
A Fast Filter for Physically-Based Rendering

Brandon Wang
Ravi Ramamoorthi, Ed.
James O'Brien, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-118

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-118.html

May 31, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Contents

Contents 1

1 Introduction 3

2 Related Work 4

3 Soft Shadows 5

3.1 Formulation . 6

3.2 Filter Formulation . 7

3.3 Filtering Algorithm . 10

3.4 Implementation . 11

3.5 Results . 12

4 Di↵use Indirect Lighting 15

4.1 Formulation . 16

4.2 Filter Formulation . 16

4.3 Implementation . 18

4.4 Results . 19

5 Extensions 21

6 Conclusion 22

Bibliography 23

References . 23

1

Acknowledgements

I’d like to thank my advisor, Ravi Ramamoorthi, for being an invaluable source of wisdom and

guidance for my research project, my work in Computer Graphics, and my future career. I’d also

like to thank Soham Mehta for the immeasurable work we share in the larger projects this report

contributes to.

Without the guidance and knowledge of the Computer Graphics educators at UC Berkeley,

namely Professor Carlo Sequin, Professor James O’Brien, and Professor Ravi Ramamoorthi, I

would not have been able to find the field as amazing as I have. Thanks also to Milos Hasan,

Michael Tao, Jiamin Bai, Yeon Jin Lee, Fu-Chung Huang, Florian Hecht, Dikpal Reddy, and the

entire Visual Computing Lab for their guidance.

I thank the Siebel Scholars Foundation for gracefully funding my Master’s year at Berkeley. I

would also like to thank Adobe, Intel, NVIDIA, and Pixar for providing the equipment this work

utilizes.

Finally, I’d like to thank my family and friends, for keeping me sane through the process.

2

Chapter 1

Introduction

Ray tracing allows for physically-accurate renderings of various phenomena, producing a high-

quality image. Because of its computational complexity, ray tracing is typically reserved for o✏ine

rendering, where each image is allowed virtually unlimited time to render. Much work has been

done to accelerate ray tracing to enter the interactive domain, requiring each image to be produced

in less than a few seconds.

Current ray tracers can interactively produce images with only a limited subset of their possible

o✏ine e↵ects. My work with Professor Ravi Ramamoorthi and Soham Mehta focuses on physical

phenomena that are too computationally expensive to render interactively. We focus on two e↵ects:

soft shadows cast by area lights and di↵use indirect lighting, but the principles behind our work

can be applied to various other phenomena.

Building on a novel frequency analysis of specific phenomena, we create a filter that will produce

high-quality images, with an order of magnitude less samples from the ray tracer, compared to a

traditional Monte Carlo ray tracer. Interactivity is achieved by minimizing filtering overhead, and

sampling through a real-time ray tracer, such as NVIDIA’s OptiX.

3

Chapter 2

Related Work

Much work has been done to extend real-time techniques to render complex e↵ects. However,

these methods either exhibit artifacts, make speed vs. accuracy tradeo↵s, or are not interactive.

Techniques for real-time shadows include extensions of Shadow Maps [1] and Shadow Volumes [2]

[3]–[10]. Techniques for di↵use indirect illumination include approximate methods [11], [12], point-

based methods [13]–[15], and precomputation-based methods [16], [17]. Our work converges to a

high-quality ground truth result, is interactive, and requires no significant precomputation.

We focus on the traditionally slow, but physically-accurate ray and path tracing approach,

introduced by Cook [18] and Kajiya [19]. Various methods exist to accelerate ray tracing itself [20]–

[23], but our work is orthogonal to these techniques. In fact, we use our work in conjunction with

the NVIDIA OptiX GPU ray tracing framework [24] to accelerate our sampling process.

Our work is most closely related to techniques that reduce the number of samples taken in

ray tracing. [25]–[27]. The theoretical basis of our techniques are built on frequency analysis of

shadows and light transport [28]–[36]. However, reconstruction of samples is typically slow, and is

often slower than sampling itself. Our filter focuses on having a minimal computational overhead.

We operate on a noisy rendering, and essentially de-noise the render, building on [37]–[41].

Many filters in this domain are applied to Monte Carlo rendering, but add significant overhead or

are not physically-accurate [42]–[47]. Similar filters have been devised for global illumination [48]–

[50], but the filter we present is an image-space filter based on frequency analysis.

4

Chapter 3

Soft Shadows

(a) Hard Shadows (b) Soft Shadows

Figure 3.1: Hard and soft shadows.

