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Abstract

Structured Codes in Information Theory: MIMO and Network Applications

by

Jiening Zhan

Doctor of Philosophy in Engineering-Electrical Engineering & Computer Sciences

University of California, Berkeley

Professor Michael Gastpar, Chair

Though random codes are shown to be optimal for point-to-point channels, codes with alge-
braic structure are found to be useful in many network scenarios. This thesis demonstrates
the role of structured codes in several network and MIMO settings. In MIMO channels,
structured codes can be used to improve receiver design. Traditional receiver architectures
decorrelate the mixed data streams and recover each of them individually. Although optimal
when the channel matrix is orthogonal, this can be highly sub-optimal when the channel is
near singular. To overcome this limitation, a new architecture that recovers linear combina-
tions of the data streams instead of the data streams individually is proposed. The proposed
integer-forcing receiver outperforms traditional linear architectures and achieves the optimal
diversity-multiplexing tradeoff. In network information theory, it has been shown that struc-
tured codes are useful for computation over multiple-access channels. This thesis considers
function computation across general relay networks and proposes a scheme that decouples
the physical and network layers. By using lattice codes in the physical layer and network
codes in the network layer, the proposed scheme achieves the optimal distortion to within a
constant factor. Finally, structured codes can be used to efficiently transmit channel state
information when global channel state information is absent in networks. It is shown that
sending a function of the channel state information is sufficient and can be much more
efficient than sending the full information.
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Chapter 1

Introduction

Classical information theory generally relied on random coding arguments to characterize
the fundamental limits of communication in systems. For example, the capacity achieving
codebook of the Additive-White-Noise-Gaussian (AWGN) channel can be constructed by
drawing points uniformly from the power constraint sphere. [1, Chapter 10] As a result, there
is no particular algebraic structure imposed on the codes. In his seminal paper, Shannon
showed that these random coding arguments were sufficient to achieve optimal performance
in all single user channels [2]. Furthermore, the same type of codes can be used to achieve
the capacity region of several multiple user channels, including the multiple-access channel
and special cases of the broadcast channel [1, Chapter 14]. Similarly, Slepian and Wolf
used the random coding construction to characterize the optimal rate region for distributed
source coding [3]. Codes with algebraic structure were studied in the late sixties, and it was
found that although they reduced the encoding and decoding complexity, their performance
was, at best, the same as optimal unstructured codes. Generally, though, their performance
was usually worse [4]. Consequently, it was suspected that random codes were sufficient to
characterize the fundamental limits of communication, and codes with structure were not
needed in traditional information theory.

One of the first examples that demonstrated the advantage of codes with structure oc-
curred in the late seventies. Korner and Marton considered the distributed source coding
problem when the destination desires to recover a function of the sources [5]. In their sce-
nario, Source 1 observes a binary source U , and source 2 observes another binary source U ′.
Rather than recovering the individual sources U and U ′ as in the traditional rate-distortion
problem, the destination produces an estimate for the mod-2 sum of the source observations:
U ⊕2 U

′. When the sources are correlated, it was discovered that recovering the mod-2 sum
of the observations is more efficient than recovering the individual observations, and the
optimal rate region is larger than the Slepian-Wolf region. Furthermore, standard random
coding arguments were insufficient here, and linear codes were used instead. Linear codes
have the property that the sum (over the underlying finite field) of two codewords is again
a codeword. This structural property is crucial for sending the mod-2 sum of the source
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observations in this distributed setting.
Lattice codes form the real counterpart of linear codes and extend the linearity property

from a finite field into the real field [6]. As a result, they can be used in many wireless settings
and form an important class of structured codes. The goal of this thesis is to demonstrate
the advantage of lattice codes in three network scenarios. First, we propose a novel, low-
complexity, linear receiver architecture for multiple-input-multiple-output (MIMO) channels
that achieves significant gain over traditional linear receivers. Our architecture makes use
of lattice codes to first recover an equation of the data streams instead of the data streams
themselves. This achieves performance close to the optimal joint receiver while adding only
slightly more complexity over the traditional linear receiver. Next, we consider function
computation across a class of wireless relay networks. By using lattice codes for both chan-
nel coding and source quantization, we convert the wireless network problem into a wired
network problem, which is well studied in literature [7, 8, 9, 10]. We then develop achievabil-
ity schemes for the wired network based on the results of the well known multicast problem
[11, 12]. Finally, we study the role of structure in channel state estimation. We show that
in networks with many relay nodes, lattice codes can be used to transmit a function of the
channel state information. In certain cases, this is much more efficient than transmitting the
full channel state information.

Before delving into details, we briefly review some situations where lattice codes have
demonstrated good performance. In many point-to-point settings, lattice codes have been
shown to be a low-complexity alternative that achieves the optimal performance previously
attained by random codes:

• AWGN Channel: Lattice encoding with Maximum Likelihood decoding was first
studied and was shown to attain the capacity of the AWGN channel [13]. Refinements
of this scheme were studied in [14, 15]. A nested version of lattice codes was later
developed and shown to approach the capacity of point-to-point AWGN channels with
lattice decoding [16].

• Quantization: Nested lattice codes developed in [16] can also be used for the quan-
tization of Gaussian sources. Furthermore, it is shown that there exists lattices that
are good for both coding and quantization [17, 18].

• Dirty Paper: When interference is known causally at the transmitter, it can be
cancelled by employing precoding techniques [19]. Combing lattice codes and scaling
with the MMSE coefficient, the capacity of the dirty paper channel can be achieved
[20]. Practical implementations of nested lattice codes for the dirty paper channel are
proposed in [21].

• Wyner-Ziv: The quantization rate can be reduced by adding correlated side informa-
tion to the receiver and employing binning techniques. Coset codes have been proposed
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as a means to perform efficient binning. Wyner developed a set of coset codes for bin-
ning in the situation of lossless compression with side information. Nested lattice codes
were shown to be good coset codes in the lossy case by the authors in [22]. These Coset
codes can be used for efficient binning in the Wyner-Ziv problem and recover the op-
timal rate-distortion tradeoff.

Although structured codes can recover the optimal performance previously attained by
random codes in many point-to-point scenarios, their value is truly highlighted in network set-
tings. In these multi-user scenarios, lattices are needed to achieve gains previously unattain-
able using standard random codes:

• Distributed Source Coding: A Gaussian version of the Korner-Marton problem
was studied in [23]. A nested lattice scheme was used to reconstruct a function of the
sources directly without first reconstructing the individual sources. This was shown
to be more efficient than recovering the individual sources directly, and the resulting
achievable rate region was shown to be larger than the Berger-Tung region in certain
regimes.

• Interference Alignment: Recent literature showed that the degrees of freedom per
user of the interference channel remains constant as the number of users increase [24].
Subspace coding was used, and interference at each destination was aligned so that
all interference falls into the same subspace. The linearity property of lattices can be
exploited to align the interference [25, 26].

• Computation over Multiple-Access Channels: When the destination of a AWGN
multiple-access channel recovers a function of the sources, lattice codes have been found
to be advantageous and are able to achieve a lower distortion than standard random
codes [27].

• Two-Way Relay Channel: Lattice codes can be used in this scenario and allow
the relay node to recover the sum of the two codewords rather than the individual
codewords. Structured schemes have been shown to be more efficient than traditional
relaying schemes and achieve within a constant gap of the optimal performance [28, 29].

• Wireless Network Coding: In a wired network with many relay nodes, the tradi-
tional method of routing has been shown to be insufficient, and coding is needed at
the intermediate relays instead [11]. In the case of a wireless network, it is beneficial
for the relays to recover only a function of the incoming messages [30, 31, 32, 33].

• Dirty Paper Multiple-Access Channels: The dirty paper channel is extended to
the case of multiple users who communicate to a common destination in the presence
of interference. When the interference is known partially at each transmitter, lattice
codes are needed to cancel the interference [34].
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• Secrecy: Using lattices schemes, multiple users who do not have prior coordination
are able to collude against adversaries and eavesdroppers [35].

1.1 Contributions

We provide an overview and a summary of our main results in each scenario:

• Linear Receiver Design for MIMO: Linear receivers are often used to reduce the
implementation complexity of multiple antenna systems. In a traditional linear re-
ceiver architecture, the receive antennas are used to separate out the codewords sent
by each transmit antenna, which can then be decoded individually. Although easy to
implement, this approach can be highly sub-optimal when the channel matrix is near
singular. This paper develops a new linear receiver architecture that uses the receive
antennas to create an effective channel matrix with integer-valued entries. Rather
than attempting to recover transmitted codewords directly, the decoder recovers in-
teger combinations of the codewords according to the entries of the effective channel
matrix. The codewords are all generated using the same linear code, which guarantees
that these integer combinations are themselves codewords. If the effective channel is
full rank, these integer combinations can then be digitally solved for the original code-
words. This thesis focuses on the special case where there is no coding across transmit
antennas. In this setting, the integer-forcing linear receiver significantly outperforms
traditional linear architectures such as the decorrelator and MMSE receiver. In the high
SNR regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff
for the standard MIMO channel. It is further shown that in an extended MIMO model
with interference, the integer-forcing linear receiver achieves the optimal generalized
degrees-of-freedom.

• Network Function Computation: In linear function computation, multiple source
nodes communicate across a relay network to a single destination whose goal is to re-
cover linear functions of the original source data. For the case when the relay network
is a linear deterministic network, a duality relation is established between function
computation and broadcast with common messages. Using this relation, a compact,
sufficient condition is found describing those cases where the cut-set bound is tight.
Then, these insights are used to develop results for the case where the relay net-
work contains Gaussian multiple-access channels. The proposed scheme decouples the
physical and network layers. Lattice codes are used for both source quantization and
computation in the physical layer. This can be viewed as converting the original Gaus-
sian sources into discrete sources and the Gaussian network into a linear deterministic
network. The duality relation is applied to find network codes for computing func-
tions of discrete sources in the network layer. Assuming the original source sequences
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are independent Gaussians, the resulting distortion for computing their sum over the
Gaussian network is provably within a constant factor of the optimal performance.

• Channel State Information Estimation: In networks with many intermediate
relay nodes, the assumption of global channel knowledge is optimistic in practice.
The fading behavior is typically measured locally at the relay nodes but is not directly
known at the destination. One straightforward method is to send the full channel state
information to the destination. However, this may be inefficient due to limited power
and bandwidth constraints and results in forwarding more information than necessary.
Instead, we show that it is sometimes sufficient for the destination to know only a
function of the various channel states rather than the full channel state information. We
develop a general framework for forwarding a function of the channel state information
in relay systems with only local channel knowledge. We apply our framework to several
networks and find that functional forwarding of channel state information can be much
more efficient than full forwarding.

1.2 Outline

The thesis is outlined as follows:

• Chapter 2: The standard MIMO model is described and existing receiver architectures
are surveyed. The integer-forcing linear receiver, which uses lattice codes to first recover
a set of full rank equations of the data streams, is then proposed. It is compared to
different architectures and shown to attain the optimal diversity-multiplexing tradeoff.

• Chapter 3: The MIMO channel in Chapter 2 is extended to include the case of
interference. The integer-forcing architecture is shown to provide an attractive solution
to the problem of oblivious interference mitigation. Focusing on the high SNR regime,
the generalized degrees of freedom for the integer-forcing linear receiver is characterized
and shown to match the optimal joint-receiver.

• Chapter 4: The proof of Theorem 3.7 in Chapter 3 requires results in diophantine
approximations. Some existing theorems in the diophantine approximations literature,
including Dirichlets, Khintchine-Groshev, Minkowski’s 1st theorem on successive mini-
mum, and Minkowski’s 2nd theorem on successive minima, are first reviewed. Theorem
4.13 is a new result that extends Dirchlets to the case where where a full rank set of lin-
early independent integer solutions is required. The proof requires several diophantine
theorems and makes use of Lagrangian formulations.

• Chapter 5: The problem of network function computation is considered. The first
section focuses on the deterministic network and shows that computing a single linear
function is equivalent to multicast. This insight is then extended beyond a single linear
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function to general communication demands. The second section leverages the insights
from the deterministic network to characterize the distortion for computing a function
of Gaussian sources across a class of Gaussian relay networks.

• Chapter 6: The two-stage relay network of interest is first described. A new scheme,
functional forwarding, where the relays send a function of the channel state information
to the destination, is proposed. A series of examples are provided to illustrate that the
proposed scheme can be much more efficient than traditional schemes that forward the
full channel state information.
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Chapter 2

Integer-Forcing Linear Receivers

It is by now well-known that increasing the number of antennas in a wireless system can
significantly increase capacity. Since the seminal papers of Foschini and Gans [36] and Telatar
[37], multiple-input multiple-output (MIMO) channels have been thoroughly investigated in
theory (see [38] for a survey) and implemented in practice [39]. This capacity gain usually
comes at the expense of more complex encoders and decoders and a great deal of work has
gone into designing low-complexity MIMO architectures. In this chapter, we describe a new
low-complexity architecture that can attain significantly higher rates than existing solutions
of similar complexity.

We focus on the case where each of the M transmit antennas encodes an independent
data stream (see Figure 2.1). That is, there is no coding across the transmit antennas: each
data stream wm is encoded separately to form a codeword xm of length n. Channel state
information is only available to the receiver. From the receiver’s perspective, the original data
streams are coupled in time through encoding and in space (i.e., across antennas) through
the MIMO channel. The joint maximum likelihood (ML) receiver simultaneously performs
joint decoding across time and receive antennas. Clearly, this is optimal in terms of both rate
and probability of error. However, the computational complexity of jointly processing the
data streams is high, and it is difficult to implement this type of receiver in wireless systems
when the number of streams is large. Instead, linear receivers such as the decorrelator and
minimum-mean-squared error (MMSE) receiver are often used as low-complexity alternatives
[40].

Traditional linear receivers first separate the coupling in space by performing a linear
projection at the front-end of the receiver. In order to illustrate this concept and motivate
the proposed new approach, we consider the 2 × 2 MIMO channel characterized by the
following matrix:

H =

[
2 1
1 1

]
. (2.1)

The simplest choice of a linear receiver front-end inverts the channel matrix. This receiver
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is usually referred to as the decorrelator in the literature. That is, the receiver first applies
the matrix

H−1 =

[
1 −1
−1 2

]
(2.2)

to the received signal. Overall, this converts the original channel into a new equivalent
channel characterized by the identity matrix and colored Gaussian noise, i.e., to two scalar
channels with correlated noise. The linear receiver then proceeds by separately decoding
the output of each of these two channels. The well-known drawback of this approach is
that the noise vector is also multiplied by the linear receiver front-end matrix given in (2.2),
which alters the variances of its components. In our simple example, if we assume that
the original channel had independent additive white Gaussian noise of unit variance, the
equivalent noises after the linear receiver front-end have variances of 2 and 5, respectively.
That is, while the receiver front-end has nulled out cross-interference, it has also significantly
increased the noise levels.

The integer-forcing linear architecture advocated here is based on the recent insight that
if on all transmit antennas, the same linear or lattice code is used, then it is possible to not
only decode codewords themselves, but also integer linear combinations of codewords directly
[31]. Let us denote the codeword transmitted on the first antenna by x1 and the codeword
transmitted on the second antenna by x2. Then, for the simple example matrix from (2.1),
the receiver can decode the integer linear combination 2x1+x2 from the first receive antenna
and the combination x1 + x2 from the second receive antenna. From these (following [31]),
it is possible to recover linear equations of the data streams over an appropriate finite field,
2w1+w2 and w1+w2. These equations can in turn be digitally solved for the original data
streams. The key point in this example is that the noise variances remain unchanged, which
increases the effective SNR per data stream. Note that for more general channel matrices
beyond the simple example here, it will also be advantageous to first apply an appropriate
linear receiver front-end, albeit following principles very different form merely inverting the
channel matrix, as we explain in more detail in the sequel.

In this chapter, we first consider the standard MIMO channel and develop a new integer-
forcing linear receiver architecture that provides multiplexing and diversity gains over tra-
ditional linear architectures. Our approach relies on the compute-and-forward framework,
which allows linear equations of transmitted messages to be efficiently and reliably decoded
over a fading channel [31]. We develop a multiple antenna version of compute-and-forward
which employs the antennas at the receiver to rotate the channel matrix towards an effective
channel matrix with integer entries. Separate decoders can then recover integer combinations
of the transmitted messages, which are finally digitally solved for the original messages. We
show that this is much more efficient than using the receive antennas to separate the trans-
mitted codewords and directly decoding each individual codeword. Our analysis uses nested
lattice codes originally developed to approach the capacity of point-to-point AWGN and
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dirty-paper channels [16, 17, 18, 22] and for which practical implementations were presented
in [21] and subsequent works.

In Chapter 3, we generalize the MIMO channel model to include interference [41, 42] and
show that the integer-forcing receiver architecture is an attractive approach to the problem
of oblivious interference mitigation. By selecting equation coefficients in a direction that
depends on both the interference space and the channel matrix, the proposed architecture
reduces the impact of interference and attains a non-trivial gain over traditional linear re-
ceivers. Furthermore, we show that the integer-forcing receiver achieves the same generalized
degrees of freedom as the joint decoder. Our proof uses techniques from Diophantine approx-
imations, which have also recently been used for interference alignment over fixed channels
and the characterization of the degrees of freedom for compute-and-forward [43, 44].

In the remainder of the chapter, we start with a formal problem statement in Section 2.1,
and then overview the basic existing MIMO receiver architectures and their achievable rates
in Section 2.2. In Section 2.3, we present the integer-forcing receiver architecture and a basic
performance analysis. We show that the rate difference between the proposed receiver and
traditional linear receivers can be arbitrarily large in Section 2.4. We study the outage
performance of the integer-forcing linear receiver under a slow fading channel model in
Section 2.5. We show that in the case where each antenna encodes an independent data
stream, our architecture achieves the same diversity-multiplexing tradeoff as that of the
optimal joint decoder. In Chapter 3, we consider the MIMO channel with interference and
show that the integer-forcing receiver can be used to effectively mitigate interference. We
characterize the generalized degrees-of-freedom for the integer-forcing receiver and find that
it is the same as for the joint decoder.

Throughout the chapter, we will use boldface lowercase to refer to vectors, a ∈ RM ,
and boldface uppercase to refer to matrices, A ∈ RM×M . Let AT denote the transpose of
a matrix A and |A| denote the determinant. Also, let A−1 denote the inverse of A and
A† , (ATA)−1AT denote the pseudoinverse. The notation ‖a‖ ,

√∑
i a

2
i will refer to the

ℓ2-norm of the vector a while ‖a‖∞ , maxi |ai| will refer to the ℓ∞-norm. Finally, we will
use λMAX(A) and λMIN(A) to refer to the maximum and minimum singular values of the
matrix A.

2.1 Problem Statement

The baseband representation of a MIMO channel usually takes values over the complex
field. For notational convenience, we will work with the real-valued decomposition of these
complex matrices. Recall that any equation of the form Y = GX+Z over the complex field
can be represented by its real-valued representation,

[
Re(Y)
Im(Y)

]
=

[
Re(G) −Im(G)
Im(G) Re(G)

] [
Re(X)
Im(X)

]
+

[
Re(Z)
Im(Z)

]
. (2.3)
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We will henceforth refer to the 2M×2N real-valued decomposition of the channel matrix
as H. We will use 2M independent encoders and 2M independent decoders for the resulting
real-valued transmit and receive antennas.1

Definition 2.1 (Messages). Each of the 2M transmit antennas has a length k data stream
(or message) wm drawn independently and uniformly from W = {0, 1, 2, . . . , q − 1}k.

Definition 2.2 (Encoders). Each data stream wm is mapped onto a length n channel input
xm ∈ Rn×1 by an encoder,

Em : W → Rn .

An equal power allocation is assumed across transmit antennas

1

n
‖xm‖2 ≤ SNR .

Note that equal power constraint per transmit antenna is equivalent to total power con-
straint when considering the diversity-multiplexing tradeoff. While we formally impose a
separate power constraint on each antenna, we note that the performance at high SNR (in
terms of the diversity-multiplexing tradeoff) remains unchanged if this is replaced by a sum
power constraint over all antennas instead.

Definition 2.3 (Rate). Each of the 2M encoders transmits at the same rate

RTX =
k

n
log2 q .

The total rate of the MIMO system is just the number of transmit antennas times the rate,
2MRTX .

Remark 2.4. Since the transmitters do not have knowledge of the channel matrix, we focus
on the case where the 2M data streams are transmitted at equal rates. We will compare the
integer-forcing receiver against successive cancellation V-BLAST schemes with asymmetric
rates in Section 2.5.2.

Definition 2.5 (Channel). Let X ∈ R2M×n be the matrix of transmitted vectors,

X =




xT
1
...

xT
2M


 . (2.4)

1The implementation complexity of our scheme can be decreased slightly by specializing it to the complex
field using the techniques in [31]. For notational convenience, we focus solely on the real-valued representa-
tion, and do not exploit the constraints on the matrix H.
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The MIMO channel takes X as an input, multiplies it by the channel matrix H ∈ R2N×2M

and adds noise Z ∈ R2N×n whose entries are i.i.d. Gaussian with zero mean and unit variance.
The signal Y ∈ R2N×n observed across the 2N receive antennas over n channel uses can be
written as

Y = HX+ Z . (2.5)

We assume that the channel realization H is known to the receiver but unknown to the
transmitter and remains constant throughout the transmission block of length n.

Definition 2.6 (Decoder). At the receiver, a decoder makes an estimate of the messages,

D : R2N×n → W2M (2.6)

(ŵ1, . . . , ŵ2M) = D(y). (2.7)

Definition 2.7 (Achievable Rates). We say that sum rate R(H) is achievable if for any
ǫ > 0 and n large enough, there exist encoders and a decoder such that reliable decoding is
possible

Pr ((ŵ1, . . . , ŵ2M) 6= (w1, . . . ,w2M)) ≤ ǫ

so long as the total rate does not exceed R(H),

2MRTX ≤ R(H).

2.2 Existing Receiver Architectures

Many approaches to MIMO decoding have been studied in the literature. We provide a
brief summary of some of the major receiver architectures and the associated achievable
rates, including the joint ML receiver, the decorrelator, linear MMSE estimator and the
MMSE-SIC estimator.

2.2.1 Joint ML Receivers

Clearly, the best performance is attainable by joint ML decoding across all N receive anten-
nas. This situation is illustrated in Figure 2.1. Let HS denote the submatrix of H formed
by taking the columns with indices in S ⊆ {1, 2, . . . , 2M}. If we use a joint ML decoder
that searches for the most likely set of transmitted messages vectors ŵ1, . . . , ŵ2M , then the
following rate is achievable (using Gaussian codebooks at the transmitter):

RJOINT(H) = min
S⊆{1,2,...,2M}

M

|S| log det
(
IS + SNR HSH

T
S
)

(2.8)
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where I is the identity matrix.2 Note that this is also the capacity of the channel subject to
equal rate constraints per transmit antenna. The worst-case complexity of this approach is
exponential in the product of the blocklength n and the number of antennas N .

One approach to reduce the complexity of the joint ML decoder is to employ a sphere
decoder. Rather than naively checking all possible codewords, the sphere decoder only
examines codewords that lie within a ball around the received vector. If the radius of the
ball is suitably chosen, this search is guaranteed to return the ML candidate vector. We
refer interested readers to [45, 46, 47, 48, 49] for more details on sphere decoding algorithms
as well as to [50] for a recent hardware implementation.

w1 E1 x1

...

wM EM xM

H

z1
y1

...

zN
yN

D

ŵ1

ŵM

...

Figure 2.1: MIMO channel with single stream encoding.

2.2.2 Traditional Linear Receivers

Rather than processing all the observed signals from the antennas jointly, one simple ap-
proach is to separate out the transmitted data streams using a linear projection and then
decode each data stream individually, as shown in Figure 2.2. Given the observed matrix
Y = HX+ Z from (2.5), the receiver forms the projection

Ỹ = BY (2.9)

= BHX+BZ (2.10)

where B ∈ R2M×2N . Each row ỹT
m of Ỹ is treated as a noisy version of xT

m. In traditional
linear receivers, the goal of the projection matrix B is to separate the incoming data streams.
For the decorrelator architecture, we choose the projection to be the pseudoinverse of the
channel matrix B = (HTH)−1HT . In the case where N ≥ M , the resulting channel is
interference free. If H is orthogonal, then the decorrelator architecture can match the per-
formance of a joint ML decoder. As the condition number of H increases, the performance
gap between the decorrelator and the joint decoder increases due to noise amplification (see
the example in Section 2.4.2). The performance of the decorrelator can be improved at low

2With joint encoding and decoding, a rate of 1
2 log det

(
I+ SNRHHT

)
is achievable.
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SNR using the MMSE architecture which sets B = HT (HHT + 1
SNR

I)−1. Let bT
m be the mth

row vector of B and hm the mth column vector of H. The following rate is achievable for
the mth data stream using a decorrelator architecture with Gaussian codebooks:

Rm(H) =
1

2
log

(
1 +

SNR‖bT
mhm‖2

‖bm‖2 + SNR
∑

i 6=m ‖bT
mhi‖2

)
. (2.11)

Since we focus on the case where each data stream is encoded at the same rate, the achievable
sum rate is dictated by the worst stream,

RLINEAR(H) = min
m

2MRm(H) . (2.12)

The complexity of a linear receiver architecture is dictated primarily by the choice of
decoding algorithm for the individual data streams. In the worst case (when ML decoding
is used for each data stream), the complexity is exponential in the blocklength of the data
stream. In practice, one can employ low-density parity-check (LDPC) codes to approach
rates close to the capacity with linear complexity [51].

The performance of this class of linear receivers can be improved using successive in-
terference cancellation (SIC) [52, 53]. After a codeword is decoded, it may be subtracted
from the observed vector prior to decoding the next codeword, which increases the effec-
tive signal-to-noise ratio. Let Π denote the set of all permutations of {1, 2, . . . , 2M}. For
a fixed decoding order π ∈ Π, let πm = {π(m), π(m+ 1), . . . , π(2M)} denote the indices
of the data streams that have not yet been decoded. Let hπ(m) denote the π(m)th col-
umn vector of H and let Hπm

be the submatrix consisting of the columns with indices πm,
i.e., Hπm

= [hπ(m) · · ·hπ(2M)]. The following rate is achievable in the π(m)th, stream using
successive interference cancellation:

Rπ(m)(H) =
1

2
log

(
1 +

SNR‖bT
mhπ(m)‖2

‖bm‖2 + SNR
∑

i>m ‖bT
mhπ(i)‖2

)
. (2.13)

where bm = (Hπm
HT

πm
+ 1

SNR
I)−1hπ(m) is the projection vector to decode the π(m)th stream

after canceling the interference from the π(1), . . . , π(m− 1)th streams. For a fixed decoding
order π, the achievable sum-rate is given by

RSIC,1(H) = min
m

2MRπ(m)(H) . (2.14)

The above scheme is referred to as V-BLAST I (see [54] for more details). An improvement
can be attained by selecting the decoding order, and thus the permutation.

In the case of V-BLAST II, the sum rate is improved by choosing the decoding order
that maximizes rate of the worst stream,

RSIC,2(H) = max
π∈Π

min
m

2MRπ(m)(H) . (2.15)
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Hence, V-BLAST I performs worse than V-BLAST II for all channel parameters. We post-
pone the discussion of V-BLAST III to Section 2.5 where we introduce the outage formula-
tion.

Using ML decoding for each individual data stream, the complexity of the MMSE-SIC
architecture is again exponential in blocklength. However, unlike the decorrelator and linear
MMSE receiver, not all M streams can be decoded in parallel and delay is incurred as later
streams have to wait for earlier streams to finish decoding.

w1 E1 x1

...

wM EM xM

H

z1
y1

BTRAD

ỹ1 D1 ŵ1

...

zN
yN

...

ỹM DM ŵM

Figure 2.2. A traditional linear receiver. Each of the individual message vectors is de-
coded directly from the projected channel output. The goal of the linear projection is to
approximately invert the channel and cancel the interference from other streams.

2.2.3 Lattice-Reduction Detectors

Another class of linear architectures comes under the name of lattice-reduction detectors.
It has been shown that lattice reduction can be used to improve the performance of the
decorrelator when the channel matrix is near singular [55] and can achieve the receive diver-
sity [56]. Lattice-reduction detectors are symbol-level linear receivers that impose a linear
constellation constraint, e.g., a QAM constellation, on the transmitters. The output of the
MIMO channel Y is passed through a linear filter B to get the resulting output:

Ỹ = BY (2.16)

= BHX+BZ (2.17)

= AX+BZ (2.18)

where A = BH is the effective channel matrix. In lattice reduction, the effective channel
matrix is restricted to be unimodular: both its entries and the entries of its inverse must
be integers. Let aT

1 , . . . , a
T
2M be the row vectors of matrix A. The lattice-reduction detector

produces estimates of the symbols of aT
mX from Ỹ. There are two key differences between
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the proposed integer-forcing receiver and the lattice-reduction receiver. First, the integer-
forcing receiver operates on the codeword level rather than on the symbol level. Second, the
effective channel matrix A of the integer-forcing receiver is not restricted to be unimodular:
it can be any full-rank integer matrix. We compare lattice reduction to the integer receiver
in Example 3 by restricting the effective matrix to be unimodular under the integer-forcing
architecture. We show that this restriction can result in an arbitrarily large performance
gap.

Two other works have developed lattice architectures for joint decoding that can achieve
the optimal diversity-multiplexing tradeoff [57, 58].

2.3 Proposed Receiver Architecture

2.3.1 Architecture Overview

Linear receivers such as the decorrelator and the MMSE receiver directly decode the data
streams after the projection step. In other words, they use the linear projection matrix B to
invert the channel matrix at the cost of amplifying the noise. Although low in complexity,
these approaches are far from optimal when the channel matrix is ill-conditioned. In the
integer-forcing architecture, each encoder uses the same linear code and the receiver exploits
the code-level linearity to recover equations of the transmitted messages. Instead of inverting
the channel, the scheme uses B to force the effective channel to a full-rank integer matrix
A. As in the case of traditional linear receivers, each element of the effective output is then
sent to a separate decoder. However, since each encoder uses the same linear code, each
decoder can recover an integer linear combination of the codewords. The integer-forcing
receiver is free to choose the set of equation coefficients A to be any full-rank integer matrix.
The resulting integer combinations of codewords can be mapped back to a set of full-rank
messages over a finite field.3 Finally, the individual messages vectors are recovered from the
set of full-rank equations of message vectors. The details of the architecture are provided in
the sequel and an illustration is given in Figure 2.3.

Prior to decoding, our receiver projects the channel output using the 2M × 2N matrix
B to get the effective channel

Ỹ = BY (2.19)

= BHX+BZ. (2.20)

Each preprocessed output ỹm is then passed into a separate decoder Dm : Rn → W. Decoder

3For the scope of the present chapter, we assume that q is prime to ensure invertibility. However, this
restriction may be removed as shown in [59].
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w1 E1 x1

...

wM EM xM

H

z1
y1

BINT

ỹ1 D1
û1

...

zN
yN

...

ỹM DM
ûM

A−1

ŵ1

...

ŵM

Figure 2.3. The proposed integer-forcing linear receiver. Each decoder first recovers an
equation of the transmitted message vectors. These equations are then collected and solved
for the individual message vectors. The goal of the linear projection is to create a full-rank,
integer-valued effective channel matrix.

m attempts to recover a linear equation of the message vectors

um =

[
2M∑

ℓ=1

am,ℓwℓ

]
mod q (2.21)

for some am,ℓ ∈ Z. Let am denote the vector of desired coefficients for decoder m, am =
[am1 am2 · · · am2M ]T . We choose a1, . . . , a2M to be linearly independent.4 Decoderm outputs
an estimate ûm for the equation um. We will design our scheme such that, for any ǫ > 0 and
n large enough, the desired linear equations are recovered with probability of error satisfying

Pr
(
(û1, . . . , û2M) 6= (u1, . . . ,u2M)

)
≤ ǫ . (2.22)

Let W = [w1 · · · w2M ]T denote the matrix of message vectors, U = [u1 · · · u2M ]T

denote the matrix of linear equations of message vectors and A = [a1 · · · a2M ]T denote the
integer matrix of equation coefficients. Since A is full-rank, the original message vectors can
be recovered from the set of linear equations by a simple inverse operation:

W = A−1U (2.23)

In the following subsections, we will provide details on the achievable rate, the choice of
the coefficients of the integer matrix A, and the complexity of our architecture.

4It is sufficient to consider matrices B and desired coefficient vectors am that are real-valued decomposi-
tions of a complex matrix or vector.
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2.3.2 Achievable Rates

We use the compute-and-forward framework developed in [31] to derive the achievable rate
of the integer-forcing linear receiver. Let hT

m be the mth row vector of H. In the case where
B = I, the channel output to the mth decoder is given by

yT
m = hT

mX+ zTm (2.24)

and the rate at which the set of equations u1, . . . ,u2M can be reliably recovered is given in
the following theorem. Define log+(x) , max {x, 0}.
Theorem 2.8 ([31, Theorem 1]). For any ǫ > 0 and n large enough, there exist fixed
encoders and decoders, E1, . . . , E2M ,D1, . . . ,D2M , such that all decoders can recover their
equations with total probability of error at most ǫ so long as

RTX < min
m=1,...,2M

R(H, am) (2.25)

R(H, am) =
1

2
log+

(
SNR

1 + SNR‖hm − am‖2
)

(2.26)

for the selected equation coefficients a1, . . . , a2M ∈ Z2M .

Remark 2.9. Note that the decoders in Theorem 2.8 are free to choose any equation coeffi-
cients that satisfy (2.25). The encoders are completely oblivious to the choice of coefficients.

It is instructive to examine the noise term 1+SNR‖hm−am‖2. The leading 1 corresponds
to the additive noise, which has unit variance in our model. The more interesting term
‖hm − am‖2 corresponds to the “non-integer” penalty since the channel coefficients hm are
not exactly matched to the coefficients am of the linear equation.

