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Abstract

Matrix Factorization and Matrix Concentration

by

Lester Wayne Mackey II

Doctor of Philosophy in Electrical Engineering and Computer Sciences

with the Designated Emphasis in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

Motivated by the constrained factorization problems of sparse principal components anal-
ysis (PCA) for gene expression modeling, low-rank matrix completion for recommender sys-
tems, and robust matrix factorization for video surveillance, this dissertation explores the
modeling, methodology, and theory of matrix factorization.

We begin by exposing the theoretical and empirical shortcomings of standard deflation
techniques for sparse PCA and developing alternative methodology more suitable for de-
flation with sparse “pseudo-eigenvectors.” We then explicitly reformulate the sparse PCA
optimization problem and derive a generalized deflation procedure that typically outperforms
more standard techniques on real-world datasets.

We next develop a fully Bayesian matrix completion framework for integrating the com-
plementary approaches of discrete mixed membership modeling and continuous matrix fac-
torization. We introduce two Mixed Membership Matrix Factorization (M3F) models, de-
velop highly parallelizable Gibbs sampling inference procedures, and find that M3F is both
more parsimonious and more accurate than state-of-the-art baselines on real-world collabo-
rative filtering datasets.

Our third contribution is Divide-Factor-Combine (DFC), a parallel divide-and-conquer
framework for boosting the scalability of a matrix completion or robust matrix factorization
algorithm while retaining its theoretical guarantees. Our experiments demonstrate the near-
linear to super-linear speed-ups attainable with this approach, and our analysis shows that
DFC enjoys high-probability recovery guarantees comparable to those of its base algorithm.

Finally, inspired by the analyses of matrix completion and randomized factorization pro-
cedures, we show how Stein’s method of exchangeable pairs can be used to derive con-
centration inequalities for matrix-valued random elements. As an immediate consequence,
we obtain analogues of classical moment inequalities and exponential tail inequalities for
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independent and dependent sums of random matrices. We moreover derive comparable con-
centration inequalities for self-bounding matrix functions of dependent random elements.
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Chapter 1

Introduction

The goal in matrix factorization is to approximate a target matrix M ∈ R
m×n by a product

of two lower dimensional factor matrices, A ∈ R
m×r and B ∈ R

r×n, where the common
dimension r is typically far smaller than m or n. Here, and throughout, we measure the
quality of approximation through the Frobenius norm �·�F over matrix differences. When
M is fully observed and A and B are unconstrained, this problem has a well-known optimal
solution, given by the truncated singular value decomposition of M. More precisely, to min-
imize the reconstruction error �M−AB�F over all factor matrices with common dimension
r, it suffices to choose A = UrΣr and B = V�

r , where Σr ∈ R
r×r is a diagonal matrix of the

r largest singular values of M, and Ur ∈ R
m×r and Vr ∈ R

n×r are the corresponding left
and right singular vectors of M.

Unfortunately, the demands of many real-world factorization problems are incompati-
ble with this complete-information, unconstrained-optimization setting, and additional con-
straints must be imposed that render the matrix factorization problem far more challenging.
Consider the following three classes of modern matrix factorization problems:

1. In the setting of sparse principal components analysis [33, 9, 82, 83, 34, 85, 17, 16, 55,
54, 73], M is a centered data matrix of m observations over n variables, and each row
of B is constrained to have relatively few non-zero entries. Such cardinality constraints
arise naturally in biology and finance, where sparse factor vectors depending on fewer
variables offer the promise of greater interpretability and more practical relevance.
These same constraints, however, render the matrix factorization problem NP-hard
[54].

2. In the setting of matrix completion or dyadic data prediction [30], one observes only a
small subset of the entries of M and aims to estimate the missing entries. Such missing
data problems arise naturally in the domains of collaborative filtering for recommender
systems, link prediction for social networks, and click prediction for web search. While
matrix factorization techniques offer state of the art performance for matrix completion
tasks [see, e.g., 38], they lack closed-form solutions, and their objectives may be plagued
by local minima.
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3. In the robust matrix factorization problem [12], also known as robust PCA [10], we ob-
serve a corrupted version of M where some entries have been replaced by outliers, and
the locations of those entries are unknown. This problem, which finds diverse motiva-
tions in video surveillance [10], graphical model selection [12], document modeling [53],
and image alignment [63], is strictly harder than the matrix completion problem, in
which the locations of unobserved entries are known in advance.

Our understanding of matrix factorization in each of these constrained settings has grown
rapidly in recent years, but, in each case, significant room remains for the development of

1. More accurate and parsimonious models of matricial data

2. Computationally efficient algorithms for large-scale or real-time factorization problems

3. Theoretical justification for existing methodology.

This dissertation presents contributions to each of these core areas. Chapters 2 and 3
present modeling improvements in the settings of sparse PCA and dyadic data prediction,
respectively. In analogy to the PCA setting, the sparse PCA problem is often solved by it-
eratively alternating between two subtasks: cardinality-constrained rank-one variance maxi-
mization and matrix deflation. While the former has received a great deal of attention in the
literature, the latter is seldom analyzed and is typically borrowed without justification from
the PCA context. In Chapter 2, we demonstrate that the standard PCA deflation procedure
is seldom appropriate for the sparse PCA setting. To rectify the situation, we first develop
several deflation alternatives better suited to the cardinality-constrained context. We then
reformulate the sparse PCA optimization problem to explicitly reflect the maximum addi-
tional variance objective on each round. The result is a generalized deflation procedure that
typically outperforms more standard techniques on real-world datasets.

Discrete mixed membership modeling is a popular, complementary alternative to contin-
uous latent factor modeling (i.e., matrix factorization) for analyzing the interactions between
two populations. While latent factor models typically demonstrate greater predictive accu-
racy, mixed membership models better capture the heterogeneous nature of objects and their
interactions. In Chapter 3, we develop a fully Bayesian framework for integrating the two
approaches into unified Mixed Membership Matrix Factorization (M3F) models. We intro-
duce two M3F models, derive highly parallelizable Gibbs sampling inference procedures, and
validate our methods on the EachMovie, MovieLens, and Netflix Prize collaborative filtering
datasets. We find that, even when fitting fewer parameters, the M3F models outperform
state-of-the-art latent factor approaches in all experiments, yielding the greatest gains in
accuracy on sparsely-rated, high-variance items.

Chapter 4 is devoted to the design of scalable but provably accurate methods for ma-
trix completion and robust matrix factorization. Many modern matrix factorization meth-
ods boast strong theoretical guarantees but scale poorly due to expensive subroutines. To
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address this shortcoming, we introduced Divide-Factor-Combine (DFC), a parallel divide-
and-conquer framework that divides a large-scale matrix factorization task into smaller sub-
problems, solves each subproblem in parallel using an arbitrary base matrix factorization
algorithm, and combines the subproblem solutions using techniques from randomized matrix
approximation. Our experiments with collaborative filtering, video background modeling,
and simulated data demonstrate the near-linear to super-linear speed-ups attainable with
this approach. Moreover, our analysis shows that DFC enjoys high-probability recovery
guarantees comparable to those of its base algorithm.

Fundamental to our analysis in Chapter 4 – and to the analyses of many matrix com-
pletion procedures – are matrix concentration inequalities that characterize the fluctuations
of a random matrix about its mean. In Chapter 5, we will show how Steins method of ex-
changeable pairs can be used to derive concentration inequalities for matrix-valued random
elements. When applied to a sum of independent random matrices, this approach yields
matrix generalizations of the classical inequalities due to Hoeffding, Bernstein, and Khint-
chine. The same technique delivers bounds for sums of dependent random matrices and
more general matrix functionals of dependent random elements.
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Chapter 2

Deflation Methods for Sparse PCA

2.1 Introduction

Principal component analysis (PCA) is a popular change of variables technique used in data
compression, predictive modeling, and visualization. The goal of PCA is to extract several
principal components, linear combinations of input variables that together best account
for the variance in a data set. Often, PCA is formulated as an eigenvalue decomposition
problem: each eigenvector of the sample covariance matrix of a data set corresponds to
the loadings or coefficients of a principal component. A common approach to solving this
partial eigenvalue decomposition is to iteratively alternate between two subproblems: rank-
one variance maximization and matrix deflation. The first subproblem involves finding the
maximum-variance loadings vector for a given sample covariance matrix or, equivalently,
finding the leading eigenvector of the matrix. The second involves modifying the covariance
matrix to eliminate the influence of that eigenvector.

A primary drawback of PCA is its lack of sparsity. Each principal component is a linear
combination of all variables, and the loadings are typically non-zero. Sparsity is desirable
as it often leads to more interpretable results, reduced computation time, and improved
generalization. Sparse PCA [33, 9, 82, 83, 34, 85, 17, 16, 55, 54, 73] injects sparsity into the
PCA process by searching for “pseudo-eigenvectors”, sparse loadings that explain a maximal
amount variance in the data.

In analogy to the PCA setting, many authors attempt to solve the sparse PCA problem
by iteratively alternating between two subtasks: cardinality-constrained rank-one variance
maximization and matrix deflation. The former is an NP-hard problem, and a variety of
relaxations and approximate solutions have been developed in the literature [17, 16, 55,
54, 73, 82, 83]. The latter subtask has received relatively little attention and is typically
borrowed without justification from the PCA context. In this chapter, we demonstrate that
the standard PCA deflation procedure is seldom appropriate for the sparse PCA setting.
To rectify the situation, we first develop several heuristic deflation alternatives with more
desirable properties [48]. We then reformulate the sparse PCA optimization problem to
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explicitly reflect the maximum additional variance objective on each round. The result is
a generalized deflation procedure that typically outperforms more standard techniques on
real-world datasets.

The remainder of the chapter is organized as follows. In Section 2.2 we discuss matrix
deflation as it relates to PCA and sparse PCA. We examine the failings of typical PCA defla-
tion in the sparse setting and develop several alternative deflation procedures. In Section 2.3,
we present a reformulation of the standard iterative sparse PCA optimization problem and
derive a generalized deflation procedure to solve the reformulation. Finally, in Section 2.4,
we demonstrate the utility of our newly derived deflation techniques on real-world datasets.

Notation

I is the identity matrix. S
p
+ is the set of all symmetric, positive semidefinite matrices in

R
p×p. Card(x) represents the cardinality of or number of non-zero entries in the vector x.

2.2 Deflation methods

A matrix deflation modifies a matrix to eliminate the influence of a given eigenvector, typ-
ically by setting the associated eigenvalue to zero (see [80] for a more detailed discussion).
We will first discuss deflation in the context of PCA and then consider its extension to sparse
PCA.

Hotelling’s deflation and PCA

In the PCA setting, the goal is to extract the r leading eigenvectors of the sample covariance
matrix, A0 ∈ S

p
+, as its eigenvectors are equivalent to the loadings of the first r principal

components. Hotelling’s deflation method [69] is a simple and popular technique for sequen-
tially extracting these eigenvectors. On the t-th iteration of the deflation method, we first
extract the leading eigenvector of At−1,

xt = argmax
x:xT x=1

x
T
At−1x (2.1)

and we then use Hotelling’s deflation to annihilate xt:

At = At−1 − xtx
T
t At−1xtx

T
t . (2.2)

The deflation step ensures that the t + 1-st leading eigenvector of A0 is the leading
eigenvector of At. The following proposition explains why.

Proposition 1. If λ1 ≥ . . . ≥ λp are the eigenvalues of A ∈ S
p
+, x1, . . . , xp are the corre-

sponding eigenvectors, and Â = A− xjx
T
j Axjx

T
j for some j ∈ 1, . . . , p, then Â has eigenvec-

tors x1, . . . , xp with corresponding eigenvalues λ1, . . . ,λj−1, 0,λj+1, . . . ,λp.
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Proof.

Âxj = Axj − xjx
T
j Axjx

T
j xj = Axj − xjx

T
j Axj = λjxj − λjxj = 0xj.

Âxi = Axi − xjx
T
j Axjx

T
j xi = Axi − 0 = λixi, ∀i �= j.

Thus, Hotelling’s deflation preserves all eigenvectors of a matrix and annihilates a selected
eigenvalue while maintaining all others. Notably, this implies that Hotelling’s deflation
preserves positive-semidefiniteness. In the case of our iterative deflation method, annihilating
the t-th leading eigenvector of A0 renders the t + 1-st leading eigenvector dominant in the
next round.

Hotelling’s deflation and sparse PCA

In the sparse PCA setting, we seek r sparse loadings which together capture the maximum
amount of variance in the data. Most authors [17, 55, 82, 73] adopt the additional constraint
that the loadings be produced in a sequential fashion. To find the first such ”pseudo-
eigenvector”, we can consider a cardinality-constrained version of Eq. (2.1):

x1 = argmax
x:xT x=1,Card(x)≤k1

x
T
A0x. (2.3)

That leaves us with the question of how to best extract subsequent pseudo-eigenvectors.
A common approach in the literature [17, 55, 82, 73] is to borrow the iterative deflation
method of the PCA setting. Typically, Hotelling’s deflation is utilized by substituting an
extracted pseudo-eigenvector for a true eigenvector in the deflation step of Eq. (2.2). This
substitution, however, is seldom justified, for the properties of Hotelling’s deflation, discussed
in Section 2.2, depend crucially on the use of a true eigenvector.

To see what can go wrong when Hotelling’s deflation is applied to a non-eigenvector,
consider the following example.

Example. Let C =

�
2 1
1 1

�
, a 2 × 2 matrix. The eigenvalues of C are λ1 = 2.6180 and

λ2 = .3820. Let x = (1, 0)T , a sparse pseudo-eigenvector, and Ĉ = C − xx
T
Cxx

T , the

corresponding deflated matrix. Then Ĉ =

�
0 1
1 1

�
with eigenvalues λ̂1 = 1.6180 and λ̂2 =

−.6180. Thus, Hotelling’s deflation does not in general preserve positive-semidefiniteness
when applied to a non-eigenvector.

That Sp
+ is not closed under pseudo-eigenvector Hotelling’s deflation is a serious failing, for

most iterative sparse PCA methods assume a positive-semidefinite matrix on each iteration.
A second, related shortcoming of pseudo-eigenvector Hotelling’s deflation is its failure to
render a pseudo-eigenvector orthogonal to a deflated matrix. If A is our matrix of interest,
x is our pseudo-eigenvector with variance λ = x

T
Ax, and Â = A− xx

T
Axx

T is our deflated



CHAPTER 2. DEFLATION METHODS FOR SPARSE PCA 7

matrix, then Âx = Ax−xx
T
Axx

T
x = Ax−λx is zero iff x is a true eigenvector. Thus, even

though the “variance” of x w.r.t. Â is zero (xT
Âx = x

T
Ax − x

T
xx

T
Axx

T
x = λ − λ = 0),

“covariances” of the form y
T
Âx for y �= x may still be non-zero. This violation of the

Cauchy-Schwarz inequality betrays a lack of positive-semidefiniteness and may encourage
the reappearance of x as a component of future pseudo-eigenvectors.

Alternative deflation techniques

In this section, we will attempt to rectify the failings of pseudo-eigenvector Hotelling’s defla-
tion by considering several alternative deflation techniques better suited to the sparse PCA
setting. Note that any deflation-based sparse PCA method (e.g. [17, 55, 82, 73]) can utilize
any of the deflation techniques discussed below.

Projection deflation

Given a data matrix Y ∈ R
n×p and an arbitrary unit vector in x ∈ R

p, an intuitive way to
remove the contribution of x from Y is to project Y onto the orthocomplement of the space
spanned by x: Ŷ = Y (I − xx

T ). If A is the sample covariance matrix of Y , then the sample
covariance of Ŷ is given by Â = (I − xx

T )A(I − xx
T ), which leads to our formulation for

projection deflation:

Projection deflation

At = At−1 − xtx
T
t At−1 − At−1xtx

T
t + xtx

T
t At−1xtx

T
t = (I − xtx

T
t )At−1(I − xtx

T
t ) (2.4)

Note that when xt is a true eigenvector of At−1 with eigenvalue λt, projection deflation
reduces to Hotelling’s deflation:

At = At−1 − xtx
T
t At−1 − At−1xtx

T
t + xtx

T
t At−1xtx

T
t

= At−1 − λtxtx
T
t − λtxtx

T
t + λtxtx

T
t

= At−1 − xtx
T
t At−1xtx

T
t .

However, in the general case, when xt is not a true eigenvector, projection deflation main-
tains the desirable properties that were lost to Hotelling’s deflation. For example, positive-
semidefiniteness is preserved:

∀y, yTAty = y
T (I − xtx

T
t )At−1(I − xtx

T
t )y = z

T
At−1z

where z = (I − xtx
T
t )y. Thus, if At−1 ∈ S

p
+, so is At. Moreover, At is rendered left and right

orthogonal to xt, as (I − xtx
T
t )xt = xt − xt = 0 and At is symmetric. Projection deflation

therefore annihilates all covariances with xt: ∀v, vTAtxt = x
T
t Atv = 0.
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Schur complement deflation

Since our goal in matrix deflation is to eliminate the influence, as measured through variance
and covariances, of a newly discovered pseudo-eigenvector, it is reasonable to consider the
conditional variance of our data variables given a pseudo-principal component. While this
conditional variance is non-trivial to compute in general, it takes on a simple closed form
when the variables are normally distributed. Let x ∈ R

p be a unit vector and W ∈ R
p

be a Gaussian random vector, representing the joint distribution of the data variables. If

W has covariance matrix Σ, then (W,Wx) has covariance matrix V =

�
Σ Σx

x
TΣ x

TΣx

�
,

and V ar(W |Wx) = Σ − ΣxxTΣ
xTΣx whenever x

TΣx �= 0 [20]. That is, the conditional variance
is the Schur complement of the vector variance x

TΣx in the full covariance matrix V . By
substituting sample covariance matrices for their population counterparts, we arrive at a
new deflation technique:

Schur complement deflation

At = At−1 −
At−1xtx

T
t At−1

x
T
t At−1xt

(2.5)

Schur complement deflation, like projection deflation, preserves positive-semidefiniteness.

To see this, suppose At−1 ∈ S
p
+. Then, ∀v, vTAtv = v

T
At−1v − vTAt−1xtxT

t At−1v
xT
t At−1xt

≥ 0 as

v
T
At−1vx

T
t At−1xt− (vTAt−1xt)2 ≥ 0 by the Cauchy-Schwarz inequality and x

T
t At−1xt ≥ 0 as

At−1 ∈ S
p
+.

Furthermore, Schur complement deflation renders xt left and right orthogonal to At, since

At is symmetric and Atxt = At−1xt − At−1xtxT
t At−1xt

xT
t At−1xt

= At−1xt − At−1xt = 0.

Additionally, Schur complement deflation reduces to Hotelling’s deflation when xt is an
eigenvector of At−1 with eigenvalue λt �= 0:

At = At−1 −
At−1xtx

T
t At−1

x
T
t At−1xt

= At−1 −
λtxtx

T
t λt

λt

= At−1 − xtx
T
t At−1xtx

T
t .

While we motivated Schur complement deflation with a Gaussianity assumption, the
technique admits a more general interpretation as a column projection of a data matrix.
Suppose Y ∈ R

n×p is a mean-centered data matrix, x ∈ R
p has unit norm, and Ŷ =

(I − Y xxTY T

�Y x�2 )Y , the projection of the columns of Y onto the orthocomplement of the space

spanned by the pseudo-principal component, Y x. If Y has sample covariance matrix A,
then the sample covariance of Ŷ is given by Â = 1

nY
T (I − Y xxTY T

�Y x�2 )T (I − Y xxTY T

�Y x�2 )Y =
1
nY

T (I − Y xxTY T

�Y x�2 )Y = A− AxxTA
xTAx .
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Orthogonalized deflation

While projection deflation and Schur complement deflation address the concerns raised by
performing a single deflation in the non-eigenvector setting, new difficulties arise when we
attempt to sequentially deflate a matrix with respect to a series of non-orthogonal pseudo-
eigenvectors.

Whenever we deal with a sequence of non-orthogonal vectors, we must take care to dis-
tinguish between the variance explained by a vector and the additional variance explained,
given all previous vectors. These concepts are equivalent in the PCA setting, as true eigen-
vectors of a matrix are orthogonal, but, in general, the vectors extracted by sparse PCA
will not be orthogonal. The additional variance explained by the t-th pseudo-eigenvector,
xt, is equivalent to the variance explained by the component of xt orthogonal to the space
spanned by all previous pseudo-eigenvectors, qt = xt − Pt−1xt, where Pt−1 is the orthogonal
projection onto the space spanned by x1, . . . , xt−1. On each deflation step, therefore, we
only want to eliminate the variance associated with qt. Annihilating the full vector xt will
often lead to “double counting” and could re-introduce components parallel to previously
annihilated vectors. Consider the following example:

Example. Let C0 = I. If we apply projection deflation w.r.t. x1 = (
√
2
2 ,

√
2
2 )T , the result is

C1 =

�
1
2 −1

2
−1

2
1
2

�
, and x1 is orthogonal to C1. If we next apply projection deflation to C1

w.r.t. x2 = (1, 0)T , the result, C2 =

�
0 0
0 1

2

�
, is no longer orthogonal to x1.

