
Communication-Efficient Distributed Stochastic

Gradient Descent with Butterfly Mixing

Huasha Zhao
John F. Canny

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-96

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-96.html

May 11, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Communication-Efficient Distributed Stochastic Gradient
Descent with Butterfly Mixing

by Huasha Zhao

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, in partial satisfaction of the requirements for

the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John F. Canny

Research Advisor

(Date)

* * * * * * *

Professor Pieter Abbeel

Second Reader

(Date)

Communication-Efficient Distributed Stochastic Gradient Descent
with Butterfly Mixing

Huasha Zhao

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Research Adviser: Professor John F. Canny

May 11, 2012

Abstract

Stochastic gradient descent is a widely used method to find locally-optimal models in machine
learning and data mining. However, it is naturally a sequential algorithm, and parallelization
involves severe compromises because the cost of synchronizing across a cluster is much larger
than the time required to compute an optimal-sized gradient step. Here we explore butterfly
mixing, where gradient steps are interleaved with the k stages of a butterfly network on 2k nodes.
Udp based butterfly mix steps should be extremely fast and failure-tolerant, and convergence is
almost as fast as a full mix (AllReduce) on every step.

1 Introduction

We are entering the era of “big data”; exabytes of information are generated over the Internet on a
daily basis [15]. People leverage on machine learning and data mining algorithms to explore these
data and make sense of this explosive amount of information. As modern societies rely more and
more heavily on these interpreted information from big data sets to make operation decisions, such
as traffic optimization and advertisement placement, there is a pressing need to design efficient
learning algorithms which can understand large-scale data in a fast and accurate manner.

Stochastic gradient descent is a popular algorithm which is suitable for a variety of data-driven
learning tasks [8]. Stochastic gradient is simple, widely applicable and has proved to achieve rea-
sonably high performance on large-scale machine learning problems [3]. However, the scalability of
the algorithm is limited by its inherently sequential nature. The bottleneck of solving large-scale
learning problems with stochastic gradient, like many other sequential algorithms, is oftentimes
communication overhead instead of computation because synchronizations across machines are re-
quired before each learning step. A simple example illustrates the dilemma. At current commodity
computational capacity, it takes 1ms to process every 100kBytes of data which is a typical size
of optimal-sized gradient step. In contrast, the communication process in which gradients from
different machines are exchanged takes up to 40ms for a mere 4 node cluster in a recent cluster
implementation of MPI AllReduce [11].

Recognizing this problem, some prior works attempt to resolve this parallelization dilemma.
Zinkevich et al. [19] proposes a simple algorithm in which multiple gradient descents run in parallels
and their outputs are averaged in the end. However, the algorithm fails to reduce the variance of the

1

gradient estimation, and therefore the final minimizer, and has been shown that in many problems
there is no advantage to running this averaging method without communication [14]. Niu et al. [14]
consider a lock-free approach to parallelizing stochastic gradient descent, but their focus is on multi-
core settings instead of large clusters. MapReduce [5] has become very popular for distributed data
processing, and Chu et al. [4] describes a general framework to run machine learning algorithms
with this popular platform. Unfortunately, the MapReduce abstraction is ill-suited for iterative
algorithms which are commonly used to solve machine learning problems. Researchers have also
explored performance gain through developing new parallelization frameworks [18, 17, 13]; they
are aiming at creating a resource-efficient programming environment that is friendly to parallel
computing operations, and our system can be built on top of them.

More closely related to our work is that of Agarwal et al.[1] who generalizes MPI [9] AllReduce
to a more data friendly Hadoop-compatible AllReduce communication framework. AllReduce com-
putes the average of vectors sitting on each individual node and broadcast this average value with
the help of a tree structure on communication nodes. The abstraction of AllReduce is naturally
applicable to parallelize iterative optimization algorithms, and in general, any algorithms with the
form of statistical query [10] can fit into this framework. However, each AllReduce operation takes
up to 2k steps to reduce the vectors and distribute the final result for a cluster with 2k worker
nodes; the communication cost is unreasonably high and tends to dominate application execution
times.