Shadows cast by objects lit by an area light exhibit regions of soft penumbra, areas of partial

illumination. The result is a soft shadow, with a gradient from dark regions to light regions. As

most real-world shadows do not have hard edges, soft shadows greatly add to the realism of a

rendered scene.

The ray tracing solution to render a shadow is to cast a ray from the point of interest towards

the light, and check for any objects that occlude the light. This works well for a point light, where

only a single ray is needed. However, for area lights, the light must be sampled and the occlusion

5

value is integrated over the surface of the light. This requires many more rays, and increases

computation time significantly.

The number of rays required for an accurate rendering depends on the scene being rendered.

Large light sources may require thousands of samples for convergence. Undersampling results in

high frequency noise, which greatly detracts from the perceptual accuracy of the image.

Blurring hard shadows with a uniform kernel is a common solution to removing hard shadows

from renders. These blurred shadows, however, greatly di↵er from the physically accurate version.

(a) Undersampled Soft Shadows (b) Blurred Hard Shadows (c) Our Soft Shadows

Figure 3.2: Comparison of undersampled soft shadows, blurred hard shadows, and our physically-

based soft shadows

3.1 Formulation

Focusing on area light shadows, the incoming light comes from the fraction of the area light

that is unoccluded from the point we are shading. This is captured as an integration over the area

of the light, with an occlusion function that is typically sampled through ray tracing.

We assume that the area light source is planar, with a Gaussian distribution, and concern

ourselves with only di↵use occlusion. The occlusion is separated from the shading, and is a close

approximation to the true e↵ect.

6

Formally, our goal is to compute the color of a point at ~x, h(~x).

h(~x) = r(~x)

Z

S

f(~x, ~y)l(~y)d~y (3.1)

f(~x, ~y) is the binary occlusion or shadow function, which is 1 if the point ~y on the light is visible

from ~x, and 0 otherwise. l(~y) is the light source intensity, and can optionally be combined with

BRDFs. S denotes the surface of the light. r(~x) is the irradiance from the light, approximated

from the light’s center, but can also contain textures. Our interest lies in the integration over the

light.

3.2 Filter Formulation

(3.1), as implemented in a traditional ray tracer, treats the color at each point, h(~x), as an

independent calculation. We notice that soft shadows are relatively low frequency, typically much

lower than the rate at which the points are being sampled.

These low spatial frequency shadows are a result of integrating over the area of the light, where

neighboring points will sample similar paths from the point to the light. We would like to share

theses similar samples across points, but do so in an accurate manner.

Our work, presented in [51], performs a frequency analysis of area light shadows, and formulates

a filter that can utilize noisy and undersampled values of h(~x) and reconstruct an accurate value

by sharing samples across pixels. This allows for a drastic reduction in the number of samples the

ray tracer is required to produce, thus significantly accelerating renders. Although we require addi-

tional computation to processes these samples, we will optimize the computation to have minimal

overhead.

The reconstruction is done after integration in (3.1), allowing the filter to execute as a post-

process.

7

The filter, !, utilizes undersampled occlusion values, h
n

(~x) to obtain a filtered final color h(~x).

h
n

(~x) is defined similarly to (3.1), but without r(~x), the approximated light intensity. Our filter is

only concerned with the integration over the surface of the light.

h(~x) = r(~x)

Z
h
n

(~x0)w(~x� ~x0,�(~x))d~x0

h
n

(~x) =

Z

S

f(~x, ~y)l(~y)d~y
(3.2)

The filter is Gaussian with an adaptive distribution, depending on per-point values. This is

essentially sharing samples between two di↵erent integrated occlusion values at ~x and ~x0. Here, we

measure distance, ||~x� ~x0||, along the plane parallel to the light.

w(~x� ~x0,�) =
1p
2⇡�

exp

� ||~x� ~x0||2

2�2

!
(3.3)

The key to maintaining realistic shadows is the adaptive filter weight, �, which depends on

scene properties per sampled point ~x. We are able to share more samples between points with

softer shadows, giving a wide filter radius, as can be seen in 3.3a. The full derivation of the filter

weight is given in [51].

�(~x) =
1

3
max

✓
�

✓
d1

dmax

2

� 1

◆
,

d1
dmax

2 d

◆
(3.4)

d1 is the distance from the receiver to the light, dmax

2 is the maximum distance from the occluder

to the light, d is the projected distance of the pixel corresponding with ~x. � is the standard deviation

of our light, assumed to be Gaussian.