The authors of [73] consider this issue of non-orthogonality in the context of Hotelling’s
deflation. Their modified deflation procedure is equivalent to Hotelling’s deflation (Eq. (2.2))
for t = 1 and can be easily expressed in terms of a running Gram-Schmidt decomposition
for t > 1:

Orthogonalized Hotelling’s deflation (OHD)

qt =
(I −Qt−1Q

T
t−1)xt��(I −Qt−1Q
T
t−1)xt

�� (2.6)

At = At−1 − qtq
T
t At−1qtq

T
t

where q1 = x1, and q1, . . . , qt−1 form the columns of Qt−1. Since q1, . . . , qt−1 form an or-
thonormal basis for the space spanned by x1, . . . , xt−1, we have that Qt−1Q

T
t−1 = Pt−1, the

aforementioned orthogonal projection.
Since the first round of OHD is equivalent to a standard application of Hotelling’s de-

flation, OHD inherits all of the weaknesses discussed in Section 2.2. However, the same
principles may be applied to projection deflation to generate an orthogonalized variant that
inherits its desirable properties.
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Schur complement deflation is unique in that it preserves orthogonality in all subse-
quent rounds. That is, if a vector v is orthogonal to At−1 for any t, then Atv = At−1v −
At−1xtxT

t At−1v
xT
t At−1xt

= 0 as At−1v = 0. This further implies the following proposition.

Proposition 2. Orthogonalized Schur complement deflation is equivalent to Schur comple-
ment deflation.

Proof Consider the t-th round of Schur complement deflation. We may write xt = ot+pt,
where pt is in the subspace spanned by all previously extracted pseudo-eigenvectors and ot

is orthogonal to this subspace. Then we know that At−1pt = 0, as pt is a linear combina-
tion of x1, . . . , xt−1, and At−1xi = 0, ∀i < t. Thus, xT

t Atxt = p
T
t Atpt + o

T
t Atpt + p

T
t Atot +

o
T
t Atot = o

T
t Atot. Further, At−1xtx

T
t At−1 = At−1ptp

T
t At−1 + At−1pto

T
t At−1 + At−1otp

T
t At−1 +

At−1oto
T
t At−1 = At−1oto

T
t At−1. Hence, At = At−1 − At−1otoTt At−1

oTt At−1ot
= At−1 − At−1qtqTt At−1

qTt At−1qt
as

qt =
ot

�ot� .

Table 2.1 compares the properties of the various deflation techniques studied in this
section.

Method x
T
t Atxt = 0 Atxt = 0 At ∈ S

p
+ Asxt = 0, ∀s > t

Hotelling’s � × × ×
Projection � � � ×
Schur complement � � � �
Orth. Hotelling’s � × × ×
Orth. Projection � � � �

Table 2.1: Summary of sparse PCA deflation method properties

2.3 Reformulating sparse PCA

In the previous section, we focused on heuristic deflation techniques that allowed us to reuse
the cardinality-constrained optimization problem of Eq. (2.3). In this section, we explore a
more principled alternative: reformulating the sparse PCA optimization problem to explicitly
reflect our maximization objective on each round.

Recall that the goal of sparse PCA is to find r cardinality-constrained pseudo-eigenvectors
which together explain the most variance in the data. If we additionally constrain the sparse
loadings to be generated sequentially, as in the PCA setting and the previous section, then a
greedy approach of maximizing the additional variance of each new vector naturally suggests
itself.

On round t, the additional variance of a vector x is given by qTA0q
qT q where A0 is the data

covariance matrix, q = (I − Pt−1)x, and Pt−1 is the projection onto the space spanned by



CHAPTER 2. DEFLATION METHODS FOR SPARSE PCA 11

previous pseudo-eigenvectors x1, . . . , xt−1. As qT q = x
T (I−Pt−1)(I−Pt−1)x = x

T (I−Pt−1)x,
maximizing additional variance is equivalent to solving a cardinality-constrained maximum
generalized eigenvalue problem,

max
x

x
T (I − Pt−1)A0(I − Pt−1)x

subject to x
T (I − Pt−1)x = 1

Card(x) ≤ kt.

(2.7)

If we let qs = (I−Ps−1)xs, ∀s ≤ t− 1, then q1, . . . , qt−1 form an orthonormal basis for the
space spanned by x1, . . . , xt−1. Writing I−Pt−1 = I−

�t−1
s=1 qsq

T
s =

�t−1
s=1 (I − qsq

T
s ) suggests

a generalized deflation technique that leads to the solution of Eq. (2.7) on each round. We
imbed the technique into the following algorithm for sparse PCA:

Algorithm 1 Generalized Deflation Method for Sparse PCA
Given: A0 ∈ S

p
+, r ∈ N, {k1, . . . , kr} ⊂ N

Execute:

1. B0 ← I

2. For t := 1, . . . , r

• xt ← argmax
x:xTBt−1x=1,Card(x)≤kt

x
T
At−1x

• qt ← Bt−1xt

• At ← (I − qtq
T
t )At−1(I − qtq

T
t )

• Bt ← Bt−1(I − qtq
T
t )

• xt ← xt/�xt�

Return: {x1, . . . , xr}

Adding a cardinality constraint to a maximum eigenvalue problem renders the optimiza-
tion problem NP-hard [54], but any of several leading sparse eigenvalue methods, including
GSLDA of [54], DCPCA of [73], and DSPCA of [17] (with a modified trace constraint), can
be adapted to solve this cardinality-constrained generalized eigenvalue problem.

2.4 Experiments

In this section, we present several experiments on real world datasets to demonstrate the
value added by our newly derived deflation techniques. We run our experiments with Matlab
implementations of DCPCA [73] (with the continuity correction of [55]) and GSLDA [54], fit-
ted with each of the following deflation techniques: Hotelling’s (HD), projection (PD), Schur
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complement (SCD), orthogonalized Hotelling’s (OHD), orthogonalized projection (OPD),
and generalized (GD).

Pit props dataset

The pit props dataset [32] with 13 variables and 180 observations has become a de facto
standard for benchmarking sparse PCA methods. To demonstrate the disparate behavior of
differing deflation methods, we utilize each sparse PCA algorithm and deflation technique
to successively extract six sparse loadings, each constrained to have cardinality less than
or equal to kt = 4. We report the additional variances explained by each sparse vector in
Table 2.2 and the cumulative percentage variance explained on each iteration in Table 2.3.
For reference, the first 6 true principal components of the pit props dataset capture 87% of
the variance.

DCPCA GSLDA
HD PD SCD OHD OPD GD HD PD SCD OHD OPD GD
2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938 2.938
2.209 2.209 2.076 2.209 2.209 2.209 2.107 2.280 2.065 2.107 2.280 2.280
0.935 1.464 1.926 0.935 1.464 1.477 1.988 2.067 2.243 1.985 2.067 2.072
1.301 1.464 1.164 0.799 1.464 1.464 1.352 1.304 1.120 1.335 1.305 1.360
1.206 1.057 1.477 0.901 1.058 1.178 1.067 1.120 1.164 0.497 1.125 1.127
0.959 0.980 0.725 0.431 0.904 0.988 0.557 0.853 0.841 0.489 0.852 0.908

Table 2.2: Additional variance explained by each of the first 6 sparse loadings extracted from
the Pit Props dataset.

On the DCPCA run, Hotelling’s deflation explains 73.4% of the variance, while the best
performing methods, Schur complement deflation and generalized deflation, explain approx-
imately 79% of the variance each. Projection deflation and its orthogonalized variant also
outperform Hotelling’s deflation, while orthogonalized Hotelling’s shows the worst perfor-
mance with only 63.2% of the variance explained. Similar results are obtained when the
discrete method of GSLDA is used. Generalized deflation and the two projection deflations
dominate, with GD achieving the maximum cumulative variance explained on each round.
In contrast, the more standard Hotelling’s and orthogonalized Hotelling’s underperform the
remaining techniques.

Gene expression data

The Berkeley Drosophila Transcription Network Project (BDTNP) 3D gene expression data
[21] contains gene expression levels measured in each nucleus of developing Drosophila em-
bryos and averaged across many embryos and developmental stages. Here, we analyze 0-
3 1160524183713 s10436-29ap05-02.vpc, an aggregate VirtualEmbryo containing 21 genes
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DCPCA GSLDA
HD PD SCD OHD OPD GD HD PD SCD OHD OPD GD

22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6% 22.6%
39.6% 39.6% 38.6% 39.6% 39.6% 39.6% 38.8% 40.1% 38.5% 38.8% 40.1% 40.1%
46.8% 50.9% 53.4% 46.8% 50.9% 51.0% 54.1% 56.0% 55.7% 54.1% 56.0% 56.1%
56.8% 62.1% 62.3% 52.9% 62.1% 62.2% 64.5% 66.1% 64.4% 64.3% 66.1% 66.5%
66.1% 70.2% 73.7% 59.9% 70.2% 71.3% 72.7% 74.7% 73.3% 68.2% 74.7% 75.2%
73.4% 77.8% 79.3% 63.2% 77.2% 78.9% 77.0% 81.2% 79.8% 71.9% 81.3% 82.2%

Table 2.3: Cumulative percentage variance explained by the first 6 sparse loadings extracted
from the Pit Props dataset.

and 5759 example nuclei. We run GSLDA for eight iterations with cardinality pattern
9,7,6,5,3,2,2,2 and report the results in Table 2.4.

GSLDA additional variance explained GSLDA cumulative percentage variance
HD PD SCD OHD OPD GD HD PD SCD OHD OPD GD

PC 1 1.784 1.784 1.784 1.784 1.784 1.784 21.0% 21.0% 21.0% 21.0% 21.0% 21.0%
PC 2 1.464 1.453 1.453 1.464 1.453 1.466 38.2% 38.1% 38.1% 38.2% 38.1% 38.2%
PC 3 1.178 1.178 1.179 1.176 1.178 1.187 52.1% 51.9% 52.0% 52.0% 51.9% 52.2%
PC 4 0.716 0.736 0.716 0.713 0.721 0.743 60.5% 60.6% 60.4% 60.4% 60.4% 61.0%
PC 5 0.444 0.574 0.571 0.460 0.571 0.616 65.7% 67.4% 67.1% 65.9% 67.1% 68.2%
PC 6 0.303 0.306 0.278 0.354 0.244 0.332 69.3% 71.0% 70.4% 70.0% 70.0% 72.1%
PC 7 0.271 0.256 0.262 0.239 0.313 0.304 72.5% 74.0% 73.4% 72.8% 73.7% 75.7%
PC 8 0.223 0.239 0.299 0.257 0.245 0.329 75.1% 76.8% 77.0% 75.9% 76.6% 79.6%

Table 2.4: Additional variance and cumulative percentage variance explained by the first 8
sparse loadings of GSLDA on the BDTNP VirtualEmbryo.

The results of the gene expression experiment show a clear hierarchy among the deflation
methods. The generalized deflation technique performs best, achieving the largest additional
variance on every round and a final cumulative variance of 79.6%. Schur complement defla-
tion, projection deflation, and orthogonalized projection deflation all perform comparably,
explaining roughly 77% of the total variance after 8 rounds. In last place are the standard
Hotelling’s and orthogonalized Hotelling’s deflations, both of which explain less than 76% of
variance after 8 rounds.

2.5 Conclusion

In this chapter, we have exposed the theoretical and empirical shortcomings of Hotelling’s
deflation in the sparse PCA setting and developed several alternative methods more suitable
for non-eigenvector deflation. Notably, the utility of these procedures is not limited to the
sparse PCA setting. Indeed, the methods presented can be applied to any of a number
of constrained eigendecomposition-based problems, including sparse canonical correlation
analysis [78] and linear discriminant analysis [54].
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Chapter 3

Mixed Membership Matrix
Factorization

3.1 Introduction

This chapter is concerned with unifying discrete mixed membership modeling and continuous
latent factor modeling for probabilistic dyadic data prediction. In the dyadic data predic-
tion (DDP) problem [30], we observe labeled dyads, i.e., ordered pairs of objects, and form
predictions for the labels of unseen dyads. For example, in the collaborative filtering set-
ting, we observe U users, M items, and a training set T = {(un, jn, rn)}Nn=1 with real-valued
ratings rn representing the preferences of certain users un for certain items jn. The goal is
then to predict unobserved ratings based on users’ past preferences. Other concrete exam-
ples of DDP include link prediction in social network analysis, binding affinity prediction in
bioinformatics, and click prediction in web search.

Matrix factorization methods [68, 18, 71, 70, 75, 41] represent the state of the art for
dyadic data prediction tasks. These methods view a dyadic dataset as a sparsely observed
ratings matrix, R ∈ R

U×M , and learn a constrained decomposition of that matrix as a
product of two latent factor matrices: R ≈ A

t
B for A ∈ R

D×U , B ∈ R
D×M , and D small.

While latent factor methods perform remarkably well on the DDP task, they fail to capture
the heterogeneous nature of objects and their interactions. Such models, for instance, do not
account for the fact that a user’s ratings are influenced by instantaneous mood, that protein
interactions are affected by transient functional contexts, or even that users with distinct
behaviors may be sharing a single account or web browser.

The fundamental limitation of continuous latent factor methods is a result of the static
way in which ratings are assumed to be produced: a user generates all of his item ratings us-
ing the same factor vector, without regard for context. Discrete mixed membership models,
like Latent Dirichlet Allocation [6], were developed to address a similar limitation of mix-
ture models. Whereas mixture models assume that each generated object is underlyingly a
member of a single latent topic, mixed membership models represent objects as distributions
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Figure 3.1: Graphical model representations of BPMF (top left), Bi-LDA (bottom left), and
M3F-TIB (right).

over topics. Mixed membership dyadic data models such as the Mixed Membership Stochas-
tic Blockmodel [3] for relational prediction and Bi-LDA [66] for rating prediction introduce
context dependence by allowing each object to select a new topic for each new interaction.
However, the relatively poor predictive performance of Bi-LDA suggests that the blockmodel
assumption—that objects only interact via their topics—is too restrictive.

In this chapter we develop a fully Bayesian framework for wedding the strong perfor-
mance and expressiveness of continuous latent factor models with the context dependence
and topic clustering of discrete mixed membership models [46]. In Section 3.2, we provide
additional background on matrix factorization and mixed membership modeling. We in-
troduce our Mixed Membership Matrix Factorization (M3F) framework in Section 3.3, and
discuss inference and prediction under two M3F models in Section 3.4. Section 3.5 describes
experimental evaluation and analysis of our models on a variety of real-world collaborative
filtering datasets. The results demonstrate that Mixed-Membership Matrix Factorization
methods outperform their context-blind counterparts and simultaneously reveal interesting
clustering structure in the data. Finally, we conclude in Section 4.6.

3.2 Background

Latent Factor Models

We begin by considering a prototypical latent factor model, Bayesian Probabilistic Matrix
Factorization of Salakhutdinov and Mnih [70] (see Figure 3.1). Like most factor models,
BPMF associates with each user u an unknown factor vector au ∈ R

D and with each item
j an unknown factor vector bj ∈ R

D. A user generates a rating for an item by adding
Gaussian noise to the inner product, ruj = au · bj. We refer to this inner product as the
static rating for a user-item pair, for, as discussed in the introduction, the latent factor rating
mechanism does not model the context in which a rating is given and does not allow a user
to don different moods or “hats” in different dyadic interactions. Such contextual flexibility
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is desirable for capturing the context-sensitive nature of dyadic interactions, and, as such,
we turn our attention to mixed membership models.

Mixed Membership Models

Two recent examples of dyadic mixed membership (DMM) models are the Mixed Membership
Stochastic Blockmodel (MMSB) [3] and Bi-LDA [66] (see Figure 3.1). In DMM models,
each user u and item j has its own discrete distribution over topics, represented by topic
parameters θ

U
u and θ

M
j . When a user desires to rate an item, both the user and the item

select interaction-specific topics according to their distributions; the selected topics then
determine the distribution over ratings.

One drawback of DMMmodels is the reliance on purely groupwise interactions: one learns
how a user group interacts with an item group but not how a user group interacts directly
with a particular item. M3F models address this limitation in two ways—first, by modeling
interactions between groups and specific users or items and second, by incorporating the
user-item specific static rating of latent factor models.

3.3 Mixed Membership Matrix Factorization

In this section, we present a general Mixed Membership Matrix Factorization framework and
two specific models that leverage the predictive power and static specificity of continuous
latent factor models while allowing for the clustered context-sensitivity of mixed membership
models. In each M3F model, users and items are endowed both with latent factor vectors
(au and bj) and with topic distribution parameters (θUu and θ

M
j ). To rate an item, a user

first draws a topic zUuj from his distribution, representing, for example, his mood at the time
of rating (in the mood for romance vs. comedy), and the item draws a topic z

M
uj from its

distribution, representing, for example, the context under which it is being rated (in a theater
on opening night vs. in a high-school classroom). The user and item topics, i and k, together
with the identity of the user and item, u and j, jointly specify a rating bias, βik

uj, tailored to
the user-item pair. Different M3F models will differ principally in the precise form of this
contextual bias. To generate a complete rating, the user-item-specific static rating au · bj is
added to the contextual bias βik

uj, along with some noise.
Rather than learn point estimates under our M3F models, we adopt a fully Bayesian

methodology and place priors on all parameters of interest. Topic distribution parameters
θ
U
u and θ

M
j are given independent exchangeable Dirichlet priors, and the latent factor vectors

au and bj are drawn independently from N
�
µ
U
, (ΛU)−1

�
and N

�
µ
M
, (ΛM)−1

�
, respectively.

As in Salakhutdinov and Mnih [70], we place normal-Wishart priors on the hyper-parameters
(µU

,ΛU) and (µM
,ΛM). Suppose K

U is the number of user topics and K
M is the number

of item topics. Then, given the contextual biases βik
uj, ratings are generated according to the

following M3F generative process:

ΛU ∼ Wishart(W0, ν0), ΛM ∼ Wishart(W0, ν0)
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µ
U ∼ N

�
µ0, (λ0ΛU)−1

�
, µM ∼ N

�
µ0, (λ0ΛM)−1

�

For each u ∈ {1, . . . , U}:

au ∼ N
�
µ
U
, (ΛU)−1

�

θ
U
u ∼ Dir(α/KU)

For each j ∈ {1, . . . ,M}:

bj ∼ N
�
µ
M
, (ΛM)−1

�

θ
M
j ∼ Dir(α/KM)

For each rating ruj:

z
U
uj ∼ Multi(1, θUu ), z

M
uj ∼ Multi(1, θMj )

ruj ∼ N
�
β
ik
uj + au · bj, σ

2
�
.

For each model discussed below, we let ΘU denote the collection of all user parameters (e.g.,
a, θU ,ΛU

, µ
U), ΘM denote all item parameters, and Θ0 denote all global parameters (e.g.,

W0, ν0, µ0,λ0,α, σ
2
0, σ

2). We now describe in more detail the specific forms of two M3F
models and their contextual biases.

The M3F Topic-Indexed Bias Model

The M3F Topic-Indexed Bias (TIB) model assumes that the contextual bias decomposes
into a latent user bias and a latent item bias. The user bias is influenced by the interaction-
specific topic selected by the item. Similarly, the item bias is influenced by the user’s selected
topic. We denote the latent rating bias of user u under item topic k as c

k
u and denote the

bias for item j under user topic i as dij. The contextual bias for a given user-item interaction
is then found by summing the two latent biases and a fixed global bias, χ0

1:

β
ik
uj = χ0 + c

k
u + d

i
j.

Topic-indexed biases cku and d
i
j are drawn independently from Gaussian priors with variance

σ
2
0 and means c0 and d0 respectively. Figure 3.1 compares the graphical model representations

of M3F-TIB, BPMF, and Bi-LDA. Note that M3F-TIB reduces to BPMF when K
U and K

M

are both zero.
Intuitively, the topic-indexed bias model captures the “Napoleon Dynamite effect,” [76]

whereby certain movies provoke strongly differing reactions from otherwise similar users.
Each user-topic-indexed bias dij represents one of K

U possible predispositions towards liking
or disliking each item in the database, irrespective of the static latent factor parameterization.
Thus, in the movie-recommendation problem, we expect the variance in user reactions to

1The global bias, χ0, is suppressed in the remainder of the chapter for clarity.
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Algorithm 1 Gibbs Sampling for M3F-TIB.

