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Abstract

Eliciting Private Information from Selfish Agents

by

Rafael M. Frongillo

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christos Papadimitriou, Chair

Ever since the Internet opened the floodgates to millions of users, each looking after their
own interests, modern algorithm design has needed to be increasingly robust to strategic
manipulation. Often, it is the inputs to these algorithms which are provided by strategic
agents, who may lie for their own benefit, necessitating the design of algorithms which
incentivize the truthful revelation of private information – but how can this be done? This is a
fundamental question with answers from many disciplines, from mechanism design to scoring
rules and prediction markets. Each domain has its own model with its own assumptions, yet
all seek schemes to gather private information from selfish agents, by leveraging incentives.
Together, we refer to such models as elicitation.

This dissertation unifies and advances the theory of incentivized information elicitation.
Using tools from convex analysis, we introduce a new model of elicitation with a matching
characterization theorem which together encompass mechanism design, scoring rules, pre-
diction markets, and other models. This lays a firm foundation on which the rest of the
dissertation is built.

It is natural to consider a setting where agents report some alternate representation of
their private information, called a property, rather than reporting it directly. We extend
our model and characterization to this setting, revealing even deeper ties to convex analysis
and convex duality, and we use these connections to prove new results for linear, smooth
nonlinear, and finite-valued properties. Exploring the linear case further, we show a new
four-fold equivalence between scoring rules, prediction markets, Bregman divergences, and
generalized exponential families.

Applied to mechanism design, our framework offers a new perspective. By focusing on
the (convex) consumer surplus function, we simplify a number of existing results, from the
classic revenue equivalence theorem, to more recent characterizations of mechanism imple-
mentability.

Finally, we follow a line of research on the interpretation of prediction markets, relating
a new stochastic framework to the classic Walrasian equilibrium and to stochastic mirror
descent, thereby strengthening ties between prediction markets and machine learning.
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Chapter 1

Introduction

Information is the currency of our age. Entire occupations and disciplines are devoted to
creating, distributing, and exchanging information — and this information economy, run on
the platform of the internet, has become the nervous system of our civilization. Of course,
this nervous system is comprised of many different agents, often algorithmic, and it is a
natural question to ask how this information is, and should be, traded and exchanged in this
strategic environment. In other words, if information is a currency, how should we design
the currency exchange?

The field of algorithmic economics, also called algorithmic game theory, has a natural
vantage point to answer this question. This dissertation embraces this algorithmic and
economic perspective, and focuses on the one-sided exchange of information, that is, the
exchange of privately-held information for another currency or commodity.

Unlike most currencies, however, information is not always verifiable. Your bank will
confirm the amount of money received, but how would you know how accurate a weather
forecast is? It is easy to see that without any external signals, accuracy of information
is entirely subjective. To regain objectivity, we will make use of the fact that agents are
strategic, and will behave in such a way as to maximize their own welfare. This basic
economic model of behavior will let us leverage the incentives of the agent, to ensure honest
reports. This is what we mean by elicitation — the study of mechanisms to incentivize the
truthful reporting of private information by selfish agents.

This dissertation studies elicitation from a theoretical perspective, with an eye toward
characterization. That is, we seek to determine exactly when and how elicitation schemes
work. Our study spans many different models and settings, but for the most part we focus
our attention on three core models: scoring rules, prediction markets, and mechanism design.

By and large, we will find that a unified study of an elicitation is not only possible, but
fruitful. Armed with tools from convex analysis, our main result is a general model and
characterization theorem which covers all three of these core models. From there, we explore
the intricacies of each domain, focusing on more nuanced characterizations and highlighting
deep connections among the models and to machine learning, geometry, statistics, and other
domains.
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After some nontechnical motivation in §1.1, we introduce the three core models in §1.2.
We will motivate our focus on characterizations in §1.3, followed by a more thorough overview
of our results in §1.4.

1.1 A tale of two elicitations

We begin with a pair of whimsical parables to motivate our study, hoping to convey both
the diversity and importance of elicitation models. The strictly technically-minded reader
may wish to skip straight to the literature review in §1.2.

1.1.1 When it rains, it pours doesn’t rain

Meteorology is hardly a dry subject in the state of New York. After a successful career leading
a weather station in Ithaca, NY, our protagonist Marguerite found herself overseeing all 23
weather stations in the state. Her primary responsibility was now to ensure the accuracy
of weather reports throughout the state. Being particularly interested in precipitation, she
instructed all stations to forecast, among their other predictions, the likelihood of rain p ∈
[0, 1] and the amount of rainfall r ∈ R+ in inches.1

After a few weeks, Marguerite took a look at forecasts given under her watch thus far,
comparing them to what weather was actually recorded. To her dismay, while some station-
masters appeared to be doing their job, others were clearly not putting in as much effort
to make accurate predictions, some reporting apparently at random, and others issuing the
same forecast each day despite wildly changing conditions. And after some thought, she
realized, why would the stationmasters put in the effort? They were being paid to issue
forecasts, but they had no skin in the game; their accuracy was not being enforced or even
evaluated in any way.

Well, no more. Marguerite had a brilliant idea: make the salaries of the stationmasters
depend on the accuracy of their reports! Excited to try out her new plan, she informed all
23 stationmasters that 50% of their salary would be fixed, but the other 50% would be a
function of how accurate their reports were, particularly with regard to precipitation. As soon
as she had made the announcement, however, Marguerite realized that she needed to come
up with a way to quantify the accuracy. Not thinking much of it, and without announcing
her choice, she settled on a simple daily score: $50 times the reported probability of what
actually happened (i.e. $50 · p if it rains and $50 · (1− p) otherwise), plus a bonus $30 if the
rainfall r was within 0.1 inches of being correct. More precisely, the score would be

$50 · (p1{rain}+ (1− p)1{no rain}) + $30 · 1{|r − r∗| < 0.1},

where 1 is the indicator, and r∗ is the actual rainfall value.
At first, the plan worked phenominally. Reports were more accurate than ever, and every-

one seemed to be putting much more energy and effort into their predictions. When payday

1We will say “rain” to refer to any type of precipitation.
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arrived, however, several stationmasters were enraged by their salaries, and demanded to
know exactly how Marguerite was calculating the accuracy. She obliged and announced her
formula to all, quelling the upset.

Unfortunately for Marguerite, the next month did not bode as well. After receiving
numerous complaints from citizens about the weather reporting, she took a look at the
forecast history once again. What she found surprised her. Not only were the reports bad,
they were substantially worse than before. And even the top meteorologists were botching
their forecasts. After examining the data, she noticed some peculiar patterns. The first was
that, except for the first few days after her announcement, nearly all probabilistic forecasts
were either 0 or 1 — that is, everyone was reporting with complete certainty whether or not
it would rain. The second pattern was even more shocking: almost a third of the “100%
chance of rain” forecasts were accompanied by a projection of 0 inches of rainfall.

After discussing with colleagues, who were equally confused, Marguerite decided it must
be her scoring mechanism. She did a little research and discovered that a more common
way to evaluate rainfall forecasts was to use the relative error, or RE(r, r∗) = |(r − r∗)/r|.
Satisfied, she announced the change of the rainfall bonus from $30 · 1{|r − r∗| < 0.1} to
$30 · (1 − RE(r, r∗)), thus rewarding smaller relative errors. (Note that this may yield a
negative rainfall bonus if the reported rainfall is orders of magnitude too low, in which case
stationmasters would lose money.) To her relief, the rainfall estimates improved, but a few
weeks later she began getting calls about even more preposterous forecasts: stations were
reporting a 0% chance of rain with almost 2 inches of rainfall!

Exasperated, Marguerite was determined to solve the mystery of these bogus forecasts.
Comparing the data from each of the three months, she finally figured out what was going
on. Starting with the probabilities, she put herself in the stationmasters’ shoes and imagined
that she thought rain was 20% likely. Given that she would be paid $50 · p if rain occured,
and $50 · (1− p) otherwise, it is clear that on average she is better off forgetting about the
rain and reporting p = 0; this gives an average of $40, which certainly beats the average
of $50 · ((0.2)2 + (0.8)2) = $50 · 0.68 = $34 for reporting her actual belief. In general,
Marguerite’s “linear score” was incentivizing the stationmasters to put all weight on one of
the two extremes.

Similar thinking told her that the first rainfall bonus $30 · 1{|r − r∗| < 0.1} would
be optimized by reporting the mode2 of one’s rainfall distribution, while the second bonus
$30 ·(1−RE(r, r∗)) would yield a skewed median, favoring much higher values. This explains
why forecasters would report such bizarre combinations of forecasts: if one’s belief about the
rainfall were highly uncertain, the mode could be 0 while the total mass of r > 0 could be
above 0.5, and the first bonus would yield forecast “rain but no rainfall”; if a heavy storm
were possible but unlikely, the second bonus would incentivize the report “heavy rainfall but
no rain.” See Figure 1.1 for an illustration.

Glad to have solved the mystery, Marguerite used her line of reasoning to search for a
better scoring rule. How could she design a score whose incentives led to good forecasting?

2The mode of a distribution is the value with highest probability density.
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Figure 1.1: Two beliefs about rainfall values, represented here as probability measures (the
dot in (b) is a point mass on the value 0). Under the first rainfall bonus, belief (a) would
yield the report “rain but no rainfall,” while under the second rainfall bonus, belief (b) would
yield “rainfall but no rain.”

It was then that she remembered something her old friend Carl Friedrich Gauss taught her:
the minimizer of (x − y)2 on average over x is simply y. Inspired, she changed both scores
accordingly, yielding the new daily score of $100−$50·(p−1{rain})2−$30(r−r∗)2, and as she
easily verified, the score is maximized by forecasting one’s true belief about the occurrence
of rain, and one’s mean belief about the rainfall. And thus it was that rain forecasts for New
York became so impeccably accurate.

1.1.2 Of rice and men

Ed was never terribly prone to charity, but he also hated rice. So when he accidentally
entered, and won, a raffle for lifetime monthly shipments of 40 bushels of rice, he decided it
was time to do a little good for the world. He happened to live a 20-minute drive from a
poor village. His calling was clear: each month, when the bushels arrived, go to the village
and distribute the rice.

April. After a warm greeting by the villagers, Ed explained that he wanted the rice to go
to those who were struggling most, and proceeded to ask each family how much rice they
would need for the next month. Tallying all of the numbers, he found the total demand from
the village to be 80 bushels, double his supply. To be equitable, he halved each request,
distributed the rice accordingly, and returned home.
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May. To be sure that he was continuing to serve the needs of the villagers, Ed once again
asked for each family’s needs for the month of May. To his surprise, everyone was in greater
need, so that in total the village needed 160 bushels. Ed nevertheless distributed the rice
proportionally, feeling slightly concerned that his rice would not go as far. Upon leaving he
announced that next time, due to his limited supply, no single family could request more
than a bushel.

June. When every family requested a bushel, Ed was hardly shocked, but what did surprise
him was how many new families had emerged — and no family was larger than 2 people!
Surely familial schisms on such a massive scale could not be coincidental. After again
distributing his rice proportionally, indeed completely evenly this time, Ed started thinking
a bit more about what had transpired.

Clearly, he had failed to recognize that the families might be strategizing instead of blindly
telling him the truth. In May, villagers must have realized that his proportional distribution
meant that in order to get their request, they had to overshoot their needs. In June, they
got even more creative and divided their families up so that each “real” family would have
a higher relative share. Despite Ed’s efforts to distribute the rice according to the needs of
the villagers, the data he was getting from them were essentially meaningless.

Ed needed a way to make honesty in the best interests of the villagers, but how? Then it
dawned on him that instead of fighting their clearly excellent ability to strategize, he could
use it to his advantage. Inspired, he devised a new plan.

July. Armed with a calculator and feeling clever, Ed returned to the village and announced
his scheme. Each family would tell him 10 numbers, their value in dollars for each additional
fifth of a bushel. Then, he would give out the rice to maximize the total value of the
villagers, and additionally, he would pay each family an amount equal to what the other
families valued their allotment. For example, if Ed had just 2 bushels and families A, B, and
C reported values (in USD) of vA = [12, 12, 12, 12, 0, 0, 0, 0, 0, 0], vB = [4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
and vC = [34, 21, 13, 8, 5, 3, 2, 1, 1, 0], then the optimal allotment would be 4/5 of a bushel to
A, 1/5 of a bushel to B, and 1 bushel to C; the families value these allotments respectively
at $48, $4, and $81, so the payments would then be pA = $85, pB = $129, and pC = $52.
The villagers readily agreed to this plan, and thankfully they provided Ed with much more
reasonable answers this time. Once all the numbers were collected, he set to work calculating
the rice shares and corresponding payments.

At sunset, Ed realized that his calculator was not up for the task — to figure out the
workloads, he needed to compute nearly a million intermediate values. Instead, he made up
some plausible numbers for the rice, and then readily computed the payments. On his way
home, being exhausted and $1542 poorer himself, Ed vowed to simply drop off the rice next
time and let these clever villagers figure out how to distribute it themselves.
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1.1.3 Discussion

These parables show the diversity of elicitation models, and give a flavor of the challenges
that arise in designing schemes to incentivize honesty. The first motivates the study of
scoring rules, which we introduce in § 1.2.1, and illustrates how challenging it can be to
assess forecasts; indeed, all scoring functions mentioned have actually been used in practice,
and the relative error is still in use [50]. While some of the difficulty Marguerite faced came
from an ill-specified notion of an “accurate report,” the basic problem was the lack of a
calibrated score — she wanted honest and accurate forecasts to give the maximum average
score. We will see many variants of this model throughout the dissertation.

The second parable addresses a problem in mechanism design, a branch of microeconomic
theory. Specifically, Ed was trying to implement a multi-unit auction, having multiple bushels
of rice and wishing to “auction” them off to the villagers. His June attempt suffered from
a lack of sybil-proofness, meaning that agents had an incentive to split their identity into
several copies; we will not address such concerns in this dissertation, though in practice this
is a very important consideration especially in computational settings. The scheme from
July is the most sophisticated, and is called the VCG mechanism; see §1.2.3.

Unfortunately, as Ed saw, his July scheme suffered from two problems: a high imple-
mentation cost, and computational intractability. The first problem is actually easy to fix;
in addition to receiving cash equal to the value of the rice everyone else received, Ed could
have had each family f provide labor (e.g. work in his orchard) a number of hours equiva-
lent to the value of what everyone would have gotten had f not even participated to begin
with. Returning to the example above, at a labor cost of $10/hour, this would yield la-
bor amounts of LA = (pA + 16)/10 = 10.1 hours, LB = (pB + 3)/10 = 13.2 hours, and
LC = (pC + 20)/10 = 7.2 hours. This payment and rebate scheme is called the Clarke pivot
rule (Clarke is the ‘C’ in ‘VCG’). Note that as the amount of labor for family f does not
depend on the reports of f , the scheme is still truthful. Moreover, Ed actually stands to
gain in the transaction, as net payments to villagers (pf − 10Lf ) are non-positive. For the
computational intractability, Ed should have familiarized himself with recent approxima-
tion results in algorithmic mechanism design; for example, Dobzinski and Nisan [40] give an
efficient mechanism which is truthful and which approximates the optimal rice distribution.

1.2 The literature on elicitation

1.2.1 Scoring rules

Many authors point to the paper of Glenn W. Brier [26] as the earliest mention of what we
now call a proper scoring rule, or a proper loss in machine learning.3 The paper, published
in 1950 in the Monthly Weather Review, observed that verifying probability forecasts can

3In this dissertation, we will use gains rather than losses, but all results pertaining to scoring rules hold
equivalently for proper losses as well.
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be challenging, and proposed a tool, now known as the Brier score, to measure predictions
once an outcome is known. It is instructive to quote directly from Brier, to get a sense of
his approach:

“
Suppose that on each of n occasions an event can occur in only one of
r possible classes or categories and on one such occasion, i, the fore-
cast probabilities are fi1, fi2, . . . , fir, that the event will occur in classes
1, 2, . . . , r respectively. The r classes are chosen to be mutually exclusive
and exhaustive so that

r∑
j=1

fij = 1, i = 1, 2, 3, . . . , n

A number of interesting observations can be made about a vertification
score P defined by

P =
1

n

r∑
j=1

n∑
i=1

(fij − Eij)2 (1.1)

where Eij, takes the value 1 or 0 according to whether the event occurred
in class j or not. ”One such interesting observation, as Brier points out, is that if pj is the actual frequency

of the event Eij over i, then pj will minimize the score P . (Of course, in the modern
formulation agents seek to maximize their score, which just amounts to negating P .) This
“calibration” property, that the optimal forecast is equal to the actual frequency, is what we
mean when we say a scoring rule is proper.

In its simplest incarnation, a scoring rule is simply a function S(·, ·) taking two inputs,
a probability forecast p̂ and an outcome x from some set of outcomes. The scoring rule is
proper if it is calibrated in the sense that if x is sampled according to some “true” distribution
p then for any p̂

Ep[S(p, x)] ≥ Ep[S(p̂, x)].

In other words, the forecaster maximizes the expected value of S by reporting the true
distribution.4

One of the most well-known examples is the logarithmic scoring rule defined by S(p, x) :=
log p(x), which was introduced in 1952 by I.J. Good in an independent study [52]. One can
check that once again the logarithmic score is proper, in that the expected score is maximized
when reporting the true distribution p.

4Interestingly, while propriety is a very natural condition for a scoring rule to have, and considered
necessary by some (cf. Gneiting [50]), it is quite common even today to encounter uncalibrated forecasts in
statistics, econometrics, meteorology, machine learning, and many other disciplines.
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Already in 1956, John McCarthy [71] observed the crucial role of convexity in this theory
of forecast scoring, noting that in some sense a scoring rule must be a derivative of a convex
function. In fact, the convex function is given by f(p) = S(p, p). He gives intuition for this
phenomenon as follows:

“
The intuitive content of the convexity restriction is that it is always a good
idea to look at the outcome of an experiment if it is free. For suppose
that the experiment has two outcomes, A and A∗, which would give one
probabilities p and p∗ for the event in question. Let t be the probability
that A is the outcome. If we decide not to look, our expectation is f(tp+
(1−t)p∗), while if we decide to look, our expectation is tf(p)+(1−t)f(p∗).”In other words, the agent has a prior belief over distributions, with weight t on p and 1− t

on p∗, so before the experiment, the belief about the outcome is simply p̂ = tp + (1 − t)p∗.
Not running the experiment gives an expected payout of tS(p̂, p)+(1− t)S(p̂, p∗) = S(p̂, p̂),
which our definition of f(p̂). If the agent decides to carry out the experiment, however, she
will know the distribution of the outcome with certainty; thus the expected post-experiment
score, as computed before the experiment, is tS(p, p) + (1 − t)S(p∗, p∗). Thus, if we want
the agent to have an incentive to perform this free experiment (i.e. to use all available
information), we must have f(p̂) ≥ tf(p) + (1 − t)f(p∗), meaning f must be a convex
function.

Building on McCarthy’s paper, in 1971 Leonard Savage published a very general treatise
on eliciting “personal probabilities,” i.e. subjective probability estimates, in what is widely
considered to be the seminal work on proper scoring rules [92]. He motivates his study by
the problem of eliciting an agent’s value for a commodity:

“
Suppose the experimenter offers, once and for all, to buy some of a com-
modity at each possible price—more accurately price rate—so much at
each rate. The subject will then have an incentive to satisfy the expressed
demands of the experimenter at all rates higher than the subject’s rate r
but not those at lower rates, thereby revealing r. ”That is, the experimenter proposes buying 1 unit of the commodity from the subject at

price $1000, another unit at $999, a third at $998, and so on until the reported value r is
reached. Clearly, the transaction is profitable to the subject while the rate is above her true
rate r, breaks even at r, and comes at a loss when the rate is below r; hence, the subject
will report truthfully. We will revisit this clever idea in §3.4.3.

Applying the above result to the problem of eliciting probabilities, and more generally
expectations of random variables, Savage argues (more explicitly than McCarthy, though
still not completely rigorously) that a proper scoring rule should have the form,

S(p, x) = J(p)− J ′(p) · (p− 1x), (1.2)
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where J(p) = S(p, p) is any strictly convex function and 1x is the indicator vector for x.
Savage goes on to give similar arguments that scoring rules for eliciting expectations should
have the same form (1.2).

Since Savage’s 1971 paper, there has been a vast and diverse array of research on the
subject of proper scoring rules and related or extended models. A recent line of research
focuses on eliciting statistics, or properties, of distributions; see § 3.1 and § 4.1 for more
background. On the general topic of scoring rules, Gneiting and Raftery [51] give a more
modern discussion, and extend and generalize many scoring rule characterizations in the
literature, concluding that a generalizaton of the form (1.2) is necessary and sufficient even
when working with probability measures on arbitrary measure spaces.

1.2.2 Prediction markets

In 1907, a contest was held at the annual show of the West of England Fat Stock and Poultry
Exhibition in Plymouth, to judge the weight of an ox. Each of roughly 800 participants
submitted an estimate, with the closest guesses winning prizes. After the fact, statistician
Francis Galton took a closer look at the estimates, and found to his surprise that while
each individual estimate was off by an average of roughly 3%, the median estimate was
accurate within 0.8% [48]. While Galton viewed this as support of democracy as a sensible
governing strategy, the general phenomenon that simple aggregations of estimates can yield
very accurate predictions is now commonly known as the wisdom of the crowd.

Markets, and particularly speculative markets, can be seen as carrying out such “ox-
weighing” contests every day. Traders buy and sell contracts directly linked to commodity,
and are in essence predicting its future price. Motivated by this, several markets, called
information markets or prediction markets, have arisen solely for the purpose of aggregating
information. These markets allow traders to buy and sell contracts amongst themselves
which are contingent on some future event or outcome. The contracts take a particular form,
called an Arrow-Debreu security, which pays off $1 if a given event occurs, and $0 otherwise.
A risk-neutral trader who thinks event A will happen with probability p(A) = 0.3 would
therefore stand to gain by buying the A security for any price less than $0.3, and by selling
for any price greater. Hence, the market price in some sense reflects the “consensus belief”
of the traders. (What precise sort of consensus belief one can glean from prediction market
prices is a matter of debate; see Chapter 6.)