As illustrated in Figure 2.3, we first multiply the channel output matrixY by a judiciously
chosen matrix B. That is, the effective channel output observed by the mth decoder can be
expressed as

ỹT
m =

2M∑

i=1

(
bT
mhi

)
xT
i + bT

mZ (2.27)

= h̃T
mX+ z̃Tm (2.28)

where h̃m = HTbm is the effective channel to the mth decoder and z̃m is the effective noise
with variance ‖bm‖2. The achievable rate of the integer-forcing linear receiver is given in
the next theorem.

Theorem 2.10. Consider the MIMO channel with channel matrix H ∈ R2N×2M . Under the
integer-forcing architecture, the following rate is achievable:

R < min
m

2MR(H, am,bm) (2.29)

R(H, am,bm) =
1

2
log+

(
SNR

‖bm‖2 + SNR‖HTbm − am‖2
)
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for any full-rank integer matrix A ∈ Z2M×2M and any matrix B ∈ R2M×2N .

Proof. Applying Theorem 2.8 with effective channel channel h̃m = HTbm and effective noise
variance ‖bm‖2, it follows that the receiver can reliably recover the set of linear equations
u1, . . . ,u2M where

um =

[
2M∑

ℓ=1

am,ℓwℓ

]
mod q . (2.30)

The message vectors w1, . . . ,w2M can be solved in turn by inverting the linear equations,
W = A−1U.

Theorem 2.10 provides an achievable rate for the integer-forcing architecture for any
preprocessing matrix B and any full-rank integer matrix A. The remaining task is to select
these matrices in such a way as to maximize the rate expression given in Theorem 2.10.
This turns out to be a non-trivial task. We consider it in two steps. In particular, we first
observe that for a fixed integer matrix A, it is straightforward to characterize the optimal
preprocessing matrix B. Then, in the next subsection, we discuss the problem of selecting
the integer matrix A.

We consider the case when N ≥ M and note that given a fixed full-rank integer matrix
A, a simple choice for preprocessing matrix is

BEXACT = H†A (2.31)

where H† is the pseudoinverse of H. We call this scheme “exact” integer-forcing since the
effective channel matrix after preprocessing is simply the full-rank integer matrix A. We
also note that choosing BEXACT and A = I corresponds to the decorrelator. More generally,
the performance of exact integer-forcing is summarized in the following corollary.

Corollary 2.11. Consider the case where N ≥ M . The achievable rate from Theorem 2.10
can be written equivalently as

R < min
m

2MR(H, am) (2.32)

R(H, am) =
1

2
log

(
SNR

‖(HT )†am‖2
)

(2.33)

for any full-rank integer matrix A by setting B = H†A.

We call the expression in the denominator of (2.33) the “effective noise variance.” The
achievable rate in (2.32) is determined by the largest effective noise variance,

σ̃2
EFFECTIVE

= max
m

‖(HT )†am‖2 . (2.34)
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Hence, the goal is to choose linearly independent equations a1, a2, . . . , a2M to minimize the
expression σ̃2

EFFECTIVE
in (2.34). The integer-forcing receiver provides the freedom to choose

any full-rank integer matrix A. In the remainder of this section, we characterize the optimal
linear projection matrix B for a fixed coefficient matrix A and provide an equivalent rate
expression for Theorem 2.10. We will then use this expression in the Section 2.3.3 to provide
insight into how to select the optimal coefficient matrix A.

Corollary 2.12. The optimal linear projection matrix for a fixed coefficient matrix A is
given by

BOPT = AHT

(
1

SNR
I+HHT

)−1

. (2.35)

Remark 2.13. The linear MMSE estimator, given by BMMSE = HT
(

1
SNR

I+HHT
)−1

, is a
special case of the integer-forcing receiver with BOPT and A = I.

Remark 2.14. limSNR→∞BOPT = BEXACT. Hence, under a fixed channel matrix, exact integer-
forcing is optimal as SNR → ∞.

Proof of Corollary 2.12. Let B = [b1, · · · ,b2M ]T . We solve for each bm separately to maxi-
mize the achievable rate in Theorem 2.10,

bm = argmaxbm

1

2
log

(
SNR

‖bm‖2 + SNR‖HTbm − am‖2
)

= argminbm

1

SNR
‖bm‖2 + ‖HTbm − am‖2 . (2.36)

Define this quantity to be the function f(bm) and rewrite as follows:

f(bm) =
1

SNR
‖bm‖2 + ‖HTbm − am‖2 (2.37)

=
1

SNR
bT
mbm + (HTbm − am)

T (HTbm − am) (2.38)

=
1

SNR
bT
mbm + bT

mHHTbm − 2bT
mHam + aT

mam (2.39)

= bT
m

(
1

SNR
I+HHT

)
bm − 2bT

mHam + aT
mam (2.40)

(2.41)

Taking the derivative of f with respect to bm, we have that

df(bm)

dbm
= 2

(
1

SNR
I+HHT

)
bm − 2Ham. (2.42)
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Setting df(bm)
dbm

= 0 and solving for bm, we have that

bT
m = aT

mH
T

(
1

SNR
I+HHT

)−1

. (2.43)

Corollary 2.12 follows since B = [b1, · · · ,b2M ]T .

Using the optimal linear projection matrix from Corollary 2.12, we derive an alternative
expression for the achievable rate in Theorem 2.10.

Theorem 2.15. The achievable rate from Theorem 2.10 under the optimal projection matrix
BOPT from (2.35) can be expressed as

R < min
m

2MR(H, am) (2.44)

R(H, am) = −1

2
log aT

mVDVTam , (2.45)

where V ∈ R2M×2M is the matrix composed of the eigenvectors of HTH and D ∈ R2M×2M

is a diagonal matrix with elements

Di,i =

{ 1
SNRλ2

i+1
i ≤ rank(H)

1 i > rank(H)
(2.46)

and λi is the ith singular value of H.

Proof. Let f be defined as in (2.37) and define UΣVT to be the singular value decomposition
(SVD) of H with U ∈ R2N×2N ,Σ ∈ R2N×2M , and V ∈ R2M×2M . Note that in this SVD
representation, Σi,i = λi and Σi,j = 0 for all i 6= j. Evaluating f for the mth row bm of BOPT

yields

f(bm) =
1

SNR
bT
mbm + bTHHTbm − bT

mHam − aT
mH

Tbm + aT
mam (2.47)

= bT
m

(
1

SNR
I+HHT

)
bm − bT

mHam − aT
mH

Tbm + aT
mam (2.48)

Combining (2.43) and (2.48), it follows that

f(bm) = bT
m

(
1

SNR
I+HHT

)(
1

SNR
I+HHT

)−1

Ham − bT
mHam − aT

mH
Tbm + aT

mam

(2.49)

= bT
mHam − bT

mHam − aT
mH

Tbm + aT
mam (2.50)

= −aT
mH

Tbm + aT
mam (2.51)

= −aT
mH

T

(
1

SNR
I+HHT

)−1

Ham + aT
mam (2.52)

= −aT
mVΣTUT

(
1

SNR
I+UΣΣTUT

)−1

UΣVTam + aT
mIam. (2.53)
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Since U is an orthonormal matrix, U−1 = UT and (2.53) can be rewritten as follows

f(bm) = −aT
mVΣTUT

(
1

SNR
UIUT +UΣΣTUT

)−1

UΣVTam + aT
mIam (2.54)

= −aT
mVΣTUT (UT )−1

(
1

SNR
I+ΣΣT

)−1

U−1UΣVTam + aT
mIam (2.55)

= −aT
mVΣT

(
1

SNR
I+ΣΣT

)−1

ΣVTam + aT
mIam. (2.56)

Since V is an orthonormal matrix, V−1 = VT and (2.56) can be rewritten as follows

f(bm) = aT
m

(
−VΣT

(
1

SNR
I+ΣΣT

)−1

ΣVT +VVT

)
am (2.57)

= aT
mV

(
−ΣT

(
1

SNR
I+ΣΣT

)−1

Σ+ I

)
VTam (2.58)

= aT
mV

(
I−ΣT

(
1

SNR
I+ΣΣT

)−1

Σ

)
VTam (2.59)

= aT
mVDVTam . (2.60)

Putting everything together, we have that

R(H, am) = −1

2
log aT

mVDVTam . (2.61)

2.3.3 Choosing Equations

In the previous section, we explored choices of the preprocessing matrix B and characterized
the optimal B for a fixed full-rank integer matrix A. Now, we discuss how to select equation
coefficients a1, · · · , a2M to maximize the achievable rate in Theorem 2.10 or, equivalently,
Theorem 2.15. In the integer-forcing linear receiver, we are free to recover any full-rank set
of linear equations with integer coefficients. However, due to the integer constraint on A, it
does not appear to be possible to give a closed-form solution for the best possible full-rank
matrix A.

An initially tempting choice for A might beA = I. As we noted previously, for this choice

of A, selecting B = H† reduces to the decorrelator while selecting B = HT
(

1
SNR

I+HHT
)−1

yields the linear MMSE estimator. However, as we show, for most channel matrices, fixing
A = I is suboptimal.



CHAPTER 2. INTEGER-FORCING LINEAR RECEIVERS 22

From Theorem 2.15, the achievable rate under the fixed channel matrixA = [a1, · · · , a2M ]T

is given by

R < max
|A|6=0

min
m

(
−M log aT

mVDVTam

)
. (2.62)

In general, for a fixed SNR and channel matrix, finding the best coefficient matrix A appears
to be a combinatorial problem, requiring an explicit search over all possible full-rank integer
matrices. The following lemma shows how the search space can be somewhat reduced.

Lemma 2.16. To optimize the achievable rate in Theorem 2.15 (or, equivalently, in Theorem
2.10), it is sufficient to check the space of all integer vectors am with norm satisfying

‖am‖2 ≤ 1 + λ2
MAX

SNR . (2.63)

where λMAX is the maximum singular value of H.

Remark 2.17. This lemma thus shows that an exhaustive search only needs to check roughly
SNR

M possibilities.

Proof. From (2.62), the achievable rate of the integer-forcing receiver is zero for all am

satisfying

aT
mVDVTam ≥ 1 (2.64)

The left-hand side is lower bounded by

aT
mVDVTam = ‖D1/2VTam‖2 (2.65)

=
2M∑

i=1

Di,i|vT
i am|2 (2.66)

≥ min
i

Di,i‖a‖2 (2.67)

=
1

1 + λ2
MAX

SNR
‖am‖2 (2.68)

Hence, if ‖am‖2 ≥ 1 + λ2
MAX

SNR, then aT
mVDVTam ≥ 1.

To conclude this subsection, we will now explicitly show how and why the choice A = I is
indeed suboptimal in general. In this context, it is instructive to use Lemma 2.16 to restate
(2.62) as

R < max
|A|6=0

‖am‖2≤1+λ2
MAX

SNR

min
m

(
−M log aT

mVDVTam

)
. (2.69)
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Figure 2.4. The decorrelator (left) fixes the equations to be a1 = [1 0]T and a2 = [0 1]T .
The integer-forcing linear receiver (right) allows for any choice of linearly independent equations.
Equations should be chosen in the direction of vMAX to avoid noise amplification by 1

λMIN
.

Equation (2.69) suggests that we should choose coefficient vectors a1, . . . , a2M to be short
and in the direction of the maximum right eigenvector of H. To make this concrete, let us
study a particular 2 × 2 real MIMO channel for which the matrix H has singular values
λMIN and λMAX, with corresponding right singular vectors vMIN and vMAX, respectively, as
illustrated in Figure 2.4. Here, decoder 1 recovers a linear combination of the transmitted
message vectors with integer coefficients a1 = [a1,1 a1,2]

T and decoder 2 recovers a linear
combination with integer coefficients a2 = [a2,1 a2,2]

T . Using the exact integer-forcing rate
from Corollary 2.11, the following rate is achievable

R < min
m=1,2

log

(
SNR

σ̃2
m

)
(2.70)

where σ̃2
m can be interpreted as the effective noise variance for the mth decoder,

σ̃2
m =

1

λ2
MIN

|vT
MIN

am|2 +
1

λ2
MAX

|vT
MAX

am|2. (2.71)

Since 1
λMIN

≥ 1
λMAX

, (2.71) suggests that a1, a2 should be chosen in the direction of vMAX

subject to linearly independent constraints to reduce the noise amplification by 1
λMIN

. In
the case of the decorrelator (or MMSE receiver), the equation coefficients are fixed to be
a1 = [1 0]T and a2 = [0 1]T . As a result, the noise variance in at least one of the streams will
be heavily amplified by 1

λMIN
and the rate will be limited by the minimum singular value of the

channel matrix. With integer-forcing, we are free to choose any linearly independent a1, a2

since we only require that our coefficients matrix A be invertible. By choosing a1, a2 in the
direction vMAX, we are protected against large noise amplification in the case of near-singular
channel matrices.
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2.3.4 Complexity

Our architecture has the same implementation complexity as that of a traditional linear
receiver with the addition of the matrix search for A. The ideal joint ML receiver aggregates
the time and space dimensions and finds the ML estimate across both. As a result, its
complexity is exponential in the product of the blocklength and the number of data streams.
Our architecture decouples the time and space dimensions by allowing for single-stream
decoding. First, we search for the best integer matrixA, which has an exponential complexity
in the number of data streams in the worst case. For slow fading channels, this search is
only needed once per data frame. Afterwards, our receiver recovers M linearly independent
equations of codewords according to A and then solves these for the original codewords.
This step is polynomial in the number of data streams and exponential in the blocklength
for an ML decoder. In practice, the decoding step can be considerably accelerated through
the use of LDPC codes and the integer matrix search can be sped up via a sphere decoder.

2.4 Fixed Channel Matrices

In this section, we compare the performance of the integer-forcing linear receiver against
existing architectures through a series of examples. In Example 1, we compare the per-
formance of different architectures for an ill-conditioned channel matrix and demonstrate
that the choice of equation coefficients for the integer-forcing receiver changes with SNR.
In Example 2, we compare the performance of the integer-forcing receiver with the decor-
relator and show that the decorrelator can perform arbitrarily worse. In Examples 3, we
illustrate that the gap between the integer-forcing receiver and lattice reduction can become
unbounded. Finally, we show that the gap between the integer-forcing receiver and the joint
decoder can be arbitrarily large in Example 4.

2.4.1 Example 1

Consider the 2× 2 real MIMO channel with channel matrix

H =

[
0.7 1.3
0.8 1.5

]
. (2.72)

Figure 2.5 shows the performance of the different architectures. (Recall that we assume
equal-rate data streams on both transmit antennas, as in Definition 2.3.) The achievable
rates for traditional linear receiver are given by (2.12) and that of the joint receiver is given
by (2.8). The decorrelator and the MMSE receiver aim to separate the data streams and
cancel the interference from other streams. However, this is difficult since the columns of
the channel matrix are far from orthogonal. The integer-forcing architecture attempts to
exploit the interference by decoding two linearly independent equations in the direction of
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Figure 2.5. Achievable rates for the 2 × 2 real-valued MIMO channel with fixed channel
matrix from (2.72).

the maximum eigenvector vMAX = [0.47 0.88]T . For example, at SNR = 30dB, we choose
equation coefficients a1 = [1 2]T and a2 = [6 11]T , while for SNR = 40dB, we choose
equation coefficients a1 = [1 7]T and a2 = [2 13]T . Thus, for different values of SNR, the
optimal equation coefficients generally change.

2.4.2 Example 2: Integer-forcing vs. decorrelator

Consider the 2× 2 real MIMO channel with channel matrix:

H =

[
1 1 +

√
ǫ

0 ǫ

]
(2.73)

where we assume 0 < ǫ ≪ 1, 1√
ǫ
is an integer and SNR ≫ 1. We first note that

H−1 =
1

ǫ

[
ǫ −(1 +

√
ǫ)

0 1

]
, (2.74)

Using (2.12) with B = H−1, the achievable rate of the decorrelator is

RDECORR = 2min

{
1

2
log

(
1 +

ǫ2SNR

ǫ2 + ǫ+ 2
√
ǫ+ 1

)
,
1

2
log
(
1 + ǫ2SNR

)}
(2.75)

≤ log
(
1 + ǫ2SNR

)
(2.76)
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We compare the achievable rate of the decorrelator with the exact integer-forcing rate from
Corollary 2.11. The equation coefficients selected by the decoders are

a1 = [1 1]T (2.77)

a2 =

[
1√
ǫ

1√
ǫ
+ 1

]T
. (2.78)

Using Corollary 2.11, the achievable rate of exact integer-forcing with equations coefficients
A = [a1, a2]

T is

RINTEGER = 2 min
m=1,2

1

2
log

(
SNR

‖(HT )−1am‖2
)
. (2.79)

= 2min

{
1

2
log

(
SNR

1 + 1
ǫ

)
,
1

2
log

(
SNR

1
ǫ

)}
(2.80)

= log

(
SNR

1 + 1
ǫ

)
(2.81)

≥ log

(
SNR

2
ǫ

)
(2.82)

= log

(
ǫSNR

2

)
(2.83)

where the inequality follows since 0 < ǫ ≪ 1.
We compare the two linear architectures to the joint ML decoder whose achievable rate

is given by (2.8). For 0 < ǫ ≪ 1 and SNR ≫ 1, the rate of the joint decoder is

RJOINT =
1

2
log det

(
I+HHT

SNR
)

(2.84)

=
1

2
log
(
(1 + SNR)(1 + ǫ2SNR) +

(
1 +

√
ǫ
)2

SNR

)
(2.85)

Finally, let us compare the three rates in the setting where SNR → ∞, and where the
parameter ǫ in our channel model tends to zero according5 to ǫ ∼ 1√

SNR
. In that special case,

we can observe that

RDECORR ∼ 1 (2.86)

RINTEGER ∼ 1

2
log(SNR) (2.87)

RJOINT ∼ 1

2
log(SNR) (2.88)

Hence, the loss from using the decorrelator instead of the integer-forcing receiver becomes
unbounded in this regime as SNR → ∞. Furthermore, the integer-forcing receiver achieves
the same scaling as the joint decoder.

5Recall that f(SNR) ∼ g(SNR) implies that limSNR→∞

f(SNR)
g(SNR) = 1.
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2.4.3 Example 3: Integer-forcing vs. lattice-reduction

In this example, we illustrate the difference between the proposed integer-forcing architecture
and the lattice-reduction receiver. First, we note that, unlike the integer-forcing receiver,
the lattice-reduction receiver is not required to use a lattice code but it should use a constel-
lation with regular spacing, such as PAM or QAM. However, the key difference is that the
effective channel matrix for lattice-reduction receivers is restricted to be unimodular6 while
the effective channel for integer-forcing receivers can be any full-rank integer matrix. In this
example, we show that this restriction can result in an arbitrarily large performance penalty.
We consider the M ×M MIMO channel with channel matrix:

H =




1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
...

...
... · · · · · · · · · ...

0 0 0 0 · · · 1 0
−1 −1 −1 −1 · · · −1 2




(2.89)

A simple calculation shows that the inverse of this channel matrix is given by

H−1 =




1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
...

...
... · · · · · · · · · ...

0 0 0 0 · · · 1 0
1
2

1
2

1
2

1
2

· · · 1
2

1
2




(2.90)

Since H−1 has non-integer entries, H is not unimodular. The coefficient matrix that maxi-
mizes the achievable rate for the exact integer-forcing receiver from Corollary 2.11 is

AINTEGER = H ,

leading to an effective noise variance in each stream that satisfies

σ2
INTEGER

= 1 . (2.91)

By contrast, following the lattice-reduction receiver, we must ensure that the resulting ef-

fective channel matrix is unimodular. Using the fact that
(
HT
)−1

is a basis for the body-
centered cubic (BCC) lattice, it can be shown that the best choice of matrix is

AUNIMODULAR = I . (2.92)

6Recall that a matrix is unimodular if has integer entries and its inverse has integer entries.
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It follows that the effective noise variance in the worst stream is given by

σ2
UNIMODULAR

= min
m

‖
(
HT
)−1

aUNIMODULAR,m‖2 (2.93)

= max {M/4, 1} . (2.94)

Hence, as the number of antennas becomes large (M → ∞), restricting the effective matrix
to be unimodular results in an arbitrarily large loss.

2.4.4 Example 4: Integer-forcing vs. joint ML decoder

Finally, we illustrate the point that the integer-forcing receiver can sometimes be arbitrarily
worse than optimal joint decoding. To see this, we consider a 2× 2 MIMO channel with the
channel matrix:

H =

[
1 1
0 ǫ

]
(2.95)

where 0 < ǫ < 1. The rate attainable via joint ML decoding is

RJOINT = log((1 + 2SNR)(1 + ǫ2SNR)− ǫ2SNR2) (2.96)

≥ log(1 + 2SNR) . (2.97)

We note that the inverse of the channel matrix is given by

H−1 =

[
1 −1

ǫ

0 1
ǫ

]
. (2.98)

We bound the achievable rate of exact integer-forcing from Corollary 2.11 as follows

RINTEGER = 2 max
A:|A|6=0

min
m=1,2

1

2
log

(
SNR

‖ (HT )−1
am‖2

)
(2.99)

= 2 max
A:|A|6=0

min
m=1,2

1

2
log

(
SNR

a2m,1 + (am,2 − am,1)2
1
ǫ2

)
(2.100)

≤ max
am,2 6=am,1

log

(
SNR

a2m,1 + (am,2 − am,1)2
1
ǫ2

)
(2.101)

≤ log
(
ǫ2SNR

)
. (2.102)

Let ǫ ∼ 1√
SNR

and consider the regime SNR → ∞. The gap between the optimal joint receiver
and the integer-forcing linear receiver can be arbitrarily large. However, as we will see in
Section 2.5, the average behavior of the integer-forcing linear receiver is close to the joint
decoder under a Rayleigh fading distribution for medium to high SNR.
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2.5 Performance for Slow Fading Channels

2.5.1 Model and Definitions

We now demonstrate that integer-forcing receiver nearly matches the performance of the joint
ML decoder under a slow fading channel model. Since the integer-forcing receiver can mimic
the operation performed by a zero-forcing or MMSE receiver (as well as decode messages
via equations), it is not surprising that it offers higher rates. However, these architectures
are often coupled with some form of SIC. We will show that the integer-forcing receiver
outperforms the following standard SIC architectures:

• V-BLAST I: The receiver decodes and cancels the data streams in a predetermined
order, irrespective of the channel realization. Each data stream has the same rate. See
(2.14) for the rate expression.

• V-BLAST II: The receiver selects the decoding order separately for each channel re-
alization in such a way as to maximize the effective SNR for the data stream that
sees the worst channel. Each data stream has the same rate. See (2.15) for the rate
expression.

• V-BLAST III: The receiver decodes and cancels the data streams in a predetermined
order. The rate of each data stream is selected to maximize the sum rate. The rate
expression is given in Section 2.5.2.

In Sections 2.5.3 and 2.5.4, we compare these schemes through simulations as well as
their diversity-multiplexing tradeoffs. For completeness, we also compare integer-forcing to
an SIC architecture that allows for both variable decoding order and unequal rate allocation
in Appendix A.

We adopt the standard quasi-static Rayleigh fading model where each element of the
complex channel matrix is independent and identically distributed according to a circularly
symmetric complex normal distribution of unit variance. The transmitter is only aware of
the channel statistics while the receiver knows the exact channel realization. As a result, we
will have to cope with some outage probability pOUT.

Definition 2.18. Assume there exists an architecture that encodes each data stream at the
same rate and achieves sum rate R(H). For a target rate R, then the outage probability is
defined as

pOUT(R) = Pr(R(H) < R). (2.103)

For a fixed probability p ∈ (0, 1], we define the outage rate to be

ROUT(p) = sup{R : pOUT(R) ≤ p}. (2.104)
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2.5.2 Rate Allocation

We have assumed that each data stream is encoded at the same rate. This is optimal for
linear receivers under isotropic fading. However, when SIC is used, rate allocation can be
beneficial in an outage scenario. To compare the performance of integer-forcing to SIC
with rate allocation, we consider V-BLAST III in this section. V-BLAST III performs SIC
with a fixed decoding order and allows for rate allocation among the different data streams.
Without loss of generality for Rayleigh fading, if we fix a decoding order, we may take it to
be π = (1, 2, . . . , 2M). From (2.13), the achievable rate for stream m is

Rπ(m)(H) =
1

2
log

(
1 +

SNR‖bT
mhπ(m)‖2

‖bm‖2 + SNR
∑

i>m ‖bT
mhπ(i)‖2

)
. (2.105)

Since the streams are decoded in order, the later streams will achieve higher rates on average
than the earlier streams. V-BLAST III allocates lower rates to earlier streams and higher
rates to later streams. We now generalize Definition 2.18 to include rate allocation.

Definition 2.19. Assume an architecture that achieves rate Rm(H) in stream m. For a
target rate R, the outage probability is given by:

pOUT(R) = min
R1,...,R2M∑2M
m=1 Rm≤R

Pr

(
2M⋃

m=1

{Rm(H) < Rm}
)
. (2.106)

For a fixed probability p ∈ (0, 1], we define the outage rate to be:

ROUT(p) = sup {R : pOUT(R) ≤ p} . (2.107)

2.5.3 Outage Behavior

We now compare the outage rate and probabilities for the receiver architectures discussed
above. It is easy to see that the zero-forcing receiver performs strictly worse than the MMSE
receiver and V-BLAST I performs strictly worse than V-BLAST II. We have chosen to omit
these two architectures from our plots to avoid overcrowding. Figure 2.6 shows the 1 percent
outage rate and Figure 2.7 shows the 5 percent outage rate. In both cases, the integer-forcing
receiver nearly matches the rate of the joint ML receiver while the MMSE receiver achieves
significantly lower performance. The SIC architectures with either an optimal decoding
order, V-BLAST II, or an optimized rate allocation, V-BLAST III, improve the performance
of the MMSE receiver significantly but still achieve lower rates than the integer-forcing
receiver from medium SNR onwards. Our simulations suggest that the outage rate of the
integer-forcing receiver remains within a small gap from the outage rate of the joint ML
receiver. However, we recall from the example given in Subsection 2.4.4 that it is not true
that the integer-forcing receiver is uniformly near-optimal for all fading realizations. Figure
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2.8 shows the outage probability for the target sum rate R = 6. We note that the integer-
forcing receiver achieves the same slope as the joint decoder. In the next subsection, we
characterize the diversity-multiplexing tradeoff of the integer-forcing receiver and compare
it with the diversity-multiplexing tradeoff of traditional architectures that are considered in
[54]. We show that the integer-forcing receiver attains the optimal diversity multiplexing-
tradeoff in the case where each transmit antenna sends an independent data stream.
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Figure 2.6. 1 percent outage rates for the 2 × 2 complex-valued MIMO channel with
Rayleigh fading.

2.5.4 Diversity-Multiplexing Tradeoff

The diversity-multiplexing tradeoff (DMT) provides a rough characterization of the perfor-
mance of a MIMO transmission scheme at high SNR [54].

Definition 2.20. A family of codes is said to achieve spatial multiplexing gain r and diversity
gain d if the total data rate and the average probability of error satisfy

lim
SNR→∞

R(SNR)

log SNR
≥ r (2.108)

lim
SNR→∞

logPe(SNR)

log SNR
≤ −d. (2.109)

In the case where each transmit antenna encodes an independent data stream7, the

7If joint encoding across the antennas is permitted, then a better DMT is achievable. See [54] for more
details.
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Figure 2.7. 5 percent outage rates for the 2 × 2 complex-valued MIMO channel with
Rayleigh fading.

optimal DMT is

dJOINT(r) = N
(
1− r

M

)
(2.110)

where r ∈ [0,M ] and can be achieved by joint ML decoding [54]. The DMTs achieved by
the decorrelator and SIC architectures are as follows [54]:

dDECORR(r) =
(
1− r

M

)
(2.111)

dV-BLAST I(r) =
(
1− r

M

)
(2.112)

dV-BLAST II(r) ≤ (N − 1)
(
1− r

M

)
(2.113)

dV-BLAST III(r) = piecewise linear curve connecting points (rk, n− k) (2.114)

where r0 = 0, rk =

k−1∑

i=0

k − i

n− i
1 ≤ k ≤ n

The decorrelator chooses the matrixB to cancel the interference from the other data streams.
As a result, the noise is heavily amplified when the channel matrix is near singular and the
performance is limited by the minimum singular value of the channel matrix. In the integer-
forcing linear receiver, the effective channel matrix A is not limited to be the identity matrix
but can be any full-rank integer matrix. This additional freedom is sufficient to recover the
same DMT as the joint ML decoder.
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Figure 2.8. Outage probability for the 2×2 complex-valued MIMO channel with Rayleigh
fading for a target sum rate of R = 6.

Theorem 2.21. For a MIMO channel with M transmit, N ≥ M receive antennas, and
Rayleigh fading, the achievable diversity-multiplexing tradeoff for the integer-forcing receiver
is given by

dINTEGER(r) = N
(
1− r

M

)
(2.115)

where r ∈ [0,M ].

The proof of Theorem 2.21 is given in Appendix B. Figure 2.9 illustrates the DMT for
a 4 × 4 MIMO channel. The integer-forcing receiver achieves a maximum diversity of 4
while the decorrelator and V-BLAST I achieve can only achieve a diversity of 1 since their
performance is limited by the worst data stream. V-BLAST II achieves a higher DMT than
V-BLAST I but a lower diversity than the integer-forcing receiver since its rate is still limited
by the worst stream after the optimal decoding order is applied. V-BLAST III achieves the
optimal diversity at the point r = 0 since only one data stream is used in transmission. For
values of r > 0, the achievable diversity is suboptimal.

2.5.5 Discussion

As noted earlier, receiver architectures based on zero-forcing face a rate penalty when the
channel matrix is ill-conditioned. Integer-forcing circumvents this issue by allowing the
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Figure 2.9. Diversity-multiplexing tradeoff for the 4 × 4 MIMO channel with Rayleigh
fading.

receiver to first decode equations whose coefficients are matched with those of the chan-
nel. From one perspective, the resulting gains are of a similar nature as those obtained by
lattice-reduction receivers. One important difference is that integer-forcing applies a modulo
operation at the receiver prior to decoding, which retains the linear structure of the code-
book. This allows us to derive closed-form rate expressions analogous to those for traditional
linear receiver. Typically, lattice reduction is used at the symbol level followed by a decoding
step [55]. While this form of lattice reduction can be used to obtain the full receive diversity
[56], it does not seem to suffice in terms of rate.

Another key advantage of integer-forcing is that it completely decouples the spatial aspect
of decoding from the temporal aspect. That is, the search for the best integer matrix A to
approximate the channel matrix H is completed before we attempt to decode the integer
combinations of codewords. Thus, apart from the search8 for the best A, which in a slow-
fading environment does not have to be executed frequently, the complexity of the integer-
forcing receiver is similar to that of the zero-forcing receiver.

From our outage plots, it is clear that the integer-forcing receiver significantly outperforms
the basic MMSE receiver. Moreover, integer-forcing beats more sophisticated SIC-based V-
BLAST architectures, even when these are permitted to optimize their rate allocation while
integer-forcing is not. We note that it is possible to develop integer-forcing schemes that
permit unequal rate allocations [31] as well as a form of interference cancellation [60] but

8This search can be considerably sped up in practice through the use of a sphere decoding algorithm.
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this is beyond the scope of the present chapter.
Integer-forcing also attains the full diversity-multiplexing tradeoff, unlike the V-BLAST

architectures discussed above. Earlier work developed lattice-based schemes that attain the
full DMT [57, 58] but, to the best of our knowledge, ours is the first that decouples spatial
decoding from temporal decoding. The caveat is that the DMT result presented in the
current chapter only applies if there is no spatial coding across transmit antennas, whereas
the DMT results of [57, 58] apply in general. Characterizing the DMT of integer-forcing
when there is coding across transmit antennas is an interesting subject for future study.
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Chapter 3

Mitigating Interference with IF

Receivers

We have studied the performance of the integer-forcing (IF) linear receiver under the
standard MIMO channel and found that it achieves outage rates close those of the joint
ML decoder as well as the same DMT. In this section, we show that integer-forcing archi-
tectures are also successful at dealing with a different kind of channel disturbance, namely
interference. We assume that the interfering signal is low-dimensional (compared to the
number of receive antennas), and we are most interested in the case where the variance of
this interfering signal increases (at a certain rate) with the transmit power. We show that
the integer-forcing architecture can be used to perform “oblivious” interference mitigation.
By oblivious, we mean that the transmitter and receiver are unaware of the codebook of
the interferer (if there is one). However, the receiver knows which subspace is occupied by
the interference. By selecting equation coefficients in a direction that depends both on the
interference space and on the channel matrix, the integer-forcing receiver reduces the im-
pact of interference and attains a significant gain over traditional linear receivers. We will
characterize the generalized degrees-of-freedom show that it matches that of the joint ML
decoder.

Remark 3.1. Oblivious receivers have been thoroughly studied in the context of cellular
systems [61] and distributed MIMO [62].

3.1 Problem Definition

For ease of notation and tractability, the discussion presented in this section is limited to
channels whose channel matrix is square, i.e., with equal number of transmit and receive
antennas. Recall that the real-valued representation of the M ×M complex-valued MIMO
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channel (see Definition 2.5) is given by

Y = HX+ Z (3.1)

where Y ∈ R2M×n is the channel output, H ∈ R2M×2M is the real-valued representation of
the fading matrix, X2M×n is the channel input, and the noise Z ∈ R2M×n has i.i.d. Gaussian
entries with unit variance. In this section, we extend the standard MIMO channel to include
the case of interference. The generalized model has channel output

Y = HX+ JV + Z (3.2)

where H is the channel matrix, X is the channel input, and Z is the noise, all as in the
previous model. An external interferer adds V ∈ R2K×n in the direction represented by the
column space of J ∈ R2M×2K . We assume that each element of V is i.i.d. Gaussian with
variance INR. We assume that J is fixed during the whole transmission block and known
only to the receiver.

The definition for messages, rates, encoders, and decoders follow along similar lines as
those for the standard MIMO channel (see Definitions 2.1, 5.4, 5.5, and 2.3 in Section 2.1).