8

(a) Scale � (b) Samples per pixel

Figure 3.3: Visualizations of filter scale and sampling rates

The frequency analysis also allows us to define an adaptive sampling rate per pixel (spp). We

sample more in regions that require more information per noisy h
n

(~x), such as hard edges, and

sample less in regions that do not require as much information, such as regions in a soft penumbra,

as seen in figure 3.3b. Our sampling rate, n, is defined as:

n(~x) = 4(1 +
s1
s2

)2

2

s2

s
A

p

A
l

+ (1 + s2)
�1

!2

s1 =
d1

dmin

2

� 1

s2 =
d1

dmax

2

� 1

(3.5)

A
p

is the projected area of a pixel, and A
l

is the area of the light source, in square meters.

9

3.3 Filtering Algorithm

Because the filter (3.2) operates on a noisy estimate of the incoming light, we can generate a

noisy, low-sampled image and filter the image for our final result.

By filtering in image-space, we can only sample values from visible points. We lose information

in regions that are not seen by the camera, but reduce our 3D world-space integration to a 2D

integration. Our filter width can be converted to image-space by calculating the projected areas of

each pixel. In practice, however, we found a large user-defined constant pixel value to su�ce.

The algorithmic complexity of this image filter calls for a O(n2) implementation, where n is the

largest dimension of our filter size. We found that this O(n2) filter added significant computational

overhead, prohibiting our implementation from being interactive.

To accelerate our filter, we draw inspiration from uniform gaussian filters, which are linearly

separable, converting the filter from a 2D filter to two 1D filters, giving a runtime of O(n).

We can attempt to split our filter in the same manner.

w(~x� ~x0,�(~x)) = w(~x� ~x00,�(~x))w(~x0 � ~x00,�(~x)) (3.6)

The split requires our �(~x) to be constant across both passes of the filter. Although this can be

separated into two passes, our first pass must filter each ~x0 with multiple values of �(~x), nullifying

the performance gains from separating the filter into two passes. We notice that the filter weights

of two points, �(~x) and �(~x0) vary slowly with the distance between the two points, ||~x � ~x0||, for

continuous gradients of shadows. As the weight given to two samples falls o↵ with distance, we can

approximate the exact filter with one that holds similar �(~x) values.

w(~x� ~x0,�(~x)) ⇡ w(~x� ~x00,�(~x))w(~x00 � ~x0,�(~x0))

h0
n

(~x) =

Z

i0

h
n

(~x0)w(~x� ~x0,�(~x))d~x0

h(~x) =

Z

i1

h0
n

(~x0)w(~x� ~x0,�(~x))d~x0

(3.7)

This is our two-pass split of (3.2), into two dimensions. i0 and i1 are the neighboring image-

space pixels in each image dimension.

10

This approximation is exact when the values of �(~x) are the same across sampled points. In

practice, the error of using this approximated filter is very small, and almost unperceivable. As

can be seen in figure 3.6, we still converge to a ground truth result, despite this approximation. [51]

goes on to derive a decreasing filter width with increasing samples, guaranteeing convergence to

ground truth with infinite samples. The results listed in this report, however, do not include this

sample-count based filter size.

Using the pre-integration of samples allows our sampling rate to be decoupled with the memory

footprint of our filter - increasing sampling rates does not increase memory usage, a prohibitive

bottleneck of many reconstruction methods. By using the linearly separated filter, we can filter

in mere milliseconds on a NVIDIA GTX 570 GPU. Furthermore, while sampling is dependent on

scene complexity, our filter is not, allowing a minimal overhead on complex scenes.

3.4 Implementation

We leveraged the use of NVIDIA’s OptiX GPU-accelerated ray tracing framework. Our imple-

mentation consists of three passes:

1. Sparse Sampling: We first sparsely sample per-pixel occlusion. While sampling the oc-

clusion function, we store the distances of the nearest and farthest occluders, as well as the

distance to the light. This information is given when ray tracing shadows, and adds minimal

overhead to a standard ray tracer.

2. Adaptive Sampling: Each pixel is then adaptively sampled according to (3.5). The samples

are integrated to obtain noisy per-pixel occlusion values. This step is closest to a traditional

Monte Carlo rendering of a scene.

3. Filtering: The values from the first pass are used to construct the filter widths, and the noisy

occlusion values from the second pass are filtered to obtain our final occlusion values. For

practical purposes, we impose a threshold on the acceptable di↵erence in � values between

two samples, to avoid large errors in using our approximate filter.

11

(a) Sparse sampling (b) Adaptive sampling (c) Filtering

Figure 3.4: Implementation steps.

