄
(p)
t+1 ∼ q(X

(p)
t+1|X

(p)
t , Yt+1) for all particles p

2: Reweight X̄
(p)
t+1 by

w̄
(p)
t+1 =

P (Yt+1|X̄(p)
t+1)P (X̄

(p)
t+1|X

(p)
t )

q(X̄t+1|X(p)
t , Yt+1)

(3.19)

3: Resample index Zp ∼ Mult(w̄
(p)
t+1) for all p

4: Set X
(p)
t+1 = X̄

(Zp)
t+1 and w

(p)
t+1 = 1

P

The general idea behind Particle Filtering is best understood through a Hidden Markov Model

as in Figure 3.1. In this case, Particle Filters approximate P (Xt|Y1:t) via a set of ‘particles’ X
(p)
t

with weights w
(p)
t for p = 1 . . . P . By doing so, the filter can then approximate E[f(Xt)|Y1:t] with∑P

p=1w
(p)
t f(X

(p)
t ). The implementation of the PF is nearly identical to IS, except for a technique

called ‘resampling,’ wherein particles that are likely under Y1:t are replicated at the expense of

unlikely particles.

Suppose we already have a set of particles for approximating P (Xt|Y1:t). We propose new

particles for Xt+1 by first sampling a potential future for X
(p)
t at time t + 1 via q(Xt+1|Xt, Yt+1)

for each particle X
(p)
t . We then reweight this particle to calculate an IS weight w̄

(p)
t+1. Finally,

we use these new weights to create a Multinomial distribution and sample P indices from the

propagated candidates. These resampled indices select our new particles, and the algorithm is

repeated. Pseudocode is given in Algorithm 4.

Again, the accuracy of the algorithm for fixed P is highly dependant on how closely q(Xt+1|Xt, Yt+1)
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matches the ideal posterior P (Xt+1|Xt, Yt+1) (were we able to do so, all particles would have equal

weight). Even more so than Importance Sampling, maintaining low variance weights is key as re-

sampling will replicate particles with high weights. As mentioned in Section 3.1, self-normalization

results in a biased estimator of E[f(X1:t)|Y1:t]; in spite of this, we can still guarantee convergence

to the true posterior as the number of particles approaches infinity [Del Moral, 2004] even with

resampling. However, the number of particles necessary to prevent diverging from P (Xt|Y1:t) can

be anywhere from constant to exponential in t depending on the properties of the underlying model

[Doucet and Johansen, 2009].

It is worth noting that Algorithm 4 is the ‘vanilla’ version of Particle Filtering and many

variations exist. For example, particles may be weighted by P (Yt+2|X̄(p)
t+1) before resampling as in

the Auxiliary Particle Filter [Pitt and Shephard, 1999], or weights may depend on all particles at

time t as in the Marginal Particle Filter [Klaas et al., 2005]. Resampling need not be restricted to

the Multinomial distribution, but can instead be replaced with the lower variance methods such as

Stratified Resampling, Systematic Resampling, or Residual Resampling [Douc, 2005]. The number

of particles at each time step need not be constant, but can be replaced with a function based on

the weights w̄
(p)
t [Fox, 2003].

On a more practical note, care must be taken to avoid Particle Wipeout, wherein all but

a handful of weights are near 0 and the approximation diverges significantly from the true poste-

rior. In this case, either the proposal distribution should be redesigned or the number of particles

increased. Secondly, repeated resampling operations result in Particle Degeneracy, wherein all

particles eventually share the same ancestor near the beginning of time. While this may not be

initially alarming, let us present a particular example involving time-invariant parameters to make

its importance concrete.

Suppose that in addition to Xt we also seek to infer model parameters θ = (θx, θy) as in Figure

3.2. Suppose we naively sample (X
(p)
1 , θ) ∼ q(X1, θ|Y1) at t = 1, then ‘carry’ θ with X

(p)
t unaltered

as t increases. Due to particle degeneracy, θ will quickly converge to a single value as resampling

can only reduce the number of unique candidate values for θ. An example of this is presented in

Figure 3.3. We will address these concerns with the Resample-Move Particle Filter (RMPF) in

Section 3.5.

In spite of these dangers, Particle Filters have proven particularly effective in models with a
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Figure 3.2: A Hidden Markov Model with time-invariant parameters

Figure 3.3: A naive Particle Filter tracking a single target. Colors denote the value of a single
model parameter sampled at t = 1 which has no effect on state transitions or observations. Circle
sizes denote particle weights and circle centers denote states in one dimension. Crosses denote
observations, and lines denote the true state sequence.
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natural sequential construction such as visual target tracking [Nummiaro et al., 2003] and robot

localization [Montemerlo et al., 2002]. In Section 4.1, we shall see that Particle Filters remain one

of the most popular techniques in Multiple Target Tracking (MTT) as well.

3.4 Reversible Jump MCMC (RJMCMC)

In Section 3.2, we introduced MCMC, a method for performing approximate inference when X

is of a large but fixed dimension. While this is sufficient for many models, it cannot handle cases

where the dimensionality of X is unknown. This is precisely the case in Multiple Target Tracking

(MTT) as the number of active targets varies with time.

To understand how Reversible Jump MCMC [Green, 1995] works, let us consider the simple

Gaussian Mixture Model. In this model, there are K Gaussian distributions, each with its own

mean µ(k) and variance σ2
(k). To draw a sample from this model, one first samples which Gaussian

to use (Z) then samples a point (X) using that Gaussian’s parameters. If we let component k be

chosen with probability w(k), then the density of any sample X,Z is

P (X,Z) = P (Z|w(1:K))P (X|Z, µ(Z), σ
2
(Z)) (3.20)

One may then ask, “What if K is unknown?” We may place a prior over K, mixture weights

w(k), and mixture parameters µ(k) and σ2
(k) to give a new density,

P (X,Z,w(1:K), µ(1:K), σ
2
(1:K)) = P (K)P (w(1:K)|K)

(
K∏
k=1

P (µ(k)P (σ2
(k)))

)
× (3.21)

P (Z|w1:K)P (X|Z, µ(Z), σ
2
(Z))

Given this new model, how then may we apply MCMC? Reversible Jump MCMC allows us

to apply the familiar change-of-variable formula used in calculating integrals to derive a new

acceptance ratio α(·). The overall idea is to first sample from a collection of MCMC proposal

types m ∼ q(m|X), then generate random numbers U ∼ q(U |X,m), and finally to construct

(X ′, U ′) = h(X,U) via an invertible function h where dim(X ′, U ′) = dim(X,U). The mapping

h(X,U) → (X ′, U ′) is a change of variables, and thus must be accounted for via the determinant

of its Jacobian. A single iteration of RJMCMC is presented in Algorithm 5.
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Algorithm 5 One iteration of the Reversible Jump MCMC

Input: input state Xi

Output: output state Xi+1 such that E[f(X)] ≈ 1
N

∑
i f(Xi) as N →∞

1: Sample move-type m ∼ q(m|Xi)
2: Sample random numbers U ∼ q(U |Xi,m)
3: Calculate (X ′, U ′) = h(Xi, U)
4: Calculate acceptance ratio

α(Xi, U,X
′, U ′) = min

(
π̄(X ′)q(m|X ′)q(U ′|m,X ′)
π̄(X)q(m|X)q(U |m,X)

∣∣∣∣ ∂

∂(Xi, U)
h(Xi, U)

∣∣∣∣ , 1) (3.22)

5: Sample u ∼ Unif(0, 1). If u < α(Xi, U,X
′, U ′) let Xi+1 = X ′, else Xi+1 = Xi

Let us now consider what form h(X,U) and α(·) take in the Gaussian Mixture Model. Our

primary concern is MCMC moves that alter the number of mixture components as all other moves

may be handled with standard MCMC techniques. Suppose we have a pair of MCMC moves

designed as follows,

1. Birth: propose a new cluster by sampling an unnormalized mixture weight u1 ∼ q(w) (0 ≤

u ≤ 1), mean u2 ∼ q(µ), and variance u3 ∼ q(σ2). Normalize all weights by wk ← wk(1−u1),

then set wK+1 = u1, µK+1 = u2, and σ2
K+1 = u3

2. Death: delete cluster K + 1 and set wk ← wk/(1− wK+1) for all k = 1 . . .K.

Notice that both moves result in changing {wk} in order to ensure summation to one; this is the

key reason h is necessary. We will assume that each move-type m (including standard MCMC moves

not described here) is selected with probability q(m|·) where · denotes the state of the RJMCMC

chain. Suppose a birth move is selected and we need to calculate the acceptance ratio αK→K+1(·).

In order to ease notation, let θK = (w1:K , µ1:K , σ
2
1:K). If we define,

hK→K+1(w1:K , µ1:K , σ
2
1:K , u1:3) =

[
w1:K(1− u1), u1, µ1:K , u2, σ

2
1:K , u3

]
(3.23)

Then we may calculate the determinant of hK→K+1’s Jacobian as (1−u1)K and the acceptance

ratio αK→K+1(·),

αK→K+1(·) = min

(
P (X,Z, θK+1)q(m = death|θK+1)

P (X,Z, θK)q(m = birth|θK)q(u1:3|birth)
(1− u1)K , 1

)
(3.24)
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If a death move is selected instead, hK+1→K is defined to be the inverse of hK→K+1. In

consequence, αK+1→K(·) uses the inverse of the contents of the min. Note that if h does not alter

any preexisting variables, the determinant of its Jacobian is 1.

3.5 Resample Move (RM)

In Sections 3.2 and 3.3, we discussed MCMC and Particle Filters as two methods for performing

Monte Carlo inference for probability distributions in high dimensional spaces. One may now

consider if these methods can be combined, and if so, how? While Particle Filters are well suited for

time-varying distributions with frequent observations, their design prohibits them from ‘changing

the past’ – that is, one cannot change Xt once it has been sampled. MCMC lacks this flaw, but

it is not so simple to extend previously generated samples when considering a new time step (see

Marthi et al. [2002] for an MCMC alternative to Filtering). Resample-Move [Gilks and Berzuini,

2001] is one such approach to marry the two.

Resample-Move is essentially a method of embedding MCMC within a Particle Filter. In words,

Resample-Move runs the same PF algorithm presented in Section 3.3, but with the addition of a

final step after resampling. Here, each particle is passed through an MCMC kernel with invariant

distribution P (X1:t+1|Y1:t+1) one or more times without waiting until a stationary distribution

is reached. The intuition is that since {X(p)
1:t+1}Pp=1 are already distributed approximately like

P (X1:t+1|Y1:t+1), there is no need to wait. Pseudocode is presented in Algorithm 6.

While at first the value of this method may seem suspect, its utility is evident when considering

the time-invariant parameter scenario presented in Section 3.3. Recall the modified HMM model

presented again in Figure 3.4. While the original Particle Filter is unable to alter θ after sampling

it at t = 1, Resample-Move allows gives one the opportunity to resample θ at any time by applying

MCMC moves with stationary distribution P (θ,X1:t|Y1:). In the example presented, θ actually has

no effect on Xt or Yt, so resampling from the prior over θ is equivalent to Gibbs Sampling. Finally,

it can be shown that as the number of particles P approaches infinity, Resample-Move provides the

same guarantees as the original Particle Filter for any number of MCMC iterations.

Finally, it is worth considering how to efficiently perform an MCMC step when proposing

changes to static parameters θ. Were the Metropolis-Hastings algorithm applied, calculating the
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Algorithm 6 One iteration of a Resample-Move Particle Filter

Input: particles X
(i)
1:t weighted by w

(i)
t approximating P (X1:t|Y1:t) and Yt+1

Output: particles X
(i)
1:t+1 weighted by w

(i)
t+1 approximating P (X1:t+1|Y1:t+1)

1: Execute Algorithm 4 to obtain X
(p)
1:t+1, w

(p)
t+1.

