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Avoiding Communication in Successive Band Reduction

GREY BALLARD, University of California at Berkeley

JAMES DEMMEL, University of California at Berkeley

NICHOLAS KNIGHT, University of California at Berkeley

The running time of an algorithm depends on both arithmetic and communication (i.e., data movement)

costs, and the relative costs of communication are growing over time. In this work, we present sequential and
parallel algorithms for tridiagonalizing a symmetric band matrix that asymptotically reduce communication

compared to previous approaches.

The tridiagonalization of a symmetric band matrix is a key kernel in solving the symmetric eigenvalue
problem for both full and band matrices. In order to preserve sparsity, tridiagonalization routines use

annihilate-and-chase procedures that previously have suffered from poor data locality. We improve data
locality by reorganizing the computation and obtain asymptotic improvements. We consider the cases of

computing eigenvalues only and of computing eigenvalues and all eigenvectors.

1. INTRODUCTION

The running time of an algorithm depends on both the number of floating point opera-
tions performed (arithmetic) and the amount of data moved (communication) through the
memory hierarchy of a single processor and, in the parallel case, across a network between
processors. The cost of moving data on today’s machines already greatly exceeds the cost
of performing floating point operations on it, and architectural trends indicate that this
processor-memory gap is growing exponentially over time [Fuller and Millett 2011]. Thus,
we are interested in new algorithms which reduce the communication costs of existing ones,
even at the expense of doing more arithmetic.

In this work, we present new sequential and parallel algorithms for tridiagonalizing a sym-
metric band matrix in order to compute its eigendecomposition. Our algorithms reduce the
communication costs compared to previous approaches. Although no communication lower
bound is known for this problem, we demonstrate that previous approaches communicate
asymptotically more than necessary.

While the symmetric band problem is interesting in its own right, this work is motivated
by the high communication costs of the standard algorithms for solving the full (dense)
symmetric eigenproblem via tridiagonalization. Greater efficiency than the standard ap-
proach can be obtained if the tridiagonalization procedure is split into two steps: reducing
the full matrix to band form and then reducing the band matrix to tridiagonal form. Thus,
by reducing the communication and improving the algorithm for tridiagonalizing a band
matrix, we can also improve algorithms for tridiagonalizing a full matrix. While we focus on
symmetric matrices in this work, the ideas here can be readily applied to tridiagonalization
of Hermitian matrices as well as bidiagonalization of general matrices (for singular value
problems).

In order to preserve band structure, band reduction algorithms based on orthogonal sim-
ilarity transformations proceed by an annihilate-and-chase approach. Annihilating entries
within the band creates fill-in (bulges); to preserve sparsity, these bulges are chased off the
band before annihilating subsequent entries. The most general framework for this procedure,
known as successive band reduction (SBR), appears in [Bischof et al. 2000b].

The main contributions of this work are the following:

New Techniques for Avoiding Communication. In Section 3, we extend the band reduc-
tion algorithm design space with new techniques for avoiding communication. The main
novel contribution is the idea of chasing multiple bulges in the context of SBR.
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New/Improved Sequential Algorithms. In Section 4, we give an asymptotic complexity
analysis of previous approaches, and show how our new techniques can be used to im-
prove their communication costs. We also introduce a new algorithm, CA-SBR, which
communicates asymptotically less than all other approaches.

New Parallel Algorithm. In Section 5, we extend CA-SBR to a distributed-memory par-
allel algorithm which communicates asymptotically fewer messages than previous ap-
proaches.

A preliminary version of this work appeared in [Ballard et al. 2012]. The multiple bulge
chasing approach and sequential CA-SBR algorithm (for eigenvalues only) first appeared
in that paper. We also showed how to extend the sequential algorithm to a shared-memory
parallel environment. Our implementations obtained 2−6× speedups over state-of-the-art li-
brary implementations. This paper extends those results in two ways: we discuss distributed-
memory algorithms and consider computing both eigenvalues and eigenvectors. However,
we do not give implementation details or performance results in this work.

2. PRELIMINARIES

2.1. Communication Model

In order to quantify the communication costs of an algorithm, we model a sequential machine
with two levels of memory hierarchy (fast and slow) and count the number of words moved
between these two levels during the execution of the algorithm; this we call the bandwidth
cost. This model is sometimes referred to as the two-level I/O or disk access model (see,
e.g., [Aggarwal and Vitter 1988]) and the number of words moved is also known as the
I/O-complexity of the algorithm. We use M to denote the size of the fast memory in words.
If words are stored contiguously in slow memory, then they can be read or written together
as a message. We are also interested in the number of messages transferred between fast
and slow memory, which we call the latency cost. In our model, messages may range in size
from one word to M words.

In the distributed-memory parallel case, we model the machine as a collection of p pro-
cessors, each with a limited local memory of size M , connected over a network. We assume
processors can communicate via point-to-point messages, and each processor can send or
receive only one message at a time. The network topology is assumed to have all-to-all
connectivity, so we do not model contention or the number of hops a message would travel
on a more realistic physical network. Again, we are interested in both the number of words
(bandwidth cost) and messages (latency cost), and we count these costs along the critical
path of the algorithm. That is, if two processors each send a message to separate processors
simultaneously, the cost along the critical path is that of one message.

2.2. Eigendecomposition of Band Matrices

In this paper, we are interested in computing the eigenvalues (and possibly the eigenvec-
tors) of a symmetric band matrix via tridiagonalization. Let A ∈ Rn×n be a symmetric
band matrix with bandwidth b (i.e., having 2b+ 1 nonzero diagonals). Because we preserve
symmetry, it is sufficient to store and operate on only the lower b + 1 diagonals of A. We
reduce A to a symmetric tridiagonal matrix T via orthogonal similarity transformations
which comprise an orthogonal matrix Q such that QTAQ = T . We refer to this process
as the band reduction phase. We assume the eigendecomposition of the tridiagonal ma-
trix T is computed via an efficient algorithm such as Bisection/Inverse Iteration, MRRR,
Divide-and-Conquer, or QR Iteration (see, e.g., [Demmel et al. 2008]), and we ignore the
computation and communication costs of this phase.

If only eigenvalues are desired, the eigenvalues of T are the eigenvalues of A, so no extra
computation is required and Q need not be computed or stored. If eigenvectors are also
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desired, then a back-transformation phase is needed to reconstruct the eigenvectors of A
from the eigenvectors of T . That is, if the eigendecomposition of T is given by T = V ΛV T ,
then the eigendecomposition of A is A = (QV )Λ(QV )T , so to compute the eigenvectors
of A, we must compute QV . There are a range of possibilities for computing QV : if we
form Q and V explicitly, then this can be done with matrix multiplication; if we store Q
implicitly (e.g., as a set of Householder vectors), then it can be applied to V after V is
formed explicitly; if QR Iteration is used to compute the eigendecomposition of T , then Q
should be formed explicitly so that V can be applied implicitly to Q from the right as it is
computed; or Q and V can be left implicit, allowing us to multiply by them when needed.

In many applications only a subset of eigenpairs are desired. The cost of the back-
transformation can be made proportional to the number of eigenpairs desired; this can
significantly improve the runtime. Here, we consider only the case of computing all n eigen-
pairs.

One of the most important applications of solving the symmetric band eigenproblem is
when solving the full symmetric eigenproblem. An efficient alternative to direct tridiagonal-
ization [Wilkinson 1962] is a two-step approach [Bischof et al. 2000b]: (1) reducing the full
matrix to a band matrix, and (2) reducing the band matrix to tridiagonal form. Both direct
and two-step tridiagonalization approaches use orthogonal similarity transformations. The
remainder of this work concerns step (2); we discuss step (1) in Section 6.

2.3. SBR Notation

We follow notation from [Bischof et al. 2000b] and the authors’ related papers to describe
the terminology associated with successive band reduction (SBR), our approach for reducing
A to T . While we do not give a complete description of SBR here, Figure 2 in [Bischof et al.
2000b] is particularly helpful for visualizing the framework.

To exploit symmetry, we store and operate on only the lower triangle of the band matrix,
though analogous algorithms apply to the upper triangle. When we refer to a column of the
band, we mean the entries of the column on and below the diagonal.

In a given sweep, SBR eliminates d subdiagonals in sets of c columns,1 using an annihilate-
and-chase approach. We assume Householder transformations are used; each set of trans-
formations eliminates a d-by-c parallelogram of nonzeros but creates trapezoidal-shaped fill
(a bulge). Using analogous orthogonal similarities, SBR chases each bulge off the end of the
band, translating the bulge b columns to the right with each bulge chase. Figure 1 shows the
data access pattern of a single bulge chase. A QR decomposition of the (d+ 1 + c)-by-c ma-
trix (QR region in Figure 1) containing the parallelogram computes the orthogonal matrix
that annihilates the parallelogram; the corresponding rows (PRE region) are updated with
a premultiplication of the orthogonal matrix; the corresponding columns (POST region) are
updated with a postmultiplication by the transpose of the orthogonal matrix, creating the
next bulge; and the lower half of the corresponding symmetric submatrix on the diagonal
(SYM region) is updated from both the left and right.

We define the working bandwidth b + d + 1 to be the number of subdiagonals necessary
to store the b + 1 diagonals of the matrix as well as to store the d diagonals that hold
temporary fill-in during the course of a sweep. As observed in [Murata and Horikoshi 1975],
we note that an entire bulge need not be eliminated; only the first c columns of the bulge
must be annihilated to prevent subsequent bulges from introducing nonzeros beyond the
working bandwidth. This results in temporary triangular fill.

We index sweeps with an integer i, where i = 1 is the first sweep, so b1 = b is the
initial bandwidth. We index the parallelograms which initiate each bulge chase by j and the
sequence of following bulges by the ordered pairs (j, k): j is the parallelogram index and k
is the bulge index, as in [Bischof et al. 1994].

1We depart from the LAPACK-style notation nb of [Bischof et al. 2000b].
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Fig. 1. Following the notation of [Bischof et al. 2000b], the bulge chasing operation based on an orthogonal
similarity transformation can be decomposed into four parts. There are d diagonals in each bulge and c is
the number of columns annihilated during a bulge chase which leaves behind triangular fill.

2.4. Related Work

Sequential Algorithms. The two papers of Bischof, Lang, and Sun [Bischof et al. 2000b;
2000a] provide a general framework of sequential SBR algorithms. Their approach first
appeared in [Bischof and Sun 1992] and generalizes most of the related work described in
this section.

The annihilate-and-chase strategy began with Rutishauser and Schwarz in 1963.
Rutishauser [Rutishauser 1963] identified two extreme points in the SBR algorithm de-
sign space: (1) a Givens rotation-based approach with b sweeps and ci = di = 1 for each i
and (2) a column-based approach with one sweep where c1 = 1 and d1 = b−1. Rutishauser’s
first approach considered only pentadiagonal matrices; Schwarz [Schwarz 1963] generalized
the algorithm to arbitrary bandwidths. Later, Schwarz [Schwarz 1968] proposed a differ-
ent algorithm based on Givens rotations which does not fit in the SBR framework. This
algorithm eliminates entries by column rather than by diagonal and does not generalize to
parallelograms.

