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Abstract

We present a novel algorithm to acquire and analyze
rich 3D geometric features in single urban images. Tradi-
tional representation of 3D structures via local image fea-
tures lack global geometric information to provide high-
quality image correspondence and 3D models. The new
approach utilizes the low-rank representation technique to
seek a new class of invariant features based on minimizing
the matrix rank of image textures, which are more holistic
with respect to global geometric information, invariant to
camera distortion, and robust to pixel corruption. Based on
the transform-invariant low-rank texture (TILT) representa-
tion, we first propose an efficient algorithm to detect TILT
features in urban images where man-made, symmetric pat-
terns are abundant. Second, we introduce a multiscale, top-
down representation of TILT clusters as TILT complexes,
each of which represents a dominant planar structure (e.g.,
building facades) in 3D space. Extensive experiments are
conducted on the Pankrac building database to demonstrate
the efficacy of the algorithm. The source code of the algo-
rithm will be available for peer evaluation.

1. Introduction
In computer vision, it has been well known that tradi-

tional image features such as corner points and edges do
not contain sufficient 3D geometric information alone. As
a result, inferring 3D geometry using these basic features
on single or multiple images has been a difficult inverse
problem, partly because the global geometric relationship
between 3D shapes in space has been “destroyed” during
the feature extraction stage. Furthermore, the basic im-
age features extracted from local image pixels can be eas-
ily affected by many image nuisances such as illumina-
tion change, camera perspective projection, and occlusion.
Therefore, it is desirable in many vision applications to in-
stead extract image features that contain richer semantic or
geometric information, whose representation as vectors or
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matrices is invariant to those image nuisances. In general,
this category of robust image features are known as invari-
ant features.

In the literature, many types of invariant features have
been proposed. Arguably the most influential ones are
the affine-invariant SIFT features and many of its variants
[15, 18, 19, 1]. Since point and line features used in tradi-
tional structure-from-motion (SfM) approaches are not in-
variant to camera transformation and illumination, SIFT-
type features expand the representation of image appear-
ance to a small local window and consider the distribution
of its pixel values and gradients. In urban-scene modeling,
symmetric texture regions are also widely used [29, 14, 5].
Using the virtual views of symmetric patterns, their 3D ori-
entation can be readily estimated from just a single image
[12, 13]. Another type of geometric features used in 3D
modeling are homogeneous color regions such as super-
pixels [22] whose orientation under perspective projection
is consistent with that of some global planar structures in
space [20, 25]. Finally, in object recognition and segmenta-
tion, various types of object part-based regions that contain
rich semantic information have been proposed [33, 10, 27].

More recently, motivated by the emerging theory of Ro-
bust PCA [4], a new type of invariant feature has been pro-
posed, called transform-invariant low-rank texture (TILT)
[32]. The fundamental idea of TILT is that image texture
that represents regular or repetitive 3D shapes in space is
often low rank, when the texture region is represented as a
matrix of its pixel values. However, under camera perspec-
tive distortion and potential pixel corruption, the matrix rep-
resentation of the texture in the image space exhibits much
higher rank compared to its canonical representation, i.e.,
the texture observed under orthographic projection and free
of pixel corruption. Therefore, the rank of the texture region
can be used as part of an objective function to rectify the un-
derlying image distortion. This new approach suggests that
we can obtain accurate geometric models of many urban
objects, such as buildings, hallways, road signs, and human
faces, without relying on extraction of any traditional local
features (as shown in Figure 1). More importantly, the re-
sulting TILT features can be shown to be robust to camera
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perspective distortion and can also compensate a moderate
amount of pixel corruption, which are the main advantages
of the method compared to other existing invariant features.

Figure 1: Examples of manually labeled image patterns that
are extracted as TILT features. Top: Initialization of the
feature locations as the red bounding boxes, and the final
orientation of the feature as the green bounding boxes. The
TILT features compensate the perspective distortion. Bot-
tom: Canonical representation of the low-rank matrices.