Input: (a(0)
,b(0)

, c(0),d(0)
, θ

U(0)
, θ

M(0)
, zM(0))

for t = 1 to T do
// Sample Hyperparameters
for (u, j) ∈ T do
(µU

,ΛU)t ∼ µ
U
,ΛU | at−1

,Θ0

(µM
,ΛM)t ∼ µ

M
,ΛM | bt−1

,Θ0

end for
// Sample Topics
for (u, j) ∈ T do

z
U(t)
uj ∼ z

U
uj|(zMuj , θUu , au,bj, cu,dj)t−1

, r(v),Θ0

z
M(t)
uj ∼ z

M
uj |(θMj , au,bj, cu,dj)t−1

, z
U(t)
uj , r(v),Θ0

end for
// Sample User Parameters
for u = 1 to U do
θ
U(t)
u ∼ θ

U
u | zU(t)

,Θ0

at
u ∼ au | (ΛU

, µ
U
, zUu , z

M)t, (b, cu,d)t−1
,Θ0

for i = 1 to K
M do

c
i(t)
u ∼ c

i
u | (zU , zM , au)t, (b,d)t−1

, r(v),Θ0

end for
end for
// Sample Item Parameters
for j = 1 to M do
θ
M(t)
j ∼ θ

M
j | zM(t)

,Θ0

bt
j ∼ bj | (ΛU

, µ
U
, zUu , z

M
, a, cu)t,dt−1

,Θ0

for k = 1 to K
U do

d
k(t)
j ∼ d

k
j | (zU , zM , a,bj, c)t, r(v),Θ0

end for
end for

end for

movies such as Napoleon Dynamite to be captured in part by a corresponding variance in
the bias parameters d

i
j (see Section 3.5). Moreover, because the model is symmetric, each

rating is also influenced by the item-topic-indexed bias c
k
u. This can be interpreted as the

predisposition of each perceived item class towards being liked or disliked by each user in
the database. Finally, because M3F-TIB is a mixed-membership model, each user and item
can choose a different topic and hence a different bias for each rating (e.g., when multiple
users share a single account).
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The M3F Topic-Indexed Factor Model

The M3F Topic-Indexed Factor (TIF) model assumes that the joint contextual bias is an
inner product of topic-indexed factor vectors, rather than the sum of topic-indexed biases
as in the TIB model. Each item topic k maintains a latent factor vector cku ∈ R

D̃ for each
user, and each user topic i maintains a latent factor vector di

j ∈ R
D̃ for each item. Each

user and each item additionally maintains a single static rating bias, ξu and χj respectively.
The joint contextual bias is formed by summing the user bias, the item bias, and the inner
product between the topic-indexed factor vectors:

β
ik
uj = ξu + χj + cku · di

j.

The topic-indexed factors cku and di
j are drawn independently from N

�
µ̃
U
, (Λ̃U)−1

�
and

N
�
µ̃
M
, (Λ̃M)−1

�
priors, and conjugate normal-Wishart priors are placed on the hyper-

parameters (µ̃U
, Λ̃U) and (µ̃M

, Λ̃M). The static user and item biases, ξu and χj, are drawn
independently from Gaussian priors with variance σ

2
0 and means ξ0 and χ0 respectively.2

Intuitively, the topic-indexed factor model can be interpreted as an extended matrix
factorization with both global and local low-dimensional representations. Each user u has
a single global factor au but K

U local factors cku; similarly, each item j has both a global
factor bj and multiple local factors di

j. A strength of latent factor methods is their ability to
discover globally predictive intrinsic properties of users and items. The topic-indexed factor
model extends this representation to allow for intrinsic properties that are predictive in some
but perhaps not all contexts. For example, in the movie-recommendation setting, is Lost In
Translation a dark comedy or a romance film? The answer may vary from user to user and
thus may be captured by different vectors di

j for each user-indexed topic.

3.4 Inference and Prediction

The goal in dyadic data prediction is to predict unobserved ratings r(h) given observed rat-
ings r(v). As in Salakhutdinov and Mnih [71, 70] and Takács et al. [75], we adopt root mean
squared error (RMSE)3 as our primary error metric and note that the Bayes optimal predic-
tion under RMSE loss is the posterior mean of the predictive distribution p(r(h)|r(v),Θ0).

In our M3F models, the predictive distribution over unobserved ratings is found by inte-
grating out all topics and parameters. The posterior distribution p(zU , zM ,ΘU

,ΘM |r(v),Θ0)
is thus our main inferential quantity of interest. Unfortunately, as in both LDA and BPMF,
analytical computation of this posterior is intractable, due to complex coupling in the
marginal distribution p(r(v)|Θ0) [6, 70].

2Static biases ξ and χ are suppressed in the remainder of the chapter for clarity.
3For work linking improved RMSE with better top-K recommendation rankings, see Koren [37].
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Table 3.1: 1M MovieLens and EachMovie RMSE scores for varying static factor dimension-
alities and topic counts for both M3F models. All scores are averaged across 3 standardized
cross-validation splits. Parentheses indicate topic counts (KU

, K
M). For M3F-TIF, D̃ = 2

throughout. L&U (2009) refers to [41]. Best results for each D are boldened. Asterisks
indicate significant improvement over BPMF under a one-tailed paired t-test with level 0.05.

1M MovieLens EachMovie

Method D=10 D=20 D=30 D=40 D=10 D=20 D=30 D=40

BPMF 0.8695 0.8622 0.8621 0.8609 1.1229 1.1212 1.1203 1.1163

M3F-TIB (1,1) 0.8671 0.8614 0.8616 0.8605 1.1205 1.1188 1.1183 1.1168

M3F-TIF (1,2) 0.8664 0.8629 0.8622 0.8616 1.1351 1.1179 1.1095 1.1072
M3F-TIF (2,1) 0.8674 0.8605 0.8605 0.8595 1.1366 1.1161 1.1088 1.1058
M3F-TIF (2,2) 0.8642 0.8584* 0.8584 0.8592 1.1211 1.1043 1.1035 1.1020

M3F-TIB (1,2) 0.8669 0.8611 0.8604 0.8603 1.1217 1.1081 1.1016 1.0978
M3F-TIB (2,1) 0.8649 0.8593 0.8581* 0.8577* 1.1186 1.1004 1.0952 1.0936
M3F-TIB (2,2) 0.8658 0.8609 0.8605 0.8599 1.1101* 1.0961* 1.0918* 1.0905*

L&U (2009) 0.8801 (RBF) 0.8791 (Linear) 1.1111 (RBF) 1.0981 (Linear)

Inference via Gibbs Sampling

In this chapter, we use a Gibbs sampling MCMC procedure [23] to draw samples of topic
and parameter variables {(zU(t)

, zM(t)
,ΘU(t)

,ΘM(t))}Tt=1 from their joint posterior. Our use of
conjugate priors ensures that each Gibbs conditional has a simple closed form (see Section 3.7
for the exact conditional distributions).

Alg. 1 displays the Gibbs sampling algorithm for the M3F-TIB model; the M3F-TIF
Gibbs sampler is similar. Note that we choose to sample the topic parameters θ

U and θ
M

rather than integrate them out as in a collapsed Gibbs sampler (see, e.g., [66]). This decision
allows us to sample the interaction-specific topic variables in parallel. Indeed, each loop in
Alg. 1 corresponds to a block of parameters that can be sampled in parallel. In practice,
such parallel computation yields substantial savings in sampling time for large-scale dyadic
datasets.
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Figure 3.2: RMSE improvements over BPMF/40 on the Netflix Prize as a function of movie
or user rating count. Left: Improvement as a function of movie rating count. Each x-axis
label represents the average rating count of 1/6 of the movie base. Right: Improvement over
BPMF as a function of user rating count. Each bin represents 1/8 of the user base.

Prediction

Given posterior samples of parameters, we can approximate the true predictive distribution
by the Monte Carlo expectation

p̂(r(h)|r(v),Θ0) =
1

T

T�

t=1

�

zU ,zM

p(zU , zM |ΘU(t)
,ΘM(t))

p(r(h)|zU , zM ,ΘU(t)
,ΘM(t)

,Θ0), (3.1)

where we have integrated over the unknown topic variables. Eq. 3.1 yields the following
posterior mean prediction for each user-item pair under the M3F-TIB model:

1

T

T�

t=1



a(t)
u · b(t)

j +
KM�

k=1

c
k(t)
u θ

M(t)
jk +

KU�

i=1

d
i(t)
j θ

U(t)
ui



.

Under the M3F-TIF model, posterior mean prediction takes the form

1

T

T�

t=1



a(t)
u · b(t)

j +
KU�

i=1

KM�

k=1

θ
U(t)
ui θ

M(t)
jk ck(t)u · di(t)

j



.
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3.5 Experimental Evaluation

We evaluate our models on several movie rating collaborative filtering datasets including the
Netflix Prize dataset4, the EachMovie dataset, and the 1M and 10M MovieLens datasets5.
The Netflix Prize dataset contains 100 million ratings in {1, . . . , 5} distributed across 17,770
movies and 480,189 users. The EachMovie dataset contains 2.8 million ratings in {1, . . . , 6}
distributed across 1,648 movies and 74,424 users. The 1M MovieLens dataset has 6,040 users,
3,952 movies, and 1 million ratings in {1, . . . , 5}. The 10M MovieLens dataset has 10,681
movies, 71,567 users, and 10 million ratings on a .5 to 5 scale with half-star increments. In
all experiments, we set W0 equal to the identity matrix, ν0 equal to the number of static
matrix factors, µ0 equal to the all-zeros vector, χ0 equal to the mean rating in the data set,
and (λ0, σ

2
, σ

2
0) = (10, .5, .1). For M3F-TIB experiments, we set (c0, d0,α) = (0, 0, 10000),

and for M3F-TIF, we set W̃0 equal to the identity matrix, ν̃0 equal to the number of topic-
indexed factors, µ̃0 equal to the all-zeros vector, and (D̃, ξ0,α, λ̃0) = (2, 0, 10, 10000). Free
parameters were selected by grid search on an EachMovie hold-out set, disjoint from the
test sets used for evaluation. Throughout, reported error intervals are of plus or minus one
standard error from the mean.

1M MovieLens and EachMovie Datasets

We first evaluated our models on the smaller datasets, 1M MovieLens and EachMovie. We
conducted the “weak generalization” ratings prediction experiment of Marlin [50], where,
for each user in the training set, a single rating is withheld for the test set. All reported
results are averaged over the same 3 random train-test splits used in [51, 50, 68, 18, 61, 41].
Our Gibbs samplers were initialized with draws from the prior and run for 3000 samples for
M3F-TIB and 512 samples for M3F-TIF. No samples were discarded for “burn-in.”

Table 3.1 reports the predictive performance of our models for a variety of static factor
dimensionalities (D) and topic counts (KU

, K
M). We compared all models against BPMF

as a baseline by running the M3F-TIB model with K
U and K

M set to zero. For comparison
with previous results that report the normalized mean average error (NMAE) of Marlin [50],
we additionally ran M3F-TIB with (D,K

U
, K

M) = (300, 2, 1) on EachMovie and achieved a
weak RMSE of (1.0878± 0.0025) and a weak NMAE of (0.4293± 0.0013).

On both the EachMovie and the 1MMovieLens datasets, both M3F models systematically
outperformed the BPMF baseline for almost every setting of latent dimensionality and topic
counts. For D = 20, increasing K

U to 2 provided a boost in accuracy for both M3F models
equivalent to doubling the number of BPMF static factor parameters (D = 40). We also
found that the M3F-TIB model outperformed the more recent Gaussian process matrix
factorization model of Lawrence and Urtasun [41].

The results indicate that the mixed-membership component of M3F offers greater predic-
tive power than simply increasing the dimensionality of a pure latent factor model. While

4http://www.netflixprize.com/
5http://www.grouplens.org/
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the M3F-TIF model sometimes failed to outperform the BPMF baseline due to overfitting,
the M3F-TIB model always outperformed BPMF regardless of the setting of KU , KM , or
D. Note that the increase in the number of parameters from the BPMF model to the M3F
models is independent of D (M3F-TIB requires (U +M)(KU +K

M) more parameters than
BPMF with equal D), and therefore the ratio of the number of parameters of BPMF and
M3F approaches 1 if D increases while K

U , KM , and D̃ are held fixed. Nonetheless, the
modeling of joint contextual bias in the M3F-TIB model continues to improve predictive
performance even as D increases, suggesting that the M3F-TIB model is capturing aspects
of the data that are not captured by a pure latent factor model.

Finally, because the M3F-TIB model offered superior performance to the M3F-TIF model
in most experiments, we focus on the M3F-TIB model in the remainder of this section.

10M MovieLens Dataset

For the larger datasets, we initialized the Gibbs samplers with MAP estimates of a and b
under simple Gaussian priors, which we trained with stochastic gradient descent. This is sim-
ilar to the PMF initialization scheme of Salakhutdinov and Mnih [70]. All other parameters
were initialized to their model means.

For the 10M MovieLens dataset, we averaged our results across the ra and rb train-test
splits provided with the dataset after removing those test set ratings with no corresponding
item in the training set. For comparison with the Gaussian process matrix factorization
model of Lawrence and Urtasun [41], we adopted a static factor dimensionality of D = 10.
Our M3F-TIB model with (KU

, K
M) = (4, 1) achieved an RMSE of (0.8447 ± 0.0095),

representing a significant improvement (p = 0.034) over BPMF with RMSE (0.8472 ±
0.0093) and a substantial increase in accuracy over the Gaussian process model with RMSE
(0.8740 ± 0.0197).

Netflix Prize Dataset

The unobserved ratings for the 100 million dyad Netflix Prize dataset are partitioned into
two standard sets, known as the Quiz Set and the Test Set. Prior to September of 2009,
public evaluation was only available on the Quiz Set, and, as a result, most prior published
“test set” results were evaluated on the Quiz Set. In Table 3.2, we compare the performance
of BPMF and M3F-TIB with (KU

, K
M) = (4, 1) on the Quiz Set, the Test Set, and on their

union (the Qualifying Set), across a wide range of static dimensionalities. We also report
running times of our Matlab/MEX implementation on dual quad-core 2.67GHz Intel Xeon
CPUs. We used the initialization scheme described in Section 3.5 and ran the Gibbs samplers
for 500 iterations.

In addition to outperforming the BPMF baselines of comparable dimensionality, the M3F-
TIB models routinely proved to be more accurate than higher dimensional BPMF models
with longer running times and many more learned parameters. This major advantage of
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Figure 3.3: RMSE performance of BPMF and M3F-TIB with (KU
, K

M) = (4, 1) on the
Netflix Prize Qualifying set as a function of the number of parameters modeled per user or
item.

M3F modeling is highlighted in Figure 3.3, which plots error as a function of the number of
parameters modeled per user or item (D +K

U +K
M).

To determine where our models were providing the most improvement over BPMF, we
divided the Qualifying Set into bins based on the number of ratings associated with each
user and movie in the database. Figure 3.2 displays the improvements of BPMF/60, M3F-
TIB/40, and M3F-TIB/60 over BPMF/40 as a function of the number of user or movie
ratings. Consistent with our expectations, we found that adopting an M3F model yielded
improved accuracy for movies of small rating counts, with the greatest improvement over
BPMF occurring for those high-variance movies with relatively few ratings. Moreover, the
improvements realized by either M3F-TIB model uniformly dominated the improvements
realized by BPMF/60 across movie rating counts. At the same time, we found that the
improvements of the M3F-TIB models were skewed toward users with larger rating counts.

M3F & The Napoleon Dynamite Effect

In our introduction to the M3F-TIB model we discussed the joint contextual bias as a po-
tential solution to the problem of making predictions for movies that have high variance.
To investigate whether or not M3F-TIB achieved progress towards this goal, we analyzed
the correlation between the improvement in RMSE over the BPMF baseline and the vari-
ance of ratings for the 1000 most popular movies in the database. While the improvements
for BPMF/60 were not significantly correlated with movie variance (ρ = −0.016), the im-
provements of the M3F-TIB models were strongly correlated with ρ = 0.117(p < 0.001)
and ρ = 0.15 (p < 10−7) for the (40, 4, 1) and (60, 4, 1) models, respectively. These results
indicate that a strength of the M3F-TIB model lies in the ability of the topic-indexed biases
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Table 3.2: Netflix Prize results for BPMF and M3F-TIB with (KU
, K

M) = (4, 1). Hidden
ratings are partitioned into Quiz and Test sets; the Qualifying set is their union. Best results
in each block are boldened. Reported times are average running times per sample.

Method Test Quiz Qual Time

BPMF/15 0.9125 0.9117 0.9121 27.8s
TIB/15 0.9093 0.9086 0.9090 46.3s

BPMF/30 0.9049 0.9044 0.9047 38.6s
TIB/30 0.9018 0.9012 0.9015 56.9s

BPMF/40 0.9029 0.9026 0.9027 48.3s
TIB/40 0.8992 0.8988 0.8990 70.5s

BPMF/60 0.9004 0.9001 0.9002 94.3s
TIB/60 0.8965 0.8960 0.8962 97.0s

BPMF/120 0.8958 0.8953 0.8956 273.7s
TIB/120 0.8937 0.8931 0.8934 285.2s

BPMF/240 0.8939 0.8936 0.8938 1152.0s
TIB/240 0.8931 0.8927 0.8929 1158.2s

to model variance in user biases toward specific items.
To further illuminate this property of the model, we computed the posterior expectation

of the movie bias parameters, Edj|r(v), for the 200 most popular movies in the database.
For these movies, the variance of Edij|r(v) across topics and the variance of the ratings of
these movies were very strongly correlated (ρ = 0.682, p < 10−10). The five movies with the
highest and lowest variance in Ed

i
j|r(v) across topics are shown in Table 3.3. The results are

easily interpretable, with high-variance movies such as Napoleon Dynamite dominating the
high-variance positions and universally acclaimed blockbusters dominating the low-variance
positions.

3.6 Conclusion

In this chapter, we developed a fully Bayesian dyadic data prediction framework for integrat-
ing the complementary approaches of discrete mixed membership modeling and continuous
latent factor modeling. We introduced two Mixed Membership Matrix Factorization mod-
els, developed MCMC inference procedures, and evaluated our methods on the EachMovie,
MovieLens, and Netflix Prize datasets. On each dataset, we found that M3F-TIB signif-
icantly outperformed BPMF and other state-of-the-art baselines, even when fitting fewer
parameters. We further discovered that the greatest performance improvements occurred
for the high-variance, sparsely-rated items, for which accurate DDP is typically the hardest.
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Table 3.3: Top 200 Movies from the Netflix Prize dataset with the highest and lowest cross-
topic variance in Ed

i
j|r(v). Reported intervals are of the mean value of Edij|r(v) plus or minus

one standard deviation.

Movie Title Edij |r(v)

Napoleon Dynamite -0.11 ± 0.93
Fahrenheit 9/11 -0.06 ± 0.90
Chicago -0.12 ± 0.78
The Village -0.14 ± 0.71
Lost in Translation -0.02 ± 0.70

LotR: The Fellowship of the Ring 0.15 ± 0.00
LotR: The Two Towers 0.18 ± 0.00
LotR: The Return of the King 0.24 ± 0.00
Star Wars: Episode V 0.35 ± 0.00
Raiders of the Lost Ark 0.29 ± 0.00

3.7 Gibbs Sampling Conditionals for M3F Models

The M3F-TIB Model

In this section, we specify the conditional distributions used by the Gibbs sampler for the
M3F-TIB model.

Normal-Wishart Parameters

ΛU |rest\{µU} ∼ Wishart((W−1
0 +

U�

u=1

(au − ā)(au − ā)t+
λ0U

λ0 + U
(µ0− ā)(µ0− ā)t)−1

,

ν0 + U) where ā = 1
U

�U
u=1 au.

ΛM |rest\{µM} ∼ Wishart((W−1
0 +

M�

j=1

(bj − b̄)(bj − b̄)t+
λ0M

λ0 +M
(µ0−b̄)(µ0−b̄)t)−1

,

ν0 +M) where b̄ = 1
M

�M
j=1 bj.

µ
U |rest ∼ N

�
λ0µ0 +

�U
u=1 au

λ0 + U
, (ΛU(λ0 + U))−1

�
.

µ
M |rest ∼ N

�
λ0µ0 +

�M
j=1 bj

λ0 +M
, (ΛM(λ0 +M))−1

�
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Bias Parameters

For each u and i ∈ {1, . . . , KM},
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Static Factors
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Dirichlet Parameters
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Topic Variables
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The M3F-TIF Model

In this section, we specify the conditional distributions used by the Gibbs sampler for the
M3F-TIF model.

Normal-Wishart Parameters

ΛU |rest\{µU} ∼ Wishart((W−1
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U

�U
u=1 au.

ΛM |rest\{µM} ∼ Wishart((W−1
0 +

M�

j=1

(bj − b̄)(bj − b̄)t+
λ0M

λ0 +M
(µ0−b̄)(µ0−b̄)t)−1

,

ν0 +M) where b̄ = 1
M

�M
j=1 bj.

µ
U |rest ∼ N

�
λ0µ0 +

�U
u=1 au

λ0 + U
, (ΛU(λ0 + U))−1

�
.

µ
M |rest ∼ N

�
λ0µ0 +

�M
j=1 bj

λ0 +M
, (ΛM(λ0 +M))−1

�
.

Λ̃U |rest\{µ̃U} ∼ Wishart((W̃−1
0 +

U�

u=1

KM�

i=1

(ciu − c̄)(ciu − c̄)t+
λ̃0UK

M

λ̃0 + UKM
(µ̃0− c̄)(µ̃0−

c̄)t)−1
, ν̃0 + UK

M) where c̄ = 1
UKM

�U
u=1

�KM

i=1 ciu.

Λ̃M |rest\{µ̃M} ∼ Wishart((W̃−1
0 +

M�

j=1

KU�

i=1

(di
j − d̄)(di

j − d̄)t+
λ̃0MK

U

λ̃0 +MKU
(µ̃0−d̄)(µ̃0−

d̄)t)−1
, ν̃0 +MK

U) where d̄ = 1
MKU

�M
j=1

�KU

i=1 d
i
j.

