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A Constraint-Aware Motion Planning Algorithm
for Robotic Folding of Clothes

Karthik Lakshmanan, Apoorva Sachdev, Ziang Xie, Dmitry Berenson, Ken
Goldberg, and Pieter Abbeel

1 Motivation, Problem Statement, Related Work

Robotic manipulation of 2D deformable objects is a difficult problem largely be-
cause such objects typically have infinite-dimensional configuration spaces and are
too computationally expensive to simulate in the inner-loop of a motion planner.

The problem we address is as follows: Given a robot model, the shape of a piece
of cloth in a spread-out configuration on a horizontal table, and a final folded con-
figuration specified by a sequence of g-folds, output a sequence of robot motions
that achieve the final folded configuration or report that none exists.

The state-of-the-art approach is g-folding [21]. At the core of this approach is
the definition of a cloth model that allows reasoning about the geometry rather than
the physics of the cloth in relevant parts of the state space. Given the geometry of
the cloth, their algorithm computes how many grippers are needed and prescribes
motions for these grippers to achieve the final configuration, specified as a sequence
of g-folds—folds that can be achieved while staying in the subset of the state space
to which their geometric model applies. G-folding, however, has severe practical
limitations: due to robot and environmental constraints, the gripper motions pro-
duced by g-folding are often infeasible. When that happens, the top-down approach
followed by g-folding fails.

Our work builds on g-folding [21], but does account for kinematic restrictions
posed by real robots. Our work also draws from the work of Bell and Balkcom [4, 5],
which deals with computing the grasp points needed to immobilize a polygonal non-
stretchable piece of cloth. Relevant work in cloth folding includes dynamic towel
folding [1], cloth perception [18], and strategies to bring the cloth into a spread-out
configuration where folds can be applied [17, 10, 6]. Our work is also related to
work in motion planning that searches over primitives to construct robot trajectories
[12, 7, 16, 20, 9, 19, 14]. Other relevant work has been done in physical simulation
of cloth [3, 8, 11], origami folding [2], carton folding [15, 11], and metal bending
[13], which use similar material models to the one presented here.

2 Technical Approach

We have developed a motion planning approach that plans directly at the level of
robotic primitives rather than the gripper motions used in [21]. Given a sequence of
g-folds that take the cloth from the initial to the final configuration, our approach de-
termines whether a sequence of motion primitives exists that results in the success-
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ful execution of all specified g-folds. If so, the algorithm outputs the robot motion
which brings the cloth to the final configuration.

Our approach is based on a search space formulation which only allows actions
the robot can execute from the current robot and clothing configuration. To restrict
the (otherwise unmanageably large) search space we define a class of motion prim-
itives and search over sequences of these primitives to perform the required folds.
Our class of primitives consists of all motions that begin and end with the cloth in a
g-state — a configuration of the cloth where all parts of the cloth are either horizon-
tal or vertical. This is a broader class of motion than was allowed in [21] because
the intermediate states of the cloth during execution of primitives are unrestricted.

With this search space formulation in place, we can associate costs with each g-
primitive and search for optimal solutions. In our experiments the cost we associated
with each g-primitive is the time it takes to execute, which is readily computed
from the length of the motion performed by the robot. This cost is specific to each
instantiation of a g-primitive (rather than a single fixed cost being associated with,
for instance, a g-fold). Hence not only does our approach allow us to find solutions
in cases where g-folding would simply fail, it also enables finding better (i.e., time-
optimal) solutions.

We use a search-based procedure to find a sequence of folding primitives that
results in the successful completion of all the requested g-folds, if possible. Our
planning algorithm is comprised of two components: (1) The creation of a Fold-
DAG and (2) A search over motion primitives. We use a directed acyclic graph
(DAG), which we call the Fold-DAG, to capture dependencies between the folds
specifed in a folding sequence, i.e. which g-folds need to be completed before a
particular g-fold can be performed, this allows us the freedom to sequence folds
differently from the sequence specified by the user and potentialy fold the article
faster than the input sequence allows.

