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Abstract

Using FPGAs to Simulate Novel Datacenter Network Architectures At Scale

by

Zhangxi Tan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David A. Patterson, Chair

The tremendous success of Internet services has led to the rapid growth of Warehouse-Scale
Computers (WSCs). The networking infrastructure has become one of the most vital com-
ponents in a datacenter. With the rapid evolving set of workloads and software, evaluating
network designs really requires simulating a computer system with three key features: scale,
performance, and accuracy. To avoid the high capital cost of hardware prototyping, many
designs have only been evaluated with a very small testbed built with off-the-shelf devices,
often running unrealistic microbenchmarks or traces collected from an old cluster. Many
evaluations assume the workload is static and that computations are only loosely coupled
with the very adaptive networking stack. We argue the research community is facing a
hardware-software co-evaluation crisis.

In this dissertation, we propose a novel cost-efficient evaluation methodology, called
Datacenter-in-a-Box at Low cost (DIABLO), which uses Field-Programmable Gate Arrays
(FPGAs) and treats datacenters as whole computers with tightly integrated hardware and
software. Instead of prototyping everything in FPGAs, we build realistic reconfigurable ab-
stracted performance models at scales of O(10,000) servers. Our server model runs the full
Linux operating system and open-source datacenter software stack, including production
software such as memcached. It achieves two orders of magnitude simulation speedup over
software-based simulators. This speedup enables us to run the full datacenter software stack
for O(100) seconds of simulated time. We have built a DIABLO prototype of a 2,000-node
simulated cluster with runtime-configurable 10 Gbps interconnect using 6 multi-FPGA BEE3
boards.
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Chapter 1

Introduction

1.1 Background and Motivation

Massive warehouse-scale computers (WSCs) [45] are the foundation of widely used In-
ternet services; for examples, search, social networking, email, video sharing, and online
shopping. The tremendous success of these services has led to the rapid growth of datacen-
ters to keep up with the increasing demand, and WSCs today have up to 100,000 servers
[82]. At the warehouse scale, an application is usually a large-scale internet service, while the
hardware platform consists of thousands of individual computing nodes in datacenters with
their corresponding networking, storage, power distribution and cooling systems. Driven by
flexibility and cost efficiency, datacenters usually use customized open-source software stacks
to address critical performance and functionality issues as needed. For similar scalability and
cost reasons, customizations also happen at the hardware level. Instead of buying commer-
cial hardware off the market, some leading internet companies like Google and Facebook are
building their own hardware [27, 22], including both servers and networking gear. Due to
the emphasis on cost efficiency and scalability, datacenters are no longer just a collection
of servers running traditional commercial workloads. In other words, the datacenter is a
massive computer system with many hardware and software innovations.

1.1.1 Datacenter Networking

In recent years, many key technologies, such as container-based datacenter construction
and server virtualization, enable datacenters to grow rapidly to scales of 50,000 to 100,000
servers [82]. Cost-efficient low-end servers are preferred building blocks at this enormous
scale [43]. As networking requirements increase with larger numbers of smaller systems, this
leads to increasing networking delays and demand for more ports in an already expensive
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switching fabric. As observed in many recent papers [72, 122], network infrastructure has
become one of the most vital component in a datacenter. First, networking infrastructure
has a significant impact on server utilization, which is an important factor in datacenter
power consumption. Second, network infrastructure is crucial for supporting-data intensive
Map-Reduce jobs. Finally, network infrastructure accounts for 18% of monthly datacenter
costs [72], which is the third largest contributing factor. However, there are many practical
issues scaling existing commercial off-the-shelf Ethernet switches, especially at a high link
speed, such as 10 gigabit per second (Gbps).

1. Current networks are extremely complex, particularly the switch software.

2. Existing networks have many different failure modes. Occasionally, correlated failures
are found in replicated million-dollar units.

3. Existing large commercial switches and routers command high margins and charge a
great deal for features that are rarely used in datacenter. Therefore, they are very
difficult to scale out to larger configurations without complete redesign.

4. Some datacenters require a large number of ports at aggregate or datacenter-level
switches at extremely high link bandwidth. But such switches do not exist on the
market currently [67]. For instance, Google G-scale network is running on custom-
built 10 Gbps switches with 128 ports, with plans for 40 Gbps systems supporting as
many as 1,000 ports [22].

. Therefore, many researchers have proposed novel datacenter network architectures
[73, 74, 81, 102, 121, 122] with most of them focusing on new switch designs. There are also
several new network products emphasizing low latency and simple switch designs [13, 14].
When comparing these new network architectures, we found a wide variety of design choices
in almost every aspect of the design space, such as switch designs, network topology, pro-
tocols, and applications. For example, there is an ongoing debate between low-radix and
high-radix switch design. Most proposed designs have only been tested with a very small
testbed running unrealistic microbenchmarks, as it is very difficult to evaluate network archi-
tecture innovations at scale without first building a large datacenter. We believe these basic
disagreements about fundamental design decisions are due to the different observations and
assumptions taken from various existing datacenter infrastructures and applications, and the
lack of a sound methodology to evaluate new options.

1.1.2 Limitation of existing evaluation methodologies

Recent novel network architectures employ a simple, low-latency, supercomputer-like
interconnect. For example, the Sun Infiniband datacenter switch [13] has a 300ns port-
port latency as opposed to the 7–8µs of common Gigabit Ethernet switches. Even at the
datacenter level, where traditional Cisco and Juniper monster switches or routers dominate
to handle inter-datacenter traffic, simple switches with minimum software are preferred.

2



The Google G-scale OpenFlow switch [96] runs almost no software except the OpenFlow
agent using just the BGP and ISIS protocols. With rapidly evolving set of workloads and
software, and a supercomputing interconnect, evaluating datacenter network architectures
really requires simulating a computer system with the following three features.

1. Scale: Datacenters contain O(100,000) server or more. Although few single apps uses
up all servers in a datacenter, O(10,000) scales are desired to study networking phe-
nomena at aggregate and datacenter-level switches.

2. Performance: Current large datacenter switches have 48/96 ports, and are massively
parallel. Each port has 1–4K flow tables and several input/output packet buffers.
In the worst case, there are ∼200 concurrent events every clock cycle. In addition,
high-bandwidth switch processors often employ multicore architectures. For example,
Broadcom 100 Gbps Ethernet network processor BCM88030 includes as many as 64
custom multithreaded processors.

3. Accuracy : A datacenter network operates at nanosecond time scales. For example,
transmitting a 64-byte packet on a 10 Gbps link takes only ∼50ns, which is compara-
ble to DRAM access time. This precision implies many fine-grained synchronizations
during simulation if models are to be accurate.

In addition, as pointed out in [45], the technical challenges of designing datacenters are no
less worthy of the expertise of computer systems architects than any other class of machines.
Their size alone makes them difficult to experiment with or simulate efficiently, therefore,
system designers must develop new techniques to guide design decisions. However, most
proposed designs have only been tested with a very small testbed running unrealistic mi-
crobenchmarks, often built using off-the-shelf devices [66] that have limitations when explor-
ing proposed new features. The behavior observed by running a test workload over a few
hundred nodes bears little relationship to the behavior of production runs completed over
thousands or tens of thousands of nodes. The topology and switches used for small test
clusters are very different from those in a real environment. Dedicating tens of thousands of
nodes to network research is impractical even for large companies like Amazon and Microsoft,
let alone academic researchers.

To avoid the high capital cost of hardware prototyping, computer architects have long
used software simulators to explore approaches of architectural implementations at all lev-
els, from microarchitectures, and instruction sets to full systems. The relative low cost of
implementation and ease of change have made them the ideal choice of early design-space
exploration. In addition, when uniprocessor performance was doubling every 18 months, sim-
ulation speed correspondingly doubled every 18 months. Unfortunately, the recent abrupt
transition to multicore architecture and high-radix switches has both increased the complex-
ity of the system architect wants to emulate. Parallel distributed datacenter applications
exhibit more complex behaviors than sequential programs running on a single node. To
mitigate this software simulation gap, many techniques have been proposed to reduce simu-
lation time, such as statistical sampling and parallel simulation with relaxed synchronization.
These techniques assume the workload is static and independent of target architecture, but

3



datacenter networks exhibit highly dynamic target-dependent behavior, as they are tightly
coupled with computation servers running very adaptive software networking stacks. Last
but not least, the scale of a datacenter renders software full-system simulations prohibitively
slow to use in practice [120].

1.1.3 Our approach: FPGA models

We argue that even architecture research for single-node systems is now facing a crisis in
computer system evaluations using software simulators. Indeed, we found the instructions
architect simulated per benchmark significantly decreased over the past decade in academic
conferences [120]. Due to the target complexity and scale, traditional cycle-level simulators
have fallen far behind the performance required to support running full datacenter software
stack for O(100) seconds, which is typically used in datacenter network flow dynamics studies.

To address the above evaluation issues, we propose a novel evaluation methodology using
Field-Programmable Gate Arrays (FPGAs), treating datacenters as whole computer systems
with tightly integrated hardware and software. Although FPGAs have become an excellent
platform to implement new datacenter switches, limited by the FPGA capacity and slow clock
rate implementing all datacenter components on FPGAs directly suffers from many practical
issues, such as overall build cost and relative timing not reflecting those of real hardware.
Instead of prototyping everything on FPGAs, we build realistic reconfigurable abstracted
performance models at the scale of O(10,000) nodes. Each node in the testbed is capable
of running real datacenter applications on a full operating system. In addition, our network
elements are modeled in great detail and heavily instrumented. This research testbed allows
us to record the same behaviors administrators observe when deploying equivalently scaled
datacenter software.

The testbed is cost-effective compared to building a real equivalent-size datacenter. Al-
though the raw simulation performance is three orders of magnitude slower compared to a
real datacenter, it still fast enough to run the datacenter software stack for O(100) seconds.
On the other hand, to the best of our knowledge, the platform can scale to the size of real
datacenters at a practical cost that none of existing evaluation approaches can reach. The
projected full-system hardware cost of a O(10,000) system using the state-of-the-art FPGAs
costs around $120K, as opposed to build a real datacenter with $36M in CAPEX and $800K
in OPEX/mo. In section 6.6, we show how to construct a 10,000-node system model from
several low-cost FPGA boards connected with multi-gigabit serial links.

Our approach make it plausible for many research groups to own their private platform.
This opens up the opportunity to conduct research that would never be possible on a pro-
duction system, such as software reliability experiments at scale that require taking down a
large number of nodes. We make the following contributions in this dissertation.

4



1.2 Contribution

A taxonomy of Computer Architecture model Execution

In this project, we started by looking at the general computer system evaluation method-
ologies used by architecture community. We introduce the terms Software Architecture Model
Execution (SAME) and FPGA Architecture Model Execution (FAME) to label the two ap-
proaches to simulations in section 3.2. Due to the rapid progress made by the whole FAME
community over the past few years, there appears to be considerable confusion about the
structure and capability of FAME simulators in the broader architecture community. We
propose a four-level taxonomy of increasingly sophisticated FAME levels to help explain the
capabilities and limitations of various FPGA-based evaluation approaches. Also, we identify
three binary dimensions to characterize differences of FAME. The four-level of classification
is analogous to different RAID levels. Higher FAME levels lower the simulator cost and im-
prove performance over the lower levels, while moving further away from the concrete RTL
design of the simulation target. In addition, the taxonomy sets the technology foundation
for cost-efficient datacenter scale simulations, built on top of higher level FAME simulators
(e.g. FAME-7) on low-cost single-FPGA boards.

RAMP Gold FPGA-based Multicore Architecture Simulator

We presented the detailed design of RAMP Gold simulator in section 3.3, a very efficient
FAME architecture simulator tailored for early design-space exploration for a single-node
computer. RAMP Gold employs a decoupled timing/functional simulation architecture with
an FPGA-optimized multithreaded implementation. Despite running at a slow clock rate
on an FPGA compared to ASIC implementation, RAMP Gold achieves two to three orders
of magnitude speedup compared to state-of-the-art software. Besides improving simulation
capacity, the greatly improved simulation performance enables various forms of architec-
ture experiments that require longer run time, especially hardware and software co-designs.
RAMP Gold supports a standard SPARC v8 ISA and originally targets shared memory
multicore architecture simulation. It is capable of running the full Linux operating system
and open source datacenter software through cross-compilation, making it an ideal workload
generator for networking infrastructure simulations.

FAME-7 DIABLO (Datacenter-in-a-Box at Low Cost) Simulator

Adopting the FAME simulation technologies, we build a reconfigurable datacenter testbed
called DIABLO (Datacenter-in-a-Box at Low Cost) on top of a modified RAMP Gold design
(section 3.4). Although real commercial datacenter networking gear is extremely complicated
and details are not publicly available, we build performance models with higher-level abstrac-
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tions on well-known architecture fundamentals with some observations from our communi-
cations with industry on real datacenter usage scenarios. The models also support chang-
ing architectural parameters such as link bandwidth, delays and switch buffer size without
time-consuming FPGA resynthesis. We also show the FAME approach is more promising
simulating future high-radix switches at high link speed compared to the traditional SAME
simulation.

As a proof of concept, we used DIABLO to successfully reproduce some well-known dat-
acenter networking phenomena, such as the TCP incast [126] throughput collapse. We also
ran a large memcached caching service [25] on DIABLO with at scale of 2,000 nodes while
having full visibility at the interconnect through hardware performance counters, which is
very hard to achieve without a high cost for small research groups using commercial switches.
In addition, showing the versatility of our approach in helping early architectural explorations
in a provocative design space in datacenter networking, we applied an early version of DI-
ABLO to evaluating a novel network proposal based on circuit-switching technology [124]
in Section 5.1, running application kernels taken from the Microsoft Dryad [80] Terasort
program.

Lessons and Experiences Learned building DIABLO

In this project, we show that designing large-scale FAME simulators is a dramatically
different exercise from prototyping the simulated machine itself both in capital cost and
development efforts. The simulator itself is a realistic specialized computer that runs a
complex software stack. Given different optimization goals and the base FPGA technology,
it is very challenging to build a reliable fully functional system. Moreover, in order to debug
the basic functionality we need to build specialized hardware to help pinpoint operating
system and application issues. We discuss all lessons learned in section 6. Although FAME
has great performance, the large development effort is perhaps the biggest valid concern.
We present these practical issues in detail and suggest some potential solutions. DIABLO
focuses on datacenter networking infrastructure and could be potentially applied to study
other datacenter components, such as storage. However, there are several practical modeling
limitations. We address them in our future work in section 8. To further lower the cost
and increase the simulation capacity, we did a paper design of an ideal FPGA board in
section 6.6.
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Chapter 2

Related Work

In section 2.1, we first briefly discuss existing evaluation methodologies for datacenter
hardware and software innovations. Then in section 2.2, we look at frameworks people use
to evaluate datacenter networking proposals. We discuss hardware platforms, software, and
workloads people used in the experiments. Since we view datacenters as warehouse-size
computer systems, we discuss existing evaluation methodologies of general computer system
in section 2.3. We summarize and group the related work based on their basic modeling
technologies for the target system: hardware prototyping, software simulation, and FPGA-
based performance modeling.

2.1 Evaluation Methodologies for Hardware and Soft-

ware Innovations in Datacenter

In industry, the best way to test new hardware is to build the real system at a smaller
scale and put it along with the production system. For example, Facebook put prototypes
of their 100 Gbps Ethernet implementation along with their production cluster [67]. In
this way, new hardware evaluation will benefit from running production software and a more
realistic workload. However, this approach suffers from the scalability issue. First, it is
very expensive to build prototypes in large quantity. Second, it is not practical to have a
large-scale deployment of experimental hardware in a production environment. Third, the
majority of the testing workloads are generated by old computers. It is therefore difficult to
see how well the new computers will perform at scale.

Another popular approach to test novel hardware is deploying the test equipment in
medium-scale testing cluster. Usually, these testing clusters are shared by both research
and development. For instance, the Yahoo M45 [8] cluster has 4,000 processors and 1.5-
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petabytes of data, which is designed to run data-intensive distributed computing platforms
such as Hadoop [18]. Big internet companies, like Google could even afford a testing cluster
at a much larger scale, e.g. 20,000 nodes [10]. Although these test clusters have enough
computing nodes to help diagnose interesting scalability problems, their construction costs
are enormous. Bringing up an equivalent production software stack is also another practical
issue [10]. Because of cost, researchers in academia use much smaller in-house clusters at
the scale of 40 to 80 nodes (or one or two racks) [105, 73, 127].

Recently, cloud computing platforms such as Amazon EC2 offer a pay-per-use service
based on virtual machine technology to enable users to share their datacenter infrastruc-
ture at an O(1,000) scale. Researchers can pay $ < 0.1/hour per node to rapidly deploy a
functional-only testbed for network management and control plane studies [53, 139]. The
cloud is a straightforward approach for software developers to acquire a large-scale infras-
tructure. Such services, however, provide almost no visibility into the network and have no
mechanism for accurately experimenting with new switch architectures.

2.2 Evaluations of Datacenter Networking Proposals

In recent years, many researchers have proposed novel datacenter network architectures
[73, 74, 81, 102, 121, 122, 66, 127, 137, 56, 99] with most of them focusing on new switch
designs. Many of the evaluations employ the following technologies.

Software routers with synthetic workload and production traffic

traces

Software modular routers, such as Click [86], allow easy, rapid development of custom
protocols and packet forwarding operations in software. These kernel-based packet forward-
ing modules can operate at up to 1 Gbps but cannot keep up with 10 Gbps hardware line
speed or higher. To compensate for the poor single-thread software performance, Route-
Bricks [63] and PacketShader [76] leverage parallelism in commodity multicore processors
or GPUs to achieve software-based packet processing at high speed. However, these paral-
lel software implementations still face the limited I/O bandwidth available on host servers,
which limits the total number of line cards or switch ports that can be modeled. Given the
limited performance of software modeling, these switch models are often used with synthetic
workloads or traces collected from an old cluster network.
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Small-scale clusters with commodity switches

As mentioned in the previous section, using < O(100) node clusters is an affordable
common configuration across most of the new proposals from academia. To emulate more
computation nodes, researchers run a few thousand virtual machines on a limited number
of physical hosts, usually less than 100 nodes [99]. Such time-shared testbeds resemble the
multitenant infrastructure of cloud computing, but suffers from many issues arising from
aggressive sharing of hardware resources such as I/O bandwidth and physical NIC buffers,
introducing non-deterministic performance behaviors. Even worse, in order to achieve a
larger scale of O(1,000), researchers run an order of magnitude more VMs on a single phys-
ical host than in a real cloud computing environment. In order to emulate more switches,
researchers use the VLAN feature on commodity switches to partition a large switch into
several smaller virtual switches [66], at the cost of fewer ports, smaller port buffers, and a
shared switching fabric.

Small-scale clusters with Openflow switches

OpenFlow [96] is based on an Ethernet switch with an internal flow-table that has
a standardized interface to add and remove flow entries. OpenFlow allows researchers to
run experiments at line rate on commodity switches, and is an excellent platform to test
and deploy new control plane features. However, there are still several limitations of this
approach:

1. There are not many OpenFlow-capable array and datacenter-level switches on the
market, especially at a high link speed, such as 40 Gbps or 100 Gbps.

2. It is still very expensive to build a large-scale network. Researchers still need to connect
enough real machines to generate an interesting workload. The OpenFlow switch
by itself does not solve any cost-related issues. Although there are some academic
implementations of OpenFlow switches using subsidized university FPGAs board such
as NetFPGA [101], given FPGA resource constraints they support a limited number
of ports and are not capable of modeling high-radix switches.

3. Currently OpenFlow is only available for Ethernet and packet-switching networks. It
is arguable whether the TCAM-based flow table with the extra OpenFlow overhead is
suitable for future datacenter networks at a higher link speed [122].

Table 2.1 summarizes evaluation methodologies in recent network design research, in
terms of the scale of testbed and workload. Clearly, the biggest issue is evaluation scale. Al-
though a mid-size datacenter contains tens of thousands of servers and thousands of switches,
recent evaluations have been limited to relatively tiny testbeds with less than 100 servers and
10–20 switches. Small-scale networks are usually quite understandable, but results obtained
may not be predictive of systems deployed at large scale.
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For workloads, most evaluations run synthetic programs, microbenchmarks, or even pat-
tern generators, while real datacenter workloads include web search, email, and Map-Reduce
jobs. In large companies, like Google and Microsoft, researchers typically use trace-driven
simulation, due to the abundance of production traces. Nevertheless, production traces are
collected on existing systems with drastically different network architectures. They cannot
capture the effects of timing-dependent execution on a new proposed architecture.

Finally, many evaluations make use of existing commercial off-the-shelf switches. The ar-
chitectural details of these commercial products are proprietary, with poor documentation of
existing structure and little opportunity to change parameters such as link speed and switch
buffer configurations, which may have significant impact on fundamental design decisions.

2.3 Simulation and Prototyping of General Computer

System

In this section, we do a survey of two main evaluation methods of computer system:
hardware prototyping and software simulation.

2.3.1 Hardware Prototyping

Hardware prototyping has a long history, reaching back to the very first computers built
in Universities, such as the Harvard Mark-I and EDSAC, but is much less common today.
In the 1980s, many researchers would build prototype chips to provide evidence of the value
of their architectural innovations. For example, the case for RISC architectures was sub-
stantially strengthened by the prototype RISC chips built at Berkeley and Stanford, which
ran programs faster than commercial machines despite being produced by small academic
teams. Although time consuming and labor intensive to construct, hardware prototypes
allow evaluation on much larger and longer programs than possible with software simula-
tors and prevent designers from neglecting the real implementation consequences of their
proposed mechanisms. As feature sizes have shrunk, architectural complexity has grown.
Consequently, the engineering skill, design effort, and fabrication cost required to build
a compelling hardware prototype have risen to the point where few researchers now con-
template such a project. Even when prototypes are successfully completed, the quality of
implementation is often inferior to commercial designs, e.g., the TRIPS chip [112] ran at
260MHz versus multiple gigahertz.

Given the increasing expense of development of prototype chips, some researchers investi-
gated building prototypes using FPGAs. The good news is that such designs can be accurate
at the Register Transfer Level (RTL), even being written in the same Hardware Description
Languages (HDL) used for hardware prototypes. The speed of the logic implemented in
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FPGA is relatively slow compared to the speed of DRAMs, so the time to execute a pro-
gram on an FPGA prototype may not easily predict performance on real hardware, even
adjusting for clock rates. Still, design at this level gives implementation insight not available
from pure simulation. More importantly, it allows longer runs on real software, albeit 5
to 10 times slower than a hardware prototype. State-of-the-art FPGAs are equipped with
dozens of high-speed multi-gigabit transceivers, which make them an excellent platform for
prototyping datacenter networking equipment. FPGA-based prototyping has already been
used by several academia and industry research projects [101, 122].

2.3.2 Software Simulation

As feature sizes shrunk, fewer researchers could afford to demonstrate their inventions
with believable hardware prototypes using state-of-the-art technology, and so software sim-
ulation increased in popularity over time. Initially, software simulations employ simple
abstracted performance models with static workload models or traces collected from existing
hardware. While application traces would still work for some research like branch prediction,
they are no longer sufficient to perform software and hardware co-studies.

The increasing complication of target systems led to more complicated performance mod-
els and use of real applications. Execution-driven simulations, which simulate the internal
details of target systems, have gained popularity as the standard evaluation platform by the
computer architecture community. Assuming software and applications change slowly or are
rather static, researchers use collections of one-or two-dozen old programs, such as SPEC
[77] and PARSEC [47], as reasonable benchmarks for architectures of the future. Although
these benchmark suites changed every 3 to 4 years to reduce gamesmanship by compiler
writers and architects, new programming models and applications were largely ignored.

Early software simulators only modeled user-level activity of a single application without
operating system support. One popular example was RSIM [106], which provide detailed
models of out-of-order superscalar processors connected via coherent shared memory. Later,
the SimOS project demonstrated how to run an operating system on top of a fast software
simulator [110].

Since the speedup in uniprocessor performance did not mask the increase in architectural
complexity, such full system simulators offer multiple modes of execution. The fastest mode,
generally called functional simulation, simply executes instructions without simulating the
underlying microarchitecture. Usually, simulators use dynamic binary translation [133], or
Xen-based [41] virtual machine technology to speed up target instruction emulation. This
mode helps simulated applications to achieve native performance running on the simulator
host machine. Once the simulated program reaches the section of interest, the simulator
enters a slow cycle-by-cycle mode, called timing simulation to simulate all architecture details
with user-developed execution-driven performance models, such as GEMS [95]. One popular
example of such a simulator is a commercial product, called Simics [94], which allows
researchers to study large application programs and the operating system running together.
However, due to the limited size of the architecture simulation market, commercial full-
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system simulators are dropping the interfaces to plug in user performance model in favor of
server virtualization, focusing more on performance of the fast-mode functional simulation.

A straightforward way to reduce simulation time is simply to reduce the size of the input
data set so that the program runs in less time. For instance, SPEC offers multiple sizes,
from training sets to full size. Some researchers found the training set too long to simulate,
so they created “mini-SPEC” to reduce execution time even further [83].

Another popular technique to reduce simulation time is sampling. Given the fast forward
and snapshot in mixed-mode simulations, researchers developed statistical models that could
safely execute many fewer instructions by taking small samples, for example SimPoint [116].
But serious questions remain for the practical application of sampling for tightly coupled
multiprocessor and networked systems.

First, to greatly reduce simulation time, the sampling system has to support flexible
microarchitecture-independent snapshots, which remain an open research problem for mul-
tiprocessors [42, 130]. Without snapshots, simulation time is dominated by the functional
warming needed to fast-forward between sample points. Some hardware-accelerated simula-
tor, such as ProtoFlex, was developed, in part, to accelerate functional warming [54].

Second, for parallel networked systems, program behavior depends on architectural de-
tails, for example shared hardware resources and dynamic code adaptation. One good ex-
ample is the simulation of TCP/IP workloads. The TCP protocol has a feedback mechanism
to tune the sender’s transmission rate based on packet loss in the network. To accurately
model packet loss, it requires detailed processor and switch timing models. However, in or-
der to use sampling and fast-forwarding, people use much simpler models to quickly advance
machine state to a point of interest in the workload, at which time more detailed models
take over. The switchover from simple models to detailed models is equivalent to swapping
out a high-performance machine for a far slower system, which has a completely different
behavior when retuning TCP transmission rate. Some research shows that using sampling
to simulate TCP will not reproduce the system’s actual steady-state behavior even in the
simplest TCP/IP networking environments [78]. Therefore, people developed software sim-
ulators with detailed processor, and network I/O models, such as the M5 simulator [48],
and use them to study the performance of networked systems with the ability of running
real operating system as well as application code.

Finally, it is not clear that fast accurate sampling simulators and accurate statistical
workload models are easier to develop and modify than a brute-force FPGA-based simulator.
Moreover, similar to the aforementioned TCP simulation issue, it is questionable whether
traces or workload models built on top of older systems could faithfully capture dynamics
on the current system.