µ̃
U |rest ∼ N

�
λ̃0µ̃0 +

�U
u=1

�KM

i=1 ciu
λ̃0 + UKM

, (Λ̃U(λ̃0 + UK
M))−1

�
.

µ̃
M |rest ∼ N

�
λ̃0µ̃0 +

�M
j=1

�KU

i=1 d
i
j

λ̃0 +MKU
, (Λ̃M(λ̃0 +MK

U))−1

�
.

Bias Parameters



CHAPTER 3. MIXED MEMBERSHIP MATRIX FACTORIZATION 29

For each u,
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Static Factors
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Dirichlet Parameters

For each u, θUu |rest ∼ Dir(α/KU +
�

j∈Vu
z
U
uj).

For each j, θMj |rest ∼ Dir(α/KM +
�

u:j∈Vu
z
M
uj ).

Topic Variables

For each u and j ∈ Vu, zUuj|rest ∼ Multi(1, θU∗
uj ) where

θ
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uji ∝ θ

U
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−
(ruj − ξu − χj − au · bj − c

zMuj
u · di

j)
2

2σ2



.
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Chapter 4

Divide-and-Conquer Matrix
Factorization

4.1 Introduction

The goal in matrix factorization is to recover a low-rank matrix from irrelevant noise and cor-
ruption. We focus on two instances of the problem: noisy matrix completion, i.e., recovering
a low-rank matrix from a small subset of noisy entries, and noisy robust matrix factoriza-
tion [10, 11, 12], i.e., recovering a low-rank matrix from corruption by noise and outliers of
arbitrary magnitude. Examples of the matrix completion problem include collaborative fil-
tering for recommender systems, link prediction for social networks, and click prediction for
web search, while applications of robust matrix factorization arise in video surveillance [10],
graphical model selection [12], document modeling [53], and image alignment [63].

These two classes of matrix factorization problems have attracted significant interest
in the research community. In particular, convex formulations of noisy matrix factorization
have been shown to admit strong theoretical recovery guarantees [1, 10, 11, 58], and a variety
of algorithms (e.g., [43, 45, 77]) have been developed for solving both matrix completion
and robust matrix factorization via convex relaxation. Unfortunately, these methods are
inherently sequential and all rely on the repeated and costly computation of truncated SVDs,
factors that limit the scalability of the algorithms.

To improve scalability and leverage the growing availability of parallel computing ar-
chitectures, we propose a divide-and-conquer framework for large-scale matrix factorization
[49]. Our framework, entitled Divide-Factor-Combine (DFC), randomly divides the original
matrix factorization task into cheaper subproblems, solves those subproblems in parallel us-
ing any base matrix factorization algorithm, and combines the solutions to the subproblem
using efficient techniques from randomized matrix approximation. The inherent parallelism
of DFC allows for near-linear to superlinear speed-ups in practice, while our theory pro-
vides high-probability recovery guarantees for DFC comparable to those enjoyed by its base
algorithm.
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The remainder of the chapter is organized as follows. In Section 4.2, we define the set-
ting of noisy matrix factorization and introduce the components of the DFC framework.
To illustrate the significant speed-up and robustness of DFC and to highlight the effective-
ness of DFC ensembling, we present experimental results on collaborative filtering, video
background modeling, and simulated data in Section 4.3. Our theoretical analysis follows in
Section 4.4. There, we establish high-probability noisy recovery guarantees for DFC that
rest upon a novel analysis of randomized matrix approximation and a new recovery result
for noisy matrix completion.

Notation For M ∈ R
m×n, we define M(i) as the ith row vector and Mij as the ijth

entry. If rank(M) = r, we write the compact singular value decomposition (SVD) of M as
UMΣMV�

M , where ΣM is diagonal and contains the r non-zero singular values of M, and
UM ∈ R

m×r and VM ∈ R
n×r are the corresponding left and right singular vectors of M. We

define M+ = VMΣ−1
M U�

M as the Moore-Penrose pseudoinverse of M and PM = MM+ as the
orthogonal projection onto the column space of M. We let �·�2, �·�F , and �·�∗ respectively
denote the spectral, Frobenius, and nuclear norms of a matrix and let �·� represent the �2

norm of a vector.

4.2 The Divide-Factor-Combine Framework

In this section, we present our divide-and-conquer framework for scalable noisy matrix fac-
torization. We begin by defining the problem setting of interest.

Noisy Matrix Factorization (MF)

In the setting of noisy matrix factorization, we observe a subset of the entries of a matrix
M = L0 + S0 + Z0 ∈ R

m×n, where L0 has rank r � m,n, S0 represents a sparse matrix
of outliers of arbitrary magnitude, and Z0 is a dense noise matrix. We let Ω represent the
locations of the observed entries and PΩ be the orthogonal projection onto the space of m×n

matrices with support Ω, so that

(PΩ(M))ij = Mij, if (i, j) ∈ Ω and (PΩ(M))ij = 0 otherwise.1

Our goal is to recover the low-rank matrix L0 from PΩ(M) with error proportional to the
noise level ∆ � �Z0�F . We will focus on two specific instances of this general problem:

• Noisy Matrix Completion (MC): s � |Ω| entries of M are revealed uniformly
without replacement, along with their locations. There are no outliers, so that S0 is
identically zero.

1When Q is a submatrix of M we abuse notation and define PΩ(Q) as the corresponding submatrix of
PΩ(M).
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• Noisy Robust Matrix Factorization (RMF): S0 is identically zero save for s

outlier entries of arbitrary magnitude with unknown locations distributed uniformly
without replacement. All entries of M are observed, so that PΩ(M) = M.

Divide-Factor-Combine

Algorithms 2 and 3 summarize two canonical examples of the general Divide-Factor-Combine
framework that we refer to as DFC-Proj and DFC-Nys. Each algorithm has three simple
steps:

(D step) Divide input matrix into submatrices: DFC-Proj randomly partitions
PΩ(M) into t l-column submatrices, {PΩ(C1), . . . ,PΩ(Ct)}2, while DFC-Nys selects an
l-column submatrix, PΩ(C), and a d-row submatrix, PΩ(R), uniformly at random.

(F step) Factor each submatrix in parallel using any base MF algorithm: DFC-
Proj performs t parallel submatrix factorizations, while DFC-Nys performs two such par-
allel factorizations. Standard base MF algorithms output the low-rank approximations
{Ĉ1, . . . , Ĉt} for DFC-Proj and Ĉ, and R̂ for DFC-Nys. All matrices are retained in
factored form.

(C step) Combine submatrix estimates: DFC-Proj generates a final low-rank esti-
mate L̂proj by projecting [Ĉ1, . . . , Ĉt] onto the column space of Ĉ1, while DFC-Nys forms
the low-rank estimate L̂nys from Ĉ and R̂ via the generalized Nyström method. These
matrix approximation techniques are described in more detail in Section 4.2.

Algorithm 2 DFC-Proj
Input: PΩ(M), t
{PΩ(Ci)}1≤i≤t = SampCol(PΩ(M), t)
do in parallel

Ĉ1 = Base-MF-Alg(PΩ(C1))
...

Ĉt = Base-MF-Alg(PΩ(Ct))
end do
L̂proj = ColProjection(Ĉ1, . . . , Ĉt)

Algorithm 3 DFC-Nys
Input: PΩ(M), l, d
PΩ(C) ,PΩ(R) = SampColRow(PΩ(M), l,
d)
do in parallel

Ĉ = Base-MF-Alg(PΩ(C))
R̂ = Base-MF-Alg(PΩ(R))

end do
L̂nys = GenNyström (Ĉ, R̂)

2For ease of discussion, we assume that mod(n, t) = 0, and hence, l = n/t. Note that for arbitrary n and
t, PΩ(M) can always be partitioned into t submatrices, each with either �n/t� or �n/t� columns.
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Randomized Matrix Approximations

Our divide-and-conquer algorithms rely on two methods that generate randomized low-rank
approximations to an arbitrary matrix M from submatrices of M.

Column Projection This approximation, introduced by Frieze, Kannan, and Vempala
[22], is derived from column sampling of M. We begin by sampling l < n columns uniformly
without replacement and let C be the m × l matrix of sampled columns. Then, column
projection uses C to generate a “matrix projection” approximation [40] of M as follows:

Lproj = CC+M = UCU
�
CM.

In practice, we do not reconstruct Lproj but rather maintain low-rank factors, e.g., UC and
U�

CM.

Generalized Nyström Method The standard Nyström method is often used to speed up
large-scale learning applications involving symmetric positive semidefinite (SPSD) matrices
[81] and has been generalized for arbitrary real-valued matrices [25]. In particular, after
sampling columns to obtain C, imagine that we independently sample d < m rows uniformly
without replacement. Let R be the d × n matrix of sampled rows and W be the d × l

matrix formed from the intersection of the sampled rows and columns. Then, the generalized
Nyström method uses C,W, and R to compute an “spectral reconstruction” approximation
[40] of M as follows:

Lnys = CW+R = CVWΣ+
WU�

WR .

As with Mproj, we store low-rank factors of Lnys, such as CVWΣ+
W and U�

WR.

Running Time of DFC

Many state-of-the-art MF algorithms have Ω(mnkM) per-iteration time complexity due to
the rank-kM truncated SVD performed on each iteration. DFC significantly reduces the
per-iteration complexity to O(mlkCi) time for Ci (or C) and O(ndkR) time for R. The cost
of combining the submatrix estimates is even smaller, since the outputs of standard MF
algorithms are returned in factored form. Indeed, the column projection step of DFC-Proj
requires only O(mk

2+ lk
2) time for k � maxi kCi : O(mk

2+ lk
2) time for the pseudoinversion

of Ĉ1 and O(mk
2 + lk

2) time for matrix multiplication with each Ĉi in parallel. Similarly,
the generalized Nyström step of DFC-Nys requires only O(lk̄2 + dk̄

2 +min(m,n)k̄2) time,
where k̄ � max(kC , kR). Hence, DFC divides the expensive task of matrix factorization into
smaller subproblems that can be executed in parallel and efficiently combines the low-rank,
factored results.
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Ensemble Methods

Ensemble methods have been shown to improve performance of matrix approximation al-
gorithms, while straightforwardly leveraging the parallelism of modern many-core and dis-
tributed architectures [39]. As such, we propose ensemble variants of the DFC algorithms
that demonstrably reduce recovery error while introducing a negligible cost to the parallel
running time. For DFC-Proj-Ens, rather than projecting only onto the column space of
Ĉ1, we project [Ĉ1, . . . , Ĉt] onto the column space of each Ĉi in parallel and then average
the t resulting low-rank approximations. For DFC-Nys-Ens, we choose a random d-row
submatrix PΩ(R) as in DFC-Nys and independently partition the columns of PΩ(M) into
{PΩ(C1), . . . ,PΩ(Ct)} as in DFC-Proj. After running the base MF algorithm on each
submatrix, we apply the generalized Nyström method to each (Ĉi, R̂) pair in parallel and
average the t resulting low-rank approximations. Section 4.3 highlights the empirical effec-
tiveness of ensembling.

4.3 Experimental Evaluation

We now explore the accuracy and speed-up of DFC on a variety of simulated and real-world
datasets. We use state-of-the-art matrix factorization algorithms in our experiments: the
Accelerated Proximal Gradient (APG) algorithm of [77] as our base noisy MC algorithm
and the APG algorithm of [43] as our base noisy RMF algorithm. In all experiments, we
use the default parameter settings suggested by [77] and [43], measure recovery error via
root mean square error (RMSE), and report parallel running times for DFC. We moreover
compare against two baseline methods: APG used on the full matrix M and Partition,
which performs matrix factorization on t submatrices just like DFC-Proj but omits the
final column projection step.

Simulations

For our simulations, we focused on square matrices (m = n) and generated random low-rank
and sparse decompositions, similar to the schemes used in related work, e.g., [10, 35, 84]. We
created L0 ∈ R

m×m as a random product, AB�, where A and B are m × r matrices with
independent N (0,

�
1/r) entries such that each entry of L0 has unit variance. Z0 contained

independentN (0, 0.1) entries. In the MC setting, s entries of L0+Z0 were revealed uniformly
at random. In the RMF setting, the support of S0 was generated uniformly at random, and
the s corrupted entries took values in [0, 1] with uniform probability. For each algorithm,
we report error between L0 and the recovered low-rank matrix, and all reported results are
averages over five trials.

We first explored the recovery error of DFC as a function of s, using (m = 10K, r = 10)
with varying observation sparsity for MC and (m = 1K, r = 10) with a varying percentage
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Figure 4.1: Recovery error of DFC relative to base algorithms.

of outliers for RMF. The results are summarized in Figure 4.1.3 In both MC and RMF, the
gaps in recovery between APG and DFC are small when sampling only 10% of rows and
columns. Moreover, DFC-Proj-Ens in particular consistently outperforms Partition and
DFC-Nys-Ens and matches the performance of APG for most settings of s.

We next explored the speed-up of DFC as a function of matrix size. For MC, we revealed
4% of the matrix entries and set r = 0.001 · m, while for RMF we fixed the percentage of
outliers to 10% and set r = 0.01 ·m. We sampled 10% of rows and columns and observed
that recovery errors were comparable to the errors presented in Figure 4.1 for similar settings
of s; in particular, at all values of n for both MC and RMF, the errors of APG and DFC-
Proj-Ens were nearly identical. Our timing results, presented in Figure 4.2, illustrate a
near-linear speed-up for MC and a superlinear speed-up for RMF across varying matrix sizes.
Note that the timing curves of the DFC algorithms and Partition all overlap, a fact that
highlights the minimal computational cost of the final matrix approximation step.
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Figure 4.2: Speed-up of DFC relative to base algorithms.

3In the left-hand plot of Figure 4.1, the lines for Proj-10% and Proj-Ens-10% overlap.



CHAPTER 4. DIVIDE-AND-CONQUER MATRIX FACTORIZATION 37

Collaborative Filtering

Collaborative filtering for recommender systems is one prevalent real-world application of
noisy matrix completion. A collaborative filtering dataset can be interpreted as the in-
complete observation of a ratings matrix with columns corresponding to users and rows
corresponding to items. The goal is to infer the unobserved entries of this ratings matrix.
We evaluate DFC on two of the largest publicly available collaborative filtering datasets:
MovieLens 10M4 (m = 4K, n = 6K, s > 10M) and the Netflix Prize dataset5 (m = 18K,
n = 480K, s > 100M). To generate test sets drawn from the training distribution, for each
dataset, we aggregated all available rating data into a single training set and withheld test
entries uniformly at random, while ensuring that at least one training observation remained
in each row and column. The algorithms were then run on the remaining training portions
and evaluated on the test portions of each split. The results, averaged over three train-test
splits, are summarized in Table 4.3. Notably, DFC-Proj, DFC-Proj-Ens, and DFC-
Nys-Ens all outperform Partition, and DFC-Proj-Ens performs comparably to APG
while providing a nearly linear parallel time speed-up. The poorer performance of DFC-Nys
can be in part explained by the asymmetry of these problems. Since these matrices have
many more columns than rows, MF on column submatrices is inherently easier than MF on
row submatrices, and for DFC-Nys, we observe that Ĉ is an accurate estimate while R̂ is
not.

Table 4.1: Performance of DFC relative to APG on collaborative filtering tasks.

Method MovieLens 10M Netflix
RMSE Time RMSE Time

APG 0.8005 294.3s 0.8433 2653.1s

Partition-25% 0.8146 77.4s 0.8451 689.1s
Partition-10% 0.8461 36.0s 0.8492 289.2s

DFC-Nys-25% 0.8449 77.2s 0.8832 890.9s
DFC-Nys-10% 0.8769 53.4s 0.9224 487.6s
DFC-Nys-Ens-25% 0.8085 84.5s 0.8486 964.3s
DFC-Nys-Ens-10% 0.8327 63.9s 0.8613 546.2s

DFC-Proj-25% 0.8061 77.4s 0.8436 689.5s
DFC-Proj-10% 0.8272 36.1s 0.8484 289.7s
DFC-Proj-Ens-25% 0.7944 77.4s 0.8411 689.5s
DFC-Proj-Ens-10% 0.8119 36.1s 0.8433 289.7s

4http://www.grouplens.org/
5http://www.netflixprize.com/
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Background Modeling

Background modeling has important practical ramifications for detecting activity in surveil-
lance video. This problem can be framed as an application of noisy RMF, where each video
frame is a column of some matrix (M), the background model is low-rank (L0), and moving
objects and background variations, e.g., changes in illumination, are outliers (S0). We evalu-
ate DFC on two videos: ‘Hall’ (200 frames of size 176× 144) contains significant foreground
variation and was studied by [10], while ‘Lobby’ (1546 frames of size 168 × 120) includes
many changes in illumination (a smaller video with 250 frames was studied by [10]). We
focused on DFC-Proj-Ens, due to its superior performance in previous experiments, and
measured the RMSE between the background model recovered by DFC and that of APG.
On both videos, DFC-Proj-Ens recovered nearly the same background model as the full
APG algorithm in a small fraction of the time. On ‘Hall,’ the DFC-Proj-Ens-5% and
DFC-Proj-Ens-0.5% models exhibited RMSEs of 0.564 and 1.55, quite small given pixels
with 256 intensity values. The associated runtime was reduced from 342.5s for APG to real-
time (5.2s for a 13s video) for DFC-Proj-Ens-0.5%. Snapshots of the results are presented
in Figure 4.3. On ‘Lobby,’ the RMSE of DFC-Proj-Ens-4% was 0.64, and the speed-up
over APG was more than 20X, i.e., the runtime reduced from 16557s to 792s.

Original frame APG 5% sampled 0.5% sampled
(342.5s) (24.2s) (5.2s)

Figure 4.3: Sample ‘Hall’ recovery by APG,DFC-Proj-Ens-5%, andDFC-Proj-Ens-.5%.

4.4 Theoretical Analysis

Having investigated the empirical advantages of DFC, we now show that DFC admits
high-probability recovery guarantees comparable to those of its base algorithm.

Matrix Coherence

Since not all matrices can be recovered from missing entries or gross outliers, recent the-
oretical advances have studied sufficient conditions for accurate noisy MC [11, 35, 58] and
RMF [1, 84]. Most prevalent among these are matrix coherence conditions, which limit the
extent to which the singular vectors of a matrix are correlated with the standard basis. Let-
ting ei be the ith column of the standard basis, we define two standard notions of coherence
[67]:
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Definition 3 (µ0-Coherence). Let V ∈ R
n×r contain orthonormal columns with r ≤ n.

Then the µ0-coherence of V is:

µ0(V) � n
r max1≤i≤n �PV ei�2 = n

r max1≤i≤n �V(i)�2 .

Definition 4 (µ1-Coherence). Let L ∈ R
m×n have rank r. Then, the µ1-coherence of L is:

µ1(L) �
�

mn
r maxij |e�i ULV�

Lej| .

For any µ > 0, we will call a matrix L (µ, r)-coherent if rank(L) = r, max(µ0(UL), µ0(VL)) ≤
µ, and µ1(L) ≤

√
µ. Our analysis will focus on base MC and RMF algorithms that express

their recovery guarantees in terms of the (µ, r)-coherence of the target low-rank matrix L0.
For such algorithms, lower values of µ correspond to better recovery properties.

DFC Master Theorem

We now show that the same coherence conditions that allow for accurate MC and RMF also
imply high-probability recovery for DFC. To make this precise, we let M = L0 + S0 +Z0 ∈
R

m×n, where L0 is (µ, r)-coherent and �PΩ(Z0)�F ≤ ∆. We further fix any �, δ ∈ (0, 1]

and define A(X) as the event that a matrix X is ( rµ2

1−�/2 , r)-coherent. Then, our Thm. 5
provides a generic recovery bound for DFC when used in combination with an arbitrary base
algorithm. The proof requires a novel, coherence-based analysis of column projection and
random column sampling. These results of independent interest are presented in Section 4.5.

Theorem 5. Choose t = n/l and l ≥ crµ log(n) log(2/δ)/�2, where c is a fixed positive
constant, and fix any ce ≥ 0. Under the notation of Algorithm 2, if a base MF algorithm

yields P
�
�C0,i − Ĉi�F > ce

√
ml∆ | A(C0,i)

�
≤ δC for each i, where C0,i is the corresponding

partition of L0, then, with probability at least (1− δ)(1− tδC), DFC-Proj guarantees

�L0 − L̂proj�F ≤ (2 + �)ce
√
mn∆.

Under Algorithm 3, if a base MF algorithm yields P
�
�C0 − Ĉ�F > ce

√
ml∆ | A(C)

�
≤ δC

and P
�
�R0 − R̂�F > ce

√
dn∆ | A(R)

�
≤ δR for d ≥ clµ0(Ĉ) log(m) log(1/δ)/�2, then, with

probability at least (1− δ)(1− δ − 0.2)(1− δC − δR), DFC-Nys guarantees

�L0 − L̂nys�F ≤ (2 + 3�)ce
√
ml + dn∆.