Thin markets and scoring rules

While prediction markets tend to produce highly accurate forecasts [19, 69, 101], they are
not without problems. Aside from legal issues, prediction markets in this continuous double-
auction format can suffer from a thin market problem. That is, trading volume can be very
low, resulting in a wide buy-sell spread, i.e. a large discrepancy between the highest price
at which one can sell and the lowest price at which one can buy. In the extreme, the market
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may only have one trader who actually has information, and if everyone else is aware of their
own ignorance, no trade will occur, and the market price will be meaningless.

To circumvent the thin market problem, Hanson [56] proposed designing a prediction
market based on our old friend, the scoring rule. Instead of trading with each other, par-
ticipants would place bets with a central authority, known as a market maker, which would
continue to publish a joint forecast representing the “consensus hypothesis” of the market.

The framework itself is remarkably simple. The market maker publishes a proper scoring
rule S and an initial probability estimate p0. On each round t in a sequence, the current
consensus probability pt is posted, and any trader can place a bet by modifying the prob-
ability to any desired value pt+1. In the end, the true outcome x is revealed to the world,
each trader receives a (potentially negative) profit of

S(pt+1, x)−S(pt, x). (1.3)

Notice two facts about this framework: (a) if a trader at time t knows the true probability
p∗ then he always maximizes expected profit by setting pt+1 = p∗ and (b) because of the
telescoping sum, if pT is the final estimated probability then the market maker needs only
to pay out a total of S(p0, x)−S(pT , x). Hanson referred to this form of prediction market
as a market scoring rule and, when the logarithmic scoring rule from above is used, this was
called the Logarithmic Market Scoring Rule (LMSR).

Hanson’s prediction market framework, which requires traders to make probability es-
timates and judges them according to a scoring rule, does not fit into our typical under-
standing of betting or financial markets, which as we described above have parties buy and
sell contracts whose payoff is contingent on future outcomes. A natural question to ask
is whether we can convert the market scoring rule betting language, in which traders are
asked to directly report probability predictions, into one in which traders simply purchase
Arrow-Debreu securities at prices set by the market maker.

Surprisingly, Hanson [56] showed that one could in fact view the LMSR as doing ex-
actly this. Instead of asking for probabilities on events 1, 2, . . . , n, one can think of the
market maker as asking for trade requests on corresponding securities. When the prices for
these securities are adjusted very carefully in response to trades, the two settings would be
equivalent:

“
We can summarize all this by saying that each market scoring rule in
essence has a “net sales so far” vector s = {si}i, where each si says how
many units have been sold of assets of the form “Pays $1 if the state is
i.” The current unit price for a tiny amount of such an asset is pi, and
these prices change according to a price function p(s), which is in essence
a generalized inverse of the scoring rule function s(p). For example, for
the logarithmic scoring rule si(p) = ai + b log(pi), the price function is the
exponential

pi(s) =
e(si−ai)/b∑
k e

(sk−ak)/b
. (1.4)”
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Hence, in some sense, one can think of scores as being the securities themselves.
Is this just a cute trick using log and exp, or can this “securitization” be done for other

market scoring rules? In 2007, Chen and Pennock [33] showed that such a security-based
market is possible for a certain market scoring rules and proposed a market formulation
based on a cost function; we briefly sketch their framework here. As in Hanson’s reduction,
some future outcome i ∈ {1, . . . , n} will occur, and the market maker sells an Arrow-Debreu
security for each outcome. However, in this setting, the market maker is endowed with a
convex and differentiable cost function C : Rn → R. The framework is as follows:

· Contract j pays $1 if and only if outcome j occurs.

· The “quantity vector” qt ∈ Rn is posted at each time t, where qt = 0 ∈ Rn.

· At any point in time, a trader may purchase a “bundle” of shares described by r ∈ Rn
≥0;

that is, ri is the number of shares purchased for outcome i.

· The price for bundle r at time t is C(qt + r)− C(qt).

· After selling r to the trader, the market maker updates qt+1 ← qt + r.

· At the close of the market, some outcome i is revealed, and the market maker pays for
all the winning contracts, a total cost of qti .

Notice that the “current market price” is represented by the derivative∇C(q), since∇iC(q) is
the marginal cost of a tiny purchase of contract i. Thus, since the market prices in equilibrium
are the expected return of the contract, ∇C(q) should be the market’s probability vector. In
fact, to avoid arbitrage opportunities, the market maker must ensure that ∇C(q) is always
a distribution. Chen and Pennock [33] went on to show how to recover the LMSR using this
cost-function framework. If we take

C(q)
.
= b log

(∑
i

exp{(qi − ai)/b}

)
, (1.5)

for constants b ∈ R+, a ∈ Rn, then one can check that

∇iC(q) =
e(qi−ai)/b∑
k e

(qk−ak)/b
, (1.6)

thus recovering Hanson’s price function (1.4).

Larger outcome spaces

An important problem with the prediction market frameworks we have described thus far is
that they are not practical for large outcome spaces. Imagine a scenario where the outcome
is a combinatorial object, like the joint outcome of a single-elimination tournament with
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n teams. In the case of the market scoring rule, we must ask each participant to submit
beliefs in the form of an entire distribution over the outcome space, here containing 2n−1

outcomes. In the cost-function framework, the market maker is required to sell an Arrow-
Debreu security for each of these possible outcomes. Clearly neither of these will be feasible
for large n. One natural solution is to consider a small set of marginal probabilities, and
to have the betting language depend only on these values. It has been considered whether
a market maker can efficiently simulate LMSR pricing within this betting language, yet a
large number of these results have been negative [30, 29].

Abernethy et al. [1, 3] proposed a new framework for combinatorial prediction market
design which avoids some of these hardness issues. The idea is best explained by way of
example. Imagine a round-robin tournament which ends up with a (strict) ranking of all n
teams. Rather than have a single contract corresponding to each of the n! outcomes, a market
maker can sell only

(
n
2

)
contracts, one for each pair i, j corresponding to the predicate “does

team i rank higher than team j?” This is often called a complex or incomplete market, as the
traders can only express beliefs in this lower-dimensional contract space. Nevertheless, we

can still use a cost function C : R(n2) → R to price these contracts as we did in the complete

market setting. The market maker will maintain a quantity vector q ∈ R(n2), and will price a

bundle of contracts r ∈ R(n2) according to the rule C(q + r)−C(q). Given any final ranking

of the n teams, we can describe the payoffs of all contracts by some x ∈ {0, 1}(
n
2). The trader

who previously purchased bundle r will receive r · x.
In this setting, how ought we design C? Previously, in the complete market setting,

we noted that ∇C should always be a distribution. Abernethy et al. [1] showed that, in

a similar vein, C must have the property that {∇C(q) : q ∈ R(n2)} be the convex hull of
all payout vectors x over all the n! possible outcomes. Letting H denote this convex hull,
they construct C via conjugate duality (see [89, 95] and §3.3). If R is some strictly convex
function with domain H, then setting C(q)

.
= supx∈H x · q − R(x) is sufficient to guarantee

the desired properties of the market.

1.2.3 Mechanism design

The field of mechanism design is often considered the “engineering” side of economics. In-
stead of studying the economic properties and equilibria of an existing fixed system, here
one considers designing a system to have certain properties or equilibria. In other words, in
addition to the usual agents, we add an additional agent called the mechansim designer or
principal, whose strategies are the payoff matrices that the other agents will face. Our tour
of mechanism design will be brief, as our results pertaining to mechanism design in §2.3.1
and Chapter 5 are for the most part set in their historical context. Hence, we focus on a few
key ideas that are central to the field and will come up throughout the dissertation.

Generally speaking, the mechanism designer chooses a mechanism, which simply specifies
a mapping from the (simultanous) inputs of the agents to an outcome, often called the
allocation. Typically, we think of the designer as having some social goal which depends
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on some private information held by each agent, called the agent’s type. For example, in
a standard single-item auction, the designer may wish to give the item to the person who
values it the most, but cannot do this directly as the desired outcome depends on the agents’
private preferences.

To obtain the relevant information for her choice, the designer must leverage incentives
of the agents. That is, the designer must capitalize on the fact that agents have some
stake in the allocation; once chosen, the mechanism’s allocation translates to some utility
of each agent, called the valuation, which depends both on the allocation and the agent’s
private type. In most situations we will consider, part of this allocation is a debt of money,
called the payment to the mechanism, and it is common to make a quasi-linear assumption,
that an agents utility of some outcome and payment is the valuation of the outcome minus
the payment (see Definition 2.3). We will henceforth refer to the non-payment part of the
outcome of the mechanism as the allocation.

What the designer ultimately seeks then is a mechanism with two important properties:
(1) direct, meaning agents directly input a type to the mechanism, and (2) incentive com-
patible or truthful, in that it is in the best interest of each agent to report their true type.
While “best interest” is yet undefined, typically truthfulness means that no matter what the
other agents report, the remaining agent is no better off lying than reporting his true type.
Assuming then that each agent is rational, such a mechanism would provide the designer
with all relevant information to make her choice.

Do any truthful mechanisms exist? In fact, they are easy to construct. Suppose for sim-
plicity that there is just a single agent. For each outcome o ∈ O, choose some arbitrary price
p(o). Take each agent’s reported type θ as input, and select the outcome which maximizes
the agent’s total utility v(θ, o)− p(o), where v is the agent’s valuation function. Clearly, as
the mechanism is already optimizing on behalf of the agent, the agent can only hurt himself
by misreporting his type. Amazingly, the above scheme, suitably generalized to multiple
agents, describes every truthful direct mechanism (cf. [77]). It goes by many names—the
direct characterization, the taxation principle, or the menu auction—and will come up often
throughout the dissertation.

But what about the designer? In the above, we just saw how to gain the private in-
formation from the agents, but in mechanism design, unlike in scoring rules or prediction
markets, typically we are not collecting information for information’s sake, but to achieve
some goal of the designer which merely depends on this information. Thus, a central question
in mechanism design is that of implementability : given some allocation function f mapping
agents’ types to a desired outcome, is there a payment function p which when combined with
f yields a truthful mechanism?

As it turns out, if the designer is interested in optimizing social welfare, she is in luck:
any allocation rule which selects the outcome maximizing the (weighted) sum of agents’
valuations can be implemented. This is a classic result due to Vickrey [97], Clarke [37],
and Groves [53], called the VCG mechanism. The key insight is the form of the payments
making the social optimum truthful, which intuitively charge each agent his or her externality
imposed on the other agents — in other words, each agent i must pay the mechanism what
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i costs the other agents by simply participating. (See §1.1.2 for an example.) Surprisingly,
Roberts [85] showed that if the mechanism could potentially face agents with arbitrary
valuations, then (weighted) VCG mechanisms are the only truthful mechanisms.

As the direct characterization given above is often hard to work with when designing
mechanisms, much work in the field of mechanism design has been toward finding simpler
and more practical implementability conditions. The most famous one is due to Myerson [72],
which states that for a “single-parameter domain,” where types are real-valued, an allocation
function is implementable if and only if it is monotone for each agent. For example, when
auctioning off bushels of corn, the number of bushels allocated to an agent (fixing the reports
of all other agents) must be non-decreasing in the agent’s report. In higher dimensions, one
must appeal to more complicated versions of monotonicity, like cyclic monotonicity (CMON),
which Rochet [86] adapted from convex analysis (cf. Rockafellar [89]). We will explore these
generalizations of monotonicity in great detail in Chapter 5.

Once one has decided that an allocation rule is implementable, it of course remains to
find payments that render it truthful. Luckily, Myerson came to the rescue here as well, with
what is now called the revenue equivalence theorem: the payment rule is uniquely determined
up to a constant by the allocation rule. Note however that this “constant” may depend on
the reports of other agents. We will return to revenue equivalence in §5.3.

Finally, thus far we have considered only direct mechanisms, which raises the question:
can the designer gain something by asking agents something other than their raw type? The
answer turns out to be no. This is another classic result, called the revelation principle, due
to Gibbard [49] and later extended by Myerson [72, Lemma 1] and others [74]. The idea is
simple: if the input space were different from the type space, than any equilibrium of the
mechanism could be replicated by another mechanism which took the agents’ actual types
and selected the optimal report in the original mechanism. Hence, without loss of generality,
one can consider only direct mechanisms. The revelation principle will come up several times
in Chapter 3, where we extend our model to accept reports from an alternate space.

1.3 The importance of being characterized

The central focus of this dissertation is that of characterization: given a particular setting,
what are all truthful elicitation schemes or mechanisms? Of course, this is but one of many
questions one could ask, yet we deem this question the most fundamental and fruitful, for
reasons we now motivate.

1.3.1 Conceptual

We wish to characterize elicitation models in part because we seek deeper understanding of
what it means to be truthful. Can we paraphrase the raw truthfulness constraints in a way
that more clearly illuminates what can and cannot be done? Can we cast elicitation in a
light that enables new insights and intuition? In fact, we attempt just that by appealing to
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the geometric language of convex analysis. We will put this geometric perspective to use in
Chapter 3, and to a lesser extent Chapters 4 and 5.

Beyond building intuition and constructing useful representations, we wish to see the
relationships among the different models. Scoring rules and prediction markets both elicit
probabilistic information from agents, yet seem to take wildly different approaches to doing
so — are these models related in any way, and if so, how? Are scoring rules more or less
expressive than prediction markets? Using characterizations for each model, we will answer
these questions and more in Chapter 4. We also explore connections between scoring rules
and mechanism design in Chapter 2.

1.3.2 Aligning incentives

Another reason to characterize is to account for what happens off the beaten path of Nash
equilibrium. While we often assume that agents will follow their own interests, the precise
incentives leading them there matter. One reason is that our models are imperfect: we
cannot hope to capture all incentives confronting an agent, or that agents will be perfectly
rational, and in these cases, we may want to make sure that the magnitude of the incentives
is strong enough to (mostly) counteract such errors (see e.g. [45]). In this subsection we
focus on another situation, when the principal herself is aquiring information merely as a
means to an end; she has her own utility function over outcomes of the mechanism or over
the information gathered, and wants to align the incentives of the elicitation to match her
own stake in the game.

Characterizations play a big role when reasoning about all payoffs at once, both in and out
of equilibrium. We would not be content with a single elicitation scheme which guarantees
that the agent will be truthful in equilibrium; rather, we would like to look at all possible
schemes, which by definition yield the same equilibrium behavior, and select the one whose
entire incentive structure fits best with our goals. For example, suppose it costs an agent $1
to provide each bit of accuracy; then if L(r′, r) is the cost of the report r′ to the principal
when the correct report is r, the principal may want to encode her own incentives in the
payoffs of the mechanism itself, to offset the cost to the agents for the desired accuracy. But
for which L can this be done? A characterization is exactly what we need to answer this
question.

To illustrate the importance of aligning incentives, we give a third parable, motivated by
a well-known problem in information theory.

Case study: compressing a data stream

Imagine a firm is looking to do compression on an unfamiliar channel, and from this channel
the firm will receive a stream of m characters from an n-sized alphabet which we will index
by [n]. The goal is to select a binary encoding of this alphabet to minimize the total bits
required to store the data, as a cost of $1 is required for each bit.
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A first-order approach to encode such a stream is to assign a probability distribution
p ∈ ∆n to the alphabet, and to select an encoding of character i with a binary word of
length log(1/p(i)) (we ignore round-off for simplicity). This can be achieved using Huffman
Codes for example, and we refer the reader to Cover and Thomas ([38, §5]) for more details.
Thus, given a distribution p, the firm pays L(p; i) = − log p(i) for each character i. It is
easy to see that if the characters are sampled from some “true” distribution p∗, then the
expected cost L(p; p∗) := Ei∼p [L(p; i)] = KL(p∗; p) + H(p∗), which is minimized at p = p∗.
Not knowing the true distribution p∗, the firm is thus interested in finding a p with a low
expected cost L(p; p∗).

An attractive option available to the firm is to crowdsource the task of lowering this cost
L(·; ·) by setting up a prediction market. It is reasonably likely that outside individuals have
private information about the behavior of the channel and, in particular, may be able to
provide a better estimate p of the true distribution of the characters in the channel. As just
discussed, the better the estimate the cheaper the compression.

The firm takes the automated prediction market maker approach, as introduced in §1.2.2.
The firm announces that it will select a character from the stream uniformly at random, and
offers to buy or sell securities, one for each character i of the stream alphabet, which pay
out $1 if i is selected and $0 otherwise. For the cost function C, the firm chooses the LMSR,
namely C(q) = log

∑n
i=1 exp(qi).

We have devised this payout scheme according to the selection of a single character i,
and it is worth noting that because this character is sampled uniformly at random from
the stream (with private randomness), the participants cannot know which character will
be released. This forces the participants to wager on the empirical distribution p̂ of the
characters from the stream. While this approach has a high variance in the payout, the firm
can lower the variance by averaging the payout over all, or a large subset, of the stream.
That is, by paying out a 1/k fraction for each of k i.i.d. samples of the stream. Given the
above the discussion, the firm sets the initial share vector q0 so that the prices reflect the
firm’s guess at the stream’s empirical distribution, namely some p0 ∈ ∆n.

We may naturally wonder: how does this prediction market benefit the firm that wants
to design the encoding? More precisely, if the firm uses the final prices pT of the market,
instead of its initial guess p0, what is the trade-off between the money paid to participants
and the money gained by using the crowdsourced hypothesis? At first glance, it appears that
this trade-off can be arbitrarily bad: the worst case cost of encoding the stream using the
final estimate pT is supi,pT − log(pT (i)) = ∞. Amazingly, however, by virtue of the aligned
incentives, the firm has a very strong control of its total cost (the prediction market payout
cost plus the encoding cost). Suppose the firm scales the prediction market payouts by a
parameter α, to separate the scale of the market from the scale of the encoding cost (which
recall is $1 per bit). Then given any initial estimate p0 and final estimate pT , the expected
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total cost over p∗ is

Total expected cost =

Encoding cost of using pT given p∗︷ ︸︸ ︷
m (H(p∗) + KL(p∗; pT )) +

Total market payoff for getting advice pT︷ ︸︸ ︷
α (KL(p∗; p0)−KL(p∗; pT ))

= mH(p∗) + (m− α)KL(p∗; pT ) + αKL(p∗; p0)

Let us spend a moment to analyze the above expression. Imagine that the firm set
α = m, the total number of characters to be encoded. Then the total cost of the firm would
be m (H(p∗) + KL(p∗; p0)), which is bounded by m log n for p0 uniform. Notice that this
expression does not depend on pT – in fact, this cost precisely corresponds to the scenario
where the firm had not set up a prediction market and instead used the initial estimate p0 to
encode. In other words, for α = m, the firm is entirely neutral to the quality of the estimate
pT ; even if the market provided an estimate pT which performed significantly worse than p0,
the cost increase due to the bad choice of p is recouped by payments from the ill-informed
participants.

The firm may not want to be neutral to the estimate of the crowd, however, and under
the reasonable assumption that the final estimate pT will improve upon p0, the firm should
set 0 < α < 1 (of course, positivity is needed for nonzero payouts). In this case, the firm
will strictly gain by running the market when KL(p∗; pT ) < KL(p∗; p0), but still has some
insurance policy if the estimate pT is poor.

1.3.3 Impossibility

Characterizations are as much about what is possible as what is impossible. After convincing
ourselves that elicitation is possible in certain settings, we naturally begin to wonder what
the limitations are. What is the upper limit on what can be done?

Such questions are forefront in the field of algorithmic mechanism design, where compu-
tational hardness results have left researchers wondering when a mechanism can approximate
some desired outcome in a truthful way. Showing that in some cases one cannot achieve such
truthful approximations, however, requires a characterization. Roberts’ theorem (see §1.2.3)
and variants thereof are currently the main tools here, but characterizations in restricted
domains would allow us to draw the line of computational feasibility more precisely.

1.4 Overview and organization

We present our model of truthful elicitation in Chapter 2, and show that it generalizes and
extends both mechanisms and scoring rules, as well as several other models which have ap-
peared in the literature. Immediately we obtain results in both scoring rules and mechanism
design: a characterization of proper scoring rules for non-convex sets of distributions, and a
relaxation of an outcome compactness assumption needed by Archer and Kleinberg [7] for
allocation rules on non-convex type spaces.
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We then turn in Chapter 3 to analyzing situations where, rather than asking for an
agent’s type, we wish to elicit a simpler representation of it. In the scoring rules context,
this has been studied as the elicitation of properties or statistics of a distribution, such as
the mean or median [92, 65, 50]. In mechanism design, this is implicit in settings such as
matching, where a ranking over potential matches is elicited rather than the agent’s utility
for them. We extend our model to this setting, and develop a corresponding characterization
theorem which generalizes our main result. We find that in essence properties are nothing
more than subgradient mappings of convex functions in disguise, and use this insight to
develop very general results. For example, we easily see that if a set of types or distributions
has positive measure in its convex hull then then there is a unique value of the property
almost everywhere. Finally, in §3.3 we further explore notions of duality which stem from
convex duality, and in §3.4 provide novel characterizations for the finite-valued, linear, and
smooth nonlinear cases.

In Chapter 4 we put our property results to use, showing a strong four-way equivalence
between Bregman divergences, scoring rules for linear properties, incomplete prediction mar-
kets, and (generalized) exponential families. We show that each pair of these concepts has
its own interesting story, and explore these connections to give new insights; for example,
an incomplete prediction market can be expressed as a complete prediction market whose
prices are constrained to a generalized exponential family of distributions, whose statistic is
equal to the payoff function of the incomplete market.