Despite attractive attributes of TILT, it has not been
widely adopted in many vision application where the use
of invariant features would be preferred. We are aware of
three applications in the existing literature: 3D reconstruc-
tion of building facades [21], symmetry detection [31], and
camera calibration [30]. Compared to a typical natural im-
age where the presence of low-rank texture may be only
sporadic, the images used in the above applications mostly
have overwhelming regular and/or repetitive patterns. How-
ever, the detection of TILT features in the previous work
was achieved either by user input or by applying a fixed
grid on the images.

1.1. Contributions

In this paper, we propose a novel algorithm to address
two critical issues that have handicapped the use of TILT
features in vision applications. First, we propose a simple
yet effective algorithm to detect low-rank texture regions
in natural images. It also effectively rejects texture/color
regions that do not contain useful geometric information of
the scene, e.g., the texture of bushes or sky.

Second, after extracting a set of TILT features from an
image, we further propose a principled solution to partition
the features into groups, each of which represents a unique
3D planar structure. More specifically, we build a 2D adja-
cency graph, where each node in the graph corresponds to a
TILT feature. We connect two adjacent features by an edge
whose associated weight is derived from their low-rank rep-
resentations. As some of the nodes in the graph correspond
to outlying features, in order to cluster the graph while re-
jecting the outlying nodes, we employ a recent robust clus-
tering algorithm proposed in [7].

Different from most other image segmentation algo-
rithms, the new segmentation algorithm is based on the

robust canonical representation of image texture measured
by its matrix rank. At the end, given a natural image as
the input, the result of the algorithm provides a geometric
segmentation of the image scene into regions with consis-
tent 3D orientation and surface texture, as shown in Fig-
ure 2. The segmentation result can be readily employed by
other higher-level algorithms in object recognition, image
retrieval, and 3D reconstruction, to just name a few. Finally,
to aid peer evaluation, the source code of our algorithm in
MATLAB will be made available on our website.

2. Problem Formulation
In this section, we first review the basic TILT framework.

Suppose A ∈ Rm×m represents the image of a low-rank
texture pattern, which can be distorted by a 3D transforma-
tion τ and sparse pixel corruption E ∈ Rm×m.1 Therefore,
under such transformation τ , the relationship between the
distorted input image I and its ground-truth low-rank com-
ponent A can be modeled as:

I ◦ τ = A+ E. (1)

In a sense, the appearance of a grayscale image patch I
treated as a matrix can be decomposed as I = (A,E, τ),
where τ is camera projection, E is a sparse pixel corruption
matrix, and A is a low-rank texture pattern invariant to τ
and E. We refer A as a canonical representation of I . In
this paper, we restrict our attention to model planar texture
patterns. Hence, τ is assumed to belong to the homography
group GL(3).

Motivated by the Robust PCA algorithm [4], (A,E, τ)
can be recovered by solving the following optimization pro-
gram:

min
A,E,τ

‖A‖∗ + λ‖E‖1 subj. to I ◦ τ = A+ E, (2)

where ‖ · ‖∗ and ‖ · ‖1 represent the nuclear norm and entry-
wise `1- norm of a matrix, respectively. However, the prob-
lem (2) is nonlinear due to the fact that τ ∈ GL(3), and
directly minimizing this objective function is expensive. It
was shown in [32] that one can linearize the constraint and
iteratively estimate a one-step update ∆τ by solving

min
A,E,τ

‖A‖∗+λ‖E‖1 subj. to I◦τk+∇I∆τ = A+E.

(3)
This optimization program then can be solved by algorithms
similar to Robust PCA solvers. Figure 1 illustrates the re-
sults of applying (3) to some representative low-rank texture
regions.

Next, we more rigorously define the clustering problem
for segmentation of TILT complexes in natural images:

1Without loss of generality, we can assume A and E are square matri-
ces.
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Figure 2: Results of the proposed algorithm on two challenging examples in the presence of irregular 3D shapes, vegetation
occlusion, and transparent glass surfaces. Left: Original images. Middle Left: TILT feature detection with local camera
frames superimposed (the green arrows indicate surface normals). Middle Right: Clusters of TILT complexes in color. The
nodes not in the colored clusters are pruned out. Right: Fitting higher-level TILT models to the complexes.