In this paper, we design and build a new abstraction called butterfly mixing that enables effi-
cient parallelization of a variety of iterative learning algorithms in cluster settings. As a starting
point we evaluate our algorithm on stochastic gradient method. Butterfly mixing interleaves com-
munication with computation within a balanced butterfly reduce structure. Unlike AllReduce,
learning parameter update proceeds as long as local agreements on average gradient are reached.
As a result, communication cost is saved by a factor of 2k, while convergence performance are not
affected. That is to say, butterfly mixing remains all benefit of AllReduce, and at the same time,
significantly improve its communication efficiency.

The benefit of butterfly mixing comes from two sources: first, variance of gradient estimation
is significantly reduced by aggregating information before each update; second, local information
can be propagated to the whole network within a small number of steps because of our balanced
reduce structure, so that we can achieve the variance reduction through only local agreements at
minimal cost. It is also worth noting that butterfly mixing is not specifically designed for stochastic
gradient; it is applicable to any statistical query algorithms [10].

This paper is organized as follows. We begin with an overview of stochastic gradient methods
in Section 2. Then, in Section 3 we discuss the main algorithms and performance evaluations are
explained in Section 4. Finally, Section 5 concludes our work.

2 Training Models with Stochastic Gradient Descent

Stochastic gradient descent is a widely used method to find locally-optimal models in machine
learning and data mining. Consider the problem of minimizing a loss function L written as a sum
of differentiable functions Li : Rd �→ R,

L(w) =
1

n

n�

i=1

L
i(w;xi

, y
i), (1)

2

This formulation arises from a variety of machine learning tasks. In practical settings, w is a
d−dimensional weight vector to be estimated. There are in total n training examples, and xi is the
feature vector of the ith example with the same dimension d, and y

i is the label or value associated
with it. In most cases, the loss function L

i is homogeneous with respect to all examples.
Stochastic gradient can be used to minimize the loss function iteratively according to the for-

mula,

w(t+ 1) = w(t)− γ∇̂L(w(t)), (2)

where γ is a sufficiently small step size and w(t) is iterative value of w which we also call the
position of the system at time t; ∇̂L(w(t)) is the noisy estimation of the true gradient at the current
position.

The gradient is estimated by partial average of the loss function,

∇̂L(w(t)) =
1

m

k0+m−1�

i=k0

∇L
i(w;xi

, y
i) (3)

where k0 is a starting point which can be the index of the next unvisited data point. This update
algorithm is also called mini-batch algorithm, and m is called the batch size of the algorithm. The
larger m is, the more accurate gradient is estimated, and the more computation required by each
individual update. This is another motivation of using parallelization, because clusters of machines
can compute and aggregate the gradient collectively, so that the variance of the gradient step should
be significantly reduced.

In most cases, preconditioning is necessary to ensure the fast convergence of the gradient
method. The preconditioned stochastic gradient step takes the following form,

w(t+ 1) = w(t)− γH(t)∇̂L(w(t)), (4)

where H(t) is called preconditioner, which attempts to reduce the condition number of the
system and, as a result, to increase the convergence rate [16]. Inverse Hessian would be a desirable
preconditioner when dimension of the problem d is small, however, it can easily run into memory
issues for a typical “big data” problem with moderately large dimensions.

A simple preconditioner, called diagonal preconditioning or Jacobi preconditioning, whose di-
agonal entries are identical to those of full preconditioner and all the other entries zero, provides
similar convergence improvements [6]. Empirically, we use inverse feature frequencies as our diag-
onal preconditioner for the experiments of the paper.

2.1 Logistic Regression

Logistic regression model [8] is among the most successful classification algorithms, and is widely
used for predicting the outcome of a categorical variable. We discuss in detail how stochastic
gradient can be applied to solve logistic regression.

Logistic regression models the posterior probability of two classes via the inner product of weight
vector w and feature vector xi,

Pr(yi = 1|xi) =
e
wTxi

1 + ew
Txi (5)

Pr(yi = 0|xi) =
1

1 + ew
Txi . (6)

3

Loss function is defined as the negative log-likelihood, which can be written as,

L(w) =
1

n

n�

i=1

L
i(w;xi

, y
i) (7)

L
i(w;xi

, y
i) =− 1

n

n�

i=1

�
y
i logPr(yi = 1|xi) + (1− y

i) logPr(yi = 0|xi)
�

=
1

n

n�

i=1

�
−y

iwTxi + log(1 + e
wTxi

)
�

(8)

Finally, the gradient step to find optimal weight w in logistic regression model can be computed
according to Equation (3-4) and

∇L
i(w;xi

, y
i) = xi(yi − e

wTxi

1 + ew
Txi). (9)

3 Butterfly Mixing Algorithm

In this section, we present our butterfly mixing algorithm, and briefly discuss its convergence and
implementation concerns.