Given vertices of the cloth, the robot model, and the Fold-DAG we can compute a
time-optimal motion sequence of primitives for the robot to execute in order to reach
the desired final configuration using the A* search algorithm. For the purposes of
A*, we define a goal state as a state which has no g-folds remaining in the DAG.
For a given state, we generate the successors by applying all the primitives in our
set of primitives. If a given primitive is infeasible (due to, for instance, reachability
contraints), it does not generate a successor. Since we want the search algorithm
to return the plan of least execution time, the path-cost to reach a state from the
starting state is a measure of the time taken by the robot to perform all primitives
that constitute the path. Our A* heuristic uses a relaxation of the problem which
ignores robot constraints and approximates the time taken for the robot to perform
all remaining folds in the DAG at the given state. This is computed as the sum of
the time taken for the grippers to traverse the straight line distance between grip
locations and endpoints for each fold assuming constant arm speed. This straight
line approximation is an underestimate of time needed to execute the fold trajectory
with the robot, making the heuristic admissible.

In order to make the search process computationally feasible, we must ensure
that the search space we consider is not unmanagably large. Allowing any arbitrary
motion to be considered would cover the state space, but it would also produce
an unmanagable search space and would require simulations of the cloth dynam-
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ics (which are computationally expensive and sometimes inaccurate). We thus re-
strict the search to a class of motion primitives we call g-primitives. Intuitively, a
g-primitive is any motion primitive that both starts and ends with the system in a g-
state. The primitives used in our experiments are of three types: performing a g-fold
(including folds that allow the article to hang from the table), dragging the article
along the table, and base motion.

3 Planning Results

We used a Willow Garage PR2 robotic platform [15] and performed experiments
both in simulation and on the physical robot. We experimented with various clothing
articles like towels, t-shirts, long-sleeved shirts and pants. The folding sequence is
given as input to the algorithm. To evaluate the efficiency of our planning approach
we ran tests on several articles in simulation and computed the time necessary to
find a solution and the time taken by different components of the algorithm. An
example input fold sequence, Fold-DAG, and plan are shown in Figure 1.

Fig. 1: T-shirt input folds and solution. Upper left: User input folds. Upper right: Automatically-
generated Fold-DAG. Bottom: Plan generated by A*.
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Article # Folds L C N Expanded N Explored T IK time IK Calls Overhead
Tshirt 5 7 61.2s 101 614 68.0s 23.2s 3512 0.03s
Jeans 2 4 33.9s 27 211 17.8s 6.4s 776 0.015s
Shirt 7 9 76.8s 210 1149 152.9s 46.0s 5911 0.067s
Tie 3 4 26.8s 21 217 31.2s 4.7s 593 0.005s
Scarf 2 3 25.2s 12 128 10.5s 4.4s 593 0.03s
Vest 2 3 30.1s 23 142 9.2s 2.6s 383 0.006s
Skirt 3 5 47.7s 380 2715 97.47s 89.8s 10087 0.15s
Big Towel 3 6 46.3s 253 1983 127.0s 61.8s 6675 0.09s
Hand Towel 3 3 25.8s 13 105 8.5s 3.7s 400 0.003s

Table 1: Simulation Results. L is the number of primitives in the solution path, C is the cost of
the path in seconds. N expanded/explored is the number of nodes expanded/explored. T is the total
search time of algorithm.

We used the ikfast module provided by OpenRAVE in order to determine if the
robot can reach a given point. In order to make the generated plans robust to robot
execution error (for example, dragging by less than the desired amount), we intro-
duce the concept of “IK comfort”. We only declare a point reachable if both the
point and four of points on the circumference of a circle of a set radius, centered
at the given point are reachable. Also, if the gripper fails to grab the cloth at a par-
ticular point, it tries to grab other points that lie within the comfort radius of the
point before failing. For our trials, we found that a comfort radius of 3cm resulted
in robust execution.