To understand the conclusions of Thm. 5, consider a typical base algorithm which, when
applied to PΩ(M), recovers an estimate L̂ satisfying �L0 − L̂�F ≤ ce

√
mn∆ with high prob-

ability. Thm. 5 asserts that, with appropriately reduced probability, DFC-Proj exhibits
the same recovery error scaled by an adjustable factor of 2 + �, while DFC-Nys exhibits a
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somewhat smaller error scaled by 2+3�.6 The key take-away then is that DFC introduces a
controlled increase in error and a controlled decrement in the probability of success, allowing
the user to interpolate between maximum speed and maximum accuracy. Thus, DFC can
quickly provide near-optimal recovery in the noisy setting and exact recovery in the noiseless
setting (∆ = 0), even when entries are missing or grossly corrupted. The next two sections
demonstrate how Thm. 5 can be applied to derive specific DFC recovery guarantees for
noisy MC and noisy RMF. In these sections, we let n̄ � max(m,n).

Consequences for Noisy MC

Our first corollary of Thm. 5 shows that DFC retains the high-probability recovery guaran-
tees of a standard MC solver while operating on matrices of much smaller dimension. Suppose
that a base MC algorithm solves the following convex optimization problem, studied in [11]:

minimizeL �L�∗ subject to �PΩ(M− L)�F ≤ ∆.

Then, Cor. 6 follows from a novel guarantee for noisy convex MC, proved in the Section 4.14.

Corollary 6. Suppose that L0 is (µ, r)-coherent and that s entries of M are observed, with
locations Ω distributed uniformly. Define the oversampling parameter

βs �
s(1− �/2)

32µ2r2(m+ n) log2(m+ n)
,

and fix any target rate parameter 1 < β ≤ βs. Then, if �PΩ(M)− PΩ(L0)�F ≤ ∆ a.s., it
suffices to choose t = n/l and

l ≥ max
�

nβ
βs

+
�

n(β−1)
βs

, crµ
log(n) log(2/δ)

�2

�
, d ≥ max

�
mβ
βs

+
�

m(β−1)
βs

, clµ0(Ĉ) log(m) log(1/δ)
�2

�

to achieve

DFC-Proj: �L0 − L̂proj�F ≤ (2 + �)c�e
√
mn∆

DFC-Nys: �L0 − L̂nys�F ≤ (2 + 3�)c�e
√
ml + dn∆

with probability at least

DFC-Proj: (1− δ)(1− 5t log(n̄)n̄2−2β) ≥ (1− δ)(1− n̄
3−2β)

DFC-Nys: (1− δ)(1− δ − 0.2)(1− 10 log(n̄)n̄2−2β),

respectively, with c as in Thm. 5 and c
�
e a positive constant.

6 Note that the DFC-Nys guarantee requires the number of rows sampled to grow in proportion to
µ0(Ĉ), a quantity always bounded by µ in our simulations.
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Notably, Cor. 6 allows for the fraction of columns and rows sampled to decrease as the
oversampling parameter βs increases with m and n. In the best case, βs = Θ(mn/[(m +
n) log2(m+n)]), and Cor. 6 requires only O( n

m log2(m+n)) sampled columns and O(mn log2(m+
n)) sampled rows. In the worst case, βs = Θ(1), and Cor. 6 requires the number of sampled
columns and rows to grow linearly with the matrix dimensions. As a more realistic interme-
diate scenario, consider the setting in which βs = Θ(

√
m+ n) and thus a vanishing fraction

of entries are revealed. In this setting, only O(
√
m+ n) columns and rows are required by

Cor. 6.

Consequences for Noisy RMF

Our next corollary shows that DFC retains the high-probability recovery guarantees of a
standard RMF solver while operating on matrices of much smaller dimension. Suppose that
a base RMF algorithm solves the following convex optimization problem, studied in [84]:

minimizeL,S �L�∗ + λ�S�1 subject to �M− L− S�F ≤ ∆,

with λ = 1/
√
n̄. Then, Cor. 7 follows from Thm. 5 and the noisy RMF guarantee of [84,

Thm. 2].

Corollary 7. Suppose that L0 is (µ, r)-coherent and that the uniformly distributed support set
of S0 has cardinality s. For a fixed positive constant ρs, define the undersampling parameter

βs �
�
1− s

mn

�
/ρs,

and fix any target rate parameter β > 2 with rescaling β
� � β log(n̄)/ log(m) satisfying

4βs − 3/ρs ≤ β
� ≤ βs. Then, if �M− L0 − S0�F ≤ ∆ a.s., it suffices to choose t = n/l and

l ≥ max

�
r
2
µ
2 log2(n̄)

(1− �/2)ρr
,
4 log(n̄)β(1− ρsβs)

m(ρsβs − ρsβ
�)2

, crµ log(n) log(2/δ)/�2
�

d ≥ max

�
r
2
µ
2 log2(n̄)

(1− �/2)ρr
,
4 log(n̄)β(1− ρsβs)

n(ρsβs − ρsβ
�)2

, clµ0(Ĉ) log(m) log(1/δ)/�2
�

to have

DFC-Proj: �L0 − L̂proj�F ≤ (2 + �)c��e
√
mn∆

DFC-Nys: �L0 − L̂nys�F ≤ (2 + 3�)c��e
√
ml + dn∆

with probability at least

DFC-Proj: (1− δ)(1− tcpn̄
−β) ≥ (1− δ)(1− cpn̄

1−β)

DFC-Nys: (1− δ)(1− δ − 0.2)(1− 2cpn̄−β),
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respectively, with c as in Thm. 5 and ρr, c
��
e , and cp positive constants.

Note that Cor. 7 places only very mild restrictions on the number of columns and rows to
be sampled. Indeed, l and d need only grow poly-logarithmically in the matrix dimensions
to achieve high-probability noisy recovery.

4.5 Analysis of Randomized Approximation
Algorithms

In this section, we will establish several key properties of randomized approximation algo-
rithms under standard coherence assumptions that will aid us in deriving DFC estimation
guarantees. Hereafter, � ∈ (0, 1] represents a prescribed error tolerance, and δ, δ

� ∈ (0, 1]
denote target failure probabilities.

Conservation of Incoherence

The following lemma bounds the µ0 and µ1-coherence of a uniformly sampled submatrix in
terms of the coherence of the full matrix. These properties will allow for accurate submatrix
completion or outlier removal using standard MC and RMF algorithms. Its proof is given
in Sec. 4.7.

Lemma 8. Let L ∈ R
m×n be a rank-r matrix and LC ∈ R

m×l be a matrix of l columns of
L sampled uniformly without replacement. If l ≥ crµ0(VL) log(n) log(1/δ)/�2, where c is a
fixed positive constant defined in Thm. 9, then

i) rank(LC) = rank(L)

ii) µ0(ULC ) = µ0(UL)

iii) µ0(VLC ) ≤
µ0(VL)

1− �/2

iv) µ
2
1(LC) ≤

rµ0(UL)µ0(VL)

1− �/2

all hold jointly with probability at least 1− δ/n.

Randomized �2 Regression

Our next theorem shows that projection based on uniform column sampling leads to near
optimal estimation in matrix regression when the covariate matrix has small coherence. The
result builds upon the randomized �2 regression work of [19] and the matrix concentration
analysis of [31] and immediately gives rise to estimation guarantees for column projection
and the generalized Nyström method. The proof of Thm. 9 will be given in Sec. 4.8.
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Theorem 9. Given a target matrix B ∈ R
p×n and a rank-r matrix of covariates L ∈ R

m×n,
choose l ≥ 3200rµ0(VL) log(4n/δ)/�2, let BC ∈ R

p×l be a matrix of l columns of B sampled
uniformly without replacement, and let LC ∈ R

m×l consist of the corresponding columns of
L. Then,

�B−BCL
+
CL�F ≤ (1 + �)�B−BL+L�F

with probability at least 1− δ − 0.2.

A first consequence of Thm. 9 shows that, with high probability, column projection
produces an estimate nearly as good as a given rank-r target by sampling a number of
columns proportional to the coherence and r log n. Our result generalizes Thm. 1 of [19] by
providing guarantees relative to an arbitrary low-rank approximation. The proof is given in
Sec. 4.9.

Corollary 10. Given a matrix M ∈ R
m×n and a rank-r approximation L ∈ R

m×n, choose
l ≥ crµ0(VL) log(n) log(1/δ)/�2, where c is a fixed positive constant, and let C ∈ R

m×l be a
matrix of l columns of M sampled uniformly without replacement. Then,

�M−CC+M�F ≤ (1 + �)�M− L�F

with probability at least 1− δ.

Thm. 9 and Cor. 10 together imply an estimation guarantee for the generalized Nyström
method relative to an arbitrary low-rank approximation L. Indeed, if the matrix of sampled
columns is denoted by C, then, with appropriately reduced probability, O(µ0(VL)r log n)
columns and O(µ0(UC)r logm) rows suffice to match the reconstruction error of L up to any
fixed precision. The proof can be found in Sec. 4.10.

Corollary 11. Given a matrix M ∈ R
m×n and a rank-r approximation L ∈ R

m×n, choose
l ≥ crµ0(VL) log(n) log(1/δ)/�2 with c a constant as in Cor. 10, and let C ∈ R

m×l be
a matrix of l columns of M sampled uniformly without replacement. Further choose d ≥
clµ0(UC) log(m) log(1/δ�)/�2, and let R ∈ R

d×n be a matrix of d rows of M sampled inde-
pendently and uniformly without replacement. Then,

�M−CW+R�F ≤ (1 + �)2�M− L�F

with probability at least (1− δ)(1− δ
� − 0.2).

4.6 Conclusions

To improve the scalability of existing matrix factorization algorithms while leveraging the
ubiquity of parallel computing architectures, we introduced, evaluated, and analyzed DFC,
a divide-and-conquer framework for noisy matrix factorization with missing entries or out-
liers. We note that the contemporaneous work of [57] addresses the computational burden
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of noiseless RMF by reformulating a standard convex optimization problem to internally
incorporate random projections. The differences between DFC and the approach of [57]
highlight some of the main advantages of this work: i) DFC can be used in combination
with any underlying MF algorithm, ii) DFC is trivially parallelized, and iii) DFC provably
maintains the recovery guarantees of its base algorithm, even in the presence of noise.

4.7 Proof of Lemma 8

Since for all n > 1,

c log(n) log(1/δ) = (c/4) log(n4) log(1/δ) ≥ 48 log(4n2
/δ) ≥ 48 log(4rµ0(VL)/(δ/n))

as n ≥ rµ0(VL), claim i follows immediately from Lemma 13 with β = 1/µ0(VL), pj = 1/n
for all j, and D = I

�
n/l. When rank(LC) = rank(L), Lemma 1 of [56] implies that

PULC
= PUL , which in turn implies claim ii.

To prove claim iii given the conclusions of Lemma 13, assume, without loss of generality,
that Vl consists of the first l rows of VL. Then if LC = ULΣLV�

l has rank(LC) = rank(L) =
r, the matrix Vl must have full column rank. Thus we can write

L+
CLC = (ULΣLV

�
l )

+ULΣLV
�
l

= (ΣLV
�
l )

+U+
LULΣLV

�
l

= (ΣLV
�
l )

+ΣLV
�
l

= (V�
l )

+Σ+
LΣLV

�
l

= (V�
l )

+V�
l

= Vl(V
�
l Vl)

−1V�
l ,

where the second and third equalities follow from UL having orthonormal columns, the
fourth and fifth result from ΣL having full rank and Vl having full column rank, and the
sixth follows from V�

l having full row rank.
Now, denote the right singular vectors of LC by VLC ∈ R

l×r. Observe that PVLC
=

VLCV
�
LC

= L+
CLC , and define ei,l as the ith column of Il and ei,n as the ith column of In.
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Then we have,

µ0(VLC ) =
l

r
max
1≤i≤l

�PVLC
ei,l�2

=
l

r
max
1≤i≤l

e�i,lL
+
CLCei,l

=
l

r
max
1≤i≤l

e�i,l(V
�
l )

+V�
l ei,l

=
l

r
max
1≤i≤l

e�i,lVl(V
�
l Vl)

−1V�
l ei,l

=
l

r
max
1≤i≤l

e�i,nVL(V
�
l Vl)

−1V�
Lei,n,

where the final equality follows from V�
l ei,l = V�

Lei,n for all 1 ≤ i ≤ l.
Now, defining Q = V�

l Vl we have

µ0(VLC ) =
l

r
max
1≤i≤l

e�i,nVLQ
−1V�

Lei,n

=
l

r
max
1≤i≤l

Tr
�
e�i,nVLQ

−1V�
Lei,n

�

=
l

r
max
1≤i≤l

Tr
�
Q−1V�

Lei,ne
�
i,nVL

�

≤ l

r
�Q−1�2 max

1≤i≤l
�V�

Lei,ne
�
i,nVL�∗ ,

by Hölder’s inequality for Schatten p-norms. Since V�
Lei,ne

�
i,nVL has rank one, we can

explicitly compute its trace norm as �V�
Lei,n�

2
= �PVLei,n�

2. Hence,

µ0(VLC ) ≤
l

r
�Q−1�2 max

1≤i≤l
�PVLei,n�

2

≤ l

r

r

n
�Q−1�2

�
n

r
max
1≤i≤n

�PVLei,n�
2

�

=
l

n
�Q−1�2µ0(VL) ,

by the definition of µ0-coherence. The proof of Lemma 13 established that the smallest
singular value of n

l Q = V�
l DDVl is lower bounded by 1 − �

2 and hence �Q−1�2 ≤ n
l(1−�/2) .

Thus, we conclude that µ0(VLC ) ≤ µ0(VL)/(1− �/2).
To prove claim iv under Lemma 13, note that PUL = PULC

implies ULU�
LULC = ULC .

We thus observe that,

ULCV
�
LC

= ULCΣ
−1
LC

U�
LC

LC

= ULCΣ
−1
LC

U�
LC

ULΣLV
�
l

= ULU
�
LULCΣ

−1
LC

U�
LC

ULΣLV
�
l .
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Letting B = U�
LULCΣ

−1
LC

U�
LC

ULΣL, we have

µ1(LC) =

�
ml

r
max
1≤i≤m
1≤j≤l

|e�i,mULCV
�
LC

ej,l|

=

�
ml

r
max
1≤i≤m
1≤j≤l

|e�i,mULBV�
l ej,l|

=

�
ml

r
max
1≤i≤m
1≤j≤l

|e�i,mULBV�
Lej,n|

=

�
ml

r
max
1≤i≤m
1≤j≤l

|Tr
�
e�i,mULBV�

Lej,n
�
|

=

�
ml

r
max
1≤i≤m
1≤j≤l

|Tr
�
BV�

Lej,ne
�
i,mUL

�
|

≤
�

ml

r
�B�2 max

1≤i≤m
1≤j≤l

�V�
Lej,ne

�
i,mUL�∗ ,

by Hölder’s inequality for Schatten p-norms. Since V�
Lej,ne

�
i,mUL has rank one, we can

explicitly compute its trace norm as �U�
Lei,m��V�

Lej,n� = �PULei,m��PVLej,n�. Hence,

µ1(LC) ≤
�

ml

r
�B�2 max

1≤i≤m
1≤j≤l

�PULei,m��PVLej,n�

=

�
mlr2

mnr
�B�2

��
m

r
max
1≤i≤m

�PULei,m�
���

n

r
max
1≤j≤l

�PVLej,n�
�

≤
�

mlr2

mnr
�B�2

��
m

r
max
1≤i≤m

�PULei,m�
���

n

r
max
1≤j≤n

�PVLej,n�
�

=

�
lr

n
�B�2

�
µ0(UL)µ0(VL) ,

by the definitition of µ0-coherence.
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Next, we notice that

B�B = ΣLU
�
LULCΣ

−1
LC

U�
LC

ULU
�
LULCΣ

−1
LC

U�
LC

ULΣL

= ΣLU
�
LULCΣ

−1
LC

U�
LC

ULCΣ
−1
LC

U�
LC

ULΣL

= ΣLU
�
LULCΣ

−2
LC

U�
LC

ULΣL

= ΣLU
�
L(LCL

�
C)

+ULΣL

= ΣLU
�
L(ULΣLV

�
l VlΣLU

�
L)

+ULΣL

= ΣLU
�
LULΣ

−1
L (V�

l Vl)
−1Σ−1

L U�
LULΣL

= (V�
l Vl)

−1
,

where the penultimate equality follows from UL having orthogonal columns and ΣLV�
l VlΣL

having full rank. The proof of Lemma 13 established that the smallest singular value of
n
l V

�
l Vl = V�

l DDVl is lower bounded by 1 − �/2 and hence that �B�B�2 ≤ n
l(1−�/2) and

�B�2 ≤
�

n
l(1−�/2) . Thus, we conclude that µ1(LC) ≤

�
rµ0(UL)µ0(VL)/

�
1− �/2.

4.8 Proof of Theorem 9

We now give a proof of Thm. 9. While the results of this section are stated in terms of
i.i.d. with-replacement sampling of columns and rows, a concise argument due to [29, Sec. 6]
implies the same conclusions when columns and rows are sampled without replacement.

Our proof of Thm. 9 will require a strengthened version of the randomized �2 regres-
sion work of [19, Thm. 5]. The proof of Thm. 5 of [19] relies heavily on the fact that
�AB−GH�F ≤ �

2�A�F�B�F with probability at least 0.9, when G and H contain suf-
ficiently many rescaled columns and rows of A and B, sampled according to a particular
non-uniform probability distribution. A result of [31], modified to allow for slack in the
probabilities, shows that a related claim holds with probability 1− δ for arbitrary δ ∈ (0, 1].

Lemma 12 (Sec. 3.4.3 of [31]). Given matrices A ∈ R
m×k and B ∈ R

k×n with r ≥
max(rank(A), rank(B)), an error tolerance � ∈ (0, 1], and a failure probability δ ∈ (0, 1],
define probabilities pj satisfying

pj ≥
β

Z
�A(j)��B(j)�, Z =

�

j

�A(j)��B(j)�, and
�k

j=1pj = 1 (4.1)

for some β ∈ (0, 1]. Let G ∈ R
m×l be a column submatrix of A in which exactly l ≥

48r log(4r/(βδ))/(β�2) columns are selected in i.i.d. trials in which the j-th column is chosen
with probability pj, and let H ∈ R

l×n be a matrix containing the corresponding rows of B.
Further, let D ∈ R

l×l be a diagonal rescaling matrix with entry Dtt = 1/
�

lpj whenever the
j-th column of A is selected on the t-th sampling trial, for t = 1, . . . , l. Then, with probability
at least 1− δ,

�AB−GDDH�2 ≤
�

2
�A�2�B�2.
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Using Lemma 12, we now establish a stronger version of Lemma 1 of [19]. For a given
β ∈ (0, 1] and L ∈ R

m×n with rank r, we first define column sampling probabilities pj

satisfying

pj ≥
β

r
�(VL)(j)�2 and

�n
j=1pj = 1. (4.2)

We further let S ∈ R
n×l be a random binary matrix with independent columns, where a

single 1 appears in each column, and Sjt = 1 with probability pj for each t ∈ {1, . . . , l}.
Moreover, let D ∈ R

l×l be a diagonal rescaling matrix with entry Dtt = 1/
�

lpj whenever
Sjt = 1. Postmultiplication by S is equivalent to selecting l random columns of a matrix,
independently and with replacement. Under this notation, we establish the following lemma:

Lemma 13. Let � ∈ (0, 1], and define V�
l = V�

LS and Γ = (V�
l D)+ − (V�

l D)�. If l ≥
48r log(4r/(βδ))/(β�2) for δ ∈ (0, 1] then with probability at least 1− δ:

rank(Vl) = rank(VL) = rank(L)

�Γ�2 = �Σ−1
V �
l D

−ΣV �
l D�

2

(LSD)+ = (V�
l D)+Σ−1

L U�
L

�Σ−1
V �
l D

−ΣV �
l D�

2
≤ �/

√
2.

Proof By Lemma 12, for all 1 ≤ i ≤ r,

|1− σ
2
i (V

�
l D)| = |σi(V

�
LVL)− σi(V

�
l DDVl)|

≤ �V�
LVL −V�

LSDDS�VL�2
≤ �/2�V�

L�2�VL�2 = �/2,

where σi(·) is the i-th largest singular value of a given matrix. Since �/2 ≤ 1/2, each singular
value of Vl is positive, and so rank(Vl) = rank(VL) = rank(L). The remainder of the proof
is identical to that of Lemma 1 of [19].

Lemma 13 immediately yields improved sampling complexity for the randomized �2 re-
gression of [19]:

Proposition 14. Suppose B ∈ R
p×n and � ∈ (0, 1]. If l ≥ 3200r log(4r/(βδ))/(β�2) for

δ ∈ (0, 1], then with probability at least 1− δ − 0.2:

�B−BSD(LSD)+L�F ≤ (1 + �)�B−BL+L�F .

Proof The proof is identical to that of Thm. 5 of [19] once Lemma 13 is substituted for
Lemma 1 of [19].
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A typical application of Prop. 14 would involve performing a truncated SVD of M to
obtain the statistical leverage scores, �(VL)(j)�2, used to compute the column sampling
probabilities of Eq. (4.2). Here, we will take advantage of the slack term, β, allowed in
the sampling probabilities of Eq. (4.2) to show that uniform column sampling gives rise to
the same estimation guarantees for column projection approximations when L is sufficiently
incoherent.