Murata and Horikoshi [Murata and Horikoshi 1975] improved on Rutishauser’s column-
based algorithm by noting that computation can be saved by eliminating only the first
column of the triangular bulge rather than the entire triangle. If eigenvectors are desired,
Bischof, Lang, and Sun [Bischof et al. 1994] showed that, with this approach, the House-
holder vectors comprising Q can be stored in a lower triangular n-by-n matrix and applied
to V in a different order than they were computed, yielding higher performance during the
back-transformation phase.

Kaufman [Kaufman 1984] vectorized the Rutishauser/Schwarz algorithm [Rutishauser
1963; Schwarz 1963], chasing multiple single-element bulges in each vector operation. Her
motivation for chasing multiple bulges was not locality but rather to increase the length
of the vector operation beyond the bandwidth b. Several years later, Kaufman [Kaufman
2000] took the approach of [Schwarz 1968] in order to maximize the vector operation length
(especially in the case of large b) and make use of a BLAS subroutine when appropriate.
When eigenvectors are requested, the Q matrix is formed explicitly by applying the updates
to an identity matrix. By exploiting sparsity, the flop cost of constructingQ is about (4/3)n3,
compared with 2n3 if sparsity is ignored. The current LAPACK [Anderson et al. 1992]
reference code for band reduction (sbtrd) is based on [Kaufman 2000].

More recently, Rajamanickam [Rajamanickam 2009] proposed and implemented a dif-
ferent way of eliminating a parallelogram and chasing its fill. His algorithm uses Givens
rotations to eliminate the individual entries of a parallelogram, and instead of creating a
large bulge, the update rotations are pipelined such that as soon as an element is filled
in outside the band, it is immediately annihilated. The rotations are carefully ordered to
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obtain temporal and sequential locality. By avoiding the fill-in, this algorithm does up to
50% fewer flops than the Householder-based elimination of parallelograms within SBR and
requires minimal working bandwidth.

Parallel Algorithms. Lang [Lang 1991; 1993] implemented a distributed-memory parallel
version of the band reduction algorithm in [Murata and Horikoshi 1975], although he did not
consider computing Q. Bichof et al. [Bischof et al. 1993] implemented a distributed-memory
parallel instance of the SBR framework in the context of tridiagonalizing a full matrix. A
subsequent paper [Bischof et al. 1994] extended this implementation to reorganize and block
the orthogonal updates comprising Q.

Luszczek et al. [Luszczek et al. 2011] implemented the band reduction algorithm from
[Murata and Horikoshi 1975] as part of a two-step shared-memory tridiagonalization al-
gorithm in the PLASMA library [Agullo et al. 2009], using dynamic DAG-scheduling of
tile-based tasks. They distinguished between “right-looking” and “left-looking” variants:
right-looking algorithms chase a bulge entirely off the band before eliminating the next par-
allelogram, left-looking algorithms chase bulges only far enough to allow for the next bulge
to be created (see Constraint 3.2). For example, the SBR framework [Bischof et al. 2000b] is
right-looking while Kaufman’s algorithm [Kaufman 2000] is left-looking. In [Luszczek et al.
2011], they found improved performance with a left-looking variant. Later, Haidar et al.
[Haidar et al. 2011] reduced the runtime of [Luszczek et al. 2011]; the improvements in the
band-to-tridiagonal step include using an algorithm-specific (static) scheduler, “grouping”
related tasks, and avoiding fill-in using pipelined Givens rotations (a single-sweep version of
the approach in [Rajamanickam 2009]). While PLASMA 2.4.6 has support for computing
eigenvectors, these results have not yet been published.

Auckenthaler et al. [Auckenthaler et al. 2011a; Auckenthaler et al. 2011b; Auckenthaler
2012] have implemented a two-step distributed-memory tridiagonalization algorithm as part
of a solver for the generalized symmetric eigenproblem. Their band-to-tridiagonal step uses
an improved version of Lang’s algorithm [Lang 1993], which performs one sweep. They give
a new algorithm for orthogonal updates which uses a 2D processor layout instead of a 1D
layout. Their implementation also supports taking multiple sweeps when eigenvectors are
not requested; however, this algorithm is not given explicitly.

2.5. Related Lower Bounds

No communication lower bound has been established for annihilate-and-chase band reduc-
tion algorithms, so we cannot conclude that our new algorithms are communication-optimal
in an asymptotic sense. In fact, the general communication lower bound result of [Ballard
et al. 2011b], which applies to many algorithms in numerical linear algebra including ma-
trix multiplication and many QR decomposition algorithms, does not apply to SBR or its
variants because they fail to satisfy “forward progress” [Ballard et al. 2011b, Definition 4.3].
That is, the lower bound proof there requires that an orthogonal transformation algorithm
not fill in a previously created zero — this occurs frequently in SBR, unlike QR decompo-
sition.

The main result of [Ballard et al. 2011b] states that an applicable algorithm that performs

G flops must move Ω(G/
√
M) words and send Ω(G/M3/2) messages for sufficiently large

problems. For most dense matrix algorithms, the number of flops is G = O(n3/p), where
p = 1 for the sequential case. In the parallel case, if we assume minimal local memory is
used (i.e., M = Θ(n2/p), or just enough to store the input and output matrices), the the
lower bounds simplify to Ω(n2/

√
p) words and Ω(

√
p) messages.

Since our new sequential algorithm (see Algorithm 1 and Table I) performs O(n2b) flops,
moves O(n2b2/M) words, and sends O(n2b2/M2) messages, its bandwidth and latency costs

drop below the lower bounds by a factor of O(
√
M/b) for 2 ≤ b ≤

√
M/3. For small b and

large n (such that the band does not fit entirely in fast memory), this discrepancy is as
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much as O(
√
M). Similarly, our new parallel algorithm (see Algorithm 3 and Table III) also

beats the lower bounds for bandwidth and latency costs, and the discrepancy is largest for
small bandwidths. Thus, our algorithms show that not only does the lower bound proof
technique not apply to annihilate-and-chase algorithms, the bound itself must not apply.

3. AVOIDING COMMUNICATION IN SUCCESSIVE BAND REDUCTION

The goal of our algorithms is to avoid communication by reorganizing computation, ex-
tending the SBR framework to obtain greater data locality. In the sequential case, we can
asymptotically reduce the number of words and messages that must be moved between
fast and slow memory during the execution of the algorithm; in the parallel case, we can
asymptotically reduce the number of messages sent between processors. We achieve data
locality (i.e., avoid communication) using two techniques described in Sections 3.1 and 3.2.
We navigate the constraints and tradeoffs that arise using a successive halving approach,
described in Section 3.3.

3.1. Applying Multiple Householder Transformations

The first means of achieving data locality is within a single bulge chase (see Figure 1).
Since c Householder vectors are computed to eliminate the first c columns of the bulge
(QR region), every entry in the PRE, SYM, and POST regions is updated by c left and/or
right Householder transformations. These transformations may be applied one at a time
or blocked (e.g., via [Schreiber and Van Loan 1989]). Assuming all the data involved in a
single bulge chase reside in fast or local memory, O(c) flops are performed for every entry
read from slow memory.

We identify the following algorithmic constraint. If it is violated, then the parallelogram
annihilated by the left update will be (partially) refilled by the right update (i.e., the SYM
and POST regions overlap the QR region) — this implies wasted computation.

Constraint 3.1. To annihilate a parallelogram within the SBR framework, the dimen-
sions of the parallelogram must satisfy

c+ d ≤ b.
While increasing c improves data locality, it limits the size of d due to Constraint 3.1.

Because d is the number of diagonals eliminated in a sweep, this constraint creates a tradeoff
between locality and progress towards tridiagonal form.

3.2. Chasing Multiple Bulges

The second means of achieving data locality is across bulge chases. If ω bulges can be chased
through the same set of columns without data movement, then we have achieved O(ω) reuse
of those columns. Recall that we refer to columns as the subset of column entries on and
below the diagonal. We first establish the following constraint.

Constraint 3.2. No bulge may be chased into a set of columns still occupied by a
previously created bulge.

If this constraint is violated, then the fill will expand beyond the working bandwidth
of the sweep. While it is possible to eliminate this extra fill, we wish to avoid the extra
computation and storage necessary to do so. Chasing the first c columns of a bulge and
leaving behind the triangular fill is the least amount of work required to prevent the fill
from exceeding the working bandwidth.

We state the following lemmas regarding parallelograms, bulges, sets of bulges, and the
working set (measured in columns) for chasing a set of bulges. We assume in both cases
that Constraints 3.1 and 3.2 are satisfied.

Lemma 3.3. Given a sweep of SBR with parameters b, c, and d,
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(a) the jth parallelogram occupies columns 1 + (j − 1)c through jc,
(b) bulge (j, k) occupies columns 1 + (j − 1)c+ kb− d through jc+ kb,
(c) bulges (j, k) and (j + 1, k − 2) do not overlap.2

Lemma 3.4. Chasing the set of ω bulges

{(j, k),(j + 1, k − 2), . . . ,(j + ω − 1, k − 2(ω − 1))}
each ` times requires a working set of (ω − 1)(2b− c) + c+ d+ b` columns.

Proof. By Lemma 3.3(c), this set of bulges is nonoverlapping. If the bulges are chased
in turn ` times each, starting with the right-most bulge (j, k) and ending with the left-most
bulge (j + ω− 1, k− 2(ω− 1)), then there is no violation of Constraint 3.2. The conclusion
follows from Lemma 3.3(b).

Figure 2 demonstrates the working set of 44 columns with ω = 2 bulges chased ` = 3
times each on a matrix with bandwidth b = 8 with c = d = 4.

Our motivation for defining a working set is to ensure that the operation of chasing ω
bulges ` times can be done entirely in fast memory (in the sequential case) or local memory
(in the parallel case). We will specify the constraints in each case when we present our
algorithms below.

3.3. Successive Halving

We will navigate the tradeoff imposed by Constraint 3.1 by setting ci = di = bi/2 at each
sweep i, reducing to tridiagonal form after log b sweeps. We call this a successive halving
approach. We will pick the number of bulges in a set (ωi) and the number of times each bulge
is chased (`i) such that on each sweep (as the bandwidth is successively halved) we double
the number of bulges that we chase in a set, and chase each bulge twice as many times,
compared to the previous sweep. While the successive halving approach (and doubling ωi

and `i) simplifies our asymptotic analysis, in practice the parameters {ci, di, ωi, `i} should
be tuned independently for best performance — we previously suggested a framework for
automatically tuning these parameters in a shared-memory implementation [Ballard et al.
2012, Section 5].

4. SEQUENTIAL BAND TRIDIAGONALIZATION ALGORITHMS

Recall our sequential machine model, where communication is moving data between slow
memory of unbounded capacity and a fast memory with a capacity of M words. We will
first consider the case of computing eigenvalues only and then extend to the case of comput-
ing both eigenvalues and eigenvectors. We will not analyze the solution of the tridiagonal
eigenproblem. In each case, we discuss existing approaches, apply our techniques to improve
them, and then present our communication-avoiding approach.