Article # Folds L C N Expanded N Explored T IK time IK Calls Overhead
Tshirt 5 7 61.2s 101 614 82.5s 26.1s 3482 0.04s
Jeans 2 4 33.9s 27 206 40.5s 29.4s 2934 0.007s
Shirt 7 9 76.8s 209 1133 320.9s 217.1s 23214 0.08s
Tie 3 4 26.8s 21 217 38.8s 24.5s 2582 0.014s
Scarf 2 3 25.2s 12 128 28.1s 22.5s 2344 0.004s
Vest 2 3 30.1s 23 139 9.2s 21.4s 1915 0.006s
Skirt 3 6 43.86s 287 2167 336.5s 264.6s 31894 0.1235s
Big Towel 3 6 46.8s 251 1834 276.6s 198.1s 21447 0.1159s

Table 2: Simulation Results with IK comfort of 3 cm. See symbol definitions in Table 1.

4 Experimental Results

We used a rectangular table with a soft working surface, so that the relatively thick
grippers can easily get underneath the cloth. At the beginning, the robot can always
see the entire clothing article in a known, fully spread-out configuration.

For several of the articles, we executed the generated plans multiple times on
the robot. Table 3 shows the results of our runs. Several snapshots from folding a
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Fig. 2: T-shirt, towel and skirt folding sequences executed by PR2.

Clothing item Success Rate Average Execution Time
Tshirt 3/4 216.5s
Large towel 2/4 102s
Hand towel 4/4 75s
Jeans 4/5 108.5s
Skirt 5/5 82.5s

Table 3: Success rate and execution time of physical robot execution.

T-shirt, towel, and skirt are shown in Figure 2. Videos of the executions are posted
at http://rll.berkeley.edu/iser2012-folding.

Our current system does not use visual feedback during execution. In order to
close the loop, we simulate visual feedback using a human in the loop system. At
the beginning of each primitive, the GUI highlights grip points on the polygon. A
human then clicks the corresponding points in the live stereo camera feed. The end
points are then translated by the error between the expected and the clicked grip
points, and the gripper trajectory is recomputed using the new start and end points.

5 Main Experimental Insights

As illustrated by our success rates on the various clothing articles, our method shows
a high level of reliability on real cloth, even if it does not perfectly conform to our
assumptions. For example, jeans and large towels clearly violate the zero thickness
assumption, while the frills and pleats of the skirt are not taken into consideration by
our cloth model. However, we are able to achieve high success rates on both these
articles.

Our failures typically arise from errors in robot execution, particularly base mo-
tion. If the base does not move by the desired amount, a grip point might become
unreachable. The introduction of IK comfort along with making the arms correct for
base motion undershoot during a drag greatly reduces the number of such failures.

Our experiments show that the planned execution times typically underestimate
the real execution times observed with the PR2. This is because the costs for each
primitive used in the planning phase are highly idealized. A large part of this dis-
crepancy can be attributed to the Move primitive. The 2D navigation package on
board the PR2 causes it to detect false obstacles at times. This results in the robot
stopping multiple times during the move. The planner also ignores certain other be-
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haviors of robot execution. For example, the PR2 may fail to grab the cloth on the
first attempt, and would need to move the gripper to regrasp the cloth. Additionally,
the planner assumes a constant velocity for base movement, while the robot actually
spends more time accelerating and decelerating than at its full speed.

In conclusion, we described a motion planning algorithm for robotic cloth fold-
ing, enabling us to avoid computationally expensive physics simulations while tak-
ing into account kinematic constraints. We presented examples of cloth manipula-
tion primitives that allow the robot to perform a set of user defined g-folds using
our simplified cloth model. Our search algorithm allowed the robot to choose a se-
quence of primitives to perform all given folds in the shortest possible time (given
the available primitives). At the core of our method is the consideration of real robot
limitations. Our experiments show that (a) many articles of clothing conform well
enough given the assumptions made in our model and (b) this approach allows our
robot to perform a wide variety of folds on articles of various sizes and shapes.
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