3.1 Proposed Algorithm

Our main algorithm consists of two components, i.e. butterfly reduce and asynchronous mixing of
stochastic gradient step updates. Butterfly reduce guarantees local gradient estimates are propa-
gated to the network in a balanced and efficient pattern, and asynchronous updates make sure each
mixing contains most up-to-date gradient information.

Butterfly Reduce

Let there be N = 2k nodes in the cluster. A simple protocol to distribute local gradient information
to the entire network is to first use a tree-based algorithm to compute the average in a single task,
and then broadcast the average to each individual node, as in Vowpal Wabbit [11] implementation
of AllReduce [1].

However, there also exists alternative algorithms in which execution time is faster. In butterfly
reduce, the tree algorithm can be modified to avoid additional broadcast steps to save communica-
tion. The idea is to perform multiple averages concurrently, with each average producing a value
in a different task [7]. The resulting butterfly communication structure is illustrated in Figure
1c. All N nodes execute the same average algorithm so that all N partial averages are in motion
simultaneously. After k steps, the average is replicated on every single node. As highlighted in
Figure 1c with N = 4 nodes, at t = 2 step, each node already contains gradient information from
all the other nodes.

4

(a) Sequential update (b) AllReduce (c) Butterfly mixing

Figure 1: Different parallelization schemes for N = 4 nodes; t represents iteration time. (a) updates
weight vector sequentially within single nodes, and averages weights from different nodes at the
end of the task; this scheme is not desirable because the final estimate has high variance. (b)
synchronizes weight vectors before performing any gradient descent; the synchronization process
is formed with the help of a tree structure in AllReduce to reduce latency. However, it suffers
from high communication cost (c) gets around the above limitations by mixing computation with
communication.

Asynchronous Mixing

Butterfly mixing interleaves the above average operation with iterative stochastic gradient updates.
Denote wk(t) as the weight vector available on node k at time t, and gk(t) the gradient evaluated
at the current position. We now formally present the model of asynchronous updates of weight
vector w. Let Skj be the set of times that weight vector is received by node j from node k. In our
algorithm, S is determined by butterfly reduction structure. For instance, Skk includes all time
ticks up to the end of the algorithm for all k ∈ {1, 2, . . . , N}, because each node “sends” gradient
update to its own at each iterative step. As another example, according to butterfly structure,
S
12 = {1, 3, 5, . . .} for N = 4, which is an arithmetic sequence with common difference k = 2. The

full reduce algorithm is presented in Algorithm 1.

Algorithm 1 Butterfly reduce algorithm that aggregate weight vectors in a balanced pattern

function ButterflyReduce(W, k, t,N)
i ← mod(t, logN)
j ← k + 2i−1

if j > 2i × �k−0.5
2 � then

j ← j − 2i

end if
return mean(wk

,wj)
end function

Butterfly mixing is initialized with zero weight at the beginning. At time t, each node updates
its position according to messages wj(t), {j|t ∈ S

ij} it receives, and incorporates new training
examples coming in to compute its current gradient and new position. Specifically, xk(t) is updated
according to the formula,

5

wk(t+ 1) =
1

2

�

{j|t∈Sij}

wj(t) + γ
k(t)gk(t+ 1), (10)

where set {j|t ∈ S
ij} is of cardinality 2 for all t, so that the expectation of stochastic process wk(t)

remains stable.