For our sequential algorithms, we will assume the initial bandwidth b is bounded above by√
M/3. As mentioned in Section 2.2, this is a reasonable assumption if the band reduction

is used as the second step of a two-step reduction of a full symmetric matrix to tridiagonal
form. For larger bandwidths, another approach must be taken to avoid communication (see
Section 6). We also assume that nb�M (the band does not fit in fast memory).

4.1. Computing Eigenvalues Only

When only eigenvalues are desired, the runtime is dominated by the band reduction. Com-
puting the eigenvalues of a tridiagonal matrix involves only O(n) data and less computation
than the band reduction — O(n2) as opposed to O(n2b). While there is a large design space
for band reduction, the computational cost ranges from 4n2b to 6n2b, a difference of only

2Note that if 2c + d ≤ b, bulges (j, k) and (j + 1, k − 1) also do not overlap.
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One of the motivations for SBR was that increasing c can attain
better performance since the (blocked) Householder updates may
use BLAS3 kernels. In our performance model, we explain this by
the higher arithmetic intensity of BLAS3 kernels (flops per byte)
on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
when working sets are small (eg when b is small). Our contribution
is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
as a c = d = 1 (Givens rotations) instance of SBR. Our blocking
can be thought of as a generalization of Kaufman’s blocking to the
d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
purely based on data locality and communication costs. Cor. 2.3
follows easily from Cor. 2.2, and quantifies how closely we can
pack bulges

Corollary 2.3. For one sweep of SBR with fixed parameters b > 1,
c ≥ 1, and d ≥ 1 satisfying forward progress,

• c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 2.
Given a set of m contiguous columns, we could fit at most
� = �(m + 2b − 2c − d) / (2b − c)� bulges.

• 2c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 1.
Given a set of m contiguous columns, we could fit at most
� = �(m + b − 2c − d) / (b − c)� bulges.

Cor. 2.4 pertains to an certain instance of SBR similar to our
algorithms in the following sections. We will use Cor. 2.4 to argue
that the Householder transformations generated by our algorithms
are well-defined.

Corollary 2.4. Consider an instance of SBR with b even, c =
d = b/2, and m = 3kb for integer k. Up to � = 2k bulges,
{(i, j), . . . , (i+�−1, j−(�−1))}, can be packed into m columns.
Suppose A is blocked columnwise with each block-column of width
m (padding if necessary). Each block column holds 6k band par-
allelograms, which we will chase in 3 sets of 2k each. Consider
2 adjacent block columns. Each of the 3 parallelogram sets in the
left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
bulges can then be chased into each successive block column and
always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.

bulges 

(a) Subfigure 1 caption

hops 

(b) Subfigure 2 caption

hops 

(c) Subfigure 3 caption

Figure 1. Global figure caption

ω = 2

� = 3

3. Algorithms and Analysis
3.1 Sequential Case
3.1.1 Algorithm
The communication-avoiding sequential algorithm, shown in Al-
gorithm 1, is based on the framework given in [? ]. At each sweep
i, we cut the remaining bandwidth bi in half by setting di = bi/2.
We also set ci = bi/2 which satisfies the ci + di ≤ bi constraint.
To make the analysis simpler for this successive halving approach,
we assume that the initial bandwidth b is a power of two.
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(a) The ω = 2 bulges occupy
20 of the 24 columns on the
left.

One of the motivations for SBR was that increasing c can attain
better performance since the (blocked) Householder updates may
use BLAS3 kernels. In our performance model, we explain this by
the higher arithmetic intensity of BLAS3 kernels (flops per byte)
on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
when working sets are small (eg when b is small). Our contribution
is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
as a c = d = 1 (Givens rotations) instance of SBR. Our blocking
can be thought of as a generalization of Kaufman’s blocking to the
d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
purely based on data locality and communication costs. Cor. 2.3
follows easily from Cor. 2.2, and quantifies how closely we can
pack bulges

Corollary 2.3. For one sweep of SBR with fixed parameters b > 1,
c ≥ 1, and d ≥ 1 satisfying forward progress,

• c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 2.
Given a set of m contiguous columns, we could fit at most
� = �(m + 2b − 2c − d) / (2b − c)� bulges.

• 2c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 1.
Given a set of m contiguous columns, we could fit at most
� = �(m + b − 2c − d) / (b − c)� bulges.

Cor. 2.4 pertains to an certain instance of SBR similar to our
algorithms in the following sections. We will use Cor. 2.4 to argue
that the Householder transformations generated by our algorithms
are well-defined.

Corollary 2.4. Consider an instance of SBR with b even, c =
d = b/2, and m = 3kb for integer k. Up to � = 2k bulges,
{(i, j), . . . , (i+�−1, j−(�−1))}, can be packed into m columns.
Suppose A is blocked columnwise with each block-column of width
m (padding if necessary). Each block column holds 6k band par-
allelograms, which we will chase in 3 sets of 2k each. Consider
2 adjacent block columns. Each of the 3 parallelogram sets in the
left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
bulges can then be chased into each successive block column and
always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.

One of the motivations for SBR was that increasing c can attain
better performance since the (blocked) Householder updates may
use BLAS3 kernels. In our performance model, we explain this by
the higher arithmetic intensity of BLAS3 kernels (flops per byte)
on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
when working sets are small (eg when b is small). Our contribution
is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
as a c = d = 1 (Givens rotations) instance of SBR. Our blocking
can be thought of as a generalization of Kaufman’s blocking to the
d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
purely based on data locality and communication costs. Cor. 2.3
follows easily from Cor. 2.2, and quantifies how closely we can
pack bulges

Corollary 2.3. For one sweep of SBR with fixed parameters b > 1,
c ≥ 1, and d ≥ 1 satisfying forward progress,

• c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 2.
Given a set of m contiguous columns, we could fit at most
� = �(m + 2b − 2c − d) / (2b − c)� bulges.

• 2c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 1.
Given a set of m contiguous columns, we could fit at most
� = �(m + b − 2c − d) / (b − c)� bulges.

Cor. 2.4 pertains to an certain instance of SBR similar to our
algorithms in the following sections. We will use Cor. 2.4 to argue
that the Householder transformations generated by our algorithms
are well-defined.

Corollary 2.4. Consider an instance of SBR with b even, c =
d = b/2, and m = 3kb for integer k. Up to � = 2k bulges,
{(i, j), . . . , (i+�−1, j−(�−1))}, can be packed into m columns.
Suppose A is blocked columnwise with each block-column of width
m (padding if necessary). Each block column holds 6k band par-
allelograms, which we will chase in 3 sets of 2k each. Consider
2 adjacent block columns. Each of the 3 parallelogram sets in the
left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
bulges can then be chased into each successive block column and
always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.
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3. Algorithms and Analysis
3.1 Sequential Case
3.1.1 Algorithm
The communication-avoiding sequential algorithm, shown in Al-
gorithm 1, is based on the framework given in [? ]. At each sweep
i, we cut the remaining bandwidth bi in half by setting di = bi/2.
We also set ci = bi/2 which satisfies the ci + di ≤ bi constraint.
To make the analysis simpler for this successive halving approach,
we assume that the initial bandwidth b is a power of two.
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3. Algorithms and Analysis
3.1 Sequential Case
3.1.1 Algorithm
The communication-avoiding sequential algorithm, shown in Al-
gorithm 1, is based on the framework given in [? ]. At each sweep
i, we cut the remaining bandwidth bi in half by setting di = bi/2.
We also set ci = bi/2 which satisfies the ci + di ≤ bi constraint.
To make the analysis simpler for this successive halving approach,
we assume that the initial bandwidth b is a power of two.
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(b) The right-most bulge is
chased ` = 3 times.

One of the motivations for SBR was that increasing c can attain
better performance since the (blocked) Householder updates may
use BLAS3 kernels. In our performance model, we explain this by
the higher arithmetic intensity of BLAS3 kernels (flops per byte)
on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
when working sets are small (eg when b is small). Our contribution
is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
as a c = d = 1 (Givens rotations) instance of SBR. Our blocking
can be thought of as a generalization of Kaufman’s blocking to the
d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
purely based on data locality and communication costs. Cor. 2.3
follows easily from Cor. 2.2, and quantifies how closely we can
pack bulges

Corollary 2.3. For one sweep of SBR with fixed parameters b > 1,
c ≥ 1, and d ≥ 1 satisfying forward progress,

• c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 2.
Given a set of m contiguous columns, we could fit at most
� = �(m + 2b − 2c − d) / (2b − c)� bulges.

• 2c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 1.
Given a set of m contiguous columns, we could fit at most
� = �(m + b − 2c − d) / (b − c)� bulges.

Cor. 2.4 pertains to an certain instance of SBR similar to our
algorithms in the following sections. We will use Cor. 2.4 to argue
that the Householder transformations generated by our algorithms
are well-defined.

Corollary 2.4. Consider an instance of SBR with b even, c =
d = b/2, and m = 3kb for integer k. Up to � = 2k bulges,
{(i, j), . . . , (i+�−1, j−(�−1))}, can be packed into m columns.
Suppose A is blocked columnwise with each block-column of width
m (padding if necessary). Each block column holds 6k band par-
allelograms, which we will chase in 3 sets of 2k each. Consider
2 adjacent block columns. Each of the 3 parallelogram sets in the
left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
bulges can then be chased into each successive block column and
always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.

One of the motivations for SBR was that increasing c can attain
better performance since the (blocked) Householder updates may
use BLAS3 kernels. In our performance model, we explain this by
the higher arithmetic intensity of BLAS3 kernels (flops per byte)
on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
when working sets are small (eg when b is small). Our contribution
is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
as a c = d = 1 (Givens rotations) instance of SBR. Our blocking
can be thought of as a generalization of Kaufman’s blocking to the
d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
purely based on data locality and communication costs. Cor. 2.3
follows easily from Cor. 2.2, and quantifies how closely we can
pack bulges

Corollary 2.3. For one sweep of SBR with fixed parameters b > 1,
c ≥ 1, and d ≥ 1 satisfying forward progress,

• c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 2.
Given a set of m contiguous columns, we could fit at most
� = �(m + 2b − 2c − d) / (2b − c)� bulges.

• 2c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 1.
Given a set of m contiguous columns, we could fit at most
� = �(m + b − 2c − d) / (b − c)� bulges.

Cor. 2.4 pertains to an certain instance of SBR similar to our
algorithms in the following sections. We will use Cor. 2.4 to argue
that the Householder transformations generated by our algorithms
are well-defined.

Corollary 2.4. Consider an instance of SBR with b even, c =
d = b/2, and m = 3kb for integer k. Up to � = 2k bulges,
{(i, j), . . . , (i+�−1, j−(�−1))}, can be packed into m columns.
Suppose A is blocked columnwise with each block-column of width
m (padding if necessary). Each block column holds 6k band par-
allelograms, which we will chase in 3 sets of 2k each. Consider
2 adjacent block columns. Each of the 3 parallelogram sets in the
left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
bulges can then be chased into each successive block column and
always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.
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3. Algorithms and Analysis
3.1 Sequential Case
3.1.1 Algorithm
The communication-avoiding sequential algorithm, shown in Al-
gorithm 1, is based on the framework given in [? ]. At each sweep
i, we cut the remaining bandwidth bi in half by setting di = bi/2.
We also set ci = bi/2 which satisfies the ci + di ≤ bi constraint.
To make the analysis simpler for this successive halving approach,
we assume that the initial bandwidth b is a power of two.
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3. Algorithms and Analysis
3.1 Sequential Case
3.1.1 Algorithm
The communication-avoiding sequential algorithm, shown in Al-
gorithm 1, is based on the framework given in [? ]. At each sweep
i, we cut the remaining bandwidth bi in half by setting di = bi/2.
We also set ci = bi/2 which satisfies the ci + di ≤ bi constraint.
To make the analysis simpler for this successive halving approach,
we assume that the initial bandwidth b is a power of two.
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(c) The second bulge is
chased ` = 3 times.