2: For each particle p, sample X
(p)
1:t+1 = X

(p)′
1:t+1 where X

(p)′
1:t+1 ∼ K(X

(p)′
1:t+1|X

(p)
1:t+1) where K’s

invariant distribution is P (X1:t+1|Y1:t+1)

Figure 3.4: A Hidden Markov Model with unknown static parameters θX and θY

acceptance ratio α(·) would include a number of terms linear in t. An alternative method forgoing

acceptance ratios is Gibbs Sampling which requires that P (θ|X1:t, Y1:t) can be drawn from directly.

This is the case when P (θ|X1:t, Y1:t) falls into a simple enough distribution that can be summarized

via Sufficient Statistics. For example, if θ represents the probability a robot moves at time t,

then a sufficient statistic is the number of X1:t wherein the robot moved. Further details can be

found in Fearnhead [2002].

In summary, the Resample-Move is a method for obtaining the benefits of Particle Filters

without prohibiting one from ‘changing the past.’ However, it should be noted that if the particles

{X(p)
1:t }p diverge significantly from P (X1:t|θ), one cannot hope to successfully recover samples from

P (θ|Y1:t) without a large number of MCMC iterations.
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3.6 Particle MCMC (PMCMC)

While Resample-Move embeds MCMC within a Particle Filter, Particle Markov Chain

Monte Carlo [Andrieu et al., 2010] achieves the exact opposite by embedding Particle Filters

within MCMC. Instead of applying MCMC moves to each particle in isolation, Particle MCMC

creates a single MCMC chain with Particle Filters run at each iteration.

Suppose once again that we would like to generate samples from P (θ,X1:T |Y1:T ), this time

in a batch fashion with T fixed. Assume that we are able to calculate P (θ) and P (Y1:T |θ) =∫
P (Y1:T |X1:T )P (X1:T |θ)dX1:T exactly. If this is the case, we may apply Metropolis-Hastings di-

rectly using acceptance ratio,

α(θ, θ̄) =
P (Y1:T |θ̄)P (θ̄)q(θ|θ̄)
P (Y1:T |θ)P (θ)q(θ̄|θ)

(3.25)

This will allow us to draw samples approximately from P (θ|Y1:T ) while ignoring X1:T . Now

suppose that we are not able to calculate P (Y1:T |θ) exactly, but instead use an approximation

P̂ (Y1:T |θ) calculated via the average particle weights output by the particle filter,

P̂ (Y1:T |θ) =

T∏
t=1

P̂ (Yt|Y1:t−1) =

T∏
t=1

1

P

P∑
p=1

w̄
(p)
t (3.26)

We already know that a Particle Filter provides a biased estimate for E[f(X1:T )|Y1:T ], so why

should we even consider replacing P (Y1:T |θ) with its approximation? It so happens that in spite of

resampling, a Particle Filter always produces an unbiased estimate of P (Y1:T |θ) for any number of

particles [Del Moral, 2004, Pitt et al., 2010], and furthermore, replacing P (Y1:T |θ) with an unbiased

approximation will result in the same stationary distribution as if we used its true value. Finally,

we may select a single particle from {X(p)
1:T }Pp=1 (the output of the particle filter) according to w

(p)
T

to pair with candidate θ̄ to create a new MCMC chain with posterior distribution P (X1:T , θ|Y1:T ).

The precise algorithm is presented in Algorithm 7.

In summary, Particle MCMC allows one to do ‘approximate’ Rao-Blackwellization by replacing

exact integration with a Particle Filter. Unlike Resample-Move, Particle MCMC does not directly

suffer from {X(p)
1:t }p diverging from P (X1:t|Y1:t, θ); however, inaccurate approximations to P (Y1:T |θ)

may slow convergence to the stationary distribution.
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Finally, Particle MCMC is presented in Andrieu et al. [2010] and here using the vanilla Particle

Filter presented in Section 3.3, but convergence can be guaranteed beyond this simple case. We

contribute the following two theorems with proofs presented in the Appendix.

Theorem 1. Suppose a Resample-Move Particle Filter is executed as described in Algorithm 6.

Let P̂ (Y1:T |θ) be defined as in Equation 3.26. Then E[P̂ (Y1:T |θ)] = P (Y1:T |θ).

Theorem 2. Suppose a Resample-Move Particle Filter were to replace the vanilla Particle Filter

in Algorithm 7. Then the resulting algorithm is an MCMC chain with stationary distribution

P (X1:T , θ|Y1:t).

Algorithm 7 One iteration of a Particle MCMC

Input: state (θ,X1:T )i and likelihood approximation Ẑ = P̂ (Y1:T |θ)
Output: state (θ,X1:T )i+1 such that E[f(X1:T , θ)|Y1:T ] ≈ 1

N

∑
i f((X1:T , θ)i) as N →∞

1: Propose θ̄ ∼ q(θ̄|θi)
2: Run algorithm 4 to generate weights w̄

(p)
t for all t = 1 . . . T and p = 1 . . . P . Use these to

calculate Z̄ = P̂ (Y1:T |θ̄).
3: Choose one particle X

(p)
1:T according to weights w

(p)
T from the output of the previous step. Let

this be X̄1:T .
4: Calculate acceptance ratio,

α = min

(
Z̄P (θ̄)q(θi|θ̄)
ẐP (θi)q(θ̄|θi)

, 1

)
(3.27)

5: Sample u ∼ Unif(0, 1). If α < u, set (X1:T , θ)i+1 = (X̄1:T , θ̄), else (X1:T , θ)i

3.7 Summary

In this chapter, we have presented Importance Sampling, Markov Chain Monte Carlo, and Par-

ticle Filters, three standard algorithms for doing approximate inference in Bayesian Models. In

addition, we have described Reversible Jump MCMC, the Resample-Move Particle Filter, and Par-

ticle MCMC, the latter two of which form the basis of Particle Filter Data Association (PFDA) and

Particle MCMC Data Association (PMCMCDA). We have described their primary usage cases and

drawbacks and given broad statements about their convergence properties. In summary, we present

Table 3.1 as an overview of the methods, their usage cases, benefits, drawbacks, and computational

cost.

28



M
et

h
o
d

N
a
m

e
B

u
il

d
s

O
n

U
sa

ge
C

as
e

O
n

li
n

e/
B

at
ch

R
eq

u
ir

es
D

an
ge

rs
C

om
p

le
x
it

y

Im
p

or
ta

n
ce

S
am

-
p

li
n

g
lo

w
-d

im
en

si
on

d
is

tr
ib

u
ti

on
s

O
n

li
n

e
q(
X

)
H

ig
h

va
ri

an
ce

w
ei

gh
ts

O
(N

iT
)

P
a
rt

ic
le

F
il

te
rs

Im
p

o
rt

a
n

ce
S

am
p

li
n

g
ti

m
e-

in
d

ex
ed

d
is

-
tr

ib
u

ti
on

s
O

n
li

n
e

q(
X
t|X

t−
1
,Y

t)
H

ig
h

va
ri

an
ce

w
ei

gh
ts

,
in

ab
il

it
y

to
al

te
r

p
as

t
O

(T
P

)

M
ar

ko
v

C
h

ai
n

M
on

te
C

ar
lo

M
a
rk

ov
C

h
ai

n
T

h
eo

ry

h
ig

h
-d

im
en

si
on

d
is

tr
ib

u
ti

on
s

B
at

ch
/O

n
li

n
e

q(
X
′ |X

)
u

n
k
n

ow
n

ru
n

n
in

g
ti

m
e,

d
iffi

cu
lt

y
in

ch
ec

k
in

g
co

n
ve

rg
en

ce

O
(N

i)

R
ev

er
si

b
le

J
u

m
p

M
C

M
C

M
C

M
C

D
is

tr
ib

u
ti

on
s

w
it

h
u

n
k
n

ow
n

d
im

en
si

on

B
at

ch
q i

(U
|X

),
h

(X
,U

)
u

n
k
n

ow
n

ru
n

n
in

g
ti

m
e,

d
iffi

cu
lt

y
in

ch
ec

k
in

g
co

n
ve

rg
en

ce

O
(N

i)

R
es

a
m

p
le

-M
ov

e
P

F
,

M
C

M
C

ti
m

e-
in

d
ex

ed
d

is
tr

.
w

it
h

st
at

ic
p

a
ra

m
et

er
s

O
n

li
n

e
q(
X
t|X

t−
1
,Y

t)
,

q(
X
′ 1
:t
|X

1
:t
)

P
ar

ti
cl

e
D

eg
en

er
ac

y,
ad

d
it

io
n

al
co

m
p

u
ta

-
ti

on
al

co
m

p
le

x
it

y

O
(T
P
N
i)

P
a
rt

ic
le

M
C

M
C

P
F

,
M

C
M

C
ti

m
e-

in
d

ex
ed

d
is

tr
.

w
it

h
st

at
ic

p
a
ra

m
et

er
s

B
at

ch
q(
X
t|X

t−
1
,Y

t)
,

q(
θ′
|θ

)
L

ar
ge

ru
n

n
in

g
ti

m
e,

d
if

-
fi

cu
lt

y
in

ch
ec

k
in

g
co

n
-

ve
rg

en
ce

O
(T
P
N
i)

T
ab

le
3.

1:
A

co
m

p
a
ri

so
n

o
f

M
o
n
te

C
a
rl

o
a
lg

or
it

h
m

s
p

re
se

n
te

d
in

th
is

ch
ap

te
r.

In
th

e
(p

er
it

er
at

io
n

)
‘C

om
p

le
x
it

y
’

co
lu

m
n

,
T

=
n
u

m
b

er
of

ti
m

e
st

ep
s,
P

=
n
u

m
b

er
o
f

p
ar

ti
cl

es
,
N
i

=
n
u

m
b

er
of

M
C

M
C

or
IS

it
er

at
io

n
s.

N
ot

e
th

at
th

e
‘C

om
p

le
x
it

y
’

co
lu

m
n

h
as

n
o

co
rr

es
p

on
d

en
ce

to
th

e
n

ec
es

sa
ry

n
u

m
b

er
o
f

it
er

a
ti

o
n

s
o
r

p
ar

ti
cl

es
re

q
u

ir
ed

fo
r

ad
eq

u
at

e
co

n
ve

rg
en

ce
.

29



Chapter 4

Multiple Target Tracking

Multiple Target Tracking is the problem of state estimation for an unknown, time-varying

number of targets. For example, we may have a naval radar system and would like to identify the

position and velocity of all ships in range or a surveillance camera with the intent of identifying

the times people enter and leave a building.

While this problem is mundane and trivial for most humans, it has proven to be computation-

ally a very difficult. Consider the surveillance camera example. Given a single frame, traditional

Computer Vision methods for object recognition rely on a “bottom-up” approach where low-level

characteristics of the input (such as the color distribution of a person) are used to train a discrimi-

native algorithm for identifying ‘people-like’ pixel patches in the video. However, these algorithms

ignore the true structure of what is being observed (e.g., people in a scene), and thus are prone to

making mistakes due to occlusion, changes in lighting, and camera movement.

On the other hand, “top-down” generative models of vision suffer from the large number of

variables and high degree of uncertainty. While larger, more complex models may better correspond

to reality, the burden of inference may be too great to accurately approximate the posterior in a

reasonable amount of time. Thus a balance must be struck between model complexity and model

accuracy, resulting in a small number of models for which inference can be done efficiently.

Current solutions lie somewhere between “top-down” and “bottom-up” approaches. While

discriminative approaches have proven to be very robust at object recognition, reasoning about

abstract objects remains difficult. On the other hand, generative models are capable of inferring

behaviour among abstract objects but have difficulty dealing with sensors directly. Thus, the two
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are often combined in a Track-By-Detection framework where the former identifies ‘detections’

that are likely to correspond to abstract objects and the former reasons about them. This is the

methodology taken in this work and many others as shall be described within this Chapter.

