
Blazes: Coordination Analysis for Distributed

Programs

Peter Alvaro
Neil Conway
Joseph M. Hellerstein
David Maier

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-133

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-133.html

July 16, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Blazes: Coordination analysis for distributed programs

Peter Alvaro
UC Berkeley

palvaro@cs.berkeley.edu

Neil Conway
UC Berkeley

nrc@cs.berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu
David Maier

Portland State University

maier@cs.pdx.edu

ABSTRACT
Fault tolerance is an essential feature of scalable software services.
For a fault tolerance mechanism to be transparent, it must provide
consistency across the results of redundant computations. Coordina-
tion protocols can ensure this consistency, but in practice they cause
undesirable performance unless used judiciously. This raises signifi-
cant challenges for distributed system architects and developers.

In this paper we present Blazes, a cross-platform program anal-
ysis framework that (a) identifies program locations that require
coordination to ensure consistent executions, and (b) automatically
synthesizes application-specific coordination code that can signifi-
cantly outperform general-purpose techniques. We present two case
studies, one using annotated programs in the Twitter Storm system,
and another using the Bloom declarative language.

1. INTRODUCTION

The first principle of successful scalability is to batter
the consistency mechanisms down to a minimum.
– James Hamilton, as transcribed in [5].

Scalable software services are made up of multiple indepen-
dent components and must tolerate component failure gracefully.
Many fault-tolerance techniques exist, but all of them—replicated
databases, process pairs, log replay—share a basic strategy: redun-
dancy of state and computation. The use of redundancy mechanisms
brings with it a need to consider issues of consistency: when a ser-
vice instance becomes unavailable, will the redundancy technique
that replaces it produce output equivalent to that of the original?
When this equivalence fails, the anomalies that arise can be signifi-
cant and extremely difficult to debug.

The standard approach to ensuring consistency across nodes is to
employ a distributed coordination protocol such as Paxos, atomic
broadcast, or two-phase commit. However, these protocols need to
be used very carefully, as they are associated with increased latency
and reduced availability [5, 6]. Developers are thus faced with a diffi-
cult design decision: too little coordination allows hard-to-reproduce

consistency anomalies, but too much coordination hinders perfor-
mance and manageability. This work aims to provide programmers
with program analysis tools to address these challenges.

1.1 Follow the Data
Consistency of program results depends on consistency of the

data driving the computation. There has been significant work on
consistency of replicated databases, but databases are only one of
many services in a typical application. Programmers need to reason
about the consistency of data as it transits across multiple services,
potentially affecting persistent service state along the way.

Ideally, a programmer could submit arbitrary distributed code—
including any services being used—to a program analysis tool that
would guarantee consistency via just enough coordination in all the
right places. This seems difficult or impossible in today’s popular
general-purpose programming languages. But perhaps it could be
done in a more restricted programming abstraction?

Such abstractions are being developed in both research and in-
dustry. Distributed stream processing has recently emerged as a
popular abstraction in the field, exemplified by Twitter’s open source
Storm system, Apache S4, and Spark Streaming. In these systems, a
streaming dataflow of messages captures the interactions between ar-
bitrary “black box” services. While it is not possible to automatically
analyze the semantics of the black-box services, these systems make
it easy to extract a program’s data dependencies across services—a
step in the right direction.

The adoption of stream processing hints at the potential for richer
analysis via even higher-level abstractions. Bloom is a recent ex-
ample of such an abstraction: a declarative language for distributed
programming [2]. Bloom’s roots are in logic programming, so its
“components” are well-known relational algebra operators, and the
dataflows between them are specified using a language rooted in
Datalog with declarative additions for state update and asynchronous
messaging. In Bloom programs, not only is it easy to follow the
data through the components, but database theory makes it possible
to reason about semantic properties of the components themselves.

1.2 Blazes
In this paper we present Blazes, a program-analysis framework

that provides developers of distributed applications with judiciously
chosen, application-specific coordination code. First, Blazes iden-
tifies code that may cause consistency anomalies by starting with
properties of individual components, including order-sensitivity,
statefulness, and replication; it reasons transitively about compo-
sitions of these properties across dataflows that span components.
Second, Blazes generates consistency-preserving code to prevent
anomalies with a minimum of coordination. The key intuition ex-
ploited by Blazes is that even when components are order-sensitive,

1

Preprocessor
Blazes
spec

Grey box
analysis

Blazes

Strategy Code
generation

Annotations Storm
topology

Bloom
program Inputs

Bloom
Runtime

Storm
Engine

Outputs

Figure 1: The Blazes framework. In the “grey box” system, pro-
grammers supply a configuration file representing an annotated
dataflow. In the “white box” system, this file is automatically gener-
ated via static analysis.

expensive global coordination (the conservative default in many
systems) can often be avoided. In many cases, Blazes can ensure
deterministic outcomes via asynchronous point-to-point commu-
nication between producers and consumers—called sealing—that
simply indicates when partitions of a stream have stopped changing.
These partitions can be identified and “chased” through a dataflow
via techniques from functional dependency analysis.

Blazes can be used with existing stream-processing engines ser-
vices, but it can also take advantage of the richer analyzability of
declarative languages. Programmers of stream-processing engines
interact with Blazes in a “grey box” manner: they provide simple se-
mantic annotations to the black-box components in their dataflows,
and Blazes performs the analysis of all dataflow paths through the
program. Bloom programmers are freed from the responsibility
of annotations, since Bloom’s formal language enables complete
“white box” transparency for the component properties required by
Blazes. The Blazes architecture is depicted in Figure 1.

In this paper we make the following contributions:

• We identify properties of dataflow components and streams
that affect consistency, and introduce a term-rewriting tech-
nique over dataflow paths to translate component properties
into end-to-end stream properties.

• We distinguish two alternative strategies for coordination:
ordering and sealing, and show how we can take advantage
of the cheaper sealing technique when possible.

• We present the Blazes framework, and demonstrate its use
with both a widely used stream processing system (Storm) and
a forward-looking declarative DSL for distributed systems
(Bloom).

We conclude by evaluating the performance benefits offered by
using Blazes as an alternative to generic, order-based coordination
mechanisms available in both Storm and Bloom. Our experiments
also reveal the subtle influence of data placement on application-
specific coordination strategies.

1.3 Running Examples
We consider two running examples: a streaming analytic query

implemented using the Storm stream processing system and an

Tweets

Splitter

Splitter

Splitter

Count

Count

Commit

Commit

Figure 2: Physical architecture of a Storm word count topology

Ad
server

Ad
server

Ad
server

Ad
server

c

q

r

q

r

Report

Report

Cache

Cache

Cache

Analyst

Figure 3: Physical architecture of an ad-tracking network

ad-tracking network implemented using the Bloom distributed pro-
gramming language.

Streaming analytics with Storm: Figure 2 shows the architecture
of a Storm topology that computes a streaming word count over the
Twitter stream. Each “tweet” is associated with a numbered batch
(the unit of replay) and is sent to exactly one Splitter component
via random partitioning. The Splitter component divides tweets
into their constituent words. These are hash partitioned to the Count
component, which tallies the number of occurrences of each word
in the current batch. When a batch ends, the Commit component
records the batch number and frequency for each word in the batch
in a backing store.