3.2 Traditional Linear Receivers

As in the case without interference, traditional linear receivers process the channel output
Y by multiplying it by a 2M × 2M matrix B to arrive at the effective output

Ỹ = BY (3.3)

and recover the message wm using only the mth row of the matrix Ỹ. By analogy to (2.12),
the achievable sum rate can be expressed as

RLINEAR(H,J,B) = min
m

2MRm(H,J,B). (3.4)

where Rm(H,J,B) represents the achievable rate for the mth data stream (using Gaussian
codebooks),

Rm(H,J,B) =
1

2
log

(
1 +

SNR‖bT
mhm‖2

‖bm‖2 + INR‖JTbm‖2 + SNR
∑

i 6=m ‖bT
mhi‖2

)
,

Again, let us discuss several choices of the matrix B. The decorrelator, given by B =
H−1, removes the interference due to other data streams but does not cancel the external
interference J (except in the very special case where the subspace spanned by J is orthogonal
to the subspace spanned by H−1). Alternatively, if we choose B = J⊥, where J⊥ is the
2K × 2M matrix whose rowspace is orthogonal to the columnspace of J, then the external
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interference term is indeed nulled. The resulting output J⊥Y can then be processed by
a traditional linear receiver. This scheme achieves good performance in high INR regimes
but does not perform well in high SNR regimes since the interference due to the other data
streams is mostly unresolved. The MMSE receiver improves the performance of the both

architectures by choosing B = H
(

1
SNR

I+ INR

SNR
JJT +HHT

)−1
. However, since there are 2M

data streams and the interference is of dimension 2K, it is impossible to cancel both the
interference from other data streams and the external interference with any matrix B. One
way out of this conundrum is to reduce the number of transmitted streams to 2M−2K. For
this scenario, the MMSE receiver can be applied to mitigate both the external interference
and the interference from other data streams.

Complexity permitting, we can again improve performance by resorting to successive
interference cancellation architectures. The achievable rate for V-BLAST I in the standard
MIMO channel from (2.14) becomes

RSIC,1(H) = min
m

2MRπ(m)(H). (3.5)

where

Rπ(m)(H) =
1

2
log

(
1 +

SNR‖bT
mhπ(m)‖2

‖bm‖2 + INR‖JTbm‖2 + SNR
∑

i>m ‖bT
mhπ(i)‖2

)
(3.6)

and bm = ( 1
SNR

I+JJT INR

SNR
+Hπm

HT
πm

)−1hπ(m). The achievable rate for V-BLAST II follows
by maximizing the rate in (3.5) over all decoding orders π ∈ Π.

3.3 Integer-Forcing Linear Receiver

We apply the integer-forcing linear receiver proposed in Section 2.3 to the problem of mit-
igating interference (see Figure 3.1). The channel output matrix Y is first multiplied by a
fixed matrix B to form the matrix Ỹ whose mth row is the signal fed into the mth decoder.
Each such row can be expressed as

ỹT
m =

2M∑

i=1

(bT
mhi)x

T
i + bT

mJV + bT
mZ (3.7)

=

2M∑

i=1

h̃T
mX+ ṽT

m + z̃Tm (3.8)

where h̃m = HTbm is the effective channel to themth decoder, ṽm is the effective interference
with variance ‖JTbm‖2INR, and z̃m is the effective noise with variance ‖bm‖2. The next
theorem and its following remarks generalize Theorem 2.10, Corollary 2.11, and Corollary
2.12 to include the case with interference.
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ℓ=1 am,ℓwℓ

]
mod q

Figure 3.1. Integer-forcing linear receiver for the complex-valued M ×M MIMO channel
with external inference of dimension K.

Theorem 3.2. Consider the MIMO channel with channel matrix H ∈ R2M×2M and interfer-
ence matrix J ∈ R2M×2K . For any full-rank integer matrix A ∈ Z2M×2M and any 2M × 2M
matrix B = [b1 · · ·b2M ]T , the following sum rate is achievable using the integer-forcing linear
receiver:

R(H,J,A,B) < min
m

2MR(H,J, am,bm) (3.9)

where R(H,J, am,bm) is given by

=
1

2
log

(
SNR

‖bm‖2 + ‖JTbm‖2INR+ ‖HTbm − am‖2SNR

)

Remark 3.3. Exact integer-forcing selects B = AH−1. The achievable rate can be expressed
more concisely as

R < min
m

M log

(
SNR

‖(H−1)Tam‖2 + ‖JT (H−1)Tam‖2INR

)
. (3.10)

Remark 3.4. The optimal projection matrix that maximizes the achievable rate in Theorem
3.2 is given by

BOPT = AHT

(
HHT + JJT INR

SNR
+ I

1

SNR

)−1

. (3.11)

3.4 Geometric Interpretation

In the case without interference, the equation coefficients a1, · · ·aM should be chosen in the
direction of the maximum eigenvector of HTH to minimize the effective noise (see Figure
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Figure 3.2. The decorrelator (left) fixes the equations to be a1 = [1 0]T and a2 = [0 1]T .
The integer-forcing Linear Receiver (right) allows for any choice of linearly independent equations.

Equations should be chosen in the direction orthogonal to J̃ = H−1J.

2.4). When the interference is large, the equations coefficients should instead be chosen as
close to orthogonal to the effective interference as possible. Consider the (suboptimal) rate
expression in (3.10). The “effective” noise variance in the mth stream is

σEFFEC,m = ‖(H−1)Tam‖2 + ‖JT (H−1)Tam‖2INR . (3.12)

Let λMAX be the maximum singular value of H−1 and J̃ = H−1J. The effective noise variance
can be bounded by

σEFFEC,m ≤ λ2
MAX

‖am‖2 + ‖J̃Tam‖2INR . (3.13)

In the high interference regime (INR ≫ 1), the equation coefficients should be chosen orthog-
onal to the direction of the “effective” interference J̃ to minimize the effective noise variance.
This is illustrated in Figure 3.2. In the case of traditional linear receivers, the equation co-
efficients are fixed to be the unit vectors: a1 = [1 0 · · · 0]T , a2 = [0 1 · · · 0]T , . . . , a2M =
[0 0 · · · 1]T . As a result, the interference space spanned by J̃ has significant projections onto
at least some of the decoding dimensions am. By contrast, in the case of the integer-forcing
linear receiver, since a1, · · · , a2M need only be linearly independent, we can choose all of the
decoding dimensions am to be close to orthogonal to J̃.

3.5 Fixed Channel Example

To illustrate the impact of choosing equation coefficients in a fashion suitable to mitigate
external interference, we consider the 2 × 2 MIMO channel with channel matrix H and
one-dimensional interference space J given by

H =
1

3

[
2 1
1 2

]
J =

1

3

[
L+ 2
2L+ 1

]
(3.14)
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where L ∈ N. In the case of the decorrelator, we invert the channel to arrive at the effective
output:

Ỹ = X+
1

3

[
2 −1
−1 2

] [
L+ 2
2L+ 1

]
V + Z̃ (3.15)

= X+

[
1
L

]
V + Z̃ (3.16)

where Z̃ = H−1Z. For INR ≫ 1, the effective noise variances scale as

σ2
DECORR,1

∼ INR (3.17)

σ2
DECORR,2

∼ L2
INR (3.18)

Using the integer-forcing linear receiver with the choice of equations a1 = [1 0]T and a2 =
[−L 1]T , the effective channel output to the second decoder is

[
−L 1

]
Ỹ = −LxT

1 + xT
2 +

[
−L 1

]
Z̃ (3.19)

where xℓ is the codeword sent by the ℓth antenna. It follows that the effective noise variances
are

σ2
INT,1

∼ INR (3.20)

σ2
INT,2

∼ C (3.21)

where C is a constant that does not scale with INR. In this example, the integer-forcing
linear receiver is able to completely cancel the effect of interference in the second stream by
choosing equation coefficients appropriately.

3.6 Generalized Degrees of Freedom

We evaluate the generalized degrees of freedom for the M ×M complex MIMO channel with
K-dimensional interference. We specify the interference-to-noise ratio through the parameter
α where

α = lim
SNR→∞
INR→∞

log INR

log SNR
(3.22)

and consider the case where 0 ≤ α ≤ 1. The generalized degrees of freedom are defined as
follows (see [63]):

Definition 3.5. (Generalized Degrees-of-Freedom) For a given channel matrix H and inter-
ference matrix J, the generalized degrees-of-freedom of a scheme is

d(H,J) = lim
SNR→∞

INR=SNR
α

R(SNR,H,J)

log SNR
(3.23)

where R(SNR,H,J) is the achievable sum rate of the scheme.
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Definition 3.6. (Rational Independence) We call a matrix TM×N rationally independent if
for all q ∈ QN \ 0, we have that

Tq 6= 0 (3.24)

We consider the set of matrices (H,J) such that H−1J is rationally independent. It can
be seen that this set has Lebesgue measure one. In the next theorem, we show that for this
class of matrices, the integer-forcing linear receiver achieves the same number of generalized
degrees of freedom as the joint decoder, and is thus optimal.

Theorem 3.7. Consider the M ×M complex MIMO channel with K dimensional interfer-
ence. The integer-forcing linear receiver achieves the generalized degrees of freedom

dINT = M −Kα (3.25)

for a set of H,J that have Lebesgue measure one.

A straightforward derivation shows that the optimal joint decoder with 2M streams of
data achieves the following generalized degrees of freedom

dJOINT = M −Kα (3.26)

(3.27)

for all full-rank channel matrices H,J. The linear MMSE receiver with 2M data streams
and the linear MMSE receiver with 2M − 2K data streams achieve the following degrees of
freedom for all full-rank channel matrices H,J:

dMMSE,2M = M −Mα (3.28)

dMMSE,2M-2K = M −K (3.29)

When 2M data streams are transmitted (on the real-valued representation of the complex
MIMO channel), the MMSE receiver does not achieve the optimal number of degrees of
freedom since it treats the interference as noise at high SNR while the integer-forcing linear
receiver mitigates the interference. When only 2M − 2K data streams are transmitted, the
linear MMSE receiver can first cancel the interference and then separate the data streams to
achieve a degree of freedom of 2M − 2K. However, this is suboptimal for all regimes α < 1
(see Figure 12). A straightforward calculation shows that when the number of transmitted
data streams is between 2M − 2K and 2M , the performance is strictly suboptimal in terms
of degrees of freedom.

Our proof of Theorem 3.7 uses the following Theorem 4.13 in Chapter 4.

Proof. (Theorem 3.7) To establish this result, we use the (generally suboptimal) choice of the
matrix B that we have referred to as exact integer-forcing, i.e., from (3.10). The achievable
rate of this version of the integer-forcing linear receiver is given by

R < max
A:|A|6=0

min
m

M log

(
SNR

‖(H−1)Tam‖2 + ‖JT (H−1)Tam‖2INR

)
. (3.30)
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Figure 3.3. Generalized degrees of freedom for the complex-valued 16×16 MIMO channel
with 8-dimensional interference (M = 16,K = 8).

With INR ∼ SNR
α, the effective noise in the worst data stream can be expressed as

σ2 = min
A:|A|6=0

max
m

‖(H−1)Tam‖2 + ‖JT (H−1)Tam‖2SNRα (3.31)

≤ min
A:|A|6=0

max
m

λ2
MAX

(H−1)‖am‖2 + ‖J̃Tam‖2SNRα , (3.32)

where λMAX(H
−1) is the maximum singular value ofH−1 and we use the shorthand J̃ = H−1J.

Let us partition J̃T into two parts,

J̃T = [S1,S2] , (3.33)

where S1 ∈ R2K×(2M−2K) and S2 ∈ R2K×2K . Observe that with probability one, J̃T has
rank 2K (hence, is full-rank). This implies that we can permute the columns of J̃T in such
a way as to ensure that its last 2K columns are linearly independent. If we use the same
permutation on the coefficients of the vector am, our upper bound on the effective noise
variance given in (3.32) will remain unchanged. Therefore, without loss of generality, we
may assume that S2 has rank 2K. We define T = −S−1

2 S1. Then, we can write

S−1
2 J̃T = [S−1

2 S1,S
−1
2 S2] (3.34)

= [−T, I2K ] . (3.35)
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Let the coefficients for the mth equation be given by am = [qT
m,p

T
m]

T where qm ∈ Z2M−2K

and pm ∈ Z2K . We use (3.35) to bound ‖J̃Tam‖:

‖J̃Tam‖2 = ‖S2S
−1
2 J̃Tam‖2 (3.36)

= ‖S2[−T, I2K ]am‖2 (3.37)

≤ λ2
MAX

(S2)‖[−T, I2K ]am‖2 (3.38)

= λ2
MAX

(S2)‖Tqm − pm‖2 (3.39)

where λMAX(S2) the maximum singular value of S2. Combining (3.39) with (3.32), the
effective noise variance is bounded as follows:

σ2 ≤ min
A:|A|6=0

max
m

λ2
MAX

(H−1)‖am‖2 + λ2
MAX

(S2)‖Tqm − pm‖2SNRα . (3.40)

We proceed to bound the quantity ‖Tqm − pm‖2. We decompose T into its integer and
fractional parts:

T = TI +TF (3.41)

where TI represents the integer part of T and TF represents the fractional part of T. We
define

p̃m = pm −TIqm (3.42)

ãm = [qT
m, p̃

T
m]

T (3.43)

Ã = [ã1 · · · ã2M ]T (3.44)

G =

(
I2M−2K 0

−TI I2K

)
. (3.45)

Since G is a 2M × 2M lower triangular matrix with non-zero diagonal elements, it has rank
2M . We note that

am = G−1ãm . (3.46)

SinceG is invertible, it follows that if the matrix formed by the coefficient vectors a1, . . . , a2M

is full-rank, then the matrix formed by ã1, . . . , ã2M is full-rank and vice versa. From (3.41),
it have that

‖Tqm − pm‖ = ‖TFqm − (pm −TIqm)‖ (3.47)

= ‖TFqm − p̃m‖ (3.48)

and, from (3.46), we have that

‖am‖2 = ‖G−1ãm‖2 (3.49)

≤ λ2
MAX

(G−1)‖ãm‖2 . (3.50)
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From (3.40), (3.48), and (3.50), the effective noise variance can be upper bounded by

σ2 ≤ min
Ã:|Ã|6=0

max
m

λ2
MAX

(H−1)λ2
MAX

(G−1)‖ãm‖2 + λ2
MAX

(S2)‖TFqm − p̃m‖2SNRα (3.51)

From Theorem 4.13, there exists a Q′ such that for all Q > Q′, there exist 2M linearly
independent vectors:

ãm = [qT
m, p̃

T
m]

T ∈ Z2M−2K × Z2K for m = 1, . . . , 2M (3.52)

satisfying the following two inequalities:

‖qm‖ ≤ C(logQ)2Q (3.53)

‖TFqm − p̃m‖ ≤ C(logQ)2

Q
M−K

K

(3.54)

where C is some constant independent of Q. For sufficiently large Q, we observe that
C(logQ)2

Q
M−K

K

≤ 1. Using (3.53) and (3.54), we bound the norm of ãm as follows:

‖ãm‖ =
√

‖qm‖2 + ‖p̃m‖2 (3.55)

≤ ‖qm‖+ ‖p̃m‖ (3.56)

= ‖qm‖+ ‖p̃m +TFqm −TFqm‖ (3.57)

≤ ‖qm‖+ ‖TFqm‖+ ‖p̃m −TFqm‖ (3.58)

≤ ‖qm‖+ ‖TFqm‖+
C(logQ)2

Q
M−K

K

(3.59)

≤ ‖qm‖+ ‖TFqm‖+ 1 (3.60)

≤ ‖qm‖+ λMAX(TF )‖qm‖+ 1 (3.61)

≤ C(logQ)2Q
(
1 + λMAX(TF )

)
+ 1 (3.62)

where λMAX(TF ) is the maximum singular value of TF .
Combining (3.54) and (3.62), the effective noise variance from (3.51) is bounded by

σ2 ≤ λ2
MAX

(H−1)λ2
MAX

(G−1)
(
C(logQ)2Q

(
1 + λMAX(T)

)
+ 1
)2

+ λ2
MAX

(S2)SNR
α

(
C(logQ)2

Q
M−K

K

)2

(3.63)

Let Q scale according to Q2 ∼ SNR
γ . It follows that

σ2 ≤ Θ(log SNR)
(
SNR

γ + SNR
α−γ(M−K

K )
)

. (3.64)
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Setting γ = K
M
α, we find that the generalized degrees-of-freedom are

dINT = lim
SNR→∞

2M
1
2
log
(
SNR

σ2

)

log SNR
(3.65)

= lim
SNR→∞

M
log
(

SNR

SNR
α K

M

)

log SNR
(3.66)

= M

(
1− α

K

M

)
(3.67)

= M −Kα , (3.68)

which concludes the proof of Theorem 3.7.



47

Chapter 4

Diophantine Approximations

This chapter provides a partial overview of some basic techniques in Diophantine approx-
imations. In the first section, we review some classical results for finding a single integer
approximations in Theorems 4.3 - 4.7 and multiple integer approximations in Theorems 4.9
and 4.11. Then, in the second section, we present a new result in Theorem 4.13. Our
result shows that finding a set of full rank integer approximations for a matrix is only
slightly worse than finding a single approximation in the limit. We note that diophantine
approximation techniques have also been useful for other problems in information theory,
including alignment interference over fixed channels and charactering the degrees of freedom
for compute-and-forward [43, 44].

4.1 Some Classical Results

We first define the unit ball and successive minima in the sequel.

Definition 4.1 (Unit Ball). Let h : RM → R be a norm. The unit ball with respect to h is
denoted bys

Bh =
{
x ∈ RM : h(x) ≤ 1

}
(4.1)

the volume of Bh is denoted by Vh.

Definition 4.2 (Successive Minima). Let h : RM → R be a norm and Bh be the unit ball
with respect to h. The mth successive minima ǫm where 0 < m ≤ M is given by

ǫm = min
{
ǫ : ∃ m linearly independent integer points v1, · · · ,vm ∈ ZM ∩ ǫBh

}

In Theorem 4.3 and Corollary 4.4 below, we state Minkowski’s upper bound on the first
successive minimum.



CHAPTER 4. DIOPHANTINE APPROXIMATIONS 48

Theorem 4.3 (Minkowski Successive Minima I). Let R be a convex body in RM that is
symmetric about 0 and with volume VR > 2M . There exists z ∈ ZM\0 that is contained in
R.

Corollary 4.4. Let h : RM → R be a norm and ǫ1 be the 1st successive minima with respect
to h. The following inequality is satisfied

ǫM1 Vh ≤ 2M (4.2)

Corollary 4.4 follows directly from Theorem 4.3 by letting R = ǫ1Bh. Since Bh is the
unit ball with respect to the h norm, R is a close convex region symmetric about the origin
with volume V ol(R) = ǫM1 Vh. In the sequel, we state Blichfeldt’s Lemma, which is used in
the proof of Theorem 4.3.

Lemma 4.5 (Blichfeldt). If R ⊂ RM is a bounded set with volume greater than 1, then there
exists x,y ∈ R such that x− y ∈ ZM .

Proof. ([64]) Let C denote the open-half unit hypercube given by

C =
{
x ∈ RM : 0 ≤ xi < 1 for i = 1, · · ·n

}
. (4.3)

For z ∈ ZM , let Cz represent C translated by z, i.e:

Cz = {z+ x : x ∈ C} (4.4)

and let Rz be given by

Rz = R ∩ Cz (4.5)

We note that the sets Rz are disjoint and their union equals the space R, i.e:

Rz ∩ Rz′ for z 6= z′ (4.6)

∪z∈ZM Rz = R (4.7)

Let Rz − z = {x− z : x ∈ Rz}. We note that Rz − z ∈ C for all z ∈ ZM and that
V ol(Rz − z) = V ol(Rz). Hence, it follows that

∑

z∈Zn

V ol(Rz − z) =
∑

z∈Zn

V ol(Rz) = V ol(R) > 1 (4.8)

Since Rz − z ⊆ C and V ol(C) = 1, (4.8) implies that there exists z, z′ ∈ ZM with z 6= z′

such that Rz − z ∩ Rz′ − z′ 6= ∅. Hence, there exists x ∈ Rz − z ∩ Rz′ − z′ such that
x = xz − z = xz′ − z′ for some xz′ ∈ Rz′ and xz ∈ Rz. Note that xz′ ,xz ∈ R and that
xz′ − xz = z− z′ ∈ ZM .
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Proof. (Theorem 4.3) Let R′ =
{

1
2
x : x ∈ RM

}
. The volume of R′ is bounded as follows

V ol(R′) =
1

2M
V ol(R) > 1 (4.9)

Since R′ is a scaled version of R, it is also closed, convex and symmetric about the origin.
From Lemma 4.5, there exists x,y ∈ R′ such that x−y ∈ ZM . We now show that x−y ∈ R.
Note that since R′ =

{
1
2
x : x ∈ RM

}
, we have that 2x, 2y ∈ R. Since R is symmetric about

the origin, we have that 2y ∈ R. Since R is convex, we have that 1
2
(2x) + 1

2
(−2y) ∈ R.

Hence, x− y ∈ R.

Theorem 4.6 (Minkowski Linear Forms). Let T ∈ RM×M be a full rank matrix. There
exists M integers a1, · · · , aM that satisfy the following inequalities:

∣∣∣∣∣

M∑

j=1

t1,jaj

∣∣∣∣∣ ≤ c1 (4.10)

∣∣∣∣∣

M∑

j=1

ti,jaj

∣∣∣∣∣ < ci for i = 2, · · · ,M (4.11)

as long as

c1 · · · cn ≥ |det(T)| . (4.12)

Proof. ([64]) We first consider the case where (4.12) is satisfied with strict inequality. We
define the region

R =

{
x ∈ RM :

∣∣∣∣∣

M∑

j=1

t1,jxj

∣∣∣∣∣ ≤ c1,

∣∣∣∣∣

M∑

j=1

ti,jxj

∣∣∣∣∣ < ci for i = 2, · · · ,M
}

(4.13)

It can be easily shown using elementary calculus that this region is symmetric, convex and
has volume

VR = 2M
∣∣det(T−1)

∣∣ c1 · · · cM (4.14)

=
2M

|det(T)|c1 · · · cM (4.15)

Using the fact that (4.12) is satisfied with equality, it follows that

VR =
2M

|det(T)|c1 · · · cM (4.16)

>
2M

|det(T)| |det(T)| (4.17)

> 2M (4.18)



CHAPTER 4. DIOPHANTINE APPROXIMATIONS 50

The result then follows by applying Theorem 4.3. We now consider the case where (4.12) is
satisfied with equality. For each ǫ in 0 < ǫ < 1, we define the region Rǫ as follows:

Rǫ =

{
x ∈ RM :

∣∣∣∣∣

M∑

j=1

t1,jxj

∣∣∣∣∣ ≤ c1 + ǫ,

∣∣∣∣∣

M∑

j=1

ti,jxj

∣∣∣∣∣ < ci + ǫ for i = 2, · · · ,M
}

(4.19)

and note that Rǫ ⊂ Rǫ′ if ǫ < ǫ′. Let T′ = T−1 and yi =
∑M

j=1 ti,jxj . It can be easily seen
that the region Rǫ is bounded by some R that is independent of ǫ since

|xi| =
∣∣∣∣∣
∑

j

t′i,jyi

∣∣∣∣∣ (4.20)

≤
∑

j

|t′i,j||yi| (4.21)

≤
∑

j

|t′i,j|ci + ǫ (4.22)

≤
∑

j

|t′i,j|(ci + 1) (4.23)

≤ R (4.24)

Since Rǫ is bounded by some R for all 0 < ǫ < 1, Rǫ contains only a finite number of integer
points. Furthermore, for all ǫ > 0,Rǫ must contain some non-zero integer point. Hence,
there exists some z ∈ Z\0 such that z ∈ Rǫ for all ǫ arbitrarily small. The result then
follows by taking ǫ to be arbitrarily small.

Next, we state a foundational result in Diophantine approximations.

Theorem 4.7 (Dirichlet). For any T ∈ RK×(M−K) and any Q ∈ N, there exists a (q,p) ∈(
ZM−K × ZK

)
\0 such that

‖q‖∞ ≤ Q (4.25)

‖Tq− p‖∞ <
1

Q
M−K

K

(4.26)

Remark 4.8. For the scalar case (K = 1,M = 2), Dirichlet’s theorem implies that every real
number has a sequence of good rational approximations.

Proof. We define the following constants:

ci = Q for i = 1, · · · ,M −K (4.27)

ci =
1

Q
M−K

K

for i = M −K + 1, · · ·M (4.28)
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and note that Πici = 1. Let the matrix X ∈ RM×M be given as follows

X =

[
T −IK

IM−K 0

]

Since exchanging rows of a matrix only affects the sign of its determinant, we have that

| det(X)| =
∣∣∣∣det

([
IM−K 0

T −IK

])∣∣∣∣ . (4.29)

Now we use the fact that the determinant of a lower triangular matrix is just the product
of its diagonal entries,

| det(X)| = 1. (4.30)

The proof then follows by Theorem 4.6.

Theorem 4.9 (Khintchine-Groshev). Fix a decreasing function Ψ : N → R+. If

∞∑

q=1

qM−K−1Ψ(q)K < ∞, (4.31)

then for almost all T ∈ RK×(M−K) with |Ti,j| ≤ 1 for all i, j, there are only a finite number
of solutions (q,p) ∈ ZM−K × ZK to the following inequality

‖Tq− p‖∞ < Ψ(‖q‖∞) (4.32)

Remark 4.10. As a result of Theorem 4.9,

‖Tq− p‖∞ <
1

‖q‖∞ log ‖q‖∞
(4.33)

has infinitely many solutions for almost all T; while

‖Tq− p‖∞ <
1

‖q‖∞ log (‖q‖∞)2
(4.34)

has infinitely many solutions for almost no T.

The proof of Theorem 4.9 follows along the same lines as the Borel-Cantelli Lemma and
can be found in [64, 65].

Theorem 4.11 (Minkowski II). Let h : RM → R be a norm and ǫ1, · · · ǫM be the successive
minima with respect to h. The following inequality is satisfied

ǫ1 · · · ǫMVh ≤ 2M (4.35)

Remark 4.12. Since ǫ1 ≤ ǫ2 · · · ≤ ǫM , Theorem 4.11 implies Theorem 4.3.

The proof of Theorem 4.11 can be found in [64] and involves many properties of convex
bodies. We now state our result on diophantine approximations.
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4.2 A New Result: Full-Rank Approximations

Theorem 4.13. Let T ∈ R2K×(2M−2K) be rationally independent and assume |ti,j| ≤ 1 for
all i, j. There exists a Q′ ∈ N such that all for Q > Q′, there exist M linearly independent
integer vectors (q1,p1), · · · (qM ,pM) ∈ ZM−K × ZK that satisfy

‖qm‖ ≤ CQ(logQ)2 (4.36)

‖Tqm − pm‖ ≤ C(logQ)2

Q
M−K

K

(4.37)

where C is a constant that is independent of Q.

Proof. For any vector v ∈ Z2M , we denote the first 2M − 2K components by q and the
remaining 2Kcomponents by p, and will thus write

v =

[
q

p

]
. (4.38)

From the statement of the theorem, T = [t1 · · · t2K ]T is a (rationally independent) 2K ×
(2M − 2K) real-valued matrix with |ti,j| ≤ 1 for all i, j. For a fixed T, we define the
semi-norms f , g as follows:

f(v) = ‖Tq− p‖ (4.39)

g(v) = ‖q‖ . (4.40)

For a fixed Q ≥ 2M , we let λ1 denote the minimum value of f(v) under the constraint
g(v) ≤ Q,

λ1 = min
v∈Z2M\{0}

g(v)≤Q

f(v) (4.41)

= min
q∈Z2M−2K

‖q‖≤Q

min
p∈Z2K

[qT ,pT ]T 6=0

‖Tq− p‖, (4.42)

v1 ∈ Z2M denote an integer vector that achieves λ1

v1 = argmin
v∈Z2M\{0}

g(v)≤Q

f(v), (4.43)

q1 ∈ Z2M−2K be the first 2M − 2K components of v1, and µ1 be the value of v evaluated
by g,

µ1 = g(v1) (4.44)

= ‖q1‖ . (4.45)
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We note that for large enough Q, λ1 < 1 and µ1 > 0.
From now on, we assume that Q is sufficiently large so that λ1 < 1 and µ1 > 0. Based

on the seminorms f and g, we define the function h : R2M → R as follows:

h(v) =

(
f 2(v) +

λ2
1

µ2
1

g2(v)

)1/2

(4.46)

=

(
‖Tq− p‖2 + λ2

1

µ2
1

‖q‖2
)1/2

. (4.47)

In the sequel, we show that h is a norm. We define the 2M × 2M matrix Γ as follows:

Γ =

[
T −I2K

λ1

µ1
I2M−2K 0

]

Note that we can rewrite the function h using Γ:

h(v) = ‖Γv‖. (4.48)

Since exchanging rows of a matrix only affects the sign of its determinant, we have that

| det(Γ)| =
∣∣∣∣det

([
λ1

µ1
I2M−2K 0

T −I2K

])∣∣∣∣ . (4.49)

Now we use the fact that the determinant of a lower triangular matrix is just the product
of its diagonal entries,

| det(Γ)| =
(
λ1

µ1

)2M−2K

. (4.50)

Since T is rationally independent, it follows that λ1 > 0. Since µ1 > 0 by assumption,
we have that λ1

µ1
> 0. Since Γ is full-rank and thus injective, h is a norm.

Let Vh be the volume of the h-unit ball. Let u = Γv. It follows that:

Vh =

∫

{v:‖Γv‖≤1}
dv (4.51)

=

∫

{u:‖u‖≤1}
| det(Γ−1)|du (4.52)

=
1

| det(Γ)|

∫

{u:‖u‖≤1}
du (4.53)

=
1

| det(Γ)|V2M (4.54)

=

(
µ1

λ1

)2M−2K

V2M , (4.55)
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where V2M is the volume of the unit ball with respect to the Euclidean norm (in 2M dimen-
sional space).

Let ǫ1, . . . , ǫ2M be the successive minima with respect to h (see Definition 4.2). Let
y1, . . . ,y2M ∈ Z2M be linearly independent integer points that achieve the successive minima,
i.e:

h(yi) = ǫi. (4.56)

Using Minkowski’s 2nd Theorem on successive minima (Theorem 4.11), we have that:

Vh

2M∏

i=1

ǫi ≤ 22M , (4.57)

where Vh is the volume of the h-unit ball. Using (4.55), we have that:

(
µ1

λ1

)2M−2K

V2M

2M∏

i=1

ǫi ≤ 22M . (4.58)

Rewriting the above, we have that

(
µ1

λ1

)2M−2K 2M∏

i=1

ǫi ≤ C, (4.59)

where C is a constant that depends only on 2M . Rearranging (4.59), we arrive at the
following:

ǫ2M ≤ C

(
λ1

ǫ1
· · · λ1

ǫ2M−2K

)(
1

ǫ2M−2K+1 · · · ǫ2M−1

)(
1

µ2M−2K
1

)
(4.60)

= C

(
λ1

ǫ1
· · · λ1

ǫ2M−2K

)(
λ1

ǫ2M−2K+1
· · · λ1

ǫ2M−1

)(
1

µ2M−2K
1 λ2K−1

1

)
(4.61)

= C

(
λ1

ǫ1
· · · λ1

ǫ2M−1

)(
1

µ2M−2K
1 λ2K−1

1

)
(4.62)

= C

(
λ1

ǫ1
· · · λ1

ǫ2M−1

)(
λ1

µ2M−2K
1 λ2K

1

)
. (4.63)

For all v ∈ Z2M\ {0}, we have that h(v) ≥ λ1. To see this, we can consider the case
where ‖q‖ < µ1 and ‖q‖ ≥ µ1 separately. When ‖q‖ ≥ µ1, h can be bounded as follows

h(v) =

(
‖Tq− p‖2 + λ2

1

µ2
1

‖q‖2
)1/2

(4.64)

≥ λ1

µ1
‖q‖ (4.65)

≥ λ1. (4.66)
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We now consider the case where ‖q‖ < µ1. We first bound h as follows

h(v) =

(
‖Tq− p‖2 + λ2

1

µ2
1

‖q‖2
)1/2

(4.67)

≥ ‖Tq− p‖. (4.68)

Recall that µ1 = ‖q1‖ and λ1 = minp∈Z2K ‖Tq1 − p‖. Assume that there exists a q with
‖q‖ < ‖q1‖ such that

min
p

‖Tq− p‖ < min
p

‖Tq1 − p‖ (4.69)

= λ1, (4.70)

then the definition of q1 in (4.43) is violated. Hence, in this case, h(v) ≥ ‖Tq− p‖ ≥ λ1.
Since ǫj = h(yj) for some yj ∈ R2M , it follows that

ǫj ≥ λ1 for all j = 1, . . . , 2M. (4.71)

Combining the above with (4.63), it follows that

ǫ2M ≤ C
λ1

µ2M−2K
1 λ2K

1

. (4.72)

From the definition of h, ǫ2M , and y1 · · ·y2M , we have that

h(yj) ≤ ǫ2M for j = 1 · · ·2M. (4.73)

By the construction of h (see (4.46)), we have that:

f(yj) ≤ h(yj) ≤ ǫ2M ≤ C
λ1

λ2K
1 µ2M−2K

1

(4.74)

λ1

µ1
g(yj) ≤ h(yj) ≤ ǫ2M ≤ C

λ1

λ2K
1 µ2M−2K

1

, (4.75)

for j = 1, · · · , 2M . The above equations imply that

f(yj) ≤ C
λ1

λ2K
1 µ2M−2K

1

(4.76)

g(yj) ≤ C
µ1

λ2K
1 µ2M−2K

1

, (4.77)

for j = 1, . . . , 2M .
Recall that λ1, µ1 are defined with respect to a fixed Q. We now show that for all

sufficiently large Q,

λ1(Q)2Kµ1(Q)2M−2K ≥ 1

log(µ1(Q))2
. (4.78)
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We define the function Ψ : Z → R as follows

Ψ(q) = 1 for q = 1 (4.79)

Ψ(q) =
1

q
2M−2K

2K (log q)
2

2K

for q > 1. (4.80)

We note that with this choice of Ψ, it follows that

∑

q

q2M−2K−1Ψ(q)2K < ∞. (4.81)

Applying Theorem 4.9, we have that for rationally independent T ∈ R2K×(2M−2K), there are
only a finite number of integer solutions [qT ,pT ]T ∈ Z2M−2K ×Z2K that satisfy the following
condition:

‖Tq− p‖∞ <
1

‖q‖
2M−2K

2K∞ (log ‖q‖∞)
2

2K

. (4.82)

We rewrite this condition as follows

‖q‖2M−2K
∞ ‖Tq− p‖2K∞ <

1

(log ‖q‖∞)2
. (4.83)

We first fix an rationally independent T ∈ R2K×(2M−2K). Recall from (4.43) that q1(Q) is the
integer vector that achieves λ1(Q) for a given Q. Clearly, {‖q1(Q)‖∞}Q is a non-decreasing
integer sequence (in Q). Assume that ‖q1(Q)‖∞ is unbounded as Q → ∞. By Theorem 4.9,
we know that there are only a finite number of integers q that satisfy the condition in (4.83).
Let q′ be the integer with the largest L∞ norm that satisfies the condition in (4.83). This
suggests that for all Q where ‖q1(Q)‖∞ > ‖q′‖∞, q1(Q) does not satisfying the condition
in (4.83). Since {‖q1(Q)‖∞}Q is an unbounded non decreasing sequence, there exists some
Q′ such that for all Q > Q′, q1(Q) does not satisfy the condition in (4.83). Note that (4.78)
follows since any q,p that satisfies

‖q‖2M−2K
∞ ‖Tq− p‖2K∞ ≥ 1

(log ‖q‖∞)2
(4.84)

also satisfies

‖q‖2M−2K‖Tq− p‖2K ≥ 1

(log ‖q‖)2 . (4.85)

Finally, for any rationally independent T ∈ R2K×(2M−2K), we prove that sequence {‖q1(Q)‖∞}Q
is unbounded as Q → ∞. We prove this by contradiction. That is, assume that there exists
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some C ∈ Z+ such that ‖q1(Q)‖∞ ≤ C for all Q. This implies that q1(Q) takes only a finite
set of values. Hence, there exists a C ′ such that

min
p∈Z2K

‖Tq1(Q)− p‖∞ ≥ C ′ (4.86)

for all Q. However, by definition of λ1(Q) and Dirichlet’s theorem (Theorem 4.7) we have
that

min
p∈Z2K

‖Tq1(Q)− p‖∞ ≤ 1

Q
2M−2K

2K

(4.87)

for all Q ∈ N. This results in a contradiction with our assumption. Therefore, (4.78) is
proved.