Fig. 2. This figure demonstrates chasing a set of bulges. We store and operate on only the lower triangle
of the band matrix. The parameters shown are b = 8, c = 4, and d = 4; ω = 2 bulges are chased ` = 3 times
each. Only 2b` = 48 columns of the band are shown. The working bandwidth includes the diagonals which
contain bulges and triangular fill. Note that the triangular fill left behind by the first bulge does not cause
any increase in the working bandwidth as the second bulge is chased.

Table I. We compare previous sequential algorithms for tridiagonalization (for eigenvalues only) with our improvements,
for symmetric band matrices of n columns and b+1 subdiagonals on a machine with fast memory of size M . The table
assumes that nb � M and that 2 ≤ b ≤

√
M/3. The analysis for all algorithms is given in Section 4. In the fourth

and fifth rows, s is the number of sweeps performed and t ≤ s is the smallest sweep index such that the subsequent
sweeps can be performed in fast memory, or t = s otherwise.

Algorithm Flops Words Messages
LAPACK [Kaufman 2000] 4n2b O(n2b) O(n2b)

MH [Murata and Horikoshi 1975] 6n2b O(n2b) O
(

n2b
M

)
Improved MH 6n2b O

(
n2b3

M

)
O
(

n2b3

M2

)
SBR [Bischof et al. 2000b]

s∑
i=1

(
4di + 2

d2i
bi

)
n2 O

(
t∑

i=1

(
1 +

di

bi

)
n2

)
O

(
t∑

i=1

(
1 +

di

bi

)
n2

M

)
SBR (ci = di = bi/2) 5n2b O(n2t) O

(
n2t
M

)
CA-SBR 5n2b O

(
n2b2

M

)
O
(

n2b2

M2

)
50% (as long as a bulge-chasing procedure is used to prevent unnecessary fill). However, the
communication cost (and expected performance) has a much larger range.

Under the assumption above, the matrix does not fit in fast memory (otherwise, the
communication costs are the same for all algorithms: O(nb)). In the case that n < M (i.e.,
one or more diagonals fit in fast memory), when the bandwidth is reduced such that the
remaining band matrix fits in fast memory, the communication cost of remaining sweeps is
that of reading the band into fast memory once and writing the tridiagonal output.

Table I summarizes the computation and communication costs of various algorithms
for tridiagonalizing a band matrix (for computing eigenvalues only). Our new approach,
CA-SBR, improves the communication costs compared to the previous approaches. For
example, CA-SBR moves a factor of M/b fewer words than LAPACK or MH, which is at

least
√
M in the range of b considered, and near M for b = O(1). In the context of two-step

tridiagonalization of a dense matrix, CA-SBR is the only approach that always attains (or
beats) the lower bounds discussed in Section 2.5. See Section 4.2 for more discussion.

4.1.1. Alternative Algorithms. We first consider Kaufman’s algorithm [Kaufman 2000], which
is implemented in the current LAPACK reference code [Anderson et al. 1992], given in the
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first row of Table I. The algorithm uses Givens rotations and performs 4n2b flops. It is left-
looking and chases multiple single-element bulges in order to maximize the vector operation
length, but it does not limit the size of the working set to fit in fast memory. As a result,
the algorithm has to read (from slow memory) at least one of each pair of entries to be
updated by a Givens rotation. Thus, the data reuse is O(1) and the total number of words
transferred between fast and slow memory is proportional to the number of flops: O(n2b).
Since fine-grained data access occurs along both rows and columns, the latency cost is on
the same order as the bandwidth cost, assuming LAPACK’s column-major layout.

Next, we consider the Householder-based approach of Murata and Horikoshi [Murata
and Horikoshi 1975], given as MH in the second row of Table I. In this algorithm, each
column is eliminated all at once, and the bulge is chased completely off the band before the
next column is eliminated. Because of operations on the triangular fill, the number of flops
required increases to 6n2b compared to Givens-based algorithms. Since each bulge is chased
entirely off the band, the entire band must be read from slow memory for every column
eliminated, a total of O(n2b) words moved. Assuming column-major layout, the sequence of
bulge chases for each column (i.e., bulges (j, k) for fixed j) is executed on contiguous data,
and the latency cost is a factor of O(M) less than the bandwidth cost.

In order to reduce communication costs for the MH algorithm it is possible to apply one
of the optimizations described in Section 3: chasing multiple bulges. From Lemma 3.4, we
can chase O(M/b2) bulges at a time and maintain a working set which fits in fast memory.
This results in a reduction of both bandwidth and latency costs by a factor of O(M/b2).
We call this algorithm “Improved MH,” given in the third row of Table I.

Consider an algorithm within the SBR framework with parameters {(bi, ci, di), i =
1, 2, . . . , s}, which does not chase multiple bulges at a time (i.e., ωi = 1 for every i). This
corresponds to the fourth row of Table I. The flop count is given by [Bischof et al. 2000b,
Equation (3)] (and Lemma 4.6 below). Note that the approach of [Rajamanickam 2009]
allows the computational cost to be reduced to 4n2b for all parameter choices. Since the
SBR framework is right-looking, the trailing band must be read for each parallelogram elim-
inated. During the ith sweep, there are O(n/ci) parallelograms and each parallelogram is
chased O(n/bi) times. The amount of data accessed during one bulge chase is O(bi(ci +di))
words — for example, bi columns are accessed during the left update and each bulge occu-
pies ci + di rows. Thus, the number of words read during the ith sweep is O(n2(1 + di/ci)).
In the best case, the latency cost is a factor of M smaller than the bandwidth cost.

If we apply the successive halving approach (ci = di = bi/2) but do not chase multiple
bulges, then the costs of SBR simplify to O(n2t) words (where t ≤ log b is the smallest
sweep index such that n(bt + dt + 1) ≤M , or t = log b otherwise) and O(n2t/M) messages,
in the best case. These costs appear in the fourth row of Table I.

4.1.2. CA-SBR. The communication avoiding sequential algorithm, shown in Algorithm 1,
is based on the framework given in [Bischof et al. 2000b], using the successive halving
approach (see Section 3.3). Our main deviation from the original SBR framework is chasing
multiple bulges at a time, as described in Section 3.2. Recall that ωi denotes the number of
bulges chased at a time, and `i the number of times each bulge is chased, during sweep i.
We would like to maximize ωi so that for some `i ≥ 1, this working set fits in a fast memory
of size M words. We ignore the sparsity below the bthi subdiagonal by assuming each column
has bi + di + 1 nonzeros (i.e., the working bandwidth). It follows from Lemma 3.4 that we
would like to pick positive integers ωi and `i such that ωi is maximized and

((ωi − 1)(2bi − ci) + ci + di + bi`i)(bi + di + 1) ≤M. (1)

We use a successive halving approach, as mentioned above. That is, at each sweep i, we
cut the remaining bandwidth bi in half by setting di = bi/2. We also set ci = bi/2 (which
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satisfies Constraint 3.1). To simplify the analysis, we assume that the initial bandwidth
b = b1 is a power of two.

As in Lemma 3.4, when chasing a set of ωi bulges, we work right-to-left, chasing each
bulge `i = (3/2)ωi times in turn. In this way, after all bulges in the set are chased, the set
does not overlap the previous columns occupied, and the relative positions of the bulges are
maintained. This process is shown in Figure 2 and corresponds to line 9 in Algorithm 1.
Fixing `i in terms of ωi also has the benefit of decreasing the latency cost on successive
sweeps. While the constant ratio between ωi and `i simplifies theoretical analysis, these
parameters can be tuned independently in practice.

With these parameter choices and assumptions, inequality (1) simplifies, as given in the
following constraint.

Constraint 4.1. Assuming b and ω are even, c = d = b/2, ` = (3/2)ω, and b ≤√
M/3, then the number of bulges chased at a time must not exceed ω ≤ 4M/(9(b+ 1)2).

By satisfying Constraint 4.1, we ensure that the entire operation can be performed on
columns which all fit in fast memory simultaneously.

We include explicit memory operations within the algorithm in order to determine the
communication costs: writes imply moving data from fast memory to slow memory and
reads imply moving data from slow memory to fast memory.

Algorithm 1 Sequential CA-SBR

Require: initial bandwidth b ≤
√
M/3 is a power of 2

1: t = min{log b,
⌈
log n(b+1)

M

⌉
}

2: for i = 1 to t do

3: bi = b
2i−1 , ci = bi

2
, di = bi

2
, ωi = 2

⌊
2M

9(bi+1)2

⌋
, `i = 3

2
ωi

4: while not reached end of band do
5: create next set of ωi bulges
6: while not reached end of band do
7: write previous `ibi columns of band
8: read next `ibi columns of band
9: chase ωi bulges `i times each

10: end while
11: chase ωi bulges off the end of the band
12: end while
13: copy band into data structure with column height 3

2
bi+1

14: end for
15: if t < log b then
16: read remaining band into fast memory
17: reduce band to tridiagonal
18: write output to slow memory
19: end if

We omit the details of creating a set of bulges (line 5) and of chasing bulges at the end
of the band (line 11). Both the arithmetic and communication costs of creating ωi bulges
or chasing ωi bulges off the end of the band are dominated by that of chasing the ωi bulges
`i times each. Also, since neither operation occurs in the inner loop of the algorithm, they
contribute only lower-order terms to the costs of the entire algorithm.

The computation of t in line 1 determines the sweep (if any) after which the remaining
band fits entirely in fast memory. Note that if n > M , then the band will never fit in fast
memory and t = log b. If the band becomes small enough to fit in fast memory, then the
algorithm will stop the main loop (lines 2–14) and fall to the clean-up code in lines 15–19
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which simply reads the band into fast memory, reduces to tridiagonal form, and writes the
result back to slow memory.

Arithmetic cost. In order to count the number of flops required by Algorithm 1, we first
establish two lemmas related to the cost of applying Householder transformations.

Lemma 4.2. Applying a Householder transformation from the left, House(u) · A, costs
no more than 4hc+h−c flops, where h is the number of nonzeros in u and A has c columns.
Equivalently, applying the transformation from the right, A ·House(u), costs no more than
4hr + h− r flops if A has r rows.

Proof. The first statement is verified by counting the operations in A := A −
(τu)

(
uTA

)
. The second statement is verified by transposing the first transformation.

Lemma 4.3. Applying a Householder transformation symmetrically to an n-by-n sym-
metric matrix A, House(u) ·A ·House(u)T , costs no more than (4h− 1)n+ 5h flops, where
h is the number of nonzeros in u.