Storm ensures fault-tolerance via replay: if component instances
fail or time out, stream sources redeliver their inputs. As a result,
messages may be delivered more than once. Hence we are not con-
cerned in this example with consistency of replicated state, but with
ensuring that accurate counts are committed to the store despite
the at-least-once delivery semantics. When implementing a Storm
topology, the programmer must decide whether to make it transac-
tional—i.e., one that processes tuples in atomic batches, ensuring
that certain components (called committers) emit the batches in a
total order. A programmer may, by recording the last successfully
processed batch identifier, ensure at-most-once processing in the
face of possible replay by incurring the extra overhead of synchro-
nized batch processing.

Note that batches are independent; because the streaming query
groups outputs by batch id, there is no need to order batches with
respect to each other. As we shall see, Blazes can aid a topology
designer in avoiding unnecessary ordering constraints, which (as we
will see in Section 8) can result in a 3× improvement in throughput.

Ad-tracking with Bloom: Figure 3 depicts an ad-tracking network,
in which a collection of ad servers deliver ads to users (not shown)
and send click logs (edges labeled “c”) to a set of reporting servers.
Reporting servers compute a continuous query; analysts make re-
quests (“q”) for subsets of the query answer (e.g., by visiting a

2

c
Buffer

Buffergroup
/count

r

Buffer

Buffer
q

rr

q

Report Cache

Figure 4: Dataflow representations of the ad-tracking network and
its Report and Cache components.

“dashboard”) and receive results via the stream labeled “r”. To im-
prove response times for frequently-posed queries, a caching tier is
interposed between analysts and reporting servers. An analyst poses
a request about a particular ad to a cache server. If the cache contains
an answer for the query, it returns the answer directly. Otherwise,
it forwards the request to a reporting server; when a response is
received, the cache updates its local state and returns a response
to the analyst. Asynchronously, it also sends the response to the
other caches. The clickstream c is sent to all reporting servers; this
improves fault tolerance and reduces query latency, because caches
can contact any reporting server. Due to failure, retry and the inter-
leaving of messages from multiple sources, network delivery order
is nondeterministic. As we shall see, different continuous queries
have different sensitivities to network nondeterminism. Blazes will
help determine how much coordination is required to ensure that
network behavior does not cause inconsistent results.

2. SYSTEM MODEL
In this section, we revisit the familiar “black box” model of

component-based distributed services, which provides the basis of
the Blazes API. We use dataflow graphs [10] to represent distributed
services. Nodes in the dataflow graph correspond to components,
which expose input and output interfaces, corresponding to service
calls or other message events. We can concisely represent both the
data- and control-flow of the ad server network using the dataflow
diagrams in Figure 4, in which nodes represent components while
arcs represent streams.

The logical dataflow in Figure 4 captures the software architecture
of the ad tracking network, describing how components interact via
API calls. By contrast, the physical dataflow shown in Figure 3 cap-
tures the system architecture, mapping software components to the
physical resources on which they will execute. Physical dataflows
are descriptive but specific to a particular deployment, which is
likely to evolve over time. We choose to focus our analysis on
logical dataflows, which abstract away details like the multiplicity
of component and stream instances. As we shall see, a properly an-
notated logical dataflow is sufficient to characterize the consistency
semantics of distributed services.

2.1 Components
A component is a logical unit of computation and storage. Over

time, a component processes a stream of inputs and produces a
stream of outputs. To understand how inputs are transformed into
outputs, we consider all the paths that connect a component’s inputs
and outputs. For example, the reporting server (Report in Figure 4)
has two input streams, and hence defines two possible dataflow
paths (from c to r and from q to r).We assume that components are

deterministic: two components that receive the same inputs in the
same order produce the same outputs and reach the same state.

A component instance is a binding between a component and a
physical resource on which the component executes. A component
instance associates a component with a unique computational re-
source, with its own (potentially mutable) state and logical clock.
In the ad system, the reporting server is a single logical component
in Figure 4, but corresponds to two distinct (replicated) component
instances in Figure 3.

Components may be stateful or stateless. A stateless path through
a component does not change the component’s internal state; a
component is stateless if all paths through it are stateless.

2.2 Streams
Components are connected by streams, which are unbounded,

unordered [14] collections of timestamped messages. A stream asso-
ciates an output interface of one component with an input interface
of another.

As we did with components, we differentiate between logical
streams (which characterize the messages that flow between com-
ponents and are uniquely defined by the component interfaces that
they bridge) and stream instances, which correspond to physical
channels between component instances. In an actual execution, indi-
vidual components may execute on different machines as separate
component instances, consuming stream instances with potentially
different contents and orderings.

While streams (and hence dataflow executions) are theoretically
unbounded, in practice they are often subdivided into partitions [4,
12, 23] to enable replay-based fault-tolerance. We will sometimes
describe the properties of runs, or repeated executions over finite
stream partitions.

A stream producer can optionally embed punctuations [20] into
the stream. A punctuation guarantees that the producer will generate
no more messages within a particular logical partition of the stream.
For example, in Figure 3, a client might send an end-of-session
punctuation on the q stream to indicate that they will generate no
more requests. An ad server might indicate that they will henceforth
produce no new records for a particular time window or advertising
campaign via the c stream. When provided, these punctuations
can enable efficient, local coordination strategies based on sealing
(Section 6). Punctuations must contain metadata describing the
contents of the partition that they seal, because (given our weak
assumptions regarding stream order) a punctuation for a partition
may arrive before some of the contents of that partition.

3. DATAFLOW CONSISTENCY
In this section, we develop consistency criteria appropriate to

distributed dataflows. We begin by describing undesirable behaviors
that can arise in streaming systems. We review common mecha-
nisms for preventing such anomalies, generalizing these mechanisms
into two classes of coordination strategies: message ordering and
partition sealing. Finally, we consider a collection of queries that
we could install at the reporting server in the ad tracking example
presented in Section 1.3. We show how slight differences in the
queries can lead to different distributed anomalies, and how practical
variants of the ordering and sealing strategies can be used to prevent
these anomalies.

3.1 Anomalies
Nondeterministic messaging interacts with fault-tolerance mecha-

nisms in subtle ways. Two standard schemes exist for fault-tolerant
dataflows: replication (used in the ad reporting system described
in Section 1.3) and replay (employed by Storm and Spark) [4].

3

In both mechanisms, nondeterministic message order can cause
inconsistencies—disagreement regarding stream contents among
replicas or across replays, respectively. This disagreement under-
mines the transparency that fault tolerance mechanisms are meant
to achieve.

We focus on three classes of anomalies:

1. Cross-run nondeterminism, in which nondeterminism in the
execution causes components to produce, given the same
inputs, different output stream contents in different runs. Sys-
tems that do not exhibit cross-run nondeterminism are re-
playable, and support efficient replay-based fault-tolerance.
For obvious reasons, replayable systems are also easier to test
and debug.

2. Cross-instance nondeterminism, in which multiple replicated
components produce, given the same input, different output
contents in the same execution. Cross-instance nondetermin-
ism can lead to inconsistencies across queries.

3. Split brain phenomena, in which divergent replicated state
leads to persistent inconsistency. Some services may tolerate
transient disagreement between streams (e.g., for streams cor-
responding to the results of read-only queries), but permanent
replica divergence is never desirable.

All anomalies are witnesses of asynchronous execution; nondeter-
minism in message ordering has “leaked” into program outputs.

3.2 Monotonicity, confluence and convergence
Fortunately, a class of programs can be proven immune to the

consistency anomalies described above. These “eventually con-
sistent” programs produce a fixed final outcome regardless of any
nondeterminism in message delivery ordering, and hence require
no coordination. In recent work, we proposed the CALM theorem,
which observes that monotonic programs produce consistent results
regardless of nondeterminism in delivery orders [9]. Intuitively,
monotonic programs compute a continually growing result, never
retracting an earlier result given new inputs. Hence replicas running
monotonic code always eventually agree, and replaying monotonic
code produces the same result in every run.