To prove Thm. 9, we first notice that n ≥ rµ0(VL) and hence

l ≥ 3200rµ0(VL) log(4rµ0(VL)/δ)/�
2

≥ 3200r log(4r/(βδ))/(β�2)

whenever β ≥ 1/µ0(VL). Thus, we may apply Prop. 14 with β = 1/µ0(VL) ∈ (0, 1] and
pj = 1/n by noting that

β

r
�(VL)(j)�2 ≤

β

r

r

n
µ0(VL) =

1

n
= pj

for all j, by the definition of µ0(VL). By our choice of probabilities, D = I
�

n/l, and hence

�B−BCL
+
CL�F = �B−BCD(LCD)+L�F ≤ (1 + �)�B−BL+L�F

with probability at least 1− δ − 0.2, as desired.

4.9 Proof of Corollary 10

Fix c = 48000/ log(1/0.45), and notice that for n > 1,

48000 log(n) ≥ 3200 log(n5) ≥ 3200 log(16n).

Hence l ≥ 3200rµ0(VL) log(16n)(log(δ)/ log(0.45))/�2.
Now partition the columns of C into b = log(δ)/ log(0.45) submatrices, C = [C1, · · · ,Cb],

each with a = l/b columns,7 and let [LC1 , · · · ,LCb
] be the corresponding partition of LC .

Since
a ≥ 3200rµ0(VL) log(4n/0.25)/�

2
,

we may apply Prop. 14 independently for each i to yield

�M−CiL
+
Ci
L�

F
≤ (1 + �)�M−ML+L�F ≤ (1 + �)�M− L�F (4.3)

with probability at least 0.55, since ML+ minimizes �M−YL�F over all Y ∈ R
m×m.

Since each Ci = CSi for some matrix Si and C+M minimizes �M−CX�F over all
X ∈ R

l×n, it follows that

�M−CC+M�F ≤ �M−CiL
+
Ci
L�

F
,

7For simplicity, we assume that b divides l evenly.
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for each i. Hence, if
�M−CC+M�F ≤ (1 + �)�M− L�F ,

fails to hold, then, for each i, Eq. (4.3) also fails to hold. The desired conclusion therefore
must hold with probability at least 1− 0.45b = 1− δ.

4.10 Proof of Corollary 11

With c = 48000/ log(1/0.45) as in Cor. 10, we notice that for m > 1,

48000 log(m) = 16000 log(m3) ≥ 16000 log(4m).

Therefore,

d ≥ 16000rµ0(UC) log(4m)(log(δ�)/ log(0.45))/�2

≥ 3200rµ0(UC) log(4m/δ
�)/�2,

for all m > 1 and δ
� ≤ 0.8. Hence, we may apply Thm. 9 and Cor. 10 in turn to obtain

�M−CW+R�F ≤ (1 + �)�M−CC+M�F ≤ (1 + �)2�M− L�

with probability at least (1− δ)(1− δ
� − 0.2) by independence.

4.11 Proof of Theorem 5

Let L0 = [C0,1, . . . ,C0,t] and L̂ = [Ĉ1, . . . , Ĉt]. Define G as the event �L0 − L̂proj�F ≤
(2 + �)ce

√
mn∆, H as the event �L̂− L̂proj�F ≤ (1 + �)�L0 − L̂�F , and Bi as the event

�C0,i − Ĉi�F ≤ ce

√
ml∆, for each i ∈ {1, . . . , t}. When H holds, we have that

�L0 − L̂proj�F ≤ �L0 − L̂�F + �L̂− L̂proj�F ≤ (2 + �)�L0 − L̂�F ,

by the triangle inequality, and hence

P(G) ≥ P(
�

iBi ∩H ∩
�

iA(C0,i)) = P(
�

iBi | H ∩
�

iA(C0,i))P(H ∩
�

iA(C0,i)).

Our choice of l, with a factor of log(2/δ), implies that each A(C0,i) holds with probability
at least 1− δ/(2n) by Lemma 8, while H holds with probability at least 1− δ/2 by Thm. 9.
Hence, by the union bound,

P(H ∩
�

iA(C0,i)) ≥ 1−P(Hc)−
�

iP(A(C0,i)
c) ≥ 1− δ/2− tδ/(2n) ≥ 1− δ.

Further, by a union bound and our base MF assumption,

P(
�

iBi | H ∩
�

iA(C0,i)) ≥ 1−
�

iP(Bc
i | A(C0,i)) ≥ 1− tδC
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yielding the desired bound on P(G).
To prove the second statement, we redefine L̂ and write it in block notation as:

L̂ =

�
Ĉ1 R̂2

Ĉ2 L0,22

�
, where Ĉ =

�
Ĉ1

Ĉ2

�
, R̂ =

�
R̂1 R̂2

�

and L0,22 ∈ R
(m−d)×(n−l) is the bottom right submatrix of L0. We further define K as the

event �L̂− L̂nys�F ≤ (1 + �)2�L0 − L̂�F . As above,

�L0 − L̂nys�F ≤ �L0 − L̂�F + �L̂− L̂nys�F ≤ (2 + 2�+ �
2)�L0 − L̂�F ≤ (2 + 3�)�L0 − L̂�F ,

when K holds, by the triangle inequality. Our choices of l and

d ≥ clµ0(Ĉ) log(m) log(1/δ)/�2 ≥ crµ log(m) log(1/δ)/�2

imply that A(C) and A(R) hold with probability at least 1−δ/(2n) and 1−δ/n respectively
by Lemma 8, while K holds with probability at least (1− δ/2)(1− δ) by Cor. 11. Hence, by
the union bound,

P(K ∩ A(C) ∩ A(R)) ≥ 1−P(Kc)−P(A(C)c)−P(A(R)c)

≥ 1− (1− (1− δ/2)(1− δ))− δ/(2n)− δ/n

≥ 1 + δ
2
/2− 3δ/2 ≥ 1 + δ

2 − 2δ = (1− δ)2.

Further, by a union bound and our base MF assumption,

P(J) ≥ P(BC ∩ BR | K ∩ A(C) ∩ A(R))P(K ∩ A(C) ∩ A(R))

≥ (1− δC − δR)(1− δ)2.

4.12 Proof of Corollary 6

Cor. 6 is based on a new noisy MC theorem, which we prove in Sec. 4.14. A similar recovery
guarantee is obtained by [11] under stronger assumptions.

Theorem 15. Suppose that L0 ∈ R
m×n is (µ, r)-coherent and that, for some target rate

parameter β > 1,
s ≥ 32µr(m+ n)β log2(m+ n)

entries of M are observed with locations Ω sampled uniformly without replacement. Then, if
m ≤ n and �PΩ(M)− PΩ(L0)�F ≤ ∆ a.s., the minimizer L̂ to the problem

minimizeL �L�∗ subject to �PΩ(M− L)�F ≤ ∆ (4.4)

satisfies

�L0 − L̂�F ≤ 8

�
2m2n

s
+m+

1

16
∆ ≤ c

�
e

√
mn∆

with probability at least 1− 4 log(n)n2−2β for c
�
e a positive constant.
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We begin by proving the DFC-Proj bound. For each i ∈ {1, . . . , t}, let Bi be the event
that �C0,i − Ĉi�F > c

�
e

√
ml∆ and Di be the event that si < 32µ�

r(m + l)β� log2(m + l),
where si is the number of revealed entries in C0,i,

µ
� � µ

2
r

1− �/2
, and β

� � β log(n̄)

log(max(m, l))
.

Then, by Thm. 5, it suffices to establish that

P(Bi | A(C0,i)) ≤ (4 log(n̄) + 1)n̄2−2β

for each i. By Thm. 15 and our choice of β�,

P(Bi | A(C0,i)) ≤ P(Bi | A(C0,i), D
c
i ) +P(Di | A(C0,i))

≤ 4 log(max(m, l))max(m, l)2−2β�
+P(Di)

≤ 4 log(n̄)n̄2−2β +P(Di).

Further, since the support of S0 is uniformly distributed and of cardinality s, the variable
si has a hypergeometric distribution with Esi =

sl
n and hence satisfies Hoeffding’s inequality

for the hypergeometric distribution [29, Sec. 6]:

P(si ≤ Esi − st) ≤ exp
�
−2st2

�
.

It therefore follows that

P(Di) = P

�
si < Esi − s

�
l

n
− 32µ�

r(m+ l)β� log2(m+ l)

s

��

= P

�
si < Esi − s

�
l

n
− β(m+ l) log2(m+ l)

βs(m+ n) log2(m+ n)

log(n̄)

log(max(m, l))

��

≤ P

�
si < Esi − s

�
l

n
− β

βs

��

≤ P

�
si < Esi − s

�
β − 1

nβs

�

≤ exp

�
−2s

β − 1

nβs

�
≤ exp(−2 log(n̄)(β − 1)) = n̄

2−2β

by our assumptions on s and l. Hence, P(Bi | A(C0,i)) ≤ (4 log(n̄) + 1)n̄2−2β for each i, and
the DFC-Proj result follows from Thm. 5.

For DFC-Nys, let BC be the event that �C0 − Ĉ�F > c
�
e

√
ml∆ and BR be the event

that �R0 − R̂�F > c
�
e

√
dn∆. Reasoning identical to that above yields P(BC | A(C)) ≤

(4 log(n̄) + 1)n̄2−2β and P(BR | A(R)) ≤ (4 log(n̄) + 1)n̄2−2β. Thus, the DFC-Nys bound
also follows from Thm. 5.
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4.13 Proof of Corollary 7

Cor. 7 is based on the following theorem of Zhou et al. [84], reformulated for a generic rate
parameter β, as described in [10, Section 3.1].

Theorem 16 (Thm. 2 of [84]). Suppose that L0 is (µ, r)-coherent and that the support
set of S0 is uniformly distributed among all sets of cardinality s. Then, if m ≤ n and
�M− L0 − S0�F ≤ ∆ a.s., there is a constant cp such that with probability at least 1−cpn

−β,
the minimizer (L̂, Ŝ) to the problem

minimizeL,S �L�∗ + λ�S�1 subject to �M− L− S�F ≤ ∆ (4.5)

with λ = 1/
√
n satisfies �L0 − L̂�2F + �S0 − Ŝ�2F ≤ c

��2
e mn∆2, provided that

r ≤ ρrm

µ log2(n)
and s ≤ (1− ρsβ)mn

for target rate parameter β > 2, and positive constants ρr, ρs, and c
��
e .

We begin by proving the DFC-Proj bound. For each i ∈ {1, . . . , t}, let Bi be the event
that �C0,i − Ĉi�F > c

��
e

√
ml∆, and further define m̄ � max(m, l) and

β
�� � β log(n̄)/ log(m̄) ≤ β

�
.

Then, by Thm. 5, it suffices to establish that

P(Bi | A(C0,i)) ≤ (cp + 1)n̄−β

for each i. By Thm. 16 and the definitions of β� and β
��,

P(Bi | A(C0,i)) ≤ P(Bi | A(C0,i), si ≤ (1− ρsβ
��)ml) +P(si > (1− ρsβ

��)ml | A(C0,i))

≤ cpm̄
−β��

+P(si > (1− ρsβ
��)ml)

≤ cpn̄
−β +P(si > (1− ρsβ

�)ml),

where si is the number of corrupted entries in C0,i. Further, since the support of S0 is
uniformly distributed and of cardinality s, the variable si has a hypergeometric distribution
with Esi =

sl
n and hence satisfies Bernstein’s inequality for the hypergeometric [29, Sec. 6]:

P(si ≥ Esi + st) ≤ exp
�
−st

2
/(2σ2 + 2t/3)

�
≤ exp

�
−st

2
n/4l

�
,
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for all 0 ≤ t ≤ 3l/n and σ
2 � l

n(1−
l
n) ≤

l
n . It therefore follows that

P(si > (1− ρsβ
�)ml) = P

�
si > Esi + s

�
(1− ρsβ

�)ml

s
− l

n

��

= P

�
si > Esi + s

l

n

�
(1− ρsβ

�)

(1− ρsβs)
− 1

��

≤ exp

�
−s

l

4n

�
(1− ρsβ

�)

(1− ρsβs)
− 1

�2
�

= exp

�
−ml

4

(ρsβs − ρsβ
�)2

(1− ρsβs)

�
≤ n̄

−β

by our assumptions on s and l and the fact that l
n

�
(1−ρsβ�)
(1−ρsβs)

− 1
�
≤ 3l/n whenever 4βs−3/ρs ≤

β
�. Hence, P(Bi | A(C0,i)) ≤ (cp + 1)n̄−β for each i, and the DFC-Proj result follows from

Thm. 5.
ForDFC-Nys, let BC be the event that �C0 − Ĉ�F > c

��
e

√
ml∆ and BR be the event that

�R0 − R̂�F > c
��
e

√
dn∆. Reasoning identical to that above yieldsP(BC | A(C)) ≤ (cp+1)n̄−β

and P(BR | A(R)) ≤ (cp + 1)n̄−β. Thus, the DFC-Nys bound also follows from Thm. 5.

4.14 Proof of Theorem 15

In the spirit of [11], our proof will extend the noiseless analysis of [67] to the noisy matrix
completion setting. As suggested in [26], we will obtain strengthened results, even in the
noiseless case, by reasoning directly about the without-replacement sampling model, rather
than appealing to a with-replacement surrogate, as done in [67].

For UL0ΣL0V
�
L0

the compact SVD of L0, we let T = {UL0X +YV�
L0

: X ∈ R
r×n

,Y ∈
R

m×r}, PT denote orthogonal projection onto the space T , and PT⊥ represent orthogo-
nal projection onto the orthogonal complement of T . We further define I as the identity
operator on R

m×n and the spectral norm of an operator A : Rm×n → R
m×n as �A�2 =

sup�X�F≤1 �A(X)�F .
We begin with a theorem providing sufficient conditions for our desired recovery guaran-

tee.

Theorem 17. Under the assumptions of Thm. 15, suppose that

mn

s

���PTPΩPT − s

mn
PT

���
2
≤ 1

2
(4.6)

and that there exists a Y = PΩ(Y) ∈ R
m×n satisfying

�PT (Y)−UL0V
�
L0
�
F
≤

�
s

32mn
and �PT⊥(Y)�2 <

1

2
. (4.7)
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Then,

�L0 − L̂�F ≤ 8

�
2m2n

s
+m+

1

16
∆ ≤ ce

√
mn∆.

Proof We may write L̂ as L0 +G+H, where PΩ(G) = G and PΩ(H) = 0. Then, under
Eq. (4.6),

�PΩPT (H)�2F =
�
H,PTP2

ΩPT (H)
�
≥ �H,PTPΩPT (H)� ≥ s

2mn
�PT (H)�2F .

Furthermore, by the triangle inequality, 0 = �PΩ(H)�F ≥ �PΩPT (H)�F − �PΩPT⊥(H)�F .
Hence, we have

�
s

2mn
�PT (H)�F ≤ �PΩPT (H)�F ≤ �PΩPT⊥(H)�F ≤ �PT⊥(H)�F ≤ �PT⊥(H)�∗, (4.8)

where the penultimate inequality follows as PΩ is an orthogonal projection operator.
Next we select U⊥ and V⊥ such that [UL0 ,U⊥] and [VL0 ,V⊥] are orthonormal and�

U⊥V�
⊥,PT⊥(H)

�
= �PT⊥(H)�∗ and note that

�L0 + H�∗
≥

�
UL0V

�
L0

+U⊥V
�
⊥,L0 +H

�

= �L0�∗ +
�
UL0V

�
L0

+U⊥V
�
⊥ −Y,H

�

= �L0�∗ +
�
UL0V

�
L0

− PT (Y),PT (H)
�
+
�
U⊥V

�
⊥,PT⊥(H)

�
− �PT⊥(Y),PT⊥(H)�

≥ �L0�∗ − �UL0V
�
L0

− PT (Y)�
F
�PT (H)�F + �PT⊥(H)�∗ − �PT⊥(Y)�2�PT⊥(H)�∗

> �L0�∗ +
1

2
�PT⊥(H)�∗ −

�
s

32mn
�PT (H)�F

≥ �L0�∗ +
1

4
�PT⊥(H)�F

where the first inequality follows from the variational representation of the trace norm,
�A�∗ = sup�B�2≤1�A,B�, the first equality follows from the fact that �Y,H� = 0 for Y =
PΩ(Y), the second inequality follows from Hölder’s inequality for Schatten p-norms, the
third inequality follows from Eq. (4.7), and the final inequality follows from Eq. (4.8).

Since L0 is feasible for Eq. (4.4), �L0�∗ ≥ �L̂�∗, and, by the triangle inequality, �L̂�∗ ≥
�L0 +H�∗ − �G�∗. Since �G�∗ ≤

√
m�G�F and

�G�F ≤ �PΩ(L̂−M)�F + �PΩ(M− L0)�F ≤ 2∆,
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we conclude that

�L0 − L̂�2F = �PT (H)�2F + �PT⊥(H)�2F + �G�2F

≤
�
2mn

s
+ 1

�
�PT⊥(H)�2F + �G�2F

≤ 16

�
2mn

s
+ 1

�
�G�2∗ + �G�2F

≤ 64

�
2m2

n

s
+m+

1

16

�
∆2

.

Hence

�L0 − L̂�F ≤ 8

�
2m2n

s
+m+

1

16
∆ ≤ ce

√
mn∆

for some constant ce, by our assumption on s.

To show that the sufficient conditions of Thm. 17 hold with high probability, we will
require four lemmas. The first establishes that the operator PTPΩPT is nearly an isometry
on T when sufficiently many entries are sampled.

Lemma 18. For all β > 1,

mn

s

���PTPΩPT − s

mn
PT

���
2
≤

�
16µr(m+ n)β log(n)

3s

with probability at least 1− 2n2−2β provided that s > 16
3 µr(n+m)β log(n).

The second states that a sparsely but uniformly observed matrix is close to a multiple of
the original matrix under the spectral norm.

Lemma 19. Let Z be a fixed matrix in R
m×n. Then for all β > 1,

���
�
mn

s
PΩ − I

�
(Z)

���
2
≤

�
8βmn2 log(m+ n)

3s
�Z�∞

with probability at least 1− (m+ n)1−β provided that s > 6βm log(m+ n).

The third asserts that the matrix infinity norm of a matrix in T does not increase under
the operator PTPΩ.

Lemma 20. Let Z ∈ T be a fixed matrix. Then for all β > 2

���
mn

s
PTPΩ(Z)− Z

���
∞

≤
�

8βµr(m+ n) log(n)

3s
�Z�∞

with probability at least 1− 2n2−β provided that s > 8
3βµr(m+ n) log(n).
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These three lemmas were proved in [67, Thm. 3.4, Thm. 3.5, and Lemma 3.6] under
the assumption that entry locations in Ω were sampled with replacement. They admit
identical proofs under the sampling without replacement model by noting that the referenced
Noncommutative Bernstein Inequality [67, Thm. 3.2] also holds under sampling without
replacement, as shown in [26].

Lemma 18 guarantees that Eq. (4.6) holds with high probability. To construct a matrix
Y = PΩ(Y) satisfying Eq. (4.7), we consider a sampling with batch replacement scheme rec-
ommended in [26] and developed in [14]. Let Ω̃1, . . . , Ω̃p be independent sets, each consisting
of q random entry locations sampled without replacement, where pq = s. Let Ω̃ = ∪p

i=1Ω̃i,
and note that there exist p and q satisfying

q ≥ 128

3
µr(m+ n)β log(m+ n) and p ≥ 3

4
log(n/2).

It suffices to establish Eq. (4.7) under this batch replacement scheme, as shown in the next
lemma.

Lemma 21. For any location set Ω0 ⊂ {1, . . . ,m}× {1, . . . , n}, let A(Ω0) be the event that
there exists Y = PΩ0(Y) ∈ R

m×n satisfying Eq. (4.7). If Ω(s) consists of s locations sampled
uniformly without replacement and Ω̃(s) is sampled via batch replacement with p batches of
size q for pq = s, then P(A(Ω̃(s))) ≤ P(A(Ω(s))).

Proof As sketched in [26]

P
�
A( ˜Ω(s))

�
=

s�

i=1

P(|Ω̃| = i)P(A(Ω̃(i)) | |Ω̃| = i)

≤
s�

i=1

P(|Ω̃| = i)P(A(Ω(i)))

≤
s�

i=1

P(|Ω̃| = i)P(A(Ω(s))) = P(A(Ω(s))),

since the probability of existence never decreases with more entries sampled without replace-
ment and, given the size of Ω̃, the locations of Ω̃ are conditionally distributed uniformly
(without replacement).