3.5 Results

Figure 3.5 contains example scenes rendered using our method. These scenes render interac-

tively, with timings shown in Table 3.1. Grids (figure 3.5a) is geometrically simple, but exhibits

complex shadow behavior. More complex scenes, such as Bench (figure 3.5b) have a much higher

sampling time, but our filter performs at a constant speed. Tentacles (figure 3.5c) and Spheres

(figure 3.5d) exhibit complex shadows on curved surfaces.

We quantify the quality of our renders by taking the RMS error between our render and a

ground truth image in figure 3.6. For comparison, we o↵er errors for renders in which we filter a

non-adaptively sampled render, as well as a traditional Monte Carlo render. The filter used in these

measurements utilizes the filter scale from equation (3.4). The plot is on a logarithmic scale - our

method utilizing 27 average samples per-pixel compares to a Monte Carlo render with 165 samples

per-pixel. Note that this filter converges towards a ground truth value, despite being approximate.

Our full implementation is open-source, and is available, along with supplementary videos at

http://graphics.berkeley.edu/papers/UdayMehta-AAF-2012-12/.

12

http://graphics.berkeley.edu/papers/UdayMehta-AAF-2012-12/

(a) Grids (b) Bench

(c) Tentacles (d) Spheres

Figure 3.5: Example Scenes

Scene Vertices Avg.
SPP

Raytracing
(ms)

Filtering
(ms)

Total
(ms)

FPS
(filtered/unfiltered)

Grids 0.2 K 14.2 20.4 5.01 25.4 39 / 49
Bench 309 K 28.0 425 4.78 430 2.3 / 2.3
Tentacles 145 K 26.3 288 4.79 293 3.4 / 3.5
Spheres 72 K 33.8 342 4.99 347 2.9 / 2.9

Table 3.1: Timings of our scenes rendered at 640⇥ 480, using an NVIDIA GTX 570 GPU.

13

10 25 50 100 150 200

0.0013

0.0025

0.005
0.006

0.01

0.02

0.04

0.08

Samples Per Pixel

R
M

S
 E

rr
o
r

n M
C

Uniform MC, Unfiltered
Uniform MC, Filtered
Adaptive MC, Filtered

Figure 3.6: A log-log plot of the RMS pixel error vs average sampling rate for the Grids scene

(figure 3.5a). Our method, shown in blue, has a consistently lower error than a traditional Monte

Carlo render, shown in red.

14

Chapter 4

Di↵use Indirect Lighting

(a) Direct Lighting Only (b) Direct and Indirect Lighting

Figure 4.1: E↵ect of di↵use indirect lighting.

We considered only incoming light directly from light sources for our area light soft shadow

formulation. However, for more realistic scenes, we must also consider indirect lighting. Indirect

lighting refers to the light that is reflected o↵ a surface, and not directly from a light source. We

focus on di↵use indirect lighting, the indirect light that is reflected o↵ di↵use surfaces.

Figure 4.1 shows the added realism indirect lighting gives to a scene. The colors of the walls

can be clearly seen on the spheres, and portions of shadows are illuminated.

15

4.1 Formulation

Our formulation is similar to the one used in soft shadows. However, for di↵use indirect lighting,

we must use a path traced result, which we define recursively, similarly to [19].

L
o

(~x,!
o

) =

Z

S

L
i

(~x,!
i

)f(!
i

,!
o

) cos(!
i

)d!
i

(4.1)

L
o

represents radiance, or emitted light, from a point ~x in direction !
o

. L
i

refers to the light

coming inward from !
i

to ~x, taking occlusion into account. S refers to the half hemisphere aligned

with the object’s normal. f(!
i

,!
o

) is the surface’s BRDF.

Note that this is a recursive definition, as L
i

(~x,!
i

) = L
o

(~y,�!
i

), if the closest object to ~x along

!
i

is ~y. This is done using recursive ray tracing, with a controlled number of allowed recursions, or

bounces. Our focus is the integration of the L
i

term.

4.2 Filter Formulation

As with soft shadows, (4.1) treats each point as an independent calculation. Di↵use indirect

lighting e↵ects are also typically low frequency, and we can utilize the frequency analysis of [52].

We can again filter the indirect illumination much as we did occlusion. The noisy L
on

is filtered

to produce L
o

. We do not make the light intensity approximation in (3.2), and can filter (4.1)

directly.