2.3.3 FPGA-Based Performance Modeling and FPGA Computers

FPGAs have become a promising vehicle for architecture experiments, providing a highly
parallel programmable execution substrate that can run simulations several orders of magni-
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tude faster than software [128]. Previously, FPGA processor models were hampered by the
need to partition a system across multiple FPGAs, which increases hardware costs, reduces
performance, and significantly increases development effort. On the other hand, FPGA ca-
pacity has been scaling with Moore’s Law. Nowadays, depending on complexity, multiple
processors, and even the whole system can fit into a single FPGA. Furthermore, future scal-
ing should allow FPGA capability to continue to track simulation demands as the number
of cores in target systems grows. Due to high volumes, FPGA boards have also become rel-
atively inexpensive. Multiple groups have now developed working FPGA-based computers
or simulators to conduct ”What if?” experiments.

One obvious use of FPGAs is to build computations directly on the FPGA fabric, where
FPGAs are the final target technology. For example, FPGAs are used to build computers
to run real production compute workloads, such as Convey HC-1 [15]. Research processors
can also be prototyped using FPGAs at much lower cost, risk, and design effort compared
to a custom chip implementation [117, 103, 87, 125]. Although an FPGA research prototype
bears little resemblance to a custom chip in terms of cycle time, area, or power, it can yield
valuable insights into the detailed implementation of a new architectural mechanism, as well
as provide a fast platform to evaluate software interactions with the new mechanisms. Simple
FPGA cores like Microsoft Beehive [125], are simple enough to be easily understood and
modified, yet are powerful enough to run large programs written in C or high-level languages
like C#.

Another use of FPGAs is to build functional verification models or accelerators for soft-
ware simulations. Protoflex [54] is an FPGA-based full-system simulator without a timing
model, and is designed to provide similar functionality to Simics [94] at FPGA-accelerated
speeds. ProtoFlex employs multithreading to simulate multiple SPARC V9 target cores
with a single host pipeline but lacks a hardware floating-point unit as it targets commercial
workloads like OLTP; its performance thus suffers on arithmetic-intensive parallel programs.
Another example of a FPGA/software hybrid simulator is FAST [52, 51] , which uses a
speculative execution scheme to allow a software functional model to efficiently run in par-
allel with a decoupled timing model in an FPGA. HAsim [57] is an FPGA-based simulator
that decouples target timing from functionality, but models a more complex out-of-order
superscalar processor.
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Chapter 3

Software and FPGA-based Simulation

Methodology

Computer architects have long used software simulators to explore instruction set archi-
tectures, microarchitectures, and approaches to implementation. In this chapter, we survey
the evolution of simulators as architectures increased in complexity and argue that archi-
tecture research now faces a crisis in simulation because of the new requirements and the
consequences of the multicore revolution. We label the two paths forward in multicore sim-
ulation as Software Architecture Model Execution (SAME) or FPGA (Field-Programmable
Gate Array) Architecture Model Execution (FAME). Inspired by the five-level RAID classifi-
cation, we present four levels of FAME that capture the most important design points in this
space. Our hope is these FAME levels will help explain FPGA-based emulation approaches
to the broader architecture community. In addition, the FAME taxonomy set the technol-
ogy foundation of the DIABLO design. At the end of this chapter, we present the design
of major components in DIABLO to demonstrates FAME capabilities. In this chapter, we
concentrate on FAME models of a single datacenter target instance, such as one server and
one switch. In the next chapter, we will present how to scale up this single FAME model up
to a whole datacenter.

3.1 Software Architecture Model Execution: SAME

A modern computer system running an application workload is a complex system that is
difficult to model analytically, yet building a prototype for each design point is prohibitively
expensive. Software simulators have therefore become the primary method used to evaluate
architecture design choices. We call the machine being simulated the target and the machine
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on which the simulation runs, the host. In this section, we present a brief chronological
review of the evolution of software simulator technology.

3.1.1 In-order Processor Simulators

Much of the architecture research in the 1980s involved in-order processors, and popular
topics were instruction set architectures (RISC vs. CISC), pipelining, and memory hierar-
chies. Instruction set architecture research involved compilers and instruction set simulators
to evaluate novel instruction sets. Instruction-set simulators were very slow, and so pipelin-
ing and memory hierarchy studies relied on address traces to drive simulators that only
simulated the portions of the computer of interest. Even if they were expensive to create,
traces could be reused many times in the exploration of ideas. Given the common needs of
researchers, some generous researchers would share the trace they collected along with the
simulators with the community, for instance cache simulators, such as the popular Dinero
tool [1]. In contrast, pipeline hazard simulators tended to be created for each study. At
the time, most of simulations studied only single user programs without operating systems
or multiprogrammed workload.

3.1.2 Out-of-Order Processor Simulators

Enthusiasm shifted from instruction set architecture research and in-order processors to
out-of-order processors in the 1990s. Popular topics included alternative microarchitectures,
branch predictors, and memory hierarchy studies. Although traces were still satisfactory
for simpler branch prediction research, they were no longer adequate for microarchitecture
or memory hierarchy studies due to the complex out-of-order nature of the processors. For
example, architects could no longer calculate the impact on performance of a miss by simply
adding it as a factor to a CPI calculation, since other instructions could overlap execution
during a miss, and a branch misprediction could cause the processor to begin executing
instructions not present in the trace.

This complication led to the popularity of execution-driven simulators, which model the
internal microarchitecture of the processor on a cycle-by-cycle basis. Unfortunately, the
speedup in host uniprocessor performance did not match the increase in target architectural
complexity, so the simulation of each instruction took more host clock cycles to complete.
In addition, Moore’s Law enabled much larger and more elaborate memory hierarchies, so
architects needed to simulate more instructions to warm up caches properly and to gather
statistically significant results. Moreover, as computers got faster and had more memory,
programs of interest became bigger and ran longer, which increased the time to simulate
benchmarks.

The complexity of building an execution-driven simulator, together with the increasing
use of commercial instruction sets, common benchmarks, and a common research agenda led
to the development of shared execution-driven simulator models, of which SimpleScalar is
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surely the most widely used example [40]. Architects would either use the standard options
provided by the simulators or make modifications to the simulator to explore their inventions.
Once again, interesting free simulators let many architects perform the type of research that
the simulator supported.

3.1.3 Multiprocessor Simulators

Simulating parallel target machines is much more difficult than simulating uniprocessors.
Part of the added complexity is simply that the target hardware is more complex, with
multiple cores and a cache-coherent shared memory hierarchy. In addition, a parallel software
runtime must be present to support multithreading or multiprogramming across the multiple
cores of the simulated target, which adds additional complexity. For multiprocessor research,
trace-driven simulation is still often used despite the inability of traces to capture the effects
of timing-dependent execution interleaving, due to the difficulty of developing a full system
environment capable of running large workloads. As with uniprocessor simulators, many
parallel simulators only modeled user-level activity of a single application.

Both academic projects and commercial products, such as SimOS [110] and Simics
[94], demonstrated how to run an operating system on top of a fast software simulator for
multiprocessor simulation. These simulators supported multiple levels of simulation detail,
and the fastest version used dynamic binary translation to speed target instruction emulation
while emulating cache hierarchies in some detail [133]. These full-system simulators have
become a popular research tool in the architecture community, augmented with detailed
performance models developed by academic researchers [95].

Although techniques such as dynamic binary translation, virtualization, and trace-driven
simulation help with the interpretation of the functional behavior of each instruction, they do
not help with the considerably more compute-intensive task of modeling microarchitecture
details of the processor and memory hierarchy. Surprisingly, it is difficult to parallelize
detailed target multiprocessor simulations to run efficiently on parallel host machines. The
need for cycle-by-cycle interaction between components limits the parallel speedup possible
due to the high synchronization costs in modern multiprocessors. If this cycle-by-cycle
synchronization is relaxed, parallelized software simulators can attain some speedup but at
the cost of needing to validate that the missing interactions do not affect the experiment’s
results [97, 109].

3.1.4 The Software Premise of Simulation

Implicit in many of the techniques used to reduce simulation time (traces, reduced inputs
sets, sampling) was the assumption that software changes slowly and is independent of the
target architecture. Thus, suites like SPEC with one- or two-dozen old programs were
reasonable benchmarks for architectures of the future, as long as SPEC suite changed every
four to five years to reduce gamesmanship by compiler writers and architects. Similarly,
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research groups would create their own benchmark suites, and some of these became popular,
for example, SPLASH and SPLASH 2 [134] for multithreaded programs. Parsec is a modern
example of such a parallel benchmark suite [47].

New programs, new programming models, and new programming languages were ignored
[65]. The argument was either that architects should wait for them to prove their popularity
and become well-optimized before paying attention to novel systems–which could take a
decade–or that there was nothing you would do differently for them than you would for old
programs written in the old programming languages. Since benchmarking rules prohibited
changing the program, architects generally treated the programs as static artifacts to measure
without understanding either the problems being solved or the algorithms and data structures
being used.

3.1.5 The Multicore and Cloud Revolution

As has been widely reported, the end of ideal technology scaling together with the prac-
tical power limit for an air-cooled chip package forced all microprocessor manufacturers to
switch to multiple processors per chip [38]. The path to more client performance for such
multicore designs is increasing the number of cores per chip every technology generation,
with the cores themselves essentially going no faster. On the server side, cloud computing
lets users tap into the power of massive warehouse-scale computers to run their applications
at enormous scales.

Given this new client+server revolution, the biggest architectural research challenges now
deal with multiple computing nodes, for example multiple processors or servers, rather than
increasingly sophisticated single nodes. Hence, architecture investigation now needs to able
to look at many system components in addition to memory hierarchy and processor design.
The number of cores per chip, sophistication of these cores, and even the instruction sets of
the cores are all open to debate. Issues that have received little recent attention, like both on-
chip and off-chip interconnect, are vital. Moreover, old application programs and operating
systems are being rewritten to be compatible with a massively parallel environment. New
programming models, new programming languages, and new applications are being invented
at an unprecedented speed. In particular, some of the new internet applications are being
developed and improved along with the production environment in a very short period. For
example, it takes only six months for Facebook to develop the Timeline feature from nothing
to production [23]. Given these urgency of challenges, we draw the following conclusions
that architects should not ignore:

1. Given software churn, new techniques like autotuning, new issues like temperature and
power, and the increasing number of cores, architecture research is going to require
simulation of many more target instructions than it did in the uniprocessor era.

2. Given the natural non-determinism of parallel programs, to be confident in results,
architects need to run programs many times and then take the average, which again
increases the number of instructions that should be simulated [35].
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3. Given our lack of intuition about how new programs will behave on novel hardware
and new metrics like power and absolute time (instead of clock cycles), well need to
simulate this greater number of instructions at a greater level of detail than in the
past.

4. Given this lack of understanding, we also need to run experiments for all portions of
the system and with added instrumentation, since we don’t yet know what components
or metrics can be safely ignored when proposing novel architectures.

Multiplying these four requirements together suggests an upsurge in the demand for
simulation by many orders of magnitude above what can be done with traditional software
simulators today. To put into perspective how many instructions are actually being simulated
per processor using software simulators today, Table 3.1 compares the number of instructions
simulated per paper from the 2008 International Symposium on Computer Architecture
(ISCA) to the same conference a decade earlier. Recent papers simulate many more total
instructions and cores if you compare medians, but the number of instructions per core was
just 100 million in 2008 vs. 267 million in 1998. We might assume that the authors didn’t
simulate more instructions because they did not need more to generate accurate conclusions
from their experiments. However, we see no evidence of the dramatic rise in simulation
time that we argue is needed for the multicore challenge. In fact, it is heading in the other
direction: these numbers correspond to about 0.05 seconds of target execution time in 2008
vs. about 0.50 seconds in 1998.

As mentioned above, the performance challenge for software simulators is turning the
increasing number of host cores into higher simulated target instructions per second. We
believe the challenge will be far harder for detailed simulation than for functional simulation,
as there is naturally much more communication between components in a target cycle. While
we encourage others to make progress on this important but difficult problem, we are more
excited by an alternative approach.

3.2 Three FAME dimensions and Terminologies

FPGAs have become a promising vehicle for architecture experiments, providing a highly
parallel programmable execution substrate that can run simulations several orders of mag-
nitude faster than software [128].

Multiple groups have now developed working FPGA-based systems [52, 58, 103, 87, 54],
but using perhaps an even greater variety of techniques than software simulators, and cor-
respondingly a wider range of tradeoffs between simulator performance, accuracy, and flexi-
bility. Consequently, we have heard much confusion in our discussions with other architects
about how FAME relates to prior work using FPGAs for architecture prototyping and chip
simulation, and what can and cannot be done using FAME.

In this section, we first present three binary dimensions within which we can categorize
FAME approaches. Next, inspired by the five-level RAID classification, we present four
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Table 3.1. Number of instructions simulated, number of processors, and instructions
simulated per processor for ISCA 2008 vs. 1998.

ISCA 2008
Total Instructions Cores MInstructions/Core Programs

150M 16 9 SPEC2006
50M 4 12 SPEC2000
240M 16 15 SPLASH-2
500M 16 31 Traffic Patterns
650M 16 40 SPEC2000
2300M 23 72 STAMP+SPLASH
100M 1 100 SPEC2000
100M 1 100 SPEC2000
1600M 16 100 SPEC2000
1000M 8 125 SPLASH-2, SPECJBB
2500M 16 160 Hashtable, Rbtree
1000M 4 250 MinneSPEC
1000M 1 1000 MinneSPEC
35000M 20 1750 SPEC2000

Median 825M 16 100
ISCA 1998

Total Instructions Cores MInstructions/Core Programs
100M 1 100 SPEC95
100M 1 100 SPEC95
100M 1 100 SPEC95, NAS, CMU
100M 1 100 SPEC95
171M 1 171 SPEC95, SPLASH-2
200M 1 200 SPEC95
236M 1 236 SPEC95
267M 1 267 SPEC95
267M 1 267 SPEC95
267M 1 267 SPEC95
267M 1 267 SPEC95
325M 1 325 SPEC95
860M 1 860 OLTP/DB, SPEC95
900M 1 900 OLTP/DB
1000M 1 1000 Synthetic
84000M 8 10500 DASH/SimOS

Median 267M 1 267

levels of FAME that capture the most important design points in this space. Our hope
is these FAME levels will help explain FPGA-based emulation approaches to the broader
architecture community.
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3.2.1 FAME Implementation Techniques

We use the following three binary dimensions to characterize FAME implementation
approaches.

Direct vs. Decoupled

The Direct approach is characterized by the direct mapping of a target machine’s RTL
description into FPGA gates, where a single target clock cycle is executed in a single host
clock cycle. An advantage of the direct approach is that, in theory, a re-synthesis of the target
RTL for the FPGA provides a guaranteed cycle-accurate model of the target processor. The
direct approach has been popular in chip verification; one of the first uses of FPGAs was
emulating a new chip design to catch logic bugs before tapeout. Quickturn [62] was an early
example, where boxes packed with FPGAs running at about 1-2 MHz could run much larger
test programs than feasible with software ECAD logic simulators. Direct emulation is also
often used by intellectual property (IP) developers to supply a new core design to potential
customers for evaluation and software porting before committing to an ASIC.

Direct emulation has become much easier as the growth in FPGA capacity reduces the
need to partition monolithic RTL blocks, such as CPUs, across FPGAs, but large system
designs may still require many FPGAs. The inefficiency of FPGAs at emulating common
logic structures—such as multiported register files, wide muxes, and CAMs—exacerbates
capacity problems.

A more powerful FAME option, which improves efficiency and enables other more ad-
vanced options, is to adopt a Decoupled design, where a single target clock cycle can be
implemented with multiple or even a variable number of host clock cycles [70]. For example,
direct mapping of a multi-ported register file is inefficient on FPGAs because discrete FPGA
flip-flops are used to implement each register state bit with large combinational circuits
used to provide the read ports. A more efficient decoupled model would implement a target
multi-ported register file by time-multiplexing a single-ported FPGA RAM over multiple
FPGA clock cycles. The drawback of a decoupled design is that models have to use addi-
tional host logic to model target time correctly, and a protocol is needed to exchange target
timing information at module boundaries if modules have different target-to-host clock cycle
ratios [70, 57].

Full RTL vs. Abstracted Machine

When the full Register-Transfer Level (RTL) of a target machine is used to build a FAME
model, it ensures precise cycle-accurate timing. However, the desired RTL design is usually
not known during early-stage architecture exploration, and even if the intended RTL design
is known, it can require considerable effort to implement a working version including all
corner cases. Even if full correct RTL is available, it may be too unwieldy to map directly
to an FPGA.
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Alternatively, we can use a higher-level description of the design to construct a FAME
model. Abstraction can reduce both model construction effort and FPGA resource needs.
The primary drawback is that an abstract model needs validation to ensure accuracy, usually
by comparing against RTL or another known good model. If the mechanism is novel, an
RTL prototyping exercise might be required to provide confidence in the abstraction. Once
validated, however, an abstract component can be reused in multiple designs.

HAsim [108] was an early example of the Abstract FAME option, where the processor
model was divided into separate functional and timing models that do not correspond to
structural components in the target machine. Split functional and timing models provide
similar benefits as when used in SAME simulators. Only the timing model needs to change to
experiment with different microarchitectures, and the timing model can include parameters
such as cache size and associativity that can be set at runtime without resynthesizing the de-
sign, dramatically increasing the number of architecture experiments that can be performed
per day.

Single-Threaded vs. Multi-Threaded

A cycle-accurate FAME model synchronizes all model components on every target clock
cycle. Some complex components might experience long host latencies, for example, to
communicate with off-chip memory or other FPGAs, reducing simulator performance. For
processors, a standard approach to tolerate latencies and obtain greater performance is to
switch threads every clock cycle so that all dependencies are resolved by the next time
a thread is executed [37]. The same approach can be applied when implementing FAME
models in a technique we call host multithreading, and is particularly applicable to models
of parallel target machines.

When the target system contains multiple instances of the same component, such as cores
in a manycore design, the host model can be designed so that one physical FPGA pipeline
can model multiple target components by interleaving the component models’ execution
using multithreading. For example, a single FPGA processor pipeline might model 64 target
cores or a single FPGA router pipeline might model 16 on-chip routers.

Host multithreading greatly improves utilization of FPGA resources by hiding host com-
munication latencies. For example, while one processor target model makes a request to a
memory module, we can interleave the activity of 63 other target processor models. Pro-
vided modeling of the memory access takes fewer than 64 FPGA clock cycles, the emulation
will not stall. Multithreaded emulation adds additional design complexity but can provide
a significant improvement in emulator throughput.

ProtoFlex is an example of a FAME simulator that host-multithreads its functional
model [54]. The same concept has also been used in SAME simulators, e.g. later versions of
the Wisconsin Wind Tunnel were also host multithreaded [100].
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3.2.2 FAME Levels

Level Name Example Strength Experiments per
Day

Experiments per
Day per $1000

000 Direct
FAME

Quickturn,
Palladium

Debugging logi-
cal design

1 0.001

001 Decoupled
FAME

Green
Flash

Higher clock
rate; lower cost

24 0.667

011 Abstract
FAME

HAsim Simpler, pa-
rameterizable
design; faster
synthesis; lower
cost

40 40.000

111 Multi-
threaded
FAME

RAMP
Gold

Lower cost;
higher clock rate

128 170.000

Table 3.2. Summary of four FAME Levels, including examples.

A combination of these FAME implementation techniques often makes sense. The next
four sections present a four-level taxonomy of FAME that improves in cost, performance, or
flexibility. The four levels are distinguished by their choices from the three options above,
so we can number the levels with a three-bit binary number, where the least-significant bit
represents Direct (0) vs. Decoupled (1), the middle bit represents Full RTL (0) vs. Ab-
stracted (1), and the most-significant bit represents Single-Threaded (0) vs. Multi-Threaded
(1). Table 3.2 summarizes the levels and gives examples and the strengths of each level.
Each new FAME level lowers cost and usually improves performance over the previous level,
while moving further away from the concrete RTL design of the target.

To quantify the cost-performance difference of the four FAME levels, we propose as a
performance measure the number of simulation experiments that can be performed per day.
Given the complex dynamics of manycore processors, operating systems, and workloads, we
believe the minimum useful experiment is simulating 1 second of target execution time at
the finest level of detail for 16 cores at a clock rate of 2 GHz with shared memory and cache
coherence. We employ this as an approximate unit to measure an experiment. The same
experiment but running for 10 target seconds is 10 units, the same experiment but running
for 1 second at 64 cores is 4 units, and so on. Note that in addition to host simulation
time, experiment setup time (e.g. design synthesis time) must also be included. To obtain a
cost-performance metric, we simply divide the number of experiments per day by the cost of
that FAME system. To keep the numbers from getting too small, we calculate experiments
per day per $1000 of the cost of the FAME system. The last column of Table 3.2 estimates
this metric for 2010 prices.
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Direct FAME (Level 000): (e.g., Quickturn)

The common characteristic of Direct FAME emulation systems, such as Quickturn, is
that they are designed to model a single chip down to the gate level with a one-to-one
mapping of target cycles to host cycles.

Let’s assume we could simulate the gates of 16 cores on a $1 million Direct FAME system
at 2 MHz. Each run would then take 2GHz/2MHz = 1000 seconds or 17 minutes. Because
the model is not parameterized, we have to rerun the CAD tool chain for each experiment to
resynthesize the design. Given the large number of FPGAs and larger and more complicated
description of a hardware-ready RTL design, it can take up to 30 hours to set up a new
design [123]. If Direct FAME can do 1 experiment per day, the number of experiments per
day per $1000 is 0.001.

In addition to high simulation turnaround time, Direct FAME requires great design effort
to change the RTL for each experimental machine, unlike some of the later FAME levels.
Although helpful in the later stages of debugging the design of a real microprocessor intended
for fabrication, Direct FAME is too expensive and time consuming to use for early-stage
architectural investigations.

Newer gate-level emulation products, such as Cadence Palladium and MentorGraphics
Veloce, are no longer based on commercial FPGAs but instead use custom-designed logic
simulation engines. However, they still have relatively low target clock rates [4] and cost
millions of dollars, though the tools are superior to FPGA tools for this purpose.

Decoupled FAME (Level 001):

(e.g., Green Flash memory system)

Programmable logic is slow compared to hardwired logic, and some ASIC features, such
as multiported register files, map poorly to FPGAs, consuming resources and cycle time. For
example, Green Flash [129] can fit two Tensilica cores with floating-point units per medium-
sized FPGA, but it runs at only 50 MHz [115]. The memory system uses off-chip DRAM,
however, which runs much faster than the logic (200 MHz) and so decoupling is used in the
memory system to match the intended target machine DRAM timing.

Performing a 16-core experiment needs 2 BEE3 [59] boards, which cost academics about
$15,000 per board, plus the FPGAs and DRAMs, which cost about $3000 per board, or
$36,000 total. It takes 8 hours to synthesize and place and route the design and about 40
seconds (2GHz/50MHz) to run an experiment. Since this level has a few timing parameters,
such as DRAM latency and bandwidth, Green Flash can run about 24 experiments per
synthesis [115]. Alas, the state of FPGA CAD tools means FPGA synthesis is a human-
intensive task; only one synthesis can be run per workday. Thus, the number of experiments
per day per $1000 is 24/$36K or 0.667.

Decoupled FAME (Level 001) improves the cost-performance over Direct FAME (Level
000) by a factor of almost 700×. This speedup is mostly due to processor cores fitting on
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a single FPGA, thus avoiding the off-chip communication that slows Direct FAME systems;
also, Decoupled FAME uses a simple timing model to avoid resynthesis for multiple memory
system experiments.

It is both a strength and a weakness of Decoupled FAME that the full target RTL is
modeled. The strength is that the model is guaranteed to be cycle accurate. Also, the same
RTL design can be pushed through a VLSI flow to obtain reasonable area, power and timing
numbers from actual chip layout [118]. The weakness is that designing the full RTL for a
system is labor-intensive and rerunning the tools is slow. This makes Decoupled FAME less
suitable for early-stage architecture exploration, where the designer is not ready to commit
to a full RTL design. Decoupled FAME thus takes a great deal of effort to perform a wide
range of experiments compared to Abstract and Multithreaded FAME. These higher levels,
however, require decoupling to implement their timing models, and hence we assume that
all the following levels are Decoupled (or odd-numbered in our enumeration).

Abstract FAME (Level 011): (e.g., HAsim)

Abstract FAME allows high-level descriptions for early-stage exploration, which simplifies
the design and thereby reduces the synthesis time to under 1 hour. More importantly, it
allows the exploration of many design parameters without having to resynthesize at all,
which dramatically improves cost-performance.

Let’s assume we need 1 BEE3 board for 16 cores, so the cost is $18,000. To simulate
cache coherency, the simulator will take several host cycles per target cycle for every load
or store to snoop on the addresses. Let’s assume a clock frequency of 65 MHz, as with
HAsim [107], and an average number of host cycles per target cycle of 4. The time for one
experiment is then 4 × 2GHz/65 MHz = 123 seconds.

Since human intervention isn’t needed to program the FPGAs, the number of experiments
per day is 24 hours / 123 seconds = 702. The number of experiments per day per $1000 is
then 702/$18K or about 40. Abstract FAME (Level 011) makes a dramatic improvement in
this metric over lower FAME levels: by a factor of almost 60 over Decoupled FAME (Level
001) and a factor of 40,000 over Direct FAME (Level 000).

In addition to the improvement in cost-performance, Abstract FAME allows many people
to perform architecture experiments without having to modify the RTL, which both greatly
lowers the effort for experiments and greatly increases the number of potential experimenters.
Once again, the advantages of abstract designs and decoupled designs are so great that we
assume any subsequent level is both Abstract and Decoupled.
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Multithreaded FAME (Level 111):

(e.g., RAMP Gold)

The main cost of Multithreaded FAME is more RAM to hold copies of the state of each
thread, but RAM is one of the strengths of FPGAs — a single programmable logic unit
can be exchanged for 64-bits of RAM in a Virtex-5 FPGA. Hence, Multithreaded FAME
increases the number of cores that can be simulated efficiently per FPGA. Multithreading
can also increase the clock rate of the host simulator by removing items on the critical path,
such as bypass paths.

Since we are time-multiplexing the FPGA models, a much less expensive XUP board
($750) suffices. Multithreading reduces RAMP Gold’s host cycles per target core-cycle to
1.90 (measured) and enables a clock rate of 90 MHz. Since the simulator is threaded, the
time for a 16-core simulation is 16 × 2GHz/90MHz × 1.9 = 675 seconds. The number of
experiments per day is 24 hours / 675 seconds = 128. The number of experiments per day
per $1000 is then 128/$0.75K or about 170. Multithreaded FAME (Level 111) improves this
metric by more than a factor of 4 over Abstract FAME (Level 011), by a factor of about
250 over Decoupled FAME (Level 001), and by a factor of 170,000 over Direct FAME (Level
000).

In addition, Multithreaded FAME lowers the cost of entry by a factor of 24–48 versus
Abstract or Decoupled FAME, making it possible for many more researchers to use FAME
for parallel architecture research.

Other Possible FAME Levels

By definition, direct mapping cannot be combined with abstract models or multithread-
ing. An RTL design can be multithreaded, however, whereby every target register is repli-
cated for each threaded instance but combinational logic is shared by time multiplexing.
We ignored this Multithreaded RTL combination (101) as a FAME level because, although
plausible, we have not seen instances of this combination in practice.