We call a dataflow component confluent if it produces the same
set of outputs for all orderings of its inputs. At any time, the output
of a confluent component (and any redundant copies of that compo-
nent) is a subset of the “final” output. Confluent components never
exhibit any of the dataflow anomalies listed above. Confluence is a
property of the behavior of components—monotonicity (a property
of program logic) is a sufficient condition for confluence.

Distributed systems commonly adopt a storage-centric notion of
consistency. Replicated storage is eventually consistent or conver-
gent if, when all messages have been delivered, all replicas agree on
the set of stored values [22].

Confluence implies convergence but the converse does not hold.
Convergent replicated components are guaranteed to eventually
reach the same state, but this final state may not be uniquely deter-
mined by component inputs, and the components may take “detours”
along the way. Hence we must take care when reading “snapshots”
of the state—which may exhibit cross-instance nondeterminism—
while it is still changing. Consider what happens when the read-only
outputs of a convergent component (e.g., GETs posed to a key/value
store) flow into a replicated stateful component (e.g., a cache). If the
replicas record different stream contents, the result is a split brain
phenomenon.

Storage-centric consistency criteria focus on the properties of
data at rest; reasoning about the overall properties of a composed
dataflow requires following the data as it moves.

3.3 Coordination Strategies
Confluent components invariably produce deterministic outputs

and convergent replicated state. How can we achieve these desirable
properties for components that cannot be shown to be confluent? To
prevent inconsistent outputs within or across program runs we need
only address nondeterministic message orders, since we assume that
components are deterministic. Hence coordination of non-confluent
components can be achieved by removing the nondeterminism from
their input orderings. Two extreme approaches include (a) establish-
ing a single total order in which all instances of a given component
receive messages (an ordering strategy) and (b) disallowing compo-
nents from producing outputs until all of their inputs have arrived
(a sealing strategy). The former—which enforces a total order of
inputs—resembles state machine replication from the distributed
systems literature [18], a technique for implementing consistent
replicated services. The latter—which instead controls the order of
evaluation at a coarse grain—resembles stratified evaluation of logic
programs [21] in the database literature.

Both strategies lead to “eventually consistent” program outcomes—
if we wait long enough, we get a unique output for a given input.
Unfortunately, neither leads directly to a practical coordination im-
plementation. We cannot in general preordain a total order over all
messages to be respected in all executions. Nor can we wait for
streams to stop producing inputs, as streams are unbounded.

Fortunately, both coordination strategies have a dynamic variant
that supports live systems that make incremental progress over time.
To prevent replica divergence, it is sufficient to use a dynamic or-
dering service (e.g., Paxos) that decides a global order of messages
within a particular run. This nondeterministic choice of message
ordering prevents cross-instance nondeterminism but cannot prevent
cross-run nondeterminism since the choice is dependent on arrival
orders at the coordination service. Similarly, strategies based on seal-
ing inputs can be applied to infinite streams as long as the streams
can be partitioned into finite partitions that exhibit temporal locality,
like windows with “slack” [1]. In cases where finite partitions are
specified, sealing strategies can rule out all nondeterminism anoma-
lies. Note that sealing is significantly less constrained than ordering:
it enforces an output barrier per batch, but allows nondeterminism
both in the arrival of a batch’s inputs and in interleaving across
batches.

3.4 Examples
The ad reporting system presented in Section 1.3 involves a col-

lection of components interacting in a dataflow network. In this
section, we focus on the Report component, which accumulates
click logs and continually evaluates a standing query against them.
Figure 5 presents a variety of simple queries that we might install
at the reporting server; perhaps surprisingly, these queries have
substantially different coordination requirements if we demand that
they return deterministic answers. In Section 5, we will use Blazes
to determine these requirements by treating each query as a separate
instance of the Report component.

We consider first a threshold query THRESH, which computes
the unique identifiers of any ads that have at least 1000 impressions.
Although the click messages may arrive in different orders at dif-
ferent replicas or in different executions, THRESH returns results
only when a count of messages exceeds a threshold. THRESH is
confluent: we expect it to produce a deterministic result set without

4

Name Continuous Query
THRESH select id from clicks group by id having count(*) > 1000
POOR select id from clicks group by id having count(*) < 100
WINDOW select window, id from clicks group by window, id having count(*) < 100
CAMPAIGN select campaign, id from clicks group by campaign, id having count(*) < 100

Figure 5: Reporting server queries (shown in SQL syntax for familiarity).

need for coordination, since the value of the count monotonically
increases in a manner insensitive to message arrival order [8].

By contrast, consider a “poor performers” query: POOR returns
the IDs of ads that have fewer than one hundred clicks (this might
be used to recommend such ads for removal from subsequent cam-
paigns). This query is nonmonotonic: as more clicks are observed,
the set of poorly performing ads might shrink. Because this query
ranges over the entire clickstream, we would have to wait until there
were no more log messages to ensure a unique query answer. Al-
lowing POOR to emit results “early” based on a nondeterministic
event, like a timer or request arrival, is potentially dangerous; if we
install POOR at multiple reporting server replicas, they may report
different answers in the same execution. To avoid such anomalies,
a coordination service like Zookeeper can be used to ensure global
message delivery order, and ensure that replicas remain in sync
throughout execution. Unfortunately, enforcing a global delivery
order incurs significant latency and availability costs.

In practice, streaming query systems often address the problem
of blocking operators via windowing, which constrains blocking
queries to operate over bounded inputs [1, 3, 7]. If the poor per-
formers threshold test is scoped to apply only to individual windows
(e.g., by including the window name in the grouping clause), then
ensuring deterministic results is simply a matter of blocking until
there are no more log messages for that window before deciding
if a particular advertisement is a poor performer. Query WINDOW
returns, for each one hour window, those advertisement identifiers
that have fewer than 100 clicks within that window.

The windowing strategy—a special case of sealing—ensures
deterministic results by delaying the nonmonotonic query from
processing a logical partition of the input stream until it is completely
determined. This sealing technique may also be applied to partitions
that are not explicitly temporal. It is common practice to associate a
collection of ads with a “campaign,” or a grouping of advertisements
with a similar theme. Campaigns may have different lengths, and
indeed may overlap or contain other campaigns. Nevertheless, once
a campaign is over we can safely say things about it that we could
not say while it was still “live.”

4. ANNOTATED DATAFLOW GRAPHS
So far, we have focused on the consistency anomalies that can

affect individual “black box” components. In this section, we extend
our discussion in two ways. First, we propose a grey box model in
which programmers provide simple annotations about the semantic
properties of components. Second, we show how Blazes can use
these annotations to automatically derive the consistency properties
of entire dataflow graphs.

4.1 Annotations and Labels
In this section, we describe a language of annotations and labels

that enriches the “black box” model (Section 2) with additional
semantic information. Programmers supply annotations about paths
through components and about input streams; using this information,
Blazes derives labels for each component’s output streams.

Severity Label Confluent Stateless
1 CR X X
2 CW X
3 ORgate X
4 OWgate

Figure 6: The C.R.O.W. component annotations. A component path
is either Confluent or Order-sensitive, and either changes component
state (a Write path) or does not (a Read-only path). Component
paths with higher severity annotations can produce more stream
anomalies.