In order to motivate Particle MCMC Data Association (PMCMCDA) and Particle Filter Data

Association (PFDA), we survey the state of the art in Multiple Target Tracking algorithms in

Section 4.1. We describe these algorithms based on how they handle data association and target

state estimation. In Section 4.2, we describe the CLEAR metric, a measure of Multiple Target

Tracking performance. This is the metric used in our own experiments in the following Chapter.

4.1 Algorithms

In this section we will describe the current state of the art in Multiple Target Tracking algo-

rithms based on the track-by-detection framework. We will discuss their design decisions and the

consequences that has on their behaviour. We will categorize them according to their approach

to data association and state estimation. A more complete treatment of discriminative detection-

generation models, state representations, and bottom up methods is left to Yilmaz et al. [2006].

4.1.1 Data Association

Typically, data association algorithms assume that one target can correspond to one or zero

detections (in our notation, at is one-to-one). This has not always been the case, however; in

Fortmann et al. [1983] the Joint Probabilistic Data Association (JPDA) assumed that every target

could contribute to every detection. Thus, the probability of all detections at time t, denoted

{y(i)
t }

Ny
t

i=1, given the state of a track k at time t, denoted x
(k)
t , is given by P ({y(i)

t }
Ny

t
i=1|x

(k)
t ) =∑Ny

t
i=1 P (y

(i)
t |x

(k)
t ). This approximation allows one to track each of an assumed known, fixed number

of active targets independently. While this is a reasonable approximation for highly dispersed

targets, it results in targets being ‘drawn together’ when the two tracks pass nearby.

Other algorithms which sidestep the data association problem include Karlsson and Gustafsson

[2001], Kreucher et al. [2004], Mahler [2003], Vo et al. [2005]. Karlsson and Gustafsson [2001]

integrates JPDA directly into a particle filtering framework, resulting in the same weaknesses

as the original Kalman-Filter based JPDA algorithm but the ability to do inference in general
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dynamics models. Kreucher et al. [2004] on the other hand eschews detections altogether and treats

observations as a pixel-level signal. Finally, Mahler [2003] introduces the Probability Hypothesis

Density (PHD) Filter derived from Finite Set Statistics, a new theoretical formulation separate

(but not unlike) typical measure theory-based probability theory. Vo et al. [2005] then transforms

this formulation into a Particle Filter capable of estimating the expected number of targets in a

given area but unable to identify unique targets.

Soon after Fortmann et al. [1983], Blackman [1986] introduced Multiple Hypothesis Tracking

(MHT), an algorithm which enumerates all data associations a1:t using the one-to-one assumption

mentioned previously. While continually maintaining all possible hypotheses would be computa-

tionally infeasible (indeed, the number such associations is exponential in the number of active

targets), pruning is done by calculating the likelihood of each maintained hypothesis and removing

unlikely candidates. A distance gating condition is used to prevent distant detections from be-

ing attributed to the same target. It is worth noting that MHT is a popular method in military

applications even today due to its tunable computational cost [Blackman, 2004].

Many recent approaches to tracking have maintained data associations within the particles in

a Particle Filter. Särkkä et al. [2007], for instance, applies a Rao-Blackwellized Particle Filter to

maintain a set of likely data associations then uses a Kalman Filter to track individual targets.

On the other hand, many others including Breitenstein et al. [2009], Hess and Fern [2009], Yang

et al. [2005] ignore all but one data association and rely on heuristic or discriminative methods for

deciding which targets are responsible for which detections.

A final approach is to use MCMC to enumerate the space of data associations. While only

Marthi et al. [2002], Pasula et al. [1999], Oh et al. [2004], Vu et al. [2011] chose to use MCMC

as their primary tool for inference, Benfold and Reid [2011], Khan et al. [2004] use MCMC in an

online tracking framework to ‘correct’ proposed hypotheses generated by other algorithms in an

online fashion. For example, Benfold and Reid [2011] uses MCMC as a post-processing step in a

discriminative tracking algorithm to suggest new associations while Khan et al. [2004] uses it as a

method for combining multiple 1-target-per-filter particle filters. Oh et al. [2004] on the other hand

uses MCMC to propose data associations in an offline algorithm while Vu et al. [2011] combines

the PHD Filter and Particle MCMC. Pasula et al. [1999], Marthi et al. [2002] are unique in that

they employ MCMC to perform Filtering directly.
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Finally, it should be noted that not all algorithms mentioned above are addressing the same

problem. Some, such as Karlsson and Gustafsson [2001], Kreucher et al. [2004], consider a fixed,

known number of targets while others also allow the number of tracks to vary from time step to

time step.

4.1.2 State Estimation

State estimation in Multiple Target Tracking is approached from one of two perspectives: the

Gaussian noise case and the general model case. In the former, one is able to apply to Kalman

Filter, Extended Kalman Filter, or Unscented Kalman Filter [Wan and Van Der Merwe, 2000] to

estimate the state in a (pseudo) exact way. In the latter, the method of choice is often the Particle

Filter, though its exact implementation varies.

If each target were known to move independently and its active times were known, each can

safely be assigned its own particle filter which operates without knowledge of its neighbors. Even

if these times are not known, discriminative or heuristic methods are often applied to decide when

one should start and stop a new track; this is the approach taken in Breitenstein et al. [2009],

Hess and Fern [2009], Yang et al. [2005]. If multiple targets are allowed to contribute to each

detection (in other words, if at is not one-to-one), this results in ‘particle hijacking’, wherein

multiple independent particle filters begin tracking the same target, a Particle Filter manifestation

of JPDA’s flaws. Methods to combat this while maintaining one particle filter per target include

heuristics [Breitenstein et al., 2009, Hess and Fern, 2009] and on-the-fly creation of Markov Random

Fields when targets are nearby [Khan et al., 2004].

The alternative to the one-particle-filter-per-track method is naturally to represent the joint

state of all tracks as a single particle. This is the approach taken in Khan et al. [2004], albeit with

a twist; instead of using the typical propagate-resample framework of the usual particle filter, Khan

runs an MCMC chain over the product space of all targets and takes the final samples generated

by it as his unweighted ‘particles’. The benefit of aggregating all track states into single particles

is the ability to seamlessly represent interacting targets in a unified framework; on the other hand,

the drawback is that the number of particles necessary for maintaining an accurate estimate of the

posterior may be significantly increased. In fact, if each track moves independently, the variance

of the particle weights grows exponentially in the number of active tracks.

33



To see this, let us suppose we would like to approximate two distributions π(X) and π(Y ) where

X is independent of Y . A particle filter would generate samples for X(p) ∼ q(X) and Y (p) ∼ q(Y ),

then calculate a weight

w(p) = w(p)
x w(p)

y =
π(X(p))

q(X(p))

π(Y (p))

q(Y (p))
(4.1)

We may calculate Var(w(p)) directly as

Var(w(p)) = E[w(p)
y ]2V ar(w(p)

x ) + E[w(p)
x ]2V ar(w(p)

y ) + Var(w(p)
x )Var(w(p)

y ) (4.2)

This final term multiplying the two variances makes Var(w(p)) at least exponential in the number

of active, independently moving targets.

The astute reader will note that not once was estimation of model parameters included in any

of the aforementioned algorithms. Indeed, these variables are assumed known and fixed in all of

the above methods. In addition, no method allows one to consider both non-Gaussian noise models

and multiple data associations simultaneously. It is with these goals in mind that Particle MCMC

Data Association (PMCMCDA) and Particle Filter Data Association (PFDA) are formulated.

4.2 CLEAR Metric

In spite of the long history of Multiple Target Tracking, there do not exist any standard metrics

by which to measure performance. This stems from the variety of behaviours an algorithm may

exhibit and how much the user may object to it. For example, an algorithm may incorrectly swap

the latter halves of two tracks, as in Figure 4.1a; did this algorithm only label half of its detections

correctly? For vision applications, how should one measure how well a track’s state is estimated

given bounding boxes and mean positions? How about false detections and detection failures, or

when a track is cut into multiple pieces?

One such metric which has attempted to aggregate all of these considerations is the CLEAR

Multiple Object Tracking metric [Bernardin and Stiefelhagen, 2008]. In words, this metric identifies

at each time step a mapping between the targets proposed by the tracker and by ground truth.

Given this, it calculates the position error and the number of false detections, detection failures,
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(a) An error wherein an algorithm mistakenly
trades the places of two targets

(b) An error wherein an algorithm mistakenly
identifies clutter as an actual state sequence
(green) and fails identify a sequence of detections
as an actual target (orange)

Figure 4.1: Common errors in Multiple Target Tracking. Small balls of the same color represent
detections generated by an actual target, while centers of large shapes of the same color represent
hypothesized position sequences of the same object. Taken from Bernardin and Stiefelhagen [2008].

and ‘mismatches’ (see Figure 4.1). These numbers are then appropriately averaged to present an

idea of the tracker’s performance.

Formally, the CLEAR metric initializes with an empty mapping between true targets and

hypotheses at time t = 0. At each time step, Algorithm 8 is executed with parameter dmax,

the maximum distance between a true and hypothesized target. Finally, the mean false detection

rate, detection failure rate, mismatch rate, and position error rate are averaged as follows,

fp =

∑
t fpt∑
t gt

(4.3)

fn =

∑
t fnt∑
t gt

(4.4)

mm =

∑
tmmt∑
t gt

(4.5)

MOTA = 1− fn− fp−mm (4.6)

MOTP =

∑
t dt∑
t ct

(4.7)

Readers should note that the Multiple Object Tracking Accuracy (MOTA) is based entirely

on the quality of a data association and the Multiple Object Tracking Position (MOTP) is solely

dependent on the state estimates. An ideal algorithm will score 1.0 for MOTA and 0.0 for MOTP.

For reference, typical results for person tracking have a fn around 12% and fp between 5 and
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30%. We refer the reader to Bernardin and Stiefelhagen [2008] for example evaluations of several

algorithms.

Algorithm 8 The CLEAR MOT metric for time t

Input: a mapping between true targets and target hypotheses {ok, hk′}t−1 from time t− 1
Output: Counts for false detections fpt, detection failures fnt, mismatches mmt, true targets gt,

matches ct, total distance error dt, and a new mapping {ok, hk′}t
1: Keep each correspondence ok, hk′ from time t − 1 where true target ok and hypothesis hk′ are

still active at time t and are within a distance dmax of each other.
2: Establish possible correspondences between all unmatched ok active at time t with unmatched

hypotheses hk′ if their position distance is less than dmax. Make a mapping between them by
minimizing their sum position distance. This establishes {ok, hk′}t.

3: Let

• fpt the number of hk′ assigned to a target at time t when hk′ actually corresponds to
clutter

• fnt the number of hk′ assigned to clutter when actually t when hk′ was actually generated
by a target

• mmt the number of ok matched at time t with a different hk′ than they were at t− 1

• gt the number of ok

• ct be the size of {ok, hk′}t
• dt the sum of position distances between all matches at time t
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Chapter 5

Contributions

With the necessary background now sufficiently covered, we embark on describing two new algo-

rithms for Multiple Target Tracking: Particle MCMC Data Association (PMCMCDA) and Particle

Filter Data Association (PFDA). We begin by making concrete the form of the joint distribution

over which inference is being performed. The following two sections motivate the algorithms, de-

scribe their implementation, and prove their correctness. We continue with experiments describing

the strengths and weaknesses of both algorithms. Finally, we conclude with a summary of our

results.

5.1 Model

We begin by reviewing the notation used throughout this chapter based on that presented in

Figure 2.4 in Section 2.2. By convention, we will denote x
(k)
t denote the hidden state of target

k at time t, alivet the set of all targets k in view, #newt the number of new targets, and #clutt

the number of clutter detections. As for detections, y
(i)
t denotes the ith detection generated at

time t and Yt = {y(i)
t }i the collection of all detections. We say at(i) = k or a−1

t (k) = i if target k

generated detection i at time t. We reserve at(i) = 0 to denote that an observation was generated

by clutter and a−1
t (k) = 0 to denote that target k failed to generate a detection. We denote the

beginning and end of target k with tstart
k and tend

k . The set of all static parameters of the model

will be denoted by θ. When the notation 1 : t is used, it is to denote the set of variables from times

1 to t; eg, X1:t = {X1 . . . Xt}. We will always index time by t, targets by k, observations by i and
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particles by p. T will denote the end of time.