Algorithm 2 Distributed stochastic gradient descent with butterfly mixing

Require: Data split across N cluster nodes
w = 0, t = 0, H = inverse feature frequencies
repeat

for all nodes k parallel do
for j = 0 → � n

m� − 1 do
wk ← ButterflyReduce(W, k, t,N)
gk ← 1

m

�jm+m−1
i=jm ∇L

i(wk;xi
, y

i) according to Equation (3) and (9)

wk ← wk − γtHgk

t ← t+ 1
end for

end for
until p pass over data

We present detailed butterfly mixing in Algorithm 2, where W is an aggregation of wk
, ∀k ∈

{1, 2, . . . , N}. Notice that the distributed iterative update model does not guarantee the agreement
on the average of weight vector w across nodes at any time t. However, as we will show later, the
final average of wk does converge in a reasonably small number of iterations. An intuitive explana-
tion would be that butterfly reduce accelerates the convergence of wk(t) to a small neighborhood of
the optimal through efficient aggregation of gradient steps across the network, while timely update
of asynchronous mixing provides refined gradient direction by introducing new training examples
at each mixing, which further improves convergence rate.

Comparisons between different reduction and mixing schemes are illustrated in Figure 1. Se-
quential update provides the most resource-efficient option for parallelization of stochastic gradient
steps. However, this method is not desirable because it fails to reduce the variance of gradient esti-
mates and has no advantage over single node sequential algorithm in terms of convergence rate [14].
AllReduce synchronizes weight vectors before performing each gradient descent, and it suffers from
high reduce latency and communication cost, which lengthens the overall convergence time. Our
algorithm gets around the above limitation by mixing computation with communication creatively.

3.2 Theoretical Analysis

We briefly present the convergence analysis of our algorithm in this subsection. A full fledged
proof and analysis could be found in Sec. 7.8 of [2] or our future technical report. The proof
consists of two major components. We first find a single vector z(t) to keep track of all vectors
w1(t),w2(t), . . . ,wN (t), simultaneously and analyze its convergence; then we show that wk(t) is
actually converge to z(t) at a certain rate. The overall convergence performance is a mixture of
the above two.

6

Weight vector wk(t) is defined recursively in Equation (10). It will be useful for the analysis if
we explicitly expand wk(t) in terms of gradient estimates gj(t), ∀j ∈ {1, 2, . . . , N}, 0 < τ < t, that
is,

wk(t) =
t−1�

τ=1

N�

j=1

Φkj(t, τ)γj(τ)gj(τ). (11)

It turns out that the limit of coefficient scalar Φkj(t, τ), ∀k, j exists as t tends to infinity. And
there exist a constant A and a communication protocol dependent ρ ∈ (0, 1], such that,

|Φkj(t, τ)− Φj(τ)| ≤ Aρ
t−τ

, ∀t > τ > 0. (12)

It is not difficult to see that the more frequent the communication is, the smaller the ρ is. It is
also natural to define z(t) that summarizes all wk(t), ∀k ∈ {1, 2, . . . , N} using the limit of Φkj(t, τ),

z(t) =
t−1�

τ=1

N�

j=1

Φj(τ)γj(τ)gj(τ), (13)

z(t) can also be expressed in a recursive way to apply Lipschiz properties,

z(t+ 1) = z(t) +
N�

j=1

Φk(t)γj(t)gj(t), (14)

Under Lipschitz continuity assumptions on loss function L and some bounded gradient condi-
tions, we have

||z(t)−wk(t)||2 ≤ A

t−1�

τ=1

1

τ
ρ
t−τ

b(τ), (15)

L(z(t+ 1)) ≤ L(z(t))−1

t
G(t) + C

t�

τ=1

ρ
t−τ b

2(τ)

τ2
, (16)

where b(t) =
�N

k=1 ||gk(t)||2 and G(t) = −
�N

k=1Φ
k(t)||gk(t)||22, for t ≥ 1. This concludes the

convergence of the algorithm. And as we can see, both convergence depends on synchronization
protocol dependent rate ρ.

3.3 Implementation Issues

We propose to implement our butterfly mixing abstraction with udp datagram protocol. Udp
enjoys several key advantages such as low latency, light overhead and high flexibility. It is not a
reliable communication protocol in general, but this is not a big concern in our application settings.
Intra-rack communications are collision-free and packet loss can be detected by implementing some
simple parity check. More attractively, it is not even necessary to recover the missing packets
because occasional loss of weight vectors will not affect the overall performance of butterfly mixing.
This fault-tolerance feature of our algorithm further reduces the overall communication costs.