S Label ND ND Transient Persistent
order contents replica replica

divergence divergence
0 NDReadgate X X
0 Taint X X
1 Sealkey X
2 Async X
3 Run X X
4 Inst X X X
5 Split X X X X

Figure 7: Stream labels, ranked by severity (S). NDReadgate and
Taint are internal labels, used by the analysis system but never out-
put. Run, Inst and Split correspond to the stream anomalies enu-
merated in Section 3.1: cross-run nondeterminism, cross-instance
nondeterminism and split brain, respectively.

4.1.1 Component Annotations
Blazes provides a small, intuitive set of annotations that capture

component properties relevant to stream consistency. A review
of the implementation or analysis of a component’s input/output
behavior should be sufficient to choose an appropriate annotation.
Figure 6 lists the component annotations supported by Blazes. Each
annotation applies to a path from an input interface to an output
interface; if a component has multiple input or output interfaces,
each path can have a different annotation.

The CR annotation indicates that a path through a component
is confluent and stateless; that is, it produces deterministic output
regardless of its input order, and the path does not modify the
component’s state. CW denotes a path that is confluent and stateful.

The annotations ORgate and OWgate denote non-confluent paths
that are stateless or stateful, respectively. The gate subscript is
a set of attribute names that indicates the partitions of the input
streams over which the non-confluent component operates. This
annotation allows Blazes to determine whether an input stream
containing end-of-partition punctuations can produce deterministic
executions without using global coordination. Supplying gate is
optional; if the programmer does not know the partitions over which
the component path operates, the annotations OR∗ and OW∗ indicate

5

that each record belongs to a different partition.
Consider a reporting server component implementing the query

WINDOW. When it receives a request referencing a particular ad-
vertisement and window, it returns a response if the advertisement
has fewer than 1000 clicks within that window. We would label
the path from request inputs to outputs as ORad,window—a stateless
non-confluent path operating over partitions with composite key
ad,window. Requests do not affect the internal state of the com-
ponent, but they do return potentially nondeterministic results that
depend on the outcomes of races between queries and click records
(assuming the inputs are nondeterministically ordered). Note how-
ever that if we were to delay the results of queries until we were
certain that there would be no new records for a particular adver-
tisement or a particular window,1 the output would be deterministic.
Hence WINDOW is “compatible” with click streams partitioned
(and emitting appropriate punctuations) on ad or by window—this
notion of compatibility will be made precise in Section 4.2.

4.1.2 Stream Annotations
Programmers can also supply optional annotations to describe

the semantics of streams. The Sealkey annotation means that the
stream is punctuated on the subset key of the stream’s attributes—
that is, the stream contains punctuations on key, and there is at
least one punctuation corresponding to every stream record. For
example, a stream representing messages between a client and server
might have the label Sealclient,session, to indicate that clients will send
messages indicating that sessions are complete. To ensure progress,
there must be a punctuation for every session identifier.

Programmers can use the Rep annotation to indicate that a stream
is replicated. Replicated streams have the following properties:

1. A replicated stream connects a producer component instance
(or instances) to more than one consumer component instance.

2. A replicated stream produces the same contents for all stream
instances (unlike, for example, a partitioned stream).

The Rep annotation carries semantic information both about ex-
pected execution topology and programmer intent, which Blazes
uses to determine when nondeterministic stream contents can lead
to replica disagreement. Rep is an optional boolean flag that may
be combined with other annotations and labels.

4.1.3 Derived Stream Labels
Given an annotated component with labeled input streams, Blazes

can derive a label for each of its output streams. Figure 7 lists the
derived stream labels—each corresponds to a class of anomalies
that may occur in a given stream instance. The label Async cor-
responds to streams with deterministic contents whose order may
differ on different executions or different stream instances. Async is
conservatively applied as the default label; in general, we assume
that communication between components is asynchronous.

Streams labeled Run may exhibit cross-run nondeterminism, hav-
ing different contents in different runs. Those labeled Inst may also
exhibit cross-instance nondeterminism on different replicas within
a single run. Finally, streams labeled Split may have split-brain
behaviors (persistent replica divergence).

4.2 Analysis
We now describe how Blazes automatically derives labels for the

output streams of an annotated dataflow graph. If all output labels

1This rules out races by ensuring that the query comes after all
relevant click records.

are Async, the service is guaranteed to produce deterministic out-
comes. Otherwise, the analysis system identifies dataflow locations
where adding coordination logic would achieve deterministic out-
comes. It records these locations to assist in coordination selection
(Section 6).

To derive labels for the output streams in a dataflow graph, Blazes
starts by enumerating all paths between pairs of sources and sinks.
To rule out infinite paths, it reduces each cycle in the graph to a
single node with a collapsed label by selecting the label of highest
severity among the cycle members. Note that in the ad-tracking
network dataflow shown in Figure 4, Cache participates in a cycle
(the self-edge, corresponding to communication with other cache
instances), but Cache and Report form no cycle, because Cache
provides no path from r to q.

For each component whose input streams are determined (begin-
ning with the components with unconnected inputs), Blazes first
performs an inference step, shown in Figure 8, for every path through
the component. When it has done so, each of the output interfaces
of the component is associated with a set of derived stream labels
(at least one for each distinct path from an input interface, as well
as the intermediate labels introduced by the inference rules). Blazes
then performs the second analysis step, the reconciliation procedure
(described in Figure 9), which may add additional labels. Finally,
the labels for each output interface are merged into a single label.
This output stream becomes an input stream of the next component
in the dataflow, and so on.

4.2.1 Transitivity of seals
When input streams are sealed, the inference and reconciliation

procedures test whether the seal keys are compatible with the an-
notations of the component paths into which they flow. Sealed
streams can enable efficient, localized coordination strategies when
the sealed partitions are independent—a property not just of the
streams themselves but of the components that process them. For
example, given the queries in Figure 5, an input stream sealed on
campaign is only compatible with the query CAMPAIGN—all other
queries combine the results from multiple campaigns into their an-
swer, and may produce different outputs given different message and
punctuation orderings. To recognize when sealed input streams are
compatible with the component paths into which they flow, we need
to compare seal keys with the partitions over which non-confluent
operations range. For example, given a stream sealed on key key
(with annotation Sealkey) flowing into a component with annotation
OWgate, under what circumstances are deterministic outputs guaran-
teed? To answer this question, we must formalize the transitivity of
sealed partitions.

Intuitively, the stream partitioning matches the component par-
titioning if at least one of the attributes in gate is injectively deter-
mined by all of the attributes in key. For example, a company name
may functionally determine their stock symbol and the location of
their headquarters; when the company name Yahoo! is “sealed” (a
promise is given that there will be no more records with that com-
pany name) their stock symbol YHOO is implicitly sealed as well, but
the city of Sunnyvale is not. A trivial (and ubiquitous) example of an
injective function between input and output attributes is the identity
function, which is applied whenever we project an attribute without
transformation—we will focus our discussion on this example.

We define the predicate injectivefd(A, B), which holds for attribute
sets A and B if A 7→ B (A functionally determines B) via some
injective (distinctness-preserving) function. Such functions preserve
the property of sealing: if we have seen all of the As, then we have
also seen all the f (A) for some injective f .

6

{Async, Run} ORgate
(1)

NDReadgate

{Async, Run} OWgate
(2)

Taint
Inst CW, OWgate

(3)
Taint

Sealkey OWgate ¬ compatible(gate, key)
(4)

Taint

Figure 8: Reduction rules for component paths. Each rule takes
an input stream label and a component annotation, and produces a
new (internal) stream label. Rules may be read as implications: if
the premises (expressions above the line) hold, then the conclusion
(below) should be added to the Labels list.