Proof. We perform three steps: y := A(τu), v := y−(1/2)
(
yTu

)
u, and A := A−uvT −

vuT . The first step costs (2h− 1)n+ h operations, the second 4h− 1, and the third 2nh, if
we exploit symmetry.

Given these lemmas, we can compute the arithmetic cost of a single bulge chase.

Lemma 4.4. A single bulge chase costs 8bcd+4cd2+O(bc) operations. Creating a bulge,
or clearing a bulge (off the end of the band), is less expensive.

Proof. We refer to the four operations depicted in Figure 1. Let 1 ≤ m ≤ c index
the (unblocked) Householder transformations that eliminate the parallelogram in the QR
region. Transformation m is applied from the left to c −m columns in the QR region and
b − c columns in the PRE region, from the right to b − (c −m) rows in the POST region,
and symmetrically to a (d + c)-by-(d + c) symmetric matrix in the SYM region. Applying
Lemmas 4.2 and 4.3, transformation m performs 8bd + 4d2 + O(b) flops, and there are c
transformations. Creating a bulge is less expensive because the PRE region includes only
b − c − d columns. As a result, transformation m does fewer flops. Clearing a bulge is less
expensive because there are fewer rows in the POST region.

See [Ballard et al. 2012, Section 5.3] for a discussion of different approaches to chasing
individual bulges and their implications on performance.

We can also count the number of bulge chases that occur during each sweep.

Lemma 4.5. The number of bulges chased during a sweep with parameters n, b, c, and
d is n2/(2bc) +O(n/b).

Proof. For each parallelogram eliminated, the bulge must be chased the length of the
trailing band, in increments of b columns. Thus, the total number of bulge chases during a

sweep is
∑n/c

j=1(n− jc)/b = n2/(2bc) +O(n/b).

Lemmas 4.4 and 4.5 together imply the following fact, which agrees with [Bischof et al.
2000b, Equation (3)].

Lemma 4.6. The arithmetic cost of eliminating d diagonals from a matrix with band-
width b using SBR is

(
4d+ 2d2/b

)
n2 +O(n2).

The order of operations specified by the algorithm does not affect the arithmetic count,
provided Constraints 3.1 and 3.2 are satisfied. Given the cost of the ith sweep specified by
Lemma 4.6, since di = bi/2 and

∑
i di = b− 1, the arithmetic cost of Algorithm 1 (ignoring
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lower-order terms) is

log b∑
i=1

(
4di + 2

d2i
bi

)
n2 = 5n2b.

Bandwidth cost. In determining the communication costs of Algorithm 1, we must con-
sider two cases. If n > M , then log b < dlog(n(b+ 1)/M)e and the main loop (lines 2–14)
will be executed log b times, reducing the band to tridiagonal. However, if n < M , then at
some point the bandwidth will become small enough such that the entire band fits in fast
memory. At this point, the algorithm reduces to lines 15–19 and the only communication
required to finish the reduction is that of reading the band into fast memory and writing
the tridiagonal output back to slow memory for a cost of O(nbt+1) words.

We now consider the ith sweep, where we assume the band is too large to fit in fast
memory. The dominant communication cost is in the innermost loop (lines 6–10). The
number of words in each column is (3/2)bi, so the bandwidth cost of one iteration of the
inner loop is 3`ib

2
i = O(M) words. The inner loop is executed O(n/(`ibi)) times for each set

of bulges, and there are O(n/(ciωi)) sets of bulges during the sweep. Thus, the bandwidth
cost of one sweep is O(n2b2i /M) words.

The bandwidth cost (i.e., number of words moved) of Algorithm 1 is then

t∑
i=1

O

(
n2b2i
M

)
+O(nbt+1) = O

(
n2b2

M
+ nb

)
.

Latency cost. We will assume the band matrix is stored in LAPACK symmetric band
storage format (column-major with column height equal to the working bandwidth) so that
any block of columns of the band will be stored contiguously in slow memory. After each
set of subdiagonals is annihilated from a column block, the algorithm packs the remaining
diagonals into a smaller data structure (see line 13) to maintain a packed column-major
layout for all successive sweeps. This increases the memory footprint by no more than a
factor of two and can also be done in place, and it adds only lower-order terms to the
bandwidth and latency costs.

As in the previous section, if the band becomes small enough to fit in fast memory, then
the communication costs of completing the algorithm are reduced to reading the band and
writing the tridiagonal output. In this case, the latency cost is 2 messages. When the band
is too large to fit in fast memory, the dominant latency cost is that of the innermost loop.
Since consecutive columns are stored contiguously, the latency cost per iteration of the
innermost loop is 2 messages. As argued above, the inner loop is executed O(n/(`ibi)) times
for each set of bulges, and there are O(n/(ciωi)) sets of bulges during the sweep. Thus, the
latency cost of one sweep is O(n2b2i /M

2) messages.
The latency cost (i.e., number of messages moved) of Algorithm 1 is then

t∑
i=1

O

(
n2b2i
M2

)
+O(1) = O

(
n2b2

M2
+ 1

)
.

4.2. Computing Eigenvalues and Eigenvectors

When only eigenvalues are desired, the orthogonal similarity transformations that reduce
the band matrix to tridiagonal form may be discarded. However, when eigenvectors are
desired, these transformations must be used to reconstruct the eigenvectors QV of the band
matrix from the eigenvectors V of the tridiagonal matrix.

Compared to Section 4.1, the main difference between computing eigenvalues and addi-
tionally eigenvectors is that the arithmetic cost of computing QV increases with the number
of sweeps taken in the band reduction. While the arithmetic cost of the band reduction in
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Table II. We compare previous sequential algorithms for tridiagonalization (for eigen-
values and eigenvectors) with our improvements, for symmetric band matrices of n
columns and b+1 subdiagonals on a machine with fast memory of size M . We include
the cost of the back transformation (but not the cost of the tridiagonal eigendecompo-

sition). The table assumes that nb�M and that 2 ≤ b ≤
√
M/3. The two terms in

the communication costs correspond to the band reduction and back transformation,
respectively. In the last row, t = O(min{log b, log(nb/M)}).

Algorithm Flops Words Messages

LAPACK [Kaufman 2000] 2n3 O(n2b + n3) O
(
n2b + n3

M

)
Improved LAPACK 2n3 O

(
n2b + n3

√
M

)
O
(
n2b + n3

M

)
BLS [Bischof et al. 1994] 2n3 O

(
n2b + n3

√
M

)
O
(

n2b
M

+ n3

M

)
Improved BLS 2n3 O

(
n2b3

M
+ n3

√
M

)
O
(

n2b3

M2 + n3

M3/2

)
CA-SBR tn3 O

(
n2b√
M

+ tn3
√
M

)
O
(

tn2

M
+ tn3

M3/2

)
Section 4.1 ranges from 4n2b to 6n2b, that of the back-transformation ranges from 2n3 up
to n3 log b.

The orthogonal matrix Q can be constructed explicitly by applying the updates from
the band reduction to an n-by-n identity matrix. Some flops may be saved when starting
from the identity matrix (compared to applying them to a dense matrix, see e.g., [Kaufman
2000]), but the entries fill in quickly after one sweep, and we will ignore this savings in
our analysis. Then, the arithmetic cost of computing QV given V is the cost of a matrix
multiplication, 2n3 flops. However, the cost of this matrix multiplication can be avoided
by storing Q implicitly as a set of Householder vectors and applying them to V . While
this choice does not affect our theoretical analysis of CA-SBR, it should be considered in
practice. Storing the Householder information for each sweep requires extra memory for at
most n2/2 entries per sweep.

Table II shows the computation and communication costs for various approaches to tridi-
agonalizing a band matrix (for computing both eigenvalues and eigenvectors).

Recall that one context of this work is two-step tridiagonalization; the communication
lower bounds referenced in Section 2.5 apply to the first step (full-to-banded), but not the
second step. However, note that a lower bound for part of the algorithm gives a valid lower
bound for the whole algorithm. So, we will compare the approaches in Table II (the second

step) and see which attain the lower bounds of Ω(n3/
√
M) words moved and Ω(n3/M3/2)

messages sent; both bounds are attainable by the first step by setting b = Θ(
√
M). We

claim that only CA-SBR attains these expected lower bounds for all ranges of parameters
we consider, within a factor of t = O(logM).

Clearly the costs of LAPACK asymptotically exceed the lower bounds. If n � M , the
bandwidth costs of the band reduction for Improved LAPACK, BLS, and Improved BLS
asymptotically exceed the lower bound. If n�M , then the bandwidth costs of those three
approaches match the lower bound, and the latency cost of Improved BLS also matches the
lower bound.

Fact 4.7. The cost of applying all the updates from a single band reduction sweep to a
dense n-by-n matrix is 2d

bn
3, ignoring lower-order terms.

Proof. From Lemma 4.5, there are n2/(2bc) bulge chases, each consisting of c House-
holder vectors of length d + 1. From Lemma 4.2, the cost of applying each House-
holder transformation to an n-by-n matrix is 4(d + 1)n, so the total arithmetic cost is
4dn · (n2/(2b)) = 2(d/b)n3, ignoring lower-order terms.

4.2.1. Alternative Algorithms. As mentioned in Section 4.1.1, the current LAPACK reference
code for band reduction (sbtrd) is based on [Kaufman 2000]. When eigenvectors are re-
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quested, Q can be either explicitly formed or applied to an input matrix. The LAPACK
routine for solving the eigenproblem for a band matrix (sbevd) forms Q explicitly and pre-
multiplies V by it. The arithmetic cost of forming Q is approximately (4/3)n3 [Kaufman
2000], and the cost of the matrix multiplication is 2n3. In Table II, we do not count the cost
of computing Q, because the Givens rotations can be stored, reordered, and later applied
to V for a total of 2n3 flops, although LAPACK does not offer this functionality.

The communication cost of the band reduction is analyzed in Section 4.1.1. Assuming the
stored Givens rotations are applied to the rows of V one at a time (which is how they are
accumulated in Q in LAPACK), at least one of the rows must be read from slow memory,
and the data reuse is O(1). This implies that the bandwidth cost of the band reduction,
which is O(n2b), is dominated by the cost of the orthogonal updates. In the best case, if V
is stored in row-major order and n > M , the latency cost is O(n3/M).