Dirichlet’s Theorem (Theorem 4.7) is defined in terms of the ℓ∞ norm and λ1 is defined
in terms of the ℓ2 norm. Using the fact that

λ1 = min
q∈Z2M−2K

‖q‖≤Q

min
p∈Z2K

[qT ,pT ]T 6=0

‖Tq− p‖ (4.88)

≤
√
2K min

q∈Z2M−2K

‖q‖≤Q

min
p∈Z2K

[qT ,pT ]T 6=0

‖Tq− p‖∞, (4.89)

and (4.87), we have that

λ1 ≤
√
2K

Q
2M−2K

2K

. (4.90)

By definition, we have that

µ1 ≤ Q. (4.91)

Using (4.76), (4.78), (4.90), and (4.91), and assuming that Q is sufficiently large, we
bound f(yj) as follows:

f(yj) ≤ C
λ1

λ2K
1 µ2M−2K

(4.92)

≤ Cλ1(log µ1)
2 (4.93)

≤ C ′ (log µ1)
2

Q
2M−2K

2K

(4.94)

≤ C ′ (logQ)2

Q
2M−2K

2K

, (4.95)

where C ′ is a constant that does not depend on Q. Similarly, we can bound g(yj) as follows:

g(yj) ≤ Cµ1(logµ1)
2 ≤ C ′Q(logQ)2, (4.96)

which concludes the proof.
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Chapter 5

Network Function Computation

In this chapter, we consider linear function computation over multi-hop wired and wire-
less networks. Currently, function computation over wired and wireless networks remain as
two separate areas of research. Function computation in wired networks has been studied
in [8, 9, 10, 66, 67, 68] and general results for network with arbitrary topologies were dis-
covered. While wired networks contain noiseless bit pipes, wireless networks include effects
such as noisy superposition at the receivers and broadcast at the transmitters. These effects
make it difficult to characterize the performance of function computation over networks with
complicated topologies. Most existing literature has been focused on networks with simple
topologies such as a single multiple-access channel [31, 69, 70]. Hence, a natural question
that arises is how far the current state of the art techniques can be used to understand
function computation over multi-hop wireless networks.

We integrate the study of wired network computation and wireless network computation,
and show a connection between the two problems. More precisely, we develop coding strate-
gies for wireless networks by first turning them into wired networks. In addition, we develop
new results in both wired and wireless setting and provide a distinction between the set of
problems that are solvable using cut-set upper bounds and those are not solvable. It is well
known that cut-set upper bounds provide a tight converse for many interesting scenarios
in wired networks with arbitrary topologies, including multicast [11, 12, 71] and broadcast
settings [71]. Meanwhile, the two-unicast problem whose capacity is strictly tighter than
cut-set is still open except for special cases [72]. Hence, the tightness of the cut-set bound
can be a criteria to identify the problems that are “solvable” with the current state of the
art.

In the first part of this chapter, we develop an understanding of computation over wired
networks via a duality relation with broadcast networks. Duality between multiple-access
and broadcast channels was first discovered in single-hop scalar and MIMO wireless networks
[73, 74]. In [74], the goal was to study MIMO broadcast problems using solutions from
multiple-access MIMO channels. Since the computation capacity of the Gaussian multiple-
access channel is unknown, this elegant duality relationship cannot be extended to wireless
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Figure 5.1. As shown in [7][Theorem 5], multicast is dual to function computation for
orthogonal networks. In the multicast setting in (a), each destination wants messages a, b.
In the function computation setting in (b), the destination wants a1⊕ b1, a2 ⊕ b2. The same
LTI code (with matrix transpose), can be used for both problems

networks. Instead, a duality relation between multicast and computing the XOR of the
data packets over wired multiple-access networks was found in [7]. Figure 5.1 illustrates
the relation using the standard butterfly example. In the multiple-access network, source 1
transmits a1, a2, source 2 transmits b1, b2, and the receiver recovers a1 ⊕ b1, a2 ⊕ b2. In the
multicast network, the source transmits a, b and both destinations recover a, b. It is shown
that the same linear code works for both problems. In essence, transmitting a common
message in the broadcast network is dual to computing a function in the multiple-access
network. We generalize this duality relation to arbitrary linear deterministic networks using
the algebraic network coding approach based on characterizing the transfer functions of both
networks [71, 75, 76]. Using this connection, we identify the scenarios under which cut-set
bounds are tight for communicating over the broadcast network and computing over the
multiple-access network.

In the second part of this chapter, we apply the results from wired networks to wireless
networks. The main idea is to extract insights from the linear deterministic model introduced
in [77]. However, the problem considered in [77] is concerned with recovering the individual
messages. Since only the rate of information flow matters and structure in the messages is
not needed, it was sufficient to use codes without any algebraic structure. By contrast, in
computation problems where a particular algebraically structured function of the messages
is communicated, it is crucial to keep the algebraic structure of the messages. We use
nested lattice codes both for channel coding [16, 31] and source quantization [17, 18, 23,
78, 79]. After applying nested-lattice codes, the wireless network problem can be reduced
to a wired network problem. The duality relation can then be used to compute functions
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of discrete sources over linear deterministic networks. Using this approach, we characterize
the distortion for sending the sum of Gaussian sources across a class of relay networks to
within a constant factor of the optimal performance. Furthermore, we discuss the problems
where the cut-set bounds are approximately tight, and give an intuition based on linear
deterministic models.

Our approach can be understood as separating the overall network problem into two
different layers, a physical layer and a network layer, but with different paradigms. First,
the current physical layer requires each node in the network to decode a message which has
an explicit source node. However, in our scheme each node receives a noisy superposition of
the incoming signals and may decode a function of the incoming messages as suggested in
[32]. Second, the current network layer performs routing where the outgoing data packets
are a subset of the incoming data packets. In our scheme, as in standard network coding, the
relays can create a new packet by taking a linear combination of its incoming data packets.
Overall, our scheme separates the physical and the network layers of the network and allows
for computation in both layers. These new paradigms can potentially provide a different
dimension to the design of distributed sensor networks.

5.1 Computation in Deterministic Networks

Our primary problem of interest is linear computation over linear deterministic multiple-
access networks as described in Sections 5.1.1 and 5.1.2 below. Instead of solving the com-
putation problem directly, we define the dual broadcast problem in Sections 5.1.3 and 5.1.4
and prove the equivalence of the two problems in Theorem 5.17. The duality connection
between computation over multiple-access networks and communication over broadcast net-
works provides a means to convert the original problem to one that is well studied in the
literature [11, 71, 80]. In Theorem 5.27, we find a compact expression to describe the situ-
ations under which cut-set bounds are tight by first considering the broadcast scenario and
then applying the solution to the computation situation.

5.1.1 Linear deterministic Multiple-Access Network

A linear deterministic multiple-access network NDET-MAC is represented by a set of nodes
{Ni}i∈Ω. A given node Ni contains bi,in input links and bi,out output links. Node Ni inputs

Xi ∈ F
|bi,in|
p into the network and receives outputs Yi ∈ F

|bi,out|
p from the network. We assume

that the underlying finite field is Fp with prime p. We divide the set of all node indices into
source nodes S, relay nodes R and a single destination node D. We let the source node
indices be S = {1, . . . , m}. We assume that Yi = 0 for all i ∈ S and Xi = 0 for i ∈ D.
Hence, the source nodes do not receive any information from the network and the destination
node does not input any information into the network. The channel matrix from Ni to Nj
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is denoted by Hi,j ∈ F
|bj,out|×|bi,in|
p . The output of node Yj is given by

Yj =
∑

i∈Ω
Hi,jXi (5.1)

with all operations over Fp.

Definition 5.1 (Cut). We call a subset Γ ⊆ Ω a cut. The channel matrix for cut Γ is
denoted by the matrix HΓ,Γc and the information-flow value of cut Γ is given by

CDET-MAC

Γ = max
p(xΩ)

I(XΓ; YΓc|XΓc). (5.2)

Remark 5.2. It can be easily shown that in the linear deterministic network with input-output
structure given by (5.1), maxp(xΩ) I(XΓ; YΓc|XΓc) = rank(HΓ,Γc) log2 p.

5.1.2 Computation over Multiple-Access Networks

We consider sending ℓ linear functions of discrete sources across the deterministic multiple-
access network.

Definition 5.3 (Source Information). Node Ni for i ∈ S observes information Ui =
(Uk1

i,1, · · ·Ukℓ
i,ℓ) where Ui,j are drawn i.i.d uniformly from the prime-sized finite field Fp. We

assume that Ui = 0 for all i ∈ Sc.

Definition 5.4 (Encoders). At time t, node Ni uses encoder Ei,t to map its received signals
Y t−1
i and information Ui to Xi,t:

Ei,t : Fk1
p × · · · × Fkℓ

p × Fbi,out×(t−1)
p → Fbi,in

p (5.3)

Xi,t = Ei,t(Ui, Y
t−1
i ) (5.4)

for t = 1, . . . , n. The symbol Xi,t is input into the network.

Definition 5.5 (Decoder). The destination observes Y n
i for i ∈ D and reconstructs V̂ k

1 , . . . , V̂
k
ℓ

using decoder G:

G : Fbi,out×n
p → Fk1

p × · · · × Fkℓ
p (5.5)

(
V̂ k
1 , · · · , V̂ k

ℓ

)
= G (Y n

i ) (5.6)

where V̂ k
j is an estimate for the linear function V k1

j =
∑m

i=1 αj,iU
kj
j,i with coefficients αi,j ∈ Fp

and all operations over Fp.
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Definition 5.6 (Computation Rates). The computation rate tuple (R1, · · ·Rℓ) where Ri =
ki
n
log2 p is achievable if for any ǫ > 0, there exist n, encoders {Ei,t}nt=1 ∀i ∈ Ω and a decoder

G such that

Pr
((

V̂ k1
1 , · · · , V̂ kℓ

ℓ

)
6=
(
V k1
1 , · · · , V kℓ

ℓ

))
≤ ǫ. (5.7)

We find it useful to define the computation demands of the multiple-access network,
which will be used to establish the duality connection with the broadcast network.

Definition 5.7 (Computation Demands). The set Q = {Q1, . . .Qℓ} specifies the computa-
tion demands of the network. The element Qj ⊆ S denotes the non-zero coefficient indices

of function V
kj
j :

Qj = {i ∈ {1, . . . , m} : αj,i 6= 0} (5.8)

Remark 5.8. Q = {{1, . . . , m}} corresponds to case where the destination recovers a single

linear function: V k1
1 =

∑m
i=1 α1,iU

kj
1,i with α1,i 6= 0 for all i.

Remark 5.9. Q = {{1} , {2} , . . . , {m}} corresponds to case where the destination recovers
independent information from each source node: Uk1

1,1, U
k2
2,2, . . . U

km
m,m.

Figure 5.1 shows that sending a single linear function is connected to multicast, and
the same linear code can be used for both cases. We extend this relation to arbitrary linear
deterministic networks and general computation demands. We first define the dual broadcast
network and describe its communication demands in 5.1.3, 5.1.4. Then, we describe duality
relation in Section 5.1.5.

5.1.3 Dual Broadcast Network

Consider a linear deterministic multiple-access network NDET-MAC defined in Section 5.1.1 with
nodes {Ni}i∈Ω, source nodes SMAC, destination node DMAC, and channel matrices {HMAC,i,j}.
The dual broadcast network NDET-BC is represented by the same set of nodes Ω but with all
the links reversed. The channel matrices of NDET-BC are given by

HBC,i,j = HT
MAC,j,i for all i, j ∈ Ω (5.9)

As a result of the reversal, the source nodes of the multiple-access network becomes the
destination nodes of the broadcast network: DBC = SMAC = {1, . . . , m}. Similarly, the desti-
nation node of the multiple-access network becomes the source node of the dual broadcast
network: SBC = DMAC.

Similar to case of the multiple-access network, the value of cut Γ ⊆ Ω of a linear determin-
istic broadcast network NDET-BC is given by CDET-BC

Γ = maxp(xΩ) I(XΓ; YΓc|XΓc). Furthermore,
from Remark 5.2 and (5.9), the cut values of a pair of dual networks (NDET-MAC,NDET-BC)
satisfy the following condition:

CDET-MAC

Γ = CDET-BC

Γc ∀ Γ ⊆ Ω. (5.10)
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5.1.4 Communication Across Broadcast Networks

Consider sending ℓ linear functions across the multiple-access network NDET-MAC with com-
putation demands Q = {Q1, . . . ,Qℓ} as described in Section 5.1.2. We re-map this to the
problem of transmitting ℓ messages across the dual broadcast network NDET-BC with com-
munication demands dictated by Q. We first provide some definitions and then show the
equivalence of these two problems in the next Section.

Definition 5.10 (Messages). Node Ni for i ∈ SBC has a set of ℓ independent messages
Wi = {w1, . . . ,wℓ} where message wj is drawn independently and uniformly from W ={
0, . . . , pki − 1

}
. We assume that Wi = 0 for all i ∈ Sc

BC
.

Definition 5.11 (Encoders). At time t, Node Ni uses encoder Ei,t to map it’s received
signals Y t−1

i and message Wi to Xi,t:

Ei,t : Fk1
p × · · · × Fkℓ

p × Fbi,out×(t−1)
p → Fbi,in

p (5.11)

Xi,t = Ei,t(Wi, Y
t−1
i ) (5.12)

for t = 1, . . . , n.

Definition 5.12 (Decoder). At destination i ∈ DBC, the output Y n
i is received and decoder

Gi produces an estimate for all messages wj such that j ∈ Ti where Ti = {j : i ∈ Qj}:

Gi : F
bi,out×n
p → ×j∈TiF

kj
p (5.13)

(ŵj,i s.t j ∈ Ti) = G (Y n
i ) (5.14)

Definition 5.13 (Achievable Rates). The rate tuple (R1, . . . , Rℓ) where Ri =
ki
n
log p is are

achievable if for any ǫ > 0, there exist n, encoders {Ei,t}nt=1 ∀i ∈ Ω and decoders Gi ∀i ∈ DBC

such that

P

(
m⋃

i=1

⋃

j∈Ti

{ŵj,i 6= wj}
)

≤ ǫ. (5.15)

Similar to the computation demand for a multiple-access network, we find it useful to
define the communication demand for a broadcast network.

Definition 5.14 (Communication Demands). The set P = {P1, . . .Pℓ} dictates the commu-
nication demands of the broadcast network. The element Pj ⊆ DBC contains the destinations
that desire to recover message wj, i.e destination i recovers messages wj if i ∈ Pj .

Remark 5.15. In the multicast situation, P = {{1, . . . , m}}.
Remark 5.16. In the case with no common message, P = {{1} , . . . , {m}} since each desti-
nation only recovers a message uniquely sent to it by the source.
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5.1.5 Duality Relation

We extend the relation observed in the butterfly network in Figure 5.1 to arbitrary linear
deterministic networks general computation demands. We show that a linear time-invariant
code used for computation across NDET-MAC also can be used for communication in the dual
NDET-BC. As a result, the problem of function computation is equivalent to the problem of
broadcast and the solution of one problem can be used to solve the other problem. This
approach is useful since broadcast networks are well studied in the literature and cases where
cut-set is tight have been characterized [11, 71].

Since we limit our discussion to linear time-invariant codes, each encoder Ei and decoder
G can be written as matrices over the underlying finite field Fp. As observed in [71], the
finite field Fp has to be extended to achieve the multicast capacity. However, this approach
may lead to a mismatch in function computation since the relays operate in the extended
field while the destination recovers a linear function over the original field. Instead, we
extend the underlying field Fp to the rational function field Fp[z], which can be viewed as a
z-transform [81]. Extending the original field size is then equivalent increasing the memory
along the lines of [82]. Therefore, the encoders and decoder can be simply written as matrices
Ki(z) where each elements of the matrices comes from Fp[z]. For notational simplicity, we
write Ki instead of Ki(z).

Theorem 5.17. Consider a pair of dual linear deterministic networks NDET-MAC,NDET-BC

with demands Q and P respectively where P = Q. If the linear time-invariant code {Ki}i∈Ω
achieves computation rates (R1, · · · , Rℓ) for NDET-MAC with any {αi,j}i,j then

{
KT

i

}
i∈Ω achieves

the same rates for NDET-BC.

Proof. See Appendix C

Remark 5.18. Without loss of generality, we can consider the case where αi,j = 1 if αi,j 6= 0
since we can precode and replace Ui,j by αi,jUi,j.

Corollary 5.19. Consider a pair of dual linear deterministic networks NDET-MAC,NDET-BC

with demands Q and P respectively where P = Q. If the cut-set is achievable using linear
time-invariant codes in NDET-MAC, then cut-set is achievable in NDET-BC.

Proof. Let {Ki}i∈Ω be a linear time-invariant code that achieves computation ratesR1, . . . , Rℓ

onNDET-MAC with computation demandsQ. By assumption, the computation rates R1, . . . , Rℓ

meet the cut-set bounds for NDET-MAC. By Theorem 5.17,
{
KT

i

}
i∈Ω is a linear time invariant

code that achieves rates R1, . . . , Rℓ for NDET-BC for communication demands P = Q. By
(5.10), the rates R1, . . . , Rℓ also meets the cut-set bounds for NDET-BC.

Remark 5.20. Theorem 5.17 implies that the solution of multicast can be used for computing
a single linear function: V1 =

∑m
i=1 α1,iUi.
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Figure 5.2. In the network in (a), more message destinations are added in addition to the
original butterfly network in 5.1. The same linear time invariant code achieves the rates
given by the cut-set bounds in both the broadcast network in (a) and the dual multiple-
access network in (b)

Remark 5.21. It is well known that cutset is achievable using linear time-invariant codes in
the multicast scenario [12]. Combining this with Remark 5.20 and Corollary 5.19, cutset
is tight for sending a single linear function across NDET-MAC. Hence, any computation rate
satisfying the following is achievable:

R ≤ min
i∈S

min
Γ⊆Ω:i∈Γ

CDET-MAC

Γ (5.16)

We illustrate the duality concept through a series of simple examples in the next Section.
The examples show that the same linear code can be used for both function computation
and broadcast.

5.1.6 Examples of Dual Networks

I Broadcast with Multicast Users. The dual networks in Figure 5.2 is an extension of
the butterfly networks in Figure 5.1 with additional users. The multiple-access network
in (b) has four source nodes. Source 1 observes a1, a2, source 2 observes b1, b2, source 3
observes c and source 4 observes d where each element is drawn i.i.d uniformly from F2.
The destination desires to recover two linear functions: a1⊕b1⊕c, a2⊕b2⊕d. Figure 5.2
provides a linear time invariant code that achieves computation rate pairs (R1, R2) =
(1, 1), which satisfy the cut-set bounds. The source node in the dual broadcast network
in (a) observes symbols a, b. Destination 3 desires to recover a, destination 2 and 3
desire to recover a, b, and destination 4 desires to recover b. Figure 5.2 shows that the
same linear time invariant code used in the multiple-access network can be used in the
dual broadcast network to achieves rates (R1, R2) = (1, 1).
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Figure 5.3. (a) is a two-user broadcast network with a common message and (b) is it’s
dual multiple-access network. It is shown that cut-set is achievable using the same linear
time invariant code in both cases.

II Two-User Broadcast with a Common Message. The multiple-access network in
Figure 5.3 (a) contains two source nodes. Source 1 observes a1, a2 and source 2 observes
b1, b2 where each element is drawn i.i.d uniformly from F2. The destination desires to
recover a1, b1, a2 ⊕ b2. The computation rate tuple (R1, R2, R3) = (1, 1, 1) is achievable
using linear time invariant codes and meets the cut-set upper bounds. Figure 5.3 (b)
is a two-user broadcast network with a common message. The source observes a, b, c
and sends a to destination 1, c to destination 2, and b to both destinations. The same
linear code used for the multiple-access network can be used for the broadcast network
to achieve the rates given by the cut-set upper bounds. So far, we have considered two
examples where cut-set bounds are tight. Next, we examine a situation where this is
not true.

III Three-User Broadcast with a Common Message. Consider the dual linear deter-
ministic network pairs in Figure 5.4. The broadcast network has three destinations and
transfer functions:

HS,D1
=
[
1 0

]
, HS,D2

=
[
0 1

]
, HS,D3

=

[
1 0
1 1

]
(5.17)

The source of the broadcast network in Figure 5.4 (a) observes a, b drawn i.i.d uniformly
from F2 and desires to send a to all destinations and b to only destination 3. The rate
tuple (R1, R2) = (1, 1) satisfies the cut-set upper bounds. However, it is not achievable
since both destinations 1 and 2 desire to recover a but the source communicates with
these two destinations through different input links. Hence, if a is transmitted on both
input links then b cannot be sent. We show in Lemma D.1 in Appendix D that cut-set
upper bounds are not tight for this example. Figure 5.4 provides a linear time invariant
code that achieves rates (R1, R2) = (1, 0) in the broadcast network and computation
rates (R1, R2) = (1, 0) for the dual multiple-access network in (b). Hence, duality
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Figure 5.4. Cut-set is not always tight as shown in the three-user broadcast network
with a common message in (a). However, duality between computation over multiple-access
networks and communication in broadcast networks still holds.

continues to hold even when cut-set is not tight.

5.1.7 Universal Cut-Set Tightness

The duality relation between function computation and broadcast in linear deterministic
networks was illustrated in Examples 1-3 in the previous section. Cut-set was shown to
be tight in Examples 1 and 2 but not tight in Example 3. In this section, we characterize
the scenarios under which the cut-set bounds are tight. We first provide the notion of
universal tightness in Definition 5.22. We then focus on the broadcast network and find
the communication demands under which cut-set is universally tight. Finally, the duality
relation is used to apply the results from broadcast to function computation.

Definition 5.22 (Universally Tight). We call the cutset bound “universally tight” under
communication demands P if it is achievable for all broadcast networks with computation
demands P. Similarly, cutset bound is “universally tight” under computation demands Q if
it is achievable for all multiple-access networks with computation demands Q.

Remark 5.23. When cut-set is universally tight under communication demands P, then every
network with communication demands P achieves cut-set. When the cut-set is not univer-
sally tight under communication demands P, then there exist a network with communication
demands P for which the cut-set bound is not achievable.

Definition 5.24 (Equivalent Communication Demands). The communication demands P
and P ′ are equivalent if there exists an bijective mapping f : P → P ′ such that the cardinality
of arbitrary unions and intersections are the preserved:

∣∣∣∣∣
⋃

γ∈Ψ

⋂

γ∈Φ
Pγ

∣∣∣∣∣ =
∣∣∣∣∣
⋃

γ∈Ψ

⋂

γ∈Φ
f(Pγ)

∣∣∣∣∣ (5.18)

for all Ψ,Φ ⊆ P.
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Definition 5.25 (Sub-demands). We call PSUB a sub-demand of the communication demands
P if it is the resulting communication demand after removing users and/or messages from
the broadcast network with communication demands P.

Remark 5.26. Let P = {{1, 2} , {2, 3} , {1, 3}}. We note that demands {{1} , {3} , {1, 3}}
and {{2, 3} , {1, 3}} are sub-demands of P but {{1, 2} , {2, 3} , {3}} is not a sub-demand.

Theorem 5.27. The set of all communication demands under which cut-set is universally
tight are equivalent to the following demands and their sub-demands:

P(ℓ)
TIGHT,1 = {{1} ∪ {ℓ, . . . , m} , . . . , {ℓ− 1} ∪ {ℓ, . . . , m} , {ℓ, . . . , m}} for ℓ = 2, . . . , m

(5.19)

PTIGHT,2 = {{1} , {2} , . . . , {m}} (5.20)

PTIGHT,3 = {{1, 3, . . . , m} , {2, 3, . . . , m} , {1, 2, 3, . . . , m}} (5.21)

Furthermore, linear time invariant codes are sufficient to achieve cut-set for communication
the demands in (D.1) to (D.3).

Theorem 5.27 states that there are essentially only two types of communication demands
for which cut-set is universally tight since PTIGHT,2 for m users is a subset of P(m+1)

TIGHT,1 for

m+ 1 users. The first type, P(ℓ)
TIGHT,1,PTIGHT,2, is broadcast with multicast users as shown in

Example 5.2. The second type, PTIGHT,3, is two-user broadcast with a common message and
multicast users as shown in Example 5.3. Theorem 5.27 implies that for all other communi-
cation demands except those given in (D.1) to (D.3), there exists a broadcast network under
which cut-set is not achievable. Example 3 illustrates such a case.

Proof. See Appendix D.

5.1.8 Discussion

In this section, we studied function computation in linear deterministic multiple-access net-
works. We first considered the dual broadcast problem and then applied the solutions of
broadcast to function computation. We characterized the communication demands under
which cut-set upper bounds are tight for all broadcast networks. By the duality connection,
this maps into a set of computation demands under which cut-set upper bounds are tight
for function computation over all multiple-access networks. In the broadcast setting, we
examined only the case where the destinations demand a subset of the messages and leave
the general case where the destinations may be interested in functions of messages to future
work.
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5.2 Sum Computation in Networks of Gaussian MACs

Based on the insight from the liner deterministic model in Section 5.1, we consider function
computation over wireless multi-hop networks. The proposed approach converts the original
problem into one with discrete sources and a linear deterministic network and applies the
duality relation from Section 5.1 to solve the deterministic network problem. We illustrate
the scheme in Figure 5.5 (a). Here, the goal is to transmit the sum of Gaussian sources U, U ′

across the multiple-access network. In the network, all links are orthogonal with capacity
log |Fp| except for the wireless Gaussian MAC from S1, S2 to D. This example differs from
the butterfly network in Figure 5.1 in two main aspects: Gaussian sources and a Gaussian
MAC from S1, S2 to R1. The Gaussian MAC is converted into a linear deterministic MAC
over Fp using nested lattice codes for physical layer computation [31]. The Gaussian sources
are mapped into finite field symbols u1, u2 and u′

1, u
′
2 using nested-lattice based quantization

[23, 78]. After the conversion, the goal is to compute the finite-field sum u1 ⊕p u
′
1, u2 ⊕p u

′
2

over the linear deterministic network in (b). Applying the duality relation in Theorem 5.17,
the solution from the dual broadcast network in (c) is used for function computation in (b).
Since the linear time-invariant code achieves the cut-set upper bounds for multicast, it also
achieves the cut-set upper bounds for computing the finite-field sum. Hence, the finite field
sum u1 ⊕ u′

1, u2 ⊕ u′
2 is recovered with optimal rate in (b). The destination then forms an

estimate for U + U ′ based on u1 ⊕ u′
1, u2 ⊕ u′

2.
Using the approach above, we characterize the distortion for sending the sum of m Gaus-

sian sources across a class of relay networks in Theorem 5.34. We show that it is within
a constant fraction of the optimal performance in Theorem 5.35 and Corollary 5.36. In
the sequel, we first provide the problem setup in Sections 5.2.1 and 5.2.2 and illustrate the
gain from performing computation over the physical and network layers through examples
in Section 5.2.3.

5.2.1 Channel Model

A network of Gaussian multiple-access channels NGAUSS-MAC is represented by a set of nodes
{Ni}i∈Ω. As in the deterministic network, we divide the set of all node indices into those
for source nodes S, relay nodes R and a single destination node D, and let the source node
indices be given by S = {1, . . . , m}. We assume that Yi = 0 for all i ∈ S and Xi = 0 for
i ∈ D. In our network model, we assume that node Ni communicates with node Nj and
Nj′ on orthogonal links for all j′ 6= j. A given node Ni has bi input links into the network.
At time t, Node Ni inputs signal (Xi,1[t], . . . , Xi,bi[t]) ∈ Rbi , satisfying the symmetric power
constraint:

1

n

n∑

t=1

X2
i,j[t] ≤

SNR

bi
∀ j (5.22)
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Figure 5.5. The goal is to send the sum of Gaussian sources U,U ′ across the multiple-
access network in (a). All links are orthogonal with capacity log |Fp| except for the wireless
Gaussian MAC from S1, S2 to D. The Gaussian sources are converted to discrete sources
through quantization and the Gaussian MAC is converted into a linear deterministic MAC
through physical layer computation as shown in (b). The goal is to transmit the finite field
sum of discrete source symbols across a linear deterministic network. The duality from
Theorem 5.17 is applied and the solution from the dual broadcast network is used.
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and receives output Yi[t] ∈ R given by

Yj[t] =
∑

i∈Ω
hi,jXi[t] + Zj [t] (5.23)

where hi,j ∈ R is the fading coefficient on the link from node Ni to node Nj and {Zj[t]}nt=1

is an independent Gaussian process with unit variance.

Definition 5.28 (Cut). We call a subset Γ ⊆ Ω a cut. The value of cut Γ is given by

CGAUSS-MAC

Γ = max
p(xΩ):E[X

2
i,j ]≤ SNR

bi

I(XΓ; YΓc|XΓc). (5.24)

We define the degree of the network, which represents the maximum number of users in
any given multiple-access channel in the network. This will be useful in characterizing the
achievable distortion.

Definition 5.29 (Degree). The degree of the MAC with output Yj =
∑

i∈Ω hi,jXi + Zi is
given by

dj =
∑

i∈Ω
1 {hi,j 6= 0} (5.25)

The degree of the network NGAUSS-MAC is d = maxj∈Ω dj and represents the maximum degree
over all MACs in the network.

5.2.2 Computation over Networks of Gaussian MACs

We provide the details to the problem of sending the sum of Gaussian sources across a class
of relay networks with Gaussian MACs described in the previous section.

Definition 5.30 (Source Information). Node Ni where i ∈ S observes a length k sequence
Uk
i = (Ui,1, · · ·Ui,k) where Ui,j ∼ i.i.d N (0, 1) . We assume that Uk

i = 0 for all i ∈ Sc.

Definition 5.31 (Encoders). At time t, node Ni encodes its received signal {Yi[j]}t−1
j=1 and

information Uk
i into bi length n codewords using the mapping:

Ei,t : Rk × R(t−1) → Rbi (5.26)

Xi[t] = Ei,t
(
Uk
i , {Yi[j]}t−1

j=1

)
(5.27)

We assume that n = qk for some q ∈ Q\ {0}. Each {Xi,j[t]}nt=1 must satisfy the power
constraint given in (5.22).
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Definition 5.32 (Decoder). The destination observes {Yi[t]}nt=1 for i ∈ G and recovers the

estimate V̂ k for the sum of the source observations V k =
∑m

i=1 U
k
i using decoder G:

G : Rn → Rk (5.28)

V̂ k = G({Yi[t]}nt=1). (5.29)

The quality of the estimate V̂ k is measured by the standard squared error distortion:

D =
1

k

k∑

i=1

E

[(
Vi − V̂i

)2]
. (5.30)

Definition 5.33 (Achievable Distortion). A distortion D is achievable if all for ǫ > 0 and
large n, there exists encoders {Ei,t}nt=1 ∀i ∈ Ω satisfying power constraint SNR and a decoder

G that outputs an estimate V̂ k such that

1

k

k∑

i=1

E

[(
Vi − V̂i

)2]
≤ D + ǫ. (5.31)

5.2.3 Illustrative Examples

Our approach separates the physical and network layers and performs computation over
the physical layer using nested lattice codes and computation over the network layer using
network codes. We illustrate the gain from performing computing in both layers through
two simple examples.