We may now define the predicate compatible:

compatible(partition, seal) ≡ ∃ attr ⊆ partition | injectivefd(seal, attr)

The compatible predicate will allow the inference and reconcil-
iation procedures to test whether a sealed input stream matches
the implicit partitioning of a component path annotated OWgate or
ORgate. In the remainder of this section we describe the inference
and reconciliation procedures in detail.

4.2.2 Inference
At each reduction step, we apply the rules in Figure 8 to derive

additional intermediate stream labels for a component path. An
intermediate stream label may be any of the labels in Figure 7.

Rules 1 and 2 of Figure 8 reflect the consequences of providing
nondeterministically ordered inputs to order-sensitive components.
Taint indicates that the internal state of the component may be-
come corrupted by unordered inputs. NDReadgate indicates that the
output stream may have transient nondeterministic contents. Rule
3 captures the interaction between cross-instance nondeterminism
and split brain: transient disagreement among replicated streams
can lead to permanent replica divergence if the streams modify
component state downstream. Rules 4 tests whether the predicate
compatible (defined in the previous section) holds, in order to de-
termine when sealed input streams are compatible with stateful,
non-confluent components.

When inference completes, each output interface of the compo-
nent is associated with a list Labels of stream labels, containing
all input stream labels as well as any intermediate labels derived by
inference rules.

4.2.3 Reconciliation
Given an output interface associated with a set of labels, Blazes

derives additional labels by using the reconciliation procedure
shown in Figure 9.

If the inference procedure has already determined that compo-
nent state is tainted, then the output stream may exhibit split brain
(if the component is replicated) and cross-run nondeterminism. If
NDReadgate (for some partition key gate) is among the stream la-
bels, the output interface may have nondeterministic contents given
nondeterministic input orders or interleavings with other component
inputs, unless all streams with which it can “rendezvous” are sealed
on a compatible key. If the component is replicated, nondeterminis-
tic outputs can lead to cross-instance nondeterminism.

Once the internal labels have been dealt with, Blazes simply
returns the label in Labels of highest severity.

4.2.4 Notation

protected(NDReadgate) ≡ ∀l ∈ Labels l = NDReadgate∨

∃key l = Sealkey ∧ compatible(gate, key)

Taint ∈ Labels
Rep ? Split : Run

∃gate∃NDReadgate ∈ Labels ¬protected(NDReadgate)
Rep ? Inst : Run

Figure 9: The reconciliation procedure applies the rules above to the
set Labels, possibly adding additional labels. “Rep ? A : B” means
‘if Rep, add A to Labels, otherwise add B.’ Finally, reconciliation
returns the elements in Labels with highest severity.

When describing trees of inferences, reconciliations and merges
used to derive output stream labels, we will use the following nota-
tion:

SL1 CA1(R1)
SL2

SL3 CA2(R2)
SL4 [. . .]

CN1 SL5

Here the SL are stream labels, the CA are component annotations,
R is the inference rule applied, and CN is the component name
whose outputs are combined by the merge procedure.2 SL2 and SL4

are different labels for the same output interface. If no inference
rules apply, we show the preservation of input stream labels by
applying a default rule labeled “(p).”

5. CASE STUDIES
In this section, we apply Blazes to the examples introduced in

Section 1.3. We describe how programmers can manually annotate
dataflow components. We then discuss how Blazes identifies the
coordination requirements and, where relevant, the appropriate lo-
cations in these programs for coordination placement. In the next
section we will consider how Blazes chooses safe yet relatively
inexpensive coordination protocols. Finally, in Section 8 we show
concrete performance benefits of the Blazes coordination choices
as compared to a conservative use of a coordination service like
Zookeeper.

We implemented the Storm wordcount dataflow, which consists
of three “bolts” (components) and two distinct “spouts” (stream
sources, which differ for the coordinated and uncoordinated imple-
mentations) in roughly 400 lines of Java. We extracted the dataflow
metadata from Storm into Blazes via a reusable adapter; we de-
scribe below the output that Blazes produced and the annotations
we added manually. We implemented the ad reporting system en-
tirely in Bloom, in roughly 125 LOC. As discussed in the previous
section, Blazes automatically extracted all the relevant annotations.

For each dataflow, we present excerpts from the Blazes configu-
ration file, containing the programmer-supplied annotations.

5.1 Storm wordcount
We first consider the Storm distributed wordcount query. Given

proper dataflow annotations, Blazes indicates that global ordering
of computation on different components is unnecessary to ensure
deterministic replay, and hence consistent outcomes.
2For ease of exposition, we only consider cases where a component
has a single output interface (as do all of our example components).

7

5.1.1 Component annotations
The word counting topology comprises three components. Com-

ponent Splitter is responsible for tokenizing each tweet into a
list of terms—since it is stateless and insensitive to the order of
its inputs, we give it the annotation CR. The Count component
counts the number of occurrences of each word in each batch. We
annotate it OWword,batch—it is stateful (accumulating counts over
time) and order-sensitive, but potentially sealable on word or batch
(or both). Lastly, Commit writes the final counts to the backing
store. Commit is also stateful (the backing store is persistent), but
since it is append-only and does not record the order of appends, we
annotate it CW.

Splitter:
annotation:
- { from: tweets, to: words, label: C }

Count:
annotation:
- { from: words, to: counts, label: OW,
subscript: [word, batch] }

Commit:
annotation: { from: counts, to: db, label: CW }

5.1.2 Analysis
Blazes performs the following reduction in the absence of any

seal annotation:
Async CR

(p)
Async

Splitter
Async OWword,batch

(2)
Taint

Count
Run CW(p)

Run
Committer

Run

Without coordination, nondeterministic input orders may produce
nondeterministic output contents. To ensure that replay—Storm’s
internal fault-tolerance strategy—is deterministic, Blazes will rec-
ommend that the topology be coordinated—the programmer can
achieve this by making the topology “transactional” (in Storm ter-
minology), totally ordering the batch commits.

If, on the other hand, the input stream is sealed on batch, Blazes
instead produces this reduction:

Sealbatch CR
(p)

SealbatchSplitter
Sealbatch OWword,batch(p)

Async
Count

Async CW
(p)

Async
Committer

Async

Because a batch is atomic (its contents may be completely de-
termined once a seal record arrives) and independent (emitting a
processed batch never affects any other batches), the topology will
produce deterministic outputs—a requirement for Storm’s replay-
based fault-tolerance—under all interleavings.

5.2 Ad-reporting system
Next we describe how we might annotate the various components

of the ad-reporting system. As we discuss in Section 7, these anno-
tations can be automatically extracted from the Bloom syntax; for
exposition, in this section we discuss how a programmer might man-
ually annotate an analogous dataflow written in a language without
Bloom’s static-analysis capabilities. As we will see, ensuring deter-
ministic outputs will require different mechanisms for the different
queries listed in Figure 5.

5.2.1 Component annotations
The cache is clearly a stateful component, but since its state is

append-only and order-independent (this extremely simple cache
provides no facility for deletion or modification of cache entries)
we may annotate it CW. Because the data-collection path through
the reporting server simply appends clicks and impressions to a log,
we annotate this path CW (it modifies state, but in a confluent way)
also.

All that remains is to annotate the path through the reporting com-
ponent corresponding to the various continuous queries enumerated
in Section 3.4. Report is a replicated component, so we supply the
Rep annotation for all instantiations. We annotate the query path
corresponding to THRESH CR—it is both read-only (in the context
of the reporting module) and confluent. It never emits a record until
the ad impressions have reached the given threshold, and since they
can never again drop below the threshold, the query answer “ad X
has > 1000 impressions” holds forever.