L
o

(~x,!
o

) =

Z
w(~x� ~y,�(~x))L

on

(y)dy

L
on

(~x,!
o

) =

Z

S

L
in

(~x,!
i

)f(!
i

,!
o

) cos(!
i

)d!
i

(4.2)

16

Our filter is once again an adaptive Gaussian. This remains almost unchanged from (3.3). Our

distance is now measured in world-space, and not along the plane parallel to a light.

w(~x� ~x0,�) =
1p
2⇡�

exp

� ||~x� ~x0||2

2�2

!
(4.3)

Again, the key for filtering our e↵ect is the adaptive filter weight, �, depending on scene

properties. The full derivation of the filter weight is presented in [52].

�(~x) = max

✓
2z

min

⌦max

h

,
d

0.15

◆
(4.4)

d is the projected distance per pixel. z
min

is the minimum world-space distance to any reflector.

The filter of integrated values of (4.2) depends not only on the frequency of incoming light,

but also the BRDF of the surface, f(!
i

,!
o

). Taking this into account, the values of ⌦max

h

di↵er

depending on the properties of f(!
i

,!
o

). We present the values of ⌦max

h

for Lambertian di↵use

surfaces, ⌦max

h,diff

, and Blinn-Phong specular surfaces, ⌦max

h,spec

. [52] provides the full derivation of

these values, and outlines derivations for additional surface types.

⌦max

h,diff

= 2.8

⌦max

h,spec

(m) = 3.6 + 0.084m
(4.5)

m refers to the Blinn-Phong exponent.

As with area light soft shadows, we can utilize a similar derivation for an adaptive sampling

rate. This allows us to increase samples in regions with a small filter radius, and decrease samples

in regions with a large filter radius.

n(~x) = 0.4(0.9⌦max

h

p
A

p

z
min

+ 0.3)2 · (⌦max

h

)2
✓
1 + 0.9

z
max

z
min

◆2

(4.6)

17

4.3 Implementation

The filtering algorithm does not change from section 3.3. The only change arises from using

di↵erent parameters to determine the filter width. For scenes with specular objects, we maintain

separate bu↵ers for the di↵use and specular components lit by the indirect light, and filter them

separately.

Our interactive implementation assumes that a point light illuminates a scene of Lambertian

di↵use and moderately specular objects, but our equations can be directly applied to area and

volume lights, with di↵use and specular receivers.

Although di↵use indirect lighting is quite a bit di↵erent than soft shadows as a physical phenom-

ena, we have a very similar implementation to our soft shadows version, using NVIDIA’s OptiX,

using the same three passes. z
min

is now sampled where d1 and dmax

2 were sampled, and we separate

the indirect illumination calculation from the direct illumination calculation.

Indirect di↵use lighting requires more samples than area light soft shadows, integrating over

a hemisphere at each point. Area light soft shadows require an integration only over the solid

angle subtended by the area light. Because of this increased sample requirement, we opted for the

dual-GPU NVIDIA GTX 690, accelerating our sampling steps.

A traditional ray tracer may be easily parallelized by computing each pixel separately. Our

filter, however, requires the result of its neighboring pixels. For our GPU-accelerated filter to

operate correctly, we copy memory between separate GPUs, increasing our overhead. Although

our overhead increases from moving from a single GPU to dual GPUs, we do not expect as an

significant increase in overhead in moving to more GPUs.

Our implementation copied the relevant bu↵ers to the host CPU, which then copied a combined

bu↵er to a single GPU. This gives us reasonable filtering times, but it can be further accelerated

by using a direct GPU to GPU transfer.

18

4.4 Results

Figure 4.3 showcases example scenes running at interactive speeds. A version of the Cornell Box

with a Stanford Dragon (figure 4.3a) clearly exhibits the e↵ects of di↵use indirect lighting. Both

walls contribute to the final color of the dragon and spheres, and also partially illuminate shadows.

Sponza (figure 4.3b) and Conference (figure 4.3c) show interactive speeds on highly complex di↵use

scenes. Sibenik (figure 4.3d) contains a glossy, textured ground.

We can again quantify the quality of our renders, compared to traditional Monte Carlo render-

ing. Once again, our method holds consistently less error at equal sampling rates, and converges

towards a ground truth rendering as we increase our sample counts.

Our implementation is open-source, and is available, along with supplementary videos at http:

//graphics.berkeley.edu/papers/Udaymehta-IPB-2013-07/.

50 100 200 400 600

0.005

0.01

0.02

0.03

Samples Per Pixel

R
M

S
 E

rr
o

r

Uniform MC, Unfiltered
Uniform MC, Filtered
Adaptive MC, Filtered

Figure 4.2: A log-log plot of the RMS pixel error vs average sampling rate for the Conference scene

(figure 4.3c). Our method, shown in blue, has a consistently lower error than a traditional Monte

Carlo render, shown in red.