I Network Layer Computation We show the importance of computation in the net-
work layer instead of routing by considering the example in Figure 5.6. In this two-hop
network, each Gaussian point to point channel has signal to noise ratio SNR. The goal
is to transmit the sum of independent Gaussian sources U and U ′ to the destination.
Each point-to-point Gaussian channel can be trivially converted to a finite field link
through the use of channel codes. The Gaussian sources can also be converted to finite
field symbols through lattice-based quantization. The destination can reconstruct an
estimate for the real sum U + U ′ based on the finite field sum UQ ⊕p U

′
Q as shown in

[23, 78]. The relay receives the quantized symbols UQ, U
′
Q. It is advantageous to com-

pute and retransmit the finite field sum UQ⊕pU
′
Q as shown in Figure 5.6 (a). However,

if routing is used instead, then the relay has to time share between sending UQ, U
′
Q

as shown in (b). This results in inefficiency of channel usage and causes the Gaus-
sian symbols U, U ′ to be estimated individually instead. We compare the achievable
distortions of the different approaches with the cut-set lower bounds:

DCOMP =
4σ2

1 + SNR
, DROUTING =

2σ2

√
1 + SNR

, DCUT-SET ≥ σ2

1 + SNR
(5.32)
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(a) Computation in the Network Layer

(b) Routing in the Network Layer

Figure 5.6. Each Gaussian point-to-point channel is converted into a finite field link. The
Gaussian sources U,U ′ are quantized into finite-field symbols UQ, U

′
Q. In (a), the relay

receives UQ, U
′
Q and computes UQ ⊕p U

′
Q for retransmission. Based on the finite field sum

UQ ⊕p U
′
Q, an estimate for the U + U ′ is reconstructed. The achievable distortion DCOMP

in (5.32) is within a constant gap of the cut-set lower bounds Dcut-set in (5.32). If routing
is performed instead as in (b), the relay has to time share between sending symbols UQ, U

′
Q

and an estimate for each Gaussian source U , U ′ is formed. As a result, the achievable
distortion DROUTING in (5.32) can be arbitrarily large from the cut-set lower bounds.
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and find that DCOMP is within a constant fraction of DCUT-SET while DROUTING can be an
arbitrary fraction larger as SNR → ∞.

II Physical Layer Computation. We show the importance of physical layer compu-
tation in transmitting the sum of independent Gaussian sources across a Gaussian
MAC with per user signal to noise ratio SNR as shown in Figure 5.7 and in [27]. As
in Example I, the Gaussian sources can be converted to finite field symbols through
lattice-based quantization and the destination can reconstruct an estimate for the real
sum U + U ′ based on the finite field sum UQ ⊕p U

′
Q. The key in this example is the

conversion of the Gaussian MAC to a finite-field channel. Algebraically structured
lattice codes are used to communicate the finite-field sum UQ ⊕p U

′
Q across the Gaus-

sian MAC in (a). This process can be viewed as converting the Gaussian MAC into a
linear deterministic MAC. If the individual quantized symbols UQ, U

′
Q are sent directly

instead as in (b), this can be viewed as converting the Gaussian MAC into two finite
field links as shown. However, the rate on each link is approximately half the rate of
the deterministic MAC in (a). Furthermore, this scheme causes the estimates for U
and U ′ to be formed separately since both the quantized source symbols are recovered
by the destination. We compare the achievable distortion of the different approaches
with the cutset lower bounds:

DCOMP =
4σ2

SNR
, DNO-COMP =

2σ2

√
1 + SNR

, DCUT-SET ≥ σ2

1 + SNR
. (5.33)

and find that DCOMP is within a constant fraction of DCUT-SET while DNO-COMP can be
an arbitrary fraction larger as SNR → ∞.

5.2.4 Upper and Lower Bounds on Distortion

Previously, the gain from computation in the physical and the network layer seen in two sim-
ple networks. Here, we apply our approach to a network of Gaussian MACs and characterize
the achievable distortion for computing the sum of Gaussian sources across the network in
Theorem 5.34. The achievable distortion is compared with the cut-set lower bounds in The-
orem 5.35 and found to be within a constant ratio of the optimal performance in Corollary
5.36.

Theorem 5.34. The achievable distortion for sending the sum of Gaussian sources with
variance σ2 across the network NGAUSS-MAC with nodes Ω and degree d satisfies

DACHIEVABLE ≤ σ2m222qαmax
i∈S

2−2q(minΓ:i∈ΓCGAUSS-MAC

Γ ) (5.34)

where q = n
k
is the number of channel uses per source symbol, CGAUSS-MAC

Γ is the value of cut
Γ given in Definition 5.28, and α is the constant:

α = |Ω|((d+ 1) log(d+ 2) + 2 log d+ 1). (5.35)
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Figure 5.7. Similar to example I, the Gaussian sources are quantized and the destination
recovers an estimate for U + U ′ is based on the finite field sum UQ ⊕p U

′
Q. In (a), compu-

tation is performed in the physical layer using nested lattice codes. This can be viewed as
converting the Gaussian MAC is converted into a linear deterministic MAC. The achievable
distortion DCOMP in (5.33) is within a constant gap of the cut-set lower bound Dcut-set in
(5.33). Instead of performing computation in the physical layer, both symbols UQ, U

′
Q are

sent to the destination in (b). This can be viewed as converting the Gaussian MAC into
two finite field links each with approximately only half the sum rate of the deterministic
MAC in (a). The achievable distortion DNO-COMP in (5.33) can be arbitrarily large from the
cut-set lower bounds.
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The proof of Theorem 5.34 is given in Sections 5.2.7. Next, we provide the cut-set lower
bound on distortion.

Theorem 5.35. The optimal distortion DOPT for sending the sum of Gaussian sources with
variance σ2 across the network NGAUSS-MAC satisfies the following cut-set bound:

DOPT ≥ σ2max
i∈S

2−2q(minΓ⊆Ω:i∈ΓCGAUSS-MAC

Γ ). (5.36)

Proof. See Appendix E.

Corollary 5.36. The ratio between the achievable distortion DACHIEVABLE and the optimal
distortion DOPT is bounded by DACHIEVABLE

DOPT
≤ 22(logm+qα) where α is the constant in (5.35).

Proof. Follows directly from Theorem 5.34 and Theorem 5.35.

Corollary 5.36 shows that the ratio between the achievable and optimal distortion can
be bounded by the number and the degree of the network independent from the network
topology

Remark 5.37. The extension beyond Gaussian sources is feasible. Theorem 5.35 can be
generalized to non-Gaussian sources using Shannon’s lower bound [1] and Theorem 5.34 can
be generalized as long as the source is contained inside a ball of an appropriate radius in L2

sense.

The rest of this Section is devoted to providing the underlying tools and the proof of
Theorem 5.34, which involves channel coding and source quantization. First, nested-lattice
code constructions are given in Section 5.2.5. The use of nested-lattices for channel coding
is shown in Section 5.2.6 and for source quantization in Section 5.2.7. It is shown that
the Gaussian sources are mapped to symbols on the finite field using nested-lattice based
quantization. The Gaussian network is converted into a linear deterministic network using
nested-lattice channel codes. The finite-field sum of the quantized source symbols are trans-
mitted across the converted linear deterministic network. An estimate for the sum of the
Gaussian sources is reconstructed based on the finite-field sum of the quantized points.

5.2.5 Code Construction: Nested Lattices

Nested-lattice codes were proposed in [16, 17, 18, 22] and used for computation in [31] and
quantization in [23, 78]. We use a different nested-lattice construction than those in [31].
Instead of scaling and rotating the coarse lattice to generate the fine lattice as in [31], we
concatenate the generator matrices as shown in (5.37). We find this construction provides
eases the analysis and provides a simpler mapping between the nested-lattice and the finite
field.
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We first show the construction of nested-lattices. We use the same notation as that in
[31] and use · to denote multiplication in the finite field Fp. A pair of nested lattices (ΛC ,ΛF )
is constructed as follows:

ΛC =
{
p−1(G1 ·w1) + Zn : w1 ∈ Fk1

p

}
(5.37)

ΛF =
{
p−1(G1 ·w1 ⊕p G2 ·w2) + Zn : w1 ∈ Fk1

p ,w2 ∈ Fk2
p

}
(5.38)

where Fp is a finite-field with p prime, G1 ∈ Fn
p × Fk1

p ,G2 ∈ Fn
p × Fk2

p with each element
drawn i.i.d uniformly from Fp. If p, n, k1, k2 are chosen to scale appropriately, the matrix
[G1,G2] becomes full rank with high probability and the lattices ΛC ,ΛF are simultaneously
good for covering, quantization and AWGN coding (see [17] for definitions and proofs).

Some definitions based on those in [16] are given in the sequel followed by key properties
of the nested lattices.

Definition 5.38 (Coset). Given a lattice Λ, a coset of Λ in Rn is any translated version of
it. For example, for any x ∈ Rn, the set {λ+ x : λ ∈ Λ} is a coset of Λ.

Definition 5.39 (Fundamental Voronoi Region). The fundamental Voronoi region V of Λ
is a subset of Rn that contains the minimum Euclidean norm coset representatives of the
cosets of Λ. Every x ∈ Rn can be uniquely written as

x = λ+ r (5.39)

with λ ∈ Λ, r ∈ V, where λ = QV(x) is a nearest neighbor of x in Λ, and r = x − QV(x) is
the error.

Lemma 5.40. |ΛF ∩ VC | = pk2

Proof. Using the fact that we can rewrite any x ∈ Rn as x = pz + r where z ∈ Zn and
r ∈ Fn

p , we have that

ΛF =
{
p−1(G1 ·w1 ⊕G2 ·w2) + Zn : w1 ∈ Fk1

p ,w2 ∈ Fk2
}

(5.40)

=
{
p−1 (G1 ·w1 +G2 ·w2 + pz) + Zn : w1 ∈ Fk1

p ,w2 ∈ Fk2
}

(5.41)

=
{
p−1 (G1 ·w1 +G2 ·w2) + Zn : w1 ∈ Fk1

p ,w2 ∈ Fk2
}

(5.42)

=
{
p−1 (G1 ·w1) + Zn + p−1 (G2 ·w2) : w1 ∈ Fk1

p ,w2 ∈ Fk2
}

(5.43)

= ΛC +
{
p−1 (G2 ·w2) : w2 ∈ Fk2

}
(5.44)

The above suggest that ΛF is composed of pk2 cosets of ΛC . We show that these cosets are
unique. Assume there exists c, c′ ∈ ΛF with c = c′. It can be shown that

c− c′ = p−1 ((G1 · (w1 −w′
1))⊕ (G2 (w2 −w′

2))) + z (5.45)
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where z ∈ Zn. Since the n× (k1 + k2) matrix [G1,G2] is full rank and

p−1 (G1 · (w1 −w′
1)⊕G2 · (w2 −w′

2)) ∈
{
0,

1

p
, · · · , p− 1

p

}n

(5.46)

it follows that c− c′ = 0 implies that

[w1 −w′
1,w2 −w′

2]
T mod p = 0 (5.47)

Hence, we have

c = c′ ⇒ w2 = w′
2 (5.48)

and it follows that

w2 6= w′
2 ⇒ c 6= c′ (5.49)

This shows that each w2 ∈ Fk2
p generates a unique coset. As a result, |ΛF ∩ VC | = pk2.

Definition 5.41. By construction, for each c ∈ ΛF , we have that

c = p−1 (G1 ·w1 ⊕G2 ·w2) + z (5.50)

for some w1 ∈ Fk1
p ,w2 ∈ Fk2

p , and z ∈ Zn. We define the mapping w2 : ΛF ∩VC → Fk2
p where

w2(c) = w2. (5.51)

Lemma 5.42. The mapping w2 is a group isomorphism from (ΛF ∩ VC , mod ΛC) to (Fp,
mod p).

Proof. We first show that w2 is an injection. Combining this fact with Lemma 5.40, it follows
that w2 is a bijection. We assume that there exists c, c′ ∈ ΛF ∩VC with c 6= c′ and w2 = w′

2.
It follows that

c− c′ = p−1 (G1 ·w1 ⊕G2 ·w2) + z− p−1 (G1 ·w′
1 ⊕G2 ·w′

2) + z′ (5.52)

= p−1 (G1 ·w1 ⊕G2 ·w2)− p−1 (G1 ·w′
1 ⊕G2 ·w′

2) + z+ z′ (5.53)

= p−1 (G1 ·w1 ⊕G2 ·w2) + p−1 (G1 · −w′
1 ⊕G2 · −w′

2) + z+ z′ (5.54)

= p−1 (G1 ·w1 ⊕G1 · −w′
1 ⊕G2 ·w2 ⊕G2 · −w′

2 + pz′′) + z+ z′ (5.55)

= p−1 (G1 · (w1 ⊕−w′
1)⊕G2 · (w2 ⊕−w′

2)) + z′′ + z+ z′ (5.56)

= p−1 (G1 · (w1 ⊕−w′
1)) + z′′ + z+ z′ (5.57)

Hence, c− c′ ∈ ΛC . We define the set Γ as follows

Γ = {c− c′ : c, c′ ∈ ΛF ∩ VC , c 6= c′} . (5.58)
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We show that Γ ∩ ΛC = {0}. Without loss of generality, we assume that there exists
c, c′ ∈ ΛF ∩ VC with c 6= c′ and c− c′ ∈ ΛC\ {0}. We can rewrite c in two different ways:

c = 0+ c (5.59)

c = c− c′ + c′ (5.60)

where 0, c − c′ ∈ ΛC with c − c′ 6= 0 and c ∈ VC . This contradicts the definition of the
fundamental voronoi region. Hence, the mapping w2 is injective.

So far, we have shown that w2 is a bijection. We show that the following are true.

∀ c ∈ ΛF , w2(c) = w2(c mod ΛC) (5.61)

∀ c, c′ ∈ ΛF , w2(c+ c′) = w2(c)⊕ w2(c
′). (5.62)

We first show (5.61). Given c ∈ ΛF , we can rewrite it as follows:

c = λC + (c mod ΛC) (5.63)

for some λC ∈ ΛC . By construction, it follows that

λC = p−1 (G1 ·w1) + z (5.64)

c mod ΛC = p−1 (G1 ·w′
1 ⊕G2 ·w′

2) + z′ (5.65)

for some w1,w
′
1 ∈ Fk1

p ,w′
2 ∈ Fk2

p , z, z′ ∈ Zn. It follows that

c = λC + (c mod ΛC) (5.66)

= p−1 (G1 ·w1) + z+ p−1 (G1 ·w′
1 ⊕G2 ·w′

2) + z′ (5.67)

= p−1 (G1 ·w1) + p−1 (G1 ·w′
1 ⊕G2 ·w′

2) + z+ z′ (5.68)

= p−1 (G1 ·w1 +G1 ·w′
1 ⊕G2 ·w′

2) + z+ z′ (5.69)

= p−1 (G1 ·w1 ⊕G1 ·w′
1 ⊕G2 ·w′

2 + pz′′) + z+ z′ (5.70)

= p−1 (G1 · (w1 ⊕w′
1)⊕G2 ·w′

2) + z′′ + z+ z′ (5.71)

for some z′′ ∈ Zn. Hence, we have that w2(c) = w′
2 = w2(c mod ΛC). We now show (5.62).

Given c, c′ ∈ ΛF , it follows that

c = p−1 (G1 ·w1 ⊕G2 ·w2) + z (5.72)

c′ = p−1 (G1 ·w′
1 ⊕G2 ·w′

2) + z′ (5.73)

for some w1,w
′
1 ∈ Fk1

p ,w2,w
′
2 ∈ Fk2

p , z, z′ ∈ Zn. We note that c+ c′ ∈ ΛF . It follows that

c+ c′ = p−1 (G1 ·w1 ⊕G2 ·w2) + z+ p−1 (G1 ·w′
1 ⊕G2 ·w′

2) + z′ (5.74)

= p−1 (G1 ·w1 ⊕G2 ·w2) + p−1 (G1 ·w′
1 ⊕G2 ·w′

2) + z+ z′ (5.75)

= p−1 (G1 ·w1 ⊕G2 ·w2 ⊕G1 ·w′
1 ⊕G2 ·w′

2 + pz′′) + z+ z′ (5.76)

= p−1 (G1 ·w1 ⊕G2 ·w2 ⊕G1 ·w′
1 ⊕G2 ·w′

2) + z′′ + z+ z′ (5.77)

= p−1 (G1 · (w1 ⊕w′
1)⊕G2 · (w2 ⊕w′

2)) + z′′ + z+ z′ (5.78)

Hence, w2 (c+ c′) = w2 ⊕w′
2
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5.2.6 Proof of Theorem 3: Channel Coding

An achievable computation rate (as given in Definition 5.6) for sending the finite-field sum
of discrete sources (as described in Definition 5.3) across a network of Gaussian MACs is
given in Lemma 5.43 below. The idea is to use nested-lattice channel codes to converted the
Gaussian network NGAUSS-DET into a linear deterministic network NDET-MAC in Section 5.1.1.
Applying the duality relation, network coding is used to transmit the finite-field sum of
discrete sources across the linear deterministic network as in Section 5.1.

Lemma 5.43. Consider a network of Gaussian MACs NGAUSS-MAC with discrete source ob-
servations Uk

1 , . . . , U
k
m where each Ui,j is drawn i.i.d uniformly from some prime-sized finite

field Fp. For all ǫ > 0 and n, p large, there exists encoders {Ei,t}nt=1 ∀i ∈ Ω and a decoder G
that produces an estimate V̂ k ∈ Fk

p such that

Pr(V̂ k 6= Uk
1 ⊕p · · · ⊕p U

k
m) < ǫ (5.79)

as long as the computation rate R = k
n
log p satisfies

R < min
i∈S

min
Γ⊆Ω:i∈Γ

CGAUSS-MAC

Γ − α (5.80)

where α = |Ω|((d+ 1) log(d+ 2) + 2 log d+ 1).

Proof. The Gaussian network NGAUSS-MAC can be converted into a linear deterministic net-
work NDET-MAC such that each cut value in NDET-MAC is within α of the corresponding cut
in NGAUSS-MAC . Lemma 5.43 then follows by applying Corollary 5.19. We first show the
conversion of a single m-user Gaussian MAC into a linear deterministic MAC. The Gaussian
MAC contains only source and destination nodes, i.e Ω = S ∪ D where S = {1, . . . , m} and
D = {m+ 1}. The channel gain from source node i to the destination node is given by hi.
Without loss of generality, we assume that hi > 0 and SNR = 1. We first assume that the
channel gains satisfy the following inequalities:

h2
1 ≥ 1, h2

i − h2
i−1 ≥ (m− (i− 2))h2

i−1 + h2
i−2 + · · ·+ h2

1 + 1 for i > 1 (5.81)

We use a superposition nested-lattice scheme similar to that in [31] but with nested generator
matrices as described in Section 5.2.5 instead. We choose m nested lattice pairs (ΛCi

,ΛFi
)

given by

ΛCi
=
{
p−1 (Gi,1 ·w1) + Zn : w1 ∈ Fk1,i

p

}
(5.82)

ΛFi
=
{
p−1 (Gi,1 ·w1 ⊕p Gi,2 ·w2) + Zn : w1 ∈ Fk1,i

p ,w2 ∈ Fki
p

}
. (5.83)

where each element of Gi,1 and Gi,2 is drawn i.i.d uniformly from Fp. The variances for the
lattices ΛCi

,ΛFi
are set to be:

σ2 (ΛCi
) = h2

i − h2
i−1, σ2 (ΛFi

) = (m− (i− 2))h2
i−1 + h2

i−2 + · · ·+ h2
1 + 1 (5.84)
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We define the set of one-to-one mappings w2,i : ΛFi
∩ VCi

→ Fki
p for i = 1, . . . , m along the

lines of Definition 5.51. User i splits message wi into i parts:

w
(1)
i ,w

(2)
i , · · · ,w(i)

i where w
(j)
i ∈ Fkj for j = 1, . . . , i (5.85)

The jth part of message wi is mapped to a lattice point using the mapping w2,j : c
(j)
i =

w−1
2,j (w

(j)
i ). The lattice points are added together, dithered with d

(j)
i that is drawn uniformly

from VCj
to get the resulting vector:

x
(j)
i =

((
c
(j)
i + d

(j)
i

)
mod ΛCj

)
(5.86)

User i transmits the signal xi given by

xi =
1

hi

i∑

j=1

x
(j)
i =

1

hi

i∑

j=1

((
c
(j)
i + d

(j)
i

)
mod ΛCj

)
(5.87)

The destination receives:

y =
m∑

i=1

hixi + z (5.88)

=
m∑

i=1

i∑

j=1

x
(j)
i + z (5.89)

=

m∑

j=1

m∑

i=j

x
(j)
i + z (5.90)

=
m∑

j=1

m∑

i=j

((
c
(j)
i + d

(j)
i

)
mod ΛCj

)
+ z (5.91)

To recover w
(m)
m , the destination computes:

(
y − d(m)

m

)
mod ΛCm

=

(
m∑

j=1

m∑

i=j

((
c
(j)
i + d

(j)
i

)
mod ΛCj

)
+ z− d(m)

m

)
mod ΛCm

(5.92)

=

(
c(m)
m +

m−1∑

j=1

m∑

i=j

(
c
(j)
i + d

(j)
i

)
mod ΛCj

+ z

)
mod ΛCm

(5.93)



CHAPTER 5. NETWORK FUNCTION COMPUTATION 82

Let the noise z(m) =
∑m−1

j=1

∑m
i=j

(
c
(j)
i + d

(j)
i

)
mod ΛCj

+ z. The destination further com-

putes:

QΛFm

(
(y− d(m)

m ) mod ΛCm

)
mod ΛCm

= QΛFm

(
(c(m)

m + z(m)) mod ΛCm

)
mod ΛCm

(5.94)

= QΛFm

(
c(m)
m + z(m)

)
mod ΛCm

(5.95)

We define the event: E (m) =
{
QΛFm

(
c
(m)
m + z(m)

)
mod ΛCm

= c
(m)
m mod ΛCm

}
. Under

event Ed, we can reliably recover the message w
(m)
m by the inverse mapping w−1

2 :

w(m)
m = w−1

2,m(c
(m)
m mod ΛCm

) (5.96)

as long as km
n
logm ≤ 1

2
log(SINRm) where SINRm =

σ2(ΛCm )

σ2(ΛFm)
=

h2
m−h2

m−1

2h2
m−1+h2

m−2+···+h2
1+1

If message w
(m)
m is successfully decoded, then x

(m)
m is subtracted from the received signal

y. The resulting signal is given by

y(m−1) = y− x(m)
m =

m−1∑

j=1

m∑

i=j

x
(j)
i + z (5.97)

The receiver then computes
(
y(m−1) − d

(m−1)
m−1 − d(m−1)

m

)
mod ΛCm−1

(5.98)

=

(
m∑

j=m−1

(
x
(m−1)
j − d

(m−1)
j

)
+

m−2∑

j=1

m∑

i=j

x
(j)
i + z

)
mod ΛCm−1

(5.99)

=

(
m∑

j=m−1

c
(m−1)
j +

m−2∑

j=1

m∑

i=j

x
(j)
i + z

)
mod ΛCm−1

(5.100)

Let the noise z(m−1) =
∑m−2

j=1

∑m
i=j

(
c
(j)
i + d

(j)
i

)
mod ΛCj

+ z. The destination further

computes:

QΛFm−1

(
(y(m−1) −

m∑

j=m−1

d
(m−1)
j ) mod ΛCm−1

)
mod ΛCm−1

(5.101)

= QΛFm−1

(
(

m∑

j=m−1

c
(m−1)
j + z(m−1)) mod ΛCm−1

)
mod ΛCm−1

(5.102)

= QΛFm−1

(
m∑

j=m−1

c
(m−1)
j + z(m−1)

)
mod ΛCm−1

(5.103)
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Let E (m−1) denote the event:

E (m−1) =

{
QΛFm−1

(
m∑

j=m−1

c
(m−1)
j + z(m−1)

)
mod ΛCm−1

=
(
c
(m−1)
m−1 + c(m−1)

m

)
mod ΛCm−1

}

(5.104)

Under event E (m) ∩ E (m−1), we can reliably recover the equation

w
(m−1)
m−1 ⊕w

(m−1)
d = w−1

2

((
c
(m−1)
m−1 + c(m−1)

m

)
mod ΛCm−1

)
(5.105)

with computation rate km−1

n
log p ≤ 1

2
log(SINRm−1) where SINRm−1 =

h2
m−1−h2

m−2

3h2
m−2+h2

m−3+···+h2
1+1

.

Each of the remaining m − 2 layers of the superposition code is decoded in a similar
manner. As a result, the Gaussian MAC is converted to a linear deterministic MAC with
source nodes SDET = {1, . . . , m} and destination nodeDDET = {m+ 1}. The transfer function
from source node i to the destination is given by

Hi = [IR1
. . . IRi

, 0 . . .0]T (5.106)

where Ri is the rate for the ith layer of the superposition lattice code and is given by

Ri = 1
2
log(SINRi) with SINRi =

h2
i−h2

i−1

(m−(i−2))h2
i−1+h2

i−2+···+h2
1+1

. The overall transfer function

of the linear deterministic multiple-access channel is given by

H = [H1 . . .Hm]. (5.107)

Let CDET

j represent the value of the cut Γ = {i : i ∈ SDET, i ≤ j } in the linear deterministic
network . It follows that:

CDET

j =

j∑

i=1

Ri =
1

2

j∑

i=1

log(SINRi) (5.108)

At each step, it can be shown that 1
n
E[‖z(i)‖2] ≤ σ2(ΛFi

) for i = 1 . . .m. From [16, Theorem
5], it follows that

Pr
(
E (m) ∩ E (m−1) ∩ · · · ∩ E (1)

)
= 1−

m∑

i=1

Pr(E (i)) → 1 as n → ∞. (5.109)

We now remove the assumptions on the channel gains in (5.81). Let r1 = minh2
i≤1 i and

define rj for j > 1 recursively as follows:

rj = min
h2
i≥(m+2)h2

rj−1

i for j > 1 (5.110)
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We terminate when rj cannot be defined and let rMAX = maxi ri. For each j ∈ {1, · · · , m},
we define tj = argmaxi:ri≤j i. Using a rMAX layered superposition code, it can be shown that
the cut values of the linear deterministic MAC in (5.108) become

CDET

j =

tj∑

i=1

1

2
log (SINRri) for j = 1, . . . , rMAX (5.111)

where SINRri ≥
h2
ri
−h2

kri−1

mh2
kri−1

+1
. The cut values of the linear deterministic MAC from (5.111) are

bounded as follows

CDET

j ≥ 1

2
log
(
h2
r1

)
+

tj∑

i=2

1

2
log

(
h2
ri
− h2

ri−1

mh2
ri−1

+ 1

)
(5.112)

≥ 1

2
log
(
h2
r1

)
+

tj∑

i=2

1

2
log

(
h2
ri

(m+1)
(m+2)

(m+ 1)h2
ri−1

)
(5.113)

=
1

2
log

(
h2
rtj

(
1

m+ 2

)tj−1
)

(5.114)

≥ 1

2
log

(
h2
rtj

(
1

m+ 2

)m)
(5.115)

Let CGAUSS

j be the value of the cut Γ = {i : i ∈ S, i ≤ j } in the Gaussian MAC. It follows
that

CGAUSS

j =
1

2
log


1 +

(
j∑

i=1

hi

)2

 (5.116)

≤ 1

2
log


1 +




tj∑

i=1

∑

ri−1≤i<ri

hi +

j∑

i=ktj

hi




2
 (5.117)

≤ 1

2
log

(
1 +

(
j
√
m+ 2hrtj

)2)
(5.118)

≤ 1

2
log
(
1 +m2(m+ 2)h2

rtj

)
(5.119)

≤ 1

2
log
(
2m2(m+ 2)h2

rtj

)
(5.120)
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The gap between CGAUSS

j and CDET
j can be bounded as follows:

CGAUSS

j − CDET

j ≤ 1

2
log
(
2m2(m+ 2)h2

rtj

)
− 1

2
log

(
h2
rtj

(
1

m+ 2

)m)
(5.121)

= log
(
2m2(m+ 2)m+1

)
(5.122)

= (m+ 1) log(m+ 2) + 2 logm+ 1 (5.123)

From the structure of the linear deterministic channel in (5.106), (5.107), it is sufficient to
consider only the gaps CGAUSS

j − CDET

j for j = 1 . . .m. We repeat the described conversion
for every Gaussian MAC in the network. For a fixed set Γ ⊆ Ω, we consider the cut between
Γ and Γc. Since the network contains only Gaussian MACs, it is sufficient to consider
the MIMO channel with input xΓ, output yΓc and channel matrix HΓ,Γc. It follows that
yΓc = HΓ,ΓcxΓ + zΓc . Furthermore, the MIMO channel can be decomposed into a set of
MACs with outputs:

yj =
∑

i:i∈Γ
hi,jxi,j + zj for j ∈ Γc (5.124)

where hi,j are the channel coefficients. Let dj be degree of the MAC with output yj. The
gap between CGAUSS-MAC

Γ and CDET-MAC

Γ is given by

CGAUSS-MAC

Γ − CDET-MAC

Γ ≤
∑

j∈Γc

(dj + 1) log(dj + 2) + 2 log dj + 1 (5.125)

≤ |Γc|((d+ 1) log(d+ 2) + 2 log d+ 1) (5.126)

≤ |Ω|((d+ 1) log(d+ 2) + 2 log d+ 1) (5.127)

5.2.7 Proof of Theorem 5.34: Source Quantization

We illustrate the source quantization scheme1 based on [23, 78] for the achievable distortion
in Theorem 5.34 . First, the sources are quantized using a nested lattice code. As in (5.37),
a pair of nested lattices (ΛF ,ΛC) with the following construction is chosen:

ΛC =
{
p−1 (G1 ·w1) + Zk : w1 ∈ Fk′1

p

}
(5.128)

ΛF =
{
p−1 (G1 ·w1 ⊕G2 ·w2) + Zk : w1 ∈ Fk′1

p ,w2 ∈ Fk′2
p

}
(5.129)

1If only quantization is concerned, other schemes may outperform the proposed approach. However, in
the absence of a bijection between the quantization points and the finite field elements, it is unclear how to
transmit the quantized points through networks with arbitrary topologies.
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where each element of G1 ∈ F
k×k′1
p and G2 ∈ F

k×k′2
p is drawn i.i.d uniformly from Fp. The

lattice variances are chosen to be:

σ2(ΛF ) =
D

m

(
mσ2

mσ2 −D

)
, σ2(ΛC) = mσ2

(
mσ2

mσ2 −D

)
. (5.130)

Each Gaussian vector ui is first quantized and dithered with vector di:

ci = QΛF
(ui + di) mod ΛC for i = 1 · · ·m (5.131)

where the dithers d1, . . . ,dm are drawn i.i.d uniformly from the voronoi region of the coarse

lattice VC . We define the one-to-one mapping w2 : ΛF ∩ VC → F
k′2
p as in Definition 5.51 and

map each quantized point ci to a point on the finite field Fk′2 using the mapping w2. Source
node i transmits w2(ci) across the Gaussian network NGAUSS-MAC and the destination recovers
the mod sum: w2(c1)⊕ · · · ⊕ w2(cm). Applying Lemma 5.43, this can be reliably recovered
as long as

k′
2

k
log p <

n

k
min
i∈S

min
Γ⊆Ω:i∈Γ

CGAUSS-MAC

Γ − α (5.132)

where CGAUSS-MAC

Γ is the value of cut Γ in NGAUSS-MAC and α is the constant in (5.35). If
w2(c1) ⊕p · · · ⊕p w2(cm) is reliably recovered, the destination maps it back to a point in
ΛF ∩ VC :

w−1
2 (w2(c1)⊕p · · · ⊕p w2(cm)) = (c1 + · · ·+ cm) mod ΛC (5.133)



CHAPTER 5. NETWORK FUNCTION COMPUTATION 87

Let β = mσ2−D
mσ2 . The destination recovers an estimate v̂ for v =

∑m
i=1 ui as follows:

v̂ = β

((
m∑

i=1

ci mod Λc −
m∑

i=1

di

)
mod ΛC

)
(5.134)

= β

((
m∑

i=1

ci −
m∑

i=1

di

)
mod ΛC

)
(5.135)

= β

((
m∑

i=1

(ci − di)

)
mod ΛC

)
(5.136)

= β

((
m∑

i=1

(QΛF
(ui + di) mod Λc − di)

)
mod ΛC

)
(5.137)

= β

((
m∑

i=1

(QΛF
(ui + di)− di)

)
mod Λc

)
(5.138)

= β

((
m∑

i=1

(ui +QΛF
(ui + di)− (ui + di))

)
mod ΛC

)
(5.139)

= β

((
v +

m∑

i=1

(QΛF
(ui + di)− (ui + di))

)
mod ΛC

)
(5.140)

We define the event Ek where

Ek =
{(

v +

m∑

i=1

(QΛF
(ui + di)− (ui + di))

)
mod ΛC = v +

m∑

i=1

(QΛF
(ui + di)− (ui + di))

}

(5.141)

The noise QΛF
(ui + di)− (ui + di) has the same distribution as −di and is independent
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of ui [22, 23]. Using this fact, we have that

1

k
E

[
‖v +

m∑

i=1

(QΛF
(ui + di)− (ui + di)) ‖2

]
=

1

k
E
[
‖v‖2

]
(5.142)

+
1

k

m∑

i=1

E
[
‖QΛF

(ui + di)− (ui + di)‖2
]

(5.143)

=
1

k
E
[
‖v‖2

]
+

m∑

i=1

1

k
E
[
‖ − di‖2

]
(5.144)

= mσ2 +m
D

m

(
mσ2

mσ2 −D

)
(5.145)

= mσ2

(
mσ2

mσ2 −D

)
(5.146)

= σ2(ΛC) (5.147)

Along the same lines as in [16, 23], it can be shown that Pr(Ek) → 1 as k → ∞. Under event
Ek, the estimate becomes: v̂ = βv + β

∑m
i=1 (QΛF

(ui + di)− (ui + di))) . By conditioning
on the events E and E c, the achievable distortion can be bounded as follows:

DACHIEVABLE = DACHIEVABLE,E Pr(E) +DACHIEVABLE,Ec Pr(E c) (5.148)

≤ 1

k
E
[
‖v − v̂‖2|E

]
Pr(E) +mσ2 Pr(E c) (5.149)

=
1

k
E

[
‖(1− β)v − β

m∑

i=1

(QΛF
(ui + di)− (ui + di)) ‖2

]
+mσ2 Pr(E c) (5.150)

= (1− β)2
1

k
E
[
‖v‖2

]
(5.151)

+ β2

m∑

i=1

1

k
E
[
‖ (QΛF

(ui + di)− (ui + di)) ‖2
]
+mσ2 Pr(E c) (5.152)

= (1− β)2mσ2 + β2m
D

m

(
mσ2

mσ2 −D

)
+mσ2 Pr(E c) (5.153)

= (1− β)2mσ2 + β2D

(
mσ2

mσ2 −D

)
+mσ2 Pr(E c) (5.154)

Since β = mσ2−D
mσ2 , the achievable distortion from (5.154) becomes

DACHIEVABLE = (1− β)2mσ2 + β2D

(
mσ2

mσ2 −D

)
+ ǫ (5.155)

= D + ǫ (5.156)
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where ǫ can be made arbitrarily small as k → ∞. From the nested lattice constructions and
(5.132), we have that

k′
2

k
log p =

1

2
log

(
σ2 (ΛC)

σ2 (ΛF )

)
(5.157)

=
1

2
log

(
m2σ2

D

)
(5.158)

≤ qmin
i∈S

min
Γ⊆Ω:i∈Γ

CGAUSS-MAC

Γ − α (5.159)

where α is given by (5.35). Hence, (5.159) implies that any distortion D satisfying

D ≥ m2σ22−2αmax
i∈S

2−2qminΓ⊆Ω:i∈Γ CGAUSS-MAC
Γ (5.160)

is achievable.