Our system should also be compatible with Hadoop, because of its widely adoption for dis-
tributed data processing tasks. In addition, by building butterfly mixing on top of Hadoop, we can
also take advantage of its speculative execution and job scheduling to further optimize our system.

7

4 Experiments

We evaluate the performance of our algorithm on Reuters RCV1 dataset [12]. The dataset consists
of a collection of approximately 800,000 news articles, each of which is assigned to one or more
categories. We are focusing on training binary classifier for CCAT (Commerce) category with
logistic regression model. The input of the classifier is an article bag-of-words feature vector with
tf-idf values, and the output is a binary variable indicating whether an individual article belongs
to CCAT or not. Articles are randomly shuffled and split into approximately 760,000 training
examples and 40,000 test examples. Training examples are further evenly portioned to N cluster
nodes.

4.1 Convergence

Experiments are performed on the above RCV1 dataset with N = 64 and k = 6. According to [6],
learning rates γ(t) are chosen to be inversely proportional to

√
t, where t is iteration time. We find

batch size m plays a conflicting role in determining overall convergence time. The smaller m is,
the fewer training examples are required to reach certain loss. However, it is also desirable to use
large m, so that fewer mixing/reduce steps are needed for the same amount of data usage for both
butterfly mixing and AllReduce.

The impact of batch size on convergence rate is illustrated in Figure 2. Cross validation loss is
plotted against total number of training examples visited across N = 64 nodes. Training examples
are reused after one pass through the data on individual node. Interestingly, we can observe the
saturation effect when batch size m reaches 1000: it takes approximately the same amount of data
to achieve loss = 4000 for m ≤ ms = 1000, while the convergence performance severely deteriorates
when m is beyond ms. Therefore, considering communication overhead, the optimal batch size of
gradient step should be m = ms. We use ms = 1000 in the following experiments in the paper.

Figure 2: Impact of batch size on convergence rate.

We compare three other algorithms with our butterfly mixing in terms of convergence rate and
communication cost. NoReduce is a sequential update algorithm running separately on distributed
cluster nodes; it requires no communication except a final average of weight vectors at the very end
of the algorithm. AllReduce synchronizes positions across all nodes before every gradient step. Pe-

8

(a) Convergence (b) Comm time taken at certain loss

Figure 3: Comparisons of convergence performance and communication cost.

riodic AllReduce performs weight synchronization every k steps, so that the number communication
step required is the same with butterfly mixing.

Convergence performance is presented in Figure 3a. Cross validation loss is compared across
different algorithms. Step sizes are tuned individually for each algorithm, so that each algorithm
performs its best and converges to the optimal. The horizontal dash line: loss = 3270 shows the
minimized loss that all algorithms converge at. We can clearly see from Figure 3a that our butterfly
mixing outperforms both NoReduce and Periodic AllReduce and the gap between AllReduce and
butterfly mixing becomes insignificant after one pass through the data. In this particular RCV1
task, NoReduce achieves loss = 3900 after 64 times the data required for AllReduce to converge,
and slowly moves to the optimal after that.

Figure 3b further illustrates the advantage of butterfly mixing. It shows the number of commu-
nication steps (y-axis) required to achieve certain loss (x-axis). AllReduce takes k communication
steps for a single gradient update, while both periodic AllReduce and butterfly mixing require only
one. x-axis is reversed because a smaller loss indicates better fitting of the model. Communication
steps for all algorithms are normalized by that of AllReduce, and logarithmized for better visual-
ization. As shown in Figure 3b, butterfly mixing always takes less time to achieve targeted loss,
which shows its superiority over the other two algorithms.

4.2 System Performance

Execution time per iteration should be determined by three main processes, i.e. file IO, network
communication and computation, as illustrated in Figure 4. The actual overall system performance
also closely depends on the number of iteration steps taken to achieve convergence. We compare
performance of our system with Hadoop/MapReduce [5] and Vowpal Wabbit [11], a recent cluster
based implementation of AllReduce.