We turn to mechanism design in Chapter 5, where we examine a number of charac-
terizations of when there exist payments that make a given allocation rule truthful. We
demonstrate the fundamental role of convexity in mechanism design by rephrasing these
results in terms of convex analysis, and instead of appealing to the commonly-used imple-
mentability condition known as cyclic monotonicity, we directly apply the condition of being
a subgradient. This yields substantially simpler and more constructive proofs. We go on to
demonstrate how the revenue equivalence theorem from mechanism design falls out almost
automatically from our characterization, and apply results for finite-valued properties to
produce a novel (non-)implementability check: in mechanisms which select among a finite
set of (allocation,payment) pairs, the sets of types that select each outcome are not just
polyhedral but form a power diagram.

We conclude in Chapter 6 with a study of the interpretation of prediction market prices.
Building on recent connections between prediction markets and learning, we show that the
standard automated market makers are in essence performing stochastic mirror descent when
trader demands are sequentially chosen at random from a fixed distribution. This provides
new insights into how market prices (and price paths) may be interpreted as a summary of the
market’s belief distribution, by relating them to the optimization problem being solved. In
particular, we show that under certain conditions, the stationary point of the stochastic price
process generated by the market is equal to the market’s Walrasian equilibrium from classic
market analysis. Together, these results suggest how traditional market making mechanisms
might be replaced with general purpose learning algorithms while still retaining guarantees
about their behavior.
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Chapter 2

Unifying elicitation via convex
analysis

In Chapter 1, we discussed several elicitation models and settings, where an agent has private
information and a mechanism wishes to extract the information via incentives. In this chapter
and the next, we introduce a new model of elicitaton which generalizes all of these settings
using tools from convex analysis. In our model, a single agent is endowed with some type t
that is private information and is asked to reveal it. After doing so, she receives a score that
depends on both her report t′ and her true type t.

For reasons that will become clear, we represent this as a function A(t′)(t) that maps
her reported type to a function that maps types to real numbers, with her score being this
function applied to her true type (equivalently her reported type selects from a parameterized
family of functions with the result applied to her true type). We allow A to be quite general,
with the main requirement being that A(t′)(·) is an affine1 function of the true type t, and
seek to understand when it is optimal for the agent to truthfully report her type. Given this
restriction, it is immediately clear why convexity plays a central role — when an agent’s
type is t, the score for telling the truth is A(t)(t) = supt′ A(t′)(t), which is a convex function
of t as the pointwise supremum of affine functions.

We first discuss the role of convexity in mechanisms, scoring rules, and prediction markets.
We then state our model and result, and show how many existing elicitation models are
special cases of our model.

2.1 Convexity in elicitation

Viewing our model as a mechanism, A(t′) can be thought of as the allocation and payment
given a report of t′, which combine to determine the utility of the agent as a function of her

1A mapping between two vector spaces is affine if it consists of a linear transformation followed by a
translation.
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type.2 In this context, A(t)(t) is the consumer surplus function, and Myerson’s well-known
characterization [72] states that, in single-parameter settings, a mechanism is truthful if and
only if the consumer surplus function is convex and its derivative (or subgradient at points
where it is not differentiable) is the allocation rule; we formalize this as Theorem 2.3. More
generally, this remains true in higher dimensions (cf. [7]). Note that here the restriction
that A(t′) be affine is without loss of generality, since we may consider types as functions
mapping an outcome to the agent’s utility for that outcome, and the evaluation of a type on
an outcome (or a distribution over outcomes) is affine in that type.

We may also view A as a scoring rule, where an agent is asked to predict the distribution
of a random variable and given a score based on the observed realization of that variable.
In this setting, types are distributions over outcomes, and A(t′)(t) is the agent’s expected
score for a report that the distribution is t′ when she believes the distribution is t. As an
expectation, this score is linear in the agent’s type, and hence affine.3

The role of convexity in the scoring rules literature dates back to 1956, when John
McCarthy [71] observed that scoring rules could be derived as a generalized derivative of a
convex function. This was clarified and extended by Savage in 1971, who showed explicitly
how to construct a scoring rule from a convex function (the negative of the Bayes risk
from decision theory) [92]. The general, modern characterization of scoring rules is due to
Gneiting and Raftery [51], who used a more nuanced convex analysis approach to clarify and
generalize a number of previous characterizations, including Savage [92] and Schervish [93].

We will see in Chapter 3 and Chapter 4 how prediction markets may be encorporated into
our model, but for now we merely underscore the role of convexity. As we saw in §1.2.2, the
now-standard automated prediction market model of Abernethy et al. [1] uses a convex cost
potential function C. In essence, this convexity enforces the same kind of monotonicity as in
mechanisms — the more a trader buys a particular contract, the higher the price becomes.
The convexity of C arises from an axiomatic approach, and is fundamental to the model.

The similarity between scoring rules and mechanism design was noted by Fiat et al. [45],
who gave a construction to convert mechanisms into scoring rules and vice versa. In this
chapter, we prove a general characterization, of which these characterizations of scoring rules
and mechanisms are special cases. Our proof is essentially a combination of Gneiting and
Raftery’s scoring rule construction [51] with a technique from Archer and Kleinberg [7] for
handling mechanisms with non-convex type spaces. Our characterization not only shows
how mechanisms and scoring rules relate to each other, but also provides an understanding
of how results about mechanisms relate to results about scoring rules and vice versa. In
particular, many results in each literature are fundamentally results in convex analysis, and
by phrasing them as such it is immediately clear how they apply in the other domain.

2It suffices to consider a single agent because notions of truthfulness such as dominant strategies and
Bayes-Nash are phrased in terms of holding the behavior of other agents constant. See [35, 7] and §2.3.1 for
additional discussion.

3Since distributions lie on an affine space, any affine function can be implemented as well.
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2.2 Model and main result

To begin, we introduce the terminology which we use throughout the dissertation; see Ta-
ble 2.1 for notation. A function G : X → R is convex if G(αx + (1 − α)x′) ≤ αG(x) +
(1 − α)G(x′) for all x, x′ ∈ X and α ∈ [0, 1]. The domain of a convex G is the set
dom(G)

.
= {x ∈ X : G(x) < ∞}. G is a proper convex function if it never takes on

−∞ and its domain is nonempty. We write conv(S) to denote the convex hull of vector
space X, the set of all (finite) convex combinations of elements of S. The relative interior
of a convex set S is the interior when restricted to the smallest affine subspace containing
S; formally, relint(S) := {x ∈ S : ∀y ∈ S ∃λ < 1 : λx + (1 − λ)y ∈ S} [103, pp. 2-3].
A topological vector space is locally convex if every neighborhood of 0 contains a convex
neighborhood of 0 [5, Def. 5.71].

R extended real numbers R ∪ {−∞,∞}
[n] set {1, . . . , n}
∆(X) set of all probability measures on X
∆n set of all probability measures on X = [n]
1 all-ones vector in RX with 1(x) = 1 for all x ∈ X
1x indicator or standard vector in RX with 1x(x) = 1 and 0 otherwise
∂ subgradient operator
idX identity function on X, idX : x 7→ x
Lin(X → Y ) set of linear functions from X to Y
Aff(X → Y ) set of affine functions from X to Y
conv(S) convex hull of S
relint(S) relative interior of S
dom(G) domain {x ∈ X : G(x) <∞} of a convex function G
Evalo evaluation operator Evalo [f ] = f(o)

KL(p‖q) relative entropy
∫
X

log
(
dp
dq

)
dp

Table 2.1: Notation

Let T ⊆ V for some vector space V . We consider a very general model with an agent
who has a given type t ∈ T and reports some possibly distinct type t′ ∈ T , at which point
the agent is rewarded according to some score A which is affine in the true type t. This
reward we call an affine score. We wish to characterize all truthful affine scores, those which
incentivize the agent to report her true type t.

Definition 2.1. Any function A : T → A, where T ⊆ V for some vector space V and
A ⊆ Aff(V → R), is an affine score. We say A is truthful if for all t, t′ ∈ T ,

A(t′)(t) ≤ A(t)(t). (2.1)

If this inequality is strict for all t, t′, then A is strictly truthful.
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Our characterization relies heavily on convex analysis, a central concept of which is the
subgradient of a function.

Definition 2.2. Given some function G : T → R, a function dGt ∈ Lin(V → R) is a
subgradient to G at t if for all t′ ∈ T ,

G(t′) ≥ G(t) + dGt(t
′ − t). (2.2)

We denote by ∂Gt or ∂G(t) the set of subgradients to G at t, and ∂G = ∪t∈T ∂Gt.

Before stating our characterization, we first must address the role of ±∞ as a viable
payoff. For mechanism design, it is typical to assume that utilities are always real-valued.
However, the log scoring rule (one of the most popular scoring rules) has the property that if
an agent reports that an event has probability 0, and then that event does occur, the agent
receives a score of −∞. Essentially solely to accommodate this, we allow affine scores and
subgradients to take on values from the extended reals.

Once one allows algebra on the extended reals, great care must be taken to avoid the
indeterminate expression ∞−∞. To address this point, it is standard (cf. [51]) to restrict
consideration to the “regular” case, where intuitively only things like the log score are per-
mitted to be infinite. Formally, we say a parameterized family of linear functions (e.g. a
family of subgradients) {dGt ∈ Lin(V → R)}t∈T is T -regular if dGt(t) ∈ R for all t ∈ T , and
dGt′(t) ∈ R ∪ {−∞} for t′ 6= t.4 Likewise, T -regular affine functions {at ∈ Aff(V → R)}t∈T
have at(t) ∈ R for all t ∈ T , and at(t

′) < ∞ for t′ 6= t. In particular, an affine score
A : T → A is regular if A(t)(t) ∈ R for all t ∈ T , and A(t′)(t) ∈ R ∪ {−∞} for t′ 6= t.

For the remainder of the dissertation we assume all affine scores and parameterized
families of linear or affine functions are T -regular, where T will be clear from context. Note
that certain results in the following three chapters require a stronger assumption that the
relevant parameterized families are in fact real-valued rather than simply regular. A reader
not interested in the details of how our framework incorporates the log scoring rule can
assume that all affine scores and families are real-valued throughout the dissertation with
little loss.

We now state, and prove, our characterization theorem. The proof draws techniques and
insights from Gneiting and Raftery [51] and Archer and Kleinberg [7], but in such a way as
to simplify the argument considerably.

Theorem 2.1. Let regular affine score A : T → A be given. A is truthful if and only if there
exists some convex G : conv(T ) → R with G(T ) ⊆ R, and some selection of subgradients
{dGt}t∈T , such that

A(t′)(t) = G(t′) + dGt′(t− t′). (2.3)

4To define linear functions to R, we adopt the convention 0·∞ = 0·(−∞) = 0. Thus, any ` ∈ Lin(V → R)
can be written as `1 +∞ · `2 for some `1, `2 ∈ Lin(V → R). Similarly, Aff(V → R) = {t 7→ `(t− v) + c | ` ∈
Lin(V → R), v ∈ V, c ∈ R}, representing possibly vertical hyperplanes.
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Proof. It is trivial from the subgradient inequality (2.2) that the proposed form is in fact
truthful. For the converse, we are given some truthful A : T → A. Note first that for any
t̂ ∈ conv(T ) we may write t̂ as a finite convex combination t̂ =

∑m
i=1 αiti where ti ∈ T . Now,

as the range of A is affine, we may naturally extend A(t) to all of conv(T ) by defining

A(t)(t̂) =
m∑
i=1

αiA(t)(ti). (2.4)

One easily checks that this definition coincides with the given A on T .
Now we let G(t̂)

.
= supt∈T A(t)(t̂), which is convex as the pointwise supremum of convex

(in our case affine) functions. Since A is truthful, we in particular have G(t) = A(t)(t) ∈ R
for all t ∈ T by our regularity assumption. Also by truthfulness, we have for all t′ ∈ T and
t̂ ∈ conv(T ),

G(t̂) = sup
t∈T

m∑
i=1

αiA(t)(ti) ≥
m∑
i=1

αiA(t′)(ti) = A(t′)(t′) +
m∑
i=1

αiA`(t
′)(ti − t′)

= G(t′) + A`(t
′)(t̂− t′).

Hence, A`(t
′) satisfies (2.2) for G at t′, so A is of the form (2.3).

2.3 Existing models as special cases

We conclude this chapter with several models and applications which demonstrate the power
of our framework. In particular, as we will see, both scoring rules and mechanisms fit
comfortably within our framework. We defer treatment of prediction markets to Chapter 4,
as we will need the notion of indirect elicitation which we introduce in Chapter 3.

2.3.1 Mechanism design

We will now show how to view a mechanism, introduced in §1.2.3, as an affine score. First,
we formally introduce mechanisms, in the single agent case (see below for remarks about
multiple agents).

Definition 2.3. Given outcome space O and a type space T ⊆ (O → R), consisting of
functions mapping outcomes to reals, a (direct) mechanism is a pair (f, p) where f : T → O
is an allocation rule and p : T → R is a payment. The utility of the agent with type t
and report t′ to the mechanism is U(t′, t) = t(f(t′)) − p(t′); we say the mechanism (f, p) is
truthful if U(t′, t) ≤ U(t, t) for all t, t′ ∈ T .

Here we suppose that the mechanism can choose an allocation from some set O of out-
comes, and there is a single agent whose type t ∈ T is itself the valuation function. That
is, the agent’s net utility upon allocation o and payment p is t(o) − p. We may view the
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type space T as lying in the vector space V = RO: by definition, for any v1, v2 ∈ V , we have
(v1 + αv2)(o) = v1(o) + αv2(o), so v1 + αv2 ∈ V . So while we have made no assumptions
about O or the form of v1 and v2, this function application, called the evaluation operator
Evalo [v]

.
= v(o), is a linear operation. Thus, given any outcome o and constant c, the map-

ping t 7→ t(o) + c is an affine function from T to R. In particular, this holds for the utility
of an agent U(t′, ·) = Evalo [t] − p(o) given that our mechanism chooses outcome f(t′) = o.
(While according to our definition p depends directly on the report t′, it is easy to see that
for any truthful mechanism, p depends on t′ only through the allocation o = f(t′); otherwise
agents with t ∈ f−1(o) would always report argmint:f(t)=o p(t).) Thus, we have an affine
score A(t′)(t)

.
= U(t′, t), where A = {t 7→ t(o) + c | o ∈ O, c ∈ R}, so that every combination

of outcome and payment a mechanism could choose is an element of A.
Merely as an illustration, we will use Theorem 2.1 to show two simple characterizations

that have appeared in the mechanism design literature. The first is the direct characteri-
zation, which simply states that a mechanism must optimize on behalf of the agent. More
precisely, we consider the mechanism which assigns a price p(o) ∈ R to each outcome and
chooses the outcome and corresponding price that maximizes the agent’s welfare:

f(t) ∈ argsup {t(o)− p(o) : o ∈ O} . (2.5)

We show that this mechanism is truthful, and moreover every truthful mechanism can be
represented this way.

For the forward direction, we pick prices p : O → R and set G(t)
.
= maxo∈O t(o)− p(o).5

As G is a pointwise maximum of affine functions, it is convex. For a convex function defined
in this manner, it is easy to verify that if o∗ ∈ argmaxo∈O t

∗(o) − p(o), then Evalo∗ is a
subbgradient of G at t∗:

G(t∗) + Evalo∗ [t− t∗] = max
o∈O
{t∗(o)− p(o)}+ t(o∗)− t∗(o∗)

= t(o∗)− p(o∗) ≤ max
o∈O

t(o)− p(o) = G(t).

Thus, letting f(t) = argmaxo∈O t(o)− p(o) for all t, we can apply Theorem 2.1 to show that
the affine score A(t′)(t) = t(f(t′))− p(f(t′)) is truthful.

For the converse, let truthful mechanism f, p be given. As argued above, p must depend
on t′ only through f(t′), and hence we may re-represent it as a function p : O → R so
that U(t′, t) = t(f(t′)) − p(f(t′)). But then by the proof of Theorem 2.1 we have U(t, t) =
maxt′ t(f(t′))− p(f(t′)) = maxo t(o)− p(o) as desired.

The above discussion could have been greatly simplified by appealing to the following
simple fact about affine scores:

Proposition 2.2. An affine score A : T → A is truthful if and only if

A(t) ∈ argsup {a(t) : a ∈ A(T )} . (2.6)

5 Strictly speaking we need to appropriately restrict T or O so that this in fact a maximum rather than
a supremum for our VCG-style mechanism of giving the agent her preferred outcome to even be well defined.
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The proof is trivial and follows directly from Definition 2.1. Unfolding the result and
using the definition of a mechanism then yields the form (2.5), again appealing to the fact
that only the lowest price for a given outcome will ever be chosen.

The result that all mechanisms have the form (2.6) is sometimes called the taxation prin-
ciple, and the form of the mechanism is called the menu auction, referring to the “menu” of
allocations and prices {(o, p(o))} available to the agent. This is an important representation
for any affine score, as we will see in Chapter 3 and specifically §3.3.2. Interestingly, as we
will see, the menu always satisfies p(o) = G∗(Evalo), where G(t) = U(t, t) and G∗ is the
convex conjugate of G.

We proceed to our second second characterization, due to Myerson [72], for a single
parameter setting (i.e. when the agent’s type can be described by a single real number).
The result states that an allocation rule is implementable, meaning there is some payment
rule making it truthful, if and only if it is monotone in the agent’s type. We will explore
monotonicity conditions in higher dimensions in Chapter 5.

Theorem 2.3 (Myerson [72]). Let T = R+, O ⊆ R, so that the agent’s valuation is t · o.
Then a mechanism f, p is truthful if and only if

i. f is monotone non-decreasing in t,

ii. p(t) = tf(t)−
∫ t

0
f(t′)dt′ + p0.

Proof. By elementary results in convex analysis f is a subgradient of a convex function on
R if and only if it is monotone non-decreasing. By Theorem 2.1, the mechanism is truthful
if and only if f is the subgradient of the particular function G(t) = U(t, t) = tf(t) − p(t),
which is equivalent to (i) and the condition G(t) =

∫ t
0
f(t′)dt′ + C.

Finally, we remark on what may appear as limitations in our approach. First, note that
we have focused on the single-agent case here, even though much of the mechanism design
literature addresses the multi-agent case. In some sense, extending our characterizations to
multiple agents is trivial: a mechanism is truthful if and only if it is truthful for agent i
when fixing the reports of the other agents. Hence, we merely apply our characterization to
each single-agent mechanism induced by reports of the other agents. This is sufficient for
our present study, but there are certainly reasons to take a more nuanced approach to the
multi-agent setting — see §5.4 for further discussion.

Another apparent limitation is that we are locked into a deterministic and non-Bayesian
setting. This is purely for ease of exposition; if one is interested in randomized mechanisms,
one can take f : T → ∆(O) and define U(t′, t) = Eo∼f(t′)[t(o)] − p(t′), which is still affine
in t. Even if one does not assume risk-neutral agents, taking the outcome space to be
O′ .= ∆(O) is sufficiently general. Finally, Bayesian agents can also be represented; in the
above discussion of the multi-agent setting, take expectations instead of fixing specific values
for the other agents.



CHAPTER 2. UNIFYING ELICITATION VIA CONVEX ANALYSIS 27

2.3.2 Scoring rules for non-convex P
In this section, we show that the Gneiting and Raftery characterization is a simple special
case of Theorem 2.1, and moreover that we generalize their result to the case where the set of
distributions P may be non-convex. We also mention a result about local properness using
tools we will develop in §5.1.2. To begin, we formally introduce scoring rules and show that
they fit into our framework.

Definition 2.4. Given outcome space O and set of probability measures P ⊆ ∆(O), a
scoring rule is a function S : P ×O → R. We say S is proper if for all p, q ∈ P,

Eo∼p[S(q, o)] ≤ Eo∼p[S(p, o)]. (2.7)

If the inequality in (2.7) is strict, then S is strictly proper.

Just as above for mechanisms, the type space here is trivial: T = P . Thus, we need only
construct the correct set of affine functions available to the scoring rule as payoff functions.
In this case, letting F be the set of P-quasi-integrable6 functions f : O → R, we simply
choose T = P and A = {p 7→

∫
O f(o) dp(o) | f ∈ F}. Note that in this case A actually

contains linear functions of p, which are trivially affine. Thus, a scoring rule S is an affine
score A : T → A for the above choices of T and A.

We now apply Theorem 2.1 for our choice of T and A, which yields the following gener-
alization of Gneiting and Raftery [51].

Corollary 2.4. For an arbitrary set P ⊆ ∆(O) of probability measures, a regular7 scoring
rule S : P ×O → R is proper if and only if there exists a convex function G : conv(P)→ R
with functions Gp ∈ F such that

S(p, o) = G(p) +Gp(o)−
∫
O
Gp(o) dp(o), (2.8)

where Gp : q 7→
∫
OGp(o) dq(o) is a subgradient of G for all p ∈ P.

Proof. The given form is truthful by the subgradient inequality. Let A : T → A be a given
truthful affine score. Since A(p) ∈ A, we have some fp ∈ F generating A(p). We can
therefore use Gp : q 7→

∫
O fp(o) dq(o) as the subgradients in the proof of Theorem 2.1, thus

giving us the desired form.

Importantly, Corollary 2.4 immediately generalizes [51] to the case where P is not convex,
which is a new result to the scoring rules literature. Previously, in the absence of a charac-
terization, several authors have nonetheless worked in the non-convex P case. For example,
Babaioff et al. [13] examine when proper scoring rules can have the additional property that

6We say that f : O → R is P-quasi-integrable if
∫
O f(o)dp(o) ∈ R for all p ∈ P.