In [Bischof et al. 1994], the authors consider an alternative approach for computing both
eigenvalues and eigenvectors of a band matrix, in the context of a 2-step reduction of a
full symmetric matrix. The band reduction scheme follows the algorithm of [Murata and
Horikoshi 1975] consisting of one sweep (i.e., d = b − 1 and c = 1). The key idea from
[Bischof et al. 1994] is to store all of the Householder vectors and, instead of applying them
to V in exactly the reverse order that they were computed, to use a reordering technique
that respects the dependency pattern. This reordering allows for the orthogonal updates
to be blocked. See Figure 2 in [Bischof et al. 1994] or Figure 2 in [Auckenthaler et al.
2011a] for illustrations of this technique. Since the band reduction is performed in one
sweep, the arithmetic cost is 2n3. Using the reordering technique with a blocking factor
of size Θ(

√
M), the communication cost of the orthogonal updates is O(n3/

√
M). While

the orthogonal updates are performed efficiently, the data reuse obtained during the band
reduction is O(1), as explained in Section 4.1.1. Thus, the bandwidth cost of the band

reduction is O(n2b) which dominates the total bandwidth cost for b� n/
√
M . In the best

case, the latency cost of the band reduction is O(n2b/M). In order to determine the latency
cost of the orthogonal updates, we assume the matrix V is stored in column-major order
and the Householder vectors are written to memory in the order they are computed. Then
every application of a block of Householder vectors involves O(

√
M) messages, and so the

latency cost is a factor of O(
√
M) less than the bandwidth cost. We refer to this as BLS,

given in the third row of Table II.
Note that this same reordering optimization from [Bischof et al. 1994] can be used to

improve the LAPACK algorithm. That is, the Givens rotations may be reordered and applied
to V in a blocked fashion. For examples of implementations for applying blocks of Givens
rotations, see [Rajamanickam 2009; Van Zee et al. 2013]. If the right block size is chosen,

the bandwidth cost of the orthogonal updates can be reduced to O(n3/
√
M). We refer to

this algorithm as “Improved LAPACK,” given in the second row of Table II. Because of
better alternatives, we do not discuss improvements in the latency cost.

We can apply two optimizations to reduce the communication costs of the BLS algorithm.
First, as noted in Section 4.1.1, when b�

√
M , the communication costs of the band reduc-

tion can be improved by chasing O(M/b2) bulges at a time, reducing both the bandwidth
and latency costs by a factor of O(M/b2).

Second, we can reduce the latency cost in performing the orthogonal updates by stor-
ing the eigenvector matrix V in a block-contiguous layout with block size C-by-C with
C = Θ(

√
M) and by performing a data layout transformation of the temporary data struc-

ture of Householder vectors. In order to minimize bandwidth cost, the Householder vectors
corresponding to eliminating Θ(

√
M) columns and chasing their respective bulges off the

band should be temporarily stored before applying them to Q.
In order to analyze the data layout transformation, we need to consider the temporary

storage of Householder vectors. If we let H be the temporary storage matrix, then we can
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store each Householder vector associated with the same eliminated column of A in the same
column of H. Further, each vector can occupy the rows of H corresponding to the rows of
A it updated; in this way, H is an n-by-n lower triangular matrix. If one bulge is chased at
a time and Householder vectors are written to H in the order they are computed, then H
will have a column-major data layout. However, in order to improve data reuse in applying
the vectors to V , we want to apply parallelograms of vectors at a time, so we need those
parallelograms to be stored contiguously. The data layout transformation is equivalent to
transforming a matrix in column-major layout to a block-contiguous layout. By applying (for
example) the Separate function given as Algorithm 3 in [Ballard et al. 2013] to each panel

of width Θ(
√
M) a logarithmic number of times, we can convert H from column-major to

Θ(
√
M)-by-Θ(

√
M) block-contiguous layout with total bandwidth cost O(n2 log(n/

√
M))

and total latency cost O((n2/M) log(n/
√
M)), which are lower-order terms for n�

√
M .

Note that these two optimizations cannot both be applied straightforwardly to the ap-
proach of [Bischof et al. 1994], as H will not be written in column-major order when multiple
bulges are chased at a time. We claim that a more complicated data layout transformation
is possible in the case that multiple bulges are chased at a time. This costs of this algorithm
are given as “Improved BLS” in the fourth row of Table II. We also claim it is possible
to apply the second optimization to the LAPACK algorithm, though the order in which
the Givens rotations are computed and the method for temporarily storing them is more
complicated.

4.2.2. CA-SBR. Algorithm 2 is a modification of Algorithm 1 which includes the explicit
formation of the matrix Q, which we store in a block-contiguous layout with C-by-C blocks.
An important difference between the two algorithms is the definition of ωi, the number of
bulges chased at a time. In Algorithm 1, ωi is maximized under the constraint that the
working set of data to chase ωi bulges `i times each remains of size O(M). In Algorithm 2,
ωi is further limited so that the working set of data while applying the Householder updates
to a block row of the intermediate Q matrix remains of size O(M). This working set of data
now consists of three components: a subset of A, Householder transformations (temporarily
stored in a data structure H), and blocks of Q. We will pick ωi to be approximately the
square root of the previous choice so that each of these three components occupies no more
than a third of fast memory. Reducing ωi results in more communication cost during the
band reduction, but we will see that this cost is always dominated by that of the orthogonal
updates. One advantage of this approach is that, assuming the band is too large to fit into
fast memory, Householder information is never written to slow memory: it is computed in
fast memory, all updates are applied, and then the Householder entries are discarded.

In order to validate the communication pattern described in Algorithm 2, we verify three
facts: 2`ibi columns of A fit in one third of fast memory, H fits in one third of fast memory,
and each iteration in the OrthogonalUpdates function involves at most 3 blocks of
Q, which fit in one third of fast memory. We will show that this is possible when ωi ≤
2
√
M/(9(bi+1)), `i = (3/2)ωi, C =

√
M/3, and the assumption from above that b ≤

√
M/3.

Since each column of the band has at most (3/2)bi + 1 entries, the total number of
words in 2`ibi columns is ωi((9/2)b2i + 3bi) < M/3. The H data structure needs to store
Householder information corresponding to chasing ωi bulges `i times each, and each bulge
consists of ci(di + 1) entries. Thus H occupies (3/8)ω2

i (b2i + 2bi) < M/3 words. Finally,
we must also verify that the number of columns of Q updated by the ωi`i bulge chases
(which correspond to the rows of the band that are updated) cannot span more than 3
blocks of Q (i.e., one third of fast memory). By Lemma 3.3, the number of columns is

(3/2)ωi(bi + 1)− bi/2 ≤ 2
√
M/3; since C =

√
M/3, these columns cannot span more than

3 blocks.

ACM Journal Name, Vol. X, No. Y, Article Z, Publication date: March 2013.



Z:16 Ballard, Demmel, Knight

Note that t is defined differently here than in Section 4.1.2. Here, since we will eliminate
all subdiagonals at once, we need twice the working bandwidth to fit into fast memory.

Algorithm 2 Sequential CA-SBR with orthogonal updates

Require: initial bandwidth b ≤
√
M/3 is a power of 2, Q = In is stored in contiguous C-by-C

blocks, H is a temporary data structure of size O(M) which resides in fast memory

1: t = min{log b,
⌈
log 2n(b+1)

M

⌉
}

2: for i = 1 to t do

3: bi = b
2i−1 , ci = bi

2
, di = bi

2
, ωi = 2

⌊ √
M

9(bi+1)

⌋
, `i = 3

2
ωi

4: while not reached end of band do
5: create next set of ωi bulges , storing Householder entries in H
6: OrthogonalUpdates(Q,H)
7: while not reached end of band do
8: write previous `ibi columns of band
9: read next `ibi columns of band
10: chase ωi bulges `i times each , storing Householder entries in H
11: OrthogonalUpdates(Q,H)
12: end while
13: chase ωi bulges off the end of the band , storing Householder entries in H
14: OrthogonalUpdates(Q,H)
15: end while
16: copy band into data structure with column height 3

2
bi+1

17: end for
18: if t < log b then
19: read remaining band into fast memory
20: reduce band to tridiagonal in one sweep, updating Q with improved BLS algorithm
21: write output to slow memory
22: end if

23: function OrthogonalUpdates(Q,H)
24: for i = 1 to n

C
do

25: read at most 3 blocks from ith block column of Q into fast memory
26: apply Householder updates stored in H to blocks of Q
27: write blocks of Q back to slow memory
28: end for
29: end function

Arithmetic cost. From Lemma 4.7, the arithmetic cost of the orthogonal updates is given
by 2n3

∑t
i=1 di/bi, where t is the number of sweeps, and the cost of the band reduction is

always a lower-order term. By the definition of t and the fact that di = bi/2, the arithmetic
cost is then n3 min{log b, dlog(2n(b+ 1)/M)e}, ignoring lower-order terms.

Bandwidth cost. The bandwidth cost can be computed in a similar way to Section 4.1.2,
though ωi is defined slightly differently. The dominant communication cost is the call to
the function OrthogonalUpdates within the innermost loop (lines 7-12). During the ith

sweep, the number of sets of ωi bulges is n/(ciωi), and for each set, the innermost loop
is executed O(n/(`ibi)) times. Since H resides in fast memory, the bandwidth cost of the
function OrthogonalUpdates is that of reading and writing the row panels of the Q
matrix: O(nC) words. Thus, the total bandwidth cost of Algorithm 2 is

t∑
i=0

O

(
n3√
M

)
= O

(
tn3√
M

)
.
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Table III. We compare previous parallel algorithms for tridiagonalization (for eigen-
values only) with our improvements, for symmetric band matrices of n columns
and b+1 subdiagonals on a machine with p processors. The first row assumes that
p ≤ n/b, and the second row assumes p ≤ n/(3b). The asymptotic arithmetic and
communication costs are determined along the critical path.

Algorithm Flops Words Messages

Lang [Lang 1993; Auckenthaler 2012] O
(

n2b
p

)
O(nb) O(n)

CA-SBR O
(

n2b
p

)
O(nb) O(p log b)

Note that due to the change in definition of ωi, the bandwidth cost of the band reduction
is increased from O(n2b2/M) (from Section 4.1.2) to O(n2b/

√
M), but this higher cost is

still dominated by that of the orthogonal updates.
In the case that dlog(2n(b+ 1)/M)e < log b, the final step of the algorithm is to read the

entire band into memory and reduce all the remaining subdiagonals at once, updating Q
using the second technique of improving the BLS algorithm (i.e., transforming the column-
major H matrix to block-contiguous layout). In this case, the bandwidth cost of reading A

is O(nb), and the cost of the orthogonal updates is O(n3/
√
M) as explained above. Both of

these are lower-order terms.

Latency cost. The latency cost is also dominated by that of the orthogonal updates. Since
Q is stored in C-by-C contiguous blocks, the latency cost of the function OrthogonalUp-
dates is O(n/C). Thus, the latency cost of Algorithm 2 simplifies to O(tn3/M3/2).

Like the bandwidth cost, the latency cost associated with the band reduction is increased
by the choice of ωi, but this higher cost of O(tn2/M) is still dominated by that of the
orthogonal updates. In the case that dlog(nb/M)e < log b, the final step of the algorithm
using the improved BLS technique incurs a latency cost which is also a lower-order term.

5. PARALLEL BAND TRIDIAGONALIZATION ALGORITHMS

Recall our distributed-memory parallel model, where we have p processors connected over a
network. Again, we will first discuss the case of computing eigenvalues only and then extend
to the case of computing both eigenvalues and eigenvectors. The main improvement of our
new algorithm over previous approaches is a reduction in latency cost, both in terms of the
band reduction and the back-transformation phase (when eigenvectors are desired).

We assume that b ≤ n/(3p), where p is the number of processors involved in the band
reduction. This is a reasonable assumption in the context of two-step tridiagonalization, in
order to minimize the latency cost in the first step. For larger bandwidths, one may use
fewer processors on the first sweep(s), or have multiple processors participate in a single
bulge chase. The latter approach may incur a higher communication cost — see [Lang 1993].