We annotate queries POOR and CAMPAIGN ORid and ORid,campaign,
respectively. They too are read-only queries, having no effect on
reporting server state, but can return different contents in different
executions, recording the effect of message races between click and
request messages.

We give query WINDOW the annotation ORid,window. Unlike
POOR and CAMPAIGN, WINDOW includes the input stream at-
tribute window in its grouping clause. Its outputs are therefore
partitioned by values of window, so Blazes will be able to employ
a coordination-free sealing strategy to force the component to out-
put deterministic results if it can determine that the input stream is
sealed on window.

Cache:
annotation:
- { from: request, to: response, label: CR }
- { from: response, to: response, label: CW }
- { from: request, to: request, label: CR }

Report:
annotation:
- { from: click, to: response, label: CW }

POOR: { from: request, to: response, label: OR,
subscript: [id] }

THRESH: { from: request, to: response, label: CR }
WINDOW: { from: request, to: response, label: OR,

subscript: [id, window] }
CAMPAIGN: { from: request, to: response, label: OR,

subscript: [id, campaign] }

5.2.2 Analysis
Having annotated all of the instantiations of the reporting server

component for different queries, we may now consider how Blazes
derives output stream labels for the global dataflow. If we supply
THRESH, Blazes performs the following reductions, deriving a final
label of Async for the output path from cache to sink:

Async CW
(p)

Async
Async CW

(p)
Async Rep

Report
Async CW

(p)
Async

Cache Async

All components are confluent, so the complete dataflow produces
deterministic outputs without coordination. If we chose, we could
encapsulate the service as a single component with annotation CW.

If we consider query POOR with no input stream annotations, it
leads to the following reduction:

8

Async CW
(p)

Async
Async ORcampaign

(2)
NDReadcampaign Rep

Report
Inst CW(3)

Taint
Cache Split

The poor performers query is not confluent: it produces nondeter-
ministic outputs. Because these outputs mutate a stateful, replicated
component (i.e., the cache) that affects system outputs, the output
stream is tainted by divergent replica state. Preventing split brain
will require a coordination strategy that controls message delivery
order to the reporting server.

On the other hand, if the input stream is sealed on campaign,
Blazes instead performs this reduction:

Sealcampaign CW
(p)

Sealcampaign

Async ORcampaign
(2)

NDReadcampaign Rep
Report

Async CW
(p)

Async
Cache Async

Appropriately sealing inputs to non-confluent components can
make them behave like confluent components. Implementing this
sealing strategy does not require global coordination, but merely
some synchronization between stream producers and consumers—
we sketch the protocol in Section 6.

Similarly, WINDOW (given an input stream sealed on window)
reduces to Async.

6. COORDINATION SELECTION
In this section we describe practical coordination strategies for

dataflows that are not confluent or convergent. Blazes will auto-
matically repair such dataflows by constraining how messages are
delivered to individual components. When possible, Blazes will
recognize the compatibility between sealed streams and component
semantics, synthesizing a seal-based strategy that avoids global
coordination. Otherwise, it will enforce a total order on message
delivery.

6.1 Ordering Strategies
If the programmer has not provided any seal annotations, Blazes

achieves replica convergence by using an ordering service to ensure
that all replicas process state-modifying events in the same order.
Our current prototype uses a totally ordered messaging service based
on Zookeeper for Bloom programs; for Storm, we use Storm’s
builtin support for “transactional” topologies, which enforces a total
order over commits.

6.2 Sealing Strategies
If the programmer has provided a seal annotation Sealkey that

is compatible with the (non-confluent) component annotation, we
may use a synchronization strategy that avoids global coordination.
Consider a component representing a reporting server executing the
query WINDOW from Section 1.3. Its label is ORid,window. We know
that WINDOW will produce deterministic output contents if we de-
lay its execution until we have accumulated a complete, immutable
partition to process (for each value of the window attribute). Thus a
satisfactory protocol must allow stream producers to communicate
when a stream partition is sealed and what it contains, so that con-
sumers can determine when the complete contents of a partition are
known.

To determine that the complete partition contents are available,
the consumer must a) participate in a protocol with each producer
to ensure that the local per-producer partition is complete, and b)

perform a unanimous voting protocol to ensure that it has received
partition data from each producer. Note that the voting protocol is a
local form of coordination, limited to the “stakeholders” contributing
to individual partitions. When there is only one producer instance
per partition, Blazes need not synthesize a voting protocol.

Once the consumer has determined that the contents of a partition
are immutable, it may process the partition without any further
synchronization.

7. BLOOM INTEGRATION
To provide input for the “grey box” functionality of Blazes, pro-

grammers must convert their intuitions about component behavior
and execution topology into the annotations introduced in Section 4.
As we saw in Section 5.1.1, this process is often quite natural; un-
fortunately, as we learned in Section 5.2.1, it becomes increasingly
burdensome as component complexity increases.

Given an appropriately constrained language, the necessary an-
notations can be extracted automatically via static analysis. In this
section, we describe how we used the Bloom language to enable
a “white box” system, in which unadorned programs can be sub-
mitted, analyzed and—if necessary to ensure consistent outcomes—
automatically rewritten.

7.1 Bloom components
Bloom programs are bundles of declarative rules describing the

contents of logical collections and how they change over time. To
enable encapsulation and reuse, a Bloom program may be expressed
as a collection of modules with input and output interfaces associated
with relational schemas. Hence modules map naturally to dataflow
components.

Each module also defines an internal dataflow from input to out-
put interfaces, whose components are the individual rules. Blazes
analyzes this dataflow graph to automatically derive component
annotations for Bloom modules.

7.2 White box requirements
To select appropriate component labels, Blazes needs to deter-

mine whether a component is confluent and whether it has internal
state that evolves over time. To determine when sealing strategies
are applicable, Blazes needs a way to “chase” [15] the injective func-
tional dependencies described in Section 4.2.1 transitively across
compositions.

As we show, we meet all three requirements by applying stan-
dard techniques from database theory and logic programming to
programs written in Bloom.

7.2.1 Confluence and state
As we described in Section 3.2, the CALM theorem establishes

that all monotonic programs are confluent. The Bloom runtime
includes analysis capabilities to identify—at the granularity of pro-
gram statements—nonmonotonic operations, which can be conser-
vatively identified with a syntactic test. A component free of such
operations is provably order-insensitive. Similarly, Bloom distin-
guishes syntactically between transient event streams and stored
state. A simple flow analysis automatically determines if a compo-
nent is stateful. Together, these analyses are sufficient to determine
annotations (except for the subscripts, which we describe next) for
every Bloom statement in a given module.

7.2.2 Support for sealing
What remains is to determine the appropriate partition subscripts

for non-confluent labels (the gate in OWgate and ORgate) and to

9

define an effectively computable procedure for deciding whether
injectivefd holds.

Recall that in Section 4.1.1 we chose a subscript for the SQL-like
WINDOW query by considering its group by clause; by definition,
grouping sets are independent of each other. Similarly, the columns
referenced in the where clause of an antijoin identify sealable par-
titions.3 Applying this reasoning, Blazes selects subscripts in the
following way:

1. If the Bloom statement is an aggregation (group by), the
subscript is the set of grouping columns.

2. If the statement is an antijoin (not in), the subscript is the set
of columns occurring in the theta clause.

We can track the lineage of an individual attribute (processed
by a nonmonotonic operator) by querying Bloom’s system catalog,
which details how each rule application transforms (or preserves)
attribute values that appear in the module’s input interfaces. To
define a sound but incomplete injectivefd, we again exploit the
common special case that the identity function is injective, as is
any series of transitive applications of the identity function. For
example, given S ≡ πaπabπabcR, we have in jective f d(R.a, S .a).