Problem 1 (Multiscale TILT Clustering (MTC)) Given
a natural image, the MTC problem seeks solutions to the
following three closely related subproblems:

1. Obtain a set of TILT features: I1, · · · , In. Each TILT
feature is decomposed to Ik = (Ak, Ek, τk), where
τk represents the homography transformation from the
3D position of the texture pattern in space to the cam-
era, Ek is the sparse pixel corruption matrix, and Ak
is the low-rank texture representation.

2. The n TILT features form a 2D adjacency graph G =
(V,E) called the TILT adjacency graph (TAG), where
V = {I1, · · · , In} represents the list of n nodes, and
an edge eij is present, i.e., eij ∈ E, if two features
Ii and Ij are close to each other in the image space.
Define a cost function f(eij) associated to the edge
eij that measures the dissimilarity of the two adjacent
TILT features in terms of their low-rank components
(Ai, Aj) and transformations (τi, τj).

3. Seek an efficient clustering algorithm capable of par-
titioning the connecting TILT features in the TAG to
subgraphs called TILT complexes, each of which rep-
resents a unique planar structure in space and is oc-
cupied by several TILT features within the complex.
Furthermore, two adjacent TILT complexes necessar-
ily represent different 3D shapes or different surface

texture patterns in space.

3. Geometric Image Segmentation via MTC

In this section, we discuss in details the design of the
MTC algorithm. First, we discuss the detection of TILT
features in multiple scales in Section 3.1. Then we discuss
how to select optimal TILT scales in an adjacency graph
in Section 3.2. Finally, we present an effective algorithm
to partition the TILT adjacency graph into subgraphs called
TILT complexes in Section 3.3.

3.1. Multiscale TILT Detection

Given a natural image such as the one shown in Figure 3
Left, we first need to partition the image into local patches
where the TILT representation is calculated. A popular ap-
proach to group local homogeneous texture regions is to use
superpixels [23, 8]. In this paper, we choose a public code
Quick Shift [28] to pre-segment the image into superpix-
els due to its fast speed compared to the other methods, as
shown in Figure 3 Middle.

After superpixel extraction, each superpixel can be fitted
by a bounding box, and the TILT algorithm [32] is read-
ily applied to the bounding box as the initial position of a
potential TILT feature. However, in practice, we have ob-
served that directly applying TILT to superpixels may not
always yield good representation, even when the superpix-
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(a) Collection of low-rank regions (b) Collection of color/noisy regions

Figure 5: Partition of the image in Figure 3 into (a) the geo-
metric layer and (b) the non-geometric layer.

Figure 6: Left: The TAG of the image in Figure 3.
Right: Selection of consistent TILT representation in mul-
tiple scales.

Second, based on the estimated TAG, we want to de-
termine the optimal TILT scale from the multiscale rep-
resentation such that the 3D orientation of the connected
TILT features in the TAG are consistent. In this paper, we
have chosen four scales at each superpixel to represent its
TILT features in Section 3.1. Therefore, the orientation of
a superpixel Ii can be represented by four normal vectors
(n1

i ,n
2
i ,n

3
i ,n

4
i ).3 Furthermore, two normal vectors con-

nected in the TAG define a potential function for the MRF:

V (ni,nj) = arccos
(

ni
Tnj

‖ni‖2‖nj‖2

)
. (5)

The intuition behind potential function (5) is that a super-

3A normal vector nj
i can be recovered from the decomposition of its

homography transformation τ j
i [11, 16].

pixel most likely has the same normal vector as its adjacent
superpixels.

Given the potential function and the TAG, the distri-
bution of the candidate TILT features for the combination
X = {n1,n2, . . . ,nN} on the MRF is defined as:

P (X) =
1
Z

exp(−
∑
eij∈E

V (ni,nj)), (6)

where Z is the normalization value. Finally, we seek the
configuration X∗ = {n∗1,n∗2, . . . ,n∗N} that maximizes the
above distribution function:

X∗ = arg max
X

P (X). (7)

This optimization problem is, in general, NP-hard [3]. In
the literature, there exist two classical methods to deal with
this problem, which are iterated conditional modes [2] and
simulated annealing based on Gibbs sampling [9]. In our
experiment, we have found that both solutions can provide
reasonable results for the most likely configuration. Since
MRF optimization is not the main focus of this paper, we
simply choose the Gibbs sampling method in our algorithm.