5.1. Eigenvalues Only

In this section we concern ourselves with the case when only eigenvalues are desired, so
the orthogonal updates may be discarded after applying them to the band. We collect the
results from the analyses in Sections 5.1.1-5.1.2 in Table III.

5.1.1. Alternate approaches. The ‘conventional’ distributed memory band tridiagonalization
algorithm was introduced in [Lang 1993], and has been extended several times. This is a
parallelization of the MH algorithm, discussed in Section 4.1.1, a one-sweep band reduction
algorithm (i.e., d = b− 1 and c = 1). We will refer to this as Lang’s algorithm.

For brevity, we will not present this algorithm and its variants, but instead refer the reader
to the detailed complexity analysis (and performance modeling) in [Auckenthaler 2012]
(summarized in the papers [Auckenthaler et al. 2011a] and [Auckenthaler et al. 2011b]). We
present their complexity results in asymptotic notation; the hidden constant factors vary
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depending on the optimizations applied, including ‘logical blocking,’ which eliminates a fac-
tor of 2 idle time along the critical path, and using a cyclic layout, which helps alleviate load
imbalance between processors. Along the critical path, their algorithm performs O(n2b/p)
flops and moves O(nb) words. Because there is a communication step for every column in
the band, the latency cost is O(n) messages.

Unless multiple bulges are chased at a time, the latency cost of O(n) cannot be asymptot-
ically reduced. That is, if a message is sent along the critical path for every parallelogram
annihilated, then the last sweep, which has one parallelogram for each column, will incur
O(n) latency cost.

5.1.2. CA-SBR. The parallel CA-SBR algorithm begins with a similar data layout as Lang’s
algorithm. Each of the p processors (indexed 0 to p− 1) owns a contiguous set of C = n/p
columns of the lower half of the symmetric band. We use a similar successive-halving and
multiple-bulge-chasing approach to the sequential CA-SBR algorithm. During each sweep,
the number of columns per processor stays fixed at C = n/p. We assume each of the p
processors has Ω(nb/p) words of memory available, so that the band A can be stored across
the machine. To simplify the presentation, we assume that 3bp divides n, and that b is a
power of 2. This implies that p ≤ n/(3b), which is our maximum parallelism. These constant
factors will not affect our asymptotic analysis.

Roughly, the parallel algorithm proceeds as each processor chases bulges through its C
(local) columns and into the C columns of its right neighbor, and then passes the second set
of columns to its right neighbor. This way, each of the p processors accesses only O(nb/p)
of A rather than streaming through the entire band. In the algorithm we present below,
each processor is active on every other step; we can eliminate this idle time by using logical
blocking (as in [Lang 1993]); we ignore this factor of 2 savings for the purposes of our
asymptotic analysis.

At the high level, there are four kernels: create bulges, pass bulges, clear bulges, and
create and clear bulges. The create bulges kernel eliminates ωi parallelograms (each with
ci columns and di diagonals) from the local set of C columns of A and chases the resulting
bulges `i times (on average3) into the right neighbor’s set of C columns. The pass bulges
kernel chases ωi bulges (created by the left neighbor) from the local set `i times into the right
neighbor’s set. The create and clear bulges and clear bulges kernels are only executed by
the last processor4 and are analogous to create bulges and pass bulges, except the ‘second
set of columns’ is off the end of the band. Both create bulges and pass bulges require 2C
columns to pass information from one processor’s columns to the next: the left set of C
columns is owned by the processor invoking the kernel, and the right set is owned by the
right neighbor. The create and clear bulges and clear bulges kernels require only the last C
columns of the band (its local set).

At any time, a processor will have access to and update only its own C columns and the C
columns from its right neighbor. For example, the parallel algorithm begins with processor
1 sending its columns to processor 0. After processor 0 executes the create bulges kernel,
it sends the updated 2nd set of C columns (with bulges) back to processor 1. Processor 1
must then also receive processor 2’s C columns in order to execute the pass bulges kernel.
The parallel algorithm ends (on sweep i = log b) with processor p− 1 receiving C columns
from the left, clearing all bulges, and finally eliminating the last subdiagonal of its local
block (via create and clear bulges).

In order for the pass bulges kernel to pass the bulges into the right neighbor’s column
block, and for the bulges to retain their respective positions relative to the column blocks,

3Note that some bulges may need to be chased up to 2`i times, some less.
4Note that processor p − 2 may chase some bulges (partially or completely) off the end of the band when
invoking pass bulges and create bulges, depending on the number of columns owned by processor p− 1 and
the current bandwidth.
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we set `i = C/bi, which is an integer given the assumptions above. Recall that a bulge chase
advances a bulge exactly bi columns.

Our constraint on ωi, the maximum number of bulges that fits in C = n/p columns, is
given by Lemma 3.4:

(ωi − 1)(2bi − ci) + ci + di ≤ C.
A little more care must be taken when creating bulges to ensure that they do not cross
processor boundaries (adjacent sets of C columns). Consulting Lemma 3.3, for the successive
halving approach, we arrive at the following lemma.

Lemma 5.1. Assuming b and ω are even, c = d = b/2, and 3b divides C, then we can
create and chase ω = 2C/(3b) bulges at a time, and chasing them ` = C/b times each
advances them to the next set of C columns.

As in the sequential case, we fix the parameters to simplify the asymptotic analysis; in
practice, the parameters (including the number of processors p′ ≤ p used and the number
of columns C a processor owns) should be tuned independently.

Algorithm 3 Parallel CASBR

Require: 3bp divides n, b is a power of 2, processor ranks are between 0 and p− 1, each processor
owns C = n

p
columns of A.

1: for i = 1 to log b do
2: bi = b

2i−1 , ci = bi
2

, di = bi
2

, ωi = 2C
3bi

, `i = 3
2
ωi.

3: if myrank > 0 then
4: send left: block of C columns
5: end if
6: for j = 1 to 3 ·myrank do
7: receive from left: block of C columns (includes bulges)
8: if myrank = p− 1 then
9: clear bulges
10: else
11: receive right: block of C columns
12: pass bulges
13: send right: block of C columns (includes bulges)
14: end if
15: if j < 3 ·myrank then
16: send left: block of C columns
17: end if
18: end for
19: for j = 1 to 3 do
20: if myrank = p− 1 then
21: create and clear bulges
22: else
23: receive right: block of C columns
24: create bulges
25: send right: block of C columns (includes bulges)
26: end if
27: end for
28: end for

We analyze the arithmetic, bandwidth, and latency costs along the critical path of the
algorithm. That is, we follow the progress of the first ω1 bulges from processor 0 to processor
p − 2, at which point (exactly) one of processors p − 2 and p − 1 is active chasing and/or
clearing bulges on every remaining step of every sweep.
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Arithmetic cost. From Lemma 4.4, the arithmetic cost of chasing one bulge (a single hop),
with parameters b, c, and d, is bounded above by 8bcd+ 4cd2 +O(bc) flops, while the cost
of creating a bulge and the cost of chasing a bulge partially or completely off the band are
less. For our choices b/2i = bi/2 = ci = di, this cost is (5/2)b3i flops.

Every kernel call involves at most ωi bulges; the calls to create bulges, pass bulges,
clear bulges, and create and clear bulges costs each chase the bulges about `i times, so
each kernel invocation costs about ωi`i(5b

3
i /2) = O(n2bi/p

2) flops. Following the critical
path, there are (fewer than) p kernel invocations while the pipeline fills. At this point, pro-
cessors p− 2 and p− 1 are active for the remainder of the execution, each invoking a kernel
on alternating steps. There are 3p steps (iterations of the inner two for-loops) per sweep,
each with one kernel invocation (along the critical path). Altogether, this is

O

(
n2b1
p

)
+

log b∑
i=1

O

(
n2bi
p

)
= O

(
n2b

p

)
flops. The hidden leading constant is about 20; a cyclic layout and logical blocking as in
[Lang 1993] can be applied here to reduce this constant to between 5 and 10 (note these
same strategies reduced the corresponding constant in Lang’s algorithm’s arithmetic cost
from 24 to between 6 and 12).

Bandwidth cost. Every message in the algorithm consists of C columns of the band; be-
cause of bulges and triangular fill stored below the bthi subdiagonal, each message (during
the ith sweep) has size (at most) C(3bi/2+1) = O(nbi/p) words. Following the critical path
as before, we have the upper bound of

O (nb1) +

log b∑
i=1

O (nbi) = O (nb)

words moved.

Latency cost. The latency cost analysis is similar to the bandwidth cost analysis, replac-
ing the O(nbi) terms by O(1); in total, we have O(p log b) messages. This is asymptot-
ically smaller than the O(n) messages that Lang’s algorithm sends: we save a factor of
O(n/(p log b)) messages.

5.2. Eigenvalues and Eigenvectors

Recall our three steps: first, tridiagonalize A = QTQT ; second, compute the eigendecom-
position T = V ΛV T with an efficient algorithm; finally, back-transform the matrix V by
computing QV . We may either store Q implicitly as a collection of Householder vectors,
and apply it using a blocked approach, or compute Q explicitly by applying the orthogonal
updates (from the band reduction) to an identity matrix, and then compute QV with a ma-
trix multiplication. As in the sequential case, the computation and communication involved
in constructing and/or applying Q dominates the costs of the band reduction.

We assume V is distributed in a 2D blocked fashion to all p processors, and that the
bandwidth b of A is (at most) 1/3 of the width of a block row of V , i.e., b ≤ n/(3

√
p).

This means that we will use only
√
p of the p available processors to perform the band

reduction, and all p for the back-transformation. So, we must assume each processor has
Ω(n2/p) words of memory.

We collect the results from the analyses in Sections 5.2.1-5.2.2 in Table IV. Under
our assumptions, for both algorithms, the arithmetic and bandwidth costs of the back-
transformation always dominate those of the band reduction. The asymptotic arithmetic
costs decrease linearly (in p) as expected. The first step of two-step tridiagonalization can
attain the communication lower bounds for parallel dense linear algebra (without extra
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Table IV. We compare previous parallel algorithms for tridiagonalization (for eigenvalues and eigen-
vectors) with our improvements, for symmetric band matrices of n columns and b + 1 subdiagonals
on a machine with p processors. We include the cost of the back transformation (but not the cost of
the tridiagonal eigendecomposition). The first row assumes

√
p ≤ n/b, and the second row assumes√

p ≤ n/(3b). The asymptotic arithmetic and communication costs are determined along the criti-
cal path. The two terms in each cost correspond to the band reduction and the back transformation,
respectively.

Algorithm Flops Words Messages

Lang [Auckenthaler 2012] O
(

n2b√
p

+ n3

p

)
O
(
nb + n2

√
p

)
O
(
n + n

b

)
CA-SBR O

(
n2b√

p
+ n3

p
log b

)
O
(
nb + n2

√
p

log b
)

O(
√
p log b +

√
p log b)

memory), i.e., Ω(n2/
√
p) words moved and Ω(

√
p) messages, if b = Θ(n/

√
p). Asymptoti-

cally, both algorithms attain the bandwidth lower bound, up to a factor of Θ(log(n/
√
p))

in the case of CA-SBR. However, only CA-SBR attains the latency lower bound of Ω(
√
p),

again up to a factor of Θ(log(n/
√
p)).