8. EVALUATION
In Section 3, we considered the consequences of under-coordinating

distributed dataflows. In this section, we measure the costs of over-
coordination by comparing the performance of two distinct dataflow
systems, each under two coordination regimes: a generic order-
based coordination strategy and an application-specific sealing strat-
egy.

We ran our experiments on Amazon EC2. In all cases, we average
results over three runs; error bars are shown on the graphs.

8.1 Storm wordcount
To evaluate the potential savings of avoiding unnecessary synchro-

nization, we implemented two versions of the streaming wordcount
query described in Section 1.3. Both process an identical stream of
tweets and produce the same outputs. They differ in that the first
implementation is a “transactional topology,” in which the Commit
components use coordination to ensure that outputs are committed
to the backing store in a serial order. 4 The second—which Blazes
has ensured will produce deterministic outcomes without any global
coordination—is a “nontransactional topology.” We optimized the
batch size and cluster configurations of both implementations to
maximize throughput.

We used a single dedicated node (as the documentation recom-
mends) for the Storm master (or “nimbus”) and three Zookeeper
servers. In each experiment, we allowed the topology to “warm up”
and reach steady state by running it for 10 minutes.

Figure 10 plots the throughput of the coordinated and uncoor-
dinated implementations of the wordcount dataflow as a function
of the cluster size. The overhead of conservatively deploying a
transactional topology is considerable. The uncoordinated dataflow
has a peak throughput roughly 1.8 times that of its coordinated
counterpart in a 5-node deployment. As we scale up the cluster to
20 nodes, the difference in throughput grows to 3X.
3Intuitively, we can deterministically evaluate select * from R
where x not in (select x from S where y = ‘Yahoo!’)
for any tuples of R once we have established that a.) there will be
no more records in S with y = ‘Yahoo!’, or b.) there will never be a
corresponding S.x.
4Storm uses Zookeeper for coordination.

 0

 50000

 100000

 150000

 200000

 250000

 300000

5 10 15 20

T
h

ro
u

g
h

p
u

t
(t

u
p

le
s

 /
 s

e
c

)

Cluster size (worker nodes)

Transactional Wordcount
Sealed Wordcount

Figure 10: The effect of coordination on throughput for a Storm
topology computing a streaming wordcount.

8.2 Ad reporting
To compare the performance of the sealing and ordering coordina-

tion strategies, we conducted a series of experiments using a Bloom
implementation of the complete ad tracking network introduced in
Section 1.3. For ad servers, which simply generate click logs and
forward them to reporting servers, we used 10 micro instances. We
created 3 reporting servers using medium instances. Our Zookeeper
cluster consisted of 3 small instances. All instances were located
in the same AWS availability zone.

Ad servers generate a workload of 1000 log entries per server.
Servers batch messages, dispatching 50 click log messages at a
time, and sleeping periodically. During the workload, we also pose
a number of requests to the reporting servers, corresponding to
advertisements with entries in the click logs. The reporting servers
all implement the continuous query CAMPAIGN.

Although this system—implemented in the Bloom language prototype—
does not illustrate the numbers we would expect in a high-performance
implementation, we will see that it highlights some important rela-
tive patterns across different coordination strategies.

8.2.1 Baseline: No Coordination
For the first run, we do not enable the Blazes preprocessor. Thus

click logs and requests flow in an uncoordinated fashion to the re-
porting servers. The uncoordinated run provides a lower bound for
performance of appropriately coordinated implementations. How-
ever, it does not have the same semantics. We confirmed by observa-
tion that certain queries posed to multiple reporting server replicas
returned inconsistent results.

The line labeled “Uncoordinated” in Figures 11 and 12 shows
the log records processed over time for the uncoordinated run, for
systems with 5 and 10 ad servers, respectively.

8.2.2 Ordering Strategy
In the next run we enabled the Blazes preprocessor but did not

supply any input stream annotations. Blazes recognized the poten-
tial for inconsistent answers across replicas and synthesized a coor-
dination strategy based on ordering. By inserting calls to Zookeeper,
all click log entries and requests were delivered in the same order to
all replicas. The line labeled “Ordered” in Figures 11 and 12 plots
the records processed over time for this strategy.

The ordering strategy ruled out inconsistent answers from repli-
cas but incurred a significant performance penalty. Scaling up the
number of ad servers by a factor of two had little effect on the per-
formance of the uncoordinated implementation, but increased the
processing time in the coordinated run by a factor of three.

8.2.3 Sealing Strategies

10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250

P
ro

c
e

s
s

e
d

 l
o

g
 r

e
c

o
rd

s

Runtime (sec)

Uncoordinated
Ordered

Independent Seal
Seal

Figure 11: Log records processed over time, 5 ad servers

For the last experiments we provided the input annotation Sealcampaign

and embedded punctuations in the ad click stream indicating when
there would be no further log records for a particular campaign.
Recognizing the compatibility between a stream sealed in this fash-
ion and the aggregate query in CAMPAIGN (a “group-by” on id,
campaign), Blazes synthesized a seal-based coordination strategy
that delays answers for a particular campaign until that campaign is
fully determined.

Using the seal-based strategy, reporting servers do not need to
wait until events are globally ordered before processing them. In-
stead, events are processed as soon as a reporting server can de-
termine that they belong to a partition that is sealed. After each
ad server forwards its final click record for a given campaign to
the replicated reporting servers, it sends a seal message for that
campaign, which contains a digest of the set of click messages it
generated. The reporting servers use Zookeeper to determine the
set of ad servers responsible for each campaign. When a reporting
server has received seal messages from all producers for a given
campaign, it compares the buffered click records to the seal digest(s);
if they match, it emits the partition for processing.

Figures 11 and 12 compare the performance of seal-based strate-
gies to ordered and uncoordinated runs. We plot two topologies:
“Independent seal” corresponds to a partitioning in which each cam-
paign is mastered at exactly one adserver, while in “Seal,” all ad
servers produce click records for all campaigns. Note that both runs
that used seals closely track the performance of the uncoordinated
run; doubling the number of ad servers has little effect on the system
throughput.

Figure 13 plots the 10-server run but omits the ordering strategy,
to highlight the differences between the two seal-based topologies.
As we would expect, “independent seals” result in executions with
slightly lower latencies because reporting servers may process parti-
tions as soon as a single seal message appears (since each partition
has a single producer). By contrast, the step-like shape of the non-
independent seal strategy reflects the fact that reporting servers delay
processing input partitions until they have received a seal record
from every producer. Partitioning the data across ad servers so
as to place advertisement content close to consumers (i.e., parti-
tioning by ad id) caused campaigns to be spread across ad servers.
This partitioning conflicted with the coordination strategy, which
would have performed better had it associated each campaign with
a unique producer. We revisit the notion of “coordination locality”
in Section 10.

9. RELATED WORK
Our approach to automatically coordinating distributed services

draws inspiration from the literature on both distributed systems and
databases. Ensuring consistent replica state by establishing a total

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600 700

P
ro

c
e

s
s

e
d

 l
o

g
 r

e
c

o
rd

s

Runtime (sec)

Uncoordinated
Ordered

Independent Seal
Seal

Figure 12: Log records processed over time, 10 ad servers

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120

P
ro

c
e

s
s

e
d

 l
o

g
 r

e
c

o
rd

s

Runtime (sec)

Uncoordinated
Independent Seal

Seal

Figure 13: Seal-based strategies, 10 ad servers

order of message delivery is the technique adopted by state machine
replication [18]; each component implements a deterministic state
machine, and a global coordination service such as atomic broadcast
or Multipaxos decides the message order.