Finally, we note that enforcing the TAG and MRF may
still group TILT features from structures with different tex-
ture patterns if they share similar 3D orientations. Some
examples are shown in Section 4. Therefore, we are moti-
vated to further partition the TAG based on the texture sim-
ilarity of the TILT features. More specifically, we use the
well-known Gabor filters [17] and the χ2-distance [24] to
measure the similarity of two texture regions under TILT
transform. A 2D mother Gabor wavelet g at coordinates
(x, y) is given by:

gσ,λ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2
+ i

2πx
λ

)
∈ C, (8)

where σ is the Gaussian localization parameter and λ is the
wavelength of the sinusoidal factor. In this paper, we choose
a family of 12 self-similar Gabor wavelets derived from gσ,λ
in [17], which contains 3 scales and 4 orientations.

In an TAG, the response of a TILT feature I∗ =
(A,E, τ) whose optimal scale is selected by the MRF (7)
to a Gabor wavelet function g(i) is defined by the convolu-
tion

F (i) = ‖A ∗ g(i)‖ ⊂ R2. (9)

The pixel distribution in the convoluted image F (i) can
be represented by a normalized histogram vector. Subse-
quently, the texture similarity D(I1, I2) of two TILT fea-
tures I1 and I2 can be calculated by the χ2-distances of
their Gabor histogram vectors over all the wavelet filters
[24]. Using the texture similarity metric D, one can choose
a quite conservative threshold α3. If two adjacent TILT fea-
tures satisfy D(Ii, Ij) > α3, their edge eij will be removed
from the TAG.
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3.3. Building TILT Complexes

Given the estimated TILT features in the TAG, in this
section, we further partition the TAG into subgraphs, each
of which represents a global planar structure in space. Sub-
sequently, a larger TILT representation of each complex can
be fitted that contains all the TILT features in the subgraph,
and hence provides a more global representation of the ur-
ban structures. An example is shown in Figure 7.

Figure 7: Left: Partitioning the TAG in Figure 6 into two
complexes connected by red and cyan edges (in color). Out-
lying TILT features that are not connected to the two sub-
graphs are also excluded. Right: The two TILT complexes
provide a higher-level global geometric model.

First, we observe that if two adjacent superpixels Ii and
Ij belong to the same facade, they often share similar tex-
ture patterns and orientations. As the cue of texture similar-
ity has been utilized in the construction of the TAG above,
a naive way to take advantage of the other geometric cue
is to directly compare the similarity of their homographies
(τi, τj) from their TILT representations. However, we have
found that in practice, especially in urban images, two pla-
nar structures such as building facades might share similar
textures and orientations in space, but they could represent
two complete different 3D surfaces with different depths in
space. Such regions that are similar only based on their lo-
cal TILT representations should not be merged and treated
as a single planar structure.

To mitigate this problem and inspired by the work in
[32], we propose to introduce a verification step that hy-
pothetically merge Ii and Ij as a new image Iij

.= [Ii, Ij ]4,
and again solve its TILT representation as:

min
A′,E′,τij

‖A′‖∗+λ‖E′‖1 subj. to Iij ◦ τij = A′+E′.

(10)
4By an abuse of notation, Iij is the minimal bounding-box region that

contains both Ii and Ij and other pixels in between.

We define another cost function f(ni,nj ,nij) on the TAG
associated to the edge eij that measures the dissimilarity of
the two adjacent TILT features in terms of their orientations
(ni,nj ,nij), which are calculated from (τi, τj , τij) as

f(ni,nj ,nij) = exp(− α4

max(V (ni,nij), V (nj ,nij))2
),

(11)

where 0 ≤ f(·) < 1 and α4 is a user-defined parameter.
When Ii and Ij are with the same facade, ideally ni =
nj = nij so that f(·) = 0. Therefore, the problem of
clustering TILT features into TILT complexes becomes a
graph partitioning problem on the TAG.