Hybrid FAME Simulators

Although we present levels as completely separate approaches for pedagogic reasons, real
systems will often combine modules at different levels, or even use hybrid designs partly in
FPGA and the rest in software. For example, System-on-a-Chip IP providers will often use
a mixed design to provide a fast in situ emulation of their IP blocks for customers. The
IP block is modeled by mapping the final ASIC RTL to the FPGA (Direct FAME, Level
000), but the enclosing system is described at an abstract level (Abstract FAME, Level 011).
FAST [52] is an example of a hybrid FAME/SAME system, where the functional model is
in software and the timing model is in hardware.
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3.3 RAMP Gold: An example of a full-system FAME-

7 simulator

The RAMP Gold simulator was initially designed to run on a single $750 Xilinx Virtex-
5 FPGA board, targeting a tiled, shared-memory manycore system. We use a variant of
RAMP Gold in DIABLO, described in the following chapter, to model datacenter servers.
In this section, we describe the original design of RAMP Gold and how the FAME-7 style
simulator attains high efficiency.

RAMP gold is a full-system simulator, which simulates up to 64 single-issue, in-order
SPARC V8 cores. It boots the Linux 2.6.39 kernel, as well as ROS [84, 93], a manycore
research operating system developed at Berkeley. RAMP Gold’s target machine is highly pa-
rameterized and most simulation options are runtime configurable: Without resynthesizing
a new FPGA configuration, we can vary the number of target cores, cache parameters (size,
associativity, line size, latency, banking), and DRAM configuration (latency, bandwidth,
number of channels). This extensive runtime parameterization accelerates design space ex-
ploration and comes at little cost to simulator performance: with a detailed memory system
timing model, we can simulate over 40 million target-core cycles per-second.

3.3.1 RAMP Gold Microarchitecture
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Figure 3.1. RAMP Gold Microarchitecture

Figure 3.1 shows the microarchitecture of RAMP Gold. The simulator decouples timing
from function. The functional model faithfully executes the SPARC V8 ISA and maintains
architected state, while the timing model determines instruction execution time in the target
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machine. Both models reside in one FPGA to minimize synchronization costs, and both are
host-multithreaded to achieve high utilization of FPGA resources.

The functional model implements the full SPARC V8 ISA in hardware, including floating-
point and precise exceptions. It also provides sufficient hardware to run an operating system,
including MMUs, timers, and interprocessor interrupts. The functional model is deeply
pipelined, and avoids features such as highly ported register files and wide bypass muxes
that map poorly to FPGAs. The functional model carefully exploits Virtex-5 features, for
example, double-clocking block RAMs and mapping target ALU instructions to hardwired
DSP blocks. The single in-order issue functional pipeline is 64-way multithreaded, enabling
functional simulation of 64 target cores. Each thread’s private state includes a 7-window
register file, a 32-entry instruction TLB and 32-entry data TLB, a 256-byte direct-mapped
instruction cache, and the various processor state registers. Although 64 copies of this state
seems large, trading state for increased pipeline utilization is attractive in the FPGA fabric,
wherein storage is cheap relative to computation.

The threaded functional pipeline has a single, shared, lockup-free host data cache. It
is 16 KB, direct-mapped, and supports up to 64 outstanding misses. Sharing a very small
host cache between 64 threads is a design point peculiar to the FPGA fabric: the low
latency to the host DRAM, approximately 20 cycles in the worst case, is covered easily
by multithreading. Thus, the lower miss rate of a large, associative host cache offers little
simulation performance advantage. Indeed, across a subset of the PARSEC benchmarks, the
small host cache incurs at most a 3.8% performance penalty compared to a perfect cache.
(The tiny 256-byte instruction caches have even less of an impact on performance—at most
2.3% worse than a perfect cache.)

The timing model tracks the performance of a target 64-core tiled manycore system.
The target core is currently a single-issue, in-order pipeline that sustains one instruction per
clock, except for instruction and data cache misses. Each core has private instruction and
data caches. The cores share a unified lockup-free L2 cache via a magic crossbar interconnect.
Each L2 bank connects to a DRAM controller model, which models delay through a first-
come, first-served queue with a constant service rate.

Separating timing from function expands the range of systems RAMP Gold can model,
and allows the effort expended on the functional model to be reused across many different
target machines. For example, we can model the performance of a system with large caches
by keeping only the cache metadata inside the FPGA. The functional model still fetches
from its host instruction cache and performs memory accesses to its host data cache when
the timing model schedules it to do so. Moreover, the flexibility of splitting timing and
function allows us to configure RAMP Gold’s timing models at runtime. To model different
cache sizes, for example, we fix the maximum cache size at synthesis time, and at runtime
we program configuration registers that determine how the cache tag RAMs are indexed and
masked. Most timing model parameters can be set at runtime; among these are the size and
associativity of the L1 and L2 caches, the number of L2 cache banks and their latencies, and
DRAM bandwidth and latency. The current implementation of the timing model runs at
90 MHz on the Virtex-5 FPGA, and supports up to 12 MB of aggregate target cache, while
using over 90% of the on-chip FPGA block RAM resources.
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Synthesis of RAMP Gold takes about two hours on a mid-range workstation, resulting
in 28% logic (LUT) and 90% BRAM utilization on a mid-size Virtex-5 FPGA. The low
logic utilization is due in part to mapping computation to the built-in DSPs and by omitting
bypass multiplexers. The high block RAM utilization is mainly due to the large target caches
we support. More details on the RAMP Gold implementation can be found in [119].

3.3.2 Model Verification and Flexibility

RAMP Gold comprises about 36,000 lines of SystemVerilog with minimal third-party
IP blocks. We liberally employ SystemVerilog assertions to aid in RTL debugging and
verification. The functional model is verified against the SPARC V8 certification suite from
SPARC International. Because it uses abstracted RTL, RAMP Gold requires the same
simulator timing verification as SAME simulators, but the far greater performance eases the
verification effort. We verify our timing models with custom microbenchmarks.

The timing model and its interface to the functional model are designed to be simple and
extensible to facilitate rapid evaluation of alternative memory hierarchies and microarchitec-
tures. Despite its extensive runtime configurability, the timing model comprises only 1000
lines of SystemVerilog. It is thus easy to understand and prototype new architectural ideas.
For example, we implemented a version of a novel quality-of-service framework, Globally-
Synchronized Frames [89], in about 100 lines of code and three hours of implementation
effort.

3.3.3 RAMP Gold Speedup Results
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Figure 3.2. Wallclock time of RAMP Gold and Simics simulations. The target
machine has 64 cores. Possible Simics configurations are functional modeling only,
g-cache timing modules, and the GEMS Ruby module, with an interleave of 1 instruc-
tion. In the cases where two applications are run, each gets 1/2 of the partitionable
hardware resources.

To compare against RAMP Gold’s performance, we run the PARSEC [47] benchmarks
inside Virtutech Simics [94], a popular SAME simulator. We run Simics with varying levels
of architectural modeling detail: pure functional simulation, Simics g-cache timing modules,
and the Multifacet GEMS [95] Ruby timing module.
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Figure 3.3. Geometric mean speedup of RAMP Gold over Simics across benchmarks.
Possible Simics configurations are functional modeling only, g-cache timing modules,
and the GEMS Ruby module, with an interleave of 1 instruction. The x-axis is target
cores.

We configure Simics to model the same case study target machine as closely as possible.
However, both g-cache and GEMS Ruby modules implement timing for a MESI coherence
policy, whereas RAMP Gold does not at present do so. We configure Ruby to not simulate
contention in the on-chip interconnection network (neither g-cache nor RAMP Gold do so
presently).

We vary the number of target machine cores simulated in both RAMP Gold and Simics.
The applications spawn as many threads as the target machine has cores, but the workload
size is fixed. Simics was run on 2.2 GHz dual-socket dual-core AMD Opteron processors
with 4 GB of DRAM. Reducing the frequency at which Simics interleaved different target
processors offered a limited performance improvement.

The longest running Simics simulation of a single benchmark point takes over 192 hours
(8 days), whereas the longest RAMP Gold simulation takes 66 minutes. Figure 3.2 plots the
wall clock runtime of a 64-core target machine simulated by RAMP Gold and different Simics
configurations across benchmarks and pairs of co-scheduled benchmarks. RAMP Gold is up
to two orders of magnitude faster. Critically, this speedup allows the research feedback loop
to be tens of minutes, rather than hundreds of hours.

RAMP Gold runtimes generally improve as the number of cores is increased because
multithreading becomes more effective, whereas Simics’ performance degrades super-linearly
with the number of cores simulated. With 64-core target machines, RAMP Gold is even
faster than Simics’s functional simulation. Figure 3.3 shows the geometric mean speedup of
FAME over SAME across the different benchmarks and for different SAME configurations.
The maximum speedup is a factor of 806×.
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The slowdowns incurred by Simics are due nearly entirely to host machine performance,
as the benchmarks themselves scale in performance across more target cores equivalently on
Simics and RAMP Gold. The fact that the slowdowns also correlate with the size of the
benchmarks’ inputs and working set suggests that host cache and TLB misses may present
a major performance bottleneck. Unfortunately, Simics is closed-source, so we were not able
to diagnose its poor performance more precisely.

3.4 A FAME-7 Datacenter Switch Model

Another concrete example of FAME-7 is our abstracted simulation model for output-
queue datacenter switches. When modeling switches, the real challenges arises from design
complexity and proprietary architecture specifications. Using FPGA resource-efficient high-
level abstracted FAME models make sense when studying key architecture features. For
instance, the biggest differences between existing commercial packet switches are the switch
buffer architecture and configurations, which is also an active area for packet switching
researchers as well. Therefore, in our FAME model we preserve these architecture details as
much as possible, while simplifying other features. We further describe our abstractions and
reasoning of the rest of the switch components in the context of a datacenter world in the
next chapter.

3.4.1 Switch Model Microarchitecture

Figure 3.4 shows the architecture of our abstracted simulation model for output-queue
switches, such as the Fulcrum FocalPoint FM4000 [55]. One of the biggest differences between
existing commercial packet switches is the packet buffer size. For instance, the Force 10 S60
switch has 1280 MB of packet buffering, the Arista Network’s 7048 switch has 768 MB, and
the Cisco Systems’ 4948-10GE switch has 16 MB.

Similar to RAMP Gold, to make efficient use of host DRAM burst accesses, we designed
a shared host cache connected by a ring-like interconnect to all switch models using the same
host DRAM channel. The host cache is composed of two simple buffers, one for write and
one for read, partitioned equally among all physical ports. Due to the limited size of on-chip
FPGA BRAM, the write and read buffers only hold 64 bytes for every physical port, which
is the minimum flit size for many packet switches. In addition, the write and read buffers
for each port have a write-lock to ensure they are kept coherent.

Inside each switch model, a key component is a queue management model responsible
for all virtual queue pointer operations. It also keeps track of queue status and performs
packet drops when necessary. The length of every simulated virtual queue can be configured
dynamically without requring another FPGA CAD flow run before a simulation starts. We
select these configurable parameters according to a Broadcom switch design [88]. Along
with this module, a performance-counter module, implemented with a collection of BRAMs
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Figure 3.4. FAME model for virtual output queue switches.

and LUTRAMs, maintains all statistics for every virtual queue. The performance counter
module reports all of its content periodically to a remote PC through the gigabit frontend
link, with which we can construct queue length dynamics offline for every virtual queue
running any workload. To send unicast statistics every 6.4 µs in target time, a 10 Gbps
32-port output-queue switch model demands a bandwidth of approximately 40 Mbps on the
frontend link.

Each model has an independent 3-stage enqueue pipeline and a 4-stage dequeue pipeline
that are controlled and synchronized by global simulation timing control logic. Ideally, the
two pipelines send commands to the queue management model through simple FIFOs in
order to simplify and decouple the control logic design. However, this appears to be a signif-
icant area and performance overhead on FPGAs, consuming a large amount of distributed
LUTRAM and making routing very hard. Instead, we implement two independent static
thread schedulers for the two pipelines and replay commands that were deferred due to
dependencies.

To guarantee good simulation performance, the switch scheduler model processes schedul-
ing decisions for multiple virtual queues in every host FPGA clock cycle. To further improve
performance, given the hundreds or thousands of virtual queues existing in our simulated
switches, the parallel scheduler model only processes active events that happen between two
scheduling quanta instead of naively scanning all virtual queues. Overall, the simulation per-
formance of a single switch model has a slowdown of 150× compared to real hardware. This
is four times faster than a software single-threaded network simulator used at Google [10],
which does not simulate packet payloads and does not support full software stack scaling to
10,000 nodes as does our system.
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3.4.2 Comparing to SAME simulators

The FAME-7 switch model is relatively easy to build, with only around 3,000 lines of
SystemVerilog code. Although FAME models allow us to conduct datacenter experiments
at enormous scale with greater architecture detail, they do require more design effort. For
example, a comparable cycle-accurate software packet-switch model only requires 500 lines
of C++ code.

As a comparison, we also optimized and parallelized the equivalent C++ simulation
model using Pthreads. We compiled the C++ module using 64-bit GCC4.4 with ‘-O3 -
mtune=native -march=native’, and measured the software simulator in a trace-replay mode
with the CPU cache already warmed up. We ran the software simulator on an 8-Core Intel
Xeon X5550 machine with 48 GB memory running the latest Linux 2.6.34 kernel.

Figure 3.5 shows slowdowns of the multithreaded software model simulating different size
10 Gbps switches under two types of workload, i.e. full load with 64-byte packets and random
load with random-size packets. When simulating a small 32-port switch, the single-thread
software model has better performance than our threaded 100 MHz FAME-7 FPGA model.
However, the simulation performance drops quickly when increasing the number of switch
ports. Due to many fine-grained synchronizations (approximately every 50ns in target time),
software multithreading helps little when simulating small switches.

When simulating a large switch configuration, we saw small sublinear speedups using
two, or sometimes four, threads but the benefit of using more threads diminishes quickly.
Profile results show that crossbar scheduling, which scans multiple virtual queues, accounts
for a large fraction of the total simulation time. Other large overheads include cache misses
for first time accesses to virtual queue structures as well as updating in-memory performance
counters for each simulation quanta. On the other hand, CPU memory bandwidth is not at
all a limiting factor, even when simulating a large switch configuration. Moreover, Figure 3.5
also illustrates that the workload significantly affects the simulation performance for large
switch configurations.

Note that we measured the software simulation performance under an unrealistic setting.
The sole reason to use a random workload here is to generate reasonable amount of traffic
that will fully exercise the switch data path for simulator host-performance comparisons. In
a real usage scenario, switch traffic will be generated dynamically by other models connected
to the switch, which requires many more synchronizations over the input and output ports
of the simulated switch. When simulating a large system containing many switches and
servers, we believe it will be difficult to see any performance benefit by partitioning the
software model across a high-performance cluster. Besides, future datacenter switches are
very likely to be high-radix switches. Simulating architectures in even greater detail could
also easily render the software approach impractical.
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Figure 3.5. Parallel software switch simulation performance.

3.5 Conclusions

In this chapter, we show the importance of increasing the simulation performance for
the architecture research community. To clarify the many efforts at using FPGAs to deliver
that performance boost, we propose a four-level taxonomy for FPGA Architecture Model
Execution (FAME). By estimating experiments per day per dollar, we show improvements
in cost-performance by factors of 200,000 between the lowest and highest FAME levels. We
use RAMP Gold, which simulates 64 SPARC on a single FPGA, and a 32-port output-queue
10 Gbps switch model to demonstrate the benefits of the highest level. Due to the intrinsic
fine-grained synchronization nature of architecture simulation, we also show that even with
the help of multicore the Software Architecture Model Execution (SAME) simulator offers
limited performance improvement simulating a highly paralleled target. Although SAME
simulators achieve comparable performance simulating target with a smaller configuration,
high-level FAME simulators outperform by orders of magnitude for larger target configura-
tions.
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Chapter 4

Building a Scalable DIABLO for

Datacenter Network Architecutre

Simulations

In this chapter, we describe our implementation of high-throughput datacenter simulator
using FPGAs, which is a dramatically different exercise from prototyping the simulated
target itself. In the following sections, we first discuss our design strategies of DIABLO.
Then, we cover the DIABLO model abstractions, and the FPGA implementations for three
major datacenter components: server, switch, and network interface card. Finally, we show
how to use 11 BEE3 boards to scale up DIABLO to simulate 3,968 servers with a packet
switching interconnect.

4.1 DIABO Design Strategy

The most intuitive approach of implementing a datacenter simulator is to build a “mini-
datacenter” using FPGAs. For instance, mapping servers and interconnects directly onto
FPGAs, using soft-core processor and switch implementations. Naively mapping these com-
ponents to FPGAs, however, is inefficient, inflexible, and impossible to model key datacenter
architecture features at scale. DIABLO’s efficient design is based on several observations that
distinguish it from other FPGA-based simulators and system implementations:

• FPGAs don’t implement complex combinatorial logic well, such wide multiplexers. Any
logic is mapped with a number of multi-input lookup tables (LUTs). Complex com-
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binatorial logic occupies a large number of lookup tables in many levels. Although
modern FPGAs have plenty of logic resources, routing resources remain to be a critical
component. The more logic levels the more routing delays. This observation led to
simpler DIABLO microarchitecture designs avoiding complex combinatorial logic. For
instance, our processor core utilized an unbypassed pipeline design that avoids wide
forwarding-path multiplexers. We found by removing forwarding logic in a popular
FPGA soft-core processor [11], pipeline area is reduced by 26%-32% and frequency is
boosted by 18%-58%.

• FPGAs have plenty of RAM. This observation combined with the lack of bypass paths,
led to a multithreaded design of all large modules. Simulation performance arises from
many simulation threads per FPGA rather than from complex simulation pipelines
optimized for single-thread performance. We use RAMs on FPGAs to store simulation
thread state, and dynamically switch threads to keep simple module pipelines satu-
rated. This strategy, we called host-multithreading in earlier chapters, uses multiple
threads to simulate different target. Note that host-multithreading neither implies nor
prohibits a multithreaded target architecture design.

• Modern FPGAs have hard-wired DSP blocks. Execution units, especially FPUs, dom-
inate LUT resource consumption when implementing a processor on an FPGA. If we
map functional units to DSP blocks rather than just LUTs, we can devote more re-
sources to timing simulation

• DRAM accesses are relatively fast on FPGAs. Logic in FPGAs often runs slower than
DRAM because of on-chip routing delays. This insight greatly simplifies DIABLO’s
host memory system, as large, associative caches are not needed for high performance.
This observation led to modeling large target buffers, such as packet-switch port buffers
in DRAM, with minimum simulation performance impact.

• FPGA primitives run faster but have longer routing delays. FPGA primitives, such
as DSPs and BRAMs, run at high clock rates compared to random logic, but their
fixed on-die location often exacerbates routing delays. This observation led to a deep
model pipeline. Given that DIABLO is a throughput optimized system with a feed-
through data path design, we could easily insert pipeline stages to boost host FPGA
clock frequency. Longer pipeline bubbles can be filled with more hardware threads. In
addition, we can double-clock these FPGA primitives to have shorter access latency
and more read/write ports on the primitives.

Like many software simulators [40, 64], DIABLO separates the modeling of target timing
and functionality. The functional model is responsible for executing the target software
correctly and maintaining architectural state, while the timing model determines the time
the target machine takes to run an instruction. The benefits of this functional/timing split
are:

• Simplified FPGA mapping of the functional model. The separation allows complex
operations to take multiple host cycles. For example, a highly-ported register file can
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be mapped to a block RAM and accessed in multiple host cycles, avoiding a large, slow
mapping to FPGA registers and muxes.

• Improved modeling flexibility and reuse. The timing model can be changed without
modifying the functional model, reducing modeling complexity and amortizing the
functional model’s design effort. For instance, we can use the same switch functional
model to simulate both 10Gbps switches and 100Gbps switches, by changing only the
timing model.

• Enable a highly-configurable abstracted timing model. Splitting timing from function
allows the timing model to be more abstract. For example, a timing model might only
contain target cache metadata. Different cache sizes could then be simulated without
resynthesis by changing how the metadata RAMs are indexed and masked at runtime.

4.2 Server Models

The goal of the server model is to have a credible workload generator that drives more
detailed networking models. Given constant datacenter software churns and short develop-
ment cycles, building highly-accurate analytical models for the workload is a less practical
approach. Therefore, the server model must be capable of running complex server application
software with minimum modifications.

4.2.1 Mapping to FPGAs

We build the server models on top of the RAMP Gold FAME-7 simulator with a heavily-
modified host-cache design to better support running multiple Linux kernels from different
hardware threads. The server model supports the full 32-bit SPARC v8 ISA in hardware,
including floating-point instructions and precise exceptions. It also models sufficient hard-
ware to run an operating system, including MMUs, timers, and interrupt controllers. The
functional model adopts a 64-thread feed-through RAMP Gold pipeline. We map one server
to one hardware thread. One 64-thread RAMP Gold hardware pipeline simulates up to two
32-server datacenter racks. Each simulated server uses a simplified fixed-CPI timing model.
A more detailed timing model could be implemented, but it would reduce simulation scale as
each server model would require additional host hardware resources. The interface between
the functional and timing models is designed to be simple and extensible to facilitate rapid
evaluation of alternative target memory hierarchies and microarchitectures.

The functional model has been highly optimized for the Xilinx Virtex-5 FPGA fabric,
and employs the following mapping optimizations:

• Routing-optimized pipeline: The functional pipeline is 13 stages long. Some pipeline
stages are dedicated to signal routing to BRAMs and DSPs.
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• Microcode for complex operations: The functional/timing split allows us to implement
the functional pipeline as a microcode engine. Complex SPARC operations, such
as atomic memory instructions and traps, are handled using microcode in multiple
pipeline passes. The microcode engine also makes it easier to prototype extensions to
the ISA.

• DSP-mapped ALU: DSP blocks in FPGAs have been greatly enhanced in recent gen-
erations to support logical operations and pattern detection, in addition to traditional
multiply-accumulate operations. We mapped the integer ALU and flag generation to
five Virtex-5 DSPs and the FPU to fourteen DSPs.

• Simple host cache and TLB: Each thread has a private direct-mapped 256-byte in-
struction cache and coherent data cache, a 32-entry instruction TLB, and a 32-entry
data TLB. The host caches and TLBs have no effect on the target timing — they exist
solely to accelerate functional simulation. The unusually small host data cache is a
deliberate, albeit peculiar, design decision that we discuss in the next section.

• Fine-tuned block RAM mappings: The server functional model is a BRAM-dominated
design. In the functional model, the register files, host caches, and TLBs are manually
mapped to BRAMs for optimal resource usage. In addition, we double-clocked all
BRAMs for higher bandwidth. Each BRAM is protected by either ECC or parity for
longer and larger scale experiments that require many FPGAs.

4.2.2 Host Memory Interface Design

The memory subsystem of a datacenter is one of the most heavily engineered components
in the architecture to improve performance and energy efficiency. Similarly, the memory
subsystem is a critical component for building DIABLO performance model. In particular,
the functional host-cache of the server model receives great attentions during the design time.
As mentioned earlier, an FPGA is a different design space compared to ASIC, where the
memory access is very “fast”. Therefore, we focus our attention of the functional host-cache
design on correctness and design simplicity.

Initially, DIABLO adopted an unmodified RAMP Gold host cache design. The key
feature of the host-cache is its small size and simple architecture. The instruction cache
is physical-indexed per-thread independent direct-mapped with a small size of merely 256
bytes. The cache line size is 32-byte that matches the DRAM burst size of our DDR2
memory controller. Since the cache size is smaller than a memory page, the pipeline can
perform instruction TLB lookups concurrently with the instruction cache look up to reduce
the pipeline depth. The host data cache is slightly more complicated in the architecture,
which is a 16 KB physical-indexed directly-map non-blocking cache shared by all 64 hardware
threads using a simple direct-mapped 64-entry MSHR. The shared host data cache easily
provides data coherency among all threads for multicore workloads. Another criterion of
choosing the cache size is how well the host cache can be mapped to block rams on FPGA.
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We choose the minimum number of block rams that satisfies the bandwidth requirement of
one-cycle cache access for a single cache line, given the 32-byte DRAM burst constraint.
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To quantify the effectiveness of this simple host cache design and performance impact of
pipeline ‘replays’ caused by various sources in the host, such as host cache/TLB misses, we
added several host performance counters. Figure 4.1 plots the detailed host cycle breakdown
running the PARSEC benchmarks with 64 target cores on the ROS research OS in using
the original RAMP Gold multicore timing model. Figure 4.2 shows the host cache miss
rate of the small host cache running the benchmark. Unsurprisingly, the small host cache
results in high miss rate. Nevertheless, host cache misses collectively account for no more
than 6% of host clock cycles. DRAM’s relatively low latency - about 20 clock cycles - and
the ability of multithreading to tolerate this latency are largely responsible for this apparent
contradiction. Thus, rather than spending BRAMs on large, associative host caches, we
can dedicate these resources to other models. Nevertheless, providing a small cache is still
valuable to exploit the minimum 32-byte DRAM burst size. We also measured host DRAM
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bandwidth utilization, and found we never exceed 15% of the peak bandwidth, indicating
that a single-channel memory system is sufficient for these benchmarks.

Interestingly, the most significant overhead is timing synchronization: not until all in-
structions from a given target cycle have retired do we begin instruction issue for the next
target cycle. We expect most of this overhead can be recovered by more efficient thread
scheduling. The functional pipeline is also idle when target cores are stalled. Streamcluster,
for example, has a high target cache miss rate. The functional model is thus underutilized
while target stalls are modeled. Other causes of replay include host TLB misses, floating-
point operations, integer multiplication and division, and three-operand store instructions.
Collectively, these account for less than 10% of host cycles across these benchmarks.

Although the original RAMP Gold host data cache is coherent among all hardware
threads, it is not coherent with the instruction cache. When we repurpose RAMP Gold
to datacenter emulation and run independent Linux instances in every hardware thread,
we face many software correctness challenges posed by the incoherent instruction and data
host-cache. For an in-house developed research operating system, such as ROS, we can easily
modify the source code to support coherency through proper cache invalidations in the OS
kernel. However, real operating systems have bugs and a great deal of legacy code, which
makes it hard to run correctly without a coherent cache. We discuss this software experience
in details in a later chapter.

As illustrated above, a small host cache has a very limited simulation performance impact
on FPGAs. We can therefore choose the simplest coherent implementation, a coherent store
buffer like those in early SPARC chip implementations that only holds one cache line of store
data. The coherency is easily achieved by invalidating corresponding lines in the instruction
cache. In terms of the actual implementation, we map this store buffer to FPGA BRAMs,
whose depth gives us more entries. Thus, we design a per-thread partitioned direct-map
8-line host data cache implementing a simple invalidation-based coherency scheme. Our
double-clocked BRAM mappings provide us extra access ports on the cache RAM to process
coherent traffic without stalling normal cache accesses from pipeline stages.

Adding the coherency does increase the design complexity in terms of FPGA resources
quite a bit, especially in the host instruction cache shown in Table 4.1. However, the control
logic is relative easy to implement compared to a non-blocking shared cache on a feed-
through pipeline. Besides, it improves simulation performance while booting multiple Linux
operating systems by having fewer contentions from different host hardware threads.