In the context of Dedalus, Marczak et al. draw a connection
between stratified evaluation of conventional logic programming
languages and distributed protocols to ensure consistency [16]. They
describe a program rewrite that ensures deterministic executions by
preventing any node from performing a nonmonotonic operation
until that operation’s inputs are “determined.” Agents processing
or contributing to a distributed relation carry out a voting-based
protocol to agree when the contents of the relation are completely
determined. This rewrite—essentially a restricted version of the
sealing construct defined in this paper—treats entire input collec-
tions as sealable partitions, and hence is not defined for unbounded
input relations.

Commutativity of concurrent operations is a subject of interest
for parallel as well as distributed programming languages. Commu-
tativity analysis [17] uses symbolic analysis to test whether different
method-invocation orders always lead to the same result; when they
do, lock-free parallel executions are possible. λpar [11] is a paral-
lel functional language in which program state is constrained to
grow according to a partial order and queries are restricted, enabling
the creation of programs that are “deterministic by construction.”
CRDTs [19] are convergent replicated data structures; any CRDT
could be treated as a dataflow component annotated as CW.

Like reactive distributed systems, streaming databases [1, 3, 7]
must operate over unbounded inputs—we have borrowed much of
our stream formalism from this tradition. The CQL language dis-
tinguishes between monotonic and nonmonotonic operations; the
former support efficient strategies for converting between streams
and relations due to their pipelineability. The Aurora system also dis-
tinguishes between “order-agnostic” and “order-sensitive” relational
operators.

11

Similarly to our work, the Gemini system [13] attempts to ef-
ficiently and correctly evaluate a workload with heterogeneous
consistency requirements, taking advantage of cheaper strategies
for operations that require only weak orderings. They define a
novel consistency model called RedBlue consistency, which guar-
antees convergence of replica state without enforcing determinism
of queries or updates. By contrast, Blazes makes guarantees about
composed services, which requires reasoning about the properties
of streams as well as component state.

10. CONCLUSIONS
Blazes allows programmers to avoid the burden of deciding when

and how to use the (precious) resource of distributed coordination.
With this difficulty out of the way, the programmer may focus their
insight on other difficult problems, such as placement—both the
physical placement of data and the logical placement of components.

Rules of thumb regarding data placement strategies typically
involve predicting patterns of access that exhibit spatial and temporal
locality; data items that are accessed together should be near one
another, and data items accessed frequently should be cached. Our
discussion of Blazes, particularly the evaluation of different seal-
based strategies in Section 8.2.3, hints that access patterns are only
part of the picture: because the dominant cost in large-scale systems
is distributed coordination, we must also consider coordination
locality—a rough measure being the number of nodes that must
communicate to deterministically process a segment of data. If
coordination locality is in conflict with spatial locality (e.g., the
non-independent partitioning strategy that clusters ads likely to be
served together at the cost of distributing campaigns across multiple
nodes), problems emerge.

Given a dataflow of components, Blazes determines the need
for (and appropriately applies) coordination. But was it the right
dataflow? We might wish to ask whether a different logical dataflow
that produces the same output supports cheaper coordination strate-
gies. Some design patterns emerge from our discussion. The first
is that, when possible, replication should be placed upstream of
confluent components. Since they are tolerant of all import orders,
weak and inexpensive replication strategies (like gossip) are suffi-
cient to ensure confluent outputs. Similarly, caches should be placed
downstream of confluent components. Since such components never
retract outputs, simple, append-only caching logic may be used.5

More challenging and compelling is the possibility of again pushing
these design principles into a compiler and automatically rewriting
dataflows.

11. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. B.
Zdonik. Aurora: a New Model and Architecture for Data
Stream Management. VLDB Journal, 12(2):120–139, Aug.
2003.

[2] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak.
Consistency Analysis in Bloom: a CALM and Collected
Approach. In CIDR, 2011.

[3] A. Arasu, S. Babu, and J. Widom. The CQL Continuous
Query Language: Semantic Foundations and Query Execution.
VLDB Journal, 15(2), June 2006.

[4] M. Balazinska, J.-H. Hwang, and M. A. Shah. Fault-Tolerance
and High Availability in Data Stream Management Systems.

5Distributed garbage collection, based on sealing, is an avenue of
future research.

In L. Liu and M. T. Özsu, editors, Encyclopedia of Database
Systems, pages 1109–1115. Springer US.

[5] K. Birman, G. Chockler, and R. van Renesse. Toward a Cloud
Computing Research Agenda. SIGACT News, 40(2):68–80,
June 2009.

[6] E. Brewer. CAP Twelve Years Later: How the "Rules" Have
Changed. IEEE Computer, 45:23–29, 2012.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,
V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR, 2003.

[8] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and
D. Maier. Logic and Lattices for Distributed Programming. In
SoCC, 2012.

[9] J. M. Hellerstein. The Declarative Imperative: Experiences
and conjectures in distributed logic. SIGMOD Record,
39(1):5–19, 2010.

[10] G. Kahn. The semantics of a simple language for parallel
programming. In J. L. Rosenfeld, editor, Information
processing, pages 471–475, Stockholm, Sweden, Aug 1974.
North Holland, Amsterdam.

[11] L. Kuper and R. R. Newton. A Lattice-Theoretical Approach
to Deterministic Parallelism with Shared State. Technical
Report TR702, Indiana University, Oct. 2012.

[12] J. Leibiusky, G. Eisbruch, and D. Simonassi. Getting Started
with Storm - Continuous Streaming Computation with
Twitter’s Cluster Technology. O’Reilly, 2012.

[13] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making Geo-replicated Systems Fast as
Possible, Consistent when Necessary. In OSDI, 2012.

[14] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and
D. Maier. Out-of-order Processing: a New Architecture for
High-performance Stream Systems. PVLDB, 1(1):274–288,
2008.

[15] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
Implications of Data Dependencies. ACM Transactions on
Database Systems, 4:455–469, 1979.

[16] W. R. Marczak, P. Alvaro, N. Conway, J. M. Hellerstein, and
D. Maier. Confluence Analysis for Distributed Programs: A
Model-Theoretic Approach. In Datalog 2.0, 2012.

[17] M. C. Rinard and P. C. Diniz. Commutativity Analysis: a New
Analysis Technique for Parallelizing Compilers. ACM Trans.
Program. Lang. Syst., 19(6):942–991, Nov. 1997.

[18] F. B. Schneider. Implementing Fault-tolerant Services Using
the State Machine Approach: a Tutorial. ACM Comput. Surv.,
22(4), Dec. 1990.

[19] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A
comprehensive study of Convergent and Commutative
Replicated Data Types. Research report, INRIA, 2011.

[20] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
Punctuation Semantics in Continuous Data Streams. TKDE,
15(3):555–568, 2003.

[21] J. D. Ullman. Principles of Database and Knowledge-Base
Systems: Volume II: The New Technologies. W. H. Freeman &
Co., 1990.

[22] W. Vogels. Eventually Consistent. CACM, 52(1):40–44, Jan.
2009.

[23] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized Streams: an Efficient and Fault-tolerant Model for
Stream Processing on Large Clusters. In HotCloud, 2012.

12