For two main reasons, instead of using a standard graph-
cut algorithm such as [26], we use the recently proposed
dissimilarity-based sparse representation selection (DSRS)
algorithm [7] for graph partitioning. First, some of the
nodes in the graph correspond to outlying features since the
corresponding superpixels contain different regions, such as
two different facades or a facade occluded by trees. Second,
the number of clusters is not known a priori. Such prob-
lems cannot be reliably handled by traditional graph par-
titioning techniques such as the Normalized Cut algorithm
[26]. On the other hand, DSRS algorithm can robustly clus-
ter the graph for a large range of its single regularization
parameter and can also reject outliers [7]. However, the al-
gorithm requires to have dissimilarities between all pairs of
connected nodes. Thus, to take advantage of the DSRS al-
gorithm, we define the dissimilarity f(·) between any two
nodes as the total dissimilarity on the shortest path between
the connected nodes on the TAG. The output of the algo-
rithm finds clustering of the nodes, while the outliers as
whose subgraphs with very small sizes are detected and re-
jected.

4. Experiment

For our experiment, we use the Pankrac dataset [6],
which consists of 82 images of 30 urban buildings. For
the user defined parameters in the MTC algorithm, we set
α1 = 1, α2 = 13, α3 = 1.5, and α4 = 0.2.

Figure 8 highlights some representative examples of geo-
metric image segmentation using our algorithm. These ex-
amples demonstrate that our algorithm is capable of finding
dominant geometric structures in a wide variety of condi-
tions:

1. In all the results shown in the paper, the image regions
with no TILT feature attached belong to the estimated
non-geometric layer. Utilizing the multiscale TILT de-
tection and the canonical rank condition, our algorithm
is able to accurately partition an image into geometric
and non-geometric layers.
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2. We observe that the MRF model is very effective
in selecting consistent local TILT features at optimal
scales, even when the planar structures have large non-
Lambertian surfaces (i.e., glass) and/or large perspec-
tive distortion.

3. As shown in the first four examples, surfaces with sim-
ilar texture patterns may have very different 3D orien-
tations and depths. Our proposed method using DSRS
successfully clusters the TILT features into TILT com-
plexes. The more global TILT complex models accu-
rately describe the overall 3D shape of the large build-
ings in space.

4. The DSRS algorithm also effectively prunes out outly-
ing TILT features that are not from the dominant planar
structures.

In terms of the speed, the complexity of the full pipeline
is clearly dominated by the calculation of TILT representa-
tion at multiple scales. The reader is referred to [4, 32, 21]
for fast TILT solvers. Our algorithm that builds global mod-
els adds to the complexity by requiring a verification step
(10). However, this step can be ignored if one only cares
about the detection of consistent local TILT features.

Finally, we discuss a few examples where our algorithm
returns inaccurate geometric segmentation in Figure 9:

1. Non-Lambertian surfaces. Our method is not com-
pletely immune from the effect of non-Lambertian sur-
faces, which lead to inconsistent TILT features. In the
first example in Figure 9, the windows reflect the tex-
ture of the sky and clouds, and they are sometimes
transparent as well.

2. Similar local texture and orientation. In the second
example, the left TILT complex contains facades from
two adjacent buildings, which share similar textures
and orientations. Nevertheless, for the building on the
right, its planar structure is correctly recovered.

3. Lack of texture. If a facade is covered primarily by ho-
mogenous color, our algorithm will exclude its TILT
features. In the third example, the algorithm still cor-
rectly detects the TILT complex on the top that has
richer texture appearance.

5. Conclusion
Compared to traditional image features, global geo-

metric features such as TILT have shown attractive at-
tributes that may pertain to several high-level vision appli-
cations. However, they have not been widely used in the
past mainly due to lack of effective algorithms to detect
low-rank image regions from natural images. This paper

Figure 8: Representative examples of geometric image seg-
mentation. Left: Original image. Middle Left: TILT de-
tection. Middle Right: TILT complexes. Right: Fitting
higher-level TILT representation to TILT complexes.

addresses this gap via a novel multiscale TILT clustering
algorithm as a means of geometric segmentation. The algo-
rithm can be used as a fundamental image feature detection
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Figure 9: Some inaccurate geometric segmentation results.

method that complements the existing invariant feature de-
tection algorithms, especially for urban images where sym-
metric man-made structures abound.
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