We now follow the construction of [67] to obtain Y = PΩ̃(Y) satisfying Eq. (4.7). Let

W0 = UL0V
�
L0

and define Yk = mn
q

�k
j=1 PΩ̃j

(Wj−1) and Wk = UL0V
�
L0

− PT (Yk) for
k = 1, . . . , p. Assume that

mn

q

���PTPΩ̃k
PT − q

mn
PT

���
2
≤ 1

2
(4.9)
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for all k. Then

�Wk�F =

����Wk−1 −
mn

q
PTPΩ̃k

(Wk−1)

����
F

=

����(PT − mn

q
PTPΩ̃k

PT )(Wk−1)

����
F

≤ 1

2
�Wk−1�F

and hence �Wk�F ≤ 2−k�W0�F = 2−k
√
r. Since

p ≥ 3

4
log(n/2) ≥ 1

2
log2(n/2) ≥ log2

�
32rmn/s,

Y � Yp satisfies the first condition of Eq. (4.7).
The second condition of Eq. (4.7) follows from the assumptions

����Wk−1 −
mn

q
PTPΩ̃k

(Wk−1)

����
∞

≤ 1

2
�Wk−1�∞ (4.10)

����

�
mn

q
PΩ̃k

− I
�
(Wk−1)

����
2

≤

�
8mn2β log(m+ n)

3q
�Wk−1�∞ (4.11)

for all k, since Eq. (4.10) implies �Wk�∞ ≤ 2−k�UL0V
�
L0
�∞, and thus

�PT⊥(Yp)�2 ≤
p�

j=1

����
mn

q
PT⊥PΩ̃j

(Wj−1)

����
2

=
p�

j=1

����PT⊥(
mn

q
PΩ̃j

(Wj−1)−Wj−1)

����
2

≤
p�

j=1

����(
mn

q
PΩ̃j

− I)(Wj−1)

����
2

≤
p�

j=1

�
8mn2β log(m+ n)

3q
�Wj−1�∞

= 2
p�

j=1

2−j

�
8mn2β log(m+ n)

3q
�UWV�

W�∞ <

�
32µrnβ log(m+ n)

3q
< 1/2

by our assumption on q. The first line applies the triangle inequality; the second holds since
Wj−1 ∈ T for each j; the third follows because PT⊥ is an orthogonal projection; and the
final line exploits (µ, r)-coherence.

We conclude by bounding the probability of any assumed event failing. Lemma 18 implies
that Eq. (4.6) fails to hold with probability at most 2n2−2β. For each k, Eq. (4.9) fails to hold
with probability at most 2n2−2β by Lemma 18, Eq. (4.10) fails to hold with probability at
most 2n2−2β by Lemma 20, and Eq. (4.11) fails to hold with probability at most (m+n)1−2β
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by Lemma 19. Hence, by the union bound, the conclusion of Thm. 17 holds with probability
at least

1− 2n2−2β − 3

4
log(n/2)(4n2−2β + (m+ n)1−2β) ≥ 1− 15

4
log(n)n2−2β ≥ 1− 4 log(n)n2−2β

.
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Chapter 5

Matrix Concentration Inequalities via
the Method of Exchangeable Pairs

5.1 Introduction

In this chapter, we derive concentration inequalities for random matrices using Stein’s
method of exchangeable pairs [74]. Such inequalities are fundamental to the analysis of
randomized procedures like matrix recovery from sparse random measurements [27, 67, 49],
randomized matrix multiplication and factorization [19, 31], and convex relaxation of robust
or chance-constrained optimization [59, 72, 15].

A primary difficulty in establishing matrix concentration is the lack of multiplicative
commutativity: many classical proof techniques for scalar concentration rely on commuting
elements and hence break down in the non-commutative matrix setting. In recent years,
authors have begun to surmount this difficulty [2, 60, 79] by appealing to deep results from
matrix analysis like the Golden-Thompson inequality [5, Section IX.3] or Lieb’s concave trace
inequality [42, Theorem 6]. Here we take a fundamentally different approach, building upon
the work of Chatterjee [13], who demonstrated how the method of exchangeable pairs could
be used to derive concentration inequalities for scalar random variables. Our analysis will
extend to both independent and dependent sums of random matrices and to more general
matrix functions satisfying a self-bounding property.

In the sequel, we describe the main results of our exchangeable pairs analysis. We present
exponential tail inequalities for Hermitian matrices in Section 5.2, showing application to
sums of random matrices and to more general self-bounding matrix functions. In Section 5.2,
we present a complementary set of Hermitian moment inequalities and demonstrate their use
in deriving tail inequalities. We extend our results to non-Hermitian matrices in Section 5.2
and conclude with proofs of all results in Section 5.3.

Notation Throughout, Hd denotes the set of Hermitian matrices in C
d×d. That is,

Hd � {A ∈ C
d×d : A = A

∗}
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where A
∗ is the conjugate transpose of A. The Hermitian component of a generic square

matrix B ∈ C
d×d is given by Re[B] � 1

2(B +B
∗). Further, I denotes an identity matrix, 0

denotes a matrix of all zeros, Tr[·] denotes the trace of a given matrix, and �·� denotes the
spectral norm, i.e., the largest singular value of a given matrix. For A,H ∈ Hd, λmax(A)
and λmin(A) are the maximum and minimum eigenvalues of A respectively, and A � H or
H � A signifies that H − A is positive semidefinite. Given any function h : R → R, we
define a lifted function on Hermitian matrices via the eigenvalue decomposition:

h(A) � Q




h(λ1)

. . .
h(λd)



Q∗ where A = Q




λ1

. . .
λd



Q∗

for (λ1, . . . ,λd) the eigenvalues of A and Q the matrix of associated eigenvectors.

5.2 Matrix concentration inequalities

Exponential tail inequalities

Our first result bounds the trace of the moment-generating function of a random matrix
using Stein’s method of exchangeable pairs. Combined with a matrix analogue of the Laplace
transform method [2, 60],

P(λmax(Y ) ≥ t) ≤ inf
θ>0

�
e
−θt Tr

�
E
�
e
θY

���
,

this yields an exponential tail inequality for the maximum eigenvalue of a matrix.

Theorem 22. Let X be a separable metric space, and suppose (X,X
�) is an exchangeable

pair of X -valued random variables. Suppose f : X → Hd and F : X × X → Hd are
square-integrable functions such that for some non-decreasing g : R → R,

F (X,X
�) = g(f(X))− g(f(X �)) a.s., E[F (X,X

�) | X] = f(X) a.s.,

and E
�
�eθf(X)

F (X,X
�)�

�
< ∞. Let

∆(X) � 1

2
ReE[(f(X)− f(X �))F (X,X

�) | X].

If there exist real constants b ≥ 0 and c > 0 such that ∆(X) � bf(X) + cI almost surely,
then for any 0 ≤ θ < 1/b,

Tr
�
E
�
e
θf(X)

��
≤ d · exp

�
− c

b2 (bθ + log(1− bθ))
�

≤ d · exp
�
cθ

2
/(2− 2bθ)

�
,

and for any t ≥ 0

P(λmax(f(X)) ≥ t) ≤ d · exp
�
− t

b +
c
b2 log(1 +

bt
c )
�

≤ d · exp
�
−t

2
/(2c+ 2bt)

�
.
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Remark Theorem 22 also yields a tail inequality for the minimum eigenvalue of a matrix,
due to the identity

λmin(f(X)) = −λmax(−f(X)).

Comparable inequalities are obtained for intermediate eigenvalues when Theorem 22 is com-
bined with the minimax Laplace transform method of Gittens and Tropp [24].

When applied to sums of independent matrices, Theorem 22 delivers tail bounds remi-
niscent of the classical inequalities due to Bernstein [4].

Theorem 23 (Hermitian Bernstein). Let Y 1, . . . ,Y n ∈ Hd be independent random matrices
satisfying

E[Y k] = 0 and Y
2
k � rY k +A

2
k a.s., ∀k ∈ {1, . . . , n},

for fixed Ak ∈ Hd and r ≥ 0, and define σ
2 � �

�n
k=1A

2
k + E

�
Y

2
k

�
�. Then, for all t ≥ 0,

P(λmax(
�n

k=1Y k) ≥ t) ≤ d · exp
�

−t
2

σ2 + rt

�

≤






d · exp(−t
2
/σ

2) for r = 0

d · exp(−t
2
/2σ2) for r > 0, t ≤ σ

2
/r

d · exp(−t/2r) for r > 0, t ≥ σ
2
/r.

An immediate consequence of Theorem 23 is a natural generalization of Hoeffding’s in-
equality [29] to sums of bounded, independent random matrices. The following bound re-
covers the classical, scalar Hoeffding inequality when d = 1 and improves upon the recent
Hoeffding generalization of Tropp [79, Theorem 1.3] by a factor of 4 in the exponent.

Corollary 24 (Hermitian Hoeffding). Let Y 1, . . . ,Y n ∈ Hd be independent random matrices
satisfying

E[Y k] = 0 and Y
2
k � A

2
k a.s., ∀k ∈ {1, . . . , n},

and let σ2 � �
�n

k=1A
2
k�. Then, for all t ≥ 0,

P(λmax(
�n

k=1Y k) ≥ t) ≤ de
−t2/2σ2

.

Remark Theorem 23 and Corollary 24 hold more generally for sums of dependent ma-
trices satisfying a martingale difference-type property:

E[Y k | Y 1, . . . ,Y k−1,Y k+1, . . . ,Y n] = 0 a.s., ∀k ∈ {1, . . . , n}.

The utility of Theorem 22 is by no means limited to sums of independent randommatrices.
Indeed, comparable concentration inequalities are available for all matrix functions satisfying
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a certain self-bounding property, even when the underlying random elements are dependent.
Self-bounding functions were introduced in [7] to establish concentration for scalar functions
of independent random variables. Our next theorem extends these concentration results to
the dependent, matrix-variate setting.

Theorem 25 (Self-bounding Hermitian Functions). For a separable metric space X , let
X = (X1, . . . , Xn) be a vector of X -valued random variables. For each x ∈ X n, define
x\k � (x1, . . . , xk−1, xk+1, . . . , xn) for each k ∈ {1, . . . , n}, and let H : X n → Hd be a
square-integrable function satisfying

�n
k=1E

�
H(x1, . . . , Xk, . . . , xn) | x\k

�
= sH(x) + (n− s)E[H(X)] and

1

n− s

�n
k=1E

�
(H(x)−H(x1, . . . , Xk, . . . , xn))

2 | x\k
�
� rH(x) +A

2
,

for fixed A ∈ Hd, real s �= n, r ≥ 0, and all x ∈ X n. If σ2 � λmax

�
A

2 + rE[H(X)]
�
, then,

for all t ≥ 0,

P(λmax(H(X)− E[H(X)]) ≥ t) ≤ d · exp
�

−t
2

σ2 + rt

�

≤






d · exp(−t
2
/σ

2) for r = 0

d · exp(−t
2
/2σ2) for r > 0, t ≤ σ

2
/r

d · exp(−t/2r) for r > 0, t ≥ σ
2
/r.

Notably, when r = 0, Theorem 25 delivers a dependent, Hermitian version of the bounded
differences inequality due to McDiarmid [52].

To give a more exotic example of dependence treated by Theorem 22, we next develop
a Bernstein-type inequality for a Hermitian analogue of Hoeffding’s combinatorial statis-
tics [28].

Theorem 26 (Combinatorial Hermitian Bernstein). Let (Aij)1≤i,j≤n be a fixed collection of
matrices satisfying

Aij ∈ Hd and 0 � Aij � I, ∀i, j ∈ {1, . . . , n},

and define

µ � λmax

�
1

n

�n
i=1

�n
j=1Aij

�
.

If π is drawn uniformly from the set of all permutations over {1, . . . , n}, then, for all t ≥ 0,

P
�
λmax

��n
i=1Aiπ(i) − E

�
Aiπ(i)

��
≥ t

�
≤ d · exp

�
−t

2

8µ+ 4t

�

≤
�
d · exp(−t

2
/16µ) for t ≤ 2µ

d · exp(−t/8) for t ≥ 2µ.
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Non-commutative moment inequalities

In addition to providing exponential tail inequalities for random matrices, Stein’s method can
be used to develop non-commutative moment inequalities, in the tradition of Lust-Piquard
[44] and Pisier and Xu [65]:

Theorem 27. Let X be a separable metric space, and suppose (X,X
�) is an exchangeable

pair of X -valued random variables. Suppose f : X → Hd and F : X × X → Hd are
square-integrable functions such that

F (X,X
�) = g(f(X))− g(f(X �)) and E[F (X,X

�) | X] = f(X) a.s.

for some non-decreasing g : R → R. Let

∆(X) � 1

2
ReE[(f(X)− f(X �))F (X,X

�) | X].

Then, for any positive integer p, we have

E
�
Tr

�
f(X)2p

��
≤ (2p− 1)pE[Tr[∆(X)p]].

When combined with Markov’s inequality, the moment inequalities of Theorem 27 give
rise to polynomial tail probabilities for the maximum eigenvalue of f(X). That is, for all
t > 0 and integers p > 0,

P(λmax(f(X)) ≥ t) ≤ E
�
λmax(f(X))2p

�
/t

2p

≤ E
�
λmax

�
f(X)2p

��
/t

2p

≤ E
�
Tr

�
f(X)2p

��
/t

2p

≤ (2p− 1)p

t2p
E[Tr[∆(X)p]].

Moreover, control over all even moments lets us bound the trace of the moment generating
function of f(X). To see this, note that eA ≺ e

A + e
−A = 2

�∞
p=0A

2p
/(2p)! for all A ∈ Hd.1

Thus,

Tr
�
E
�
e
θf(X)

��
< 2

�∞
p=0θ

2p
E
�
Tr

�
f(X)2p

��
/(2p)!

≤ 2
�∞

p=0θ
2p(2p− 1)pE[Tr[∆(X)p]]/(2p)!

≤ 2
�∞

p=0θ
2p
e
p
E[Tr[∆(X)p]]/(p!2p)

= 2Tr
�
E

�
e
θ2∆(X)e/2

��
, (5.1)

where we have used the fact that (2p − 1)p/(2p)! ≤ e
p
/(p!2p) for all p > 0. Combined

with appropriate assumptions on the growth of ∆(X), Eq. 5.1 gives rise to exponential tail
probabilities, like those of Section 5.2, albeit with worse constants.

An example application of Theorem 27 is to sums of independent random matrices. In
this case, we obtain a matrix version of the Burkholder-Davis-Gundy moment inequalities [8],

1The additional factor of two can be avoided when E[Tr[f(X)p]] ≤ 0 for all odd positive integers p.
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Theorem 28 (Hermitian Burkholder-Davis-Gundy). Let Y 1, . . . ,Y n ∈ Hd be independent
random matrices satisfying

E[Y k] = 0, ∀k ∈ {1, . . . , n}.

Then, for any positive integer p, we have

E

�
Tr

�
(
�n

k=1Y k)
2p
��

≤ (2p− 1)pE
�
Tr

���n
k=1Y

2
k

�p��
.

Theorem 28 may in turn be used to generalize the classical Khintchine inequalities [36]
to sums of fixed matrices with random scalings.

Corollary 29 (Hermitian Khintchine). Fix A1, . . . ,An ∈ Hd, and let ξ1, . . . , ξn ∈ R be
independent random variables satisfying

E[ξk] = 0 and ξk ∈ [−1, 1], ∀k ∈ {1, . . . , n}.

Then, for any positive integer p, we have

E

�
Tr

�
(
�n

k=1ξkAk)
2p
��

≤ (2p− 1)p Tr
���n

k=1A
2
k

�p�
.

Recently, such non-commutative Khintchine inequalities have been used to analyze convex
relaxations of robust and chance-constrained optimization problems [72].

The conclusions of Theorem 27 apply equally to matrices constructed from dependent
sequences. As an example, we give a Burkholder-Davis-Gundy-type bound for the moments
of the Hermitian combinatorial sums introduced in Theorem 26.

Theorem 30 (Combinatorial Hermitian Burkholder-Davis-Gundy). Let (Aij)1≤i,j≤n be a
fixed collection of matrices satisfying

Aij ∈ Hd and 0 � Aij � I, ∀i, j ∈ {1, . . . , n}.

If π is drawn uniformly from the set of all permutations over {1, . . . , n}, and

∆ � 1

4n

�n
i=1

�n
j=1A

2
iπ(i) +A

2
jπ(j) −A

2
iπ(j) −A

2
jπ(i),

then, for any positive integer p, we have

E

�
Tr

���n
i=1Aiπ(i) − E

�
Aiπ(i)

��2p�� ≤ (2p− 1)pE[Tr[∆p]].
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Extension to non-Hermitian matrices

We extend our results to a generic non-Hermitian matrix B ∈ C
d1×d2 by drawing upon a

technique from operator theory known as self-adjoint dilation [62]:

D(B) �
�
0 B

B
∗ 0

�
.

By construction, D(B) is Hermitian, and, moreover, λmax(D(B)) = �B�. Hence the follow-
ing non-Hermitian variants of Theorem 22 and Theorem 27 also apply.

Corollary 31. Under the conditions of Theorem 22, if f(X) = D(h(X)) a.s. for h : X →
C

d1×d2, then for all t ≥ 0

P(�h(X)� ≥ t) ≤ (d1 + d2) exp
�
− t

b +
c
b2 log(1 +

bt
c )
�

≤ (d1 + d2) exp
�
−t

2
/(2c+ 2bt)

�
.

Corollary 32. Under the conditions of Theorem 27, if f(X) = D(h(X)) a.s. for h : X →
C

d1×d2, then, for any positive integer p, we have

E[Tr[(h(X)h(X)∗)p]] ≤ (2p− 1)p

2
E[Tr[∆(X)p]].

5.3 Proofs via Stein’s Method

Proof of Theorem 22

Proof Our proof extends that of [13, Theorem 1.5], which establishes analogous results
for real-valued f . We begin with a lemma:

Lemma 33. Under the conditions of Theorem 22, suppose that h : X → Hd is a measurable
map satisfying E[�h(X)F (X,X

�)�] < ∞. Then

E[h(X)f(X)] =
1

2
E[(h(X)− h(X �))F (X,X

�)]. (5.2)

Proof First note that F is antisymmetric:

F (X,X
�) = g(f(X))− g(f(X �)) = −g(f(X �))− g(f(X)) = −F (X �

, X).

Further, E[h(X)f(X)] = E[h(X)E[F (X,X
�) | X]] = E[h(X)F (X,X

�)]. Since X and X
� are

exchangeable and F is antisymmetric, it follows that

E[h(X)F (X,X
�)] = E[h(X �)F (X �

, X)] = −E[h(X �)F (X,X
�)].
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Hence,

E[h(X)f(X)] = E[h(X)F (X,X
�)] =

1

2
E[(h(X)− h(X �))F (X,X

�)].

We next let m(θ) � E
�
e
θf(X)

�
, the moment generating function of f(X), for all θ ∈ R

and consider its derivative, m�. We are free to take the derivative inside of the expectation,
due to our assumption that E

�
�eθf(X)

F (X,X
�)�

�
< ∞ for all θ. Hence, Lemma 33 implies

that

m
�(θ) = E

�
e
θf(X)

f(X)
�
=

1

2
E

�
(eθf(X) − e

θf(X�))F (X,X
�)
�

=
1

2
E

�
(eθf(X) − e

θf(X�))(g(f(X))− g(f(X �)))
�
.

We will bound the trace of m�(θ) using the following lemma:

Lemma 34. If g : R → R is non-decreasing, h : R → R is differentiable, and x �→ |h�(x)| is
convex, then

Tr[(h(A)− h(H))(g(A)− g(H))] ≤
1

2
Tr[(|h�(A)|+ |h�(H)|) Re[(A−H)(g(A)− g(H))]]

for all A,H ∈ Hd.

Proof Since g is non-decreasing, (x−y)(g(x)−g(y)) ≥ 0 for all x, y ∈ R. The fundamental
theorem of calculus and the convexity of h� moreover imply that

(h(x)− h(y))(g(x)− g(y)) = (x− y)(g(x)− g(y))

� 1

0

h
�(tx+ (1− t)y)dt

≤ (x− y)(g(x)− g(y))

� 1

0

|h�(tx+ (1− t)y)|dt

≤ (x− y)(g(x)− g(y))

� 1

0

(t|h�(x)|+ (1− t)|h�(y)|)dt

=
1

2
(|h�(x)|+ |h�(y)|)(x− y)(g(x)− g(y)) (5.3)

for all x, y ∈ R. The following proposition (see [64, Proposition 3] for a concise proof) allows
us to establish a Hermitian analogue of Eq. 5.3:

Proposition 35. If fk and gk are functions R → R such that for some ck ∈ R,
�

kckfk(x)gk(y) ≥ 0

for every x, y ∈ S ⊆ R, then for all A,H ∈ Hd having all eigenvalues in S

�
kck Tr[fk(A)gk(H)] ≥ 0.
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The inequality of Eq. 5.3 can be manipulated into the form
�

kckfk(x)gk(y) ≥ 0 for all
x, y ∈ R as

0 ≤ 1

2
(|h�(x)|xg(x)− g(x)|h�(x)|y − |h�(x)|xg(y) + |h�(x)|yg(y)

+ xg(x)|h�(y)|− g(x)|h�(y)|y − xg(y)|h�(y)|+ |h�(y)|yg(y))
− h(x)g(x) + h(x)g(y) + g(x)h(y)− h(y)g(y).