7This is the same concept as with affine scores: scores cannot be ∞ and only incorrect reports can yield
−∞.
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uninformed experts do not wish to make a report (have a negative expected utility), while
informed experts do wish to make one. They show that this is possible in some settings
where the space of reports is not convex. Our characterization shows that, despite not need-
ing to ensure properness on on reports outside P , essentially the only possible scoring rules
are still those that are proper on all of ∆(O). Similarly, Fang et al. [43] find conditions on P
for which every continuous “value function” G : p 7→ S(p, p) on P can be attained by some
S. Given that a convex function can take on arbitrary values on the boundary of a strictly
convex set (e.g. if it takes on −∞ on the relative interior), it would seem that our approach
would provide insights to that question as well.

We will explore local truthfulness conditions in §5.1.2, where one verifies that an affine
score is truthful by checking that it is truthful in a small neighborhood around every point.
While this is a natural property to examine in mechanism design, it is a less common concern
for scoring rules designers, as they tend to operate under fewer constraints than mechanism
designers. Nevertheless, our results from §5.1.2 will apply, and in particular Corollary 5.4
shows that local properness is equivalent to global properness for scoring rules on convex P .

Corollary 2.5. For a convex set P ⊆ ∆(O) of probability measures, a scoring rule S :
P ×O → R is proper if and only if it is (weakly) locally proper.

2.3.3 Decision Rules

Theorem 2.1 also generalizes Gneiting and Raftery’s [51] characterization to settings beyond
eliciting a single distribution. For example, a line of work has considered a setting where
a decision maker needs to select from a finite set D of decisions and so desires to elicit
the distribution over outcomes conditional on selecting each alternative [80, 32, 31]. Since
only one decision will be made and so only one conditional distribution can be sampled,
simply applying a standard proper scoring rule generally does not result in truthful behavior.
Applying Theorem 2.1 to this setting characterizes what expected scores must be, from
which many of the results in these papers follow. As it is not our main focus, we refrain
from introducing the model necessary to explicitly state a characterization result similar to
Corollary 2.4.

2.3.4 Proper losses for partial labels

Several variants of proper losses have appeared in the machine learning literature, one of
which is the problem of estimating the probability distribution of labels for an item when
the training data may contain several noisy labels, possibly not even including the correct
label. (This is frequently the case, for example, when using crowdsourced labels for items.)
More formally, one wishes to estimate p ∈ ∆n where the true label y ∈ [n] is drawn from
p. However, instead of observing a sample y ∼ p and designing a proper loss `(p̂, y), one
instead only observes some noisy set of labels S ⊆ [n]. Hence, the task is to design a loss
`(p̂, S) which when minimized over one’s data yields accurate estimates of the true p.
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Recently this problem was studied in [36] under the assumption that S ∼ q where q = Mp
for some known M ∈ R2n×n, meaning if the observed label is drawn from p, the noisy set
of labels is drawn from Mp (using some indexing of the sets, say lexographical). Cid-Sueiro
provides a characterization of all proper losses for this setting, and we merely note that the
(negative) payoff ES∼Mp[`(p̂, S)] = `(p̂, ·)>Mp is linear in the underlying distribution p, so
our Theorem 2.1 applies and allows us to recover her first characterization result. Again, we
refrain from introducing the model necessary to explicitly state this result. Note that this is
essentially a latent observation setting, and the fact that what we observe is a set of labels
is in no way necessary — any observed outcome whose distribution has a linear (or affine)
relationship with the latent outcome would suffice to apply our theorem.

2.3.5 The Ω branching model

Several mechanism design settings considered in the literature have some form of exogenous
randomization, in that “Nature” chooses some outcome ω according to some (often un-
known) distribution, which may in turn depend on the allocation chosen by the mechanism.
Examples include sponsored search auctions [44], multi-armed bandit mechanisms [14], and
recent work on daily deals [27]. The work of Cai et al. [27] introduces a very general model
for such settings, which we now describe.

Let O be a set of allocations, and for each allocation o and each agent i, let Ωi,o be some
set of outcomes. Agents each have a valuation function vi : O → R and a set of beliefs
pi,o ∈ ∆(Ωi,o) for each allocation o ∈ O. The mechanism aggregates all of this information
into a single allocation o, and additionally choses some payoff function si : Ωi,o → R, so that
the final utility of agent i is vi(o)+Epi,o [si]. A mechanism is truthful if for all values of v and
p for the other agents, agent i maximizes her total utility by reporting vi and pi

.
= (pi,o)o∈O

truthfully. For example, the standard sponsored search setting has Ωi,o = {click, no click}
for o such that i is allocated a slot, and the probabilities pi,o are assumed to be public
knowledge.

We first observe that this model can easily be cast as an affine score, as follows. For
simplicity, we fix some agent i and focus on the single-agent case; as discussed several times
above, this is essentially without loss of generality. The type space is simply the combined
private information of the agent,

T =

{
(v, p) : v ∈ O → R, p ∈

∏
o∈O

∆(Ωi,o)

}
. (2.9)

The utility of the agent upon allocation and payoff o, s is simply v(o) + Epo [s] = Evalo [v] +
s1>o p, which is linear in the type t = (v, p) and therefore affine. (Here we represent p as a
matrix in RO×Ωi,o and s ∈ RΩi,o , and define 1o to be the standard vector with 1 at entry o
and 0 elsewhere.) Thus, letting t = (v, p), we can represent this as an affine score:

A(t′)(t) = v(o(t′)) + Epo(t′) [s(t′)]. (2.10)
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Motivated by incorporating the utilities of the end consumers in a daily deal setting, Cai et
al. [27] ask when one can implement an allocation rule of the form f(v, p) = argmaxo∈O v(o)+

go(po); in other words, when does there exist some choice of score s(v, p) ∈ RΩi,f(v,p)
making

f truthful. They conclude that this can be done if and only if go is convex for each o ∈ O.
It is interesting, and perhaps illuminating, to view this question in terms of our affine score
framework.

Stepping back for a moment, consider a type space T ⊆ V = VX × VY which partitions
into two (subsets of) subspaces. We wish to know when a function f : T → Lin(VX → R)
is implementable, in the sense that there exists some truthful affine score A : T → A,
A ⊆ Aff(V → R), and some h : T → Aff(VY → R) such that A(t′)(t) = f(t′)(tX) +h(t′)(tY ),
where of course t = (tX , tY ). That is, when can we complete the partial “allocation” f into
a truthful affine score?

For convenience, for each a ∈ A we write X(a) ∈ Lin(VX → R) to be the linear part of
a on VX , and Y (a) to be the affine part of a on VY . Then we have that f is implementable
if and only if

f(t) ∈ argsup
x∈X(A)

x(tX) + sup
a∈A

X(a)=x

{
Y (a)(tY )

} (2.11)

To see this, for one direction we simply unfold the direct characterization for affine scores,
Proposition 2.2, by taking the supremum first over X(A) and then over the rest. For the
other direction, note that taking A(t′)(t) = f(t′)(tX) + y(t′)(tY ) where y is in the argsup of
the supremum of eq. (2.11) gives a truthful affine score.

Returning to the setting at hand, let us denote by ao,s ∈ A the function (v, p) 7→ v(o ′) +
Epo′ [s]. We now see that f(v, p) is implementable if and only if it satisfies

f(v, p) ∈ argsup
o∈O

{
v(o) + sup

s:ao,s∈A
{Epo [s]}

}
. (2.12)

Thus, letting go(po) = sup {Epo [s] : ao,s ∈ A}, we see that go is convex as the supremum
of affine functions. Moreover, given any collection of convex functions {go}o∈O, where go :
∆(Ωi,o) → R, we can define So .

= {ω 7→ g(p) + dg(1ω − p) : p ∈ dom(g)} and A .
= {ao,s :

o ∈ O, s ∈ So}, thus recovering each go in the above expression. It then only remains to
show that no other nonconvex function can serve in the argsup; for this one may appeal to
the argument of Cai et al. [27] which observes that the indifference points between different
allocations is fixed, thus determining the function in the argsup up to a constant.

2.4 Discussion

We have presented a model of truthful elicitation which generalizes and extends both mech-
anisms and scoring rules. On the mechanism design side, we will see in Chapter 5 how our
framework provides simpler and more constructive proofs of a number of known results, some
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of which (as we saw in Section 2.3.2) lead to new results about scoring rules. We generalize
our model in Chapter 3 to allow reports of a succinct representation of an agent’s private
information rather than that information itself, a topic that has been studied in the scoring
rules literature about eliciting properties of distributions.

Our analysis makes use of the fact that A(t′)(t) is affine in t to ensure that G(t) =
supt′ A(t′)(t) is a convex function. However, this property continues to hold if A(t′)(t) is
instead a convex function of t. Thus, a natural direction for future work is to investigate
characterizations of convex scores. While mechanisms can always be represented as affine
functions by taking the types to be functions from allocations to R, it may be more natural
to treat the type as a parameter of a (convex) utility function. While many such utility
functions are affine (e.g. dot-product valuations), others such as Cobb-Douglas functions
are not. Berger, Müller, and Naeemi [20, 21] have investigated such functions and given
characterizations that suggest a more general result is possible. Another potential application
is scoring rules for alternate representations of uncertainty, several of which result in a
decision maker optimizing a convex function [55].

In one sense getting such a characterization is straightforward. In the affine case we
want A(t′)(t) to be an affine function such that A(t′)(t) ≤ G(t) and A(t′)(t′) = G(t′). Since
we have fixed its value at a point, the only freedom we have is in the linear part of the
function, and being a subgradient is exactly the definition of such a linear function. So while
our characterization of affine scores is in some sense vacuous, it is also powerful in that it
allows us to make use of the tools of convex analysis. A similarly vacuous characterization
is possible for the convex case: A(t′)(t) is a convex function such that A(t′)(t) ≤ G(t) and
A(t′)(t′) = G(t′). The challenge is to find a way to state it that is useful and naturally
handles constraints such as those imposed by the form of a utility function.

While in this dissertation we focus on mechanism design, scoring rules, and prediction
markets, another interesting direction to pursue is other settings where our results may be
applicable. One natural domain that is closely related to scoring rules for properties is the
literature on M-estimators in machine learning, statistics and economics. Essentially, this
literature takes a loss function (i.e. a scoring rule) and asks what property it elicits. For
example, the mean is an M-estimator induced by the squared error loss function. Some work
in this literature (e.g. [75]) requires that the loss function satisfy certain conditions, and our
results may be useful in characterizing and supplying such loss functions.
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Chapter 3

Duality and general property
elicitation

In many settings, it is difficult, or even impossible, to have agents report an entire type t ∈ T .
For example, when allocating a divisible good (e.g. corn) where O = R+, a mechanism with
T = (O → R) requires agents to submit an infinite-dimensional type. Even type spaces
which are exponential in size can be problematic from an algorithmic perspective. Moreover,
in many situations, the principal is uninterested in all but some small asepect of an agent’s
private type. For example, the information is often to be used to eventually make a specific
decision, and hence only the information directly pertaining to the decision is actually needed
— why ask for the agent’s entire probability distribution of rainfall tomorrow if a principal
wanting to choose between {umbrella, no umbrella} would be content with its expected
value?

It is therefore natural to consider a model of truthful reporting where agents provide some
sort of summary information about their type. Such a model has been studied in the scoring
rules literature, where one wishes to elicit some statistic, or property, of a distribution, such
as the mean or quantile [92, 65, 50]. We follow this line of research, and extend our affine
score framework to accept reports from a different (intuitively, much smaller) space than T .

Our results shed light on the structure of properties and their affine scores. As we shall
see, property elicitation is intimately connected to a notion of duality between the report
space and the type space, which stems fundamentally from vector space duality and convex
conjugate duality. We formalize and explore this duality, and our results reveal a very rich
theory of elicitation.

3.1 Previous literature on properties

The literature on property elicitation lies essentially entirely within the domain of scoring
rules and statistics. This is not to say that one cannot find plenty of cases in mechanism
design and other elicitation domains where an agent is asked to report something different
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than their true type — indeed, such indirect revelation mechanisms M are quite common —
but in these models it is usually implicit that either (a) a direct revelation mechanism M′

will be constructed, which requests the agent’s full type and provides the best report to M
on behalf of the agent, or (b) there is no a priori relationship between the “truthful” report
and the underlying type. That is to say, while indirect elicitation has been studied outside
of the scoring rules literature, it is only the latter that explicitly requests a mapping, usually
a statistic, from the underlying type to the desired information.

As we discussed in §1.2.1, the study of indirect elicitation in scoring rules can be traced
to Savage, who considered the problem of eliciting expected values of random variables [92].
Osband [79] goes on to provide a rigorous version, generalizing to expected values of func-
tions of the underlying variable. (We will explore expectation elicitation in Chapter 4 as
well as §3.4.2 in the present chapter.) More generally, Gneiting and Raftery [51] and Gneit-
ing [50] consider other common statistics as well, such as quantiles, ratios of expectations,
and expectiles.

While these and many other examples of specific statistics have appeared in the literature,
it was perhaps Lambert et al. [65] who first considered the following general problem: given
an outcome space O and an arbitrary map Γ : ∆(O) → R, under what circumstances can
we construct a proper scoring rule S : R×O → R for Γ, i.e. where

Γ(p) ∈ argmax
r∈R

Eo∼p[S(r, o)]

for every p ∈ ∆(O)? Moreover, what is the full classification of functions Γ which can be
elicited in this way? Lambert et al. [65] make a number of significant contributions towards
these goals for the special case of scalar properties, where Γ is real-valued. Lambert and
Shoham [66] also characterize elicitable properties Γ which take on finitely many values,
showing a connection to power diagrams from computational geometry — we will extend
this result to our setting in §3.4.1.

In the present chapter we take a similarly general approach to the problem of indirect elic-
itation. We ask, given an arbitrary multivalued map Γ which specifies the correct report(s)
for a given type, whether Γ can be elicited by an affine score, and if so, which scores elicit
it. While this may seem too general a problem to consider, as we have made no assumptions
on Γ whatsoever, we find that even at such great heights of abstraction, we can employ our
tools from Chapter 2 and from convex duality to make precise and useful statements about
the nature of indirect (and direct) elicitation.

3.2 Extending our model and characterization

We wish to generalize the notion of an affine score to accept reports from a space R which is
different from T . To even discuss truthfulness in this setting, we need a notion of a truthful
report r for a given type t. We encapsulate this notion by a general multivalued map which
specifies all (and only) the correct values for t.
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Definition 3.1. Let R be some given report space. A property is a multivalued map Γ :
T ⇒ R which associates a nonempty set of correct report values to each type. We let
Γr

.
= {t ∈ T | r ∈ Γ(t)} denote the set of types t corresponding to report value r.

One can think of Γr as the “level set” of Γ corresponding to value r. This concept will
be especially useful when we consider finite-valued properties in Section 3.4.1. A natural
constraint to impose on these level sets is that they be non-redundant, meaning no property
value r has a level set entirely contained in another.

Definition 3.2. Property Γ : T ⇒ R is redundant if there exist r, r′ ∈ R such that Γr′ ⊆ Γr.
Otherwise, Γ is non-redundant.

The non-redundancy condition is essentially a bookkeeping tool. If one adds report
elements r′ which are dominated (strictly or otherwise) by another report r, then any time
r′ would be correct, an agent could safely report r instead. Hence, one could think of
imposing this condition then as simply “pre-processing” Γ to remove any dominated reports.

We extend the notion of an affine score to this setting, where the report space isR instead
of T itself. Note that A is still a subset of Aff(V → R).

Definition 3.3. An affine score A : R → A elicits a property Γ : T ⇒ R if for all t,

Γ(t) = argsup
r∈R

A(r)(t). (3.1)

If we merely have Γ(t) ⊆ argsupr∈RA(r)(t), we say A weakly elicits Γ. A property Γ : T ⇒ R
is elicitable if there exists some affine score A : R → A eliciting Γ.

As before, we need a notion of regularity — an affine score A is Γ-regular if A(r)(t) <∞
always and A(r)(t) ∈ R whenever r ∈ Γ(t). We define Γ-regular linear and affine families
similarly.1

The simplest way to come up with an elicitable property is to induce one from an affine
score. For any A : R → Aff(V → R), the property

ΓA : t→ argsup
r∈R

A(r)(t) (3.2)

is trivially elicited by A.
Observe also that any affine score A eliciting Γ gives rise to a truthful affine score in the

original sense — in fact, this is a version of the so-called revelation principle. For each t
let rt ∈ Γ(t) be a report choice for t; then the affine score AT (t′)(t)

.
= A(rt′)(t) is truthful.

Moreover, by our choices of {rt}, we have

G(t)
.
= sup

t′∈T
AT (t′)(t) = sup

r∈R
A(r)(t). (3.3)

1The family {`r ∈ Lin(V → R)}r∈R is Γ-regular if `r(t) ∈ R for all t ∈ Γr, and `r(t′) ∈ R ∪ {−∞} for
t′ 6= Γr. Likewise for Γ-regular affine functions.
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Of course, in general, AT will not be strictly truthful, since by definition, any reports t′, t′′

with rt′ = rt′′ will have AT (t′) ≡ AT (t′′). Thus we may think of a property as refining the
notion of strictness for a truthful affine score. The connection we will draw in Theorem 3.2
is that, in light of (3.3), a property Γ therefore specifies the portions of the domain of T
where G must be “flat”.

To get at the connection between properties and “flatness”, we start with a technical
lemma which shows that having the same subgradient at two different points implies that G
is flat in between.

Lemma 3.1. Let G : conv(T ) → R be convex with G(T ) ⊆ R, and let d ∈ ∂Gt for some
t ∈ T . Then for all t′ ∈ T ,

d ∈ ∂Gt′ ⇐⇒ G(t)−G(t′) = d(t− t′).

Proof. First, the forward direction. Applying the subgradient inequality (2.2) at t′ for dGt =
d and at t for dGt′ = d, we have

G(t′) ≥ G(t) + d(t′ − t)
G(t) ≥ G(t′) + d(t− t′),

from which the result follows (as G(t) and G(t′) are finite).
For the converse, assume G(t) = G(t′) + d(t− t′) and let t′′ ∈ T be arbitrary. Note first

that d(t) ∈ R as d ∈ ∂Gt, so d(t′) ∈ R as well. Then using the subgradient inequality 2.2 we
have

G(t′) + d(t′′ − t′) = G(t′) + d(t′′ − t) + d(t− t′)
= G(t) + d(t′′ − t)
≤ G(t′′),

We are now ready to state our characterization in this setting, which in essence says that
eliciting a property Γ is equivalent to eliciting subgradients of a convex function G.

Theorem 3.2. Let property Γ : T ⇒ R and Γ-regular affine score A : R → A be given.
Then A elicits Γ if and only if there exists some convex G : conv(T ) → R with G(T ) ⊆ R,
and ϕ : R → ∂G satisfying r ∈ Γ(t) ⇐⇒ ϕ(r) ∈ ∂Gt, such that for all r ∈ R and t ∈ T ,

A(r)(t) = G(tr) + ϕ(r)(t− tr), (3.4)

where {tr}r∈R ⊆ T satisfies r′ ∈ Γ(tr′) for all r′.

Proof. For the forward direction, assume that affine score A elicits Γ. For each r, we may
extend A(r) to all t̂ ∈ conv(T ) by linearity as in Theorem 2.1, whence we may define
G(t̂)

.
= supr∈RA(r)(t̂), which is finite for t̂ ∈ T as A is Γ-regular. We wish to show that the

choice ϕ : r 7→ A`(r) suffices, where A` denotes the linear part of A.
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By standard arguments (see e.g. [88, Prop. 8.12] and [5, §7]), the subgradients to a convex
function F : X → R at x ∈ dom(F ) are precisely the gradients of its affine supports at x.
More formally, let AS(F, x) = {a ∈ Aff(X → R) | a(x) = F (x), ∀x F (x) ≥ a(x)} be the set
of affine supports of F at x. Then for all x ∈ dom(F ) we have ∂Fx = {∂a | a ∈ AS(F, x)}.2

By definition of G, we have A(r)(t̂) ≥ G(t̂) ∀t̂ ∈ conv(T ). Noting that ∂A(r)t = {A`(r)},
we have for all t ∈ T and r ∈ R,

r ∈ Γ(t) ⇐⇒ A(r)(t) = sup
r′∈R

A(r′)(t)

⇐⇒ A(r)(t) = G(t)

⇐⇒ A(r)(t) ∈ AS(G, t)

⇐⇒ A`(r) ∈ ∂Gt,

where we use elicitation in the first biconditional. Finally, using Γ-regularity and the defini-
tion of tr, we show the form (3.4):

G(tr) + A`(r)(t− tr) = A(r)(tr) + A`(r)(t− tr) = A(r)(t).

For the converse, let G, ϕ, and tr be given, and assume A has the form (3.4). First note
that by definition of {tr}r∈R, and by assumption on ϕ, we have ϕ(r) ∈ ∂Gtr for all r. We
claim that G dominates A, meaning for all r ∈ R and all t ∈ T , G(t) ≥ A(r)(t); this follows
from the definition of A and the subgradient inequality (2.2) applied to ϕ(r) at t.

Now by Lemma 3.1, we have

ϕ(r) ∈ ∂Gt ⇐⇒ G(t)−G(tr) = ϕ(r)(t− tr)
⇐⇒ G(t) = A(r)(t). (3.5)

By definition of a property, we have for all t ∈ T that Γ(t) 6= ∅, so by the aboveG(t) = A(r)(t)
for some r. Combining this with the fact that G dominates A, we have G(t) = supr A(r)(t)
for all t ∈ T . Putting this together with (3.5) and our assumption that r ∈ Γ(t) ⇐⇒
ϕ(r) ∈ ∂Gt, we have

r ∈ Γ(t) ⇐⇒ G(t) = A(r)(t) ⇐⇒ r ∈ argsup
r′

A(r′)(t).

As a corollary, we also obtain a better understanding of weak elicitation, which we will
need in the following sections.

Corollary 3.3. Let property Γ : T ⇒ R and Γ-regular affine score A : R → A be given.
Then A weakly elicits Γ if and only if A satisfies (3.4) with the weaker condition that r ∈
Γ(t) =⇒ ϕ(r) ∈ ∂Gt.