19

http://graphics.berkeley.edu/papers/Udaymehta-IPB-2013-07/
http://graphics.berkeley.edu/papers/Udaymehta-IPB-2013-07/

(a) Cornell Box (b) Sponza

(c) Conference (d) Sibenik

Figure 4.3: Example Scenes

scene triangles avg.
spp

bounces sampling
(ms)

filtering
(ms)

total
(ms)

fps
(filtered/unfiltered)

Cornell Box 16.7 K 59 1 318 61 379 2.64 / 3.14
2 690 67 757 1.32 / 1.44

Sponza 262 K 63 1 761 65 826 1.21 / 1.31
Conference 331 K 60 1 361 55 416 2.40 / 2.77
Sibenik 75 K 86 1 550 60 610 1.64 / 1.82

2 1510 64 1574 0.64 / 0.67

Table 4.1: Timings of our scenes rendered at 640⇥ 480, on a NVIDIA GTX 690.

20

Chapter 5

Extensions

Although soft shadows and di↵use illumination are very di↵erent physical e↵ects, we notice

that they are rather low frequency, when compared to the pixels they are being sampled at. This

is because they must integrate over an area, and neighboring pixels will sample similar paths.

By performing a frequency analysis on various e↵ects, an analytical bandlimit can be deter-

mined. Using this physical bandlimit, we can filter a noisy image to e↵ectively share samples across

neighboring pixels. Utilizing this frequency analysis, we devise a fast, constant memory filter to

share samples across pixels.

Though only soft shadows and di↵use interreflections have been explicitly shown, many e↵ects

that are computationally expensive due to integration can be analyzed in the same way. Examples

of straightforward extensions for which this filter can operate on with an appropriate analysis

include motion blur, depth of field, and area light illumination.

21

Chapter 6

Conclusion

In this report, we attempt to accelerate computationally expensive renders by using a filter with

a low overhead. By using our filter, we are able to generate renders of equal error to a traditional

Monte Carlo render, with an order of magnitude less samples.

Our filter focuses on simplicity and e�ciency, and is straightforward to implement, even in

existing ray tracing systems. The key contribution of our work is the e�ciency of the filter, which

runs in a few milliseconds, and is invariant to scene complexity. Using the filter allows accurate,

interactive renders of complex e↵ects.

22

References

[1] L. Williams, “Casting curved shadows on curved surfaces,” in SIGGRAPH 78, 1978, pp. 270–274.

[2] F. Crow, “Shadow algorithms for computer graphics,” in SIGGRAPH 77, 1977, pp. 242–248.

[3] G. Guennebaud, L. Barthe, and M. Paulin, “Real-time soft shadow mapping by backprojection,” in EGSR 06,
2006, pp. 227–234.

[4] ——, “High-quality adaptive soft shadow mapping,” Computer Graphics Forum, vol. 26, no. 3, pp. 525–533,
2007.

[5] T. Annen, Z. Dong, T. Mertens, P. Bekaert, and H. Seidel, “Real-time all-frequency shadows in dynamic scenes,”
ACM Transactions on Graphics (Proc. SIGGRAPH 08), vol. 27, no. 3, pp. Article 34, 1–8, 2008.

[6] C. Soler and F. Sillion, “Fast Calculation of Soft Shadow Textures Using Convolution,” in SIGGRAPH 98, 1998,
pp. 321–332.

[7] U. Assarsson and T. Möller, “A geometry-based soft shadow volume algorithm using graphics hardware,” ACM
Transactions on Graphics (SIGGRAPH 03), vol. 22, no. 3, pp. 511–520, 2003.

[8] S. Laine, T. Aila, U. Assarsson, J. Lehtinen, and T. Möller, “Soft shadow volumes for ray tracing,” ACM
Transactions on Graphics, vol. 24, no. 3, pp. 1156–1165, Aug. 2005.

[9] R. Overbeck, R. Ramamoorthi, and W. Mark, “A real-time beam tracer with application to exact soft shadows,”
in EGSR 07, 2007, pp. 85–98.

[10] G. Johnson, W. Hunt, A. Hux, W. Mark, C. Burns, and S. Junkins, “Soft irregular shadow mapping: fast,
high-quality, and robust soft shadows,” in I3D 2009, 2009, pp. 57–66.