The goal of the algorithm is to simultaneously estimate the distribution over all target states

Xt, data associations at, and static parameters θ given detections Y1:t; that is, P (X1:t, a1:t, θ|Y1:t).

5.1.1 Birth/Death and Data Association Model

The birth/death and data association model mirrors that used in Oh et al. [2004]. That is for

each time step t,

• #newt, the number of new targets, is distributed according to Poisson(λnew)

• #clutt, the number of clutter detections, is distributed according to Poisson(λfalse)

• Each active target generates an observation at time t with probability pobs; equivalently,

P (a−1
t (k) = 0) = 1− pobs.

• Each active target will end with probability pend at each time step; that is, a target’s length

is distributed according to Geometric(pend)

Thus, the static parameters so far are λnew, λfalse, pobs, and pend. We will assume that each of

these is distributed according to its corresponding conjugate prior.

We will further assume that all tracks move independently. Thus, all that is left is to define the

per-target dynamics model P (x
(k)
t |x

(k)
t−1), per-target initial state distribution P (x

(k)

tstartk
), observation

distribution P (y
(i)
t |x

(k)
t , at(i) = k), and false observation distribution p(y

(i)
t |at(i) = 0). Given these,

the likelihood of any given hypothesis is,

P (X1:T , Y1:T , a1:T , θ) =P (θ)

(∏
t

P (#clutt)P (#newt)

)
× (5.1)(∏

t

∏
i

P (y
(i)
t |at(i), x

(at(i))
t )

)
×(∏

k

P (tendk − tstartk )×

tend
k∏

t=tstartk

P (x
(k)
t |x

(k)
t−1)P (a−1

t (k) = 0)


We assume that all target tracks have ended by time T in this definition, though it is straight-

forward to calculate otherwise. In words, the first line covers the static parameters, the number of
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(a) A state transition in the Random
Walk model

(b) States sequences for five cars in the traffic
model

targets initialized, and number of false detections. The next accounts for the detections themselves

given the associated target’s state, if any. The final line accounts for the sequence of states for each

target k, whether or not it was detected, and its length.

5.1.2 Dynamics and Observation Models

We define two models: a finite, discrete, random-walk model and a traffic model.

Random Walk

Consider a simple model where a vacuum robot is in one of N states, arranged in a line. With

probability pmove, the robot moves to one of the two adjacent states, each selected with equal

probability. If the robot is observed, with probability ptrue, the robot reports its true position, else

it reports one of the N states uniformly at random. When a new robot enters, it will start in one of

the N states uniformly at random. If a false detection is made, we will assume that it is generated

uniformly at random from the states.

In this model, the unknown static parameters are pmove and ptrue, which we will again assume

are distributed according to their corresponding conjugate prior.
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Traffic

Consider now a single car travelling on a road network represented by a graph where edges are

roads and nodes are intersections. The state of the car is its velocity v, the current road it’s traveling

on e, and the distance along the road the car has traveled d. At each time step, the car selects its

new velocity v′ from a Truncated Normal distribution with mean v, variance σ2
v , minimum value 0,

and maximum value vmax. Given this new velocity, the car then continues onwards for 1 time step;

i.e., until it has traveled a distance equal to v′. If this distance is less than the remaining length of

the road, the car continues up to that point. If it encounters an intersection before then, however, a

new road is selected from the roads connected to that node from a Multinomial distribution specific

to that intersection; i.e., P (e′|i) = pe
′,i with

∑
e′ p

e′,v = 1. The vehicle then continues on this new

road.

If a vehicle is detected, we assume that it generates an observation from a two dimensional

Normal distribution centered at its current location with variance σ2
oI. On the other hand, a false

detection is assumed to be generated from a two dimensional uniform distribution with length and

width twice the distance between the farthest two intersections of the road network.

Here, the model-specific parameters are pe,i, σ2
o , and σ2

v . We will assume that the road network

itself and vmax are given.

5.2 Particle MCMC Data Association (PMCMCDA)

Particle MCMC Data Association is perhaps easiest understood as Particle MCMC algorithm

with a Resample-Move Particle Filter as applied to MCMC Data Association algorithm [Oh et al.,

2004]. In PMCMCDA, MCMC is used in an outer loop to explore the space of possible data asso-

ciations using the move-types described in Oh et al. [2004], while a Resample-Move Particle Filter

is applied in each MCMC iteration to simultaneously approximate the likelihood of all detections

and propose candidate state sequences and static parameters. Unlike previous methods, this al-

gorithm is designed to approximate the posterior over data associations, target states, and model

parameters, and unlike Oh et al. [2004], non-linear non-Gaussian target dynamics can be modeled.

The intuition behind Particle MCMC Data Association is that while Particle Filters are most

effective at tracking dynamic states, the number of possible data associations is too large to expect
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particles representing the most likely candidates to be proposed. With Particle MCMC, we are

now able to place that burden on an outer loop MCMC algorithm. On the other hand, designing a

proposal distribution for static parameters that closely mirrors the posterior would require knowing

beforehand what likely state sequences were. However, these depend highly on the data association,

and thus we are motivated to believe that a Resample-Move Particle Filter would be more capable

at estimating the posterior distribution over parameters than the outer loop MCMC algorithm.

Let us now describe the algorithm itself as given in Algorithm 9. Suppose we have the ith

MCMC state ρi = (a1:T , θ,X1:T )i containing a data association, static parameters, and the states

of all tracks when they are active as well as an estimate Ẑ = P̂ (Y1:t|a1:T,i). The PMCMCDA

algorithm 9 first proposes a move-type selected from those in Table 5.1, then samples a new data

assocatiion a1:T using the proposal distribution given by the move-type. As in Oh et al. [2004], we

will assume that a track necessarily generates a detection when it is born and when it dies. Thus,

knowing a1:T is equivalent to knowing tstart
k and tend

k .

The algorithm then runs a Resample-Move particle filter (Algorithm 10) targeting P (X1:t, θ|Y1:t, a1:T )

for t = 1 . . . T . This is done by first initializing θ(p) ∼ P (θ(p)) and X
(p)
1 ∼ q(X

(p)
1 |Y1, a1) where

q(X
(p)
1 |Y1, a1) is a dynamics model-specific proposal distribution. In implementation, this proposal

distribution samples each active track’s new state independently (i.e. each x
(k)
1 is sampled inde-

pendently given a−1
1 (k)), and the joint state of all active tracks becomes X1. The filter continues

by proposing new states X
(p)
t , reweighting them, resampling from the particle pool, and finally

performing a Gibbs move on the parameters θ for each particle given the particle’s history from

1 . . . t.

Once the filter is complete, the weights w
(p)
t are used to compute an estimate for P (Y1:T |a1:T )

called Z. Furthermore, a single particle (X1:T , θ) is sampled from the final particle pool {X(p)
1:T , θ

(p)}Pp=1

to become part of the outer MCMC state ρ. Then, the MCMC acceptance ratio α is calculated

and ρ is accepted or rejected based on it. These steps are repeated until convergence.

While Particle MCMC is shown to target the correct posterior when using a vanilla Particle

Filter in Andrieu et al. [2010], its analysis did not account for a Resample-Move type Particle Filter.

The proof for this scenario is given in Appendix A.2.
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Move name Reverse move Move description

Birth Death Let k be a new unique track id. Choose a time t and an
unassigned detection yit and assign it to track k, then continue
as in the Extend move.

Death Birth Choose a track k uniformly at random. Assign all its obser-
vations to clutter.

Extend Reduce Choose a track k uniformly at random. Sample a continua-
tion time step t no more than tmax time steps after the end
of the track k (tmax is a hyperparameter chosen beforehand).
Sample an unassigned detection uniformly at random from
those reasonably close and assign it to k. Sample a new t
after k’s new final time step with probability pcont (another
hyperparameter), else stop.

Reduce Extend Choose a track k uniformly at random. Sample a time t be-
tween the start and end of the track. Assign all observations
assigned to k after t to clutter.

Merge Split Choose 2 tracks k and k′ such that k′ starts less than tmax

time steps after k ends. Assign all of k′s detections to k

Split Merge Choose a track k uniformly at random. Sample a time step
t from the times k is active. Assign all observations assigned
to k after t to a new track k′

Swap Swap Choose 2 tracks k and k′ such that there is an overlap in
their active times. Choose time step t such both tracks are
active, then assign all detections assigned to k after t to k′

and likewise for k′ to k.

Update Update Perform a Reduce then an Extend to the same track.

Table 5.1: MCMC moves used in proposing new data associations

Algorithm 9 A single iteration of Particle MCMC Data Association

Input: MCMC state ρi = (X1:T , a1:T , θ)i and data likelihood approximation Ẑi = P̂ (Y1:T |a1:T,i)
Output: MCMC state ρi+1 = (X1:T , a1:T , θ)i+1

1: Sample a move type m ∼ q(m|ρi)
2: Sample new data association a1:T ∼ q(a1:T |ρi,m)

3: Run Algorithm 10 with a1:T fixed to generate weights w
(p)
t for all t, p and candidate state

sequences/parameters {X(p)
1:T , θ

(p)}Pp=1

4: Approximate data likelihood Z = P̂ (Y1:T |a1:T ) =
∏T
t=1

1
P

∑P
p=1w

(p)
t

5: Sample a state sequence and parameter X1:T , θ from {X(p)
1:T , θ

(p)}Pp=1 using weights w
(p)
T . Let

ρ = (X1:T , a1:T , θ)
6: Calculate acceptance ratio

α =
ZP (a1:T )q(m|ρ)q(a1:T,i|ρ,m)

ẐiP (a1:T,i)q(m|ρi)q(a1:T |ρi,m)
(5.2)

7: Sample u ∼ Unif(0, 1). If u < α, let ρi+1 = ρ, else ρi
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Algorithm 10 A single iteration of PMCMCDA’s Resample-Move Particle Filter

Input: Weighted particles {X(p)
1:t , θ

(p)}Pp=1 approximating P (X1:t, θ|Y1:t, a1:t), new detections Yt+1

Output: Weighted particles {X(p)
1:t+1, θ

(p)}Pp=1 approximating P (X1:t+1, θ|Y1:t+1, a1:t+1)

1: Propagate: sample X
(p)
t+1 ∼ q(X

(p)
t+1|Yt+1, X

(p)
t , θ(p), at+1) for all particles p

2: Reweight: Calculate particle weights

w
(p)
t+1 =

P (Yt+1|X
(p)
t+1, at+1, θ

(p))P (X
(p)
t+1|X

(p)
t , θ(p))

q(X
(p)
t+1|Yt+1, X

(p)
t , θ(p), at+1)

(5.3)

3: Resample: draw P particles {X(p)
t+1}Pp=1 from {X(p)

t+1}Pp=1 such that the expected number of times

X
(p)
t+1 is replicated is Pw

(p)
t+1 (e.g., via Residual Resampling)

4: Move: Perform a Gibbs move on θ(p) by sampling θ(p) ∼ P (θ(p)|X(p)
1:t+1, Y1:t+1, a1:t+1)

5.3 Particle Filter Data Association (PFDA)

While PMCMCDA is modeled after Particle MCMC, Particle Filter Data Association (PFDA)

is best seen as a typical Resample-Move particle filter with a proposal distribution q(Xt+1|Xt, Yt+1)

and Reversible Jump MCMC performed as in Resample-Move.