2Briefly, the argument is as follows: ` ∈ ∂AS(F, x) implies ∃c, v F (x) = c + `(x − v) and ∀x′ F (x′) ≥
c+ `(x′ − v). Then F (x) + `(x′ − x) = c+ `(x− v) + `(x′ − x) = c+ `(x′ − v) ≤ F (x′) when F (x) <∞. For
the converse, take c = F (x) and v = x.
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Proof. Given any affine score A, and defining ΓA as in (3.2), we see that A weakly elicits Γ
if and only if Γ(t) ⊆ ΓA(t) for all t. Now let A weakly elicit Γ. As A trivially elicits ΓA, we
apply Theorem 3.2 and now have in particular r ∈ Γ(t) =⇒ r ∈ ΓA(t) =⇒ ϕ(r) ∈ ∂Gt.
For the converse, simply define ΓA(t) = {r ∈ R | ϕ(r) ∈ ∂Gt}. By Theorem 3.2, A elicits
ΓA, and by assumption we have Γ(t) ⊆ ΓA(t) for all t.

Returning to the above discussion, by focusing on AT instead of A, we now see how
properties are essentially a refinement of strictness. Up to a remapping of R, AT is strictly
truthful if and only if A elicits Γ : t 7→ {t}, and AT is truthful if and only if A elicits some
Γ such that t ∈ Γ(t) for all T . In fact, one can can formalize this using Corollary 3.3: a
affine score A is truthful if and only if it weakly elicits Γ : t 7→ {t}. Hence, Theorem 3.2 and
Corollary 3.3 are actually a generalization of our main characterization, Theorem 2.1.

This new characterization sheds new light on the structure of elicitable properties. In
the scoring rules literature, it is common to assume strong conditions on Γ and R, such as
Γ being a function rather than a multivalued map, and Γ being linear [2] or real-valued [65];
we will address these specific cases in §3.5 and §3.4.2. In contrast, Theorem 3.2 allows for
an extremely general Γ and R. While our resulting characterization is not as concrete or
constructive as those from the scoring rules literature (e.g. the set of elicitable properties is
only vacuously characterized), we nonetheless have a very powerful statement which may be
of use in particular classes of properties. We illustrate the power of this characterization in
the following sections.

3.2.1 The structure of properties

As we mention above, one may interpret Theorem 3.2 as saying that properties are essentially
selections of subgradients of a convex function. With a bit more work we can formalize this
statement.

Lemma 3.4. Let Γ, G, and ϕ be as in Theorem 3.2. If additionally ϕ is injective, then the
condition

∀r ∀t r ∈ Γ(t) ⇐⇒ ϕ(r) ∈ ∂Gt (3.6)

is equivalent to
∃D ⊆ ∂G s.t. ∀t ϕ(Γ(t)) = ∂Gt ∩ D. (3.7)

Proof. It is easy to see that the first condition (3.6) is equivalent to ∀t Γ(t) = {r : ϕ(r) ∈
∂Gt}. Letting D = ϕ(R) ⊆ ∂G, we then easily have

ϕ(Γ(t)) = {ϕ(r) : ϕ(r) ∈ ∂Gt} = ∂Gt ∩ D.

For the converse, we simply use injectivity of ϕ and the fact that ϕ(R) ⊆ D by definition.

Furthermore, it is easy to see that this ϕ must be injective if Γ is to be non-redundant
(see Definition 3.2).
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Lemma 3.5. Let Γ, G, ϕ as in Theorem 3.2. If ϕ is not injective, Γ is redundant.

Proof. Suppose ϕ(r) = ϕ(r′) for r 6= r′. By the condition (3.6), for any t we have r ∈
Γ(t) ⇐⇒ ϕ(r) ∈ ∂Gt ⇐⇒ ϕ(r′) ∈ ∂Gt ⇐⇒ r′ ∈ Γ(t). But then Γr = Γr′ , and Γ is
redundant.

In fact, as we will see in §3.3.2, this is a consequence of the constant term in an affine
score being a function of the linear term only (specifically, the conjugate dual, G∗). Note that
the converse does not hold: a property can be redundant but still have unique subgradients
for each report, as the following example illustrates.

Example 3.1. Let T = R, R = (−∞,−1] ∪ {0} ∪ [1,∞), and define:

Γ(t) =


{t− 1} if t < 0

{−1, 0, 1} if t = 0

{t+ 1} if t > 0

. (3.8)

This Γ is redundant, since Γ0 = Γ−1 = Γ1 = {0}. As we shall see, however, Γ is elicitable;
take

A(r)(t) =

{
0 if r = 0

rt− 1
2
(|r| − 1)2 o.w.

. (3.9)

Then when t = 0, we easily see that argsupr∈RA(r)(t) = {−1, 0, 1}. For t > 0, by symmetry
r ≥ 0 in the argsup, and by simple calculus we have argsupr∈RA(r)(t) = {t+ 1}. Similarly
for t < 0. Hence, we have shown Γ(t) = argsupr∈RA(r)(t) for all t, as desired.

Where did this A come from? We simply applied Theorem 3.2 with G(t) = |t| + t2/2,
representatives tr = r − sgn(r), and ϕ simply being the identity3; see Figure 3.1. One can
check that r ∈ Γ(tr) always, that ϕ(r) ∈ ∂Gt ⇐⇒ r ∈ Γ(t), and that

A(r)(t) = G(tr) + ϕ(r)(t− tr)
= |r − sgn(r)|+ (r − sgn(r))2 + r(t− r + sgn(r))

indeed matches (3.8).
Finally, observe that we could also elicit Γ with G(t) = t2/2, tr = ϕ(r) = r − sgn(r),

yielding:

A(r)(t) = t2r/2 + tr(t− tr) =
1

2
t2 − 1

2
(t− tr)2. (3.10)

Combining Lemmas 3.4 and 3.5 above with Theorem 3.2, we now have the following
theorem, which explicitly shows how an elicitable Γ is simply a remapping of (a selection of)
subgradients of some convex function.

3Strictly speaking, we should write ϕ(r)
.
= (t 7→ r · t).
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Figure 3.1: The Γ (left) and G (right) from Example 3.1.

Theorem 3.6. Non-redundant Γ : T ⇒ R is elicitable if and only if exists there some convex
G : conv(T )→ R with G(T ) ⊆ R, some D ⊆ ∂G, and some invertible ϕ : R → D such that
Γ(t) = ϕ−1(D ∩ ∂Gt).

Note that as discussed earlier the assumption of non-redundancy here is merely a book-
keeping concern — of course one can arbitrarily add report elements which are dominated by
another (though possibly not strictly), and these cannot be recovered just given the consumer
surplus function G. One could even add several copies of the same report, or equivalently,
add redundant subgradients at the same point. By imposing non-redundancy we are simply
“pre-processing” Γ to remove dominated reports.

A very important question, and one which would give stronger characterizations, is the
following:

Question 3.1. Given non-redundant elicitable Γ, what are all pairs G,D such that there
exists some bijection ϕ satisfying Theorem 3.6?

In essence, this question is getting at the fundamental structure of subgradient level sets
for convex functions. In §3.4.1 we will see that there is a lot of structure in the finite case,
where |R| <∞. In the general case, certainly performing a homothet of the subgradients of
G (i.e. scaling G and adding a linear term), will preserve the elicitation structure. However,
surely more can be done — the property in Example 3.1 was initially elicited with consumer
surplus G(t) = |t| + t2/2, and later with G(t) = t2/2 as well, which is not a homothet
transformation.

To illustrate the power of our characterizations, we show some characteristics of general
elicitable properties.
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Convexity

A well-known property of subgradient mappings is that their level sets are convex.

Proposition 3.7. For any convex function G, the set ∂G−1(d)
.
= {x ∈ dom(G) : d ∈ ∂Gx}

is convex.

Proof. Let x, x′ ∈ ∂G−1(d); then one easily shows (cf. Lemma 3.1) that G(x) − G(x′) =
d(x− x′). Now let x̂ = αx+ (1− α)x′; we have,

G(x̂) ≤ αG(x) + (1− α)G(x′) (3.11)

= α(G(x)−G(x′)) +G(x′)

= αd(x− x′) +G(x′)

= d(x̂− x′) +G(x′) (3.12)

≤ G(x̂), (3.13)

where we applied convexity of G in (3.11) and the subgradient inequality for d at x′ in (3.13).
Hence, by eq. (3.12) we have shown G(x̂)−G(x′) = d(x̂−x′), so by Lemma 3.1, d ∈ ∂Gx̂.

In light of our characterizations, this fact about convex functions immediately applies to
elicitable properties:

Corollary 3.8. If Γ : T ⇒ R is elicitable, then Γr is convex for all r.

To see this, just note that ϕ(r) ∈ ∂Gt ∩ ∂Gt′ implies that ϕ(r) ∈ ∂Gt̂ for all t̂ =
αt + (1 − α)t′. Corollary 3.8 generalizes a similar result for scoring rules from Lambert et
al. [65] to affine scores.

Cardinality

Combining Theorem 3.2 with the fact that finite-dimensional convex functions are differen-
tiable almost everywhere (cf. [5, Thm 7.26]) yields the following corollary, which shows that
elicitable properties have unique values almost everywhere. Note that in some cases this
holds in infinite-dimensional vector spaces as well; see e.g. [24, p. 195] and [5, p. 274].

Corollary 3.9. Let Γ : T ⇒ R be an elicitable property with T ⊆ V = Rn. If T is of
positive measure in conv(T ), and Γ is non-redundant, then |Γ(t)| = 1 almost everywhere.

3.3 Duality in elicitation

In the previous section, we took Theorem 3.2 and delved deeper into its conditions, showing
that in a strong sense Γ is like a subgradient mapping of a convex function. We now delve
even deeper, to the very core of elicitation, and out the other side. The first step is removing
the word “like” from the sentence above — we must look at properties which are subgradient
mappings.
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3.3.1 Direct elicitation

Now that we have formalized the relationship between the report space and subgradients
of convex functions, we can see what the “canonical” properties look like: those which
are (subsets of) subgradient mappings of a convex function. For these properties, we can
talk about direct elicitation, which roughly speaking means removing the “middle man” ϕ
between R and ∂G. In fact, for such “canonical” properties, we can even talk about a convex
function itself eliciting Γ.

Definition 3.4. A property Γ : T ⇒ D, where T ⊆ V and D ⊆ V∗ .= Lin(V → R), is directly
elicitable if there exists G : conv(T ) → R convex with G(T ) ⊆ R such that Γ(t) ⊆ ∂Gt. In
this case we say G directly elicits, or just elicits, Γ.

In other words, G elicits Γ : T ⇒ D if the ϕ in Theorems 3.2 and 3.6 is the identity. Of
course, it remains to be shown that there exists an affine score eliciting such a property, but
the proof is trivial.

Proposition 3.10. Directly elicitable properties are elicitable.

Proof. Let Γ : T ⇒ R and G : T → R convex with G(T ) ⊆ R be given such that Γ(t) ⊆ ∂Gt.
Then taking D = R and ϕ = idD, we have by Theorem 3.6 that Γ is elicitable.

Note that this direct elicitability in no way necessary for elicitability, since the report
space is not required to have any intrinsic meaning. For example, one can take Γ(t)

.
= −∂Gt

for some G, which will not be directly elicitable, but still elicitable with ϕ(r) = −r and G.
The notion of direct elicitation is often useful for generating intuitive examples, since the

report space itself has meaning. In fact, given any convex function G, the property Γ(t) =
∂Gt is directly elicitable by G. This is in fact how Example 3.1 was generated, specifically
equation (3.8), though at t = 0 we selected {−1, 0, 1} instead of the full subgradient set
∂G0 = [−1, 1].

As a final remark, we note a few observations about direct elicitation. One first notices
that the G eliciting some Γ is not unique, as G′

.
= G + c will also elicit Γ for any constant

c. But these are the only convex functions directly eliciting Γ. Moreover, recovering such
a G from Γ is easy: simply integrate (a selection of) Γ to obtain G. Testing whether Γ is
directly elicitable is less straight-forward, but there are a variety of monotonicity conditions
addressing this issue as well; see Section 5.1.1.

3.3.2 Report duality

We are now ready to hold up a mirror to properties and their scores, and see what we find.
That is, we introduce notions of duality. As we will see, there are actually two mirrors,
yielding four combinations of dualities (see Table 3.1). In this subsection we will explore the
first, flipping the report from the type to the dual type.
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For now, we will take our dual vector space to be all linear functions from V to R (not
R as above), but in §3.3.3 we will further require d 7→ d(v) to be linear for all v ∈ V .4 We
begin with the fundamental object of convex duality, the convex conjugate.

Definition 3.5. Let V∗ .
= Lin(V → R). The convex conjugate of G : V → R, denoted

G∗ : V∗ → R, is given by
G∗(d) = sup

v∈V
d(v)−G(v). (3.14)

The power of the conjugate, even in this very general setting, is apparent after the
following lemma, which says roughly that the convex conjugate “encodes” the subgradients
of G. This is a classical result in convex analysis (cf. [95, Thm E.1.4.1]), and we will use it
throughout the next two chapters.

Lemma 3.11. Let G : V → R be convex. Then for all v ∈ V , d ∈ V∗,

G∗(d) = d(v)−G(v) ⇐⇒ d ∈ ∂Gv.

Proof. We can simply break down the conditions step by step:

G∗(d) = d(v)−G(v) ⇐⇒ v ∈ argsup
v′∈V

d(v′)−G(v′)

⇐⇒ ∀v′ ∈ V , d(v)−G(v) ≥ d(v′)−G(v′)

⇐⇒ ∀v′ ∈ V , G(v′) ≥ G(v) + d(v′ − v),

where in the last step we merely negated and added d(v′) ∈ R to both sides.

Lemmas 3.4, 3.5, and 3.11 let us further simplify Theorem 3.2, as follows.

Theorem 3.12. Let non-redundant property Γ : T ⇒ R and Γ-regular affine score A : R →
A be given. Then A elicits Γ if and only if there exists some convex G : conv(T )→ R, and
bijective ϕ : R → D with D ⊆ ∂G satisfying ϕ(Γ(t)) ⊆ ∂Gt, such that for all r ∈ R and
t ∈ T ,

A(r)(t) = ϕ(r)(t)−G∗(ϕ(r)). (3.15)

We can now see that there are in fact “canonical scores” as well: every directly elicitable
Γ : T ⇒ D is elicited by some AD(d)(t) = 〈t, d〉 −G∗(d), and moreover any Γ : T ⇒ R with
D and ϕ is elicited (only) by scores A(r)(t) = AD(ϕ(r))(t). In other words, properties are
in a very literal sense just subsets of subderivative mappings, up to some bijection (or link
function) taking them to some other report space R.

4When the dual space can take on infinite values, the conjugate is not always well-defined, as values of
the form ∞−∞ are encountered.
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Dual-report mechanisms and the taxation principle. The notion of a dual-report
mechanism is already well-known as a consequence of the taxation principle — instead of
asking the agent for her type, one could simply ask the agent directly for the desired alloca-
tion, posting a menu prices (or “taxes”) for each. This is without loss of generality because a
mechanism’s prices cannot depend on the agent’s type except through the chosen allocation.
In our notation, each allocation d is listed with its price G∗(d). It is worth noting however
that this is not always identical to the original mechanism. Specifically, while the equilibrium
payoffs for the posted-price mechanism A(d)(t) are the same as those of the direct revelation
mechanism A(t′)(t), the off-equilibrium payoffs need not be equivalent, as the posted-price
mechanism may allow reports d ∈ ∂Gt which are not dGt′ for any t′. In other words, because
the primal-report (i.e., direct) mechanism must choose a single subgradient dGt for every
point, if {dGt}T ( ∂G = D, the dual-report mechanism can be strictly more expressive. We
can see this discrepancy in Example 3.1, since there are three report choices r ∈ {−1, 0, 1}
that could correspond to type t′ = 0, and each yields a different affine function of t not
expressible by any other type t′.

Dual-report scoring rules and prediction markets. As we will see in §4.2, the notion
of report duality exactly captures the relationship between scoring rules and prediction
markets. Here the scoring rules have the primal report space, and prediction markets the
dual, where the optimal share bundle is essentially a subgradient of the scoring rule at the
trader’s belief. There we will further discuss conditions for which the duality can be run in
reverse without loss of generality, but as mentioned above about mechanisms, in general the
“menu” format (dual report) of an affine score can be strictly more expressive than the type
format (primal report).

3.3.3 Type duality and the duality quadrangle

Beyond dual report spaces, we now explore a less familiar notion of duality, defining dual
properties and their scores, where we completely swap the roles of types and reports. This
is the second “mirror,” and with both in hand now we have a full four combinations of dual
report and type, which we call the duality quadrangle; see Table 3.1.

To start, we need a dual vector space with more structure than simply Lin(V → R).
For this we use the notion of a dual pair, which is a standard setting for convex analysis in
infinite-dimensional spaces.

Definition 3.6 ([5, §5.14]). A pair of topological vector spaces (V ,V∗) is a dual pair if it is
equipped with a bilinear form 〈·, ·〉 : V × V∗ → R which separates points, in the sense that
∀v∗ 〈v, ·〉 ≡ 0 implies v = 0 and ∀v 〈·, v∗〉 ≡ 0 implies v∗ = 0.

Note that the above assumption that (V ,V∗) is a dual pair implies in particular that for
all v∗ ∈ V∗, the map v∗ 7→ 〈v, v∗〉 is linear. This will be crucial when interpreting R ⊆ V∗ as
the type space, since affine scores must be affine in the type. Note that as R is Hausdorff, V
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together with the product topology inherited from the dual pair is also Hausdorff and locally
convex; see [5, §7] for details. For the remainder of this section (§3.3) we will assume that
we have a dual pair (V ,V∗).

A subject that will come up many times in this section, and even more in Chapter 4, is the
conditions under which we have G∗∗

.
= (G∗)∗ = G. That is, when is the conjugacy operator

an involution? Fortunately, in the setting of dual pairs, this has been thoroughly studied
in convex analysis. We state the classic theorem due to Fenchel and Moreau [59, 62, 100],
which will be useful throughout.

Definition 3.7. A function f : X → R is lower semi-continuous (l.s.c.) if for every x0 in
dom(f) it holds that lim inf

x→x0

f(x) ≥ f(x0).

Theorem 3.13 (Fenchel–Moreau). Let X be a Hausdorff locally convex space. For any
function G : X → R, it follows that G = G∗∗ if and only if one of the following is true

(i) G is a proper, l.s.c., and convex function

(ii) G ≡ +∞, or

(iii) G ≡ −∞.

The following corollary will prove very helpful in our discussion of type duality below, as
well as in Chapter 4. The proof follows from applying Theorem 3.13 (recall that dual pairs
are automatically Hausdorff and locally convex), and then Lemma 3.11 twice, once for G
and once for G∗.

Corollary 3.14. If G is convex, proper, and l.s.c., then v∗ ∈ ∂Gv ⇐⇒ v ∈ ∂G∗v∗.

We now introduce the concept of a dual property Γ∗, which essentially swaps the type
and the report. That is, an agent has a “true report” r and Γ∗(r) encodes all the “correct
types” t. We then go on to show the relationship between the direct elicitability of dual
properties. See below for possible interpretations of dual properties.

Definition 3.8. Let Γ : T ⇒ R where R ⊆ V∗. Then the dual of Γ, written Γ∗ : R ⇒ T ,
is defined by Γ∗

.
= Γ−1. In other words, Γ∗ satisfies r ∈ Γ(t) ⇐⇒ t ∈ Γ∗(r).

Theorem 3.15. For dual pair (V ,V∗), let Γ : T ⇒ D be given with T ⊆ V and D ⊆ V∗.
Let convex proper and l.s.c. G be given. Then G elicits Γ if and only if G∗ elicits Γ∗.

Proof. We apply Corollary 3.14 to obtain d ∈ ∂Gt ⇐⇒ t ∈ ∂G∗d. If G directly elicits Γ,
then we have

t ∈ Γ∗(d) ⇐⇒ d ∈ Γ(t) ⇐⇒ d ∈ ∂Gt ⇐⇒ t ∈ ∂G∗d,

so G∗ directly elicits Γ∗. Clearly the above may be applied in the reverse direction as well,
yielding the result.
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Let us look deeper into Theorem 3.15. Note that when G and G∗ elicit Γ and Γ∗,
respectively, we have by the above discussion that A(d)(t) = 〈t, d〉 − G∗(d) elicits Γ and
A∗(t)(d) = 〈t, d〉 −G(t) elicits Γ∗. Moreover, the “consumer surplus” functions of A and A∗

are G and G∗, respectively. This curious relationship, combined with the notion of report
duality, can be visualized as shown in Table 3.1. Note that traveling around the table does
not necessarily mean arriving at the same choice of G, nor does it imply that G∗∗ = G.
However, when G∗∗ = G does hold, the diagram “commutes” in a certain sense.

Type

Primal Dual

R
ep

or
t

P
ri

m
al A(t′)(t)

=
G(t′) + 〈t− t′, dGt′〉

A∗(t′)(d)
=

〈t′, d〉 −G(t′)

D
u
al

A(d′)(t)
=

〈t, d′〉 −G∗(d′)

A∗(d′)(d)
=

G∗(d) + 〈dG∗d′ , d− d′〉

sup A(·)(t) = G(t) sup A∗(·)(d) = G∗(d)

Table 3.1: The duality quadrangle.

The implications of these dualities, and in particular of type duality, are not yet fully
clear. In the following paragraphs we explore various identities and ideas that naturally
arise, but leave the rest to future work.