Component Name LUT Register LUTRAM
Host D $ 1,370 (-3.6%) 1,775 (67.3%) 20 (0%)
Host I $ 740 (318.0%) 717 (27.8%) 64 (-)

Table 4.1. The control logic resource consumption of the DIABLO coherent cache on
Xilinx Virtex 5 LX110T. The increased areas over the RAMP Gold unified cache are
shown in parentheses in each cell.
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4.2.3 Debugging Infrastructure

To communicate with the simulator, we embedded a microcode injector into the func-
tional pipeline, which we connect to a front-end Linux PC via a gigabit Ethernet link. This
front-end link doubles as a debugging and control interface: we use it to start and stop sim-
ulations, load programs, and to modify or checkpoint architectural states without affecting
the target timing.
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Figure 4.3. The DIABLO frontend link architecture. We show only two microcode
injectors on the ring for illustration purposes only.

Figure 4.3 shows the architecture diagram of the frontend link. We design a single 32-bit
token-ring interconnect running at the same clock frequency as the server model pipeline.
Each server model pipeline has its own microcode injector sitting on each ring station. Using
a ring reduces routing congestion substantially, allowing the chip to support more DIABLO
pipelines. The Ethernet controller servers as the master node of the ring, which runs in
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a different clock domain and is decoupled with the core logic using asynchronous FIFOs.
When there is free space in the asynchronous FIFO, it emits a single token into the ring.
As the token passes each node, the node can choose to pass it on immediately if it has no
traffic, or to add some number of payload that follow the token. The token mechanism
works in a similar fashion as the processor interconnect ring in Beehive [125], which can be
best analogous to a train system that starts at a main station and passes through a number
of local stations before arriving back at the main station. The “main station” (Ethernet)
sends a “locomotive” (the token) with zero cars. At each local station, the “station” will
add couple of “cars” (payload) to the end of the train. When the train reaches the main
station, all the cars will be unloaded (payload is transmitted) before the locomotive starts
again. Since the microcode injector works in a polling mode, i.e. the frontend PC initiates
any request, we could use a simple software-controlled credit-based flow control mechanism
to prevent Ethernet controller data FIFO from overruns.

Similarly, to configure, debug, and collect runtime performance of other DIABLO mod-
ules, we implement simple memory mapped I/O devices on the server model pipeline, such
as hardware performance counters and timing model controls. The front-end link also allows
us to forward I/O functional requests to the Linux control PC due to lacking of hardware
models on FPGAs. For example, currently DIALBO does not have a FAME model for hard
drives. However, real server software often requires dynamically loaded libraries from a local
disk. Therefore, we implement a simple block-based virtual disk driver in the Linux kernel,
which forwards all system disk I/O requests over the Ethernet front-end link to the front-end
Linux PC, which provides a functional local disk storage. Reusing the same microcode injec-
tor, the functional disk also works only in a polling mode. The performance is limited by the
Ethernet communication latency between the frontend PC and the DIABLO hardware. To
ensure functional correctness, We also put a checksum unit in the Linux driver that verifies
checksums for each block. To sum up, the goal is not to provide a fast and reliable emulated
disk with accurate target timing but rather a basic functionality of a disk to run the server
software.

The original reason of embedding the microcode injector into the processor pipeline is
to make the coherency story easier between the processor host-cache and the target DRAM.
This approach avoids many potential functionality issues updating simulation states in the
simulated memory as well as in connected I/O devices through the frontend link, while
the simulation is actively running. The additional benefit of implementing a microcode
injector is that we can use this hardware to easily access more detailed architecture states
in the processor pipeline, such as register files and host-cache content. It also helps to
collect pipeline checksum and instruction traces when debugging the processor. However, in
practice, at the datacenter level, such fine-grained debugging features are rarely used. On
the other hand, since the microcode injector has to interact with the processor pipeline, it
complicates the pipeline control design.
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4.2.4 Server software

We run full-fledged Linux on each node, as opposed to a reduced version of Linux like
uClinux, often seen in embedded platforms. We also support dynamically linked applications
with full Glibc. Being SPARC v8 compliant, the DIABLO server model can run user binaries
acquired from the Debian GNU/Linux repository without the trouble of cross-compiling
SPARC binaries on an x86 host. This is also one of the main reasons we chose the SPARC
ISA. The 64-bit implementation of the ISA, i.e. SPARC v9, is still actively developed by
Oracle/Sun in production for the enterprise server market. The Debian SPARC port supports
sun4u (Ultrasparc) and sun4v (Niagara) machines with a 32-bit user land. Although the
Debian SPARC port uses a 64-bit kernel in production, most of the applications run in 32-
bit mode. Due to significant memory and disk overhead, Debian maintains a 64-bit port
as an add-on for the current port for applications that really benefit from being in 64-bit
mode. Consequently, building a simpler 32-bit implementation is sufficient to run many user
applications for DIABLO.

The heavy-lifting work of supporting many SPARC applications is all about adding a
DIABLO CPU support in the Linux Kernel. All kernel modifications are based on the most
up-to-date version we could get at the beginning of the development, which is 2.6.39.3. Since
the 32-bit SPARC port is considered as stable, we believe the same porting work can be easily
applied to a more recent 3.x kernel. In addition, implementing the SPARC reference MMU
(SRMMU) greatly simplifies our kernel porting efforts.

When developing the DIABLO port, we devoted most of our energies to two aspects:

1. Build a bootloader that supports the SPARC OpenPROM.

2. Modify corresponding kernel code to allow a proper MMU and processor detection.

We also hacked the TLB/Cache flush interface to support the host cache/TLB architec-
ture on our CPU. Just like supportting a new CPU in the kernel, we added our own console
and interrupt controller drivers. Moreover, we wrote a block-based disk driver to interact
with our frontend server to provide functional disk access. Similarly, we designed a keyboard
driver that allows users interactively access the simulated servers in DIABLO like accessing
a real machine.

Although the overall kernel porting process appears to be straightforward for adding a
new CPU support to an existing ISA, one big practical issue is that we found quite a few
kernel bugs. Changing the kernel source code can fix some bugs, such as those in the SRMMU
code and those in the kernel spinlock implementation triggered by a recent version of GCC.
On the other hand, some bugs are very harder to fix directly with software approaches, which
results in changing the hardware instead. We describe this experience in chapter 6.

To improve productivity, we also developed a C-functional simulator that runs the same
SPARC binaries on a general x86 host machine. We use this functional simulator extensively
verifying the application functionality before deploying to the DIABLO FPGA hardware. We
could also run a native SPARC GCC inside the functional simulator to eliminate the need
of cross-compiling of many server software.
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4.3 Switch Models

There are two categories of datacenter switches: connectionless packet switching, also
known as datagram switching, and connection-oriented virtual circuit switching. In the first
case, each packet includes complete routing information, and is routed by network devices
individually. The second case requires a pre-allocated virtual circuit path before transferring
any packet. To demonstrate the flexibility of our approach, we build FAME-7 models for
both types of switches.

In order to provide more predicted latencies and take advantage of new high-speed switch-
ing technologies, researchers propose new designs of circuit-switching switches for datacen-
ters. The proposed circuit-switching switches are still in early research prototypes, which
are simple and open in their implementations. Some of the switches [124] are directly imple-
mented on FPGAs. Therefore, it is straightforward to build highly-accurate models for these
circuit-switching switches. As an application of DIABLO, we describe modeling a research
circuit-switching network in the following chapter.

On the other hand, the real challenges for modeling the packet switches used in existing
production datacenters arise from design complexity and proprietary architecture specifica-
tions. To work around these barriers, we build abstract models by simplifying features that
are seldom used in a datacenter. Here are the abstractions we employed and the rationale
behind our choice:

• Ignore Ethernet QoS related features (e.g. support of IEEE 802.1p class of service
(CoS)): Although QoS features are available on almost every switch today, many dat-
acenters only utilize switches for basic connectivity without turning on QoS features.

• Use simplified source routing: Many packet switches use a large ternary CAM to hold
flow tables and look up the destination address for each packet. When an unknown
MAC address is seen, the forwarding engine sends an interrupt to a slow-path control
processor that updates the table using software. Many switches [16, 17] already sup-
port flow tables that have at least 32K entries. Given the total number of machines
in datacenters, the slow-path flow-table update is rarely executed, making the TCAM
lookup time constant in practice. Besides, datacenter topologies do not change fre-
quently, and routes can be pre-configured statically. We use source routing to simplify
modeling of packet routing, and we note that source routing is actually a component
of many datacenter-switch research proposals. To emulate more complicated flow ta-
ble operations, we could implement d-left hash tables [98] using host DRAM. Recent
datacenter switches that implement large flow tables, such as the Cisco Nexus 5000,
use similar techniques instead of TCAMs.

• Abstract packet processors: Commercial datacenter switches include many pipelined
packet processors that handle different tasks such as MAC address learning, VLAN
membership, and so on. The processing time of each stage is relatively constant re-
gardless of packet size, and the time can be as short as a few hundred nanoseconds
[55] to a few microseconds [16]. We simply employ FIFOs with runtime-configurable
delays to model packet processing.
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Although commercial switch implementation details are generally not publicly available,
the fundamentals of these switch architectures are well known. Examples include the ar-
chitecture of a virtual-output-queue switch and common scheduling algorithms. We build
our abstracted model focusing on these central well-known architectural features, and allow
other parts that are unclear or of special interest to researchers (For example, packet buffer
layout) to be configurable during simulation.

Specifically, in our switch models, we focus on the data path features, such as switch buffer
management and configurations, which have become an active area for packet switching re-
searchers according to our conversations with datacenter networking researchers in industry.
As network guru Andy Bechtolsheim has recently pointed out [46], datacenter network pro-
tocols and applications need to be tuned together to better understand underlying network’s
capacity, which is a nontrivial task. At the meantime, the datacenter network switch design
is all about right sizing buffers. For example, some of the new data networking protocols
such as DCTCP [36] can improve the network performance but requires mega-buffers on
aggregation switches.

Another important feature for simulation is to model high link bandwidth and cut-
through switching fabrics for low port-to-port latencies. These are essential features to
evaluate future high performance datacenter switches, which are very hard to deploy at scale
in real world because of cost issues.

While there has been an increasing research interest in the area of Software Defined Net-
work (SDN) using Openflow-capable switches in datacenter, researchers put more emphases
on simplifying the switch control software rather than solving data path performance issues
of traditional packet switching network. The data path architectures of these SDN switches
are actually identical to that of conventional switches. As mentioned above, our simplified
source-routed switch models can be easily modified to support the traditional flow table
architecture used by SDN switch.

The basic architecture of existing commercial datacenter switches fall into two categories,
output-queue and combined input-output queue with virtual output queue. The former has
no on-chip congestion, and minimum buffering latencies. Therefore, it is the ideal memory
architecture for switches. However, this architecture requires that all switch ports can simul-
taneously read/write into the shared buffer memory, which demands enormous bandwidth.
This requirement poses a significant challenge to switch chip architects designing novel on-
chip SRAM architectures, such as Fulcrums RapidArray shared memory [55]. It limits the
scalability of the switch in terms of number of ports, per-port bandwidth, as well as the size
of the packet buffers.

The combined input-output queue architecture uses separate egress and ingress memory
structures to reduce the memory bandwidth requirement at the cost of a more complex in-
ternal switching arbitration design. The input queues employ Virtual-output-Queue (VoQ)
like structures to eliminate the issue of head-of-line (HOL) blocking. Many Cisco data-
center switches adopt this architecture. Combined input-output queue switches have lower
performance compared to an ideal output-queue switch. Nevertheless, the basic queuing
architectures of either input or output queues are similar.
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In DIABLO, we use an abstracted output-queue switch model with a simple round-robin
scheduler described in the previous chapter for all level of switches: top of the rack switches,
array, and datacenter level switches. The differences between switch models of different
layers in the network hierarchy are link latency, bandwidth, and buffer size. We present this
switch model architecture in the previous chapter.

4.4 Network Interface Card Models

The DIABLO NIC models an abstracted Ethernet device, whose internal architecture
resembles that of the Intel 8254x Gigabit Ethernet controller used by the popular Intel
PRO/1000 MT server adapter. Many software virtual machines also emulate a full or part
of the Intel 8254x Ethernet controller, such as Virtual Box [28], VMWare Virtual Server
[32], QEMU [29], and Microsoft Hyper-V [26].
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Figure 4.4. Software and hardware architecture of generic network interface cards

Figure 4.4 shows the target architecture of our abstracted NIC model. The core feature
of the NIC is a scatter/gather DMA with ring-based packet buffers stored in the main system
DRAM. The scatter/gather DMA is the most important feature of a NIC card to support
the zero-copy feature in Linux kernel, which is essential for any high-performance networking
interface. In our current prototype, we support only one hardware ring buffer for each of the
receive (RX) and transmit (TX) queue. In every queue, there is a head and a tail pointer
stored in the NIC control registers. The NIC hardware uses one-level of indirection to store
packet data payload separately, while putting a 16-byte buffer descriptor in the ring. The
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descriptor rings are pre-allocated by the NIC device driver during the initialization time. To
send a packet, the device driver fills out the free TX descriptor using packet fragments from
the Linux kernel socket buffers (sk buff). The driver updates the ring buffer tail pointers
before the hardware DMA engine can walk through the ring data structures in memory and
send the packet to network. Similarly, when a packet is seen from the network, the NIC RX
DMA engine fills out the pre-allocated RX ring buffers and notifies the OS using a hardware
interrupt.

Our NIC device driver supports all features of what a generic Linux Ethernet device
driver has, except that we encode the destination MAC address in the Ethernet header for
our source-routing switches. Nevertheless, we can run unmodified TCP/IP user applications
using the standard socket programming interface.

Besides the above architectural features, we make several simplifications and list the
reasoning of the abstraction as the following. Many of the features we do not model are
optional performance optimizations under our hypothetical usage model:

• No hardware checksum: Calculation of TCP/IP and Ethernet frame checksum is a
computation intensive operation. Many modern NIC hardware can offload checksum
calculations of various network layers from the CPU to the NIC hardware. Since
DIABLO is a reliable simulator design, it is impossible to see a corrupted data packet
that will results a checksum verification failure. Hence, we do not model the hardware
checksum acceleration. Instead, our Linux device driver tells the kernel to completely
turn off the checksum calculation in the networking stack. This emulates having a
hardware checksum offloading engine in the NIC without taking extra time.

• No on-chip hardware queue and descriptor prefetcher : Since the packet descriptors
are stored in the system DRAM that is shared by CPU and other I/O devices, the
DRAM read/write operations are bursty. In addition, commodity NICs access the
main DRAM through more complex I/O interfaces, such as PCI express. In order to
operate at the link speed, there are usually small SRAM-based buffers on the Ethernet
controller to cache the DRAM descriptors. To improve performance, some controllers
can speculatively prefetch future descriptors from the DRAM ring buffer. Due to
the data structure of a ring, the speculative prefetch is very effective. The overall
performance is only limited by the I/O interface bandwidth, which appears to be less
an issue given a link speed of 1 Gbps or even 10 Gbps. In addition, some newer server
chips, such as Intel Xeon E5 processors [24], support directly forwarding data to the
last-level processor cache thereby eliminating the need of DRAM prefetching. Thus,
in our current abstracted model, we do not model this architecture detail for the sake
of model simplicity.

• No multiple receive hardware queues : Modern 10 Gbps Ethernet NICs, such as Intel
82599, support multiple hardware queues for different TCP flows, virtualization, and
multicore receive processing. Multiple receive queues are always used with multicore
when processing multiple flows in parallel. The DIABLO server model only adopts
a simple computation model, where the multicore effect is straightforwardly modeled

47



with having a single faster host processor. Although having a multiple hardware queues
support is interesting, the basic ring buffer architecture remains the same for all queues.
We could easily extend the current abstracted NIC model in the future.

• No fancy protocol filters : Newer 10 Gbps Ethernet NICs have CAM-based hardware
flow filters to speed up flow classifications to work with multiple hardware queues. Pow-
erful 10 Gbps NICs like Intel 82599 support as many as 128 5-tuple filters for TCP/IP
flows. However, in real datacenter scenario, on average only around 10 flows are active
per node [73]. Given the O(100) time simulation period DIABLO is targeting, lacking
of a hardware flow filter is unlikely to have a significant performance impact. Hence,
TCAM-based protocol filters can be a future work to expand the functionality of our
current model.

• No hardware send segmentation offloading : Send segmentation offloading is an effective
hardware approach to assist the TCP/IP segmentation feature in Kernel, thus reduc-
ing the CPU load when handling at a higher link speed above 10 Gbps. Hardware
segmentation requires a more complex target design. In our initial abstract model, we
compensate this target performance optimization by simple adjusting the server timing
model to have a faster target processor. In a later chapter, we will describe a future
RAMP Gold-based NIC model, which can easily model such complex performance
features using a programmable micro-code engine.

Figure 4.5 shows the abstracted NIC model. To create a more balanced system, the
NIC model has the same number of hardware threads as those for the server model. Each
hardware thread simulates an independent NIC in target. The NIC processes incoming and
outgoing packets in units of 64-byte in fixed amount of time in target decided by the line
rate, which renders the NIC timing model trivial to design. The data path is 64-bit matching
that of our switch model, which simulates sending and receiving data in eight host cycles
before synchronizing with other models in the system.

Similar to our switch and server model, we design a simple host cache that optimizes
for the descriptor-based DRAM references from the NIC DMA engine. Each entry in the
host-cache caches a 64-byte data for either send (TX) or receive (RX) DMA engine. The
host 64-byte data reference is always issued in burst to DRAM. Along with each entry, there
is a base address register, which is automatically updated while prefetching a ring buffer
descriptor. We use the cached base address to determine physical addresses of packet data.

We also build a small receive alignment buffer in the host cache that ensures the IP/TCP
header of every packet received from the network is aligned to a 4-byte boundary. This
buffer is a cache performance optimization in the Linux kernel. However, it is mandatory
on SPARC machines that do not support misaligned load/store instructions. Some low-end
NICs, such as Realtek 8169, lack of a byte-addressable a RX DMA engine. Instead, they
use memcpy in the device driver to work around this issue at the cost of performance. In
practice, having a fixed-size alignment circuit is sufficient to run the Linux networking stack,
while still maintaining the overall design simplicity.

The majority of the design complexity comes from supporting a byte-addressable scatter-
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gather DMA. Hence, we model a byte-alignment hardware unit using highly behavioral RTLs,
which is essentially an 8x8 8-bit crossbar with complex controls. A byte-addressable DMA
is required for the send data path, as application software could generate send data aligned
at arbitrary byte boundaries. Given the interaction of host-cache, host-multithreading, and
multi-cycle access, the state machine design of the NIC model is not trivial. In fact, it is
more difficult to design a FAME-7 NIC model than to design the equivalent target.

The total resource consumption of the abstract NIC model is comparable to that of
the RAMP Gold integer pipeline. The current NIC model is a straightforward FAME-7
implementation of the target hardware. The basic functionality of a NIC is to manipulate
packet data stored in the DRAM, while DRAM performance is less an issue for FAME
models. The NIC model is not on the performance critical path of DIABLO. Table 4.2
shows the FPGA resource consumption of the NIC model. The TX engine with the byte-
alignment hardware accounts for the majority of the logic resource consumption. This design
gives us insights on future NIC model designs described later.
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Component Name LUT Register BRAM LUTRAM
RX engine 278 221 0 92
TX engine 1255 344 0 132
Host cache 745 560 5 72
NIC registers 288 30 0 406
Miscellaneous 11 275 0 4
Total 2577 1549 5 1040

Table 4.2. The FPGA resource consumption breakdown of the abstracted NIC model
on Xilinx Virtex 5 LX110T

4.5 Modeling a Datacenter with a Packet-Switched In-

terconnect

In this section, we describe how to use aforementioned individual DIABLO models to
build a large-scale testbed to simulate thousands of servers with switches using 11 BEE3
boards.

4.5.1 Simulated Datacenter Target

Datacenters use a hierarchy of local-area networks (LAN) and off-the-shelf switches. Fig-
ure 4.6 shows a typical datacenter network arranged in a Clos topology with three networking
layers. At the bottom layer, each rack typically holds ∼20–40 servers, each singly connected
to a commodity Top-of-Rack (ToR) switch with a 1 Gbps link. These ToR switches usu-
ally offer two to eight uplinks, which leave the rack to connect up to several array switches
to provide redundancy and bandwidth. At the top of the hierarchy, datacenter switches
carry traffic between array switches usually using 10 Gbps links. All links use Ethernet as
the physical-layer protocol, with either copper or fiber cabling depending on the connection
distance.

As we move up the hierarchy, one of the most challenging problems is that the bandwidth
“over-subscription” ratio (that is, the bandwidth entering from below versus bandwidth to
the level above) gets worse rapidly. This imbalance is due to the cost of switch bandwidth,
which grows quadratically in the number of switch ports. The resulting limited datacenter
bisection bandwidth significantly affects the design of software and the placement of services
and data, hence the current active interest in improving network switch designs.

We pick the standard Clos topology and an interconnect with source-routed all 10 Gbps
Ethernet interconnect as our simulated target. As a proof of concept, each rack contains
31 servers and one top-of-the-rack switch (ToR) without redundancy, which can be easily
modeled at the cost of more FPGA resources.
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4.5.2 Modularized DIABLO system design: Array FPGAs and

Rack FPGAs

In order to easily scale up the emulated datacenter, DIABLO employs a modularized
design that includes only two distinct types of FPGA system designs. Figure 4.7 shows the
high-level simulator architecture for the typical target datacenter configuration presented in
Figure 4.6. We map all server models along with the ToR switch models into Rack FPGAs,
and array and datacenter switch models to separate Switch FPGAs. Besides scaling up the
number of simulated servers, this partitioning enables a more modularized model design that
eases experimentation with new array and datacenter switch designs. To further simplify
switch model design, we keep any switch model within a single FPGA. Following the physical
topology of the target system, we connect Rack FPGAs to Switch FPGAs through several
time-shared multi-gigabit serial transceivers using low-cost copper cables, such as standard
SATA cables. Each FPGA has its own simulation scheduler that synchronizes with adjacent
FPGAs over the serial links at a fine granularity to satisfy simulation accuracy requirements.
For example, a 10 Gbps switch with a minimum flit size of 64 bytes requires a maximum
synchronization interval of 51.2ns.

We reduce host communication latency by using our own protocol over the serial links,
achieving FPGA-FPGA communication latencies of around 20 FPGA logic cycles, which
is roughly the latency for a host DRAM access on the FPGA. Including all overhead, the
overall round-trip latencies between FAME models on different FPGAs is only around 1.6
microsecond. In addition, the host-multithreaded design further helps to hide the simulator
communication latency, removing model synchronization latency as a simulator performance
bottleneck. Since we partition the model on boundaries of physical switch, we also take
advantage of physical link latencies in target between switches to relax the simulation syn-
chronization need.

To make the design simpler and more modular, we select multi-gigabit serial transceivers
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Figure 4.7. DIABLO FPGA simulator architecture

as the only inter-FPGA connection instead of the high-speed parallel LVDS links often seen
on multi-FPGA boards. Specifically, parallel LVDS links increase design complexity. To
ensure reliable transmission, designs require complicated dynamic calibration and special
eye-opening monitoring circuit on groups of I/O signals. In addition, designs with LVDS
links are less portable because of varying I/O layouts on different boards, making connections
between Rack FPGAs and Switch FPGAs less flexible. Moreover, LVDS links increase both
PCB board and FPGA cost because they require more FPGA I/O pins and link wires
for a given link bandwidth. Finally, we found that the multi-gigabit serial transceivers
provide enough bandwidth between FPGAs considering our overall simulation slowdown
between 250× and 1000× of real time. For example, 2.5 Gbps transceivers are common
on three-year-old Xilinx Virtex 5 FPGAs. The bandwidth of a single transceiver translates
to 500 Gbps to 2500 Gbps in the target, which far exceeds the bandwidth between a few
racks and several array switches. Moreover, recent FPGAs have significantly enhanced serial
transceiver performance, supporting up to 28 Gbps bandwidth [20] in the 28nm generation.

Each Rack FPGA contains multiple sever model pipelines in a 32-thread configuration,
simulating a rack of servers. We evenly distribute the sever models to multiple host DRAM
channels and partition the host DRAM for server computations. On the Xilinx Virtex
LX155T FPGA of BEE3 board, each rack FPGA uses up both memory controllers with
fully populated DIMM modules to support more DRAM capacity. We manage to put down
four server model pipelines per FPGA, two for each DRAM channel, simulating four racks
of 124 servers. Each server model has one ToR switch model attached to the same DRAM
controller. Therefore, we can perfectly divide the rack FPGA into two identical physical
simulation partitions, each consisting of one DRAM channel with 8 GB storage.

Figure 4.8 illustrates the floor plan of the rack FPGA, showing the two host DRAM
partitions occupying half of the chip. One is on the top, while the other is at the bottom.
This partition also allows us to use simple physical placement constraints to speed up the
time-consuming place and route process and improve the quality of result from the CAD
tool. We employ one 3 Gbps transceivers on each rack FPGA as the external connection to
a switch FPGA, connecting the uplink on all rack switch models.

We equally divide the 16 GB physical DRAM resources into 128 128 MB-partitions.
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Each simulated server takes one partition as the target memory storage. For each server
pipeline, we use 31 threads out of the 32 available threads and save the DRAM storage of
the remaining thread for simulating packet buffers on the ToR switch. We discuss how to
increase effective DRAM partition size in Chapter 7.

As discussed in the previous chapter, given a 1000x simulation slowdown, the DRAM
bandwidth is not a performance bottleneck. On the other hand, the DRAM capacity is
a critical shared resource among all DIABLO models. To connect DIABLO models, we
built a distinct host memory interconnect. Server models account for the majority of the
host DRAM traffic, but there are relative small number of server models pipelines per host
memory controller. Therefore, we design a pipelined 144-bit crossbar interconnect to connect
all host caches on the server models, optimizing for low-latency accesses with single burst
size. The number of ports of this crossbar is parameterized, and it can be decided during
the synthesis time.

In contrast, we use a 144-bit ring interconnect for NIC and switch models. The ring
interconnect optimizes for simple controls to support non-uniform burst sizes from the NIC
scatter-gather DMA engines and switch packet buffers. A ring interconnect is also routing-
friendly on FPGAs to improve the actual circuit performance.

Both the ring and the crossbar uses credit-based flow controls to simplify pipelining on
FPGA, which helps to meet timing closures and reduce the CAD place and route time. The
host memory interfaces of all DIABLO models employ a non-blocking design that allows all
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hardware threads issue memory requests without being blocked by pending requests from
other hardware threads.

We put an arbiter in front of the memory controller to select requests from the ring
and the crossbar. The arbitration is done at the burst boundary to take advantage of
the DRAM row hit and maximize the DRAM command bus utilization through the DDR2
additive latency. Although the arbiter could provide hints to the DRAM controller based
on the request addresses to speculatively issue row PRECHARGE commands for better
performance, we do not do so currently for the reason of design simplicity. For the same
reason, the whole host memory interconnect only supports in-order accesses.

In terms of the physical design, we double clock the data path to keep up with the data
rate of the memory controller. We also use ECC to protect all memory data paths that
interact with the ECC memory DIMMs on the BEE3 board.