File IO should be the bottleneck for Hadoop/MapReduce; it is widely known that its binary
SequenceFile IO is unbearably slow, and we benchmark the system to find that binary reading
throughput is as low as 1mB/sec. Another inefficiency is introduced by MapReduce abstraction
because of its unfriendly nature to iterative algorithms; the system has to restart after every

9

iteration, which requires additional overhead.
Communication overhead is further compared between Vowpal Wabbit and our system. We

benchmark communication performance with the unit of ms/100kB, where 100kB is approximately
the size of data used for a single gradient step with optimal batch size. The cost should consist of
driver overhead, switching latency and transmission delay. The last factor should be quite reliable
because bandwidth over an otherwise empty link should be predictable.

Figure 4: Performance breakdown. Execution time per update includes file IO, network communi-
cation and computation; overall execution time is multiples of number of gradient steps taken until
convergence.

We test communication time per iteration of Vowpal Wabbit on a mere 4 node cluster. Execution
times spent on communication are recorded for 800,000 iteration steps and are averaged to find the
per iteration network IO time. Performance of our system is estimated by measuring the end-to-end
response time between a pair of udp server and client; the payload is a data file with similar size
of the sparse weight vector. Computation throughputs are also projected for both system.

System File IO Network comm. Computation Convergence Bottleneck
Hadoop/MapReduce Slow - - Slow SequenceFile IO,

Hadoop overhead
VW/AllReduce Fast 40ms/100kB 1ms/100kB Moderate AllReduce comm.

cost and delay
Our system Fast 2ms/100kB 1ms/100kB Fast - expand table a

bit

Table 1: Comparisons of system performance

System performance and its breakdowns for all three systems mentioned above are summarized
in Table 1. As we can see, time spent on communication 40ms/100kB is significantly higher than
computation in Vowpal Wabbit. Our system strikes a better balance between communication and
computation, and enjoys superior overall performance in terms of convergence.

5 Conclusion

In this paper, we present a parallelized stochastic gradient algorithm with butterfly mixing, and
experiments show that its fast convergence and high resource-efficiency are desirable for large scale
parallelized implementation in cluster computing settings. Butterfly mixing is also suitable for

10

parallelization of many other iterative methods. We propose to further investigate butterfly mixing
through extensive tests on a real system which will be implemented with udp communication
protocol and compatible with Hadoop.

Acknowledgments

I would like to thank Prof. Abbeel for his insightful comments on this paper.

References

[1] A. Agarwal, O. Chapelle, M. Dudik, and J. Langford. A reliable effective terascale linear
learning system. Arxiv preprint arXiv:1110.4198, 2011.

[2] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation. 1989.

[3] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. Advances in neural infor-

mation processing systems, 20:161–168, 2008.

[4] C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun. Map-reduce
for machine learning on multicore. Advances in neural information processing systems, 19:281,
2007.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Commu-

nications of the ACM, 51(1):107–113, 2008.

[6] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2010.

[7] I. Foster. Designing and building parallel programs, volume 95. Addison-Wesley Reading, MA,
1995.

[8] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, second edition.
Springer Series in Statistics, 2009.

[9] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the

Message-Passing Interface, seconde édition. the MIT Press, 1999.

[10] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM

(JACM), 45(6):983–1006, 1998.

[11] J. Langford, L. Li, and A. Strehl. Vowpal wabbit online learning project. Technical report,
Technical report, http://hunch. net, 2007.

[12] D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1: A new benchmark collection for text
categorization research. The Journal of Machine Learning Research, 5:361–397, 2004.

[13] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J.M. Hellerstein. Graphlab:
A new parallel framework for machine learning. In Conference on Uncertainty in Artificial

Intelligence (UAI), Catalina Island, California, 2010.

11

[14] F. Niu, B. Recht, C. Ré, and S.J. Wright. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. Advances in Neural Information Processing Systems, 2011.

[15] Eric Schmidt. http://techcrunch.com/2010/08/04/schmidt-data. TechCrunch, 2010.

[16] J.R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
1994.

[17] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P.K. Gunda, and J. Currey. Dryadlinq:
A system for general-purpose distributed data-parallel computing using a high-level language.
In Proceedings of the 8th USENIX conference on Operating systems design and implementation,
pages 1–14. USENIX Association, 2008.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker,
and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. 2012.

[19] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent.
Advances in Neural Information Processing Systems, 23(23):1–9, 2010.

12