Particle Filter Data Association was developed after PMCMCDA in order to address the latter’s

shortcomings. In particular, PMCMCDA suffers from difficulty in proposing data associations

that are of reasonable likelihood under the dynamics model due to its data association proposal

distribution being based on the same observation-to-observation distance heuristics from Multiple

Hypothesis Tracking and Joint Probabilistic Data Association. In models such as the random walk

model, a detection can occur in any state with non-negligible likelihood and such distance-based

heuristics become ineffective.

Instead, PFDA was designed with the idea that X
(p)
t , the state of all targets at time t, severely

restricts the number of likely data associations at time t + 1, and thus even if the number of

potential data associations is high, most can immediately be disregarded by building at+1 in an

almost greedy manner given Xt. In addition, by structuring PFDA as a Particle Filter, we obtain

an online algorithm as opposed to one where T is fixed.

Like PMCMCDA, a particle ρt = (X1:t, θ, a1:t) is defined to contain the hidden state of all active

targets, and the data associations mapping targets to detections up and including to time t. Unlike

PMCMCDA, a target does not necessarily generate a detection at its final time step, but we will
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still assume it does upon birth.

Suppose that q(ρt+1|ρt, Yt+1) is known and can be sampled from. We then use the traditional

Particle Filtering algorithm presented in Algorithm 11 to propagate particles forward in time and

resample them, followed by an MCMC kernel intended to ensure the particle set does not collapse

to a handful of hypotheses. For a more detailed discussion on the wide array of modifications that

can be done to Particle Filters, we direct the reader to Doucet and Johansen [2009].

The novelty of PFDA is in the proposal distribution in Algorithm 12. In words, the algorithm

begins by assigning detections to existing, active targets in a ‘pseudo-greedy’ manner by iterating

through each new detection and proposing an association between an unassociated target and the

new detection based on how likely it is that the former generated the latter. Constant weight is

also given to new targets and clutter. This completes proposals for at+1, #newt+1, and #clutt+1.

After all detections have been assigned, all targets that were not assigned a detection are eligible

for deletion, and thus their existence at time t + 1 is proposed (i.e., whether or not they are in

alivet+1). Finally, new states x
(k)
t+1 are proposed for each target in alivet+1 given y

(a−1
t+1(k))

t+1 .

The RJMCMC moves applied to each particle after resampling are similar to those in PM-

CMCDA but are far less complex (see Table 5.2). Unlike PMCMCDA, each move affects at most

one time step and target (except for the Parameters move), which results in the ability to quickly

evaluate the Metropolis-Hastings acceptance ratio. The Parameters move, on the other hand, is a

Gibbs move (that is, θ is sampled from the posterior P (θ|X1:t, Y1:t, a1:t)) and thus is accepted with

probability 1, meaning no acceptance ratio need be calculated [Fearnhead, 2002]. Finally, since

all variables are proposed directly and no transformation is taking place, h is always the identity

function and its determinant is always 1.

As PFDA is simply a Resample-Move Particle Filtering algorithm, the proof of its convergence

relies only on the conditions necessary for such an algorithm to converge. These conditions from

[Gilks and Berzuini, 2001, Theorem 2] can best be summarized as for each Xt and Yt+1

1. P (Xt+1|Xt) > 0, P (Yt+1|Xt+1) > 0⇒ q(Xt+1|Xt, Yt+1) > 0

2. VarP (Xt+1|Xt,Yt+1) [w(Xt+1)] <∞

We note that Algorithm 12 satisfies both of these requirements so long as the per-track proposal

distributions q(x
(k)
t+1|x

(k)
t , y

(a−1
t+1(k))

t+1 ) satisfy them as well. We can easily see this as the proposal
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Move name Reverse move Move description

Birth Death Let k be a new unique target id. Choose a time t and an
unassigned detection yit and assign it to target k. Sample an

initial state x
(k)
t ∼ q(x

(k)
t |yit).

Death Birth Choose a target uniformly at random from those of length 1.
Delete that target’s state and assign its detection to clutter.

Extend Reduce Choose a target uniformly at random from those that have
already terminated and let t be the time of its final state.
Sample whether or not it was detected with probability pobs,
and if so choose a detection from those assigned to clutter

with weights wi = P (yit+1|xt). Sample a new state x
(k)
t+1 ∼

q(x
(k)
t+1|yit, x

(k)
t ).

Reduce Extend Choose a target uniformly at random from those of at least
length 2. Remove the target’s final state and assign any de-
tection associated with that state to clutter.

Resample Resample Choose a target k and time t when k is active. Resample x
(k)
t

given x
(k)
t−1 and yt.

Parameters Parameters Perform a Gibbs move on all static parameters

Table 5.2: RJMCMC moves in Particle Filter Data Association

distribution concerns itself only with variables who have a large but finite number of possibles,

namely at+1,#newt+1,#clutt+1.

Algorithm 11 A particle filtering algorithm with Resample-Move

Input: a set of weighted particles for time P (ρ|Y1:t), {w(p)
t , ρ(p)}Np=1, new detections Yt+1

Output: a set of weighted particles for time P (ρ|Y1:t+1), {w(p)
t+1, ρ

(p)}Np=1

1: for each particle ρt in {ρ(p)} do
2: sample its successor state ρt+1 ∼ q(ρt+1|ρt, Yt+1)

3: set wt+1 =
P (Yt+1|ρt+1)P (ρt+1|ρt)

q(ρt+1|ρt,Yt+1) wt

4: Resample N new particles from {ρp1:t+1} via weights w
(p)
t+1; Give these new particles w

(p)
t+1 = 1

N

and call them ρ
(p)
1:t+1

5: Run each resampled particle through an MCMC kernel K(ρ′1:t+1|ρ1:t+1) targeting
P (ρ1:t+1|Y1:t+1)

5.4 Experiments

5.4.1 Particle MCMC Data Association

In this section, we consider the empirical performance of Particle MCMC data association on

the models described in Section 5.1. We will use synthetically generated data created by forward

45



Algorithm 12 Importance sampling distribution for a new particle

Input: a particle ρt = (Xt, at, θ), new detections Yt+1

Output: a new particle ρt+1

1: for detection i in Yt+1 do
2: propose a target k to generate yit from targets active at time t not yet assigned at time t+1,

a new target, and no target at all based weights ω
(k)
t = P (yit+1|x

(k)
t )

3: for active targets k at time t not assigned to a detection do
4: propose whether k ends at time t or not

5: for targets k continuing to t+ 1 do

6: propose a new state via q(x
(k)
t+1|x

(k)
t , y

a−1
t+1(k)

t+1 )

7: Let ρt+1 = (Xt+1, at+1, θt)

symbol description value

T number of time steps 6,10
nstates number of states 20
λfalse mean number of false detects 1.0
λnew mean number of new targets 0.3
pobs probability of detection 0.8
pend probability of target ending 0.03
ntargets number of active targets ≥ 2

ptrue prob. of detecting true state 0.99
pmove prob. of changing state 0.33

road network shape 3x3 grid
road length 1.0

σ2
v variance of vehicle velocity 0.05
σ2
o variance of detection position 0.01
vmax maximum vehicle velocity 0.33

nparticles number of particles 500

Table 5.3: Default parameters used to generate synthetic data. The top box contains parameters
common to both models, while the next two boxes contain parameters relating to the Random
Walk and Road models in specific. The final box contains runtime parameters of the algorithm.

sampling the model using the parameters describe in Table 5.3 with exception of the number of

vehicles which is bounded above and below. The results presented here do not vary λfalse, λnew,

ptrue, or pmove.

Random Walk

In this section, we present results for two runs, one with T = 6 and the latter T = 10. A quick

visualization of both can be found in Figure 5.1.

Despite the similarity of the two scenarios, PMCMCDA’s performance varies greatly. While it
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(a) T = 6 (b) T = 10

Figure 5.1: Visualization of the two random walk scenarios used in evaluating Particle MCMC
Data Association. Time is along the x-axis, state along the y-axis; crosses are detections and true
states are circles.

Figure 5.2: Number of accepted proposals as a function of the number of iterations for two random
walk scenarios with time lengths 6 and 10.

is able to mix quickly and successfully reach a region of high probability when T = 6, it is entirely

unable to escape local optima when T = 10. Figure 5.2 provides a stark contrast between the two

scenarios; while slightly less than 10% of proposals are accepted when T = 6, less than 1% are

accepted when T = 10.

Perhaps the first and most obvious culprit for the algorithm’s failure when T = 10 is the design of

the data association proposal distribution. Figure 5.3 compares histograms of log P̂ (Y1:T , ā1:T )/P̂ (Y1:T , a1:T,i).

Notice that although both plots share similar shapes, the former peaks around −6 while the latter

peaks around −25. In consequence, the probability of accepting a proposal is nearly 0 the majority
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(a) T = 6 (b) T = 10

Figure 5.3: Likelihood of proposed data association minus likelihood of current MCMC state. Note
the difference in scale.

(a) T = 6 (b) T = 10

Figure 5.4: Percentage of proposals accepted for each move type as a function of the number of
iterations. Note the difference in scale.

of the time when T = 10. Looking at Figure 5.4, we see that this is not the fault of any single

move-type; rather, all moves suffer an extremely low acceptance rate. The sheer number of possible

data associations makes designing a “good” proposal distribution very difficult.

Another culprit is the accuracy of the Particle Filter’s approximation to the observation like-

lihood P (Y1:T |a1:T ), Z̄. It is important to understand that even with a perfect approximation,

Particle MCMC can only hope to do well as an MCMC algorithm without approximation; the par-

ticle approximation can only hurt. Examining Figure 5.5, we see that the variance of the Particle

Filter’s approximation deteriorates as the data association becomes more unlikely. In consequence,

the MCMC chain is apt to get stuck when the joint likelihood P (Y1:T , a1:T ) is overestimated. When
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(a) T = 6 (b) T = 10

Figure 5.5: Standard deviation of joint likelihood approximation as a function of the mean. Note
the difference in scale.

(a) T = 6 (b) T = 10

Figure 5.6: CLEAR score of the current MCMC sample as a function of number of iterations.

T = 6, this is not an issue as the scenario is so small, but when T = 10 the variance is simply

too high. While more particles can be added to alleviate the issue, the additional computational

burden significantly slows the algorithm.

Finally, it is worth noting that even when well mixing, PMCMCDA does not generate a posterior

wherein the true hidden states and parameters dominate all other configurations. Rather, there

exist many likely solutions which the MCMC chain explores. In the simple scenario of T = 6,

this results in a noisy, time-varying estimate to the CLEAR metric (Figure 5.6a); when T = 10,

the algorithm’s inability to reach a high density region results in a low CLEAR score throughout

(Figure 5.6b). This is not a fault of PMCMCDA itself but rather simply a result of the model

formulation.
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In summary, PMCMCDA is an extremely computationally intensive algorithm highly dependent

both on the accuracy of the Particle Filter and the data association proposal distribution. Careful

choice of both is necessary to perform well, and even then the most likely posterior solution need

not correspond to a high CLEAR score.

Traffic

In this section, we consider a Traffic model generated from parameters used in Table 5.3 with

T = 20. Unlike the Random Walk model, which is initialized with a data association wherein all

detections are marked as false detections, the Traffic Model initializes by running a greedy algorithm

for clustering detections. In particular, the greedy algorithm initializes a target by selecting a time

step t, picking a false detection uniformly at random, then continuing to t+ 1 to pick the nearest

detection to the previous one in L2 distance, and so on until the end of time. This is repeated

sequentially until no more targets can be created.

Surprisingly, PMCMCDA does significantly better in the Traffic domain than in the simple

Random Walk. This may be due to the initialization scheme, which Figure 5.10b shows to have

been quite well chosen already in terms of the CLEAR score. However, it should be noted that

this data association was not by any means correct; Figure 5.9b shows that the (approximate) joint

likelihood of the initial data association, P (Y1:T , a1:T,1), was 30 orders of magnitude less than the

true value. Even still, PMCMCDA is able to converge to a high probability region and generate

reasonable hypotheses.