5.3 Extension to Asymmetric Linear Functions

So far, this chapter considered computing symmetric linear functions of Gaussian sources
across Gaussian networks. We reduced this problem to computing the sum of discrete sources
over linear deterministic networks, which is shown to achieve the cut-set bounds in Remark
5.21. Hence, in the Gaussian case, cut-set is approximately tight and the achievable distortion
can be characterized to within a constant ratio of the optimal performance.

The proposed approach can also be applied to the problem of sending an asymmetric
function of Gaussian sources across the two-user Gaussian network. Here, source 1 observes
U1, source 2 observes U2 and the destination desires to estimate U1 + βU2 where β > 1.
The corresponding deterministic problem is sending the finite-field sum with an additional
private message across the linear deterministic multiple-access network. To see this, consider
the case of sending 4U1 + U2. First, U2 and U2 can be conceptually written as 0.b11b12 · · ·
and 0.b21b22 · · · respectively as in [78]. The asymmetric function 4U1 + U2 can be thought
as b11b12.b13 ⊕ b21 b14 ⊕ b22 · · · . Here, we can see the destination wants to decode the private
messages b11, b12 and the finite-field sums, b13 ⊕ b21, b14 ⊕ b22, . . .. It is shown in Theorem
5.27 that cut-set is tight for this scenario. Hence, applying a similar approach as that for
the symmetric sum, cut-set is approximately tight in the Gaussian case and the achievable
distortion is within a constant ratio of the cut-set bounds. We provide the details in the
sequel.

5.3.1 Asymmetric Functions over Gaussian Networks

We consider a two-user Gaussian network NGAUSS-MAC with source nodes S = {1, 2}. Source
1 observes U1 ∼ N (0, σ2), Source 2 observes an independent U2 ∼ N (0, σ2), and the destina-
tion recovers an asymmetric linear function: U1 + γU2. Without loss of generality, the space
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of functions to can be limited to γ > 1. In Theorem 5.44 and 5.45 below, the achievable
distortion is characterized to within a constant gap of the optimal performance.

Theorem 5.44. Consider sending the linear function U1 + γU2 with γ > 1 across the two-
user Gaussian network NMAC. The achievable distortion satisfies

DACHIEVABLE ≤ max
{
22qα+42−2qC1 , (1 + γ2)σ222qα+92−2qC2

}
(5.161)

where Ci = minΓ:i∈Γ C
GAUSS-MAC

Γ for i = 1, 2 and α is the constant in (5.35).

Theorem 5.45. The optimal distortion DOPT for sending U1 + γU2 across the network
NGAUSS-MAC satisfies the following cut-set bound:

DOPT ≥ σ2max
{
2−2qC1 , γ22−2qC2

}
(5.162)

where Ci = minΓ⊆Ω:i∈ΓC
GAUSS-MAC

Γ for i = 1, 2.

Proof. Follows along the same lines as Theorem 5.35.

Remark 5.46. The ratio between the achievable distortion and the cut-set lower bounds is
bounded by a constant that depends only on q, the number of nodes, and the degree of the
network. The ratio is an independent of the network topology.

Proof. (Theorem 5.44). We first state the counterpart of Lemma 5.43 for asymmetric func-
tions in Lemma 5.47. This Lemma provides an achievable rate for sending a finite field sum
with a private message across the Gaussian network NGAUSS-MAC.

Lemma 5.47. Consider a two-user Gaussian network NGAUSS-MAC with discrete source ob-
servations Uk1

1,1 at source 1 and Uk1
2,1, U

k2
2,2 at source 2 where each Ui,j is drawn i.i.d uniformly

from some prime-sized finite field Fp. For all ǫ > 0 and n, p large, there exists encoders

{Ei,t}nt=1 ∀i ∈ Ω and a decoder G that produces an estimates V̂ k1
1 ∈ Fk1

p , V̂ k2
2 ∈ Fk1

p such that

Pr
({

V̂ k1 6= Uk1
1,1 ⊕p U

k1
1,1

}
∪
{
V̂ k2 6= Uk2

2,2

})
< ǫ (5.163)

as long as the computation rates R1 =
k1
n
log p, R2 =

k2
n
log p satisfy

R1 < min
Γ⊆Ω:1∈Γ

CGAUSS-MAC

Γ − α (5.164)

R1 +R2 < min
Γ⊆Ω:2∈Γ

CGAUSS-MAC

Γ − α (5.165)

where α is given by (5.35).

Proof. Follows along the same lines as that for Lemma 5.43.
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We now construct the nested-lattices used for source quantization. Let ΛC ⊂ ΛC′ ⊂
ΛC′′ ⊂ ΛF be a set of 4 nested lattices from the following construction:

ΛC =
{
p−1 (G1 ·w1) + Zk : w1 ∈ Fk′1

p

}
(5.166)

ΛC′ =
{
p−1 (G1 ·w1 ⊕G2 ·w2) + Zk : w1 ∈ Fk′1

p ,w2 ∈ Fk′2
p

}
(5.167)

ΛC′′ =
{
p−1 (G1 ·w1 ⊕G2 ·w2 ⊕G3 ·w3) + Zk : w1 ∈ Fk′1

p ,w2 ∈ Fk′2
p ,w3 ∈ Fk′3

p

}
(5.168)

ΛF =
{
p−1 (G1 ·w1 ⊕G2 ·w2 ⊕G3 ·w3 ⊕G4 ·w4) + Zk : wi ∈ F

k′i
p for i = 1, . . . , 4

}

(5.169)

where G1 ∈ Fk×k′1,G2 ∈ Fk×k′1+k′2,G3 ∈ Fk×k′1+k′2+k′3,G4 ∈ Fk×k′1+k′2+k′3+k′4 and each element
is drawnly i.i.d from Fp. If p, k, k′

1, k
′
2, k

′
3, k

′
4 are chosen to scale appropriately, the matrix

[G1,G2,G3,G4] becomes full rank with high probability and the lattices ΛC ,ΛC′,ΛC′′,ΛF

are simultaneously good for covering, quantization and AWGN coding (see [17] for definitions
and proofs).

The lattices are scaled to have the following variances:

σ2(ΛC) = 24(1 + γ2)σ2

(
(1 + γ2)σ2

(1 + γ2) σ2 −D

)
(5.170)

σ2(ΛC′) = 24σ2

(
(1 + γ2)σ2

(1 + γ2)σ2 −D

)
(5.171)

σ2(ΛC′′) = σ2

(
(1 + γ2) σ2

(1 + γ2)σ2 −D

)
(5.172)

σ2(ΛF ) =
D

2

(
(1 + γ2)σ2

(1 + γ2)σ2 −D

)
(5.173)

Before describing the source quantization scheme, we first provide some definitions and
lemmas regarding the lattice constructions.

Lemma 5.48. |ΛF ∩ VC′| = pk3+k4 , |ΛC′′ ∩ VC | = pk2+k3

Proof. Follows along similar lines as Lemma 5.40

Definition 5.49. Let c ∈ ΛF ∩ VC′ . By construction, we have that

c = p−1 (G1 ·w1 ⊕G2 ·w2 ⊕G3 ·w3 ⊕G4 ·w4) + z (5.174)

for some w1 ∈ Fk1
p ,w2 ∈ Fk2

p ,w3 ∈ Fk3
p ,w4 ∈ Fk4

p , z ∈ Zn. We define the mapping: φ :
ΛF ∩ VC′ → Fk3+k4

p where

φ(c) = (w3,w4) (5.175)
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Let c′ ∈ ΛC′′ ∩ VC . By construction, we have that

c′ = p−1 (G1 ·w′
1 ⊕G2 ·w′

2 ⊕G3 ·w′
3) + z′ (5.176)

for some w′
1 ∈ Fk1

p ,w′
2 ∈ Fk2

p ,w′
3 ∈ Fk3

p , z′ ∈ Zn. We define the mapping: φ′ : ΛC′′ ∩ VC →
Fk2+k3
p where

φ′(c′) = (w′
2,w

′
3) (5.177)

Lemma 5.50. The function φ is a group isomorphism from (ΛF∩VC′′ , mod ΛC′′) to (Fk3+k4
p ,

mod p) and φ′ is a group isomorphism from (ΛC′′ ∩ VC , mod ΛC) to (Fk2+k3
p , mod p).

Proof. Follows along similar lines as Lemma 5.42

Lemma 5.51. {x+ y : x,y ∈ VC′′} ⊆ VC′

Proof. Follows from the fact that ΛC′′ ,ΛC′ are both simultaneous good for quantization and
AWGN coding and that ΛC′ = 2(2σ(ΛC′′))2.

We provide the details to the source quantization scheme. The vectors u1, γu2 are first
dithered and then quantized using the fine lattice ΛF to get the following quantization points:

c1 = QF (u1 + d1) (5.178)

c2 = QF (γu1 + d2) (5.179)

where the dithers d1,d2 ∼ are drawn i.i.d uniformly from VF . We define:

c2,r = c2 mod ΛC′′ (5.180)

c2,q = QC′′(c2) (5.181)

c
′

2,q = c2,q mod ΛC (5.182)

c1,r = c1 mod ΛC′′ (5.183)

We note that c1,r, c2,r ∈ ΛF ∩ VC′′ ⊂ ΛF ∩ VC′. Source 1 transmits w1,r where

w1,r = φ(c1,r). (5.184)

Source 2 transmits w2,r,w2,q, given by

w2,r = φ(c2,r) (5.185)

w2,q = φ′(c
′

2,q). (5.186)
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Applying Lemma 5.47, w1,r ⊕p w2,r,w2,q can be reliably recovered as long as

k′
3 + k′

4

k
log p <

n

k
min

Γ⊆Ω:1∈Γ
CGAUSS-MAC

Γ − γ (5.187)

k′
2 + k′

3

k
+

k′
3 + k′

4

k
log p <

n

k
min

Γ⊆Ω:2∈Γ
CGAUSS-MAC

Γ − α (5.188)

where CGAUSS-MAC

Γ is the value of cut Γ in NGAUSS-MAC and α is the constant in (5.35). Mapping
back, we have that:

φ−1(w1,r ⊕p w2,r) = (c1,r + c2,r) mod ΛC′ (5.189)

φ
′−1(w2,q) = c2,q mod ΛC (5.190)

Let β =
(1+γ2)σ2−D

(1+γ2)σ2 . The destination computes:

((c1,r + c2,r) mod ΛC′ + c2,q mod ΛC − d1 − d2) mod ΛC (5.191)

= β ((c1,r + c2,r) mod ΛC′ + c2,q − d1 − d2) mod ΛC (5.192)

(a)
= β ((c1,r + c2,r) + c2,q − d1 − d2) mod ΛC (5.193)

= β (c1,r + c2 − d1 − d2) mod ΛC (5.194)

= β (c1 + c2 − d1 − d2) mod ΛC (5.195)

= β (u1 + γu2 +QF (u1 + d1)− (u1 + d1) +QF (u2 + d2)− (u2 + d2)) mod ΛC (5.196)

where (a) follows by Lemma 5.51. Using a similar argument as in the symmetric case, any
distortion D satisfying the following inequalities can be shown to be achievable:

1

2
log


 24σ2 (1+γ2)σ2

(1+γ2)σ2−D

D
2

(
(1+γ2)σ2

(1+γ2)σ2−D

)


 ≤ q

(
min

Γ⊆Ω:1∈Γ
CGAUSS-MAC

Γ − γ

)
(5.197)

1

2
log



24(1 + γ2)σ2

(
(1+γ2)σ2

(1+γ2)σ2−D

)

σ2
(

(1+γ2)σ2

(1+γ2)σ2−D

)


+ (5.198)

1

2
log



24σ2

(
(1+γ2)σ2

(1+γ2)σ2−D

)

D
2

(
(1+γ2)σ2

(1+γ2)σ2−D

)


 ≤ q

(
min

Γ⊆Ω:2∈Γ
CGAUSS-MAC

Γ − γ

)
(5.199)

Rearranging, it can be shown that

D ≥ σ22qα+52−2C1 (5.200)

D ≥ (1 + γ2)α22qγ+92−2C2 (5.201)

(5.202)
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where Ci = minΓ:i∈ΓC
GAUSS-MAC

Γ for i = 1, 2 and α is the constant in (5.35).

Using the same logic, the problem of sending an asymmetric function of three Gaussian
sources corresponds to the three user deterministic computation problem with private mes-
sages. However, as shown in Theorem 5.27, cut-set is not tight for this deterministic scenario
and does not lead to a constant ratio in the Gaussian case.

5.4 Discussion

We studied linear function computation in both linear deterministic and Gaussian networks.
In the first part of this chapter, we developed a framework for computing functions of dis-
crete sources over linear deterministic multiple-access networks [77]. We observed a duality
relation between broadcast with common messages and multiple-access with computation
that extends the well-known broadcast multiple-access duality to various communication de-
mands. The duality relation allows the recasting of a multiple-access network computation
problem into a broadcast network problem. This is useful since broadcast problems are well
studied and solutions to various cases have been developed. We applied the duality rela-
tionship to develop new results regarding computation over multiple-access networks. We
focused on characterizing scenarios under which cut-set upper bounds is tight since it is
the most common information theoretic bound used in networks. We considered broadcast
networks with various message demands and found that there are only two set of demands
under which cut-set is tight for all networks.

In the second part of this chapter, we extracted the deterministic model insights and
applied it to Gaussian networks. We considered computing the sum of Gaussian sources
over a class of relay networks with Gaussian multiple-access channels and proved that the
achievable distortion is within a constant ratio of the optimal distortion given by the cut-set
lower bounds. Our scheme separates the physical and network layers and uses nested lattices
codes for computation over the physical layer and network codes in the network layer. As
a result of the separation, we reduced the original problem into one of computing discrete
sources over linear deterministic networks and can apply the framework in the first part of
the chapter.

In this work, duality and cut-set bounds were proposed as conceptual tools to study
function computation over networks. Thus, the natural question is the extent to which these
tools can be generalized. The set of computation demands in multiple-access networks can
be expanded by generalizing the communication demands of broadcast networks to include
cases where the destinations are interested in functions of the messages. In future work, it
would be interesting to develop new achievability schemes and converses for cases where the
cut-set is shown to be not tight.
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Chapter 6

Functional Forwarding of Channel

State Information

The lack of global channel state information often results in a significant reduction in
capacity in wireless networks. It is well known that non-coherent, fast fading, point-to-point
channels lose a fraction of their capacity at high SNR [83], [84] [85]. The knowledge of channel
state information at the basestation can increase the sum rate nontrivially in the wireless
downlink infrastructure with multiple antennas [86], [87]. In the interference channel, the
multiplexing gain is significantly larger when channel state information is known both at the
transmitter and the receiver [24, 88]. The optimal multiplexing gain is still achievable even
in the case when the transmitter does not know the channel state information but learns
it via feedback from the receiver [89]. However, the achievable multiplexing gain decreases
significantly when channel state information is completely absent at the transmitter [90].
These results suggest that it is crucial to learn channel state information in networks.

In large networks involving many intermediate relays, the cost of forwarding channel
state information is non-trivial. One network that has been studied in the literature is the
uplink infrastructure with basestation cooperation [91, 92, 93]. Here, mobiles send their
information to a set of nearby basestations, which first process the received information
then jointly forward it to the remote central processor. In the case where the channel state
information is not known globally, the basestations measure the channel states of their local
links through the use of pilot signals at the mobiles but the central processor does not have
access to channel state information directly. One obvious strategy is for the basestations to
forward the entire channel state information to the receiver. However, this can be inefficient
when there is a large number of mobiles and basestations present in the network.

In this chapter we propose a scheme called functional forwarding in which the nodes in
the wireless network, rather than sending full information, send only the function of the
CSI needed at the decoder. Our research is motivated by the fact that full CSI is often not
needed. Instead, a function of the CSI is sufficient. In recent work [27], it was shown that it
is sometimes much more efficient to communicate only a function of the information, rather
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than the full information. In this chapter, we adapt this approach to the particular problem
of efficiently forwarding CSI. Hence, by contrast to [27], we are not interested in an error
free forwarding nor in a distorted version, but we have to forward just enough CSI to make
decoding successful at the desired rate.

The rest of this chapter is organized as follows. In Section II, we present our channel
model, the two-stage fading relay network. We develop a general framework for character-
izing the achievable rate for lossless functional forwarding in Section III. We first state the
general achievable rate for functional forwarding in Theorem 1 and then consider a series of
examples to compare the performance of functional forwarding and full forwarding of CSI.
In Section IV, we extend our general framework to the lossy case and consider a Gaussian
network example.

6.1 Channel Model

Though the concept of functional forwarding of CSI is more widely applicable, in the present
chapter we restrict attention to one particular network topology. We consider the two-stage
relay network with N information sources (and we will sometimes refer to them as users), M
relays, and a single destination (see Figure 6.1). Each source chooses a message wj uniformly
from the set Wj = {1, 2, ..,Mj}. Each message is mapped into a length n codeword:

Ej : Wj → X n
j for j = 1, ..., N (6.1)

Let Xj[i] be the channel input from source j at time i. In the first stage of the network, which
we will refer to as the broadcast (BC) stage, the transmitted codewords are broadcasted to
the M relays through the channel characterized by:

Q(y1, ..., yM |x1, ..., xN ,H) (6.2)

where H is an M ×N matrix from alphabet H denoting the channel state information. We
will find it convenient to denote the row vectors of H by hT

m, for m = 1, 2, . . . ,M. In the
present chapter, we adopt a fast-fading model where the matrix H changes over time. We
use i to denote the (discrete) time index and will write H[i] for the matrix at time i. More
precisely, H[i] is drawn i.i.d. each time instant according to some distribution PCSI(H). We
assume hm is known locally at relay m but is not known globally. The transmitters and
destination know only the distribution of the CSI.

In the second stage of our network, referred to as the multiple-access (MAC) stage, the
relays communicate to the destination through a multiple-access channel. We allow ℓ ∈ N

uses of the MAC per use of the broadcast channel, meaning that we study the case where
the bandwidth of the multiple access section of our network is an integer multiple of the
bandwidth of the broadcast section. Each relay encodes its observation ynm and channel
state information hn

m into a length ℓn codeword:

Rm : Hn
m × Yn

m → X ℓn
r,m for m = 1, 2, . . . ,M (6.3)
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w1 E1 x1

...

wN EN xN

BC

(h1, ..,hM)

(h1, y1)

...

(hM , yM)

R1
xr,1

RM
xr,M

MAC
yMAC D

w1

wN

...

Figure 6.1. Two-Stage Fading Relay Network. The first stage is the broadcast (BC) stage
and the second stage is the multiple-access (MAC) stage. CSI is known locally at the relays
but is not known at the destination and the transmitters. We refer to the N encoding nodes
labeled Ej as information sources or users, and to the single decoding node labeled D as the
destination.

The final destination receives YMAC and decodes the original transmitted messages:

D : Yℓn
MAC

→ W1 × · · · ×WN (6.4)

(ŵ1, ..., ŵM) = D(yℓn
MAC

) (6.5)

We require that the messages be reliably recovered:

Pr((ŵ1, ..., ŵM) 6= (w1, ..., wM)) ≤ ǫ (6.6)

for all ǫ > 0 for n large.

6.2 Functional Forwarding

In this section, we describe our framework for the relays to send a function of the channel
state information to the destination. We first give some key definitions used in our proposed
strategy. Next, we describe functional forwarding in detail and provide its achievable rate
for the two-stage relay network. Finally, we discuss the choice of forwarding function and
show that functional forwarding can be much more effective than full forwarding through a
series of examples.

6.2.1 Definitions

The central element in the strategies discussed in this chapter is the so-called “forwarding”
function. We define this function as follows.
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Definition 6.1. (Forwarding Function): Let fF be a fixed many-to-one function and U be
an alphabet:

fF : Y1 ×H1 × · · · × YM ×HM → U (6.7)

As shown in the above definition, the value of the forwarding function depends on the
relay observations and channel state information: U = fF (y1,h1, · · · , yM ,hM). Clearly, in
the considered network model, this value is not known to any individual relay. Rather, the
forwarding function is sent to the destination in a distributed fashion using a computation
code, which we now proceed to define formally.

Definition 6.2. (Computation Code): Given joint sequences {Y1,h1, ..., YM ,hM}k of type
P and a fixed multiple-access channel, a (k, n, ǫ) fF,P computation code consists of

M encoders:
Rm : Yk

m ×Hk
m → X n

r,m (6.8)

such that
Xn

r,m = Rm(Y
k
j ,h

k
j ); (6.9)

a forwarding function
Uk = fF,P(Y

k
1 ,h

k
1, ..., Y

k
M ,hk

M); (6.10)

and a decoder
D : Yn

MAC
→ Uk; (6.11)

that outputs an estimate Ûk where

Ûk = D(Y n
MAC

) (6.12)

Pr(Uk 6= Ûk) ≤ ǫ. (6.13)

Definition 6.3. (Computation Rate): An fF,P computation rate κ = k
n
is achievable if for

all ǫ ∈ (0, 1), there exists a (κn, n, ǫ) fF,P computation code for all n greater than some
n0 ∈ Z.

When the particular function is clear from context, we will often merely refer to com-
putation rate in order to keep the terminology simple. The inverse of the computation rate
represents the number of channel uses required for the destination of the multiple-access
channel to reliably recover one instance of the forwarding function. For a fixed input distri-
bution, broadcast channel, and channel state distribution, we find it useful to parametrize
the multiple-access part of the two-stage fading network by its computation rate for a chosen
forwarding function.
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6.2.2 Proposed Scheme

We now proceed to describe our proposed strategy. Each user has a message wj that is
drawn uniformly from the set all of all messages Wj = {1, . . . ,Mj} and constructs a random
codebook where each element of each codeword is drawn according to distribution Pj(X).
Each encoder maps its message to a length n codeword:

Ej : Wj → X n
j for j = 1 · · ·N (6.14)

The codewords are then transmitted to the relays through the broadcast stage of the network
with the channel matrix from Equation (6.2). At time i, relay m observes ym[i], which is
a noisy combination of the transmitted signals x1[i] · · ·xN [i]. Relay m has knowledge of
its own channel state information vector hm[i]. We let x[i] = [x1[i] · · ·xM [i]]T be the set
of transmitted symbols at time instance i, H[i] = [h1[i] · · ·hM [i]]T be the set of channel
state information and y[i] = [y1[i] · · · yM [i]]T be the set of relay observations. We define the
induced distribution for the set of relay observations and channel state information.

Definition 6.4. For the two-stage relay network under a fixed input distribution of the form
P1(x1)P1(x2) · · ·PN(xN), the induced distribution PIND is defined as follows:

PIND(y,H) =
∑

x1,··· ,xN

Q(y|H,x)PCSI(H)P1(x1) · · ·PN(xN ) (6.15)

where Q is the channel distribution for the broadcast part of the network and PCSI is the
distribution for the channel state information.

We first choose a forwarding function U = fF,PIND
(y1,h1, · · · , yM ,hM). The relays will

send U to the destination in a distributed fashion. Using a (k, n, ǫ) fF,PIND
computation

code, each relay encodes its first k observations ykm and channel state information hk
m into a

length ℓn codeword:

Rm : Hk
m × Yk

m → X ℓn
r,m for m = 1, 2, . . . ,M (6.16)

where ℓ ∈ Z+ is the bandwidth expansion of the MAC channel. The destination observes
yMAC, which is a noisy combination of the transmitted signals from each relay, and performs
decoding in two stages. In the first stage, the forwarding function is recovered:

D1 : Yℓn
MAC

→ Uk (6.17)

Ûk = D1(y
ℓn
MAC

) (6.18)

In the second stage the the original messages are recovered from the forwarding function:

D2 : Uk → W1 × · · · ×WN (6.19)

(ŵ1, ..., ŵM) = D2(u
k) (6.20)

We require that the messages be reliably recovered:

Pr((ŵ1, ..., ŵM) 6= (w1, ..., wM)) ≤ ǫ (6.21)

for all ǫ > 0 for n large.
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6.2.3 Achievable Rate

For the two stage relay network with broadcast channel characterized by Q(y|H,x) and
channel state information distribution PCSI(H), we give the achievable rate for functional
forwarding in the following theorem.

Theorem 6.5. Consider the two-stage relay network under a fixed input distribution
P1(x1) · · ·PN (xN). For a given forwarding function U = fF,PIND

(Y1,h1, ..., YM ,hM), let κU be
an achievable computation rate for the multiple-access channel. The set of rates (R1 · · ·RN)
are achievable if it satisfies the following inequalities:

∑

i∈S
Ri ≤ min {κUℓ, 1}I(XS ;U |XSc) ∀ S ⊆ {1, ..., N}

where ℓ is the bandwidth expansion of the multiple-access part of the network.

Remark 6.6. Full forwarding corresponds to the case where U = (Y1,h1, · · · , YM ,hM) in
Theorem 6.5.

The proof of Theorem 1 is given in Appendix F.

6.2.4 Forwarding Functions

We observe that finding the optimal forwarding function fF to maximize the achievable
rate in Theorem 1 is non-trivial since the forwarding function appears in both the mutual
information term and the computation rate κU . Furthermore, finding the optimal forwarding
function involves first finding the computation rate for a general class of functions over a
set of MACs, which is generally an open problem [27]. In this section, we briefly discuss
criteria for selecting a good forwarding function and show that it is important to exploit the
structure of the MAC.

Consider the single user two-stage relay network. From Theorem 1, the achievable rate
using functional forwarding is given by

R = min {κUℓ, 1} I(X ;U) (6.22)

where U = fF,PIND
(Y1,h1, ..., YM ,hM) is the selected forwarding function and κU is the MAC’s

fF,PIND
computation rate. One good candidate for U is the sufficient statistic for X given the

relay observations and fading information (Y1,h1, ..., YM ,hM). For this choice of forwarding
function, no information is lost if the destination knows U rather than the full channel
state information and relay observations. When the structure of the MAC is “perfectly
matched” to the sufficient statistic (in a sense that will become clear through the examples
in the sequel), then choosing the forwarding function to be the sufficient statistic is exactly
optimal.
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Example 1. Binary Network with OR MAC

We consider a single user binary network with an OR MAC (see Figure 6.2). The first stage
consists of a binary broadcast channel with input: X ∈ {0, 1} and fading: hm ∼ i.i.d B

(
1
2

)
.

Relay m observes Ym = hmX for m = 1, 2. The MAC in the second stage has binary inputs
Xr,m ∈ {0, 1} and output YMAC = Xr,1 ∨ Xr,2 (where ∨ is the OR function). We assume a
bandwidth expansion ℓ = 2. The forwarding function USUFF = (USUFF,1, USUFF,2) is chosen to
be the sufficient statistic

USUFF,1 = Y1 ∨ Y2 (6.23)

USUFF,2 = h1 ∨ h2 (6.24)

The relays use uncoded transmission to first send U1 and then U2 across the MAC in a
distributed fashion. The relays first transmit Xr,m[i] = hm[i]Ym[i] for i = 1, .., n and then
Xr,m[i] = hm[i− n] for i = n+ 1, . . . , 2n. The destination receives

YMAC[i] = Y1[i] ∨ . . . ∨ YM [i] for i = 1, . . . , n

YMAC[i] = h1[i− n] ∨ . . . ∨ hM [i− n] for i = n+ 1, . . . , 2n

Thus, via uncoded transmission, we can establish that an achievable computation rate is
given by κU = 1

2
. We note that since the structure of the MAC is perfectly matched to the

sufficient statistic, the final destination receives (USUFF,1, USUFF,2). Plugging the achievable
computation rate into Theorem 1, the achievable rate for functional forwarding is given by

R =
1

2
2I(X ;USUFF,1, USUFF,2) (6.25)

= I(X ; Y1, Y2, h1, h2) (6.26)

= 1−
(
1

2

)2

(6.27)

where the last inequality follows by choosing the input distribution X ∼ B
(
1
2

)
. We evaluate

the cutset upper bound [1]:

CCut-Set (6.28)

= max
P (x,xr,1,xr,2)

min {I(X ; Y1, Y2, h1, h2), 2I(Xr,1, Xr,2; YMAC)} (6.29)

= max
P (x)

I(X ; Y1, Y2, h1, h2) (6.30)

= 1−
(
1

2

)2

(6.31)

and find that functional forwarding is optimal.
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Figure 6.2. The binary network considered in Example 1, with two relays and the binary
OR MAC

Forwarding the sufficient statistic is exactly optimal in this network since the sufficient
statistic preserves information perfectly and the MAC is exactly matched with the sufficient
statistic. However, when the MAC at hand is not matched to the sufficient statistic, then the
latter is no longer the best forwarding function. This fact is illustrated in the next example.

Example 2. Binary Network with XOR MAC

We consider the two stage relay network shown in Figure 6.2. The binary broadcast channel
in the first stage is the same as that in Example 1 and the sufficient statistic is given by
Equation (6.23). The MAC in the second stage is an XORMAC with inputs Xr,m ∈ {0, 1} for
all m = 1, 2 and output YMAC = Xr,1⊕2Xr,2. We consider the matched bandwidth case where
ℓ = 1. An achievable computation rate for the sufficient statistic is κSUFF = 0.286 (derived
from Example 7 in [27]) and the functional forwarding achievable rate if the sufficient statistic
is forwarded is given by

RSUFF = κSUFFI(X ;USUFF) (6.32)

= 0.214 (6.33)

where X ∼ B(1
2
). Here, the achievable rate for functional forwarding is not optimal since the

OR MAC cannot compute the XOR function efficiently. Hence, rather than forwarding the
sufficient statistic, we forward the XOR function instead. We choose the forwarding function
UXOR = (UXOR,1, UXOR,2) to be the XOR of the inputs:

UXOR,1 = Y1 ⊕2 Y2 (6.34)

UXOR,2 = h1 ⊕2 h2 (6.35)

Using uncoded transmission separately for each component of UXOR and using two channel
uses, we find that an achievable computation rate for forwarding UXOR is κXOR = 1

2
and

thus, using Theorem 1 with input distribution X ∼ B
(
1
2

)
, we find that the following rate is

achievable:

RXOR = κXORI(X ;UXOR) (6.36)

= 0.25 (6.37)
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where X ∼ B(1
2
). This example shows that it is not always optimal to send the sufficient

statistic. Rather, it is crucial to consider the structure of the MAC when choosing the
forwarding function.

w E1 x

h1

h2

y1

y2

R1

h1
xR1

R2

h2

xR2

yMAC D ŵ

Figure 6.3. The binary network considered in Example 2, with two relays and binary XOR
MAC

6.2.5 Single-User Examples

In this section, we compare the performance of functional forwarding versus full forwarding
through a series of examples. Full forwarding corresponds to sending the entire set of relay
observations and channel state information. Although our choices for the forwarding func-
tions are not always optimal, we show that functional forwarding can be much more efficient
than full forwarding.

We consider the single user two-stage binary network (see Figure 6.4) with different
multiple-access channels. The broadcast network in the first stage is same as that of Ex-
ample 1 but we now consider M relays instead of just two. In the second stage, the relays
communicate to the destination through a multiple-access channel.

w E x

h1

h2

hM yM

y2

y1 R1
xR1

R2
xR2

...

RM
xRM

MAC

yMAC D ŵ

Figure 6.4. The Binary Relay Figure considered in Example 1-3 for varying multiple-access
channels (MAC)

Example 1 (Continued).
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The capacity region of this multiple-access channel is given by

C =

{
(R1 · · ·RM) ∈ RM

+ :
M∑

m=1

Rm = 1

}
(6.38)

and the sum capacity CMAC,SUM = 1. We choose the forwarding function to be the sufficient
statistic: USUFF = (USUFF,1, USUFF,2) where

USUFF,1 = y1 ∨ y2 · · · ∨ yM (6.39)

USUFF,2 = h1 ∨ h2 · · · ∨ hM (6.40)

We observe that exactly as in the case of two users discussed before, uncoded transmission
performs well here, attaining a computation rate of κU = 1

2
. We compare this to the strategy

where the full information is forwarded to the destination from M ′ relays. From Theorem 1
(and also Remark 1), it can be shown that the overall achievable rate is given by:

RFULL(M
′) =

CSUM, MAC

H(Y1, h1, . . . , YM ′, hM ′)
I(X ; Y1, h1 · · ·YM ′, hM ′) (6.41)

We choose M ′ to maximize the overall sum transmission rate:

M ′ = arg max
m≤M

RFULL(m) (6.42)

Figure 6.6 compares the performance of the different schemes. We note that functional
forwarding is exactly optimal while full forwarding is highly suboptimal when the number of
relays becomes large. In this case, the total amount of CSI becomes exceedingly large, and
thus the MAC from the relays to the destination becomes the main bottleneck.

w E x

h1

h2

hM yM

y2

y1 R1
xR1

R2
xR2

...