All DIABLO models on the same FPGA share the single Gigabit Ethernet connection as
the frontend connection for bootstrapping, console output and functional I/Os. We design
a simple ring interconnect for the frontend connection to ease the routing pressure. Every
model in the design has numerous hardware performance counters that periodically send
performance statistics through the frontend link.

To further simplify the switch model design, we keep any switch model within a single
FPGA. Specifically, we put several array/datacenter switch models in a switch FPGA. The
switch FPGA is actually a shrunken down version of the rack FPGA with only switch models
and less server model pipelines. We use only one host DRAM channel without the need of
fully populated DIMMs, which is sufficient to simulate all switch port buffers. We do put
a single server model functional pipeline without a timing model, which we only use to run
functional configuration for our switch models. The server functional pipeline can also be
doubled as a control-plane processor for the simulated switch. Other than these differences,
the switch FPGA uses the same host memory network and frontend interconnect found in
the rack FPGA. Each switch FPGA supports up to eight 3 Gbps transceivers that connect
to either rack FPGAs or other switch FPGAs.

Table 4.3 shows the overall rack FPGA resource utilization on Xilinx Virtex 5 LX155T-
2 FPGA on the BEE3 board after place and route with Xilinx ISE 14.3. Including the
resources dedicated for FPGA routing, the device is pretty close to fully utilized with 95%
of logic slices occupied at 90 MHz.

We also spent a significant amount of register resources, shown in the miscellaneous row
in Table 4.3, to build a pipelined host interconnect to glue all DIALBO models with host
DRAM resources. On overall, the rack FPGA is a BRAM bounded design. This utilization
implies that we could support more server pipelines and simulate more target nodes by using
a larger FPGA with more memory DIMMs.

On the other hand, our abstracted switch models consume a very small amount of FPGA
resources. Hence, the switch FPGA simulating one array or datacenter switch consumes less
than a quarter of the overall FPGA resources. The low resource utilization suggests that
there is a great potential to support a more detailed switch model in the future. In addition,
the physical connectivity of the switch FPGA is high-speed transceiver bounded. This
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physical connection limitation is constrained by the choice of FPGA and the board design
rather than by the DIABLO system architecture.

Component Name LUT Register BRAM LUTRAM
Server Models 28,445 37,463 96 6,584
NIC Models 9,467 4,785 10 752
Rack Switch Models 4,511 3,482 52 345
Miscellaneous 3,395 16,052 31 5,058

Total 45,818 62,811 189 12,739

Table 4.3. The FPGA resource consumption breakdown of the RACK FPGA on Virtex
5 LX155T. The overall occupied slice utilization is 95% and BRAM utilization is 89%
after place and route at 90 MHz

4.5.3 Building a 4,000-node DIABLO System with 11 BEE3

Boards

We need several multi-FPGA BEE3 boards to build a sizable DIABLO system. Although
the BEE3 board uses a 2007 FPGA and older DRAM DIMMs, it is optimized for computer
system emulations offering a large DRAM capacity. The board also supports eight 10 Gbps
CX4 connectors, two per FPGA, on the front panel for external connections. However, BEE3
is not designed specifically for DIABLO.

For instance,in practice not all high-speed transceivers are easily accessible on the board.
Each CX4 connector bundles four independent transceivers and we have to use a CX4-SATA
breakout cable to access the single transceiver. In addition, BEE3 uses half of the total 16
transceivers for a PCIe x8 connector, which requires a custom break-out daughter card for
the DIABLO usage scenario. All these BEE3 hardware features increase the cable cost of
prototyping DIABLO. To keep the wiring flexible, we choose to use the eight CX4 connectors
exclusively with breakout cables for simple inter-board connections.

Figure 4.9 presents the block diagram of a DIABLO system with 3,968 computing nodes,
128 rack switches, 8 array switches, and one datacenter switch using 11 BEE3 boards. We
program all four FPGAs on eight of the 11 boards as rack FPGAs to model all computing
servers and rack switches. Hence, we are getting a near 100% FPGA and DRAM capacity
utilization on these boards. We use two BEE3 boards for simulating the eight array switches,
having each FPGA simulating one switch. One FPGA on the remaining board is dedicated
to the single datacenter switch model. Each rack FPGA has one 3 Gbps link connecting
to a switch FPGA on another board. We connect all four rack FPGAs on one board to
the same switch FPGA on another board through one 4-lane CX4 connector. We use one
transceiver in the other CX4 port of the switch FPGA to connect to the datacenter switch.
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Figure 4.9. The block diagram for a DIABLO system with 11 BEE3 boards

This topology matches the simulated target, where 496 servers in 16 racks connect to a single
array switch.

The scalability of switch FPGAs is limited by the number of available transceivers on
BEE3. If we built PCIe x8 daughter cards to break out transceivers occupied by the PCIe
connector, each switch FPGA can connect to two more boards simulating more servers.
We could therefore add additional 16 boards to the existing system to build an emulated
datacenter with 11,904 servers with 384 rack witches. As a demonstration, we designed a
six-board DIABLO system (constrained by the BEE3 board availability and DRAM cost)
with 1,984 nodes, illustrated in Figure 4.10. The system contains 384 GB DRAM in 48
independent DRAM channels, with a peak bandwidth of 179 GB/s. It occupies half of a
standard server rack space, and consumes about 1.2 kwatt when active. Besides the CX4-
SATA cable connections, every FPGA connects to frontend control servers through a 48-port
Gigabit Ethernet switch.

We store boot disk images and console I/O logs of all 1,984 simulated servers in three
multicore x86 servers. Each server has three 1 Gbps Ethernet links to the control switch.

56



There are 21 independent frontend server processes each controlling one active FPGA in
the system. In order to isolate these processes from interfering with each other while still
maintaining a modular design, we build a software virtual switch bridging all processes with
three shared physical Ethernet ports, which is similar to the VDE switch [31] used by popular
virtual machines like QEMU and VirtualBox.

(a) Without inter-board connections (b) Fully-connected with high-speed cables

Figure 4.10. DIABLO cluster prototype with 6 BEE3 boards

4.5.4 Summary

In this chapter, we described DIABLO hardware architecture and design strategies. We
presented many host techniques we used on FPGA to build a high-density FAME simula-
tor. We show that DIABLO by itself is a big machine built on FPGAs with a different
design space. Some of the design choices we made are not intuitive, if building a real target
implementation instead. Finally, we discussed the implementation trade-offs of DIABLO
prototype in real-world.
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Chapter 5

Using DIABLO to Conduct

Datacenter System Research at Scale

We present three examples of using DIABLO to conduct datacenter network architecture
research at all levels, including hardware, transport protocols, and applications. In the first
case, we use DIABLO to model a novel circuit-switching research datacenter interconnect
hardware from Microsoft Research. The second case reproduces the famous datacenter TCP
Incast [126] throughput collapse effect with DIABLO packet switching models. The last case
shows a 1,984-node DIABLO system running an unmodified memcached [25] service, which
is an in-memory key-value store caching system currently used by many major websites, such
as Facebook and Twitter.

5.1 Case One: Modeling a Circuit-Switching Datacen-

ter Network

Although packet-switching network dominates today’s datacenter network, circuit-
switching has become an attractive alternative approach in recent years to many datacenter
researchers for providing a simple and easily manageable network with more quality-of-
service guarantees. To demonstrate the flexibility of our FPGA-based modeling approach,
we employ DIABLO to study an early version of a novel circuit-switching datacenter network
using FPGAs designed by Chuck Thacker at Microsoft Research [122].

As part of the design team for three months, I also participated in the initial switch
architecture design with early feedback from our DIABLO models. During that time, we
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were able to finish a fully-working FAME-7 system, modeling all levels of switches in the
target network architecture. We also ran some traffic patterns sampled from Microsoft Dryad
Terasort application. The experience we gained through software and hardware co-design
using DIABLO affected several design decisions in later versions of the architecture.

5.1.1 Target network architecture

The context of the circuit-switching network we model is a datacenter built in shipping
containers. In this architecture, there are two rows of server racks with 16 44U racks per row
in every container. Figure 5.1 shows the circuit-switching switches in a typical container.
Fifteen server racks contain two Level-0 (L0) switches that aggregate traffic from 20 2.5
Gbps end-nodes linking onto two 10 Gbps uplinks. In one rack of each row, the L0 switch
and 20U of server is replaced by the L1 switch for the row and its route controller (RC).
There are two 128-port L1 switches, each having 64 inward-facing and 64 outward-facing 10
Gbps ports. The two L1 switches are used to provide failure-tolerance. Up to 64 containers
are connected using an all-to-all topology without further central switching needed. The
bisection bandwidth per container is 640 Gbps, while the overall bisection bandwidth for the
whole center is 20.5 Tbps.
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Figure 5.1. Target architecture of the novel circuit-switching network

Because the datacenter network is a well-controlled environment with a known topology,
this network employs a much simpler arrangement compared to IP switching, similar to ATM
but with smaller cells and different routing algorithms. There are two types of traffic in this
network: Scheduled Traffic and Datagram traffic. The former accounts for long data flows,
which require circuit path setup and teardowns. The latter is for short flows that do not
require path setup. Figure 5.2 illustrates the frame format and typical data paths involved
for both types of traffic. The L1 switch is an input-buffered 128x128 crossbar. The buffers
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are managed by the route controller attached to port 0 of each L1 switch. An end node
needs to send route setup request to the RC before sending any scheduled traffic and path
teardown request to release L1 buffer resources. All the datagram traffic is handled by the
datagram forwarder attached to port 1 of the L1 switch. The L1 switches route both type
of traffic in fixed length repeating frames of 3.68 microsecond at 10 Gbps link rate. Each
frame consists of 128 slots, and a slot carries 32 bytes of payload and a four-byte cell header.
A single slot represents a unit of bandwidth of 10, 000/128Mb/sec, or 78.125Mb/sec, which
is the minimum bandwidth allocation unit in this network. Slot 0 is dedicated for all route
setup and teardown traffic, while slot 1 is for the datagram forwarder. The L1 switches have
small buffers and are very simple to implement with several low-cost FPGAs through bit
slicing. The network employs simple source-routing. The round trip time for setup/teardown
messages is less than 15 microsecond.
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Figure 5.2. Frame formats and data paths of the target circuit-switching network

The L0 switches are also simple, as Figure 5.3 shows. There are five line units that each
serves four low-speed lines at 2.5 Gbps. Data arriving on the uplinks are deserialized and
transmitted to the line units on two pipelined 16-bit time-slotted ring. The ring also serves
local traffic within the L0 switch. During each frame, the NIC sends a cell for each of the
active connections (slots) it has, providing it has traffic queued for the slot. Data from NIC
is unscheduled, buffered in the line units and sent during the next frame. The NIC also
utilizes a non-standard signaling that requires a custom-designed software interface as well.
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Figure 5.3. The L0 switch architecture

5.1.2 Building DIABLO models on FPGA

Our DIABLO models focus on scheduled traffic within a container, because the network
architecture design between containers and datagram forwarding was still under development
when this work had started. We modeled a network of 64 servers, one L1 switch with RC
and four 16-port L0 switches.

The 64 servers are evenly distributed across four L0 switches of each connecting 16 servers
each. On each simulated server, we build a simple NIC model working in a polling mode. To
model these servers, we use a single DIABLO server pipeline with a 64-thread configuration.
The simulated server has a simple timing model with perfect memory hierarchies (CPI=1)
running at 2.2 GHz. The target network has a simple architecture with tiny buffer size
that is designed to implement with multiple entry-level FPGAs. Due to the simple target
design, both L0 switches and NICs can be easily modeled in the FAME-0 style with minimum
abstractions. Furthermore, the source-routing target design eliminates the need of modeling
expensive TCAM structures. Consequently, the DIABLO models of the L0 switch and
NIC models look exactly like the target implementation except that our models are host-
multithreaded in order to work with other DIABLO models.

On the other hand, most of the complexities of the network come from the 128-port
crossbar in the L1 switch and the real-time route allocation circuit in the RC. Therefore,
we use the FAME-7 approach to build much simpler hardware in our FPGA host to replace
these complex multiport crossbar structure in target.

For instance, we built a time-multiplexed 64-bit ring network to connect all 128 ports
on the L0 switch. Instead of processing crossbar input-buffer allocation in one clock cycle,
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we built a decoupled FAME model on FPGA, which handles the crossbar scheduling in
four cycles. Since the whole network is synchronous and runs in frames of fixed length, the
corresponding timing model is trivial to design with a few counters and comparators.

Table 5.1 shows the FPGA resource utilization of the L1 switch model with full architec-
ture details in comparison to the server models. We measure the design efforts in the lines
of code. The implementation of a full-fledged FAME-7 circuit switch is straightforward.
The resource consumption is moderate compared to simulating computations. However, the
FPGA BRAM again becomes a critical resource that limits our modeling density. The overall
DIABLO system runs at 90 MHz on a single Xilinx Virtex 5 LX110T FPGA.

FAME Model Registers LUTs BRAMs Lines of Systemverilog
64-server model 9,981 (14%) 6,928 (10%) 54 (18%) 35,000
L1 switch model 859 (1%) 1,498 (2%) 28 (9%) 2,550

Table 5.1. FPGA resource usage and lines of Systemverilog for different FAME models.

5.1.3 Dryad Terasort Kernel Data-Plane Traffic Studies

One of the key applications for this network is to support Map-Reduce style jobs. To
test the effectiveness of the target design, we use the Dryad Terasort kernel to generate
data-plane scheduled traffic. The original Dryad Terasort is written in C# and runs on
Windows, so we have to hand code the kernel in C and run it on the bare-metal RAMP
Gold proxykernel. We also wrote a NIC device driver with software managed send/receive
queues running along with the Terasort kernel. Unlike traditional circuit-switching network,
applications have better knowledge on path usage in the datacenter, so we add circuit path
setup and teardown control to the Terasort application logic. There are three traffic patterns
in the Terasort data plane, illustrated in Figure 5.4.

All to one  
(Send sampled data) 

One to all 
(Broadcast sorted range key) 

All to all 
(Merge sort range partitions) 

Figure 5.4. Three typical traffic patterns in the Dryad terasort

1. All to one: All nodes randomly sample ranged keys from the input data stored in local
disks to a central node.
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2. One to all : The center node sorts the received keys from phase one and broadcasts the
sorted key back to all nodes.

3. all to all : All nodes use the sorted keys to perform merge sort and send bulk data to
all other nodes.

Phase I and II use small sampled data instead of the full dataset, so they account only for a
small portion of time of the total runtime. The performance bottleneck of the first two phases
lies in the link of the aggregate node. However, the traditional packet switching network is
susceptible to the subtle interactions between the store-forward packet buffer architecture
and congestion control network protocols, so it could not efficiently handle the phase-I type
traffic, for example the famous TCP incast throughput collapse issue.
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Figure 5.5. Link throughput on L0 switch for the Terasort phase one traffic

Figure 5.5 shows the aggregate node network link utilization running the Phase-I traffic.
In our experiment setting, 63 nodes send 128-slot scheduled traffic of 4096 bytes to the
central aggregate node. Each client requests one circuit path with capacity of one slot to the
RC. We measured the link utilization through hardware performance counters on the NIC
in time unit of four frames, i.e. 14.72µs.

The circuit setups and teardowns are extremely fast for the all-to-one traffic. The per-
formance impact to the link utilization is minimal. The duration of performance dips are
less than four frames, shown as utilization dips at time 35 and 69 on the graph. The target
circuit-switching network does not have any application throughput collapse, unlike those
found in store-forward packet switching switches. The link kept saturated majority of time
before 1.5ms, when 80 percent nodes finished Phase I.

After 1.5ms, the link became underutilized because there are fewer active circuit paths.
This suggests that in the future better frame slot allocation schemes can improve the overall
performance while there are fewer active links to keep the pipe saturated.
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The link utilization of Phase II traffic is similar to the one in phase one. However, the
performance of Phase II is very intuitive and less interesting in the context of switch designs,
because the bottleneck is at the sender node instead of the network.

The all-to-all traffic in Phase III is the most important one for the Map-Reduce style batch
processing jobs. We tried two types of traffic. One is fixed payload in 4KB units (virtual
memory page/disk block size), while the other is a variable-size workload with payload size
randomly selected from 3KB to 5KB. Figure 5.6 presents the utilization of link 0 on the L1
switch for the fixed workload over time.
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Figure 5.6. Link throughput on the L0 switch for the fixed length traffic in phase III

Figure 5.7 illustrates the link utilization with the random workload. Link utilizations
of the rest three links show similar behaviors. Since the target network is synchronized on
frames, the circuit setup on route controller has become a bottleneck, when all NICs try to
send circuit setup and teardown requests simultaneously. The prototype only dedicates one
slot of 78.125 Mbps for the control traffic. On the other hand, the control traffic is very
bursty leaving the data frames under-utilized before a new path has been set up by the route
controller.

Moreover, even taking into account the effect of full device driver, the randomness intro-
duced by software could not offset these throughput dips. This performance issue is because
the route control requests are queued locally inside the L0 switch and will be sent at spe-
cific time in a frame defined by the target protocol. On the contrary, random traffic works
around this problem by amortizing circuit path setup and teardowns over time. This perfor-
mance behavior we observed from DIABLO led to a redesign of the circuit setup/teardown
architecture.
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Figure 5.7. Link throughput on the L0 switch for the vairable length traffic in phase III

5.1.4 DIABLO for Software Development

Having an accurate DIABLO performance model enable studying the target architecture
in great detail along with software applications, which provides early feedback for designers
and helps to discover unexpected real implementation issues. The accurate performance
models not only provide a platform to evaluate architectural design ideas, but also serve as
an excellent platform for faster driver development.

In addition, DIABLO is capable of simulating various host processor speeds, which allows
us to study the impact of NIC software. We found even at a link speed of 2.5 Gbps, the
software processing is still every challenging. Although the circuit-switching network is
designed to be lossless, the software can actually drop frames in practice. This observation
also led to a better design of link-level retransmission and fault-handling in a future revision
of this design.

5.2 Case Two: Reproducing the TCP Incast Through-

put Collapse

Incast is a many-to-one communication pattern commonly found in many datacenters
implementing scale out distributed storage and computing frameworks, such as Hadoop and
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Map-Reduce. In particular, the TCP Incast problem [126, 114] refers to the application-level
throughput collapse that occurs as the number of servers sending data to a client increases
past the ability of an Ethernet switch to buffer packets. Figure 5.8 shows the simple network
topology setup of the TCP Incast problem.

Figure 5.8. A simple cluster-based storage environment for the TCP incast problem

Previous work [126, 50] has focused on studying the interplay between the TCP transport
protocol retransmission time out (RTO) value and small switch buffers on low-cost top-
of-the-rack switches. Unfortunately, many switch vendors do not publish details of their
packet buffer architecture designs and provide near zero visibility into their product. Hence,
researchers were forced to use poplar event-driven simulation [126] and analytical models [50,
140] to model an abstract switch in order to reverse engineer the real cause of the problem,
focusing only on the switch buffer and TCP protocol. People have also validated their models
against measurements from real machines, showing their models could successfully reproduce
the application throughput collapse. As a consequence of these studies, there have been many
proposed solutions on the network transport protocol and the switch architecture for Incast.
Representative approaches include modifying TCP parameters [126, 50], congestion control
algorithm [135], adding large switch buffers [114], and supporting the explicit congestion
bit (ECN) on each switch.

However, as pointed out in [114], TCP incast is only obvious under specific hardware and
software setups, for instance with low-cost switches that has very small shared packet buffers.
Some simple switch configurations such as turning on vendor specific QoS features and use
larger request block size can significantly delay the onset of the throughput collapse. During
our conversations with industry researchers, quite a few people call TCP Incast “artificial”.
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In addition, almost all performance models people developed are based on observations from
low-cost Gigabit Ethernet switches. It is apparently the cause that triggers the application
throughput collapse, giving that modern servers are fast enough to saturate a gigabit link.

Inspired by the end-to-end system design argument, the solution of the TCP Incast
problem is to improve application throughput. Besides, there are still so many layers below
the simple application in addition to the network transport protocol and switch, such as host
processing performance, choice of OS syscalls, kernel scheduler, NIC hardware and drivers.
Considering the fact that TCP incast is observable only under specific settings, could we
really conclude the tiny switch buffer is the solo direct cause? If we are not constrained
by the limited design space of today’s TCP incast setup, will our conclusions change using
a faster link speed? Is the current performance model accurate without simulating the
processor, the operating system, and the NIC?

As opposed to existing performance models, DIABLO aims to simulate the full-software
stack at scale with great detail. The following sections will address several questions:

1. Can we reproduce the Incast throughput collapse effect with DIABO?

2. Is simulating computation and full software stack necessary to see TCP incast?

3. Do we need thousands of simulated instances to simulate rack-level networking effects?
That is, is DIABLO an overkill for TCP incast?

5.2.1 Reproducing the TCP Incast Effect on Gigabit Switch with

Shallow Port Buffers

The first validation of DIABLO is to see if we can successfully reproduce the applica-
tion throughput collapse with shallow-buffer Gigabit switches used in many previous work.
Without resynthesizing the FPGA, we configure the DIABLO packet-switching model at 1
Gbps link speed with 4KB packet buffer per port, found in Nortel 5500 switch [49]. The
switch port-to-port delay is set to 1µs. Compared to existing ns-2 and analytical switch mod-
els, DIABLO models a more advanced configurable packet buffer architecture that supports
virtual-queues to prevent head-of-line blocking, which is usually used in high-end Cisco [16]
or Fulcrum switches [55]. We did not use this advanced buffer architecture during our cur-
rent experiments on TCP incast, which is more observable in low-end shared-buffer switches.
However, we configure the packet buffer on our switch model to emulate cheap switches for
a fair comparison.

The test program uses a workload in which a single client requests data from multiple
servers, replicating the behavior of cluster-based storage systems, written by Berk Atikoglu
and Tom Yue of Stanford University [6]. The same program has been used to test 10 Gbps
production datacenter switches from Arista and Cisco [14]. We picked a typical request block
size of 256KB for the client application. We configured DIABLO to simulate a single-issue
4 GHz CPU using our simple fixed CPI timing model.
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The goodput of the client link is the number of useful bits transmitted over the network
as seen by the application. We compile the Linux kernel to use TCP Reno with the default
RTOmin at 200ms. The TCP and networking models in DIABLO are better than any of the
existing simulation or analytical models, because it is from unmodified Linux implementation
that includes every nuance of the kernel network stack.
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Figure 5.9. Reproducing the TCP incast effect with a shallow-buffer gigabit switch

We use up to 24 ports of the simulated switch, and run the network transaction for
40 iterations and average the goodput in Figure 5.9. DIABLO successful reproduced the
application throughput collapse starting from 2 servers, found in measurement on real phys-
ical machines in [50]. After the collapse, the application throughput gradually recovers to
over 150 Mbps. The simulated throughput before collapse also matches that on the real
measurement at around 800 Mbps.

On the collapsed throughput, the absolute value of the simulated goodput is slightly
lower than the real measurement, but we successfully reproduce the trend when increasing
the number of servers. There could be many contributing factors to the absolute difference,
such as details of NIC software, switch architecture, and host computing power.

5.2.2 Study TCP Incast at 10 Gbps Link Speed

Based on validated simple switch models at 1 Gbps, networking researchers have gener-
alized their observations to 10 Gbps, emphasizing the TCP protocol and switch buffers only.
In addition, prior work [126] makes unrealistic assumptions using an unrealistic request
block size at 80 MB scaling to over two thousand servers on a single switch. Although these
simple performance models seem to be reasonable at low link speed, they still face the ques-
tion whether they are able to answer questions at other scales. With the help of DIABLO,

68



we found there are many factors that could significantly affect the application throughput
at 10 Gbps link speed beyond TCP protocol and switch buffers.

In our experiments with DIABLO, we increased the switch per-port packet buffer to
16KB and lower the port-to-port latency to around 100ns to match the latest 10 Gbps cut-
through switch specifications. In the incast application, we scale the requesting block size
to 4MB to better utilize the increased bandwidth but still maintain a reasonable size for
applications, where MB-size requests are common for distributed file systems [69]. Similar
block sizes can also be found in performance testing used by industry for production switch
benchmarking [2].

To investigate the impact of the operating system and kernel scheduler, we modify the
TCP Incast benchmark using the epoll syscall, while the original program utilizes blocking
socket syscalls inside server client threads created by pthread. The epoll syscall has been
used by many datacenter applications, such as memcached to efficiently handle many client
network connections. Applications using epoll have very different behavior compared to
putting blocking syscalls in multiple user threads, where the application proactively polls
the kernel for available data as opposed to waiting for OS to notify user threads. We also
configure the processor timing model in DIABLO to simulate the processing effect of 2 GHz
CPU versus a 4 GHz CPU.

To achieve an optimal network performance, switch benchmarks or storage network ap-
plications often choose a larger MTU (e.g. use the jumbo frame feature), which offsets the
extra processing overheads by having fewer packets. However, Web 2.0 applications tend
to use the standard 1500-Byte Ethernet MTU. For example, Twitter’s datacenter is still
running with an MTU of 1500 Byte. Therefore, we did not use a large MTU in our test. We
plot the goodput curve of in Figure 5.10, with the right showing the results using the original
pthread and the left showing the new epoll client.
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Figure 5.10. The left shows the throughput using the epoll syscall, whille the right
utilizes the original pthread.

Under the same switch and TCP configuration, both graphs show some degree of applica-
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tion throughput collapse. However, different host processing speed and choices of OS syscalls
significantly affect the application throughput. With a 10 Gbps link, it is very challenging
for applications to achieve the wire speed without significant effort. Even with the help of
scather/gather zero-copy feature in the NIC, the simulated 2 GHz CPU could only achieves
1.8 Gbps throughput when there is no throughput collapse.

The use of epoll syscall significantly delays the onset of throughput collapse, we only
observe a moderate throughput collapse to 2.7 Gbps starting from 9 servers and 1.8 Gbps with
23 servers on 4 GHz processors. On the slower hosts, the collapse is much more significant to
400 ∼ 500 Mbps, which is less than a third of the throughput on 4 GHz servers. The collapsed
throughput with the epoll client is only half of that of the original pthread client. On the
contrary, using the pthread version, the throughput collapses quickly even with a faster CPU.
The throughput recovers to only 10% of the link capacity, which matches the observations
from measurements and simulations in [126]. Moreover, the absolute throughput numbers
do not seem to be correlated with the host processor performance when collapse happens.

Our results clearly suggest that there are many components in the software stack and
even the host processor performance could significantly affect the TCP performance. As
pointed out in an early work at the Fermi national lab with thousands of machines running
10 Gbps network for High Energy Physics (HEP) research [136], there are many factors
in the Linux kernel that could lead to packet losses, such as different queues for slow and
fast path handling of received packets. In addition, the kernel does not always notify the
application immediately upon receiving a packet. Our head-to-head comparison between
epoll and pthread clients shows that different choices of syscall have a strong impact on how
kernel handling these internal queues. If any of the queues is full or is not drained in a timely
fashion, the kernel can drop a packet that eventually triggers the TCP 200ms retransmission
timer.