The number of proposals accepted in this model was observed to be between the two scenarios

presented in the Random Walk model, achieving roughly 3% of proposals accepted (Figure 5.8a).

Figure 5.8b shows that some moves were far more successful than others, particularly the Update

and Merge moves. The proposals themselves, however, were not overly unlikely; Figure 5.9a shows

that most samples were within 10 orders of magnitude of the current state, but many samples were

significantly less likely than the current MCMC state.

Finally, the same results regarding data association likelihood and Particle Filter approximation

accuracy hold true. That is, the more unlikely a data association, the more noisy the Particle Filter’s

approximation to the value of P (Y1:T |a1:T ). In spite of this, Particle MCMC Data Association

achieved adequate performance in both acceptance rate and CLEAR.
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(a) Ground truth (b) Hypothesis at iteration 8,000

Figure 5.7: Visualizations of the Traffic scenario. Crosses are false detections, circles are correct
detections, and each color of arrow represents the state sequence of one vehicle. Subsequence arrows
denote time steps. Cross colors have no relation to arrow color.

(a) Acceptance counts as a function of the number
of iterations

(b) Per-move acceptance rates as a function of the
number of iterations

Figure 5.8: Acceptance Statistics for the Traffic model

(a) Histogram of log ratio of proposal joint likeli-
hood over current MCMC state joint likelihood

(b) Histogram of joint likelihood of current MCMC
state. The red line is the joint likelihood of ground
truth.

Figure 5.9: Histograms of MCMC state likelihood.
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(a) Mean and standard deviation of joint likelihood
approximations for the 10th, 20th, ..., 90th per-
centiles

(b) CLEAR score as a function of the number of
iterations

5.4.2 Particle Filter Data Association

Random Walk

We now analyze the performance of Particle Filter Data Association across 3 dimensions:

npartices, pobs, and λfalse. In all experiments, synthetic data is generated using parameters detailed

in the previous subsection in Table 5.3 with the exception of T which is set to 50 and ntargets which

is between 2 and 11 except when stated otherwise. Unlike Particle MCMC Data Association,λfalse,

λnew, ptrue, and pmove are assumed unknown and must be inferred.

We compare the performance of our algorithm in three distinct scenarios. The first, mle,

0 moves is when the algorithm is seeded with parameters maximizing the likelihood of true,

unobserved data and Resample Move is disabled. This is intended to given an idea of the ‘best’ our

algorithm can achieve. The second, prior, 0 moves considers the case that parameters are drawn

from the prior and no Resample Move is applied thereafter. The final, prior, 5 moves applies 5

Resample Move MCMC iterations are applied to each particle at every time step.

We begin by examining expected value for each static parameter as a function of time when

T = 250. As can be seen in Figure 5.10, both prior, 0 moves and prior, 5 moves largely

converge after roughly 50 time steps. While prior, 5 moves converges towards a more accurate

value, it still differs significantly from the data’s true value. Other parameters, not seen, converge

similarly.

The reason for this failure of convergence to the true parameter is Particle Degeneracy, the
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Figure 5.10: E[λbirth|Y1:t] (a) and E[pobs|Y1:t] (b) as a function of time in the random walk model.
Blue is ground truth, green is prior, 0 moves red is prior, 5 moves .

phenomena wherein all particles eventually inherit the same ancestor due to resampling. How

Particle Degeneracy affected each scenario, however, differs. prior, 0 moves samples parameters

only at t = 0, and thus can only lose diversity to resampling. On the other hand, prior, 5

moves can alter parameters as time progresses; however, as t grows, resampling decreases the

particle diversity of {x(k)
t−L}k for large L. Unless an increasing number of MCMC iterations is

also applied, the Particle Filter converges to a single hypothesis for {x(k)
τ }k,1≤τ≤t−L. The inability

to well approximate P ({x(k)
τ }k,1≤τ≤t−L|Y1:t) in turn biases P (θ|{x(k)

τ }k,1≤τ≤t−L, Y1:t), causing the

Particle Filter to peak at an incorrect value as seen in Figure 5.10.

The inclusion of MCMC seems to have had little effect on the particle filter’s accuracy in

estimating the states of the targets themselves. In spite of having less error in parameter values,

the MOTA score is nearly identical with and without MCMC, as seen in Figure 5.11.

Varying nparticles, we see in Figure 5.13 that our algorithm’s performance is largely independent

of the number of particles, at least within the range of 100 to 1,000. Further investigation indicates

that prior, 0 moves has a slightly higher mismatch and false negative rate, but results are too

close to be conclusive. The difference between known and unknown parameters is noticable but not

significant. Further investigation reveals that the Particle Filter becomes more unstable (Figure

5.12) as the number of active targets increases. We may formalize this via the Effective Sample
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Figure 5.11: CLEAR as a function of time for mle, 0 moves prior, 0 moves and prior, 5
moves respectively in the random walk model. MOTA is blue, false negative rate is green, false
positive rate is red, and mismatch rate is aqua. The CLEAR score is calculated using the last 5
time steps only.

Figure 5.12: 25th, 50th, and 75th percentile of the effective sample size as a function of the true
number of active targets in the random walk model with T = 250. The true number of particles is
500.

Size, computed as ESS := 1/
∑

p(ω
(p))2 where ω(p) is the (normalized) weight of particle p before

resampling (that is, w(p) normalized).

Varying pobs, we see in Figure 5.14 that performance is highly dependent on how likely it is for a

target to be detected. The benefits of resample move, however, are rather unclear; the performance

of prior, 0 moves and prior, 5 moves is neck-and-neck. A closer look at the large dip in prior,

0 moves ’s performance for pobs = 0.7 reveals that the static parameters settled in such a way that

short tracks and clutter are favored, resulting in a false negative rate 20% and a mismatch rate

14% above their corresponding values in mle, 0 moves .

Varying λfalse ( Figure 5.15 ) reveals the sensitivity of the algorithm to the amount of noise in
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Figure 5.13: MOTA (a) and MOTP (b) as a function of nparticles. Blue is mle, 0 moves green
prior, 0 moves and red is prior, 5 moves .

Figure 5.14: MOTA (a) and MOTP (b) as a function of pobs in the random walk model. Blue is
mle, 0 moves green prior, 0 moves and red is prior, 5 moves .

the observations. At an average 4.5 false detects per time step, the MOTA falls to an abysmal −0.8

in both prior, 0 moves and prior, 5 moves whereas mle, 0 moves achieved slightly below 0.

Again, we see that the MCMC moves do not noticably affect performance with runs other than

mle, 0 moves having nearly identical mismatch, false positive, and false negative rates.

Overall, experiments indicate that the benefit of MCMC moves to CLEAR score performance

is negligible at best. Even given the best possible parameters, the problem of Multiple Target

Tracking is difficult in a Sequential Monte Carlo framework, and the burden lies on the designer to

choose proposal distributions that reflect the unknown posterior in order to minimize the number

of samples necessary.

Traffic

For the Traffic model, we run experiments only with default parameters and T = 250.
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Figure 5.15: MOTA (a) and MOTP (b) as a function of λfalse in the random walk model. Blue is
mle, 0 moves green prior, 0 moves and red is prior, 5 moves .

Results from the Traffic model were similar to those found in the Random Walk model. CLEAR

scores with MCMC moves performed slightly better than those found without (Figure 5.18), and

parameters converged but again not to their correct values (Figure 5.16). When the number

of targets is relatively small, particles generate reasonable hypotheses as in Figure 5.19; however,

when the number of targets exceeded 5 or more, the exponential variance of multiple, independently

moving targets renders hypotheses very difficult to interpret.

Unlike the Random Walk experiments, the Traffic model’s runs had a much higher variance in

particle weight. We believe that this is due to the low variance of detections in vehicle position and

the high number of independently moving vehicles. The consequences of this is an increased rate

in particle degeneracy, which led to the convergence of parameters in prior, 0 moves in less than

5 iterations (Figure 5.16) and low effective sample size throughout (Figure 5.17).
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Figure 5.16: E[pend|Y1:t] and E[σ2
v |Y1:t] as a function of time in the traffic model. Blue is ground

truth, red is prior, 5 moves and green is prior, 0 moves .

Figure 5.17: Effective sample size as a function of time in the traffic model, clipped at 50. The
true number of particles is 500. It is not uncommon for the effective sample size to drop as low as
2 or 5 whereas over 200 is considered ‘healthy.’

57



Figure 5.18: CLEAR as a function of time for mle, 0 moves prior, 0 moves and prior, 5
moves respectively in the traffic model. MOTA is blue, false negative rate is green, false positive
rate is red, and mismatch rate is aqua.

Figure 5.19: True state (top left) and top 3 hypotheses (clockwise from top right) in the traffic
model.
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5.5 Conclusions

In this work we have formulated a Contingent Bayesian Network model for Multiple Target

Tracking and presented two new Monte Carlo algorithms for performing approximate inference

over data associations and target states called Particle MCMC Data Association (PMCMCDA)

and Particle Filter Data Association (PFDA). Unlike previous algorithms, both PMCMCDA and

PFDA are capable of performing inference in models without Linear-Gaussian assumptions, with

unknown time-invariant model parameters, and while considering multiple data associations. These

algorithms have been shown to approximate the true posterior as the number of iterations and

particles, respectively, approaches infinity, and their effectiveness has been tested on two synthetic

per target dynamics models.

Particle MCMC Data Association combines Particle MCMC [Andrieu et al., 2010], MCMC

Data Association [Oh et al., 2004], and the Resample-Move algorithm [Gilks and Berzuini, 2001]

to explore the posterior over data associations, target states, and static parameters given sets of

detections over time. By employing a Resample-Move Particle Filter, designing explicit MCMC

proposal distributions for the latter two can be avoided and instead be constructed automatically

during Filtering. In showing correctness of PMCMCDA, we contribute an extension of the proof

presented in Andrieu et al. [2010] to allow for Resample-Move Particle Filters instead of vanilla

Particle Filters.

Particle Filter Data Association combines the Resample-Move algorithm [Gilks and Berzuini,

2001] with a new Multiple Target Tracking proposal distribution for independently moving targets.

Unlike PMCMCDA, PFDA can take target dynamics into account when constructing new data

associations by maintaining a distinct set of target states and data associations in each particle.

This has resulted in an online filtering algorithm capable of performing inference for scenarios up

to twenty-five times longer than PMCMCDA is capable of.
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Appendix A

Proofs

A.1 Resample Move gives unbiased estimates for observation like-

lihood

In this section, we consider the Resample-Move particle filter of Gilks and Berzuini [2001]. We

aim to show, as Pitt et al. [2010] did for Auxiliary Particle Filter, that the Resample-Move particle

filter gives an unbiased estimate for the likelihood of the observations for any number of particles.

We use the notation given in Table A.1 and at each time step Algorithm 13. Our goal is to prove

the following,

Theorem 3. Let P̂ (y1:T ) =
∏T
t=1 P̂ (yt|y1:t−1). Then P̂ (y1:T ) is an unbiased estimator for P (y1:T )

– that is, E[P̂ (y1:T )] = P (y1:T )

xt Unknown state at time t

yt Known observation at time t

x
(t−1),p
1:t Particle p containing states for times 1 to t inclusive where x1 has been

resampled through MCMC kernel K (t− 1) times.

K(x
(t),p
1:t |x

(t−1),p
1:t ) MCMC kernel applied to each particle after each iteration. Has stationary

distribution P (x1:t|y1:t)

w(x
(t),p
1:t+1) Unnormalized weight for particle x

(t),p
1:t+1

πpt Normalized weight of particle x
(t−1),p
1:t

P̂ (yt|y1:t−1) Approximation to the probability of yt given all previous observations.

apt Index of the parent of particle p at time t. See Figure A.1.