Hence, for all A,H ∈ Hd, Proposition 35 implies that

0 ≤1

2
Tr[|h�(A)|Ag(A)− g(A)|h�(A)|H − |h�(A)|Ag(H) + |h�(A)|Hg(H)

+ Ag(A)|h�(H)|− g(A)|h�(H)|H −Ag(H)|h�(H)|+ |h�(H)|Hg(H)]

− Tr[h(A)g(A)− h(A)g(H)− g(A)h(H) + h(H)g(H)]

=
1

2
Tr[|h�(A)|Ag(A)− |h�(A)|Hg(A)− |h�(A)|Ag(H) + |h�(A)|Hg(H)

+ |h�(H)|Ag(A)− |h�(H)|Hg(A)− |h�(H)|Ag(H) + |h�(H)|Hg(H)]

− Tr[h(A)g(A)− h(A)g(H)− g(A)h(H) + h(H)g(H)]

=
1

2
Tr[(|h�(A)|+ |h�(H)|)(A−H)(g(A)− g(H))]

− Tr[(h(A)− h(H))(g(A)− g(H))].

where the first equality follows from the cyclic property of the trace. An identical argument
yields

Tr[(h(A)− h(H))(g(A)− g(H))] ≤
1

2
Tr[(|h�(A)|+ |h�(H)|)(g(A)− g(H))(A−H)].

Since A and H are Hermitian,

Re[(A−H)(g(A)− g(H))] =
1

2
((A−H)(g(A)− g(H)) + (g(A)− g(H))(A−H)),

and the desired result follows from the two preceding inequalities.

For each θ ∈ R, x �→ e
θx has derivative x �→ θe

θx, and x �→ |θeθx| is convex on R, so
Lemma 34 implies

Tr
�
(eθA − e

θH)(g(A)− g(H))
�
≤

|θ|
2

Tr
�
(eθA + e

θH) Re[(A−H)(g(A)− g(H))]
�
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for all A,H ∈ Hd. Combining this result with the exchangeability of X and X
�, we obtain

Tr[m�(θ)] =
1

2
E

�
Tr

�
(eθf(X) − e

θf(X�))F (X,X
�)
��

≤ 1

2
E

�
|θ|
2

Tr
�
(eθf(X) + e

θf(X�)) Re[(f(X)− f(X �))F (X,X
�)]
��

=
|θ|
2

Tr

�
E

�
e
θf(X)1

2
ReE[(f(X)− f(X �))F (X,X

�) | X]+

e
θf(X�)1

2
ReE[(f(X �)− f(X))F (X �

, X) | X �]

��

=
|θ|
2

Tr
�
E

�
e
θf(X)∆(X) + e

θf(X�)∆(X �)
��

= |θ|E
�
Tr

�
e
θf(X)∆(X)

��
.

Introducing our bound on ∆(X) requires the following proposition.

Proposition 36. If 0 � A and H � W , then Tr[AH ] ≤ Tr[AW ].

Proof Since 0 � W − H and xy ≥ 0 for all x, y ≥ 0, Proposition 35 implies that
Tr[A(W −H)] ≥ 0.

Since 0 � e
θf(X), Proposition 36 and our assumed bound on ∆(X) now give

Tr[m�(θ)] ≤ |θ|E
�
Tr

�
e
θf(X)(bf(X) + cI)

��

= b|θ|Tr[m�(θ)] + c|θ|Tr[m(θ)]

which, for all 0 ≤ θ < 1/b, may be rewritten as

d

dθ
log Tr[m(θ)] ≤ cθ

1− bθ
.

Integrating and noting that Tr[m(0)] = d, we obtain

log Tr[m(θ)]− log d ≤
� θ

0

cu

1− bu
du = − c

b2
(bθ + log(1− bθ)),

which evaluates to cθ
2
/2 when b = 0. A second fruitful bound is obtained by observing that

� θ

0

cu

1− bu
du ≤

� θ

0

cu

1− bθ
du ≤ cθ

2

2− 2bθ
.
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To derive the desired concentration inequalities, note that for any 0 ≤ θ < 1/b and all
t ≥ 0

P(λmax(f(X)) ≥ t) ≤ exp(−θt+ logE[exp(θλmax(f(X)))])

≤ exp(−θt+ logE[λmax(exp(θf(X)))])

≤ exp(−θt+ logE[Tr[exp(θf(X))]])

= exp(−θt+ log Tr[m(θ)])

≤ d · exp
�
−θt− c

b2 (bθ + log(1− bθ))
�

(5.4)

≤ d · exp
�
−θt+ cθ

2
/(2− 2bθ)

�
, (5.5)

since 0 � e
θf(X) and λmax(A) ≤ Tr[A] for any A � 0. The advertised inequalities follow by

letting θ = t/(c+ bt) < 1/b in Eq. 5.4 and Eq. 5.5.

Proof of Theorem 23

Proof We will prove a generalization of Theorem 23 for dependent Y 1, . . . ,Y n ∈ Hd

satisfying

E[Y k | Y 1, . . . ,Y k−1,Y k+1, . . . ,Y n] = 0

E
�
Y

2
k | Y 1, . . . ,Y k−1,Y k+1, . . . ,Y n

�
� H

2
k a.s., ∀k ∈ {1, . . . , n}

for deterministic Hk ∈ Hd and σ
2 � �

�n
k=1A

2
k +H

2
k�. The original statement for indepen-

dent matrices will follow as a special case.
Let X � �n

k=1Y k and f(X) � X − E[X] = X. For each k, define

Y \k � (Y 1, . . . ,Y k−1,Y k+1, . . . ,Y n),

and let Y
�
k be drawn, independently of Y k, from the conditional distribution of Y k given

Y \k. To create an exchangeable pair, we define

X
� � Y

�
K +

�
k �=KY k

whereK is independent of (Y 1, . . . ,Y n,Y
�
1, . . . ,Y

�
n) and distributed uniformly on {1, . . . , n}.

Since Y
�
k and Y k are conditionally i.i.d. given Y \k for all k, it follows that X and X

� are
conditionally i.i.d. given K and Y \K . Hence, X and X

� are exchangeable.
Let F (X,X

�) � n(f(X)− f(X �)), and note that

E[F (X,X
�) | X] = nE[Y K − Y

�
K | X]

=
n

n

�n
k=1Y k − E

�
E
�
Y

�
k | Y \k

�
| X

�
= X

as E
�
Y

�
k | Y \k

�
= 0. So, E[F (X,X

�) | X] = E[En[F (X,X
�)] | X] = f(X), as desired.
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Furthermore, our assumptions imply that

∆(X) =
n

2
E
�
(X −X

�)2 | X
�
=

1

2

�n
k=1E

�
(Y k − Y

�
k)

2 | X
�

=
1

2

�n
k=1E

�
Y

2
k | X

�
+ E

�
Y

�
k
2 | X

�
− E[Y kY

�
k | X]− E[Y �

kY k | X]

� 1

2

�n
k=1E

�
Y

2
k | X

�
+ E

�
Y

�
k
2 | X

�
− E

�
Y kE

�
Y

�
k | Y \k

�
| X

�

− E
�
E
�
Y

�
k | Y \k

�
Y k | X

�

� 1

2

�n
k=1rE[Y k | X] +

1

2

�n
k=1(A

2
k + E

�
Y k

2 | Y \k
�
)

� r

2
f(X) +

σ
2

2
I.

since Y k is conditionally independent of Y �
k given Y 1, . . . ,Y k−1. Hence, Theorem 22 applies

with b = r/2 and c = σ
2
/2, and we obtain

P(λmax(
�n

k=1Y k) ≥ t) ≤ d · exp
�
−t

2
/(σ2 + rt)

�
.

Proof of Corollary 24

Proof By the triangle inequality and our boundedness assumption,

�
�n

k=1A
2
k + E

�
Y

2
k

�
� ≤ �

�n
k=1A

2
k�+ �

�n
k=1E

�
Y

2
k

�
� ≤ 2�

�n
k=1A

2
k� = 2σ2

.

Thus, Theorem 23 implies

P(λmax(
�n

k=1Y k) ≥ t) ≤ d · exp
�

−t
2

�
�n

k=1A
2
k + E

�
Y

2
k

�
�

�
≤ de

−t2/2σ2
.

Proof of Theorem 25

Proof Let f(X) � H(X)−E[H(X)]. To create an exchangeable pair, we independently
choose a random coordinate K uniformly from {1, . . . , n} and define

X
� � (X1, . . . , XK−1, X

�
K , XK+1, . . . , Xn)

where X �
k is drawn, independently of Xk, from the conditional distribution of Xk given X\k.

Since X
�
k and Xk are conditionally i.i.d. given X\k for all k, it follows that X and X

� are
conditionally i.i.d. given K and X\K . Hence, X and X

� are exchangeable.
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Now let F (X,X
�) � n

n−s(f(X)− f(X �)), and note that, by our assumptions,

E[F (X,X
�) | X] =

n

n− s
E[H(X)−H(X1, . . . , X

�
K , . . . , Xn) | X]

=
n

n− s
H(X)− 1

n− s

�n
k=1E[H(X1, . . . , X

�
k, . . . , Xn) | X]

=
n

n− s
H(X)− 1

n− s

�n
k=1E

�
H(X) | X\k

�

=
n

n− s
H(X)− s

n− s
H(X)− E[H(X)]

= H(X)− E[H(X)]

as desired.
Furthermore,

∆(X) =
n

2(n− s)
E
�
(H(X1, . . . , XK , . . . , Xn)−H(X1, . . . , X

�
K , . . . , Xn))

2 | X
�

=
1

2(n− s)

�n
k=1E

�
(H(X1, . . . , Xk, . . . , Xn)−H(X1, . . . , X

�
k, . . . , Xn))

2 | X
�

� 1

2
(rH(X) +A

2) =
1

2
(rf(X) +A

2 + rE[H(X)]) � 1

2
(rf(X) + σ

2
I)

Thus, we may apply Theorem 22 with b = r/2 and c = σ
2
/2 to obtain

P(λmax(
�n

k=1Y k) ≥ t) ≤ de
−t2/(σ2+rt)

.

Proof of Theorem 26

Proof Our argument extends that of [13, Proposition 1.1], which establishes a related
result for scalar random variables. Let X � �n

i=1Aiπ(i) and

f(X) � X − E[X] = X − 1

n

�n
i=1

�n
j=1Aij.

To create an exchangeable pair, we independently choose a pair of indices (I, J) uniformly
from {1, . . . , n}2 and define a new permutation π

� as the composition of π with the trans-
position (I, J), i.e. π

� � π ◦ (I, J). Since π and π
� are exchangeable, so too are X and X

�

when
X

� � �n
i=1Aiπ�(i).

Now let F (X,X
�) � (n/2)(f(X)− f(X �)) and note that

E[F (X,X
�) | π] = n

2
E
�
AIπ(I) +AJπ(J) −AJπ(I) −AIπ(J) | π

�

=
�n

i=1Aiπ(i) −
1

n

�n
i=1

�n
j=1Aiπ(j) = f(X).
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So, E[F (X,X
�) | X] = E[E[F (X,X

�) | π] | X] = f(X), as desired.
Furthermore, our assumptions imply that

1

2
ReE[(f(X)− f(X �))F (X,X

�) | π]

=
n

4
E
�
(X −X

�)2 | π
�

=
n

4
E
�
(AIπ(I) +AJπ(J) −AJπ(I) −AIπ(J))

2 | π
�

=
1

4n

�n
i=1

�n
j=1(Aiπ(i) +Ajπ(j) −Ajπ(i) −Aiπ(j))

2

� 1

2n

�n
i=1

�n
j=1(Aiπ(i) +Ajπ(j))

2 + (Ajπ(i) +Aiπ(j))
2

� 1

n

�n
i=1

�n
j=1(Aiπ(i) +Ajπ(j) +Ajπ(i) +Aiπ(j))

= 2X + 2E[X] = 2f(X) + 4E[X],

where the first inequality follows from the operator convexity of the matrix square:

�
H +W

2

�2

� H
2

2
+

W
2

2
for all H ,W ∈ Hd since 0 �

�
H

2
− W

2

�2

,

and the second inequality follows from 0 � Aiπ(i)+Ajπ(j) � 2I and 0 � Ajπ(i)+Aiπ(j) � 2I.
Therefore,

∆(X) = E

�
1

2
ReE[(f(X)− f(X �))F (X,X

�) | π] | X
�

� 2f(X) + 4λmax(E[X])I,

and thus Theorem 22 applies with b = 2 and c = 4λmax(E[X]), and we obtain

P
�
λmax

��n
i=1Aiπ(i) − E

�
Aiπ(i)

��
≥ t

�
≤ d · exp

�
−t

2
/(8λmax(E[X]) + 4t)

�
.

Proof of Theorem 27

Proof Our argument extends that of [13, Theorem 1.5], which establishes a related result
for scalar random variables. Fix any integer p > 0 and notice that Lemma 33 implies

E
�
f(X)2p

�
=

1

2
E
�
(f(X)2p−1 − f(X �)2p−1)F (X,X

�)
�
.
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Further, x �→ x
2p−1 has nonnegative convex derivative x �→ (2p−1)x2p−2 on R, so Lemma 34

implies

Tr
�
(A2p−1 −H

2p−1)(g(A)− g(H))
�
≤

2p− 1

2
Tr

�
(A2p−2 +H

2p−2) Re[(A−H)(g(A)− g(H))]
�

for all A,H ∈ Hd.
Combining this result with the exchangeability of X and X

�, we obtain

E
�
Tr

�
f(X)2p

��

=
1

2
E
�
Tr

�
(f(X)2p−1 − f(X �)2p−1)F (X,X

�)
��
.

≤ 1

2
E

�
Tr

�
2p− 1

2
(f(X)2p−2 + f(X �)2p−2) Re[(f(X)− f(X �))F (X,X

�)]

��

=
2p− 1

2
Tr

�
E

�
f(X)2p−21

2
ReE[(f(X)− f(X �))F (X,X

�) | X]+

f(X �)2p−21

2
ReE[(f(X �)− f(X))F (X �)) | X �]

��

=
2p− 1

2
Tr

�
E
�
f(X)2p−2∆(X) + f(X �)2p−2∆(X �)

��

= (2p− 1)E
�
Tr

�
f(X)2p−2∆(X)

��

≤ (2p− 1)E
��
Tr

�
(f(X)2p−2)p/(p−1)

��(p−1)/p
(Tr[∆(X)p])1/p

�

= (2p− 1)E
�
(Tr

�
f(X)2p

�
)(p−1)/p(Tr[∆(X)p])1/p

�

≤ (2p− 1)(E
�
Tr

�
f(X)2p

��
)(p−1)/p(E[Tr[∆(X)p]])1/p,

where the penultimate inequality follows from Hölder’s inequality for Schätten p-norms, and
the final inequality is Hölder’s inequality for real random variables. Hence

(E
�
Tr

�
f(X)2p

��
)1/p ≤ (2p− 1)(E[Tr[∆(X)p]])1/p

and thus
E
�
Tr

�
f(X)2p

��
≤ (2p− 1)pE[Tr[∆(X)p]]

as desired.

Proof of Theorem 28

Proof Fix any positive integer p, and, as in the proof of Theorem 23, let

X � �n
k=1Y k, f(X) � X, X

� � Y
�
K +

�
k �=KY k,
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and

F (X,X
�) � n(f(X)− f(X �))

where K is chosen independently and uniformly from {1, . . . , n} and Y
�
1, . . . ,Y

�
n is an inde-

pendent copy of Y 1, . . . ,Y n. Then,

∆(X) =
n

2
E
�
(X −X

�)2 | X
�
=

1

2

�n
k=1E

�
(Y k − Y

�
k)

2 | X
�

=
1

2

�n
k=1E

�
Y

2
k | X

�
+ E

�
Y

�
k
2
�
− E[Y k | X]E[Y �

k]− E[Y �
k]E[Y k | X]

=
1

2

�n
k=1E

�
Y

2
k | X

�
+ E

�
Y

�
k
2
�
.

To proceed, consider the following proposition concerning the convexity of trace functions
(see [64, Proposition 2] for a short proof):

Proposition 37. If g : [α, β] → R is convex for [α, β] ⊆ R, then A �→ Tr[g(A)] is convex
on {A ∈ Hd : αI � A � βI}.

Proposition 37 implies that A �→ Tr[Ap] is convex for A � 0, since x �→ x
p is convex for

x ≥ 0. Thus, we may apply Jensen’s inequality twice to obtain

E[Tr[∆(X)p]] = E

�
Tr

��
1

2

�n
k=1E

�
Y

2
k | X

�
+ E

�
Y

�
k
2
��p��

≤ E

�
E

�
Tr

��
1

2

�n
k=1Y

2
k + Y

�
k
2
�p�

| X
��

= E

�
Tr

��
1

2

�n
k=1Y

2
k + Y

�
k
2
�p��

≤ E

�
1

2
Tr

���n
k=1Y

2
k

�p�
+

1

2
Tr

���n
k=1Y

�
k
2
�p��

= E
�
Tr

���n
k=1Y

2
k

�p��
.

The proof of Theorem 23 established that X and X
� are exchangeable and that

E[F (X,X
�) | X] = f(X),

so Theorem 27 now implies

E
�
Tr

�
f(X)2p

��
≤ (2p− 1)pE[Tr[∆(X)p]] ≤ (2p− 1)pE

�
Tr

���n
k=1Y

2
k

�p��
.
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Proof of Corollary 29

Proof Let Y k � ξkAk. To establish

Tr
���n

k=1Y
2
k

�p� ≤ Tr
���n

k=1A
2
k

�p�
a.s.

when
�n

k=1Y
2
k =

�n
k=1ξ

2
kA

2
k �

�n
k=1A

2
k a.s., we appeal to the monotonicity of trace func-

tions (see [64, Proposition 1] for a concise proof):

Proposition 38. If g : [α, β] → R is nondecreasing for [α, β] ⊆ R, and αI � A,H � βI,
then A � H implies Tr[g(A)] ≤ Tr[g(H)].

Applying Theorem 28 to
�n

k=1Y k now yields the result.

Proof of Theorem 30

Proof Fix any positive integer p, and, as in the proof of Theorem 26, let

X � �n
i=1Aiπ(i), f(X) � X − E[X], X

� � �n
i=1Aiπ�(i),

and

F (X,X
�) � n

2
(f(X)− f(X �))

where π� � π ◦ (I, J) for indices (I, J) drawn independently and uniformly from {1, . . . , n}2.
Then,

1

2
ReE[(f(X)− f(X �))F (X,X

�) | π]

=
n

4
E
�
(X −X

�)2 | π
�

=
n

4
E
�
(AIπ(I) +AJπ(J) −AJπ(I) −AIπ(J))

2 | π
�

=
1

4n

�n
i=1

�n
j=1(Aiπ(i) +Ajπ(j) −Ajπ(i) −Aiπ(j))

2

= ∆.

The proof of Theorem 26 established that X and X
� are exchangeable and that

E[F (X,X
�) | X] = f(X),

so Theorem 27 now implies

E
�
Tr

�
f(X)2p

��
≤ (2p− 1)pE[Tr[E[∆ | X]p]] ≤ (2p− 1)pE[Tr[∆p]]

by Jensen’s inequality since H �→ Tr[Hp] is convex for H � 0 by Proposition 37.
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Proof of Corollary 31

Proof Since �h(X)� = λmax(D(h(X))) the result follows from Theorem 22.

Proof of Corollary 32

Proof We apply Theorem 27 to obtain

(2p− 1)pE[Tr[∆(X)p]] ≥ E
�
Tr

�
f(X)2p

��

= E

�
Tr

��
h(X)h(X)∗ 0

0 h(X)∗h(X)

�p��

= 2E[Tr[(h(X)h(X)∗)p]]

since Tr[(h(X)h(X)∗)p] = Tr[(h(X)∗h(X))p].
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[75] G. Takács et al. “Scalable collaborative filtering approaches for large recommender
systems”. In: Journal of Machine Learning Research 10 (2009), pp. 623–656.

[76] C. Thompson. “If You Liked This, You’re Sure to Love That”. In: New York Times
Magazine (2008).

[77] K. Toh and S. Yun. “An accelerated proximal gradient algorithm for nuclear norm
regularized least squares problems”. In: Pacific Journal of Optimization 6.3 (2010),
pp. 615–640.



BIBLIOGRAPHY 83

[78] D. Torres, B. K. Sriperumbudur, and G. Lanckriet. Finding Musically Meaningful
Words by Sparse CCA. Neural Information Processing Systems (NIPS) Workshop on
Music, the Brain and Cognition, 2007.

[79] J. A. Tropp. “User-friendly tail bounds for sums of random matrices”. In: Found.
Comput. Math. (2011).

[80] P. White. “The Computation of Eigenvalues and Eigenvectors of a Matrix”. In: Journal
of the Society for Industrial and Applied Mathematics, Vol 6.4 (1958), pp. 393–437.

[81] C. Williams and M. Seeger. “Using the Nyström Method to Speed Up Kernel Ma-
chines”. In: NIPS. 2000.

[82] Z. Zhang, H. Zha, and H. Simon. “Low-rank approximations with sparse factors I: Basic
algorithms and error analysis”. In: SIAM J. Matrix Anal. Appl. 23 (2002), pp. 706–727.

[83] Z. Zhang, H. Zha, and H. Simon. “Low-rank approximations with sparse factors II:
Penalized methods with discrete Newton-like iterations”. In: SIAM J. Matrix Anal.
Appl. 25 (2004), pp. 901–920.

[84] Z. Zhou et al. Stable Principal Component Pursuit. arXiv:1001.2363v1[cs.IT]. 2010.

[85] H. Zou, T. Hastie, and R. Tibshirani. “Sparse Principal Component Analysis”. Tech-
nical Report, Statistics Department, Stanford University. 2004.