RM
xRM

· yMAC D ŵ

Figure 6.5. The binary network consider in Example 1 (continued), with M relays and
multiplying MAC

In Example 1, the sufficient statistic is perfectly matched with the MAC and forwarding
the sufficient statistic is optimal. In the next example, we show that even in the case where
the MAC is not perfectly matched with the sufficient statistic, forwarding the sufficient
statistic still gives a nontrivial gain over full forwarding.
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Figure 6.6. Achievable rates for binary network with multiplying MAC with from Example 1
(continued). In this network, functional forwarding is exactly optimal.

Example 3.

Consider the two-stage binary network where the MAC has inputs Xr,m ∈ {0, ..., 4M − 1}
for all m = 1, ..,M and output YMAC =

∑M
m=1Xr,m + Z mod 4M where Z ∼ B

(
1
2

)
. This is

a symmetric MAC with capacity CMAC,SUM = log(4M)− 1. As in Example 2, we choose the
forwarding function to be the sufficient statistics USUFF = (USUFF,1, USUFF,2) given by Equation
(6.39). Let V1 =

∑M
m=1 Ym mod 4M and V2 =

∑M
m=1 hm mod 4M . Since USUFF,1, USUFF,2

can be recovered from (V1, V2), we use the linear the computation code developed in [27] to

send (V1, V2) at computation rate κ =
CMAC,SUM

H(V1,V2)
. In Figure 6.7, we compare the performance

of different relaying strategies when the MAC has matched bandwidth (ℓ = 1). We find that
functional forwarding outperforms other strategies for M ≥ 2 and is optimal for M ≥ 4.

6.2.6 Multi-User Example

The previous examples consisted of single user networks. Here, we consider the effect of
functional forwarding in the two stage binary network with two users and M relays (see
Figure 6.8). At time i, each user transmits Xj[i] ∈ {0, 1} for j = 1, 2 and the relays observe:

Ym[i] = hm,1[i]X1[i]⊕ hm,2[i]X2[i] (6.43)

where hm,1, hm,2 ∼ i.i.d B(1
2
). The relays use a computation code to send the forwarding

function to the destination. We consider a binary XOR MAC with inputs Xr,m ∈ {0, 1}
for all m = 1, ...,M and output YMAC = ⊕M

mXr,m. This is a symmetric MAC with capacity
CMAC,SUM = 1. We assume a bandwidth expansion ℓ = 4. The forwarding function U =
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Figure 6.7. Achievable rates for binary network with mod 4M adder MAC from Example 3. In
this case, functional forwarding is optimal when the number of relays is greater than 3.

(U1, U2) is chosen as follows:

U1 = HTY (6.44)

U2 = HTH (6.45)

where H is the channel matrix and Y = [y1,y2] consists of the relay observations. We note
that all operations are over the binary field. Using uncoded transmission, an achievable
computation rate for the forwarding function is κU = 0.2. Using Theorem 1, the achievable
sum rate with functional forwarding is given by

R = 0.8E
[
rank

(
HTH

)]
(6.46)

Figure 6.9 shows the performance of different relaying schemes. We observe that although
the considered version of functional forwarding is not optimal it outperforms full forwarding
when there are three or more relays.

6.3 Extension to a Gaussian Network

In this section, we examine the performance of functional forwarding in a Gaussian Network
(see Figure 6.10). We first describe the Gaussian channel model then show that functional
forwarding can be much more efficient than full forwarding.
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Figure 6.8: Two user binary network with binary OR MAC

6.3.1 Channel Model

We consider the two-stage Gaussian relay network that consists of a fading broadcast channel
followed by a non-fading multiple-access channel (see Figure 6.10). The source chooses a
message w uniformly from the set W =

{
1, 2, ..., 2nR

}
and encodes into into a length n

codeword x:
Em : W → Rn (6.47)

We assume the typical power constraint is satisfied at the source:

1

n

n∑

i=1

x2[i] ≤ SNRs (6.48)

At time i, the source transmits x[i] and relay m observes:

ym[i] = hm[i]x[i] + zm[i] (6.49)

The fading coefficients are drawn independently from a Gaussian distribution: hm[i] i.i.d
∼ N (0, 1) and {zm[i]}i is a white Gaussian process with unit variance. The fading coefficient
hm[i] is assumed to be known at relay m but unknown at the destination as well as at the
other relays. We assume ℓ uses of the MAC are allowed per use of the broadcast channel
and find it interesting to consider the case of a bandwidth expansion. Relay m encodes its
observation ynm and channel state information hn

m into a length ℓn codeword xℓn
r,m:

Rm : Rn × Rn → Rℓn (6.50)

We assume a power constraint of SNRr at the relays:

1

ℓn

ℓn∑

i=1

x2
r,m[i] ≤ SNRr (6.51)
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Figure 6.9. Achievable sum-rate for two-user binary network with binary XOR MAC, ℓ = 4.
Functional forwarding outperforms full forwarding in this case.

At time i, relay m transmits signal xr,m[i] to the destination. The destination observes a
linear sum of the relay transmissions with additive white Gaussian noise:

yMAC[i] =

M∑

m=1

xr,m[i] + zMAC[i], (6.52)

where {zMAC[i]}i is a Gaussian process with unit variance. The destination decodes the
message:

D : Rℓn → W (6.53)

ŵ = D(yℓnMAC). (6.54)

We require that the message be reliably recovered:

Pr(ŵ 6= w) ≤ ǫ (6.55)

for all ǫ > 0 for n large.

6.3.2 Forwarding Function

Let y = [y1 · · · yM ]T represent the vector of relay observations, h = [h1 · · · hM ]T be the
vector of the channel state information and z = [z1 · · · zM ]T be the vector of noise noise. It
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Figure 6.10: Single User Gaussian Network

follows that:
y = hx+ z (6.56)

A sufficient statistic can be formed by projecting the relays’ received signal onto the direction
of the fading vector:

hTy = ‖h‖2x+ z̃ (6.57)

where z̃ ∼ N (0, ‖h‖2N). This reduces the broadcast channel to a point-to-point Gaussian
channel with fading coefficient ‖h‖2. We observe that (hTy, ‖h‖2) is the sufficient statistic for
the transmitted signal given the relay outputs and fading coefficients and have the following
Markov Chain:

x → (y,h) →
(
hTy, ‖h‖2

)
(6.58)

The vector of channel state information h is not needed to decode the transmitted signal
but rather its norm ‖h‖2 is sufficient. Given fading coefficients h and relay observations y,
we select the forwarding function to be the sufficient statistic:

U = hTy (6.59)

V = ‖h‖2 (6.60)

The relays use a computation code to first send U and then V across the multiple access
channel to the destination. Note that U is linear in hmym and V is linear in h2

m. Recently,
it was shown in [27] that lattice codes can efficiently compute linear functions of Gaussian
random variables over the Gaussian MAC. Our computation code is a modified version of
that in [27].

6.3.3 Achievable Rates

The following theorem gives the achievable rate for the Gaussian network using functional
forwarding.
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Theorem 6.7. Consider the Gaussian, two-stage relay channel with a bandwidth expansion
of ℓ. For any ℓ1, ℓ2 ∈ Z+ such that ℓ1 + ℓ2 = ℓ, the following rate is achievable

R =
1

2
E

[
log

(
1 +

V̂ 2SNRs

E[(V − V̂ )2|V̂ ]SNRs + V̂ +D2

)]
(6.61)

where V̂ = E[V |V + Z], V is Chi-Squared with M degrees of freedom and Z is zero-mean
Gaussian with variance D1 given by

D1 = (2SNRs + 1)

(
1

SNRr

)ℓ1

(6.62)

and the constant D2 is given by

D2 = 2

(
1

SNRr

)ℓ2

(6.63)

In the case where ℓ1 = ℓ2 = 1, our computation code involves only amplify and forward.
In general, we use a modified version of the scheme from [27] that uses lattice codes from
[16, 17]. The proof is given in Appendix G. In the following Corollary, we provide a lower
bound on the achievable rate.

Corollary 6.8. The functional forwarding achievable rate for the Gaussian two-stage net-
work from Theorem 6.7 can be lower bounded as follows

R ≥ 1

2
E

[
log

(
V 2SNRs

D1SNRs +M +D2

)]
− 1 (6.64)

(6.65)

where V is Chi-Squared with M degrees of freedom and the constants:

D1 = (2SNRs + 1)

(
1

SNRr

)ℓ1

(6.66)

D2 = 2

(
1

SNRr

)ℓ2

(6.67)

Proof. Form Theorem 6.7, the achievable rate of the Gaussian Network is given by:

R =
1

2
E

[
log

(
1 +

V̂ 2SNRs

E[(V − V̂ )2|V̂ ]SNRs + V̂ 1 +D2

)]
(6.68)

where V̂ = E[V |V + Z], V is Chi-Squared with M degrees of freedom and Z is zero-mean
Gaussian with D1 given by

D1 = (2SNRs + 1)

(
N

SNRr

)ℓ1

(6.69)
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and the constant D2 is given by

D2 = 2

(
1

SNRr

)ℓ2

(6.70)

We further bound this mutual information as follows:

R =
1

2
E

[
log

(
1 +

V̂ 2SNRs

E[(V − V̂ )2|V̂ ]SNRs + V̂ +D2

)]
(6.71)

≥ 1

2
E

[
log

(
1 +

V 2SNRs

E[(V − V̂ )2|V̂ ]SNRs + V̂ +D2

)]
− 1 (6.72)

≥ 1

2
E

[
log

(
V 2SNRs

E[(V − V̂ )2|V̂ ]SNRs + V̂ +D2

)]
− 1 (6.73)

≥ 1

2
E

[
log

(
V 2SNRs

D1SNRs +M +D2

)]
− 1 (6.74)

In the next section, we compare the achievable rates for the different relaying techniques.

6.3.4 Example: Scaling Illustration

In this section, we characterize the performance of different relaying techniques when a large
number of relays is in the network. We compare the performance of functional forwarding
to full forwarding using compressed and forward at the relays and decode and forward (see
[94] for a description of compressed-and-forward and decode-and-forward). We parametrize
SNRs, SNRr and ℓ with respect to the number of relays M as follows:

SNRs = Θ(Mα) (6.75)

SNRr = Θ(1) (6.76)

ℓ = Θ(Mβ) (6.77)

where α, β > 01. We note that Pr, N are fixed to be constants and we assume that Pr

N
> 1.

Our regime of interest represents a regime of high SNR and a large number of relay nodes.
It is well known that the presence of channel state information is crucial under high SNR.
We show that forwarding full channel state information is inefficient when there is a large
number of relays.

1The notation f(n) = Θ(g(n)) means that there exist constants C,C′ > 0 such that f(n) ≤ Cg(n) and
g(n) ≤ C′f(n)



CHAPTER 6. FUNCTIONAL FORWARDING OF CHANNEL STATE INFORMATION112

From the standard cut-set bound [1, Theorem 14.10.1], the achievable rate for the Gaus-
sian network must satisfy the following inequalities:

R ≤ min

{
E

[
1

2
log
(
1 + ‖h‖2SNRs

)]
,
ℓ

2
log
(
1 +M2

SNRr

)}

≤ E

[
1

2
log
(
1 + ‖h‖2SNRs

)]
(6.78)

≤ 1

2
log
(
1 + E[‖h‖2]SNRs

)
(6.79)

≤ 1

2
log (1 +MSNRs) (6.80)

≤ 1

2
log(MMα) + Θ(1)

=
(1 + α)

2
logM +Θ(1) (6.81)

We let RUPPER denote an upper bound to the Gaussian network

RUPPER =
(1 + α)

2
logM +Θ(1) (6.82)

The achievable rate using decode and forward is given by

RDECODE = E

[
1

2
log
(
1 + ‖h1‖2SNRs

)]
(6.83)

We define rDECODE to be the ratio of RDECODE and RUPPER in our scaling regime of interest:

rDECODE = lim
M→∞

RDECODE

RUPPER

(6.84)

From Equations (6.82), (6.83), it follows that:

rDECODE ≤ lim
M→∞

1
2
log(Mα) + Θ(1)

(1+α)
2

logM +Θ(1)
(6.85)

=
α

1 + α
(6.86)

Compared to the upper bound, we note that the decode and forward rate is suboptimal.
This suggest that it is important for the destination to know the channel state information
and relay observations from multiple relays before recovering the user’s message.
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Using the rate of functional forwarding given in Theorem 2, we evaluate the performance
of functional forwarding compared against the upper bound as follows:

rFUNCTION = lim
M→∞

RFUNCTION

RUPPER

≥

1
2
log

(
M2Mα

Mα(Pr
N )

Mβ

+M

)
−Θ(1)

(1+α)
2

logM +Θ(1)

= 1

We note that functional forwarding is optimal in our regime of interest. Finally, we compare
the performance of full forwarding as a function of the upper bound. Using compress and
forward to send the fading coefficients and relay observations individually, it can be shown
that

rFULL = lim
M→∞

RFULL

RUPPER

≥ min
{

1+α
2
, β+α

2

}
logM +Θ(1)

(1+α)
2

logM +Θ(1)

= min

{
1,

β + α

1 + α

}

The scaling results are summarized in Table 6.1 and displayed in Figure 11. We note that
functional forwarding is optimal in our scaling regime of interest while full forwarding is
suboptimal when the MAC does not have enough bandwidth (in the case where β < 1). In
this regime, there are M fading coefficients to be sent over the MAC but only Mβ channel
uses. Since sending multiple coefficients at once causes interference, full forwarding allows
only Mβ of the relays to send their information.

Table 6.1: Scaling results r = R
RUPPER

for Single User Gaussian Network

Functional Forwarding 1

Full Forwarding min
{
1, β+α

1+α

}

Decode and Forward α
1+α

6.4 Conclusion

We propose a framework to forward a function of the channel state information for the
two-stage fading network. We applied our framework to a series of examples and showed
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Figure 6.11. Achievable rates as a fraction of the upper bound for various relaying schemes for
the Gaussian Network in Figure 6.10

that functional forwarding of channel state information can be much more efficient than full
forwarding.
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Chapter 7

Conclusion

In this thesis, we demonstrated the role of structured codes in information theory and
focused on three MIMO and network settings. First, while considering a MIMO channel,
it was shown that structured lattice codes can improve linear receiver design. Traditional
linear receivers recover the individual data streams transmitted across the MIMO channel.
Although these types of architectures are low in complexity, they experience a high perfor-
mance loss compared to the theoretically optimal joint receiver. To bridge this performance
gap, the proposed integer-forcing linear receiver instead recovers linear equations of the data
streams. Standard random coding arguments are insufficient since equations of data streams
are recovered, and lattice codes are used for their algebraic structure. The proposed receiver
architecture achieves much better performance than traditional linear receivers at the cost
of only slightly higher complexity. Second, we leveraged lattice codes to connect problems
of computation over wireless networks to those of computation across wireline networks.
By using lattice codes for both source quantization and source coding, the wireless network
problem is converted into a deterministic wireline network problem. Tools from computation
over wireline networks can then be applied. As a result, we characterized the distortion for
transmitting the sum of Gaussian sources across a class of wireless relay-networks to within
a constant gap of the optimal distortion. Finally, lattice codes can be used to transmit a
function of the channel state information in relay networks where only partial channel state
information is available. This is shown to be much more efficient than transmitting the full
channel state information.

It is known that lattice codes achieve the optimal performance in many point-to-point
settings and provide non-trivial gains over standard random codes in many network settings.
This thesis further highlights the advantages of lattice codes through three network scenarios.
A natural question that arises is the development of algebraically structured codes beyond
lattice codes and their application to wireless network scenarios. Currently, lattice codes with
similar encoding and decoding constructions are applied universally across many network
settings. Although they are shown to be advantageous over random codes in many network
scenarios, their optimality still remains to be proven for most cases. An interesting direction
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for future research would be the development of algebraically structured codes specifically
suited for particular network scenarios. Furthermore, the formal definition of a structured
code and a random code remain to be determined. An interesting question would be to
characterize the difference between the two and categorize problems based on the type of
coding needed.
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Appendix A

Integer-Forcing vs. V-Blast IV

Recall that V-BLAST II performs decoding in the optimal order and V-BLAST III allows
for rate allocation. In this appendix, we introduce V-BLAST IV, which allows for both rate
allocation and an optimized decoding order. Under V-BLAST IV, the data streams are
decoded with respect to the ordering

π∗ = argmaxπ∈Πmin
m

2MRπ(m)(H). (A.1)

where Rπ(m)(H) is given by (3.6). We compare the behavior of V-BLAST IV to that of the
integer-forcing linear receiver in Figures A.1, A.2, A.3. The results show although V-BLAST
IV achieves good performance for low to medium SNR, the integer-forcing linear achieves
higher outage rates and lower outage probabilities in the medium to high SNR regime.
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Figure A.1. 1 percent outage rates for the 2 × 2 complex-valued MIMO channel with
Rayleigh fading.
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Figure A.2. 5 percent outage rates for the 2 × 2 complex-valued MIMO channel with
Rayleigh fading.
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Figure A.3. Outage probability for the 2×2 complex-valued MIMO channel with Rayleigh
fading for a target sum rate of R = 6.
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Appendix B

Proof of Theorem 2.21

In order to establish Theorem 2.21, we need a few key facts about lattices.

Definition B.1 (Lattice). A lattice Λ ⊂ R2M is a set of points that satisfy the following
properties:

i) 0 ∈ Λ (B.1)

ii) if x,y ∈ Λ then x+ y ∈ Λ. (B.2)

We call the rank-L matrix G a generator matrix for Λ if

Λ =
{
Gd : d ∈ Z2M

}
(B.3)

We use the definition of dual lattices from [95].

Definition B.2 (Dual Lattice). Given a lattice Λ ⊂ R2M with a rank-L generator matrix

G, the dual lattice Λ∗ has generator matrix
(
GT
)†
,

Λ∗ =
{(

GT
)†
d : d ∈ Z2M

}
. (B.4)

To prove Theorem 2.21, we consider successive minima for the involved lattices, a stan-
dard concept from the Diophantine approximation literature (see e.g. [64, 96, 97]), defined
as follows.

Definition B.3 (Successive Minima). Let B =
{
x ∈ R2M : ‖x‖ ≤ 1

}
be the unit ball. Given

a lattice Λ ⊂ R2M with a rank-L generator matrix, the mth successive minimum ǫm(Λ) where
1 ≤ m ≤ L is given by

ǫm(Λ) = {min ǫ : ∃ m linearly independent lattice points v1, . . . ,vm ∈ Λ ∩ ǫB}

Remark B.4. Definition B.3 implies that ǫ1(Λ) ≤ ǫ2(Λ) ≤ · · · ≤ ǫL(Λ) for any lattice Λ.
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The following basic property linking the successive minima of a lattice with those of its
dual lattice is key to our proof.

Lemma B.5 ([95, Proposition 3.3]). Let Λ ⊂ R2M be an arbitrary lattice with a rank-L
generator matrix and Λ∗ be its dual lattice. The successive minima for Λ and Λ∗ satisfy the
following inequality:

ǫ2ℓ(Λ
∗)ǫ21(Λ) ≤

m2(m+ 3)

4
for m = 1, 2, . . . , L . (B.5)

Finally, we also need the following result concerning a random Gaussian lattice.

Lemma B.6 ([98, Lemma 3]). Let H ∈ R2N×2M be the real-valued decomposition of a N×M
complex Gaussian matrix with i.i.d. Rayleigh entries. Let Λ =

{
Hd : d ∈ Z2M

}
be the lattice

generated by H. Then

Pr(ǫ1(Λ) ≤ s) =

{
γs2N , M < N,

δs2N max
{
−(ln s)N+1, 1

}
, M = N.

where γ and δ are constants independent of s.

We now provide the proof of Theorem 2.21. Let R = r log SNR be the target rate where
r ∈ [0,M ]. For a fixed set of equations A = [a1, · · · , a2M ]T and a fixed preprocessing matrix
B = [b1, · · · ,b2M ]T , the outage probability is given by

pOUT(r,A,B) = Pr

(
R(H,A,B) < r log SNR

)

= Pr

(
min
m

R(H, am,bm) <
r

2M
log SNR

)

= Pr

(
max
m

‖bm‖2 + SNR‖HTbm − am‖2 > SNR
1− r

M

)

For a fixed set of equations A, we are free to choose any projection matrix B, resulting
in the following bound:

pOUT(r,A) = min
B

pOUT(r,A,B)

≤ pOUT(r,A,AH†)

= Pr

(
max
m

∥∥∥
(
HT
)†
am

∥∥∥
2

> SNR
1− r

M

)



APPENDIX B. PROOF OF THEOREM 2.21 130

We then choose the best set of full-rank equations by optimizing (B.6) over all integer
matrices A ∈ Z2M×2M with non-zero determinant:

pOUT(r) = min
A:|A|>0

pOUT(r,A) (B.6)

≤ min
A:|A|>0

Pr

(
max
m

∥∥∥
(
HT
)†
am

∥∥∥
2

> SNR
1− r

M

)
(B.7)

= Pr

(
min

A:|A|>0
max
m

∥∥∥
(
HT
)†
am

∥∥∥
2

> SNR
1− r

M

)
(B.8)

We use properties of dual lattices to bound (B.8). For a fixed H, let ΛCHANNEL be the

lattice generated by H and ΛDUAL be the dual lattice generated by
(
HT
)†
,

ΛCHANNEL =
{
Hd : d ∈ Z2M

}
(B.9)

ΛDUAL =
{(

HT
)†
d : d ∈ Z2M

}
. (B.10)

Using the definition of successive minima (Definition B.3), it follows that

min
A:|A|>0

max
m

∥∥∥
(
HT
)†
am

∥∥∥
2

= max
m=1,··· ,2M

ǫm(ΛDUAL) (B.11)

= ǫ2M (ΛDUAL) . (B.12)

We now express (B.8) in terms of the successive minima of ΛDUAL,

pOUT(r) ≤ Pr

(
min

A:|A|>0
max
m

∥∥∥
(
HT
)†
am

∥∥∥
2

> SNR
1− r

M

)
(B.13)

= Pr
(
ǫ22M(ΛDUAL) > SNR

1− r
M

)
(B.14)

Using Lemma B.5, we can bound the successive minima of ΛDUAL in terms of the successive
minima of ΛCHANNEL,

ǫ22M(ΛDUAL) ≤
2M3 + 3M2

ǫ21(ΛCHANNEL)
. (B.15)

Combining (B.14) and (B.15), the outage probability is upper bounded by

pOUT(r) ≤ Pr

(
2M3 + 3M2

ǫ21(ΛCHANNEL)
> SNR

1− r
M

)
(B.16)

= Pr

(
ǫ21(ΛCHANNEL) <

2M3 + 3M2

SNR
1− r

M

)
(B.17)
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This probability can in turn be upper bounded using Lemma B.6. For large SNR, we find
that

pOUT(r) ≤
max {γ, δ} (2M3 + 3M2)N (ln SNR)N+1

SNR
N(1− r

M )
.

where γ, δ are constants independent of SNR. The achievable diversity for multiplexing gain
r is thus

d(r) = lim
SNR→∞

− log ρOUT(r)

SNR
(B.18)

≥ lim
SNR→∞

N
(
1− r

M

)
SNR

SNR
− o(SNR)

SNR
(B.19)

= N
(
1− r

M

)
(B.20)
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Appendix C

Proof of Theorem 5.17

We fix a broadcast network NDET-BC with nodes Ω and communication demands P. We
assume that the linear time invariant code {Ki}i∈Ω achieves the rate tuple (R1, · · ·Rℓ). For
clarity purposes, we use the notation NBC,S to denote the source node, NBC,D1

, . . . , NBC,Dm

denote the m destination nodes and Ni for i = 1, . . . , r to denote the r relay nodes. Let
GBC be the overall transfer function for the broadcast network NDET-BC from the input of
the source node NBC,S to the output of the destination nodes NBC,D1

, . . . , NBC,Dm
. Since

XBC,Di
= ∅, it follows that

GBC = [GT
BC,S,D1

· · ·GT
BC,S,Dm

]T (C.1)

where GBC,S,Di
is the transfer function from node NBC,S to node NBC,Di

. Let NDET-MAC be the
dual multiple-access channel with source nodes NMAC,S1

, · · ·NMAC,Sm
and destination node

NMAC,D. We assume that NMAC applies the linear time invariant code
{
KT

i

}
i∈Ω. Let GMAC

be the overall transfer function for the dual multiple-access network from source nodes
NMAC,S1

, . . . , NMAC,Sm
to the destination node NMAC,D. Since YMAC,Si

= ∅ for all i, it fol-
lows that

GMAC = [GMAC,S1,D · · ·GMAC,Sm,D]
T (C.2)

where GMAC,Si,D is the transfer function from NMAC,Si
to the destination node NMAC,D. We

show that GT
BC

= GMAC. From (C.1) and (C.2), it is sufficient to show that GT
BC,S,Di

=
GMAC,Si,D for all i = 1, . . . , m. From [76], the transfer function GBC,S,Di

is given by

GBC,S,Di
= [HBC,1,Di

K1 · · ·HBC,r,Di
Kr]


I −




HBC,1,1K1 · · · HBC,r,1Kr
...

...
HBC,1,rK1 · · · HBC,r,rKr







−1 


HBC,S,1
...

HBC,S,r




(C.3)

+
(C.4)
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and the transfer function GMAC,Si,D is given by

GMAC,Si,D = [HMAC,1,DK
T
1 · · ·HMAC,q,DK

T
r ]


I −




HMAC,1,1K
T
1 · · · HMAC,r,1K

T
r

...
...

HMAC,1,rK
T
1 · · · HMAC,r,rK

T
r







−1

(C.5)


HMAC,Si,1
...

HMAC,Si,r


+HMAC,Si,D (C.6)

We note that

HMAC,Si,D = HT
BC,S,Di

for all i = 1 · · ·m (C.7)

HMAC,Si,j = HT
BC,j,Di

for all i = 1 · · ·m, j = 1 · · · r (C.8)

HMAC,i,j = HT
BC,j,i for all i = 1 · · · r, j = 1 · · · r (C.9)

HMAC,j,D = HT
BC,S,j for all j = 1 · · · r (C.10)

Hence, we can rewrite

GMAC,Si,D = [HT
BC,S,1K

T
1 · · ·HT

BC,S,rK
T
r ]


I −




HT
BC,1,1K

T
1 · · · HT

BC,1,rK
T
r

...
...

HT
BC,r,1K

T
1 · · · HT

BC,r,rK
T
r







−1

(C.11)




HT
BC,1,Di

...
HT

BC,r,Di


+HT

BC,S,Di

Taking the transpose of GBC,S,Di
, we have that

GT
BC,S,Di

= [HBC,1,Di
· · ·HBC,q,Di

] (C.12)

I −




K1HBC,1,1 · · · K1HBC,q,1
...

...
KqHBC,1,q · · · KqHBC,q,q







−1 


K1HBC,1,S
...

KqHBC,q,S


+HBC,S,Di

We define the matrices HS,HD,H,K as follows:

HS = [HT
BC,S,1 . . . H

T
BC,S,q]

T , HD = [HBC,1,D . . .HBC,q,D]
T (C.13)

H =




HBC,1,1 · · · HBC,q,1
...

...
HBC,1,q · · · HBC,q,q


 , K = diag (K1, . . . ,Kq)
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Using the notation in (C.13), (C.5) and (C.12) can be rewritten as follows

GMAC,Si,D = HT
DK(I−HK)−1HS +HBC,S,Di

(C.14)

GT
BC,S,Di

= HT
D(I−KH)−1KHS +HBC,S,Di

(C.15)

From simple linear algebra, it can be shown that K(I − HK)−1 = (I − KH)−1K. Hence,
GMAC,Si,D = GT

BC,S,Di
.

Let KS be the preprocessing matrix and KD1
· · ·KDm

be the postprocessing matrices for
NDET-BC. The end-to-end transfer function to destinationsD1 . . . Dm are given byGBC, end-end =
[KT

S,Di
. . .KT

S,Dm
]TGBCKS. By assumption, rates R1, · · ·Rℓ are achievable for NDET-BC. By

using the same linear code (with matrix transpose), the end-to-end transfer function for
NDET-MAC is given by

GMAC, end-end = KT
SGMAC[K

T
S,Di

. . .KT
S,Dm

]T (C.16)

= KT
SG

T
BC
[KS,Di

. . .KS,Dm
] (C.17)

= GT
MAC, end-end

(C.18)

Since we want to compute ℓ functions under demands Q = P, computation rates R1, · · · , Rℓ

are achievable.
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Appendix D

Proof of Theorem 5.27

We first show that cut-set is universally tight for communication demands:

P(ℓ)
TIGHT,1 = {{1} ∪ {ℓ, . . . , m} , . . . , {ℓ− 1} ∪ {ℓ, . . . , m} , {ℓ, . . . , m}} for ℓ = 2, . . . , m

(D.1)

PTIGHT,2 = {{1} , {2} , . . . , {m}} (D.2)

PTIGHT,3 = {{1, 3, . . . , m} , {2, 3, . . . , m} , {1, 2, 3, . . . , m}} (D.3)

The proof for P(ℓ)
TIGHT,1,PTIGHT,2 are given in [71, Theorem 10]. In the case where m = 2,

demands PTIGHT,3 corresponds to the two-user broadcast network with a common message.
The tightness of cut-set for this case has been shown. For m > 2, the additional users desire
to recover all the messages. The proof PTIGHT,3 when m > 2 follows along the same lines as

that P(ℓ)
TIGHT,1.

We now show that cut-set is not universally tight for all other communication demands
outside of those given in (D.1) - (D.3). We first state Lemma D.1, which provides three
communication demands for which cut-set is not universally tight.

Lemma D.1. The cut-set bound is not universally tight for the communication demands:

PNOT-TIGHT,1 = {{1, 2, 3} , {3}} (D.4)

PNOT-TIGHT,2 = {{1, 2} , {3}} (D.5)

PNOT-TIGHT,3 = {{1, 2} , {2, 3} , {1, 3}} (D.6)

Proof. We provide broadcast channel examples for each communication demand and show
that cut-set is not achievable in each example.

Consider the broadcast channel with source S and destinations D1, D2, D3 and channel
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matrices:

HS,D1
=
[
1 0

]
(D.7)

HS,D2
=
[
0 1

]
(D.8)

HS,D3
=

[
1 1
0 1

]
(D.9)

We show that under communication demand PNOT-TIGHT,1, the rate R1 = 1, R2 = 1 is not
achievable. We use a slightly modified version of the proof in [80]. We have the following
set of inequalities:

nR1 log p = H(W1) (D.10)

= H(W1)−H(W1|Y n
1 ) +H(W1|Y n

1 ) (D.11)

= I(W1; Y
n
1 ) +H(W1|Y n

1 ) (D.12)

(a)
= I(W1; Y

n
1 ) + nǫ (D.13)

≤ H(Y n
1 )−H(Y n

1 |W1) + nǫ (D.14)

≤ n log p−H(Y n
1 |W1) + nǫ (D.15)

where (a) follows by Fano’s inequality. Along the same lines as the above, it can be shown
that

nR1 log p ≤ n log p−H(Y n
2 |W1) + nǫ (D.16)

We have the following set of inequalities

nR2 log p = H(W2) (D.17)

= H(W2|W1) (D.18)

= H(W2|W1)−H(W2|Y n
3 ,W1) +H(W2|Y n

3 ,W1) (D.19)

= I(W2; Y
n
3 |W1) +H(W2|Y n

3 ,W1) (D.20)

(a)
= I(W2; Y

n
3 |W1) + nǫ (D.21)

= I(W2; Y
n
1 , Y

n
2 , Y

n
3 |W1) + nǫ (D.22)

= H(Y n
1 , Y

n
2 , Y

n
3 |W1) +H(Y n

1 , Y
n
2 , Y

n
3 |W1,W2) + nǫ (D.23)

(b)
= H(Y n

1 , Y
n
2 , Y

n
3 |W1) + nǫ (D.24)

= H(Y n
1 , Y

n
2 |W1) +H(Y n

3 |Y n
1 , Y

n
2 ,W1) + nǫ (D.25)

(c)
= H(Y n

1 , Y
n
2 |W1) + nǫ (D.26)

≤ H(Y n
1 |W1) +H(Y n

2 |W2) + nǫ (D.27)
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where (a) follows by Fano’s inequality, (b) follows by since the channel is deterministic, (c)
follows since Y n

3 is a deterministic function of Y n
1 , Y

n
2 . Combining (D.15), (D.16), and (D.27),

it follows that

nR2 ≤ n− nR1 + n− nR1 + nǫ′ (D.28)

Hence, we have the condition 2R1 +R2 ≤ 2 and the rate R1 = 1, R2 = 1 is not achievable.
We consider the broadcast channel with source S and destinations D1, D2, D3 and channel

matrices given by

HS,D1
=
[
1 0

]
(D.29)

HS,D2
=
[
0 1

]
(D.30)

HS,D3
=
[
1 1

]
(D.31)

Along the same lines as that for the previous example, it can be shown that under
communication demand PNOT-TIGHT,2, the rates R1 = 1, R2 = 1 are not achievable.