Table A.1: Notation
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Figure A.1: The parents of one lineage of particles in a Particle Filter

Algorithm 13 An iteration of a Resample-Move Particle Filter

Input: A set of N weighted particles {x(t−1),p
1:t , πpt } ∼ P (x1:t|y1:t−1), observation yt+1

Output: A set of N weighted particles {x(t),p
1:t+1|1:t, π

p
t+1} ∼ P (x1:t+1|y1:t), unbiased estimate of

P̂ (yt|y1:t−1)

1: Resample indices apt according to weights πp
′

t

2: Set x̃
(t−1),p
1:t = x

(t−1),apt
1:t

3: Move samples x
(t),p
1:t ∼ K(x

(t),p
1:t |x̃

(t−1),p
1:t )

4: Propagate samples x
(t),p
t+1 ∼ q(x

(t),p
t+1 |x

(t),p
1:t )

5: Reweight samples w(x
(t),p
1:t+1) =

P (x
(t),p
1:t+1,y1:t+1)

P (x
(t),p
1:t ,y1:t)q(x

(t),p
t+1 |x

(t),p
1:t )

=
P (yt+1|x(t),pt+1 )P (x

(t),p
t+1 |x

(t),p
t )

q(x
(t),p
t+1 |x

(t),p
1:t )

6: Set πpt+1 =
w(x

(t),p
1:t+1)∑

l w(x
(t),l
1:t+1)

7: Estimate P̂ (yt|y1:t−1) = 1
N

∑
pw(x

(t),p
1:t+1)

Proof. The following proof is in the spirit of Pitt et al. [2010] with modifications made appropriately

for Resample-Move. Note that although there are 3 rather long sequences of equations, each of

them uses nearly the same logic and is only given for completeness of the argument. After each

sequence of equations are the logical steps performed between each line. In addition to the variables

already defined, let

• At = {(x(t−1),p
1:t , πpt )} be the particles emitted at time t.

• g(x̃
(t−2),p
1:t−1 ) = 1

N

∑N
p=1 π

p
t δ(x̃

(t−2),p
1:t−1 = x

(t−2),p
1:t−1 ) be the distribution from which x̃

(t−2),p
1:t−1 is drawn.
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• I(x
(t−2)
1:t−1) =

 1 t ≥ T∫
K(x

(t−1)
1:t−1|x

(t−2)
1:t−1)P (x

(t−1)
t |x(t−1)

1:t−1)P (yt|x(t−1)
1:t )I(x

(t−1)
1:t )dx

(t−1)
1:t else

,

be an intermediate integral used to make a concise, recursive form for the following statements

without any particular intuitive meaning

We begin by forming a base case at time T ,

E
[
P̂ (yT |y1:T−1)|AT−1

]
(A.1)

=E

 1

N

N∑
p=1

w(x
(T−1),p
1:T )|AT−1

 (A.2)

=
1

N

N∑
p=1

∫
g(x̃

(T−2),p
1:T−1 )︸ ︷︷ ︸

resampling

K(x
(T−1),p
1:T−1 |x̃

(T−2),p
1:T−1 )︸ ︷︷ ︸

moving

q(x
(T−1),p
T |x(T−1),p

1:T−1 )︸ ︷︷ ︸
propagating

w(x
(T−1),p
1:T )︸ ︷︷ ︸

reweighting

dx
(T−1),p
1:T dx̃

(T−2),p
1:T−1

(A.3)

=
N∑
p=1

πpT−1

∫
K(x

(T−1)
1:T−1|x

(T−2),p
1:T−1 )q(x

(T−1)
T |x(T−1)

1:T−1)w(x
(T−1)
1:T )dx

(T−1)
1:T (A.4)

=
N∑
p=1

πpT−1

∫
K(x

(T−1)
1:T−1|x

(T−2),p
1:T−1 )q(x

(T−1)
T |x(T−1)

1:T−1)
P (yT |x(T−1)

1:T )P (x
(T−1)
T |x(T−1)

1:T−1)

q(x
(T−1)
T |x(T−1)

1:T−1)
dx

(T−1)
1:T (A.5)

=
N∑
p=1

πpT−1

∫
K(x

(T−1)
1:T−1|x

(T−2),p
1:T−1 )P (yT |x(T−1)

1:T )P (x
(T−1)
T |x(T−1)

1:T−1)dx
(T−1)
1:T (A.6)

=

N∑
p=1

πpT−1I(x
(T−2),p
1:T−1 ) (A.7)

(A.8)

where we use,

1. Definition of P̂ (yT |y1:T−1)

2. Integral over all intermediate variables

3. Definition of g(x̃
(T−2),p
1:T−1 ) in terms of δs and the fact that we can pull out 1

N

∑N
p=1 and notice

that all terms in the sum have the same value, thus we can remove it entirely. We thus relabel

x̃
(T−2),p
1:T−1 with x

(T−2),p
1:T−1

4. Definition of w(x
(T−1)
1:T )
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5. Cancelling out q(x
(T−1)
T |x(T−1)

1:T−1)

6. I(x
(T−2),p
1:T−1 ) =

∫
K(x

(T−1)
1:T−1|x

(T−2),p
1:T−1 )P (yT |x(T−1)

1:T )P (x
(T−1)
T |x(T−1)

1:T−1)dx
(T−1)
1:T

Next, we perform a recursive step resulting in the same form 1 step backwards in time,

=E
[
E
[
P̂ (yt|y1:t−1)|At−1

]
P̂ (yt−1|y1:t−2)|At−2

]
(A.1)

=E

 N∑
p=1

πpt−1I(x
(t−2),p
1:t−1 )

 1

N

N∑
p=1

w(x
(t−2),p
1:t−1 )

 |At−2

 (A.2)

=E

 N∑
p=1

w(x
(t−2),p
1:t−1 )∑

l w(x
(t−2),l
1:t−1 )

I(x
(t−2),p
1:t−1 )

 1

N

N∑
p=1

w(x
(t−2),p
1:t−1 )

 |At−2

 (A.3)

=E

 1

N

N∑
p=1

w(x
(t−2),p
1:t−1 )I(x

(t−2),p
1:t−1 )|At−2

 (A.4)

=
1

N

N∑
p=1

∫
g(x̃

(t−3),p
1:t−2 )︸ ︷︷ ︸

resampling

K(x
(t−2),p
1:t−2 |x̃

(t−3),p
1:t−2 )︸ ︷︷ ︸

moving

q(x
(t−2),p
t−1 |x(t−2),p

1:t−2 )︸ ︷︷ ︸
propagating

w(x
(t−2),p
1:t−1 )︸ ︷︷ ︸

reweighting

I(x
(t−2),p
1:t−1 )dx

(t−2),p
1:t−1 dx̃

(t−3),p
1:t−2

(A.5)

=
N∑
p=1

πpt−2

∫
K(x

(t−2)
1:t−2|x

(t−3),p
1:t−2 )q(x

(t−2)
t−1 |x

(t−2)
1:t−2)w(x

(t−2)
1:t−1)I(x

(t−2)
1:t−1)dx

(t−2)
1:t−1 (A.6)

=

N∑
p=1

πpt−2

∫
K(x

(t−2)
1:t−2|x

(t−3),p
1:t−2 )q(x

(t−2)
t−1 |x

(t−2)
1:t−2)

P (yt−1|x(t−2)
1:t−1)P (x

(t−2)
t−1 |x

(t−2)
1:t−2)

q(x
(t−2)
t−1 |x

(t−2)
1:t−2)

I(x
(t−2)
1:t−1)dx

(t−2)
1:t−1

(A.7)

=

N∑
p=1

πpt−2

∫
K(x

(t−2)
1:t−2|x

(t−3),p
1:t−2 )P (yt−1|x(t−2)

1:t−1)P (x
(t−2)
t−1 |x

(t−2)
1:t−2)I(x

(t−2)
1:t−1)dx

(t−2)
1:t−1 (A.8)

=

N∑
p=1

πpt−2I(x
(t−3),p
1:t−2 ) (A.9)

where we used,

1. The previous result and the definition of P̂ (yt−1|y1:t−2)

2. The definition of πpt−1

3. Canceling out
∑

l w(x
(t−2),l
1:t−1 )

4. Integral over all intermediate variables
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5. Definition of g(x̃
(t−3),p
1:t−2 ) in terms of δs and the fact that we can pull out 1

N

∑N
p=1 and notice

that all terms in the sum have the same value, thus we can remove it entirely.

6. Definition of w(x
(t−2)
1:t−1)

7. Cancelling out q(x
(t−2)
t−1 |x

(t−2)
1:t−2)

8. I(x
(t−3),p
1:t−2 ) =

∫
K(x

(t−2)
1:t−2|x

(t−3),p
1:t−2 )P (yt−1|x(t−2)

1:t−1)P (x
(t−2)
t−1 |x

(t−2)
1:t−2)I(x

(t−2)
1:t−1)dx

(t−2)
1:t−1

We assume the reader can infer the full recursion going backwards in time. Finally, for t = 1

E[E[P̂ (y2:t|y1)|A1]P̂ (y1)] (A.1)

=E

 N∑
p=1

πp1I(x
(0),p
1 )

 1

N

N∑
p=1

w(x
(0),p
1 )

 (A.2)

=E

 N∑
p=1

w(x
(0),p
1 )∑

l w(x
(0),l
1 )

I(x
(0),p
1 )

 1

N

N∑
p=1

w(x
(0),p
1 )

 (A.3)

=E

 1

N

N∑
p=1

w(x
(0),p
1 )I(x

(0),p
1 )

 (A.4)

=
1

N

N∑
p=1

∫
q(x

(0),p
1 )︸ ︷︷ ︸

propagating

w(x
(0),p
1 )︸ ︷︷ ︸

reweighting

I(x
(0),p
1 )dx

(0),p
1 (A.5)

=

∫
q(x

(0)
1 )

P (y1|x(0)
1 )P (x

(0)
1 )

q(x
(0)
1 )

I(x
(0)
1 )dx

(0)
1 (A.6)

=

∫
P (y1, x

(0)
1 )I(x

(0)
1 )dx

(0)
1 (A.7)

=

∫
P (y1)P (x

(0)
1 |y1)

(∫
K(x

(1)
1 |x

(0)
1 )P (y2|x(1)

1:2)P (x
(1)
2 |x

(1)
1 )I(x

(1)
1:2)dx

(1)
1:2

)
dx

(0)
1 (A.8)

=

∫ (∫
P (x

(0)
1 |y1)K(x

(1)
1 |x

(0)
1 )dx

(0)
1

)
P (y1)P (y2|x(1)

1:2)P (x
(1)
2 |x

(1)
1 )I(x

(1)
1:2)dx

(1)
1:2 (A.9)

=

∫
P (x

(1)
1 |y1)P (y1)P (y2|x(1)

1:2)P (x
(1)
2 |x

(1)
1 )I(x

(1)
1:2)dx

(1)
1:2 (A.10)

=

∫
P (x

(1)
1:2, y1:2)I(x

(1)
1:2)dx

(1)
1:2 (A.11)

... (A.12)

=

∫
P (x

(t−1)
1:t , y1:t)dx

(t−1)
1:t (A.13)

=P (y1:t) (A.14)
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Where we use,

1. The previous result and the definition of P̂ (y1)

2. The definition of πp1

3. Canceling out
∑

l w(x
(0),l
1 )

4. Integral over all intermediate variables

5. Definition of w(x
(0)
1 )

6. Cancelling out q(x
(0)
1 ) and using P (y1|x(0)

1 )P (x
(0)
1 ) = P (x

(0)
1 , y1)

7. The definition of I(x0
1) =

∫
K(x

(1)
1 |x

(0)
1 )P (y2|x(1)

1:2)P (x
(1)
2 |x

(1)
1 )I(x

(1)
2 )dx

(1)
1:2 and P (x

(0)
1 , y1) =

P (x
(0)
1 |y1)P (y1)

8. Regrouping terms

9. Detailed balance for K: K(x
(1)
1 |x

(0)
1 )P (x

(0)
1 |y1) = K(x

(0)
1 |x

(1)
1 )P (x

(1)
1 |y1)

10. P (x
(1)
1:2, y1:2) = P (x

(1)
1 |y1)P (y1)P (y2|x(1)

1:2)P (x
(1)
2 |x

(1)
1 )

11. repeating the same logic

12. Integrating out x
(t−1)
1:t

Thus our goal is proven. Finally, it is important to note that nothing special in the above proof

relies on K targeting P (x1:t|y1:t) starting at time 1. A quick look affirms that K may only target

P (xt−L:T |y1:T , xt−L−1) and the theorem will still hold. This allows one to design K such that only

the final portion of particle x
(t−1),p
1:t need be stored in memory at any given time.