Identities

Table 3.1 shows that the theory of elicitation inherits a lot of structure from convex duality.
Ignoring boundary and regulatory concerns for the moment, we obtain some nice identities:

A(d)(t) + A∗(t)(d) ≥ 〈t, d〉 (3.16)

A(d)(t)− A∗(t)(d) = G(t)−G∗(d). (3.17)

The first follows from the classic Fenchel-Young inequality [89], the proof of which for G
proper follows directly from the definition of the conjugate (Definition 3.5).

Lemma 3.16 (Fenchel-Young inequality). ∀ v ∈ V , v∗ ∈ V∗, G(v) +G∗(v∗) ≥ 〈v, v∗〉.
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The elicitation game

Define a two-player game M(d, t), with row strategies d ∈ D and column strategies t ∈ T ,
as

M(d, t) =
(
A(d)(t), A∗(t)(d)

)
=
(
〈t, d〉 −G∗(d), 〈t, d〉 −G(t)

)
. (3.18)

One could think of the column player as choosing the agent’s type, and the row player
as choosing the principal’s “allocation.” Interestingly, this interpretation implies that the
row is the agent and the column is the principal (they each choose each other’s “type”).
Immediately one realizes that the Nash equilibria of this elicitation game M are exactly the
set of dual-optimal points (d, t) such that d ∈ ∂Gt and t ∈ ∂G∗d. Moreover, the equilibrium
payoffs for the Nash (d, t) are

(
G(t), G∗(d)

)
.

It is interesting to note the mixed strategies of this game: if d ∼ PD and t ∼ PT
independently, the payoffs are

M(PD, PT ) =
( 〈
t̄, d̄
〉
− EPD [G∗(d)],

〈
t̄, d̄
〉
− EPT [G(t)]

)
, (3.19)

and if (d, t) ∼ P is supported only on dual points,

EP [M(d, t)] =
(
EP |T [G(t)], EP |D [G∗(d)]

)
, (3.20)

both of which bear resemblance to quantities in Bayesian or randomized mechanism settings.

Score divergences

The score divergence A(t)(t)−A(t′)(t) is a natural notion of “regret” which arises frequently
in the scoring rules literature (cf. [51]). Our score divergence, as we define below, is remi-
niscent of a Bregman divergence, a fact we explore further in §4.2.1.

DG,dG(t, t′)
.
= A(t)(t)− A(t′)(t) = G(t)−G(t′)− 〈t− t′, dGt′〉 . (3.21)

Note that the first argument to D is the true type, as opposed to our A notation. Also note
the subscripts to D, which specify both the convex function G and a selection of subgradients.
A Bregman divergence requires G to be continuously differentiable, but our definition (3.21)
is a natural extension, and has been studied before (cf. [60]). We also use this general notion
in Definition 4.1.

Score divergences have many nice properties, like convexity in the first argument, and
(directional) differentiability at t′ = t; see Proposition 3.19. Score divergences also enable
reasoning about the magnitude of off-equilibrium payoffs, which can be important in practice,
when externalities are often present. For example, Fiat et al. [45] introduce the notion of
“strong truthfulness”, where the payoff decays as ‖t − t′‖2, to design mechanisms that are
robust even when agents care about the utility of other agents.
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Turning to our various notions of duality, the following are four divergences correspond-
ing to the duality quadrangle, starting in the (primal,primal) setting and moving counter-
clockwise.

DG,dG(t, t′) = G(t)−G(t′)− 〈t− t′, dGt′〉 (3.22)

DG(t, d′) = G(t) +G∗(d′)− 〈t, d′〉 (3.23)

DG∗,dG∗(d, d
′) = G∗(d)−G∗(d′)− 〈dG∗d′ , d− d′〉 (3.24)

DG∗(d, t
′) = G∗(d) +G(t′)− 〈t′, d〉 . (3.25)

Amazingly, we see that DG(t, d) = DG∗(d, t) for all t, d (not just dual points). In other
words, the loss of reporting d in the primal but having type t is the same as reporting t in
the dual but having “type” d. In the context of the elicitation game above, this means that
at any pure strategy pair, both players have the same regret, so they both stand to gain the
same amount in a best response (though a simultaneous best response will not lead to an
equilibrium point in general).

Dual scoring rules

The notion of a dual scoring rule is relatively straightforward. The agent is endowed with a
private lottery ticket q : O → R which specifies her winnings upon each state of the world O.
A principal who would like to know the agent’s lottery ticket offers her a scoring mechanism
S∗(q′, q) = Ep(q′)[q] which selects a distribution p(q′) based on the report q′. That is, the
mechanism selects p, the odds for the gamble, based on the reported ticket q′. Truthfulness
implies that this must be done in a way to maximize the winnings for q′.

To make this slightly more concrete, let us take the dual of the scoring rule

S(p′, o) = G(p′) + dGp′(o)− Ep′ [dGp′ ] = dGp′(o)−G∗(dGp′).

Then the dual would be

S∗(q′, q) = G∗(q′) + dG∗q′(q − q′) = Ep(q′)[q]−G(p(q′)),

where p(q′) = dG∗q′ ∈ P . Thus, the “menu” format of the affine score would be a list
of probability distributions p with prices G(p), where G is the consumer surplus from the
original scoring rule. Note that as p ∈ P , the mechanism cannot enforce strict truthfulness
between q and q + α1. To get around this, the principal might add a new outcome with a
known payout, i.e. set O′ = O ∪ {o ′} and offer to pay the agent $1 if o ′ materializes, and
modify the menu above to contain entries p′ ∈ ∆(O′). Intuitively, the agent’s preferences
between the existing lottery ticket and the new payout opportunity reveal the “scale” (in an
arithmetic sense) of the agent’s original gamble.

As a simple example, one can take G(p) = −H(p) where

H(p) = −
∫
O
p(o) log p(o) dν(o)
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is Shannon entropy (see Chapter 4). In this case, the primal scoring rule is just the logarith-
mic scoring rule S(p, o) = log p(o). Phrased in dual report format, the dual scoring rule is
simply,

S∗(p, q) = Ep[q] +H(p) = Ep[q − log p]

where the optimal odds for q are the familiar exponential weights,

p(q)(o) = ∇(−H)∗(q) =
exp(q(o))∫

O exp(q(o))dν(o)
.

Dual mechanisms

Less straightforward than a dual scoring rule, the idea of a dual mechanism is nonetheless
intriguing, where essentially the roles of the principal and agent in mechanism design are
reversed. Here the agent devises some score A∗ : D → Aff(D → R) where D = {Evalo :
o ∈ O} and the range of A∗ is {Evalo 7→ Evalo [t] : t ∈ T }. Equivalently, and much more
straightforwardly, we can write A∗ : O → T . Thus the principal reports an allocation
o ′ ∈ O, and the mechanism produces a type to

′
= A∗(o ′) based on this report, and finally

the principal receives utility to
′
(o) for the “true allocation” o.

A possible interpretation is that the principal reports what “object” she has in her hands,
the “allocation”, and the agent chooses his type; the pricipal’s payoff is then the valuation
of the agent’s chosen type on the true allocation. Note that as always, the roles of revenue
and consumer surplus are swapped, in exactly the way one would think — the net utility of
the agent in both cases is G(t), and that of the principal in both cases is G∗(d).

3.3.4 Rationalizability

Since Rochet [86] or earlier, it has been observed that the design of truthful mechanisms is
similar to the rationalizability problem, which is the following. Given some purchase data
D = (xi, pi), where xi ∈ Rn is the ith bundle of goods and pi ∈ Rn is the ith price vector,
is D consistent with a concave utility function (which is quasi-linear in money)? In other
words, does there exist concave u : Rn → R such that for all i

xi ∈ argmax
x
{u(x)− pi · x | x ∈ X(pi)}, (3.26)

where one usually takes X(p) = {x ∈ Rn | p · x ≤ B}. We will take X(p) = X for the
remainder, though this can perhaps be relaxed.

We can make this connection more formal by swapping the roles of the utility and the
cost. That is, letting p be the “type”, we immediately see that the net utility is affine in p,
so we can view this as an affine score. Specifically, letting Γ(p) ⊆ X be the set of bundles
that the agent buys given prices p, we have that u rationalizes Γ (which encodes D) if and
only if A(x)(p) = u(x)− p · x elicits Γ.
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Note that if we interpret this this affine score as a mechanism, the valuation vector
is t = −p, meaning agent’s utility is actually t · x = −p · x, whereas the payment to the
mechanism is −u(x). Thus, the consumer surplus function of the mechanism is the conjugate
dual of the (negative) utility function, since G(t)

.
= supx∈X{t · x− (−u)(x)} = (−u)∗(t).

There is certainly duality involved in this conversion between rationalizability and mecha-
nism design, and it is natural to ask how this fits with the various notions of duality discussed
above. In both rationalizability and mechanism design, the agent is given prices/type p = −t,
and must choose a bundle/report x. In terms of the duality quadrangle in Table 3.1, these
settings are still in the left-hand side (primal type), specifically the lower left (dual report),
though one could argue that the mechanism is the top left (primal report). Thus, the real
duality in rationalizability is in taking an affine score A(d)(t) = d(t) − G∗(d) and thinking
of the d(t) term as the cost and the −G∗(d) term as the utility, rather than the other way
around as is typical for mechanism design.

3.4 Characterizations for special cases

We now examine specific classes of properties, using the additional structure to provide
stronger characterizations. As discussed in §3.1, the previous work in these areas lies almost
entirely in the scoring rules domain, where a property is often interpreted as a statistic of
a distribution. Our goal will be to extend these results to our much more general setting,
both to uncover their deeper mathematical structure and to allow their extention to other
elicitation domains; see for example the discussion on properties in mechanism design in
§5.2.

The two classes we consider are finite-valued properties, where R is a finite set of possible
reports, and functional properties, where the multivalued map Γ : T ⇒ R is actually a
function Γ : T → R specifying a unique correct report for each t ∈ T . The latter case we
will further break down into the linear case in §3.4.2, where R is a vector space and Γ is a
linear map, and the general nonlinear case in §3.4.3, where we will be forced to make further
differentiability assumptions to make headway.

3.4.1 Finite-valued properties

We first consider the case where R is a finite set of reports. In the scoring rules literature,
Lambert and Shoham [66] view this case as eliciting answers to multiple-choice questions.
There are also natural applications to mechanism design, which we mention in §5.2.

Our approach is heavily inspired by Lambert and Shoham [66]. Assume throughout that
R is finite and that T is a convex subset of a vector space V endowed with an inner product,
so that we may write 〈t, t′〉 and in particular ‖t‖2 = 〈t, t〉. In this more geometrical setting,
we will use the concept of a power diagram from computational geometry.
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Definition 3.9. Given a set of points P = {pi}mi=1 ⊂ V, called sites, and weights w ∈ Rm,
a power diagram D(P,w) is a collection of cells cell(pi) ⊆ T defined by

cellP,w(pi) =

{
t ∈ T

∣∣∣∣ i ∈ argmin
j

{
‖pj − t‖2 − wj

}}
. (3.27)

The following result is a generalization of Theorem 4.1 of Lambert, et al. [66], and is
essentially a restatement of results due to Aurenhammer [11, 9].

Theorem 3.17. A property Γ : T ⇒ R for finite R is elicitable if and only if the level sets
{Γr}r∈R form a power diagram D(P,w).

Proof. Let us examine the condition that t is an element of cellP,w(pi) for some power diagram
D(P,w):

t ∈ cellP,w(pi) ⇐⇒ i ∈ argmin
j

{
‖pj − t‖2 − wj

}
⇐⇒ i ∈ argmin

j

{
‖pj‖2 − 2 〈pj, t〉 − wj

}
. (3.28)

Note that eq. (3.28) is affine in t. Now given some D = D(P,w) with index set R, we simply
let A(r)(t) = 2 〈pr, t〉+wr−‖pr‖2. By (3.28) we immediately have r ∈ argsupr′ A(r′)(t) ⇐⇒
t ∈ cellP,w(pr), as desired.

Conversely, let an affine score A eliciting Γ be given. Note that since we are in an inner
product space, we may write A(r)(t) = 〈xr, t〉+ cr for xr ∈ V and cr ∈ R. Letting pr = xr/2
and wr = ‖pr‖2 + cr, we see by (3.28) again that Γr = cell(pr) of the diagram D({pr}, w).
Hence, Γ is a power diagram.

We have now seen exactly what kinds of finite-valued properties are elicitable, but how
can we elicit them? Or more precisely, as the proof above is constructive enough to give
sufficient conditions, what are all ways of eliciting a given power-diagram? In general, it is
difficult to provide a “closed form” answer to this question, so we restrict to the simple case,
where essentially the cells of a power diagram are as constrained as possible.

Definition 3.10 ([10]). A j-polyhedron is the intersection of dimension j of a finite number
of closed halfspaces of V, where 0 ≤ j ≤ dim(V) <∞ . A cell complex C in V is a covering
of V by finitely many j-polyhedra, called j-faces of C, whose (relative) interiors are disjoint
and whose non-empty intersections are faces of C. C is called simple if each of its j-faces
is in the closure of exactly (d− j + 1) d-faces (cells).

Theorem 3.18. Let finite-valued, elicitable, simple property Γ : T ⇒ R be given. Then
there exist points {pr}R ⊆ V such that an affine score A : R → A elicits Γ if and only if
there exist α > 0, and p0 ∈ V such that

A(r)(t) = 2 〈αpr + p0, t〉 − ‖αpr + p0‖2 + wr, (3.29)

where the choice w ∈ RR is determined by α and p0.
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Proof. A result of Aurenhammer for simple cell complexes, given in Lemma 1 of [9] and the
proof of Lemma 4 of [11], states the following: given sites P and P ′ and weights w, there
exist weights w′ such that D(P ′, w′) = D(P,w) if and only if P ′ is a homothet (translated
and positively scaled copy) of P . We simply apply this fact to the proof of Theorem 3.17.

Image credit: Pooran Memari

Figure 3.2: A consumer surplus function G and its corresponding partition of the type space,
Γ. The proof of Theorem 3.17 leverages the fundamental relationship between projections
of convex functions and power diagrams.

We conclude our exploration of finite-valued properties with a few remarks.

Bregman Voronoi digrams and the role of ‖·‖2. The squared norm seems fundamental
to our derivation above; let us dig further to see if this is indeed the case. Observe that the
form (3.29) is simply

A(r)(t) = 2 〈tr, t〉 − ‖tr‖2 + wr,

where tr = αpr + p0. Consider the case where wr = 0 for all r, which corresponds to Γ being
a Voronoi diagram. In this case, could think of A as being a special case of the “Brier score”
AB(t′)(t) = 2 〈t,′ t〉 − ‖t′‖2, so that A(r)(t) = AB(tr)(t). In other words, we can think of our
finite-report case as just restricting the allowed reports in a general direct-revelation affine
score. Note that the score divergence for AB is just DG(t′, t) = ‖t′ − t‖2, where G(t) = ‖t‖2

is just the square norm.
This raises the following interesting question: what do we get when we replace G = ‖ · ‖

with another convex function on T , and restrict the reports from T to just a few points
{tr}R? That is, take AG(t′)(t) = G(t′) − dGt′(t − t′) and set A(r)(t) = AG(tr)(t). Surely,
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for any such G, whatever Γ is elicited by such a modified affine score would have to be a
diagram by Theorem 3.17. But then why does the squared norm seem so fundamental?

As it happens, we are touching on precisely the notion of a Bregman Voronoi diagram,
introduced by Nielsen et al. [23, §4]. There, instead of defining celli = {t : i ∈ argminj ‖tj −
t‖}, the squared norm is replaced by any Bregman divergence DG, so that celli = {t :
i ∈ argminj DG(t, tj)}.5 Our conclusion that such diagrams coincide with power diagrams
corresponds to their Theorem 8.

Framed in terms of our report duality from §3.3.2, we can see this yet another way. We
can rewrite the Bregman Voronoi cell as

celli =

{
t : i ∈ argmax

j
G(tj)− dGtj(t− tj)

}
. (3.30)

By Lemma 3.11, this can in turn be written

celli =

{
t : i ∈ argmax

j

〈
t̃j, t
〉
−G∗(t̃j)

}
, (3.31)

where t̃j = dGtj . Hence, for any convex function G, the sites {pj} and weights w of a power
diagram corresponding to the DG Bregman Voronoi diagram with sites {tj} are given by
pj = 1

2
dGtj and wj = 1

4
‖dGtj‖2 −G∗(dGtj).

Degrees of freedom. It is interesting to ask what the degree of freedom is when choosing
an affine score to elicit a given property Γ. Note that we have a trivial upper bound of
(d + 1) · |R|, where d = dim(V), since one at most chooses a site and weight for each
cell. Theorem 3.18 makes it clear that in the simple case, the degree of freedom is actually
bounded by d+ 1. In other words, one can specify the affine score with no more than d+ 1
real numbers, no matter the size of R.6

What about outside the simple case — are there cases when we are more or less restricted?
In fact, it is easy to come up with examples where we have much more flexibility.

Example 3.2. The simplest example of a property whose degree of freedom scales with R
is the “collinear” property, Γ(t) = b〈t, x〉c for some fixed x, where byc denotes the greatest
integer less than or equal to y (the floor function). In a single dimension, this becomes
simply Γ(t) = btc; let us take T = [1, N + 1) and R = [N ] = {1, 2, . . . , N}. To elicit Γ,
we must choose A(r)(t) = αrt + cr to satisfy the constraints αr+1(r + 1) + cr+1 = αrr + cr
and αr+1 ≥ αr for all r ∈ N. Picking an arbitrary α1 and c1, we see that this still leaves
one degree of freedom between α2 and c2, and so on each time we make a choice. Thus
we may choose {αr}r to be any increasing sequence, and the initial offset c1, for a total of
N + 1 = |R|+ 1 degrees of freedom. It is easy to see that in d dimensions, this example gives
|R| + d; pick an initial slope and offset (d + 1) and slope for each additional hyperplane (1
each, for a total of |R| − 1, since the boundaries must be maintained).

5In [23], three types of diagrams are introduced; here we refer to the first type.
6The upper bound comes from the fact that two representations may give equivalent scores.
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In the context of scoring rules, Lambert [63] notes that given a finite property Γ, there
exists some set of base scores {bi} such that any scoring rule which is truthful for Γ can be
written as a linear combination

∑
αibi. It is not shown, however, how many base scores

there are for a given Γ, and hence the degree of freedom for specifying a score is unclear.
We conjecture that the collinear case described above provides the most flexibility, so that
the degree of freedom for any Γ is bounded by d+ |R|.

Computing elicitability. It is natural to ask, given a property Γ, can we determine
whether Γ is elicitable in polynomial time? By Theorem 3.17, we need only test whether
the cells C = {Γr}r∈R form a power diagram. For the simple case, Aurenhammer gives an
algorithm for this task, given as “Algorithm Orthogonal Dual” in §2.2 of [10] and comments
thereafter. The orthogonal dual algorithm assumes that the cells are stored in an incidence
lattice, with nodes for each face of C, and edges when faces are incident (a j-dimensional face
which contains a (j − 1)-dimensional face). The runtime of the algorithm is O(m), where m
is the number of facets (faces of dimension d− 1).

More generally, Rybnikov in [90, §12] presents a polynomial-time algorithm which can
detect power diagrams in the general case. His work extends to manifolds even beyond
convex polytopes (the projections of which yield power diagrams — see Figure 3.2). We will
apply this algorithm to mechanism design in §5.2.

3.4.2 Linear properties

A natural class of properties are those which specify a unique correct report for each type.
In other words, properties Γ which are functions from T to R. This case has been studied
extensively in the scoring rules literature, and we explore how to extend these results to our
setting. In particular, this section focuses on the case that Γ : T → R is a linear function,
in the algebraic sense. That is, for all α ∈ R and all t1, t2 ∈ T such that αt1 + t2 ∈ T , we
have Γ(αt1 + t2) = αΓ(t1) + Γ(t2).

The setting where types are distributions T ⊆ ∆(O) has been studied in both machine
learning and in the scoring rules literature. In that case, Γ can be thought of as the mean of a
random variable. We will address this case in much greater detail in Chapter 4, and discuss
previous work in § 4.1.2. We find that even in the distribution case, our characterization
is more general than those currently in the literature due to our lack of differentiability
requirements or other major technical conditions.

Here we merely assume R is itself a subset of a topological vector space, and Γ is contin-
uous (and linear). Since Γ is a function, throughout this subsection (and the next) we will
use the notation Γ : T → R and write r = Γ(t). We will only consider real-valued affine
scores, i.e. A = Aff(V → R), though in principle this restriction could be relaxed to the
extended reals as above. We will also assume throughout that T and R are convex.

As before, our goal is to characterize all elicitable Γ in this setting, and all affine scores
(weakly) eliciting a given Γ. The first question turns out to be quite simple: any linear map
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Γ is elicitable, by taking the following affine score:

A(r)(t) = G(r) + dGr(Γ(t)− r), (3.32)

where G : R → R is convex. To see this, consider r̂ = Γ(t) to be the type, and invoke
Theorem 2.1. We thus turn to the second question: what forms of A other than (3.32)
weakly elicit Γ?

To answer this question, we will capitalize on a subtle but important property of truthful
affine scores: locally around a point t, the score A(·)(t) is “smooth.” That is, the optimization
for an agent, supt′ A(t′)(t), is well-behaved for t′ sufficiently close to t. To formalize this
statement, we define the directional derivative.

Definition 3.11. Let f : T → R, and for all t ∈ T and v ∈ V define

f(t; v) = lim
ε↓0

f(t+ εv)− f(t)

ε
(3.33)

to be the directional derivative of f at t in direction v.

We can now be more precise in describing the behavior of an affine score near the “diag-
onal”: the directional derivative A(t; t′ − t)(t) is 0. Note that our compact notation here is
just stating f(t; t′ − t) = 0 for f(·) = A(·)(t).

Proposition 3.19. Let A : T → A be a truthful affine score, where T is convex and
A ⊆ Aff(V → R). Then for all t, t′ ∈ T the directional derivative A(t; t′ − t)(t) exists and is
equal to 0.