5.2.1. Alternate Approaches. The approach in [Auckenthaler et al. 2011a] stores Q implicitly
(as a sequence of Householder transformations) and then applies Q to V in a blocked
fashion. The authors give three algorithms to compute QV , with different parallel layouts
of the matrix V — we consider only their best approach, based on a 2D layout which is
dynamically rebalanced. Before computing QV , we assume each processor owns a (n/

√
p)-

by-(n/
√
p) block of V . Again, we refer the reader to the detailed analysis in [Auckenthaler

2012]. Along the critical path, the additional costs for the back-transformation are O(n3/p)
flops, O(n2/

√
p) words moved, and O(n/b) messages.

5.2.2. CA-SBR. As in the sequential case (Section 4.2.2), we construct Q explicitly rather
than storing it implicitly. The extra cost of the matrix multiplication QV is dominated
by the cost of constructing Q and thus will not affect our asymptotic analysis. Again,
in practice, this cost can be avoided by storing and applying Q to V as a sequence of
Householder transformations.

By the assumption
√
p ≤ n/(3b), we can involve all

√
p processors in each processor row

in a band reduction. Since the arithmetic cost for the band reduction is a lower-order term,
we can afford to perform the band reduction

√
p times redundantly (or once, but only on

a subset of
√
p processors). We distribute the band A to each row of the given

√
p-by-

√
p

processor grid; each row performs the band reduction once. Note that each processor owns
C = n/

√
p columns of A, rather than n/p (as before).

We use Algorithm 4, a modification of Algorithm 3, which simultaneously computes the
band reduction and the n-by-n matrix Q. That is, we postmultiply an n-by-n identity
matrix In by each orthogonal matrix Q1, Q2, . . ., generated by the bulge chasing procedure.
(To simplify the presentation, we will again refer to the intermediate products In · Q1 ·
Q2 · · · also as Q, and the intermediate band matrices all as A.) These orthogonal updates
combine columns of Q (but not rows); thus, each processor row may work independently.
Each processor row is assigned C contiguous rows of Q; the columns of this block row
are distributed according to the distribution of the band matrix. That is, if processor i
(indexed within a given processor row) owns the first element of the jth row of A, then
processor i will own the jth column of the corresponding block row of Q. In this way, the
communication pattern of the blocks of Q between neighboring processors will exactly match
the communication pattern of the blocks of the band. Whenever a processor performs a local
kernel on 2C columns of the band, it will also apply all of those updates to 2C columns
of (its block row of) Q. This implies that in sweep i, within each processor row, the first
processor owns the first C+bi columns of the corresponding block row of Q, each subsequent
processor owns the next C columns, and the last processor owns the last C − bi columns.
(Note that the first processor does not touch the first bi/2 columns, but rather stores them
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to be updated in the next sweep.) This distribution also implies that between sweeps i and
i + 1, the Q matrix must be shifted to maintain the relationship between the ownership
of rows of the band and the columns of Q. To simplify the presentation, we assume that
on each sweep i, Q is padded with bi zero columns, and that the first processor in each
row always sends its rightmost C columns; under these assumptions, each processor always
sends/receives C-by-C blocks of Q, avoiding fringe cases for the first and last processors
(within each processor row).

We introduce four kernels — create bulges update, pass bulges update, cre-
ate and clear bulges update, and clear bulges update — which apply the right orthogonal
updates (as sets of Householder transformations) from the corresponding band reduction
kernels to the local blocks of Q.

Again, we do not analyze computing the eigendecomposition of T , but we assume that
this step terminates with V distributed across the processor grid with each processor owning
a C-by-C block of V . We then compute QV using matrix-matrix multiplication.

In the following complexity analysis, we count only the additional work and communica-
tion done for the orthogonal updates. To obtain the results for CA-SBR in Table IV, we
simply add the the band reduction costs (Section 5.1.2), substituting

√
p for p (since now

we run the band reduction redundantly). Then we add the cost of multiplying QV with
Cannon’s algorithm [Cannon 1969], which costs 2n3/p flops, O(n2/

√
p) words moved, and

O(
√
p) messages. These are all lower-order terms, due to the logarithmic factors in the other

costs.

Arithmetic cost. As argued in Section 5.1.2, there are at most ωi`i bulges chased in the
pass bulges, clear bulges, and create and clear bulges kernels, and at most 2ωi`i bulges
chased in the create bulges kernel. Since the number of Householder entries in each bulge
chase is cidi = b2i /4, from Lemma 4.2, the cost of applying the updates from one kernel
invocation to n/

√
p rows of the Q matrix is at most

4 · b
2
i

4
· n√

p
· ωi`i =

2n3

3p3/2
= O

(
n3

p3/2

)
flops (and up to 2 times more for create bulges).

Following the analysis in Section 5.1.2, we can upper bound the additional arithmetic
performed along the critical path by

O

(
n3

p

)
+

log b∑
i=1

O

(
n3

p

)
= O

(
n3 log b

p

)
flops. The costs of the band reduction and multiplication QV are lower-order terms.

Bandwidth cost. The communication costs of the orthogonal updates are also analogous
to band reduction. As shown in Algorithm 4, for every message sent/received containing
a block of A, there is a second message containing a block of Q. (The additional message
every sweep to shift the block row of Q amounts to a lower-order term.) However, while the
size of the A messages decreases with the bandwidth, the size of the Q messages remains the
same (n2/p words). The additional bandwidth cost, following the analysis in Section 5.1.2,
is bounded by

O

(
n2
√
p

)
+

log b∑
i=1

O

(
n2
√
p

)
= O

(
n2 log b
√
p

)
words moved. Again, the cost of the band reduction and multiplication QV are lower-order
terms.
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Algorithm 4 Communication-Avoiding Parallel SBR (with orthogonal updates)

Require: 3b
√
p divides n, b is a power of 2. Processor ranks are with respect to the processor

row (i.e., between 0 and
√
p − 1). Within each processor row, each processor stores C = n√

p

columns of A, and C-by-C (or C-by-(C ± bi)) block of Q, whose column indices correspond to
the indices of the local rows of A whose first (leftmost) nonzero is stored locally.

1: for i = 1 to log b do
2: bi = b

2i−1 , ci = bi
2

, di = bi
2

, ωi = 2C
3bi

, `i = 3
2
ωi.

3: if myrank > 0 then
4: send left: block of C columns of A
5: send left: block of C columns and rows of Q
6: end if
7: for j = 1 to 3 ·myrank do
8: receive from left: block of C columns of A (includes bulges)
9: receive from left: block of C columns and rows of Q
10: if myrank =

√
p− 1 then

11: clear bulges
12: clear bulges update
13: else
14: receive from right: block of C columns of A
15: receive from right: block of C columns and rows of Q
16: pass bulges
17: pass bulges update
18: send right: block of C columns of A (includes bulges)
19: send right: block of C columns and rows of Q
20: end if
21: if j < 3 ·myrank then
22: send left: block of C columns of A
23: send left: block of C columns and rows of Q
24: end if
25: end for
26: for q = 1 to 3 do
27: if myrank =

√
p− 1 then

28: create and clear bulges
29: create and clear bulges update
30: else
31: receive from right: block of C columns of A
32: receive from right: block of C columns and C rows of Q
33: create bulges
34: create bulges update
35: send right: block of C columns of A (includes bulges)
36: send right: block of C columns and rows of Q
37: end if
38: end for
39: if myrank <

√
p− 1 then

40: send right: block of bi/2 columns and C rows of Q.
41: else if myrank > 0 then
42: receive left: block of bi/2 columns and C rows of Q.
43: end if
44: end for
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Latency cost. The additional latency cost is the same as that for the band reduction (see
Section 5.1.2) plus the shift (a lower-order term), i.e., O(

√
p log b) messages. In the more

restrictive case
√
p � n/(b log b), this is an asymptotic improvement compared to Lang’s

algorithm for just the back-transformation phase; considering also the cost of the band
reduction, we always have an asymptotic improvement.

6. CONCLUSIONS

In theory, both band reduction and dense matrix-matrix multiplication have O(n) possible
data reuse in the sequential case, given by the ratio of total flops to size of inputs and
outputs. When the problem does not fit in fast memory (of size M words), matrix mul-

tiplication can attain only O(
√
M) data reuse [Hong and Kung 1981], while our CA-SBR

algorithm achieves O(M/b) reuse, provided b ≤
√
M/3. This constraint on b also ensures

that the reuse is always asymptotically at least as large as that of matrix multiplication,
and when b�

√
M , we can actually attain much better reuse.

Indeed, improved data reuse often translates to better performance. In [Ballard et al.
2012], we observed that using the techniques of reducing communication (even at the ex-
pense of some extra arithmetic), as well as a framework that automatically tuned the al-
gorithmic parameters, led to speedups of 2− 6× on sequential and shared-memory parallel
machines. We believe that these benefits will extend to the distributed-memory case, par-
ticularly when performance is latency-bound.

The performance results in [Ballard et al. 2012] focused on the case of computing eigen-
values only and did not include the cost of the back-transformation phase. In that case,
the arithmetic cost increased by no more than 50%. As we have seen, the cost of the
back-transformation, which dominates that of the band reduction when eigenvectors are
requested, increases with the number of sweeps. For example, for the successive halving ap-
proach, the increase in arithmetic was a factor of O(log b). Thus, there exists an important
tradeoff between reducing communication in the band reduction phase and the resulting
increased costs in the back-transformation phase. Note that when computing partial eigen-
systems, the costs of the back-transformation can be reduced to be proportional to the
number of eigenvectors desired, improving this tradeoff.

W also do not give algorithms or complexity analysis for taking more than 1 and less
than log b sweeps and using the technique of chasing multiple bulges. Indeed, we fixed many
parameters in this work with the sole intention of simplifying the theoretical analysis. In
practice, parameters such as the number of sweeps and the number of bulges chased at a
time should be autotuned for the target architecture to navigate the tradeoffs mentioned
above.

Recall our application of two-step tridiagonalization for the symmetric eigenproblem.
The first step (full-to-banded) and its corresponding back-transformation phase, can be per-
formed efficiently [Ballard et al. 2011a; Luszczek et al. 2011]. Combined with the approaches
here for the second step (and an efficient tridiagonal eigensolver), we have sequential and
parallel algorithms for the symmetric eigenproblem that attain the communication lower
bounds for dense linear algebra in [Ballard et al. 2011b] up to O(log b) factors: in sequen-

tial, Ω(n3/
√
M) words moved and Ω(n3/M3/2) messages, in parallel (if minimal memory

is used), Ω(n2/
√
p) words moved and Ω(

√
p) messages. Even though these lower bounds

formally apply to only the first step, they are still valid lower bounds for any algorithm that
performs this step.

We also remark that, in the sequential case, similar techniques to those used in a
communication-optimal first step can also be applied in the case b >

√
M/3 (violating

an assumption in Section 4). In fact, for any b + 1 ≤ n, we can reduce to tridiagonal form
with communication costs that attain (or beat) the aforementioned bounds.
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