A.2 Particle MCMC Data Association targets the true posterior

In Andrieu et al. [2010], it is shown that we may replace P (y1:T |θ) with its approximation in

the Metropolis-Hastings acceptance ratio and still maintain target distribution P (x1:T , θ|y1:T ). We
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reuse the notation from the previous section with the exception of θ which denotes the time-invariant

parameters of the model. In the sequel, we show that we may use a Resample-Move Particle Filter

and maintain the same result. Suppose we use Algorithm 14 to generate samples from the outer

Particle MCMC loop (distinct from the inner MCMC loop used within the Resample-Move Particle

Filter). We aim to prove the following,

Theorem 4. Particle MCMC with Resample Move is a normal Metropolis Hastings algorithm over

all variables generated by the Resample Move Particle Filter with a target distribution marginalizing

out to P (θ, x1:T |y1:T ).

Algorithm 14 Single Iteration of Particle MCMC

Input: Ẑi = P̂ (y1:t|θi) and (x1:T , θ)i
Output: Ẑi+1 = P̂ (y1:t|θi+1) and (x1:T , θ)i+1 such that (x1:T , θ)1, (x1:T , θ)2, . . . is distributed ap-

proximately according to P (x1:T , θ|y1:T )
1: Sample θ′ ∼ q(θ′|θ)
2: Run a Resample-Move Particle Filter to calculate Ẑ ′ = P̂ (y1:T |θ), then sample 1 index K

according to the final weights generated, πpT
3: Set x′1:T = xK1:T

4: Set (Ẑ, x1:T , θ)i+1 = (Ẑ ′, x′1:T , θ
′) with probability min(1, α) where α = P̂ (y1:T |θ′)P (θ′)q(θi|θ′)

P̂ (y1:T |θi)P (θ)q(θ′|θi)
, else

(Ẑ, x1:T , θ)i

Proof. Before we begin, let us define the following:

We will prove a (notationally) simpler case where θ is assumed known and fixed, and we only

wish to target P (x1:T |y1:T ). While this isn’t of much interest on its own, its intuition and proof are

almost identical to the full Particle MCMC case and will serve as a basis for discussion.

Algorithm 15 Particle Independent Metropolis Hastings with Resample-Move

Input: Current MCMC state (x1:T , Ẑ)i
Output: New MCMC state (x1:T , Ẑ)i+1 such that (x1:T , Ẑ)1, (x1:T , Ẑ)2, . . . approximate sampled

from P (x1:T |y1:T )
1: Run a Resample-Move Particle Filter to calculate Ẑ ′ = P̂ (y1:t), then sample K ∼M(~πT )
2: Set x′1:T = xK1:T

3: Calculate acceptance ratio α = min
(
Ẑ′

Ẑi
, 1
)

4: Set (x1:T , Ẑ)i+1 = (x′1:T , Ẑ
′) with probability α else keep (x1:T , Ẑ)i otherwise

Consider Algorithm 15. We will show that it is a normal MCMC chain with stationary distri-

bution,
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Figure A.2: The history of a single particle in a Particle Filter. Arrows denote parents of particles
from the previous time step.

L(x
(t−1)
1:t |x

(t)
1:t) The ‘reverse’ of kernel K defined in the previous section. Defined to be,

L(x
(t−1)
1:t |x

(t)
1:t) = K(x

(t)
1:t|x

(t−1)
1:t )

P (x
(t−1)
1:t |y1:t)

P (x
(t)
1:t|y1:t)

(A.15)

bpt Suppose we traced the ‘history’ of indices of particle p at time T through
the particle. Then bpt is the index of that particle at time t. Refer to Figure
A.2.

M(apt |~πt) The probability of drawing index apt from a Multinomial distribution with
P (apt = j) = πjt

ψ The likelihood of the whole particle filtering process, including propagating,
resampling, and moving. Given by,

ψ(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1) = K∏

p=1

q(x
(0),p
1 )

 T∏
t=2

N∏
p=1

M(apt−1|~πt−1)︸ ︷︷ ︸
resampling

×

K(x
(t−1),p
1:t−1 |x

(t−2),apt−1

1:t−1 )︸ ︷︷ ︸
moving

q(x
(t−1),p
t |x(t−1),p

1:t−1 )︸ ︷︷ ︸
propagating

~x
(t−1)
1:t ,~at, ~πt The vector of all particles, resample indices, and normalized weights at time

t. See Table A.1.

Table A.2: Notation used in Particle MCMC proof
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Π(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~aT−1,K) (A.16)

=

(
P (x

(T−1),K
1:T |y1:T )

NT

)
︸ ︷︷ ︸

actual goal



particle filter︷ ︸︸ ︷
ψ(~x

(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~aT−1)

doesn’t affect actual goal︷ ︸︸ ︷
T−1∏
t=1

L(x
(t−1),bKt−1

1:t |x(t),bKt
1:t )

q(x
(0),bK1
1 )

T∏
t=2

π
bKt−1

t−1 K(x
(t−1),bKt
1:t−1 |x(t−2),bKt−1

1:t−1 )q(x
(t−1),bKt
t |x(t−1),bKt

1:t−1 )︸ ︷︷ ︸
particle filter history for x

(T−1),K
1:T


(A.17)

using the following proposal distribution,

q(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1,K) = ψ(~x

(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1)︸ ︷︷ ︸

particle filter

πKT︸︷︷︸
choosing K

(A.18)

The most important thing to notice is that the right hand side of the target distribution

is independent of the full history of x
(T−1),K
1:T , and can thus be integrated away leaving only

the left hand side. Algorithmically, this means simply ignoring their value during MCMC. This is

the key reason the algorithm works.

To make things notationally simpler, let’s relabel the following

L(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T ) =

T−1∏
t=1

L(x
(t−1),bKt−1

1:t |x(t),bKt
1:t ) (A.19)

q(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T ) =q(x

(0),bK1
1 )

T∏
t=2

K(x
(t−1),bKt
1:t−1 |x(t−2),bKt−1

1:t−1 )q(x
(t−1),bKt
t |x(t−1),bKt

1:t−1 ) (A.20)

Z =P (y1:T ) (A.21)

Ẑ =P̂ (y1:T ) =

T∏
t=1

P̂ (yt|y1:t−1) =

T∏
t=1

 1

N

N∑
p=1

w(x
(t−1),p
1:t )

 (A.22)

Let’s consider the acceptance ratio Ẑ′

Ẑi
. We will show that,

Ẑ

Z
=

Π(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~aT−1,K)

q(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1,K)

(A.23)

Assuming this is indeed the case, we see that
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Ẑ

Ẑi
=
Ẑ/Z

Ẑi/Z
=

Π′(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~aT−1,K)qi(~x

(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1,K)

Πi(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~aT−1,K)q′(~x

(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1,K)

(A.24)

Here, Π′ denotes (for lack of better notation) the density of the target distribution with respect

to all random variables sampled in calculating Ẑ ′, q′ the corresponding proposal, and similarly for

Πi and qi. If this holds true, we do indeed have an MCMC chain with the desired target distribution

and an independent proposal distribution.

Π(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~aT−1,K)

q(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1,K)

(A.1)

=

(
P (x

(t−1),K
1:T |y1:T )

NT

)ψ(~x
(0)
1 , . . . , ~x

(T−1)
1:T ,~a1, . . .~aT−1)L(x

(0),bK1
1 , . . . , x

(T−1),bKT
1:T )

q(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T )

∏T−1
t=1 π

bKt
t

 (A.2)

× 1

ψ(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1)π

bKT
T

(A.3)

=

(
P (x

(t−1),K
1:T |y1:T )

NT

) L(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T )

q(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T )

∏T
t=1 π

bKt
t

 (A.4)

=

(
P (x

(t−1),K
1:T |y1:T )

NT

) L(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T )

q(x
(0),bK1
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(
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1
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1
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=

(
P (x

(t−1),K
1:T |y1:T )

1

) L(x
(0),bK1
1 , . . . , x

(T−1),bKT
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t=1w(x
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=

(
P (x

(t−1),K
1:T |y1:T )

1

) L(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T )Ẑ

q(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T )

∏T
t=1

P (x
(t−1),bKt
1:t ,y1:t)

P (x
(t−1),bKt
1:t−1 ,y1:t−1)q(x

(t−1),bKt
t |x

(t−1),bKt
1:t−1 )

 (A.8)

=

(
P (x

(t−1),K
1:T |y1:T )

1

) L(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T )Ẑ(∏T−1

t=1 K(x
(t),bKt+1

1:t |x(t−1),bKt
1:t )

)(∏T
t=1

P (x
(t−1),bKt
1:t ,y1:t)

P (x
(t−1),bKt
1:t−1 ,y1:t−1)

)
 (A.9)
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=

 P (x
(t−1),K
1:T |y1:T )

P (x
(T−1),bKT
1:T , y1:T )


 L(x

(0),bK1
1 , . . . , x

(T−1),bKT
1:T )Ẑ(∏T−1

t=1 K(x
(t),bKt+1

1:t |x(t−1),bKt
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t=1

P (x
(t−1),bKt
1:t ,y1:t)

P (x
(t),bKt+1
1:t ,y1:t)
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 (A.10)

=

(
Ẑ

Z

) L(x
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(T−1),bKT
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=

(
Ẑ

Z

)(∏T−1
t=1 L(x
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=
Ẑ
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where we have used

1. The definition of Π(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~aT−1,K) and q(~x

(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1,K)

2. Canceling out ψ(~x
(0)
1 , ~x

(1)
1:2, . . . , ~x

(T−1)
1:T ,~a1, . . .~at−1) and pushing π

bKT
T into

∏T−1
t=1 π

bKt
t .

3. The definition of π
bKt
t

4. Reorganizing
∑

l w(x
(t−1),l
1:t and 1

NT

5. The definition of Ẑ

6. The definition of w(x
(t−1),bKt
1:t )

7. The definition of q(x
(0),bK1
1 , . . . , x

(T−1),bKT
1:T ) and cancelling out all partcile filter proposal distri-

butions q(x
(t−1),bKt
t |x(t−1),bKt

1:t−1 )

8. Reorganizing
∏T
t=1

P (x
(t−1),bKt
1:t ,y1:t)

P (x
(t−1),bKt
1:t−1 ,y1:t−1)

9. The definition of Z and merging the two ΠT−1
t=1

10. The definition of L(x
(t−1),bKt
1:t |x(t),bKt+1

1:t )

Thus we have established that Algorithm 15 is a proper MCMC algorithm with independent

proposals and a target distribution that marginalizes down to P (x1:T |y1:T ).
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Let us now consider our original goal of correctness for Algorithm 7. Looking at Ẑ′

Zi
in terms of

Π′,Πi, q
′, qi we see that the only change would be a multiplication with P (θ′)q(θi|θ′)

P (θi)q(θ′|θi) and a dependence

on θ′ (θi respectively) when sampling from ψ. As the acceptance ratio is changed to Ẑ′P (θ′)q(θi|θ′)
ẐiP (θi)q(θ′|θi)

,

we need only add a notational dependence of θ to the above proof to achieve the exact same result.
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