Moreover, modern high performance NIC drivers employ the new polling NAPI interface
[111] to mitigate receiving interrupt load on CPUs. Basically, upon receiving a packet
from the NIC RX interrupt, the driver turns off the hardware RX interrupt and tells the
kernel to poll the driver at its convenience, for instance, rescheduling with softirq, traps,
and exiting system calls. The downside of this performance optimization is that it makes
the system behavior less deterministic. The overall performance is not only decided by the
NIC hardware, but is also determined by how fast the kernel schedule a poll event. In our
simulation with a slower host processor, we saw the NIC has to drop many incoming packets
because the receive ring buffer allocated by the NIC drive is full due to a slower draining
rate.

In conclusion, although packet losses trigger the TCP protocol retransmission that re-
duces application throughput, adjusting the TCP retransmission timer does not address the
performance bottleneck in a system. The trip of a request from one application to another
one on a different machine is a very complicated process even under the simple TCP Incast
setting. Furthermore, there are many software buffers besides the hardware switch buffers.
If the overall system is not balanced, a packet could be dropped at any place. Switch buffers
are not always the one and only limiting factor. The long TCP retransmission timeout is
just a consequence of an imbalanced system. Simple analytical or network simulation models
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happen to work with faster machines connected with a slower network, but they cannot be
safely extended to draw conclusions for a scaled-up system.

In terms of the solution of the TCP Incast problem, many proposals only focus on the
interactions between the TCP protocol and switch buffers. We would like to raise two legit
questions to prior work:

1. Are the design space limited by inaccurate simulations without looking at the problem
from a whole system prospective?

2. Does reducing the retransmission time out really address the system bottleneck?

5.2.3 The Need of Simulating O(1,000) Nodes for Rack-Level

Problems

Simulating the full software stack requires a significant amount of computing power.
Moreover, in order to achieve stable simulation results, we need to perform the same ex-
periment multiple times. For our 10 Gbps simulations, we ran 40 iterations for each data
point up to 30 to 40 seconds in target time. This translates to hours in simulation. To plot
a goodput curve from 2 to 24 machines, it requires moving about 40 GB in the simulated
network. Additionally, when the design space is large including many knobs in addition to
switch buffers and transport protocols, the simulation demand could be enormous.

In our experiments, we populated all six BEE3 boards with around 3,000 simulated
hosts in 96 racks, simulating 8.6 billion instructions per second. Each FPGA simulates
four racks of servers along with a top-of-the-rack switch. Although the raw simulation
performance is 1000x slower than a real physical target, we can build a large number of nodes
running in parallel with each generating different data points. This greatly compensates the
slower simulation performance. For networking gear related performance tests, it is not
very common to build a large scale testbed in practice. Usually, researchers have to run all
desired experiments on the same small testbed sequentially. Any time-shared tricks such as
cloud computing and virtual machines does not help here, because all of these performance
tests require white-box testing to the underlying interconnect. Time multiplexing effects
could introduce further nondeterministic undesired behaviors. This means it could still take
a few hours to collect all data needed for a research paper on a small-scale real physical
implementation. In contrast, with the great parallel simulation bandwidth of our six-board
DIABLO, we can collect the same data overnight, which is not significantly longer.

To sum up, though DIABLO is designed to conduct experiment at scale beyond proto-
typing, the simulator scale offers great bandwidth that can be used to speed up rack-level
simulations. This makes DIABLO a very practical platform for research problems at a
smaller scale as well.
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5.3 Case Three: Running memcached, a Distributed

In-Memory Key-Value Stores

One of the important goals of DIABLO is to run production datacenter software. To
demonstrate this feature, we run a popular distributed key-value store application, mem-
cached [25], on DIABLO. Distributed in-memory key-value stores have become a central
piece of many large website, such as Facebook, Zynga and Twitter. Essentially, these sys-
tems storing ordered (key, value) pairs are a distributed hash table. The key role of these
systems is a cache for expensive-to-obtain values, usually disk-based back-end databases.
The typical hit rates of production in-memory caching service in Facebook could be as high
as up to 81% to 99% [39], suggesting that they are on the performance critical path of
majorities of web requests.

In real datacenters, both memcached servers and clients (usually the web frontend) scale
up to thousands of machines [9] connected with standard Ethernet-based datacenter inter-
connect. Previous work [92, 9] shows that the performance bottleneck of memcached are
packet processing overhead in the NIC and the OS kernel networking stack, with some issues
only showing at scales of thousands of machines. Clearly, running the full-software stack
is a prerequisite to study memcached performance behavior. Cloud-based evaluation plat-
forms do not work here, because the inefficiency I/O handling of its virtual machine based
foundation technologies. As a result, these evaluation challenges make memcached a perfect
showcase for DIABLO.

5.3.1 Experiment setup

Because of its popularity, memcached has been actively developed by both industry [3, 7]
and the open source community. We use the latest vanilla memcached version 1.4.15 and
compile it to SPARC without a single code change. We built our client using libmemcached
1.0.14 [5], which includes some simple application-level fault tolerant features such as time-
out retry for UDP traffic.

We reuse the same simulated hardware configuration as that in our TCP incast exper-
iment. In order to validate our results, we run memcached at both rack scale and a large
scale up to 2,000 nodes for research purposes. The rack-level experiments are practical to
validate with results from real physical machines.

For our rack-scale experiments, we simulate 4 GHz servers with our fixed CPI timing
model connecting to a Gigabit switch with the virtual-output-queue packet buffer architec-
ture. We equally partition the input-port packet buffer among all virtual queues on the same
physical port, with each supporting up to 16 KB buffer space. We emulate a 1µs port-to-
port latency. When conducting our scale-up experiment at 2,000 nodes, we also model a
homogenous 10 Gbps interconnect with a low 100ns switch port-to-port latency in addition
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to the Gigabit interconnect. All switches share the same packet buffer configuration as those
in our 1 Gbps setup.

5.3.2 memcached Workload generator

In a real production environment, the client workloads of memcached servers are gen-
erated by front-end web tier. Although the API is simple, from a performance standpoint
the memcached workload is more complex than it may appear in practice. In particular,
previous studies show that the object size distribution has a large impact on the system
behavior [92]. There are simple microbenchmark like tools such memslap, but they do not
attempt to reproduce the statistical characteristics of the real traffic. Besides, memslap does
not utilize the standard libmemcached API, but sends requests directly over socket.

In order to saturate the tested memcached server, researchers tend to pack hundreds
of emulated clients on a single machine through separated TCP connections [92], or use
fixed-rate dummy load generators [21].

Limited by the size of testbeds, researchers have no choice but to put the proposed
improvements to memcached servers under an open-loop testing environment, ignoring any
computation from client as well. However, from our experiments with DIABLO, we found
that host computing performance does affect application throughput and service request
latency. The client is part of the closed-loop system. Putting too many emulated clients
could have negative impact on the overall application performance. In addition, the physical
network data path from clients to servers would be drastically different from the perspective
of real usage scenarios.

Although DIABLO is powerful enough to run a full set of frontend logic, without knowing
the real user pattern from the Internet we build our own client based on a recent published
Facebook live traffic characteristics [39]. At Facebook, memcached servers are divided based
on the concept of pools. A pool is a partition of the entire key space, and typically represents
a separate application or data domain to ensure adequate quality of service of each domain.
One study [39] analyzes five pools of traffic:

• user-account status information (USR)

• object metadata of one application (APP)

• general-purpose and nonspecific(ETC)

• server-side browser information (VAR)

• system data on service location (SYS)

Among the five pools, the ETC is the most representative and accounts for the majority
of overall traffic. Therefore, we build our client models for request key/value sizes and
inter-arrival gaps based on the statistical models focusing only on the ETC traffic.
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Random Generated Workload

Basically, our client load generator randomly picks a floating number between 0 and 1,
using the current time stamp as the seed. We plug the random number into the inverse accu-
mulative distribution function to get random variables we need. The unit for key and value
size is byte, while the unit for inter-arrival gap is microsecond. There are three parameters
to set:

1. Key size: The model for key sizes in bytes is Generalized Extreme Value distribution
with parameters µ = 30.7984, σ = 8.20449, k = 0.078688. The CDF of Generalized
Extreme Value Distribution is:

CDF = e−t(x) (5.1)

t(x) = (1 + ξz)−1/ξ (5.2)

z =
x− µ

σ
(5.3)

We calculate the inverse of CDF:

x = σ
( 1
−ln(p)

)
k−1

k
+ µ

p is a random variable between 0 and 1 and x is the random key size value we need
in our client program. Figure 5.11 plots the CDF of our generated data. We compare
them against the data from [39] using the same scale. From the figure, we can see
that our generated data match both Facebook key size statistics. In addition, most of
the key sizes are less than 100 bytes.

2. Value size: The model for value sizes in bytes is Generalized Pareto Distribution with
parameters µ = 0, σ = 214.476, k = 0.348238.

CDF = 1− (1 + kz)−1/k (5.4)

z =
x− µ

σ
(5.5)

We calculate the inverse of CDF:

x = σ
( 1
1−p

)
k−1

k
+ µ

Similarly, plug in p and we can get the desired value size x. Figure 5.12 shows the
CDF of our generated value size, compared to the Facebook workload model. We can
see most of value sizes fall between 100 bytes and 1000 bytes.

3. Inter-arrival gaps : The model for inter-arrival gap is also Generalized Pareto distribu-
tion but with parameters µ = 0, σ = 16.0292, k = 0.154971. Again, we plot the CDF
of our generated inter-arrival gap comparing the Facebook data in Figure 5.13. Al-
most all of the inter-arrival gap variables are under 100 microseconds, we use usleep to
model this gap in our client application emulating client application processing delays.

74



0	  

20	  

40	  

60	  

80	  

100	  

0	   50	   100	   150	   200	   250	  

Pe
rc
en

.l
e	  

Key	  Size(Bytes)	  

(a) Our model (b) Facebook

Figure 5.11. Compare CDF of the generated key size vs. Facebook traffic from the paper
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Figure 5.12. Compare CDF of the generated value size vs. Facebook traffic from the paper

The client programs

There are four different client programs that we use with the memcahed server.

1. Off-line traffic generator : This program generates key/value sizes as well as the inter-
arrival gaps employing the aforementioned techniques. It runs offline before any simu-
lation and stores the generate data in three separate files on disk. We put these data
input file into the disk image of each simulated node.

2. data init : This program extracts pre-generated key files and warm up the memory
pool of memcached servers before load testing can start. To improve the efficiency,
each program utilizes 10 threads to warm up the server memory pool. When it finishes
initializing the memcached server, it writes a predefined “done key” in the server to
signal the start of load testing.

3. ping memcached : This program pings the servers using the memstat API every second.
It also collects server load information, such as CPU and memory utilizations, through
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Figure 5.13. Compare CDF of the generated inter-arrival time vs. Facebook traffic
from the paper

the /proc file system every 200ms. In addition, it reports these statistics to the host
control appserver on each FPGA through a dedicated Kernel driver with near zero
target performance footprint.

4. auto memcached : This program reads the same key files as those by data init. It
sends queries to random selected memcached servers. We partition the key space
using pseudorandom prefixes generated from Linear Feedback Shift Registers (LFSRs).
Since we do not have the full application logic, the application sends deterministic
miss/hit requests according to published miss/hit ratios [39]. When a miss occurs, the
client uses a fixed latency of 2ms emulating the delay hitting to a disk based storage.
auto memcached is also multithreaded, and each thread sends queries independently.
It also maintains some basic performance statistics through simple counters, such as
average request latencies.

5.3.3 Validating our single-rack memcached results

First, to validate our DIABLO models at an understandable scale, we deploy a set of
memcached experiments at the rack-level scale of 16 machines connecting to a single gigabit
switch. Like many other researchers with real physical implementations, we are limited by
the availability of networking and computing hardware. Our physical testbed includes a
16-port Asante IntraCore 35516-T gigabit switch, and 16 3.0 GHz Intel Xeon D7950 servers
running Linux 2.6.34. We use two of the servers as the memcached server with the rest as
client.

To conduct our comparisons, we configure memcached with 64 MB memory pool, and
let each client thread send 10,000 requests till completion. We also tried 100,000 requests
with up to 256 MB server memory pool, and the steady-state performance are similar. On
real machines, we use 100,000 requests but sample the results of the middle 10,000 requests.
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Because we launched our jobs through scripts using SSH, which do not have a simultaneous
start behavior. As a results, the client on physical machines takes slightly longer to reach a
steady state. We run several configuration combinations of servers and clients. For instance,
we run each server with 4 or 8 worker threads using TCP or UDP connections. Each client
runs with one, two, four and up to eight worker threads. We compare performance of the
two systems from perspectives of both server and client below.

Server performance

We choose to plot our results from only one server, as the other one is very similar.
Figure 5.14 shows the memcached server throughput under different number of clients. The
right is the application throughput measured on the real cluster, and the left is the result
from DIABLO. To demonstrate impact of server performance, Figure 5.15 plots the server
CPU utilization for 1, 7, and 14 clients configurations. We show the results using both TCP
and UDP. For all the configurations we have tested at this small scale, there is no significant
difference between the two networking protocols. TCP has a slightly better throughput than
UDP. Having more clients helps to saturate the server faster. There are no big differences
changing the number of server threads. Our simulation shows when the server CPU load is
high, having more threads hurts the overall performance because of the pthread overhead.

There are absolute performance differences between simulated clusters and real clusters.
However, both throughput numbers have the same order of magnitude. There are many
factors that contribute this absolute difference. First, the 3.0 GHz Xeon CPU is a wide
issue out-of-order super-scale x86 core with hyper-threading, but we simulate a 4.0 GHz
single issue CPU with a fixed CPI. The Linux bogoMIPS is around 6,000 per virtual CPU,
while the simulated CPU only has a bogoMIPS of 4,000. The server CPU utilization data
also suggests that we are simulating a slower processor, with a lower server CPU utilization
number on the real Xeon server. Second, the switch and NIC are different on the real
machines. The subtle architecture differences could also affect the overall performance.

Most importantly, the DIABLO simulation reproduces the trend of server throughput.
Having a full software stack, we can also see some similar system behaviors on DIABLO. For
example, we see the system memory utilization gradually increased over time while running
the memcached server program.

Client request latencies

Figure 5.16 illustrates the average request latencies measured at every client thread. Like
the results from real machines, the simulated cluster shows the trend of increased latencies
with more clients. For single-thread clients, both UDP and TCP requests stay low under
80 microseconds on either real or simulated cluster. The client latency stays low and scaled
linearly with a small number of clients. There is a “break-out” point after 6 to 7 clients,
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Figure 5.14. Simulated memcahed server throughput vs. Measured throughput on
real machines. Left is the results from DIABLO. Right is from real machines

while the simulated server CPU is closing to the 100%, as seen in Figure 5.15. The average
client request latency degrades to over 1 millisecond under the 8-thread 14 clients setup.

Overall, our simulation results match observations in existing literatures that memcached
is inefficient for not saturating network but limited by CPU performance on network packet
processing [92]. To support our claim, we also plot the percentage of kernel CPU usage of
memcached servers for 1, 7, and 14 clients in Figure 5.17. Both simulation and real machine
results show that memcached spent a significant number of CPU cycles in the kernel.

Again, if the performance bottleneck appears to be in the application and operating
system, reproducing the end-to-end application performance would be very difficult with-
out modeling the computation of full software stack, especially when the software stack is
constantly changing.
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Figure 5.15. CPU utilization over time on simulated memcached servers and real machines

5.3.4 Large-scale Experiments

To show the scalability of DIABLO, we deploy the same memcached load test across all
six BEE3 boards. We use four BEE3 boards to simulate up to 64 racks of 1,984 servers,
connected with a three-level network described in Section 4.5. One BEE3 board is dedicated
to array switch simulations, and the rest one to the datacenter switch. Each rack contains
31 servers with one rack switch. We use the 32nd port on the rack switch to connect to
an array switch, creating a bandwidth over-subscription ratio of 31 to 1. Each array switch
supports up to 16 inward facing links and one uplink to the datacenter switch, thus having
a bandwidth over-subscription ratio of 16-to-1. To perform the scalability test, we simulate
a 1 Gbps interconnect with one microsecond port-port latency switches as well as a 10
Gbps interconnect using switches with 100 nanosecond port-port latency. All switches share
the same buffer configuration as those used in our rack-level experiments. From the rack-
level experiments in the previous section, we know that memcached is a latency-bounded
application. The goal of simulating a low-latency interconnect is to explore the impact of
new switch hardware on latency sensitive applications at large scale.

We distributed 128 memcached servers evenly across all 64 racks to minimize potential
hot spots in the network, and use the rest machines as clients. This creates a configuration
of two memcached servers and 29 clients in a single rack. Each client sends 10K requests to
a randomly selected sever from the 128-server pool. We perform our experiments at several
scales: 496-node, 992-node, and 1984-node. We also proportionally scale down the number
of servers when running at a smaller configuration. For instance, there are 32 servers for
the 496-node configuration and 64 servers for the 992-node configuration. The 496-node
setup uses only one 16-port array switch without a datacenter switch. Both 992-node and
1984-node experiments exercise all three levels of switches. We also perform our load tests
using both TCP and UDP protocol. For convenience of representing simulation scales, we
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Figure 5.16. Average client request latencies on DIABLO (left) vs. on real machines
(right)

round up the exact number of nodes to 500, 1000 and 2000 respectively for the three setups
in the following presentation.

Server statistics at scale

With our application-level random load-balancing, all servers are evenly loaded at mod-
erate CPU utilization. Since the CPU utilization is very spiky, we use the median of all
sampled CPU utilizations. Figure 5.18 illustrates the average of all median CPU utilizations
from all servers under different configurations at various scales. We can see that doubling the
servers effectively keeps the sever load low when servicing twice the number of clients. The
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Figure 5.17. Percentage of kernel time of memcached servers

servers exhibit similar behavior with both TCP and UDP. For this particular application,
using a faster 10 Gbps interconnect has a very small impact on the server CPU utilization
under all scales we have tested regardless of the choice of network transport protocols.
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Figure 5.18. Average CPU utilization (median of all samples) per server at different
scales

Figure 5.19 displays the average of the minimum free memory per server. Both TCP
and UDP demonstrate similar server memory utilizations. As expected, the server consumes
more memory when handling more clients. The average of minimum free memory drops from
82 MB to 75 MB when scaling from 500 to 1K nodes. However, we do not observe significant
free memory drop when scaling to 2K nodes. Due to the limited number of nodes, the
500-node setup utilizes a two-level tree hierarchy as opposed to three levels. This suggests
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that changing interconnect hierarchy could have potential impact on flow dynamics that
eventually yields differences in server memory utilization.
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Figure 5.19. Average minimum free memory per server at different scales

Reproducing the request latency long tail

Under all configurations, we did not see any packet dropped due to congested buffers in
either switches or NICs. One interesting thing to see is whether or not all client queries finish
quickly at large scale at around one hundred microseconds like the single rack light-loaded
case. As an illustration, Figure 5.20 plots the Probability Mass Function (PMF) and the
Cumulative Distribution Function (CDF) of all client queries for our 2k-node setup using
different interconnect running the UDP protocol. The shapes of both PMF and CDF are
similar at the scale of 500-node and 1k-node. We also observed similar latency long tails
using TCP.

We found the majority of requests finished in less than 100µs, but there are a small
number of requests that complete more than two orders of magnitude slower than the average,
forming a long tail distribution. Such latency long tail behavior has been reported on real
clusters [44]. Experiments have demonstrated such increased latencies can negatively impact
user satisfaction leading to significant financial loss [85]. It has become an increasingly
interesting topic among datacenter researchers.

To understand the long tail better, Figure 5.20 classifies all queries into three different
categories based on the number of physical switches they traverse. The data series marked
with local means that the request is made to the server physically located in the same
rack. 1-hop means a request that has to go through one array switch to reach a server in a
remote rack. 2-hop means a request that needs to traverse the datacenter switch to reach
a remote server. From Figure 5.20, we know that all three types of requests exhibit a long
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Figure 5.20. PMF and CDF of client request latency at 2000-node using UDP

tail distribution. Moreover, 2-hop requests dominate the overall latency distribution at large
scale. This conclusion is very intuitive for our simple random-select load balancing policy,
as with more nodes the less likely a request hits the server that is in the same rack. Besides,
we found that when a request traverses more switches in the system the more variations the
latency has. This suggests that using a multi-hop network architecture could potentially
making the latency long tail problem worse.

One interesting comparison between the simulated 10 Gbps and 1 Gbps interconnect
is that low-latency high-bandwidth switch does help on the latency long tail issue. There
are more requests that finish faster, at around 70 microseconds. In addition, the latency
differences between all three types of traffic are small, shown as more clustered dash lines
in Figure 5.20. Although the 10 Gbps interconnect employs switches with 100 nanosecond
port-port latency that is 10 times better than the 1 Gbps interconnect, the low latency
interconnect does not improve the application request latency by a factor of 10. This is
largely because of the OS software processing overhead. Instead, the latency gain is less
than 2×, which is reported to be seen on real-world clusters by Google [44].

Impact of system scale on request latency long tail

Another interesting thing to look at is the impact of the system scale on the request
latency long tail. Figure 5.21 plots the zoom-in CDF curves between 0.96 and 1 of the cu-
mulative distribution, focusing on the tail. We have tested many configuration combinations,
but we only show the one with UDP protocol on 10 Gbps interconnect as an illustration,
because other configurations show similar trends. From the graph, we can tell that the la-
tency for most of requests does not increase significantly when scaling up. However, there
are more requests falling into the tail. In order words, the latency long tail is more visible
at a larger scale.

To demonstrate DIABLO’s capability for design space exploration at large scale, we
conduct a very simple experiment. It quantitatively analyzes which transport protocol (TCP
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Figure 5.21. Impact of system scales on the latency long tail

or UDP) is better at large scales minimizing the long tail effect. Since scales of a few hundred
nodes is a popular upper-bound for many academic research testbed, we would like to address
one question: can we generalize the results at O(100) nodes to a larger scale at O(1000)?

To better understand this simple research question, we first simulated the memcached
with the 1 Gbps interconnect. Figure 5.22 shows the cumulative tail distribution of using
different protocols. At the 500-node scale, the UDP protocol is a clear win compared to
TCP. However, the advantage of UDP drops when moving to 1000-node, whereas TCP
slightly outperforms UDP. When we move to the 2000-node scale, it appears that TCP is a
better protocol. The conclusion at 2000-node scale is completely reversed compared to that
of 500-node.
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Figure 5.22. Comparing TCP vs UDP on cumulative tail distributions of client request
latency at different scale with the 1-Gbps interconnect

Due to the limited availability and cost of new hardware, researchers typically employ
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off-the-shelf hardware for software development, and assume the same conclusion holds on
the new hardware as well. We emulate this usage model by simulating the same software
configuration on the 10 Gbps interconnect in DIABLO. We plot the same CDF comparison
graph as in Figure 5.23. The answers of which protocol is better are drastically different
from those for the 1 Gbps interconnect. At the 500-node scale, TCP works slightly better.
At the 1000-node scale, UDP is a better choice. When scaling to 2000-node, there is no
significant difference between TCP and UDP at all. Our results show that the latency long
tail is a very complicated issue with nonlinear behaviors. One cannot simply extrapolate
results from a few hundred of nodes to a few thousand nodes. The same conclusion could
also be different if the underlying hardware has been changed.
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Figure 5.23. Comparing TCP vs UDP on cumulative tail distributions of client request
latency at different scale with the 10-Gbps interconnect

Summary

At the scale 2,000 nodes and 69 switches, it is not practical to have a private-owned
physical testbed and hold for a few hours to do any software and hardware design space
explorations. For instance, if researchers propose a change to the kernel software to improve
the memcached networking stack efficiency like those in [9], deploying these customized
kernel to 2,000 machines would be a challenging task by itself. Therefore, to the best of
our knowledge, we found no alternative solution to generate equivalent performance data
in practice other than from DIABLO. We also demonstrate that at large scales the system
could behave considerably different from systems at smaller scales. We also show that such
phenomenon could be very unintuitive given the complexity of datacenter software stack.

5.4 Conclusion

In this chapter, we demonstrated three real-life use cases for DIABLO. DIABLO cannot
only be used to model a novel network research proposal, but also perform hardware and
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software co-tuning of existing hardware. The goal of DIABLO is not to model an existing
datacenter with 100% accuracy, but rather unveil and discover the system performance
scalability trends. From our validation results with real clusters, we show that at rack
level DIABLO can successfully reproduce application performance behavior. We also found
that DIABLO is an excellent number-crunching machine that generates data for rack-level
experiments with a scale of 96 simulated server racks. Moreover, being able to simulate
server computation and full operating systems imposes less evaluation constraints for better
insights on application behavior from the full-system point of view. Researchers would be
less likely limited to a few components, such as switch and network protocols. Our 2,000-
node memcached experiment shows the great potentials of DIABLO targeting research at
datacenter scale that none of existing evaluation platforms could possibly achieve.
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Chapter 6

Experiences and Lessons Learned

In this chapter, we discuss experiences and lessons learned while building DIABLO.
The purpose of the chapter is to provide insights for building future DIABLO-like FAME-7
simulators. We also point out directions for possible improvements in CAD tools that are
essential to the productivity of FAME developers.

6.1 Core selection

In DIABLO, the choice of SPARC v8 as the ISA of our main processor core was not
ad-hoc but a deliberate decision. There are several metrics we considered when picking the
ISA and its implementation.

• A standardized ISA that has an existing compiler and software infrastructure. The
goal of this testbed is to run full open-source datacenter software stacks, such as
LAMP (Linux, Apache, Mysql, PHP). Leveraging existing GCC and Linux ports can
greatly shorten the overall development time. Initially, we chose to use an FPGA-
optimized soft-core from Xilinx called MicroBlaze. Unfortunately, the MicroBlaze
compiler toolchain could not compile many off-the-shelf open-source software pack-
ages without significant modifications of makefiles and configuration scripts. Besides,
the initial version of Microblaze did not have an MMU, so could only run shrunk down
versions of Linux for embedded devices, such as uClinux.

• A RISC ISA that can comfortably fit in a modern FPGA with reasonable resource con-
sumptions and moderate implementation complexities. Ideally, x86 is perfect to run
any off-the-shelf datacenter software binary. However, both the implementation com-
plexity and the resource consumption of an x86 FPGA implementation are significant.
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In addition, most datacenter software is open source, and written in high-level lan-
guages. Thus, the ISA plays a less important role in functionality and performance.
Initially, we considered acquiring a commercial RISC ISA with an existing open-source
implementation. Unfortunately, the RTL implemenations we got from industry such
as SPARC T1 and PowerPC 405 are derived from ASIC implementations, which map
poorly to FPGAs. Moreover, even if we have the source code, they are not straight-
forward to understand. Further, it is very hard to modify the core according to our
needs, for example, supporting network I/O for emulation.

• An in-house open-source implementation with minimum third-party IP cores. Because
of less rigorous verification efforts, implementations of many commercial FPGA IP
cores from FPGA vendors are poor quality, particularly low reliability. These IP cores
work for basic applications with simple access patterns. Running server software on a
real operating system could easily exercise corner cases in any implementation. If we
built DIABLO from many third-party components, it is hard for us to pinpoint any
hardware issue that causes a piece of complex software to fail without an extensive
verification suite for every building block. On the other hand, having full control of
the source code, we can easily modify an in-house implementation. This is extremely
useful, when we need to change the hardware to have a better OS kernel and device
driver support.