Consider the broadcast channel with 3 destinations, no relays, and channel matrices:

HS,D1
=

[
1 0 0
0 1 0

]
(D.32)

HS,D1
=

[
0 1 0
0 0 1

]
(D.33)

HS,D1
=

[
1 0 1
0 1 0

]
(D.34)

We show that the cut-set bound is not tight under communication demand PNOT-TIGHT,3.
It can be easily shown that rates R1 = 1, R2 = 1, R3 = 1 is not achievable. We have the
following set of inequalities:

n(R1 +R2) log p = H(W1,W2) (D.35)

= I(W1,W2; Y
n
1 ) +H(W1,W2|Y n

1 ) (D.36)

(a)

≤ I(W1,W2; Y
n
1 ) + nǫn (D.37)

≤ H(Y n
1 )− I(Y n

1 |W1,W2) + nǫn (D.38)

≤ 2n log p−H(Y n
1 |W1,W2) + nǫn (D.39)

where (a) follows by Fano’s inequality. Similarly, it can be shown that

n(R2 +R3) log p ≤ 2n log p−H(Y n
2 |W2,W3) + nǫn (D.40)
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By applying Fano’s inequality, it can be shown that

nR3 = H(W3) (D.41)

= H(W3|W2,W1) (D.42)

= I(W3; Y
n
3 |W2,W1) +H(W3|Y n

3 ,W2,W1) (D.43)

≤ (W3; Y
n
3 |W2,W1) + nǫ (D.44)

≤ I(W3; Y
n
1 , Y

n
2 , Y

n
3 |W1,W2) (D.45)

= H(Y n
1 , Y

n
2 , Y

n
3 |W1,W2)−H(Y n

1 , Y
n
2 , Y

n
3 |W1,W2,W3) (D.46)

= H(Y n
1 , Y

n
2 , Y

n
3 |W1,W2) (D.47)

= H(Y n
1 , Y

n
2 |W1,W2) +H(Y n

3 |W1,W2, Y
n
1 , Y

n
2 ) (D.48)

= H(Y n
1 , Y

n
2 |W1,W2) (D.49)

≤ H(Y n
1 |W1,W2) +H(Y n

2 |W1,W2) (D.50)

≤ 2n− n(R1 +R2) + 2n− n(R2 +R3) (D.51)

where the last step follows by (D.35), (D.40). Hence, we have the resulting condition:

R1 + 2R2 + 2R3 ≤ 4 (D.52)

and note that (1, 1, 1) is not achievable.

We now show that all other communication demands outside of P(ℓ)
TIGHT,1,PTIGHT,2,PTIGHT,3

contain one of the demands Lemma D.1 as a sub-demand. This can easily shown by exhaus-
tive search in the case where m = 3. We consider the number of users m > 4.

For a given m ∈ N, we let M = {1, . . . , m} and T (M) denote it’s power set minus the
null element ∅. We define the following sets:

Θm = T (T (M)) (D.53)

Φm = {P ∈ Θm : PNOT-TIGHT,i for any i = 1, 2, 3 is equiv. to or is a sub-demand of P}
(D.54)

Ψm =
{
P ∈ Θm : P is equiv. to or is a sub-demand of P(ℓ)

TIGHT,1,PTIGHT,2,PTIGHT,3

}
(D.55)

We observe that Θm is the set of all communication demands for m users. The goal is
show that Θm can be partitioned into Φm and Ψm. It is sufficient to show that Φm∪Ψm = Θm

and Φm ∩Ψm = ∅. It can be easily shown that Φm ∩Ψm = ∅, and we focus on showing that
Φc

m ⊆ Ψm. We define the sets Υℓ to be a subset of Θm where the number of messages is ℓ:

Υℓ = {P ∈ Θm : |P| = ℓ} (D.56)

There are 2m − 1 elements in Υ1. It can be easily seen that each element in Υ1 belongs to
Ψm. We consider the set Υ2. We search exhaustively and eliminate the set of demands that
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contain PNON-TIGHT,1,PNON-TIGHT,2 as a sub-demand. We find that the following non-equivalent
demands are in Υ2 ∩ Φc

m:

P2,1,j = {{1} ∪ {3, . . . , j} , {2} ∪ {3, . . . , j}} for j = 2, . . . , m (D.57)

P2,2,j = {{1, 2} ∪ {3, . . . , j} , {2} ∪ {3, . . . , j}} for j = 2, . . . , m (D.58)

We consider Υ3. To find the demands in this set that is in Φc
m, we need only consider

P ∈ Υ3 such that P2,1,j or P2,2,j is a sub-set of P. The resulting non-equivalent message
demands in Υ3 ∩ Φc

m are

P3,1,j = {{1} ∪ {3, . . . , j} , {2} ∪ {3, . . . , j} , {1, 2} ∪ {3, . . . , j}} for j = 3, . . . , m (D.59)

P3,2,j = {{1} ∪ {4, . . . , j} , {2} ∪ {4, . . . , j} , {3} ∪ {4, . . . , j}} for j = 3, . . . , m (D.60)

P3,3,j = {{1, 3} ∪ {4, . . . , j} , {2, 3} ∪ {4, . . . , j} , {3} ∪ {4, . . . , j}} for j = 4, . . . , m
(D.61)

We consider Υ4. To find the demands in this set that is in Φc
m, we need only consider

P ∈ Υ4 such that P3,1,j,P3,2,j or P3,3,j is a sub-set of P. The resulting non-equivalent
message demands in Υ4 ∩ Φc

m are given by:

P4,1,j = {{1} ∪ {5, . . . , j} , . . . , {4} ∪ {5, . . . , j}} for j = 4, . . . , k (D.62)

P4,2,j = {{1, 4} ∪ {5, . . . , j} , . . . , {3, 4} ∪ {5, . . . , j} , {4} ∪ {5, . . . , j}} for j = 4, . . . , k
(D.63)

Using induction on ℓ for ℓ > 4, it can be shown that the resulting configurations in Υℓ ∩Φc
m

are given by

Pℓ,1,j = {{1} ∪ {ℓ+ 1, . . . , j} , . . . , {ℓ} ∪ {ℓ+ 1, . . . , j}} for j = ℓ, . . . , k (D.64)

Pℓ,2,j = {{1, ℓ} ∪ {ℓ+ 1, . . . , j} , . . . , {ℓ− 1, ℓ} ∪ {ℓ+ 1, . . . , j} , {ℓ} ∪ {ℓ+ 1, . . . , j}}
(D.65)

for j = ℓ, . . . , m (D.66)

We observe that Υℓ ∩Φc
m ⊆ Ψm for each ℓ. Since ∪ℓΥℓ = Θm and Υℓ ∩Υℓ′ = ∅ for all ℓ 6= ℓ′,

it can be concluded that Φc
m ⊆ Ψm.
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Appendix E

Proof of Theorem 5.35

For a fixed cut Γ ⊆ Ω of the network NGAUSS-MAC, we let UΓ = {Ui ∀ i ∈ Γ}, XΓ =
{Xi ∀ i ∈ Γ}, and YΓ = {Yi ∀ i ∈ Γ}.

Definition E.1 (Rate Distortion Function). For a given cut Γ ⊆ Ω, the rate distortion
function RΓ(·) is defined as follows:

RΓ(D) = min
p(V̂ |UΩ):E[(V−V̂ )2|UΓ]≤D

I(UΓ; V̂ |UΓc) (E.1)

Remark E.2. RΓ(·) is non increasing and convex (see Lemma 10.4.1 in [1]).

Theorem E.3. Consider transmitting the sum of m Gaussian sources with variance σ2

across NGAUSS-MAC. If there exists source encoders {Ei,t}nt=1 ∀i ∈ Ω satisfying power constraint
SNR and a decoder G that achieves distortion D, then the following must be satisfied:

RΓ(D) < CGAUSS-MAC

Γ for all Γ ⊆ Ω (E.2)

where RΓ(·) is given in Definition E.1 and CGAUSS-MAC

Γ is given in Definition 5.28.

Proof. For a given cut Γ, we form two super nodes: NΓ = {Ni}i∈Γ, and NΓc = {Ni}i∈Γc and
assume NΓ knows the information {UΓ,j}n1 = {Ui,j ∀ i ∈ Γ}n1 and NΓc knows the information
{UΓc,j}n1 = {Ui,j ∀ i ∈ Γc}nj=1. The encoders for node NΓ and NΓc are given by {EΓ,t}nt=1 and

{EΓc,t}nt=1 where

XΓ,t = EΓ,t({UΓ,j}k1 , {YΓ,j}t−1
1 ) for t = 1, . . . , n (E.3)

XΓc,t = EΓ,t({UΓc,j}k1 , {YΓc,j}t−1
1 ) for t = 1, . . . , n (E.4)

The decoder for NΓc is given by G and produces an estimate ˆ{Vj}
k

1 = G({UΓc,j}k1 , {YΓc,j}n1 )
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for the sum {Vj}k1 where Vj =
∑m

i=1 Ui,j . We bound the mutual information as follows:

I({UΓ,j}k1 ; ˆ{Vj}
k

1| {UΓc,j}k1) ≤ I({UΓ,j}k1 ; ˆ{Vj}
k

1| {UΓc,j}k1) (E.5)

+ I({UΓ,j}k1 ; {YΓc,j}n1 | ˆ{Vj}
k

1, {UΓc,j}k1)
(E.6)

≤ I({UΓ,j}k1 ; ˆ{Vj}
k

1, {YΓc}n1 | {UΓc,j}k1) (E.7)

≤ I({UΓ,j}k1 ; {YΓc,j}n1 | {UΓc,j}k1) (E.8)

+ I({UΓ,j}k1 ; ˆ{Vj}
k

1| {YΓc}n1 , {UΓc,j}k1)
(E.9)

We have the Markov chain: {UΓ,j}k1 → ({YΓc}n1 , {UΓc}n1 ) → ˆ{Vj}
k

1 since

ˆ{Vj}
k

1 = G({UΓc,j}k1 , {YΓc,j}n1 ). Hence, I({UΓ,j}k1 ; ˆ{Vj}
k

1| {YΓc,j}n1 , {UΓc,j}k1) = 0 and (E.9)
becomes

I({UΓ,j}k1 ; ˆ{Vj}
k

1| {UΓc,j}k1) ≤ I({UΓ,j}k1 ; {YΓc,j}n1 | {UΓc,j}k1) (E.10)

=
n∑

t=1

I({UΓ,t}k1 ; YΓc,t| {UΓc,j}k1 , {YΓc,j}t−1
1 ) (E.11)

=
n∑

t=1

H(YΓc,t| {UΓc,j}k1 , {YΓc,j}t−1
1 ) (E.12)

−H(YΓc,t| {UΓ,j}k1 , {UΓc,j}k1 , {YΓc,j}t−1
1 )
(E.13)

Using the fact that XΓc,t is a deterministic function of {UΓc,j}k1 , {YΓc,j}t−1
1 , we have that

H(YΓc,t| {UΓc,j}k1 , {YΓc,j}t−1
1 ) = H(YΓc,t| {UΓc,j}k1 , {YΓc,j}t−1

1 , XΓc,t) (E.14)

≤ H(YΓc,t|XΓc,t) (E.15)

Using the fact that conditioning reduces entropy, it follows that

H(YΓc,t| {UΓ,j}k1 , {UΓc,j}k1 , {YΓc,j}t−1
1 ) ≥ H(YΓc,t| {UΓ,j}k1 , {UΓc,j}k1 , {YΓc,j}t−1

1 , XΓc,t, XΓ,t)
(E.16)

Using the fact that YΓc,t depends only on the current symbol XΓc,t, XΓ,t, (E.16) becomes

H(YΓc,t| {UΓ,j}k1 , {UΓc,j}k1 , {YΓc,j}t−1
1 , XΓc,t, XΓ,t) = H(YΓc,t|XΓc,t, XΓ,t) (E.17)
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Combining (E.13), (E.15), (E.16), (E.17), we have that

I({UΓ,j}k1 ; ˆ{Vj}
k

1| {UΓc,j}k1) ≤
n∑

t=1

H(YΓc,t|XΓc,t)−H(YΓc,t|XΓ,t, XΓc,t) (E.18)

=

n∑

t=1

I(XΓ,t; YΓc,t|XΓc,t) (E.19)

After introducing a time-sharing variable Q distributed uniformly on {1, . . . , n}, it can be
shown that (E.19) becomes

I({UΓ,j}k1 ; ˆ{Vj}
k

1| {UΓc,j}k1) ≤
n∑

t=1

I(XΓ,t; YΓc,t|XΓc,t) (E.20)

≤ nI(XΓ,Q; YΓc,Q|XΓc,Q) (E.21)

= n
1

n

n∑

t=1

I(XΓ,Q; YΓc,Q|XΓc,Q, Q = t) (E.22)

= nI(XΓ,Q; YΓc,Q|XΓc,Q, Q) (E.23)

= nH(YΓc,Q|XΓc,Q, Q)− nH(YΓc,Q|XΓ,Q, XΓc,Q, Q) (E.24)

≤ nH(YΓc,Q|XΓc,Q)− nH(YΓc,Q|XΓ,Q, XΓc,Q, Q) (E.25)

= nH(YΓc,Q|XΓc,Q)− nH(YΓc,Q|XΓ,Q, XΓc,Q) (E.26)

Since Ui,1, . . . Ui,k is an i.i.d sequence, the left hand side of (E.26) can be shown to be

I({UΓ,j}k1 ; ˆ{Vj}
k

1| {UΓc,j}k1) = H({UΓ,j}k1 | {UΓc,j}k1)−H({UΓ,j}k1 | {UΓc,j}k1 , ˆ{Vj}
k

1) (E.27)

=

k∑

t=1

H(UΓ,t| {UΓ,j}t−1
1 , U1:k

Sc ) (E.28)

−H(UΓ,t| {UΓ,j}t−1
1 , {UΓc,j}k1 , ˆ{Vj}

k

1) (E.29)

=
k∑

t=1

H(UΓ,t|UΓc,t)−H(UΓ,t| {UΓ,j}t−1
1 , {UΓc,j}k1 , ˆ{Vj}

k

1) (E.30)

≥
n∑

t=1

H(UΓ,t|UΓc,t)−H(UΓ,t|UΓ,t, UΓc,t, V̂t) (E.31)

≥
k∑

t=1

I(UΓ,t; V̂t|UΓc,t) (E.32)

Using rate distortion function in definition E.1, the fact that it is non-increasing and convex,
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it follows that

k∑

t=1

I(UΓ,t; V̂t|UΓc,t) ≥
k∑

t=1

RΓ(E[(Vt − V̂t)
2|UΓc,t]) (E.33)

≥ kRΓ

(
1

k

k∑

t=1

E[(Vt − V̂t)
2|UΓc,t]

)
(E.34)

≥ kRΓ(D) (E.35)

The result follows by combining (E.26), (E.32), (E.35).

We now evaluate the expression in rate distortion function in definition (E.1). First, we
show that we can relax the constraint set to all the set of all V̂ that are jointly Gaussian
with UΩ. Let V̂ be a random variable and let V̂G be a Gaussian random variance with the
same covariance structure as V̂ . Define the vector [αi, βi,1, · · ·βi,|Γc|] such that

[αi, βi,1, . . . , βi,|Γc|] = LLSE[Ui|V̂G, UΓc ] (E.36)

for all i ∈ Γ. It follows that

I(UΓ;WG|UΓc) = h(UΓ|UΓc)− h(UΓ|WG, UΓc) (E.37)

= h(UΓ|UΓc)− h


Ui − αiV̂G −

|Γc|∑

j=1

βi,jUj ∀ i ∈ Γc|UΓc , V̂G


 (E.38)

(a)
= h(UΓ|UΓc)− h


Ui − αiV̂G −

|Γc|∑

j=1

βi,jUj ∀ i ∈ Γc


 (E.39)

(b)

≤ h(UΓ|UΓc)− h


Ui − αiV̂ −

|Γc|∑

j=1

βi,jUj ∀ i ∈ Γc


 (E.40)

≤ h(UΓ|UΓc)− h


Ui − αiV̂G −

|Γc|∑

j=1

βi,jUj ∀ i ∈ Γc|UΓc , V̂


 (E.41)

= h(UΓ|UΓc)− h(UΓ|UΓc , V̂ ) (E.42)

= I(UΓ; V̂ |UΓc) (E.43)

We first justify (a). Since Ui−αiV̂G−∑|Γc|
j=1 βi,jUj is independent of V̂G, UΓc for all i ∈ Γ and

they are jointly Gaussian, we have that any linear combination of Ui−αiV̂G−
∑|Γc|

j=1 βi,jUj ∀ i ∈
Γ is independent of V̂G, UΓc . Hence, Ui−αiV̂G−

∑|Γc|
j=1 βi,jUj ∀ i ∈ Γ is independent of V̂G. The
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inequality in (b) follows since V̂ and V̂G have the same covariance structure and Gaussian
maximizes entropy.

We rewrite V̂ =
∑

i∈Γ αiUi +
∑

i∈Γc αiUi + γZ where Z ∼ N (0, 1) is independent of UΩ.
The rate distortion function can be rewritten as:

RΓ(D) = min
E[(V−

∑
i∈Γ αiUi+

∑
i∈Γc αiUi+γZ)2|UΓ]≤D

I

(
UΓ;

∑

i∈Γ
αiUi +

∑

i∈Γc

αiUi + γZ|UΓc

)
(E.44)

Using the independent of U1, . . . , Um, Z, the mutual information in (E.44) is given by

I(UΓ;
∑

i∈Γ
αiUi +

∑

i∈Γc

αiUi + γZ|UΓc) = h(
∑

i∈Γ
αiUi +

∑

i∈Γc

αiUi + γZ|UΓc) (E.45)

− h(
∑

i∈Γ
αiUi +

∑

i∈Γc

αiUi + γZ|UΩ)

(E.46)

= h(
∑

i∈Γ
αiUi + γZ|UΓc)− h(γZ|UΩ) (E.47)

= h(
∑

i∈Γ
αiUi + γZ)− h(γZ) (E.48)

=
1

2
log

(∑
i∈Γ α

2
iσ

2 + γ2

γ2

)
. (E.49)

Recalling that V =
∑

i∈Ω Ui, the distortion constraint is given by

E[(V −
∑

i∈Γ
αiUi +

∑

i∈Γc

αiUi + γZ)2|UΓ] = E[(
∑

i∈Γ
(1− αi)Ui +

∑

i∈Γc

(1− αi)Ui + γZ)2|UΓ]

(E.50)

= E[(
∑

i∈Γ
(1− αi)Ui +

∑

i∈Γc

(1− αi)Ui + γZ)2|UΓ]

(E.51)

= (
∑

i∈Γ
(1− αi)Ui)

2 + E[(
∑

i∈Γc

(1− αi)Ui + γZ)2|UΓ]

(E.52)

= (
∑

i∈Γ
(1− αi)Ui)

2 +
∑

i∈Γc

(1− αi)
2σ2 + γ2 (E.53)

The rate distortion function can be rewritten as

min
αi,γ:(

∑
i∈Γ(1−αi)Ui)

2
+
∑

i∈Γc(1−αi)2σ2+γ2≤D

1

2
log

(∑
i∈Γ α

2
iσ

2 + γ2

γ2

)
(E.54)
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It can be easily shown that the maximizing parameters are given as follows:

αi = 0 for i ∈ Γc, αi = 1− D

|S ∩ Γ|σ2
for i ∈ Γc, γ2 = D

(
1− D

|S ∩ Γ|σ2

)
(E.55)

With these parameter values, it follows that

RΓ(D) =
1

2
log

( |S ∩ Γ|σ2

D

)
(E.56)

The result follows by considering only the cuts where |S ∩ Γ| = 1 .



146

Appendix F

Proof for Theorem 6.5

We first consider the N = 2 case. Fix an input distribution P (x1, x2) = p1(x1)p2(x2).
General M1 independent codewords X

n
1 (i) for i = {1, ...,M1} of length n, where each element

is chosen i.i.d from ∼∏n
i=1 p1(xi). Similarly, generateM2 independent codewords of length n,

where each element is chosen i.i.d from
∏n

i=1 p2(xi). User 1 chooses his message w1 uniformly
from {1 · · ·M1} and user 2 chooses his message w2 uniformly from {1 · · ·M2}. User 1 encodes
its message into codeword Xn

1 (w1) and broadcasts it to the relays. Similarly, user 2 encodes
his message into codeword Xn(w2) and broadcasts it to the relays. Relay m observes Y n

m

and has knowledge of its local fading information hn
m.

Let PIND be the induced distribution on the joint sequence {Y1,h1 · · ·YM ,hM}n from
definition 4. Fix a forwarding function U = fF,PIND

(Y1,h1, · · · , YM ,hM). Let κU be the
achievable computation rate (for the MAC) for U . The relays use a computation code to
jointly forward k instances of the forwarding function Uk = f((Y k

1 , h
k
1), ..., (Y

k
M , hk

M)) to the
receiver over ℓn uses of the MAC. The computation code outputs an estimate Ûk for Uk.
We define the event T as follows:

T =
{
Uk 6= Ûk

}
(F.1)

From Definition 4, Uk can be recovered losslessly at the destination if

k

n
≤ min(κUℓ, 1) (F.2)

In the rest of our proof, we fix k
n
= min(κUℓ, 1) and scale k, n.

We fix an ǫ0 > 0. There exists a k0 such that for all k ≥ k0, there exists a (k, ℓn, ǫ)
reliable computation code that outputs an estimate Ûk such that

P (T ) ≤ ǫ0 (F.3)

The destination recovers the messages w1, w2 based on the estimate Ûk using jointly
typical decoding. Fix δ > 0. Let A(k)

δ be the set of sequences
{
(xk

1, x
k
2, u

k)
}
that are jointly
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typical with respect to p(x1, x2, u). We define the events Ei,j, Êi,j for i ∈ {1 · · ·M1} , j ∈
{1 · · ·M2} as follows:

Ei,j =
{
(Xk

1 (i), X
k
2 (j), U

k) ∈ A(k)
δ

}
(F.4)

Êi,j =
{
(Xk

1 (i), X
k
2 (j), Û

k) ∈ A(k)
δ

}
(F.5)

We can bound the probability of Êi,j in terms of the probability of Ei,j and T as follows:

P (Êi,j) = P (Êi,j ∩ T c) + P (Êi,j ∩ T ) (F.6)

≤ P (Êi,j ∩ T c) + P (T ) (F.7)

(a)
= P (E1 ∩ T c) + P (T ) (F.8)

≤ P (Ei,j) + P (T ) (F.9)

where (a) follows from the fact under event T , Ei,j = Êi,j. Since we are considering average
probability of error and our codebook is constructed in a symmetric manner, we can assume
that message w1 = 1, w2 = 1 were transmitted. The average error probability can be bounded
as follows:

PERROR = P (Êc
1,1) + P (∪(i,j)6=(1,1)Êi,j) (F.10)

≤ P (Ec
1,1) + P (T ) + P (∪(i,j)6=(1,1)Ei,j) + P (T ) (F.11)

≤ P (Ec
1,1) +

∑

(i,j)6=(1,1)

P (Ei,j) + 2P (T ) (F.12)

≤ P (Ec
1,1) +

∑

j 6=1

P (E1,j) +
∑

i 6=1

P (Ei,1) (F.13)

+
∑

i 6=1,j 6=1

P (Ei,j) + 2P (T ) (F.14)

From the joint AEP, there exists a k1 such that for all k ≥ k1, P (E1,1) ≤ ǫ1. From the proof
of the channel coding Theorem (8.7.1 in [1]), we have the following bounds:

P (Ei,1) ≤ 2−kI(X1;Y |X2)−3δ for i = 2 · · ·M1 (F.15)

P (E1,i) ≤ 2−kI(X2;Y |X1)−3δ for j = 2 · · ·M1 (F.16)

P (Ei,j) ≤ 2−kI(X1,X2;Y )−4δ for i 6= 1, j 6= 1 (F.17)
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We fix an ǫ2 > 0. There exists a k2 such that for all k ≥ k2:

∑

i 6=1,j 6=1

P (Ei,j) ≤ ǫ2 (F.18)

∑

(1,j)

P (E1,j) ≤ ǫ2 (F.19)

∑

(i,1)

P (Ei,1) ≤ ǫ2 (F.20)

if the following conditions are satisfied:

logM1

n
<

k

n
I(X1;U |X2) (F.21)

logM2

n
<

k

n
I(X1;U |X2) (F.22)

logM1

n
+

logM2

n
<

k

n
I(X1, X2;U) (F.23)

We choose k ≥ max(k0, k1, k2) and n = k
min{κUℓ,1} . Our probability of error becomes:

PERROR ≤ ǫ0 + ǫ1 + ǫ2 (F.24)

Finally, we choose ǫ0, ǫ1, ǫ2 to be arbitrarily small and then δ to be arbitrarily small.
The extension to the general N user case follows using the same techniques.
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Appendix G

Proof for Theorem 6.7

Our scheme consists of two sets of codes: an outer code for transmitting the message
and an inner code for sending the forwarding function. A random codebook construction is
performed at the source and a computation code is used by the relays. We decompose the
overall scheme into three stages: outer encoding, computation coding, and outer decoding.
In general, we assume that there is a bandwidth expansion of ℓ between the MAC and the
broadcast channel. For simplicity, we will first consider the case where ℓ = 4.

G.0.1 Stage I: Message Encoding

The user selects his message w uniformly from the set W =
{
1, ..., 2nR

}
. It constructs an i.i.d

random codebook C where each element of each codeword is drawn according to distribution
N (0, SNRs − δ). The user encodes its message into a length n codeword:

E : W → Rn (G.1)

Xn(w) = E(w) (G.2)

The user then broadcasts his codeword to the relays. At time i, relay m observes Ym[i] where

Ym[i] =

N∑

j=1

h[i]X [i] + Z[i] (G.3)

and has knowledge of its local channel coefficients hm[i].
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G.0.2 Stage II: Forwarding the Sufficient Statistic

The relays desire to communicate the forwarding function to the destination over the MAC.
The forwarding function consists of two components:

U =

M∑

m=1

hmYm (G.4)

V =

M∑

m=1

h2
m (G.5)

Given a bandwidth expansion of ℓ = 4, we allocate ℓ1n = 2n channel uses to send u and
ℓ2n = 2n channel uses to send V n. We first describe the code for forwarding Un. Our scheme
consists of 2 iterations with n channel uses in each iteration. Our computation code relies
on the existence of a sequence of lattices which are good for coding as demonstrated in [17].

Lemma G.1. There exists a sequence of Good Lattices Λn with Voronoi regions V0,n and
second moments SNRr such that given an length n i.i.d Gaussian sequence z with variance
σ2
z < SNRr and an ǫ > 0, ∃ n0 such that for all n ≥ n0.

Pr(z ∈ V0,n) ≥ 1− ǫ (G.6)

The above lemma states that an i.i.d Gaussian sequence with second moment strictly less
than the second moment of the lattice falls into the Voronoi region with high probability.
See [17] for proof.

We first consider the case where ℓ1 = 2. Let sm[i] = hm[i]Ym[i] for i = 1 · · ·n and its
variance σ2

s = 2SNRs + 1. The first iteration involves only uncoded transmission. Relay m
sends

x(1)
m =

√
SNRrσ2

ssm (G.7)

The destination receives

y(1) =
M∑

m=1

x(1)
m + z(1) (G.8)

and forms the linear estimate

û(1) =

√
σ2
s

SNRr

y(1) (G.9)

Let q(1) = û(1) − u be the estimation error from the first iteration. It can be easily seen
that

q(1) =

√
σ2
s

SNRr
z(2) (G.10)



APPENDIX G. PROOF FOR THEOREM 6.7 151

Let D(1) be the variance of q(1). It follows that

D(1) =
σ2
s

SNRr
N (G.11)

For the second iteration, we choose a sequence of Lattices Λn according to Lemma G.1.
Let d1, ...,dM be independent dither vectors drawn uniformly from V0,n. User m transmits

x
(2)
m = [γsm + dm] mod Λn.
The channel output is given by

y(2) =
M∑

i=1

x(2)
m + z(2) (G.12)

The receiver computes

r = y(2) −
(

M∑

m=1

dm + γû(1)

)
(G.13)

t = r mod Λk (G.14)

=

[
M∑

i=1

xj + z(2) −
M∑

i=1

(dj + γsj)− γq(1)

]
mod Λk (G.15)

=
[
z(2) − γq(1)

]
mod Λk (G.16)

and updates the estimate and estimation noise from the first iteration:

û(2) = βt+ û(1) (G.17)

q(2) = βt+ q(1) (G.18)

where q(2) = û(2) − u. Define the event

Tu =
{
[z(2) − γq(1)] mod Λn = z(2) − γq(1)

}
(G.19)

Under event Tu, the updated estimate and estimation error becomes

û(2) = βz(2) + (1− βγ)q(1) + u (G.20)

q(2) = βz(2) + (1− βγ)q(1) (G.21)

= βz(2) + (1− βγ)

√
D(1)

N
z(1) (G.22)

(G.23)
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Let β, γo be chosen as follows:

γo =

√
SNRr − 1

D(1)
(G.24)

β =
D(1)γ

1 +D(1)γ2
(G.25)

For any fixed ǫ > 0, the following variance of the estimation error is achievable under
event T :

E[(q(2)[i])2] = σ2
s

(
1

SNRr

)2

+ ǫ (G.26)

by choosing γ arbitrarily close to γo from below. Finally, note that with our choice of γ,
the following condition is satisfied

1 + γ2D(1) < SNRr (G.27)

Hence, we can ensure that the event Tu occurs with high probability. For all ǫ > 0,
Lemma 1 guarantees that there exists n0 such that for all n > n0

P (Tu) ≥ 1− ǫ (G.28)

Using the same type of scheme, we send v over the remaining 2n uses of the MAC. Similar
to the case in forwarding u, we can show that under an event Tv that occurs with high
probability for arbitrarily long block lengths, the estimation noise v̂ − v is i.i.d Gaussian.

G.0.3 Stage III: Message Decoding

We perform jointly typical decoding at the destination based on estimates û and v̂. Fix a
fixed ǫ1, ǫ2 > 0, let wu and wv be the estimation errors û−u and v̂−v under events Tu and
Tv. Hence, it follows that wu and wv are i.i.d Gaussian noises with zero mean and respective
variances Du and Dv given by

Du = (2SNRs +N)

(
1

SNRr

)2

+ ǫ1 (G.29)

Dv = 2

(
1

SNRr

)2

+ ǫ2 (G.30)

We define length n vectors ũ and ṽ where

Ũn = Un +W n
u (G.31)

Ṽ n = V n +W n
v (G.32)
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We calculate the average decoding error over all random codebook constructions and
show that this error can be made arbitrarily small for long blocklengths. Let Aδ be the set

of jointly typical sequences
{(

Xn, Ũn, Ṽ n
)}

with respect to p(x, ũ, ṽ). We define the events

E0 =

{
1

n

n∑

i=1

Xi(w) < P

}
(G.33)

G =
{(

Xn(w), Ûn, V̂ n
)

a.s
=
(
Xn(w), Ũn, Ṽ n

)}
(G.34)

E1 =
{(

Xn(w), Ûn, V̂ n
)
/∈ Aδ

}
(G.35)

Ẽ1 =
{(

Xn(w), Ũn, Ṽ n
)
/∈ Aδ

}
(G.36)

E2 =
{
∃(w′ 6= w) :

(
Xn(w′), Ûn, V̂ n

)
∈ Aδ

}
(G.37)

Ẽ2 =
{
∃(w′ 6= w) :

(
Xn(w′), Ũn, Ṽ n

)
∈ Aδ

}
(G.38)

By the law of large numbers for all ǫo > 0, there exists n0 such that Pr(E0) < ǫo.
We bound the probability of Ê1 as follows

P (E1) = P (E1 ∩G) + P (E1 ∩Gc) (G.39)

≤ P (E1 ∩G) + P (Gc) (G.40)

= P (Ẽ1 ∩G) + P (Gc) (G.41)

≤ P (Ẽ1) + P (Gc) (G.42)

Similarly, the probability of Ê2 can be bounded as follows

P (E2) ≤ P (Ẽ2) + P (Gc) (G.43)

For all δ > 0, there exists a n1 such that for all n ≥ n1, P (Ẽ1) ≤ δ. From the proof of
the channel coding [1, Theorem 8.7.1], there exists a n2 such that for all n ≥ n2, P (Ẽ2) ≤ δ
if R ≤ I(X ; Ũ , Ṽ )− 3δ.

From the construction of the computation code, it follows that

P (G) = P (Tu ∩ Tv) (G.44)

P (Gc) = P (T c
u ∪ T c

v ) (G.45)

≤ P (T c
u ) + P (T c

v ) (G.46)

There exists n3 such that for all n ≥ n3,

P (Gc) ≤ P (T c
u ) + P (T c

v ) (G.47)

≤ ǫ

2
+

ǫ

2
(G.48)
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For a fixed δ, ǫ, we choose n = max(n0, n1, n2, n3) to ensure that

P (E0) ≤ ǫ (G.49)

P (Ẽ1) ≤ δ + ǫ (G.50)

P (Ẽ2) ≤ δ + ǫ (G.51)

We then make δ, ǫ arbitrarily small by choosing n large enough.
Finally, we find a lower bound on the mutual information I(X ; Ũ, Ṽ ). We first rewrite

Ũ as follows:

Ũ = U +Wu (G.52)

= V X +
M∑

m=1

hmzm +Wu (G.53)

= V̂ X + (V − V̂ )X +

M∑

m=1

hmzm +Wu (G.54)

where V̂ = E[V |V +Wv] is the MMSE estimate of V given V +Wv. Define

J = (V − V̂ )X +
M∑

m=1

hmzm +Wu (G.55)

We observe that V̂ is independent of X and

Cov(X, J |V̂ ) = 0 a.s (G.56)

By assuming that the noise J is Gaussian (Theorem 1 in [99]), we arrive at a lower bound
of the mutual information

I(X ; Ũ , V̂ ) ≥ 1

2
E

[
log

(
1 +

|V̂ |2SNRs

V ar(J |V̂ )

)]
(G.57)

≥ 1

2
E

[
log

(
1 +

|V̂ |2SNRs

E[(V − V̂ )2|V̂ ]SNRs + V̂ σ2 +Du

)]
(G.58)

In the case where ℓ > 4, we iterate the computation scheme for forwarding u and v. For
example, in the case where ℓ1 = 3, the relays forward

xm = [τs + dm] mod Λ (G.59)
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in the 3rd iteration and update upon the estimate û(2) from the second iteration. For general
ℓ1, ℓ2, the estimation noise variance becomes:

Du = (2SNRs + 1)

(
N

SNRr

)ℓ1

+ ǫ1 (G.60)

Dv = 2

(
1

SNRr

)ℓ2

+ ǫ2 (G.61)

with high probability for arbitrarily long block lengths.
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