Proof. By Theorem 2.1, we have some convex function G : T → R, and some selection of
subgradients {dGt}t∈T , such that

A(t′)(t) = G(t′) + dGt′(t− t′). (3.34)

Fix t, t′ ∈ T , and define g : R→ R by g(x) = G(t+x(t′−t)). Then we have A(t+x(t′−t))(t) =
g(x)− dgx(x) where one can check that dgx

.
= dGt+x(t′−t) is indeed a subgradient to g. Now

we have

A(t; t′ − t)(t) = lim
ε↓0

A(t+ ε(t′ − t))(t)− A(t)(t)

ε
(3.35)

= lim
ε↓0

g(ε)− dgε(ε)− g(0)

ε

= g′+(0)− lim
ε↓0

dgε,

where g′+(x) is the right derivative of g at x. It is clear that dgx ≤ g′+(x) for all x, and we have
from [89, Theorem 24.1] that g′+(x) ≤ g′+(x + ε) and limε↓0 g

′
+(x + ε) = g′+(x). Combining

these we see that limε↓0 dgε = g′+(ε). Hence we have A(t; t′ − t)(t) = 0 as desired.
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We can now use the revelation principle to apply Proposition 3.19 to our linear property
setting. Note that linearity of Γ is key here; without it, passing from Γ(t + ε(t′ − t)) to
r + ε(r′ − r) would introduce error terms which may not be well-behaved in general.

Corollary 3.20. Let A : R → A be given which weakly elicits a linear property Γ, where
A ⊆ Aff(V → R) and R and T are convex. Then for all t ∈ T and r = Γ(t), and all r′ ∈ R
, we have A(r; r′ − r)(t) = 0.

Proof. The affine score AT (t′)(t)
.
= A(Γ(t′))(t) is truthful because A is (this is the “revelation

principle”), and hence we may apply Proposition 3.19 to AT . For any t′ ∈ Γr′ ,

0 = AT (t; t′ − t)(t) = lim
ε↓0

AT (t+ ε(t′ − t))(t)− AT (t)(t)

ε

= lim
ε↓0

A
(

Γ(t+ ε(t′ − t))
)

(t)− A
(

Γ(t)
)

(t)

ε

= lim
ε↓0

A(r + ε(r′ − r))(t)− A(r)(t)

ε

= A(r; r′ − r)(t).

We are getting closer to our goal of understanding affine scores for linear properties. Our
next step will be to show that we may extend A outside of T along level sets of Γ. Note that
α here is not just in the unit interval, but on the whole real line — we are saying that A is
still truthful even on linear extensions of level sets of Γ.

Lemma 3.21. Let A : R → A be given which weakly elicits a linear property Γ : T ⇒ R,
where A ⊆ Aff(V → R). Then A weakly elicits Γ on expanded type space T̂ = {αt+(1−α)t′ :
α ∈ R, ∃r ∈ R t, t′ ∈ Γr}.

Proof. Let r, r′ ∈ R, t, t′ ∈ Γr, and t̂ = αt + (1 − α)t′. Note first that by linearity of Γ we
have Γ(t̂) = αΓ(t) + (1− α)Γ(t′) = r. Thus,

A(r′)(t̂) = A`(r
′)(αt+ (1− α)t′) + Ac(r

′)

= αA`(r
′)(t) + (1− α)A`(r

′)(t′) + αAc(r
′) + (1− α)Ac(r

′)

= αA`(r)(t) + (1− α)A`(r)(t
′) + αAc(r) + (1− α)Ac(r)

= A`(r)(t̂).

We are now ready to state the crucial lemma of this section, which says that a truthful
affine score for a linear property depends on the type only through Γ, modulo some linear
term independent of the report.

Lemma 3.22. Let A : R → A be given which weakly elicits a linear property Γ, where
A ⊆ Aff(V → R) and R and T are convex. Then there exists ` ∈ Lin(V → R) such that for
all r, r′ ∈ relint(R) and all t1, t2 ∈ Γr,

A(r′)(t1)− A(r′)(t2) = `(t1 − t2). (3.36)
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Proof. Let td = t1− t2 ∈ V such that Γ(t1) = Γ(t2). By linearity of Γ we have Γ(td) = 0, and
moreover, Γ(t+td) = Γ(t) for all t ∈ T . Thus, these “level-set differences” td are independent
of the Γ-value of the level set; in light of this, we define T D = {td ∈ (T − T )|Γ(td) = 0} ⊆
ker(Γ).

Now let t ∈ relint(T ) and td ∈ T D be arbitrary. By definition of relint (see §2.2 or [103, pp.
2-3]), we have some δ > 0 such that t+δtd ∈ T . Note that Γ(t+δtd) = Γ(t)+0 = r for some
r ∈ R. Thus, by Lemma 3.21 we have that A can be extended to α(t+δtd)+(1−α)t = t+αδtd
for all α ∈ R; that is, the set Γr + span(T D). Hence, we conclude that A weakly elicits Γ on
extended type space T̂ .

= T ∪(relint(T )+span(T D)). Note that as T is convex andR = Γ(T ),
we have relint(R) = Γ(relint(T )) (cf. [88, Prop. 2.44]), and in particular, Γr +span(T D) ⊆ T̂
for all r ∈ relint(R).

We now break A into its linear A` and constant Ac parts, so that A(r)(t) = A`(r)(t) +
Ac(r). Observe that for fixed r, we have A(r)(t1)−A(r)(t2) = A`(r)(t1− t2), as the constant
terms cancel out. We now show that A`(r; r

′ − r)(td) = 0 for all r ∈ relint(R), r′ ∈ R, using
Corollary 3.20:

A`(r; r
′ − r)(td) = A(r; r′ − r)(tr + td)− A(r; r′ − r)(tr) = 0 + 0 = 0

for any tr ∈ Γr. Note that restriction r ∈ relint(R) is necessary to guarantee that A is defined
(and truthful) for the point tr + td.

Finally, as we have now shown that A`(r)(td) is continuously Gâteaux differentiable (see
[5, §7]) at all r ∈ relint(R), and all directional derivatives are 0, we conclude that it must be
a constant function (in r). Now fixing some r ∈ relint(R) and letting `(td)

.
= A`(r)(td) for

all td ∈ T D concludes the proof.

From Lemma 3.22, the main result of this section now follows. Note that we must be
careful about the relative interior of R— to this end, we say that A weakly elicits Γ on T ′ if
Γ(t′) ∈ argsupr A(r)(t′) for all t′ ∈ T ′. Similarly, we say A weakly elicits Γ on R′ if it weakly
elicits Γ on Γ−1(R′).

Theorem 3.23. Let linear property Γ : T → R and Γ-regular affine score A : R → A be
given, where A ⊆ Aff(V → R) and R and T are convex. Then A weakly elicits Γ on relint(R)
if and only if there exists some convex G : R → R with subgradients {dGr}r∈R, and some
linear ` ∈ Lin(V → R), such that for all r ∈ relint(R) and t ∈ T ,

A(r)(t) = G(r) + dGr(Γ(t)− r) + `(t). (3.37)

Proof. It is trivial that the given form is truthful, as observed above: ` plays no part in
the elicitation, and the remainder is truthful by Theorem 2.1. For the converse, given some
A which weakly elicits Γ on relint(R), we obtain an ` from Lemma 3.22 such that for all
r ∈ relint(R), the score A′(r)(t)

.
= A(r)(t) − `(t) depends on t only through Γ. To see this,

fix tr ∈ Γr and let AR(r′)(r)
.
= A′(r′)(tr); then for t ∈ Γr,

A′(r′)(t)− AR(r′)(Γ(t)) = A(r′)(t)− `(t)− A′(r′)(tr) + `(tr) = 0,
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where the last equality uses Lemma 3.22. We now note that as the choice of tr above was
arbitrary, we may take a linear right inverse of Γ, satisfying tr+αr′ = tr + αtr′ (this can
be done by Lemma 3.21). Now AR satisfies the conditions of Theorem 2.1 for type space
relint(R), from which the form (3.37) follows.

We conclude with a few remarks. First, note that the restriction to relint(R) is not merely
for convenience, as the following example shows.

Example 3.3. Let T = {(t1, t2) ∈ [0, 1]2 : t2 ≤ t2}, and Γ(t) = t1. Then the following affine
score elicits Γ:

A(r)(t) =

{
2rt1 − r2 if r > 0

−t2 if r = 0
. (3.38)

To see this, note that A(0)(t) ≤ 0 for all t, so when t1 > 0 reporting r = t1 is optimal. For
t1 = 0, the only type in T also has t2 = 0, and hence r = 0 strictly dominates. Thus, we
have strict elicitation. But A cannot be written in the form (3.37) as A depends on t2 in a
way that is not constant in r.

Intuitively, Theorem 3.23 is using the fact that Γ forces A(Γ(t))(t) to be flat along level
sets of Γ, which tells one a lot about the subgradients on interior points. However, Ex-
ample 3.3 shows that all bets are off for boundary points. Put another way, if r is in the
(relative) interior, then the affine score has to be “well-behaved” for reports nearby. But if
r is up against the boundary of R, then the score can do something more extreme, since it
only has to be well-behaved on one side of r.

We briefly note also that Theorem 3.23 applies to some nonlinear properties as well. For
any invertible ψ : R → R′ and linear property Γ, an affine score A : R′ → A weakly elicits
Γ′(t)

.
= ψ(Γ(t)) if and only if

A(r′)(t) = G(ψ−1(r′)) + dGψ−1(r′)(Γ(t)− ψ−1(r′)) + `(t), (3.39)

of course under the same conditions as Theorem 3.23.
Finally, we remark that the proof above may have room for simplification.

Question 3.2. For linear Γ, can we show A(r)(t) = AR(r)(Γ(t)) + `(t) for some `, without
resorting to differentiation arguments?

3.4.3 Nonlinear properties

We now turn to the general (i.e. nonlinear) functional property case, though our results will
be far from general. We will need to make strong smoothness and geometrical assumptions.
We restrict to the scoring rule setting with finitely many outcomes O = [n], so that T =
P ⊆ ∆n is a convex set of distributions. For compact notation, we write our scores as
S : R → Rn rather than the traditional S : R×O → R; thus, the expected score of report
r under belief p is S(r) · p.
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Our result ties in nicely with the scoring rules literature, so we first review the relevant
work. Recall from §1.2.1 the price rate argument of Savage [92]: to obtain a truthful report
of an agent’s value for a commodity, simply offer to sell one unit of the commodity at each
of a sequence of prices, in even intervals between 0 and the reported price π. One easily
sees that “one unit” could easily be replaced by “any positive amount” and the elicitation
would still be valid. In fact, Savage points out that making this continuous and selecting
some positive amount λ(π) yields the representation

S(π′, π) =

∫ π′

0

λ(α)(π − α)dα, (3.40)

since the agent gains value λ(α)π for each transaction but pays λ(α)α.
This integral representation of scoring rules has come up again and again; that of

Schervish [93] is perhaps the most famous, but it also appears in Osband [78], Lambert
et al. [65, 63], and Gneiting [50]. In all cases, it is noted that one may take some set of
proper base scores (usually not strictly proper) and merely take a weighted integral over
them to obtain another proper scoring rule.

The result of Lambert et al. [65] is particularly relevant here, as it addresses nonlinear
scalar properties. They show that a scoring rule is proper for Γ : P → R if and only if one
can write

S(r′) =

∫ r′

r0

λ(r)v(r)dr, (3.41)

where λ(r′) is any nonnegative function and v is determined uniquely by Γ alone. The authors
also extend this result to higher dimensional R, but under very restrictive conditions. In
particular, for a linear property Γ, their result does not cover the score S(r) = G(r) +∇rG ·
(Γ(p) − r) where G(r) = r>Mr for non-diagonal p.s.d. M ∈ Rk×k; that is, when G is a
quadratic form which is not axis-aligned.

As further motivation, consider the form we obtain when applying the linear characteri-
zation above (Theorem 3.23). We spell this out in §4.2.1, but briefly, we find that

S(r′, p) = G(r) +∇rG · (Γ(p)− r) + `(p) (3.42)

for some linear ` : P → R. Now assume that S is differentiable and G is twice differentiable;
then we have

∇rS(·, p) = ∇rG+ (Γ(p)− r)>∇2
rG−∇rG = (Γ(p)− r)>∇2

rG. (3.43)

Hence, letting Λ(r) = ∇2
rG and V (r) = (A− r1>), where Γ(p) = Ap, we have

S(r′) =

∫ r′

r0

(
Λ(r) V (r)

)>
dr. (3.44)

Thus, we again have V determined uniquely by Γ and Λ an (essentially) arbitrary positive
semidefinite matrix function (p.s.d. as G is convex), and we can write any S as the integral
over these choices.
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We will show that any continuously differentiable proper scoring rule for a nonlinear
property Γ can be represented in a similar way, provided it satisfies the condition below.
The crucial insight is in the construction of V . We will see that just as A = ∇pΓ for all
p ∈ P in the linear case, using ∇Γ for V will also work in the nonlinear case, evaluated at a
particular choice of representatives p̂(r).

Condition:
Γ is elicitable, differentiable, and has convex maximal level
sets of dimension dim(P)− dim(R) = n− k − 1.

(3.45)

As usual, we set R .
= Γ(P). We say a set S is convex maximal (in P) if S is the

intersection of an affine subspace and P . In other words, S is maximally convex in P , in the
sense that it contains all points in its affine extension which lie in P .

We first prove a useful lemma which lets us decompose the derivative of S.

Lemma 3.24. Let continuous V (r) ∈ Rk×n be given such that kerV (r) = span(Γ−1(r)) for
all r ∈ R. Then for any continuously differentiable proper scoring rule S for Γ, one can
write (∇rS)> = Λ(r)V (r) for some continuous Λ(r) ∈ Rk×k.

Proof. By propriety, any p ∈ Γ−1(r) must satisfy (∇rS)>p = 0 (but not the converse need
not hold). Hence,

kerV (r) = span(Γ−1(r)) ⊆ ker (∇rS)>.

But now we have

imV (r)> = (kerV (r))⊥ ⊇ (ker (∇rS)>)⊥ = im∇rS,

meaning each column of ∇rS can be expressed as a linear combination of the rows of
V (r). Folding the coefficients of these linear combinations into Λ(r) gives us the (∇rS)> =
Λ(r)V (r). For continuity of Λ, note that by assumption on Γ, we have dim(Γr) = n− k− 1,
and thus dim(kerV ) = n − k. Hence, by classic results regarding the Moore-Penrose pseu-
doinverse [83, Thm 4.2], the pseudoinverse V (r)+ of V is continuous, so Λ(r) = ∇rS

>V (r)+

is continuous as the product of continuous functions.

Theorem 3.25. Let Γ : P → R ⊆ Rk satisfy condition (3.45) and let S : R → Rn be a
continuously differentiable scoring rule which is proper for Γ. Then S satisfies

(∇rS)> = Λ(r)V (r) (3.46)

for V (r) ∈ Rn×k determined by Γ alone, and Λ(r) ∈ Rk×k positive semi-definite.

Proof. Let p̂ : R → P be any continuously differentiable function such that Γ ◦ p̂ = idR,
which exists by the inverse function theorem, and define

V (r) =
(
∇p̂(r)Γ

) (
I − p̂(r)1>

)
. (3.47)

Note that this choice of V (r) depends only on Γ (and our choice of p̂, which in turn depends
only on Γ).
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By construction,

q ∈ kerV (r) ⇐⇒
(
∇p̂(r)Γ

)
(q − p̂(r)) = 0.

Since the level sets of Γ are convex maximal, we see that the derivative of ∇p̂(r)Γ in the
direction (q−p̂(r)) is zero precisely when Γ(q) = Γ(p̂(r)) = r. Thus, kerV (r) ⊆ span(Γ−1(r)).
Now by Lemma 3.24, we have some continuous Λ : R → Rk×k such that (∇rS)> = Λ(r)V (r),
and it remains to show that Λ(r) is positive semi-definite.

For a contradiction, fix r ∈ R and any unit-length v ∈ Rk such that v>Λ(r)v < 0. By
continuity of Λ(·), there exists some ε > 0 such that

∀ r′ ∈ Bε(r) ∀ v′ ∈ Bε(v) : v>Λ(r′)v′ < 0, (3.48)

where Bε(·) denotes the L2 ball of size ε. Now define

f(α) = S(r + αv) · p̂(r).

By the above, the derivative of f is given by

df(α) = v>(∇rS)>p̂(r)

= v>Λ(r + αv)V (r + αv)p̂(r)

= v>Λ(r + αv)
(
∇p̂(r+αv)Γ

)
(p̂(r)− p̂(r + αv)).

By properties of directional derivatives and the chain rule,

lim
α→0

(
∇p̂(r+αv)Γ

)( p̂(r)− p̂(r + αv)

α

)
=
(
∇p̂(r)Γ

)(
lim
α→0

p̂(r)− p̂(r + αv)

α

)
=
(
∇p̂(r)Γ

)
(∇rp̂) (−v)

= ∇r(Γ ◦ p̂)(−v)

= −v.

Hence, there exists some δ > 0, δ < ε, such that for all 0 < α ≤ δ we have

vα := −α−1
(
∇p̂(r+αv)Γ

)
(p̂(r)− p̂(r + αv)) ∈ Bε(v).

We also have r + αv ∈ Bε(r) since α < ε, so by (3.48),

df(α) = v>Λ(r + αv)(−αvα) > 0.

Thus, f is increasing for 0 < α ≤ δ, so we have

S(r) · p̂(r) = f(0) < f(δ) = S(r + δv) · p̂(r),

which contradicts S being proper for Γ.
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We now see that, in fact, the integral representation (3.41) above also holds for gen-
eral (well-behaved) vector-valued properties as well. For any smooth S eliciting Γ satisfy-
ing (3.45), we may write

S(r′) =

∫ r′

r0

(
Λ(r) V (r)

)>
dr; (3.49)

this is exactly the same formula (3.44) that we motivated from the linear case! Intuitively,
one should be able to find a path r(t) from r0 to r′ such that t 7→ r(t)>Λ(r(t))V (r(t))p is
monotonically decreasing, just as with Savage’s price rate formula (3.40), with the zero being
precisely when r(t) = Γ(p). In this sense, we are essentially generalizing the “offer to sell
units of a commodity at increasing prices” trick to vector-valued nonlinear settings.

Note that we have not said anything at all about which properties Γ are elicitable; this is
a major open question. By the above intuition, we might expect that the elicitable properties
are precisely those which admit a path r(t) yielding such monotone behavior. An important
first step to answering this question is understanding when the form V (r0) for fixed r0 can
itself be viewed as a (non-strictly) proper scoring rule for Γ, i.e., for what Γ is V (r0) a base
score?

Also, we have not characterized the functions Λ which the designer may choose from to
construct S. This is in essence the analog of the “degrees of freedom” discussion from §3.4.1
for finite properties. We conjecture that Λ is the Hessian of a twice continuously differentiable
convex function G : R → R, just as in the linear case. If this were true, then scoring rules
would in some sense be “nonlinearly transformed” Bregman divergences. This intuition
seems consistent with the examples given by Gneiting [50].

Finally, it is interesting to find sufficient conditions for the level sets of Γ to be convex
maximal. One such condition is that Γ itself be monotone, in the sense that on any line
L : R → P and for any direction v ∈ Rk, the function (Γ ◦ L) · v = (α 7→ Γ(L(α)) · v) is
monotone.

Lemma 3.26. If Γ is monotone in the sense above, the level sets Γr are convex maximal in
R.

Proof. By monotonicity of Γ, the functions γv(p)
.
= Γ(p) · v have convex level sets (take p, p′

such that Γ(p) · v = Γ(p′) · v; the function α 7→ Γ(αp + (1 − α)p′) · v is monotone). Now
by an argument of Lambert [63] given in Step 2 of the proof of Theorem 5, we have that
the level sets of γv are convex maximal; we briefly sketch the argument here. The goal is to
show that {p : γv(p) < x} and {p : γv(p) > x} are convex, and then invoke classic results in
geometry to conclude that γvx

.
= {p : γv(p) = x} is a hyperplane intersected with P . Letting

p, p′ ∈ P with γv(p) > γv(p′) > x, let pα = αp + (1 − α)p′ and define f(α) = γv(pα). By
continuity, we have [γv(p), γv(p′)] ⊆ f([0, 1]), and by convexity of the level sets of γv we
conclude [γv(p), γv(p′)] = f([0, 1]).

Now we have that γvx is convex maximal for all v and x. To conclude, we note that

Γr =
⋂
v∈Rk

γvr·v, (3.50)
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and thus Γr must be convex maximal as well.

3.5 Future work

Many questions in the literature on properties remain open. Most notable is the characteri-
zation of elicitable nonlinear and multidimensional properties and their scores — real-valued
distributional properties are covered in [65, 63] and the linear vector-valued case is treated
above. We hope that the preliminary results and intuition from §3.4.3 will yield a useful
characterization in this case.

Another interesting direction is for non-functional properties: aside from the finiteR case,
the vast majority of the literature to our knowledge assumes that Γ is a function (specifying
a single correct report for each type). The generality of Theorem 3.2 may prove useful in
exploring non-functional settings as well. A result requiring few regularity conditions on Γ
would be useful in domains such as statistics where natural properties like the median cannot
in general be expressed as functions.
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Chapter 4

Eliciting means of distributions

4.1 Introduction

In this chapter we draw strong connections between four seemingly distant concepts: scoring
rules, exponential families, prediction markets, and Bregman divergences. Many pairs of
these concepts have been examined before, but by fitting them all under one roof, we are
able to make a much clearer picture of how these objects are interrelated. We first outline
our findings from a high level, then discuss previous work and give the formal background.