• A complete verification suite. Given the aforementioned constraints, there are not many
off-the-shelf candidate cores that do not require significant modification. Therefore,
we had to develop our own core. A complete ISA verification suite is crucial to verify
the functional correctness of our customized implementation. As SPARC v8 is an
open standard, we acquired the verification suite through a donation from SPARC
international. The same verification suite is used as the SPARC certification test,
which gave us great confidence while bringing up the processor core in the early design
stages.

Although a 64-bit ISA is ideal for server applications to address more than 4 GB memory,
64-bit ISA implementations on FPGAs are intrinsically more complex than those of 32-bit
ISAs and consume more FPGA resources. Besides, the number of 64-bit cores we can fit on
the FPGA board we were using is very limited. Conflicting with our scale requirement of
simulating enough datacenter servers. Owing to this practical hardware capacity constraint,
we chose the 32-bit SPARC ISA as the proof of concept of DIABLO. Since FPGA capacity has
been significantly increased with recent processor technology, supporting 64-bit processors
emulating more server memory should be possible in future work.
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6.2 Design languages and Impact of FPGA ECAD

Tools

We implement the DIABLO hardware using the Systemverilog hardware description lan-
guage (HDL), which is a major upgrade from the Verilog standard since 2001. Systemverilog
was considered a new standardized hardware design and verification language at the time
we started the project. Part of the DIABLO design, RAMP Gold, was also credited by
industry FPGA logic synthesis developers as “one of the largest Systemverilog designs in the
open-source community that exercises many advanced Systemverilog language constructs”
[68]. However, from an early adopter’s perspective, our experiences with the language were
mixed.

Systemverilog introduces several high-level synthesizable language constructs for design,
which make it closer to the C programming language compared to the original Verilog stan-
dard. Systemverilog remains a superset of the popular Verilog standard, but the small lan-
guage feature changes make it more descriptive behaviorally. For example, the new struct,
union and library keyword greatly reduce source code size. Although Systemverilog, like its
Verilog predecessor, is not a strongly-typed language, we do not feel type-safety is a must-
have feature building synthesizable high-level abstracted FAME models. On the other hand,
the flexibility of implicit type-casting makes mapping high-level data structures to simple
hardware structures more convenient. Therefore, we do not consider lack of strong typing
a lethal drawback in the language. Most logic synthesis or simulation tools can check bit
width and issue warnings for type mismatch. Carefully mining the compiler log would be
sufficient for any users who are proficient in non-strong typing languages, such as C/C++.

Systemverilog introduce many new features for RTL verification. In practice, we find the
support of assertion and coverage extremely useful for functional verification using traditional
Verilog simulators. On average, every unit test in DIABLO includes 40-50 assertions to
validate the functional and timing behavior of the unit. These assertions not only detect logic
behavior at each instant in time but also over a period of time. Any potential functional bug
could be easily captured by one or a collection of these assertions. Furthermore, measuring
coverage provides quantitative confidence while running testbenches. This standard language
feature offers more flexibility and better performance compared to similar features in Verilog
simulator implementations.

Systemverilog also provides an object-oriented programming model for verifications,
which is more closely related to Java than C++. However, the simulator support of many
object-oriented features is still in its infancy, making the object-oriented features bells and
whistles in reality. As a substitute, we implement all complex testbench logic in C++,
which interact with our RTL design through the simple low-overhead Systemverilog Direct
Programming Interface (DPI).

In order to address many intrinsic verification issues that Verilog has, such as race condi-
tions, Systemverilog employs very complicated event-based simulation scheduling semantics
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with 17 ordered regions. This makes it difficult to write the RTL code that simulates rapidly
without significant effort.

Systemverilog is an open industry standard that is adopted by all major EDA vendors.
It is therefore very convenient to run the same design through tools from different vendors
to gain confidence about the correctness of results from a specific tool.

Overall, Systemverilog is a reasonable language to implement high-level FAME models.
We find the small enhancements over traditional Verilog improve our productivity noticeably.
However, due to its Verilog origin, Systemverilog still suffers from many problems that the
Verilog language has in both simulation and synthesis. It still requires great effort to work
on low-level individual wires at the cycle level in order to debug functionality of a large
design, which is far more labor-intensive process compared to doing an equivalent software
implementation in high-level languages.

According to our conversations with industry CAD developers, there is a strong incentive
to standardize and unify design and verification language from the tool developer point
of view. For user perspective, standardization is important for leveraging infrastructure
investments of the semiconductor and CAD industries. On the other hand, we must be aware
that some seemingly obvious standardization might not be desirable in practice. “Which
design language to use?” is similarly to the classic debates between users of “Vi or Emacs”,
which exemplifies the fact of human nature that we become attached to seemingly irrelevant
differences. We do not against the use of any non-standardized high-level design language.
Besides, in general some decisions cannot be left to the whim of the individuals. As an
individual graduate research project, we choose the most comfortable language. Taking a
broader perspective, however, it may not be productive or reasonable for different design
teams.

6.3 ECAD Issues

A much bigger problem than simulator design and debugging is the poor state of FPGA
CAD tools, which are much worse than ASIC tools. During the first two years of develop-
ment of DIABLO, we encountered 78 formally tracked bugs in four tools from two companies,
ranging from logic synthesis and simulation to formal verification. The versions of these tools
were all the latest production releases from year 2007 and 2012. During the development
process, we cooperated with development teams from three major FPGA logic synthesis ven-
dors. For a very long time, we had to rely on internal 1-off alpha builds to make progress.
Although the turnaround time to get tool bugs fixed using our special connections to devel-
opers was relative short and the implementation quality of these tools keeps improving over
the time, our overall negative impression of these tools remained the same throughout the
years. We summarize our experiences as the following:

1. Most of the bugs affected the functionality of the tool, while only a few bugs affected
the quality of result (QoR).
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2. As a new language, support for new language constructs and advanced parameteriza-
tions are the most common issues for Systemverilog tools. According to our interactions
with industry CAD developers, many of the problems are mainly caused by lack of test
cases to verify the tool implementation.

3. It is very common that logic synthesis tools silently generate bad logic, in addition to
obvious infamous compiler segmentation faults. Therefore, post-synthesis verification
is a must. When building complex FAME models on FPGAs, we faced many similar
verification challenges caused by design complexities to those seen by ASIC designers.

4. Ideally, formal verification tools are designed to verify the correctness of any CAD
result. Unfortunately, they only work well comparing incremental changes in low-level
gate net lists, which renders them useless comparing differences between a synthesized
net list and a behavioral RTL implementation. One reason is that the formal verifica-
tion tool usually shares a compiler frontend with the logic synthesis tool of the same
vendor. If a bug occurs in the frontend of the synthesis tool, very likely the same bug
will plague the formal verification tool as well. Besides, there are many false posi-
tives due to practical engineering issues using formal verification tools from different
vendors, like signal naming conventions and advanced logic optimizations.

5. Although the newness of the Systemverilog language appears to be a large contributing
factor to tool bugs, the backend tool that maps logic to FPGA primitives has never
been free of bugs. Moreover, logic synthesis tools always have trouble taking advantage
of newly introduced FPGA primitives in the first few years after a new device is
announced.

6. Verilog simulator bugs are the number one issue that hampers our productivity when
debugging RTL designs. Due to the complexity of the Verilog event-execution seman-
tics, implementing a correct and fast Verilog simulator is very challenging. Although
many Verilog simulators provide various performance optimizations that could speed
up the simulation by 2−3x, we always have to turn off all of these optimizations in
practice just to avoid simulator bugs. In addition, debugging high-level functionality
of the design using wave forms is tedious.

7. Regarding the quality of result, FPGA synthesis, place and route tools “just work” but
do not work well. FPGA CAD vendors boast of many premium optimization features,
such as placement-aware physical synthesis, which could cost users tens of thousands
dollars extra per year. We found these features very hard to use, and the results we
achieved seldom matched what vendors have claimed. When design constraints get
more complicated, these fancy features break easily and have serious interoperability
issues when using with tools from different vendors. We are constantly forced to run
the CAD flow with the most basic setup, leaving behind great potential of improving
the design performance by just employing better tools without changing the source
code.

8. Modern FPGAs support designs with multiple clock domains. Large FPGAs have
been supporting as many as 16-32 global single-cycle clock networks along with many
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regional clocks for many generations. In general, multiple-clock designs are very com-
mon for large system designs. However, both FPGA logic synthesis and place and
route tools have trouble parsing complex cross-clock domain timing constraints and
performing even some very basic optimizations, such as retiming.

6.4 Building a Reliable Simulation Infrastructure

As a simulation platform, we designed DIABLO to run a few days reliably without any
error. In DIABLO, there are many components at various levels that need reliability features
built in. Some are at the higher system level, with others are at the circuit level.

6.4.1 Reliable Control Protocol

In DIABLO, the control software controls every FPGA through a Gigabit Ethernet con-
nection, called the frontend link. Semantically, the frontend link does not allow dropping
a single packet. The frontend link only sends moderate control traffic using less than 10
Mbps bandwidth on a Gigabit link. In the beginning, we assumed both the commercial
Ethernet switch and our PC server are fast enough. Therefore, there should be no data
loss on our control link. However, Ethernet is not a lossless protocol. Both the operating
system software stack and the switch hardware could drop packets when there is a resource
contention. Once we hooked more DIABLO nodes to a single frontend control computer, we
started seeing packet loss regardless of the low aggregated bandwidth requirement on a fast
link. Finally, we implemented a simple sequence-number based hardware retry mechanism to
ensure a lossless transmission, which is similar to a TCP protocol with congestion windows
size of one.

6.4.2 Reliable Inter-chip Links

DIABLO is a modularized design using high-speed serial transceivers to connect FPGAs.
We partition simulated target components into different FPGAs, and they require exchanging
data through these serial links in every simulation quanta without errors. Due to the nature
of high-speed serial links, the physical medium is not error-free. Hence, a high-level reliable
link layer protocol is necessary.

The physical transceivers on FPGAs support implementing multiple popular serial proto-
cols, such as PCI express, SATA, XAUI etc. One straightforward implementation is to pick
an off-the-shelf industry protocol with reliable transmission features such as PCI express and
SATA. Unfortunately, these protocols are not designed for architecture simulations, and they
have more overheads. For example, PCI express is a packet-based protocol. Not every field
of the packet header is useful in our usage context. Similarly, the SATA protocol defines
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more control commands than necessary. Additionally, some protocols include features to
support bundling multiple physical channels into a single wide aggregated logical channel,
such as the periodical channel alignment in XAUI, which are useless in the usage scenario
of DIABLO, where transceivers are used independently.

Another issue we find in existing protocols is that some of the reliability features are
really designed with specific target hardware platform in mind. For instance, the interval
of sending clock recovery control sequences in protocols like XAUI assumes a link topology
with typical delays in hypothetical line cards and backplanes. This extra complexity might
be overkill given the simple point-to-point link topology in DIABLO.

An alternative is to choose a simpler protocol provided by FPGA vendors that has free
implementations. FPGA vendors also provide tools to evaluate the bit-error-rate (BER) of
their implementation to give users more confidence. These simple protocols do have some
features to improve reliability, but the design reasons behind these features are seldom well
explained. Some of the features are just clones from existing popular protocols. FPGA
vendors also do not disclose the statistic models used for BER calculation. We found the
BER numbers reported by closed-source vendor tools report tend to be “optimistic” (i.e. use
less data bits to estimate) compared to those from common BER calculation models used
in industry. In addition, the poor implementation quality of FPGA IP cores is also a big
concern.

By designing our own link-layer protocol, we have a simpler design and improved reli-
ability. The basics of frame format are similar to that of a point-to-point SATA protocol
with minimum control command sets. We eliminate all unnecessary control overhead used
in more complex scenarios such as multi-channel alignment. In addition to protecting each
data frame with CRC checksums, we add hardware sequence numbers and a watch-dog
timer based retransmit mechanism to ensure data transmissions are ordered and lossless. To
support scalable multi-board simulations and easy power-up initializations, the link status
detection and initialization scheme is taken from the 10 Gbps XAUI standard. Our own
protocol also incorporates some advanced yet simple to implement features such as data
scramble found in SATA and PCI Express 3.0 to improve analog performance of the link.
Moreover, by implementing our protocol directly over FPGA transceivers without third-party
cores, we can further reduce transceiver latencies.

6.4.3 Reliable DRAM Controller

The most difficult component to build reliably is the DRAM controller, which is an essen-
tial component to run everything in DIABLO. Intuitively, this is a very popular component
required by many applications, aside from computer architecture simulations. Unfortunately,
we had a hard time finding an existing FPGA DRAM controller that was reliable enough.
At the beginning, we chose the memory controller implementation provided by Xilinx that
is widely used, but we saw memory errors and found reliability bugs in their design. Then,
we decided to develop our own memory controller focusing on reliability rather than fancy
performance optimizations on top of a design from Microsoft Research by a well-regarded
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Turing-award winner. Even so, our own design was plagued with memory errors for quite a
long time at the beginning. It took years and running many real simulations to eventually
improve the reliability. There are a few reasons why constructing a reliable DRAM controller
on FPGA is difficult.

1. DDR memory modules run at a much higher clock speed (400-1000 MHz) compared to
the FPGA logic (100-200 MHz). What is more, with each successive FPGA generation,
the memory clock rates for each DDR architecture generation have increased at a
faster pace than FPGA logic fabric performance, posing a great challenge to memory
controller design. We need to carefully engineer the analog data path of the controller.
It also requires simpler DRAM controller logic to keep up with the high clock rate
requirements. Since DRAMs are fast on FPGAs, having a simpler controller logic will
have less system performance impact.

2. The DDR memory controller data path is very wide, for instance 128-bit, and usually
runs at clock frequencies close to the device limit. Although FPGA CAD tools already
introduce non-deterministic slack for conservative timing analysis, the qualities of re-
sult we got from tools are not very consistent between runs. The resulting circuit is
not completely reliable even if the tool reports zero timing errors. To mitigate this
problem, some FPGA memory controllers from Xilinx use special hard-coded manual
routing paths specific to a particular device to ensure the optimal routing on timing
critical paths, which is at the cost of increased constraints complexity and reduced
design portability. On the other hand, we find simple coarse-grained floor-planning
and protecting the data path with ECC works pretty well in practice. Even if we do
not use ECC DRAM modules on some cheaper development boards, the ECC circuitry
does detect and correct occasional errors at runtime, caused by bad paths introduced
during place and route.

3. Each FPGA has hundreds to thousands of small block memories that can be con-
figured as asynchronous FIFOs to implement cross-clock-domain interfaces. These
asynchronous FIFO primitives have built-in easy-to-use control logic. Usually, a typi-
cal FPGA memory controller design runs at a different clock frequency from the user
logic, which interfaces with the controller through asynchronous FIFOs. Although
FPGA designs run at lower hundreds megahertz, metastability does occur at this sim-
ple clock domain boundary and affects functionality, if not handled properly. This
is a very common problem, which appears in both an off-the-shelf vendor-provided
memory controller and early versions of our design. Metastability bugs are very hard
to debug because of their non-deterministic nature, which may not necessarily hap-
pen under load but occasionally with specific workload patterns. In addition, current
FPGA verification suites do not support such asynchronous corner cases, which renders
reproducing the bugs in simulation impossible.

4. The popular DDR DRAM modules have over twenty timing limit requirements. Meet-
ing these timing restrictions is very tricky, since some limits are used to prevent inter-
rank conflicts on the data bus, and others are needed to meet the internal requirements
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within the RAMs of a rank for the operations within an open bank. Supporting multi-
ple DIMMs with multiple ranks and simultaneous opened banks are really challenging
to get functionally correct. The base Microsoft controller on which we developed our
own had been reported running reliably on real hardware for months. However, we
still found it violates quite a few DRAM timing restrictions while running workloads
generated by DIABLO.

6.4.4 Protecting Against Soft Errors

DIABLO is a large multiple-board multi-FPGA design targeting the state-of-the-art
SRAM-based FPGAs, which usually employ the latest process technology. At 65nm and
beyond, ASICs and ASSPs exhibit significant soft error rates. Today, relative to the tradi-
tional failure mechanisms, soft error rates dominate. The single-event-upset (SEU) problem
is worse with each process node. The SEU has also steadily increased as the voltage drops
and dimensions shrink. At 28nm, the stored charge is less than 1 femto-coulomb. Neutron
reaction products can deposit up to 150 femto-coulomb, so upsets in the cell can be common
if nothing is done in the design to protect the cell from upsetting [91]. Although careful
IC design and layout techniques have decreased the soft error rate, each process technology
generation offers twice the logic density, making the soft error rate of the whole chip remains
the same. In addition, in order to simulate thousands of servers, the FPGA boards we used
are loaded with high capacity DRAMs, which are known to have a high soft error rate.

To decide whether or not we need to protect and how to protect our design, we need
to perform back-of-the-envelope calculations based on soft-error-rate (SER) data. Table 6.1
shows the unit SER data in DIABLO and the system error rate. From the table, clearly
DRAM has the highest system SER followed by FPGA block rams. The FPGA configuration
RAM is the most reliable component in the system, which is more reliable than the physical
device package. The statistic mean-time-between-failures (MTBF) numbers tell us in the
worst case we will see one DRAM error every 5 seconds and one FPGA Block RAMs error
every three months. In DIABLO, both DRAM and FPGA Block RAMs have a utilization
rate close to 100%, while the FPGA configuration RAM are usually half utilized. This
suggests that DRAMs and FPGA Block RAMs are more likely dominating factors in system
reliability. In addition, given the trend of FPGA technology, the SER of FPGA configuration
is getting better in every generation, which makes it less of a reliability concern.

Having estimated the system error rate and knowing the potential vulnerability in our
system, we really need answer two questions: 1) do we need to protect against errors 2)
do we need to correct detected errors. For the first question, the answer is a clearly yes.
The MTBF numbers are based on simple statistical assumptions. Neither does it mean the
DRAM fail fast nor there is almost no failure in FPGA configuration memory. It gives us
idea which components are more susceptible to soft errors. When we design a system, it is
impossible that we have prior experiences of running it for a long time. However, it is very
important to be able to detect errors and we could decide if we should do something further
to correct the errors. To answer the second question, we can use the FPGA package SER
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Component Soft Error Rate Per unit System Soft Error Rate

DRAM 25,000-75,000 FIT/Mb [113] 2.6 ∗ 1011 − 7.7 ∗ 1011 FIT
FPGA Block RAM 692 FIT/Mb [79] 4.2 ∗ 105 FIT

FPGA Configuration RAM 165 FIT/Mb [79] 8.2 ∗ 104 FIT
FPGA package 1 FIT/pin [90] 8.8 ∗ 104 FIT

Table 6.1. Soft error rate of individual components and system in DIABLO, assuming
a 20 BEE3 boards with 64 GB DRAM each

number as a caliper. If the component is more reliable than a PCB solder joint, it is not
worth the effort of error corrections. Detecting errors at the application level and restart all
experiments would be sufficient to handle such extremely rare cases.

As a result, we use ECC DRAM memory on all FPGA boards. Based on data path widths,
we protect all FPGA block RAMs with either parity or ECC, implementing with FPGA fabric
or utilizing the built-in ECC feature on block RAMs. Regarding the configuration ram, we do
not feel the need of employing advanced techniques, like triple-modular-redundancy (TMR).
Instead, we leverage the FRAME ECC feature on Xilinx FPGA devices, which detect and
correct configuration ram errors using the JTAG chain on the device. If we detect an error
in the configuration RAM, which is rare, we must power-cycle the device and restart the
computation.

6.5 Pitfalls in DIABLO

Software is easier to modify than the FAME hardware

Although FAME-7 style simulators have significant performance and scale advantages
that open up the space of possible experiment, the hardware design and verification efforts
are not trivial. To minimize the simulator design efforts, conventional wisdoms suggest build-
ing simple hardware and pushing the design complexity to software. This design principle
applies to building a system from the ground up with both custom software and hardware.
For instance, when we port our research OS, on top of the RAMP Gold simulator, it is
straightforward to rewrite part of the OS kernel targeting x86 machines initially to support
the host cache and MMU architecture on our hardware.

However, the same hardware and software co-design principle does not work with a system
that runs a large set of existing software, which has bugs. Even if we can access the source
code, modifying existing software to tailor to requirements of the custom-built hardware is
not a trivial process. In many cases, it took great effort just to pinpoint a software issue.
One good example of this is porting a recent Linux kernel on DIABLO.

At the point we started porting, we grabbed the most recent stable version (i.e. 2.6.39.3)
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from the Linux kernel source tree. The 32-bit SPARC port of the kernel is considered to be
stable and has not changed for a decade. We still encountered several kernel bugs on proper
cache flush support, triggered by running real dynamically linked programs.

We found fixing all software bugs is a suboptimal solution. First, it takes a long time
to identify the real root cause of each bug we could only observe from the user application
level. In addition to extensively probing the user and kernel source code, we built dedicated
debugging hardware and heavily modified our functional simulator. We invested these sig-
nificant debugging efforts just to help us to understand the end-to-end software execution
path from launching the user application to where the execution diverges compared to an
equivalent perfectly coherent system. Usually, when we see an application failure, the real
problem could occur billions of cycles inside the kernel before we observed the issue from
a user application. Second, the same software issue could occur in multiple places in the
kernel. As an example, after we fixed the first kernel bug by porting some of the existing fixes
in the more active ARM port, we kept seeing similar non-deterministic bugs while running
real applications.

Our further analysis shows that a real traditional operating system functions more cor-
rectly on architectures with a fully coherent cache. Although the Linux kernel supports
multiple processor architectures with different cache and memory architectures, the legacy
shared memory model and performance optimizations makes the cache/TLB interface to the
virtual memory subsystem very complicated. In order to support a new target architecture,
there are more than twenty architecture dependent flush cache/TLB kernel functions, fre-
quently called by many different kernel routines. Our experiences told us that there has
never been a simple fix in one of these kernel functions that could solve all coherency issues.
Even if we implement all of these functions correctly, we still could not guarantee whether
these functions are used correctly by other parts of the kernel. To ensure the correctness, we
find it is very common that many kernel developers just lazily flush everything at the cost
of system performance to work around mysterious hardware coherency issues.

To summarize, many kernel issues we are facing are likely because none of the existing
32-bit SPARC processors has a non-coherent instruction and data cache. There was either
no need for designers to consider supporting a non-coherent cache architecture, or all existing
coherent SPARC processors mask potential bugs in the kernel. The ARM port of the kernel
appears to be more correct, because there are many more commercial ARM chips with
various cache architectures. As a result, we find adding coherent cache support in DIABLO
hardware is a much easier approach. Even though this adds more complexity to the hardware,
we show in early chapters that we could design a really simple coherent cache architecture
on a special platform with faster DRAM that improves both correctness and performance.

It is easy to build a correct cycle-accurate software simulator

One of the commonly held beliefs about SAME style simulators is that they are easier
to build and to get the desired timing behavior. Therefore, it requires less verification effort
than FAME simulators, and working with a SAME simulator is more productive with less
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development effort. Once a SAME model has been functionally verified, there is no need to
change the software model.

However, we find this belief is totally false in practice. In order to assist functional
verification of the DIABLO hardware, we build cycle-accurate software performance models
for every component in our system. It is true that the C/C++ based software models are very
easy to get correct functional-wise, but getting correct cycle-accurate timing behaviors for
these software models is extremely hard. Note that since we are building FAME hardware
we already have the detailed timing specifications, while developing the equivalent cycle-
accurate software models. In many cases, we use FAME designs as a reference to debug
timing bugs in corresponding SAME models. One big reason behind this is that the designer
has to think and reason at the hardware cycle level due to the nature of FAME. Another
important factor is that we are more aware of real structural hazards in the target hardware
modeling with FAME.

One of the concrete examples is when debugging Linux kernel issues we spent majority
of our time on fixing the software functional simulator to model interrupts and I/Os in a
cycle-accurate deterministic manner, which on the other hand are easily modeled on FAME.
To sum up, we believe both SAME model and FAME simulators are required in real design
scenarios, where C/C++ based SAME focuses more on verifying the functional correctness
and the RTL-based FAME is good at the cycle-accurate timing aspect.

Higher level FAME simulators (e.g. FAME-7) run at high clock

frequencies with little efforts

FAME simulators especially high-level FAMEs written with abstracted RTL run on mod-
ern FPGAs, therefore many designers assumes that FAME should enjoy close to 100 MHz
circuit performance without significant effort. Since FPGAs always use the state-of-the-art
process technology, designers would assume a design on an older FPGA could receive per-
formance improvement automatically by porting it to newer-generation FPGAs. On the
contrary, in practice, we never get high clock frequency for free. Real FAME designs support
multiple clocks and I/Os. If we do not carefully map FAMEs to FPGA efficiently, the raw
clock frequency could drop quickly therefore losing an order of magnitude performance, as
well as making the CAD place and route time unacceptably long.

When we implemented DIABLO, we always tried to leave logic and physical placement
optimizations to the CAD tools. Though SRAM-based FPGAs enjoy riding the CMOS
scaling curve, the performance of FPGA designs are dominated by routing delays of the
switching fabric and clocking resource allocations on FPGAs. Besides, on any FPGA de-
velopment board, we have to consider the physical I/O placement running in different clock
domains, many FPGA structural constraints, such as global clock drivers, building reliable
high fan-out synchronous reset network. Every time when pushing our designs through the
CAD tools, there is a constant need to re-pipeline the design and other forms of physical op-
timizations to alleviate routing pressure, such as manually control fan-out of a net, resource
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allocation and sharing. Adding fabric dependent synthesis attribute to the source code is
also an essential part of the whole design. Besides, we have to reiterate several steps in the
design and verification stage once pushing the design through CAD tools.

Since routing is really a critical resource on FPGAs, due to propriety switch box designs
on FPGA devices, FPGA vendors give zero visibility to designers about routing hot spot in
their designs. Designers must rely on indirect indications such as signal fan-out, estimated
net delays output from the tools, and their own empirical design experiences to fine tune
the designs. In other words, synthesizing FAME RTLs has never been a simple push-button
task without knowledge of underlying FPGA fabric. This process has many iterations with
non-trivial design efforts behind. Sometimes this process is even more complicated than
designing directly for ASIC under a less constrained environment.

It is sufficient to verify FAME using Verilog simulator running ran-

domized testbench and formal verification suite

FAME has a superior runtime performance over SAME. However, to debug the function-
ality of FAME the first step is to run testbenches on Verilog simulators, which are orders of
magnitude slower than SAME. To speed up the RTL debugging process while maintaining
sufficient visibility, in industry people use FAME-0-style hardware emulators, such as Ca-
dence Palladium, and Mentor Graphics Veloce in place of software Verilog simulators. These
emulators run at sub-10 MHz but fast enough to run real software, although taking hours
to days to compile the RTL design. The ownership cost of these emulators, usually in the
rage of millions of dollars, is substantial for academia users. Because of these practical con-
straints, designers in academia break large RTL designs into modules and stress test them
with well-designed unit tests running on clusters of Verilog simulators.