[11] T. Ritschel, C. Dachsbacher, T. Grosch, and J. Kautz, “The state of the art in interactive global illumination,”
Computer Graphics Forum, vol. 31, no. 1, pp. 160–188, 2012.

[12] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eiseman, “Interative indirect illumination using voxel cone
tracing,” Computer Graphics Forum, vol. 30, no. 7, pp. 1921–1930, 2011.

[13] T. Ritschel, T. Engelhardt, T. Grosch, H. Seidel, J. Kautz, and C. Dachsbacher, “Micro-rendering for scalable,
parallel final gathering,” vol. 28, no. 5, 2009.

[14] R. Wang, R. Wang, K. Zhou, M. Pan, and H. Bao, “An e�cient GPU-based approach for interactive global
illumination,” ACM Transactions on Graphics, vol. 28, no. 3, 2009.

[15] D. Maletz and R. Wang, “Importance point projection for GPU-based final gathering,” Computer Graphics
Forum (EGSR 11), vol. 30, no. 4, pp. 1327–1336, 2011.

[16] M. Hasan, F. Pellacini, and K. Bala, “Direct to Indirect Transfer for Cinematic Relighting,” ACM Transactions
on Graphics (Proc. SIGGRAPH 06), vol. 25, no. 3, pp. 1089–1097, 2006.

[17] P. Sloan, J. Kautz, and J. Snyder, “Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low-
Frequency Lighting Environments,” ACM Transactions on Graphics (Proc. SIGGRAPH 02), vol. 21, no. 3, pp.
527–536, 2002.

[18] R. Cook, T. Porter, and L. Carpenter, “Distributed Ray Tracing,” in SIGGRAPH 84, 1984, pp. 137–145.

[19] J. Kajiya, “The Rendering Equation,” in SIGGRAPH 86, 1986, pp. 143–150.

[20] D. van Antwerpen, “Improving SIMD e�ciency for parallel monte carlo light transport on the GPU,” in High
Performance Graphics, 2011.

[21] I. Wald, C. Benthin, P. Slusallek, T. Kollig, and A. Keller, “Interactive global illumination using fast ray tracing,”
in Rendering Techiques (EGWR 02), 2002.

[22] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and P. Shirley, “State of the Art in
Ray Tracing Animated Scenes,” in STAR Proceedings of Eurographics 07, D. Schmalstieg and J. Bittner, Eds.
The Eurographics Association, Sep. 2007, pp. 89–116.

[23] E. Eisemann and X. Décoret, “Visibility sampling on gpu and applications,” 2007. [Online]. Available:
http://maverick.inria.fr/Publications/2007/ED07a

[24] S. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire, K. Morley,
A. Robison, and M. Stich, “OptiX: A general purpose ray tracing engine,” ACM Transactions on Graphics,
vol. 29, no. 4, pp. 66:1–66:13, 2010.

[25] B. Guo, “Progressive radiance evaluation using directional coherence maps,” in SIGGRAPH 98, 1998, pp. 255–
266.

[26] T. Hachisuka, W. Jarosz, R. Weistro↵er, K. Dale, G. Humphreys, M. Zwicker, and H. Jensen, “Multidimensional
adaptive sampling and reconstruction for ray tracing,” ACM Transactions on Graphics, vol. 27, no. 3, 2008.

23

http://maverick.inria.fr/Publications/2007/ED07a

[27] R. Overbeck, C. Donner, and R. Ramamoorthi, “Adaptive Wavelet Rendering,” ACM Transactions on Graphics
(SIGGRAPH ASIA 09), vol. 28, no. 5, 2009.

[28] J. Chai, S. Chan, H. Shum, and X. Tong, “Plenoptic Sampling,” in SIGGRAPH 00, 2000, pp. 307–318.

[29] R. Ramamoorthi, M. Koudelka, and P. Belhumeur, “A Fourier Theory for Cast Shadows,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 27, no. 2, pp. 288–295, 2005.

[30] F. Durand, N. Holzschuch, C. Soler, E. Chan, and F. Sillion, “A Frequency Analysis of Light Transport,” ACM
Transactions on Graphics (Proc. SIGGRAPH 05), vol. 25, no. 3, pp. 1115–1126, 2005.

[31] D. Lanman, R. Raskar, A. Agrawal, and G. Taubin, “Shield fields: modeling and capturing 3D occluders,” ACM
Transactions on Graphics (SIGGRAPH ASIA 08), vol. 27, no. 5, 2008.

[32] K. Egan, F. Hecht, F. Durand, and R. Ramamoorthi, “Frequency analysis and sheared filtering for shadow light
fields of complex occluders,” ACM Transactions on Graphics, vol. 30, no. 2, 2011.