This verification approach sounds reasonable in theory, but by no means has it guaranteed
a design would run on hardware without any issues merely running cycle-accurate simulations
in Verilog simulator. We argue that any form of functional verifications is not sufficient,
unless the design runs on real hardware with real software. There are a few reasons.

First, unit tests heavily rely on the quality of testbenches to provide better coverage.
When a testbench is developed, the designers always make usage assumptions for the unit
being tested. The more varied usage assumptions the testbench developer made, the better
the coverage of the testbench would have. Even a well-designed testbench could not provide
100% coverage. For instance, when we verify our processor design we used a verification suite
donated by SPARC international. It is intended for the SPARC certification test, including
various unit tests to verify any implementation of the ISA. However, these tests make some
assumptions on the cache architecture and pipeline implementations. The verification suite
is extremely helpful at the early design stage, but we kept adding more unit tests while
finding corner cases with compiler generated code running with our research OS on FPGA
hardware. Among the newly added tests, some are targeting at uncovering FPGA logic
synthesis bugs.
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Second, stressing independent modules could not uncover bugs introduced during module
compositions. Different modules place different requirements on verification. The verification
approach used for complex control flow logic may be different from that used for math units.
Some blocks simply route data without changing it. Other blocks have visible effects that are
not predictable without knowing the precise timings of interactions of transactions within
them. In extreme cases with multiple clock domains, even a cycle-accurate model cannot
predict the expected results [131].

Third, software developers do not follow hardware specifications but try whatever works
on existing hardware implementations they have accesses to. For example, the Linux kernel
uses a few hardware reserved bits to store some important kernel states. The verification
suite we got from SPARC international does not cover this misuse. Such issues often lead to
unpredictable nondeterministic behavior in the software. Though having the same reserved
bits issue, our C-based functional simulator does not help to discover the real cause because
of different interleaving and infinite fast simulated I/O. This problem would not exist if we
develop our own kernel/libc software from scratch.

In conclusion, verifying DIABLO is a very challenging topic by itself, which requires
extensive hands-on debugging directly on the FPGA prototype. Moreover, verifying complex
system is not only an open topic for FPGAs, but also for ASIC designers, like comments
from verification gurus “No matter what you do, the coverage is always zero” [132]. In order
to improve the confidence level of verifications, designers should develop formal methods to
prove the correctness of a design unit as much as possible in addition to running verification
suites consisting of random and individual test cases. However, it is a time consuming
process to develop formal methods at the full system-level. Designers of complex FPGA
designs always have to face the trade-off between the longer verification time and a more
reliable design.

6.6 Building a Low-Cost FPGA Board for DIABLO

The DIABLO prototype targeted at the BEE3 multi-FPGA board, which is the third
generation FPGA emulation platform developed at Microsoft for computer system emula-
tions. The build cost of BEE3 board is not cheap even for academic users, which is around
$15K without FPGAs and DRAMs. A fully populated BEE3 board could cost university
users up to $25K. During the development, we use cheaper single-FPGA alternative, the
XUPv5 board, which costs only $750 but at the cost of fewer DRAM capacity and inferior
build quality (we actually returned 40% XUP boards received because they are defective
out-of-box). Although both boards are designed for academic research, they are far from
ideal for DIABLO. We find there are mainly two reasons that account for the board cost
and usability issues.

1. High design complexity. The BEE3 board is an 18-layer PCB design, while the XUPv5
board is a 13-layer design. One big reason behind this complexity is that they both
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utilize many FPGA I/O pins for exotic I/Os that are never used by DIABLO. The
BEE3 boards use most of the FPGAs I/O pins to provide a high-bandwidth ring
interconnect between FPGAs on the same board, while the cheaper XUPv5 board
loads the FPGA I/O pins with I/Os like LCD, audio codec and extension bus mostly
useful in elementary digital design classes in schools.

2. Poor I/O assignment. When designing a PCB board, designers have less knowledge
about future gateware that will run on the FPGA. Due to the complexity of supporting
many different I/Os, it is impossible to have an optimal I/O assignments minimizing
routing delays without prior knowledge about detailed gateware implementations. For
instance, the I/O pins of the Gigabit Ethernet PHY are assigned to the opposite side
of the die from where the hardened Ethernet MAC controller is located. In addition,
the I/O bank and clock input assignment do not take advantage of regional clocking
networks on FPGA to alleviate routing pressure on global clocking networks.
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Figure 6.1. Prospective FPGA board optimized for DIABLO.

To address the above issues, we present a more affordable single-FPGA board design,
showing in Figure 6.1, with an estimated cost around $5,000 including the FPGA. Hypo-
thetically, the board is targeting the 28nm Xilinx Virtex 7 FPGA. Knowing the DIABLO
design requirements, we equip the board with the following features:

1. Single FPGA design. For economical reason, we choose a mid-size Xilinx FPGA
(XC7V690T), which has a cost of $600∼$800. We use the slowest speed grade FP-
GAs, because higher speed grade FPGAs only offer 10%∼15% performance gain but

101



at a substantial higher cost. DIABLO is a modularized single FPGA design. Com-
pared to the FPGA on BEE3, the logic capacity of the FPGA in our new design is
> 4x, while the BRAM capacity is > 7x.

2. Minimum I/Os. The only low speed I/Os is a Gigabit Ethernet interface, which is
used as the frontend link in DIABLO to handle all control and console traffic.

3. Maximum memory capacity. Since one of the key limiting factors in emulation is the
DRAM capacity, we use almost all FPGA I/Os to support more DRAM DIMMs. In
our design, we support four independent channels with each having up to four DIMMs.
If fully populated with DDR3 registered ECC DIMMs, every board can support up
to 512 GB DRAM, which is 8x of that on the BEE3 board. Registered DIMMs are
preferred because of higher capacity and better signal integrality. In addition, since
the DRAM controller is almost the only gateware need to take care of during the I/O
assignment and they are well understood, we can easily find the optimal I/O placement
when designing the PCB.

4. Simple inter-board and peripheral expansion. We scale up DIABLO using only high-
speed transceivers. Depends on the packaging of the FPGA, each board can have
36-64 13.1 Gbps transceivers, which translate to an aggregated off-board bandwidth
of 471.6-838.4 Gbps. We do not bundle these transceivers into groups to fit into
fancy connectors that require more expensive cables. Instead, we use the basic SMA
connector to provide the maximum flexibility and reduce the cable cost. We could also
build daughter cards connecting through the same high-speed serial transceivers that
provide other I/O connectivity, such as storage.
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Chapter 7

Future Work

In previous chapters, we demonstrated a prototype of DIABLO running unmodified pro-
duction server software. The working set of all applications fits in the on-board DDR2
memory. The applications in our experiments exercise the networking stacks with little
disk I/O except for loading dynamically linked libraries. In this chapter, we discuss several
limitations of the current prototype. We also propose solutions to address them for future
work. We classify future work into two categories: painkillers (must-have) and vitamins
(nice-to-have).

7.1 Painkillers: Must-Have Features

7.1.1 Improving emulated target memory capacity

FAME-7 modeling techniques give us the capability of emulating larger target systems
with fewer virtualized FPGA resources at the cost of longer simulation time. However, the
target memory capacity is very hard to virtualize with limited physical DRAM storage per
FPGA board. We should note that the memory capacity issue has not been an issue only for
DIABLO, but also an open topic for any work that is trying to emulate a large datacenter
with limited hardware resources.

Although a fully populated BEE3 supports up to 64 GB DRAM, each simulated node
only supports 128 MB memory given the high-density design. According to our conversation
with industry researchers [71], 128 MB memory is adequate to study novel datacenter
network transport protocols, and server applications (e.g. memecached), whose performance
is independent of total memory capacity. However, there are quite a few disk I/O intensive
applications in the datacenter, such as those based on distributed file systems like Google
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GFS [69] and Microsoft Dryad [80], which require gigabyte DRAM buffers to improve
performance [138]. Without real physical storage, it is hard to model the dynamics of
these applications. A newer board design proposed in Chapter 6 could improve the current
memory capacity per node by factors of two to four. Besides, having real full-size DRAM
main memories for thousands of nodes will still cost a significant amount of money. Given
that future datacenter applications are more memory intensive, we still need new technology
to support several gigabytes of memory per node.

There are two straightforward workarounds to support more simulated memory. One is to
reduce the number of simulated nodes per FPGA. Nevertheless, it is still very hard to scale to
several gigabytes of memory per simulated node without significantly affecting the simulation
density. Thus, it is less practical in the context of massive-scale architectural simulations.
Another approach is to apply software page sharing technologies used by virtual machines to
avoid storing redundant copies in multiple nodes to improve memory utilizations. Although
we know it is easy to share memory pages for applications and OS code, page-sharing is less
effective for exascale applications with huge in-memory datasets with little redundancy. To
sum up, we need to model large real physical target memories with a cheaper host memory
technology.

Note that the overall simulation performance is three orders of magnitude slower than
a real datacenter. This opens the opportunity of using FLASH memory to simulate server
memory DIMMs. According to the ITRS memory technology roadmap in 2010 [19], FLASH
memory costs a tenth of the same capacity DRAM but with a 1000× greater random ac-
cess latency. Moreover, newer memory technologies like Resistive Random Access Memory
(RRAM) and 3D-stacking may further improve cost-per-bit and density. Therefore, we pro-
pose to build a DIABLO with a hybrid memory hierarchy including both DRAM and FLASH
memories to address the current memory capacity limitation. The basic idea is to use FLASH
to emulate the target server DRAM, and to use the DRAM DIMMs on our FPGA boards
as a “memory page cache”. In theory, the memory hierarchy works similarly to OS virtual
memory with demand paging and swap support. The DRAM page cache can be as large as
64 to 128 MB per node, which is large enough to cache the working set of many applications.

In terms of the physical implementation of the FLASH storage, there are two possible
ways to connect them to the existing system. One is to connect FLASH memory through
the high-speed transceivers on the FPGA board. In this way, we could use FLASH drives
with the standard SATA disk interface. The benefit of using a standard disk interface is
to easily employ commodity large Solid State Drives (SSDs), but the drawback is a more
complicated interface with higher access latencies. Another approach is to directly plug
in FLASH-chip-populated DIMMs into memory DIMMs on our FPGA board. Microsoft
Research has already built SLC NAND flash DIMMs for BEE3 supporting up to 32 GB per
DIMM with a simple low-latency interface [60]. By swapping the SLC chips with MLC
chips, the overall capacity can be easily improved by factors of two to four. Micron is also
developing a DDR4-compatible hybrid DRAM-NAND that could contain more than 256 GB
of memory with a bandwidth over 300 GB/s shipping in 2016 [33].

When designing a FLASH-based memory system, we face two major challenges: band-
width and latency. The NAND flash memory reads faster than it writes. The random read
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latency around 40 to 50µs, while the write latency is around 100µs to 300µs [61]. The new
10nm Samsung MLC FLASH chip claims to have a bandwidth of 260 MB/s read and 50
MB/s write [30]. The 1000x slower access latency of FLASH could be hidden by DIABLO’s
simulation slow down. In addition, the host-multithreading feature of FAME-7 models can
help to hide the access latencies of FLASH when there is a miss in the DRAM page cache.
On the other hand, the bandwidth heavily depends on the FLASH controller and device
architecture. The current BEE3 flash DIMM provides a 160 MB/s write bandwidth and 320
MB/s read bandwidth through SLC FLASH with a simple controller. If we use off-the-shelf
SSD with a standard disk interface, for example, the 25nm Micron C400 SSD [12], we could
get a comparable bandwidth of 180 to 500 MB/s read and 200 to 260 MB/s write with
around 55µs access latency. In order to build a balanced simulation system with a 1000×
slow down factor and a 20 GB/s peak target aggregated memory bandwidth per server in
target, we need to connect at least one SSD or FLASH DIMM to every 10 simulated servers.

Although modern FPGAs have plenty of multi-gigabit transceivers to offer sufficient
bandwidths for the FLASH interface, considering the simulation density per FPGA (hun-
dreds of servers) in the future, we need to design a custom FLASH storage system to improve
the bandwidth of existing cheap FLASH storage by 10x. This is plausible using multiple
64Gb 10nm Samsung modules as mentioned earlier in parallel together with a low-cost FPGA
for the high-throughput interface mounted on a compact PCB board. To simplify the con-
troller design and to optimize for DIABLO’s usage scenarios, we do not need to support
any industry protocol. Hence, the overall design efforts and manufacturing cost for this new
storage system should be manageable.

7.1.2 Adding multicore and 64-bit CPU Support

Currently, we use only one hardware thread in each server model to model a single-CPU
server. Applications will be increasingly optimized for multicore. Having a multicore server
model will improve the accuracy of our server model.

In the future, we could easily extend the design to support more simulated cores per
CPU by using more logic resources on newer-generation FPGAs. However, most of the
work of adding a multi-core support will be in extending the existing Linux kernel. The
current 32-bit SPARC port of the Linux kernel supports only up to 4-way SMP with many
hardcoded tables, such as page tables and interrupt tables. This restriction is because there
is no commercial 32-bit SPARC SMP system with more than four cores. This limitation
with Linux is only due to our use of 32-bit SPARC ISA. The overall approach would work
with other ISAs that had better multicore support.

Although the existing single-core 32-bit SPARCv8 configuration runs many off-the-shelf
applications, there are several limitations of in our implementation, shown as the following:

1. No support for 64-bit virtual address space: This is an intrinsic limitation from a 32-
bit ISA. 64-bit virtual address space would be useful, for supporting more than 4
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GB virtual address spaces. It is also crucial to work with the hybrid FLASH/DRAM
memory hierarchy proposed in the previous section.

2. Non-IEEE 754 compliant FPU : DIABLO focuses on network I/O-centric applications,
which do not execute many floating point instructions. A full-fledged IEEE-754 com-
pliant FPU consumes a large amount of FPGA resources even with the help of hard
DSP blocks. Therefore, we do not support all rounding modes and precisions in our
current FPU implementation.

3. Low floating-point performance: We only implement simple FPU operations, and
use the Newton-Raphson method to emulate complex FPU operations like division
and square root in software. This software implementation is similar to the hardware
floating-point implementation in AMD K-7 processor [104] but with reduced preci-
sions. Another performance limitation of SPARC v8 is that the ISA does not support
transferring data between the integer and the floating-point register file directly.

In conclusion, many of these limitations are not caused by our FPGA modeling method-
ology, but due to trade-offs between FPGA resource consumption and engineering effort.
Moreover, some come from limitations of the ISA itself.

7.2 Vitamins: Nice-To-Have Features

7.2.1 More flexible micro-code based NIC/Switch Models

In the existing DIABLO prototype, we directly build FAME-7 models for the NIC and
switch hardware. We implement all important architecture features using pure FPGA hard-
ware. These I/O models perform well on FPGAs. Although they consume considerable
FPGA resources, they are not on the performance critical path. Because of sufficient paral-
lelism in the hardware, in the worst case the host FPGA cycles consumed by DIABLO I/O
models account for less than a third of those used for simulating server computations. In
addition, the utilization of datacenter networking gear rarely reaches 100-percent utilization
in practice. This suggests that our FAME-7 I/O models are over-optimized.

In order to simplify our model abstractions, we analyzed real-life usage of the simulated
target hardware and concentrate on commonly used features. We further take advantage of
the decoupled feature in FAME-7 models to build simpler FPGA hardware and use multiple
host FPGA cycles to simulate high-performance hardware. Even with these abstractions,
to achieve basic functionality we still have to implement many exotic target features in
hardware, such as descriptor-based gather/scatter NIC DMA and switch virtual output
queues. Moreover, to cope with the FPGA host memory subsystem, we have to build
a distinct host-cache for every DIABLO model. Combined with host multithreading and
decoupled design, we end up introducing more intermediate states that make the DIABLO
FAME-7 model even harder to design and debug than the original target hardware. As shown
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in Table 4.2, the FPGA resource consumption of a DIABLO NIC model is comparable to that
of the server model. The downside of the extra complexity is that it is hard to add features
to existing models using Verilog. For instance, in our prototype we omit some interesting
TCP/IP checksum and send/receive offloading features, which could take many months to
implement in hardware.

Therefore, we think in the future it is not necessary or desirable to implement every target
hardware functional feature in FPGA hardware. Recent trends in datacenter switching also
show that the static ASIC forwarding engine of a datacenter switch will likely become more
programmable like a microcode engine [46]. Analyzing the design complexity of our existing
model, we found that the majority of the complexity of our networking I/O models arises
from moving memory data stored in some hardware-specific data structure rather than a
heavy computation requirement. In addition, some advanced hardware features like TCP/IP
segmentation offloading are also easier to model with a piece of software running on an I/O
processor or microcode engine.

Based on these observations, we propose to build programmable microcode engines plus
FPGA hardware accelerators to replace the current DIABLO I/O model. FPGA hardware
accelerators are still necessary to model some heavily parallel hardware structures in the
target system, such as the switch virtual queue scheduler. We can reuse the integer pipeline
of the DIABLO server model as the microcode engines for everything else. There are many
advantages of this approach:

1. It is easy to add and modify modeled architecture features by changing the code running
on the microcode engine.

2. The SPARC v8 multithread microcode engines would be very easy to program with
the existing software toolchain and compiler support.

3. The FPGA host memory system design can be greatly simplified. We no longer need
different host caches for different DIABLO models, as all models will be more homo-
geneous.

4. The overall design and verification effort of DIABLO will be reduced because fewer
distinct hardware model needs to be built.

5. The multithreaded microcode engine works like a programmable multicore network
processor, such as the Intel IXP network processors. Running at around 100 MHz, it
could provide enough horsepower to handle many network processing tasks even at the
target line speed.

6. The microcode engine consumes very few resources on the FPGAs and we can have
lots of these engines to improve the simulation performance when necessary.
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7.2.2 Applying DIABLO to other I/O research

Currently, DIABLO is targeting datacenter interconnect simulations. We only build
detailed architecture models for datacenter networking components. To make the whole
system properly functional, we also implement functional models for other types of datacenter
I/O, such as local disks and command consoles. However, these functional models are not
optimized for emulation performance.

For instance, we forward all un-modeled I/O requests to a front-end PC from the FPGA
through a narrow Gigabit Ethernet link. The front-end link works in a polling mode with
the control appserver running on the PC initiating all transactions. Therefore, the raw
performance of these functional I/O models suffer from the low bandwidth and long latency
caused by the control software. Consequently, the console log dumping and functional disk
performance have become the performance bottleneck during the Linux boot on DIABLO.

There is an incentive to improve the current functional I/O performance just to shorten
the Linux boot time before running experiments. We could address this performance issue
from both software and hardware perspective. A simple solution is to implement buffered I/O
for both character and block kernel device drivers to improve the polling efficiencies. A more
sophisticated approach is to build a dedicated DMA hardware for these I/Os in the FPGA
instead of using software polling. In order to overcome the frontend link bandwidth limitation
and reduce communication latencies, we can employ the spare multi-gigabit transceivers on
FPGAs to directly connect the DIABLO hardware to the control PC or physical I/O devices,
such as disk.

Moreover, datacenter disk I/O has been an active research topic for both software and
hardware researchers in recent years, especially with the advent of new I/O storage tech-
nologies like SSD. It is plausible to build storage timing models on FPGAs with improved
functional I/O hardware to extend DIABLO’s emulation capability. As mentioned earlier
many datacenter storage subsystems involve aggressive in-memory caching with complex
software-managed control logic, emulating more target memory is almost a prerequisite for
any storage research. Other than the memory capacity requirement, we found no technical
difficulty that prevents the current DIABLO platform from applying to other I/O-related
research.

7.2.3 Supporting more real world applications

Currently, we cross-build all C/C++ applications that run on DIABLO using a reg-
ular Linux/x86 machine. Unfortunately, many applications are not written with cross-
compilation in mind. Hence, we always need to invest time to port config and make scripts.
This work has become the main barrier to running more programs. One future direction
for running more software is to bring up a full user-land Linux distribution, such as Debian
Linux. If so, each compute node in DIABLO could be used as an independent Linux work-
station, which runs standard GNU development tool chain natively on DIABLO or in our
C function simulator. This improvements eliminates troubles of cross-compiling, therefore
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we can easily support more sophisticated programs that require complex software package
dependencies.

Expanding DIABLO’s support of managed languages and scripting languages, such as
Java/OpenJDK and Python, is also a good future direction. Although many proprietary dat-
acenter storage and computation software frameworks are written with native languages like
C/C++ for performance reasons, there are still quite a few popular open-source frameworks
like Hadoop written in managed languages. With the help of full Debian Linux distribution,
it is straightforward to support any popular managed language found in the most up-to-date
Debian repository.

To sum up, we conclude some limitations of DIABLO and propose future improvements.
Among all aforementioned limitations, the memory capacity issue is the dominating factor
that prevents DIABLO from being applied to simulate a wider range of datacenter applica-
tions, particularly those of disk I/Os. However, the memory capacity has become a general
open problem for any work that attempts to emulate large-scale datacenters with limited
hardware resources. We also point out several future directions to build more flexible DI-
ABLO models that significantly reduce design and verification efforts. Besides simulating
datacenter networking architecture, we believe that DIABLO is promising for other data-
center I/O research.
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Chapter 8

Conclusions

Simulation is the cornerstone of computer architecture research and development. Tradi-
tional software simulation techniques allow architects to explore a design space and validate
their proposed implementations without building expensive hardware prototypes. On the
other hand, the complexity of target systems has grown exponentially. Particularly in the
context of ware-house scale computing, the scale has made any performance evaluation a
challenging task. Moreover, data-center applications running at this enormous scale interact
with the hardware system as well as the operating system in a tightly-coupled manner. Many
application performance issues are not only merely software problems, but are consequences
of complex interplays between hardware and software. From the computer system research
prospective, we point out that researchers are facing an evaluation crisis. This crisis is not
merely how fast the raw evaluation performance is but also the capability and availability of
analyzing the whole target design at a more believable scale.

In order to overcome current evaluation limitations, people have proposed many improve-
ments to the traditional event-based simulation and statistical analytical models. Many re-
searchers are in favor of such cheap software-based evaluation platforms to avoid the need of
building any hardware. Usually, such models only targeting manually-picked “point of inter-
ests” without looking at the whole hardware and software system. Though easy to build, in
this dissertation we show that such methodology is seriously flawed by limiting the potential
design space due to subjective intuitions of designers.

Unlike other modeling work, our philosophy of datacenter design evaluations is to treat
datacenter hardware and software as a white-box system with plenty of architectural de-
tails. In this dissertation, we start off by analyzing general computer architecture evaluation
methodologies. We introduced a novel performance modeling approach using FPGAs. To
help further understand many existing efforts aiming to boost simulation performance, we de-
veloped the FPGA Architecture Model Execution (FAME) and Software Architecture Model
Execute terminology. The four-level taxonomy of FAME levels help to systematically explain
the cost-efficiency of DIABLO simulations.
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The key insight of FAME is that instead of prototyping target architecture we implement
multithreaded abstract performance models on FPGAs. Our models also contain many
runtime configurable options that can be changed without reprogramming the FPGAs. This
approach enables faster design space exploration without going through FPGA place and
route for hours. FAME models are also capable of running full software stack at two orders
of magnitude faster than state-of-the-art software alternatives.

As an illustration of the efficiency of high-level FAME, we built RAMP Gold a FAME-
7 full-system multicore simulator on a $750 single FPGA board. RAMP Gold employs a
decoupled functional and timing architecture. It supports standard 32-bit SPARC v8 ISA
that runs the Linux operating system and unmodified datacenter software stack. In this
dissertation, we also describe the detailed FPGA host implementation techniques building
efficient high-level FAME simulators. Due to characteristics of the host FPGA platform, we
found that the architecture simulator itself behaves very differently from the target machine
it models. The design of tiny host functional cache and single line buffer based coherent
architecture shows that the FAME architecture itself is a new design space. Furthermore,
we discuss two ways of scaling the simulator itself:strong scaling using more parallel hardware
and weak scaling using same hardware but pack more host threads.

Inspired by the success of RAMP Gold on multicore simulation, we applied the FAME-7
idea to model datacenter networking gears such as switches and network interface cards.
We built DIABLO, a low-cost FPGA emulator for datacenter. As a proof of concept, we
implement DIABLO in 24 Xilinx Virtex 5 FPGAs on six BEE3 boards. The prototype
simulates up to near 3,000 nodes in 96 server racks with an Ethernet interconnect. Our
prototype occupies only half of a standard server rack and consumes around 1.2 kwatt in
total. The testbed was equipped with 384 GB DRAMs in 48 independent DRAM channels
that has a peak memory bandwidth of 179 GB/s. All FPGAs in DIABLO are connected using
high-speed point-to-point serial links at 2.5 Gbps, simulating 8.6 billion target instructions
per second. Inheriting a good software support from RAMP Gold, DIABLO runs standard
Linux with unmodified datacenter software stack. The overall hardware cost of our prototype
is around $100K, and it costs little to maintain. We discussed the detailed architecture and
implementation of DIABLO, and provided some future directions for building efficient FAME
emulator and hardware platform.

As a proof of concept and validation, we conducted three experiments on real life data-
center hardware and software research problems. In the first example, we use DIABLO to
faithfully model a novel datacenter circuit-switching architecture from Microsoft Research,
running traffic patterns sampled from the Dryad Terasort application. We run the workload
on simulated servers along with real device drivers. The results from DIABLO provided
insight for improving future designs. In the second case, we reproduce the well-known dat-
acenter TCP Incast throughput collapse problem on DIABLO. Moreover, we revisit this
classic networking problem from the system prospective showing the impact of simulating
computation and a full OS, including the device drivers. We also illustrate various perfor-
mance scalability issues of TCP incast at a higher link speed. In the final example, we scale
DIABLO to a 2,000-node system running unmodified memcached servers with clients gener-
ating traffic based on Facebook’s production data. This example demonstrates that we can
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apply DIABLO to study hardware and software interactions at scales that were previously
difficult to achieve without significant hardware investment.

One of the key observations of DIABLO is the importance of modeling computation
with both hardware and software architecture in detail. We show with the TCP Incast
scalability test that the system performance bottleneck could shift to many places in the
system. It is not limited to the network transport protocol and switch buffer designs. To
better understand application scalability issues at warehouse-computing scale, people need
to explore the design space by tweaking many knobs in both hardware and software designs.
Historically, such design space sweeps are typical tasks of analytical models and event-
based simulations, which we argue could not cope with fast datacenter software churns and
increasing target complexities. We believe the FAME-based DIABLO simulator have the
performance and flexibility to conduct such design space exploration at scale.

Our own usage experiences of DIABLO as a research platform are also positive. Not only
can it produce results for massive number of simulated nodes that no practical alternative
approach could achieve, but it also provides an enormous simulation bandwidth to speed
up simulation at rack-level scales. Although the single node performance is three-orders of
magnitude slower than real machines, the ability of simulating a large number of nodes at
the same time overcomes the raw simulator performance deficit.

The design goal of DIABLO is neither to achieve the closest absolute numbers when
model existing hardware nor to build a machine that runs fast enough to beat the target
design. The motivation is to reproduce the relative system behavior at reasonable speed with
affordable resources. We believe it is promising for datacenter-level experiments, helping to
evaluate many novel hardware and software proposals at scale.
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