[33] K. Egan, Y. Tseng, N. Holzschuch, F. Durand, and R. Ramamoorthi, “Frequency analysis and sheared recon-
struction for rendering motion blur,” ACM Transactions on Graphics, vol. 28, no. 3, 2009.

[34] C. Soler, K. Subr, F. Durand, N. Holzschuch, and F. Sillion, “Fourier depth of field,” ACM Transactions on
Graphics, vol. 28, no. 2, 2009.

[35] K. Egan, F. Durand, and R. Ramamoorthi, “Practical filtering for e�cient ray-traced directional occlusion,”
ACM Transactions on Graphics (SIGGRAPH Asia 11), vol. 30, no. 6, 2011.

[36] L. Belcour, C. Soler, K. Subr, N. Holzschuch, and F. Durand, “5D covariance tracing for e�cient defocus and
motion blur,” ACM Transactions on Graphics (to appear) [MIT-CSAIL-TR-2012-034], 2013.

[37] H. Rushmeier and G. Ward, “Energy preserving non-linear filters,” pp. 131–138, 1994.

[38] H. Jensen and N. Christensen, “Optimizing path tracing using noise reduction filters,” in WSCG 95, 1995, pp.
134–142.

[39] M. McCool, “Anisotropic di↵usion for monte carlo noise reduction,” ACM Transactions on Graphics, vol. 18,
no. 2, pp. 171–194, 1999.

[40] R. Xu and S. Pattanaik, “A novel monte carlo noise reduction operator,” IEEE Computer Graphics and Appli-
cations, vol. 25, no. 2, pp. 31–35, 2005.

[41] M. Meyer and J. Anderson, “Statistical acceleration for animated global illumination,” ACM Transactions on
Graphics, vol. 25, no. 3, pp. 1075–1080, 2006.

[42] P. Sen and S. Darabi, “On filtering the noise from the random parameters in monte carlo rendering,” ACM
Transactions on Graphics, vol. 31, no. 3, 2012.

[43] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collabo-
rative filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[44] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand, “Temporal light field reconstruction for rendering
distribution e↵ects,” ACM Transactions on Graphics, vol. 30, no. 4, 2011.

[45] J. Lehtinen, T. Aila, S. Laine, and F. Durand, “Reconstructing the indirect light field for global illumination,”
ACM Transactions on Graphics, vol. 31, no. 4, 2012.

[46] T. Li, Y. Wu, and Y. Chuang, “SURE-based optimization for adaptive sampling and reconstruction,” ACM
Transactions on Graphics (SIGGRAPH Asia 2012), vol. 31, no. 6, 2012.

[47] F. Rouselle, C. Knaus, and M. Zwicker, “Adaptive rendering with non-local means filtering,” ACM Transactions
on Graphics (SIGGRAPH Asia 2012), vol. 31, no. 6, 2012.

[48] P. Shirley, T. Aila, J. Cohen, E. Enderton, S. Laine, D. Luebke, and M. McGuire, “A local image reconstruction
algorithm for stochastic rendering,” in ACM Symposium on Interactive 3D Graphics, 2011, pp. 9–14.

[49] P. Bauszat, M. Eisemann, and M. Magnor, “Guided image filtering for interactive high quality global illumina-
tion,” Computer Graphics Forum (EGSR 11), vol. 30, no. 4, pp. 1361–1368, 2011.

[50] H. Dammertz, D. Sewtz, J. Hanika, and H. Lensch, “Edge-avoiding a-trous wavelet transform for fast global
illumination filtering,” in High Performance Graphics (HPG), 2010, pp. 67–75.

[51] S. Mehta, B. Wang, and R. Ramamoorthi, “Axis-aligned filtering for interactive sampled soft shadows,” ACM
Transactions on Graphics (SIGGRAPH Asia 12), vol. 31, no. 6, 2012.

[52] S. Mehta, B. Wang, R. Ramamoorthi, and F. Durand, “Axis-aligned filtering for interactive physically-based
di↵use indirect lighting,” ACM Transactions on Graphics (SIGGRAPH 13), vol. 32, no. 4, 2013.

24

	Contents
	Introduction
	Related Work
	Soft Shadows
	Formulation
	Filter Formulation
	Filtering Algorithm
	Implementation
	Results

	Diffuse Indirect Lighting
	Formulation
	Filter Formulation
	Implementation
	Results

	Extensions
	Conclusion
	Bibliography
	References