4.1.1 Overview

The goal of this chapter is to draw connections between scoring rules, (generalized) expo-
nential families, prediction markets, and Bregman divergences. While we will give formal
definitions below, for now the reader may think of exponential families as maximum entropy
distributions under a mean constraint of a particular statistic. (For the other concepts see
§1.2.1, §1.2.2, and §3.3.3.)

Our exploration into these connections is motivated by the role of convexity in each
— the Bayes risk of scoring rules, the cost function of a prediction market, the cumulant
of exponential families, and the generating function of a Bregman divergence — and the
mysterious appearance of a map which we call φ whose mean under some fixed distribution
is central to each theory. Beyond these notions, however, we are motivated by several natural
questions:

• When can a scoring rule for the mean of a random variable be written in terms of a
scoring rule for the entire underlying distribution?

• When can an incomplete prediction market be run as a special case of a complete one?

• What is the (generalized) relative entropy of two members of a (generalized) exponen-
tial family, in terms of their parameters?
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• Are prediction markets more or less expressive than scoring rules?

• How is the statistic of an exponential family related to the random variable in a proper
scoring rule for an expectation? To the payoff function of an incomplete prediction
market?

• What is the net payoff of a trade in a prediction market, expressed in terms of the
prices before and after the trade?

We will answer all of these questions in this chapter, as well as several questions that one
might not think to ask, such as the relationship between incomplete prediction markets and
exponential families.

In short, the crux of our conclusions is that all four objects are in some sense equivalent.
Figure 4.1 gives this high-level depiction of our results; see Table 4.1 for a more detailed
retrospective view of the chapter. Each “⇐⇒” in Figure 4.1 represents a bijection between the
two constructs, that is, a mapping from one to the other and back. Moreover, under certain
global assumptions discussed below, the diagram commutes, in the sense that composing
bijections on edges yields the remaining bijections. In all cases, the bijections go beyond
merely “counting”, but say something deeper about the relationship between the concepts,
enabling us to answer the above questions.

Prediction Market

Scoring Rule

Bregman
Divergence

Generalized
Exponential

Family

C
or

4.5

Cor 4.6

Thm
4.1

Thm
4.15

Thm
4.14

Thm 4.9

Figure 4.1: A four-way equivalence. Gray denotes primal objects (distributions), while clear
denotes dual objects (random variables) — divergences and GEFs can act as both.

4.1.2 Previous work

Several connections between the four concepts we consider have been discovered before. To
start, the relationship between Bregman divergences and scoring rules for expected values
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dates all the way back to Savage’s 1971 paper, when he introduced what is now called the
“Savage representation” (1.2), which is essentially a Bregman divergence [92].1 Since then his
representation has been further formalized and extended, by e.g. Gneiting and Raftery [51]
and Gneiting [50].

Even outside the scoring rules literature, it has been observed in machine learning that
the minimizer of the empirical average of Bregman divergences is the mean of its argument
(a generalization of the principle of least squares), and Banerjee et al. [15] give conditions
under which Bregman divergences are the only loss function with this property. While using
a somewhat different terminology, one can also find a very thorough treatment in Reid et
al. [84] and Vernet et al. [96].

Hence, it is fair to say that our result that scoring rules are in some sense equivalent to
(generalized) Bregman divergences is far from groundbreaking. However, there is value in
the generality of our result; to our knowledge, it is the most general of any in the literature,
allowing for quite general vector spaces and very few regulatory conditions. In particular,
nearly all previous results for the expected value case (i.e. eliciting Γ(p) = Ep[φ] for some
φ : O → R) require some sort of differentiablity. Some authors, e.g. [15, 50], also make the
assumption that one observes only the value of the random variable, not the randomness
generating it (i.e. φ(o) rather than o itself, or equivalently O ⊆ R and φ = idR), thus
making the characterization less general. Gneiting [50] points out that this previous work
all involve smoothness conditions, and states, “A challenging, nontrivial problem is to unify
and strengthen these results, both in univariate and multivariate settings” — in the present
chapter, we aim to do just that.

Adding prediction markets to the story, we already saw in §1.2.2 Hanson’s equivalence
between the scoring rule and prediction market form of the LMSR [56]. More recently, the
{scoring rule, prediction market, Bregman divergence} trio has been discussed in Abernethy
et al. [3]. There the authors point out that the net payoff of a trade in a prediction market
can be written as a Bregman divergence between the final outcome and the prices before
and after the trade. They also show a general equivalence theorem between market scoring
rules and prediction markets for the complete market setting, showing that each model can
be simulated with the other. Our results will generalize these, in removing differentiability
assumptions and extending the equivalence to the incomplete market setting.

Exponential families have a rich history and literature, dating back to the 1930s. We
give a very brief overview of their general theory and derivation in §4.3. Many properties of
exponential families are known, but for our exploration, the most relevant is the connection
to Bregman divergences. It has been observed in particular that the relative entropy be-
tween two members of an exponential family is the Bregman divergence with respect to the
cumulant of the two corresponding parameters (cf. Amari [6], Azoury & Warmuth [12], and
Nielsen & Nock [76]). Banerjee et al. [16] leverage this identity to show a bijection between
Bregman divergences and exponential families.

1In fact, the L function he considers, which we called a score divergence in §3.3.3, is precisely a Bregman
divergence in his setting.
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Another key property of exponential families is that they are maximum entropy distri-
butions; given a statistic, the distribution with a particular mean of the statistic which is
of maximum entropy forms an exponential family [18]. In 2004, Grünwald and Dawid [54]
introduced generalized exponential families (GEFs) as maximum entropy distributions for
other entropy functions — that is, they noted that one may define classical exponential
families as maximum entropy distributions for the usual Shannon entropy, thus making the
generalization to other notions of “entropy” immediate. We will work with these GEFs,
though our definition will slightly depart from theirs by mirroring the exponential families
literature more closely, thereby illuminating connections to that literature more easily. Some
aspects of our study of GEFs are inspired by unpublished work of Sébastien Lahaie.

4.1.3 Definitions and notation

We now give the formal definitions that will be used throughout the chapter. Note however
that we defer the formal introduction of generalized exponential families to §4.3. Throughout,
O is a (possibly infinite) set of outcomes, P ⊆ ∆(O) is a convex set of probability measures,
and R is a convex report space. Every result will involve a function φ : O → R, though
this function plays many roles: a statistic, a payoff function, a random variable, and a link
function.

For the majority of the chapter, owing to our heavy use of convex conjugate duality, we
will work with a dual pair of vector spaces, and indeed a pair of dual pairs in § 4.3; see
Definition 3.6 and [5, §5.14]. The dual pair (V ,V∗) captures the report space R ⊆ V . The
dual pair (W ,W∗) is between probability distributions P ⊆ W and random variables W∗,
with the standard bilinear form 〈p, f〉 .= Ep[f ]. Note that when we restrict to the dual pair
setting, we must have Ep[f ] ∈ R for all p ∈ W and f ∈ W∗. This level of abstraction allows
us to work with measure spaces, such as the pair 〈C(X), ca(X)〉 where X is a compact subset
of Rn.2 That said, a reader uninterested in applications to measure spaces may safely assume
that a base measure ν on O has been chosen, and identify p ∈ P with its density function.

Each result in this chapter has its own assumptions, on the various functions and spaces
involved, which is also summarized at the end in Table 4.1. However, all results in this
chapter hold under the assumption that we are working in a dual pair of vector spaces and
the convex functions are all proper, strictly convex, and differentiable (though the discussion
gives a more precise account of these “global” necessary conditions). A reader more interested
in the conceptual rather than technical content may safely make this single set of assumptions
throughout, perhaps even further assuming V = V∗ = Rk for concreteness.

We now introduce the characters of our story, starting with divergences.

Definition 4.1. A generalized Bregman divergence on space X is a function DG,dG : X ×
X → R given by

DG,dG(x, x′) = G(x)−G(x′)− dGx′(x− x′), (4.1)

2Here C(X) denotes continuous functions from X to R and ca(X) denotes the space of bounded and
countably additive signed measures on the sigma algebra associated with X (here the Borel algebra).
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where G : conv(X) → R is convex with G(X) ⊆ R, and dG is a subgradient of G. If G is
differentiable on X we simply write DG and call DG a Bregman divergence.

Note that, as mentioned in §3.3.3, when G is continuously differentiable, the form (4.1)
is simply called a Bregman divergence. Hence, Definition 4.1 is merely a natural extension
to the nondifferentiable case, and has been studied in machine learning (cf. [60]). In this
chapter, our spaces will be convex, so we will always have G : X → R in the above.

The following are slightly reformulated definitions of scoring rules and prediction markets,
so that we may more easily use the results of Chapter 2 and Chapter 3 in our exploration.
Note that in both cases the corresponding affine score is given by the expected payoff under
the “type” p ∈ P , e.g. A(r)(p) = S(r, p). Throughout the chapter we will refer to both S
and P as affine scores, having this relationship in mind.

Definition 4.2. Given outcome space O, report space R, and set of probability measures
P ⊆ ∆(O), a scoring rule is a function S : R×O → R. We write S(r, p)

.
= Eo∼p[S(r, o)]

to denote the expected score. We say S (weakly) elicits a property Γ : P → R if for all
p ∈ P and all r ∈ R,

S(r, p) ≤ S(Γ(p), p). (4.2)

Definition 4.3. Given outcome space O, price space R, share space Q, payoff function
φ : O → R, and set of probability measures P ⊆ ∆(O), a prediction market is a function
P : Q×O → R defined by

P(q, o)
.
= 〈q, φ(o)〉 − C(q), (4.3)

where C = G∗ for some convex G : conv(R)→ R with G(R) ⊆ R and ∂G(R) = Q. As with
scoring rules, we write P(q, p)

.
= Eo∼p[P(q, o)] to denote the expected payout.

A reader who is even remotely familiar with prediction markets may find Definition 4.3
somewhat confusing, as it is lacking the sequential nature of a prediction market mechanism
— note that the goal here is not to capture the dynamic mechanism of buying and selling, but
to capture the “one-round” incentives as an affine score. The standard framework discussed
in § 1.2.2 can be recovered by considering a trade r ∈ Rk when the market is at state
q ∈ Rk. The cost of this purchase is C(q + r) − C(q), and upon outcome o being revealed,
the trade pays off φ(o) · r. The net payoff of this trade then is just P(q + r, o) − P(q, o).
We can thus capture the usual dynamic prediction market mechanism by taking differences
of the P function: for a trade sequence yielding market state vectors q0, q1, . . . , qN , the
net payoff of the agent responsible for trade qi 7→ qi+1, upon outcome o being revealed, is
P(qi+1, o)−P(qi, o).

As stated, (affine scores for) prediction markets are much more restricted in their depen-
dence on o than scoring rules are. In particular, a prediction market can only depend on
o through φ. To “even the playing field,” we introduce the notion of a fair score, which in
essence imposes this condition on scoring rules as well.

Definition 4.4. A scoring rule S : R×O → R is Γ-fair for property Γ if for all p, p′ ∈ P
such that Γ(p) = Γ(p′) = r, S(r, p) = S(r, p′).
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4.2 Prediction market duality

In this section we consider the relationship between prediction markets and scoring rules,
when viewed as affine scores. Are the scores S and P related in any way? Is one more
expressive than the other, all else being equal? Along the way we will relate both scoring
rules and prediction markets to divergences.

Of course we must formalize what it means for one affine score to be more or less expressive
than another; for this we introduce the notion of a reduction.

Definition 4.5. Affine score A1 : R1 → A reduces to A2 : R2 → A if there exists some
map ϕ : R1 → R2 such that for all r ∈ R1 and t ∈ T ,

A1(r)(t) = A2(ϕ(r))(t).

If furthermore A2 reduces to A1, we say the affine scores are mutually reducible.

It will be useful to say two scoring rules are equivalent if the only difference is some pre-
determined payoff associated with each outcome, regardless of the agent’s report. Intuitively,
these rewards should have no bearing on the behavior of the agent, being entirely outside her
control. Interestingly, this notion of equivalence was introduced as early as McCarthy [71],
and is now known as strong equivalence in the scoring rules literature; see e.g. Gneiting and
Raftery [51] and Dawid [39].

Definition 4.6. Scoring rules S : R× O → R and S′ : R× O → R are equivalent if for
all o ∈ O, S′(r, o)−S(r, o) is a constant independent of r. In this case, we write S′ ∼= S.

4.2.1 Scoring rules and divergences

As a warm-up, we show a strong relationship between scoring rules and divergences. This
result is an easy application of Theorem 3.23, which gave a characterization of affine scores
which weakly elicit linear properties. We simply apply it to the restriction that A be a
scoring rule, and note that divergences are trivially in one-to-one correspondence with the
generating convex function (and choice of subgradients). Note that P here can be any convex
set of probability measures, provided that Ep[φ] is defined for all p ∈ P (see below). We
implicitly assume regularity here; see Chapter 3 for details.

By standard properties of (generalized) Bregman divergences, such as nonnegativity, it
is easy to see that the scoring rule defined by

S(r, o) = G(φ(o))−DG,dG(φ(o), r) + `(o) (4.4)

elicits Γ : p 7→ Ep[φ]; the expectation passes inside to yield S(r, p) = f(p) −DG,dG(Γ(p), r)
for some f , and hence the optimal report is r = Γ(p). Amazingly, this is in some sense the
only form which elicits Γ. We can show this immediately, by applying Theorem 3.23 under
the constraint that S be a scoring rule.



CHAPTER 4. ELICITING MEANS OF DISTRIBUTIONS 69

Theorem 4.1. Let P ⊆ ∆(O) be convex, let map φ : O → V be given, and set Γ(p) = Ep[φ]
and R = Γ(P). Then S weakly elicits Γ on Γ−1(relint(R)) if and only if there exists some
convex G : R → R with subgradients {dGr}r∈R, and some map ` : O → R, such that for all
r ∈ relint(R) and o ∈ O,

S(r, o) = G(r) + dGr(φ(o)− r) + `(o). (4.5)

Furthermore, from the form (4.5) we can easily construct a divergence, namely

DG,dG(r, r′) = S(r, pr)−S(r′, pr), (4.6)

where pr ∈ Γr is any distribution with Γ(pr) = r. Note that this works even though ` 6= 0
in general, since the ` terms cancel out. Hence, we have a strong equivalence between
generalized Bregman divergences and scoring rules for linear properties. Note that the
restriction to relint(R) is necessary, in the sense that S need not be of the form (4.5) on the
boundary of R; see Example 3.3.

4.2.2 Prediction markets and scoring rules

We now turn to the relationship between prediction markets and scoring rules, which will in
turn transfer to divergences by the above. We first show that, under very broad assumptions,
scoring rules can be expressed as prediction markets.

Proposition 4.2. Let P ⊆ ∆(O) be an arbitrary set of probability measures, and R ⊆ V
be given, both spaces being potentially non-convex. Let map φ : O → V and G : R → R be
convex with G(R) ⊆ R be given. Then affine score S(r, o)

.
= G(r) + dGr(φ(o)− r) reduces

to P(q, o)
.
= q(φ(o))−G∗(q).

Proof. Take ϕ(r) = dGr. Then by Lemma 3.11, we have G∗(dGr) = dGr(r)−G(r). Hence,

S(r, o) = G(r) + dGr(φ(o)− r) (4.7)

= ϕ(r)(φ(o))−G∗(ϕ(r))

= P(ϕ(r), o).

In light of Theorem 4.1, we know that every scoring rule which elicits Γ : p 7→ Ep[φ] is
equivalent to a rule of the form (4.7) on relint(R). Thus, modulo these details, we conclude
that prediction markets are at least as expressive as scoring rules.

Proposition 4.2 relies only on very basic tools from convex analysis, and in essence follows
directly from the definition of the conjugate. As mentioned at the end of §3.3.2, this reduction
is just report duality, in the same way that any mechanism can be considered in “menu”
form.

To show the converse, that prediction markets reduce to scoring rules, will require more
care, and in general the conditions will be more stringent. Intuitively, this structure is needed
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because many share vectors represent the same market maker price, so while it is easy to map
share vectors to prices (and indeed this is in some sense baked into the prediction market
framework), going from prices to share vectors in a consistent way is more challenging.
Among other conditions, will we need to work in our paired spaces (V ,V∗).

In an effort to make the proof more modular, we introduce now the major condition
required for this result to hold. Assume G and subgradient dG are fixed, and C = G∗.

∀q ∈ Q, ∃r ∈ ∂Cq, ∀o ∈ O, 〈q − dGr, r − φ(o)〉 = 0. (4.8)

This condition (4.8) essentially says that mapping from share vectors to prices and back has
no effect on net payoffs. Suppose a trader has belief p ∈ ∆(O) and buys vector q so that the
market price becomes r = Ep[φ]; then for any realized outcome o the difference between the
trader’s expected payoff 〈q, r〉 and actual payoff 〈q, φ(o)〉 is the same if we replace q by the
“equivalent” share vector dGr.

Theorem 4.3. Given dual pair (V ,V∗) with R ⊆ V, let G : R → R be convex, proper, and
l.s.c., and let C = G∗. If condition (4.8) holds, then the affine scores P(q, o)

.
= 〈q, φ(o)〉 −

C(q) and S(r, o)
.
= G(r) + 〈φ(o)− r, dGr〉 are mutually reducible.

Proof. One direction has been proved in more generality in Proposition 4.2. For the converse,
by the Fenchel–Moreau Theorem, given as Theorem 3.13, we immediately have G∗∗ = C∗ =
G. Now for all q ∈ Q we define ϕ(q) = r ∈ ∂Cq where r is the report guaranteed by
condition (4.8). Applying Lemma 3.11 for C, we have C(q) = 〈q, ϕ(q)〉 − C∗(ϕ(q)), whence

P(q, o) = 〈q, φ(o)〉 − C(q)

= C∗(ϕ(q)) + 〈q, φ(o)− ϕ(q)〉
= G(ϕ(q)) +

〈
dGϕ(q), φ(o)− ϕ(q)

〉
= S(ϕ(q), o),

where in the third equality we used C∗ = G and (4.8).

Of course, it remains to show that condition (4.8) can be satisfied. We now give sufficient
conditions, but it may be that (4.8) holds in other settings as well.

Lemma 4.4. If G is proper and l.s.c., and G(r; r′− r) = −G(r; r− r′) for all r ∈ relint(R),
r ∈ R, then (4.8) holds for r ∈ relint(R) and q s.t. ∂Cq ∩ relint(R) 6= ∅.3

Proof. Fix q and r ∈ relint(R) ∩ ∂Cq 6= ∅, and recall the definition of the convex conjugate
for C:

C(q) = sup
r∈R
{〈q, r〉 −G(r)}. (4.9)

By Corollary 3.14 and Lemma 3.11 for C, we know that r must be a maximizer of the
objective in (4.9). Now let f(r)

.
= G(r)− 〈q, r〉 denote the (negative) of this objective, and

3Recall that g(x; d) is the directional derivative of g at x in direction d.
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note that f is convex. Since r maximizes f over all r ∈ R, we must in particular have
f(r; v) = 0 for all v ∈ R−{r}; otherwise, by assumption either f(r; v) or f(r;−v) would be
strictly positive, contradicting optimality of r.

A standard result of convex analysis is that g(x; v) = sup{〈v, d〉 : d ∈ ∂gx} for proper
convex g and x ∈ relint(dom(G)) [89, Thm 23.4]. By our assumption on G however, note
that G(r; v) = −G(r;−v) implies that {〈v, d〉 : d ∈ ∂Gr} is a singleton for each r. The same
logic applies to f , since ∂fr = {q} − ∂Gr. Thus, we have for all d ∈ ∂Gr and all r′ ∈ R,

0 = f(r; r′ − r) = 〈r′ − r, q − d〉 , (4.10)

completing the proof.

Putting the sufficient conditions from Lemma 4.4 together with Theorem 4.3, we now
have a class of prediction markets and scoring rules which are mutually reducible.

Corollary 4.5. Let G : R → R be convex, and let C = G∗. If additionally G is proper and
l.s.c. and and G(r; v) = −G(r;−v) for all r ∈ relint(R), v ∈ {r} −R, then the affine scores
P(q, o)

.
= 〈q, φ(o)〉 − C(q) and S(r, o)

.
= G(r) + dGr(φ(o) − r) are mutually reducible on

Q′ = {q ∈ Q : ∂Cq ∩ relint(R) 6= ∅} and R′ = relint(R).

Once again applying Theorem 4.1, we now see that any fair scoring rule which elicits
a linear property Γ is mutually reducible with a prediction market on the relative interior
of the report space. Stepping back from our world of affine scores, Corollary 4.5 gives
broad conditions under which the market scoring rules discussed in §1.2.2 have exactly the
same expressiveness as incomplete prediction markets, thereby generalizing the equivalence
result of Abernethy et al. [3, Thm 8.2] to the incomplete setting. Hence, we have come full
circle: Hanson introduced the market maker prediction market as a scoring rule [56], which
was “dualized” to a share-based cost function framework by Chen and Pennock [82], and
further extended to incomplete setting by Abernethy et al. [1, 3]; we now have seen that
the incomplete share-based market makers are again the same as market scoring rules for a
linear property.

It is worth noting that the directional differentiability condition of G is a mild one from
the perspective of prediction market design, as it essentially implies that share vectors q
have “unique instantaneous prices.” This is often a desirable property in and of itself, since
otherwise prices will appear to jump as agents trade, or the “market consensus” price could
be a range of values instead of a single point.

We now take one step further to give a direct connection between prediction markets and
divergences.

Corollary 4.6. Under the same conditions as Corollary 4.5, there exists an invertible ϕ :
R′ → Q′ such that we may write

DG,dG(r, r′) = P(ϕ(r), pr)−P(ϕ(r′), pr), (4.11)

P(q, o) = G(φ(o))−DG,dG(φ(o), ϕ−1(q)) (4.12)

for all q ∈ Q′, where G = C∗ and dG is a subgradient of G, and Epr [φ] = r for all r ∈ R′.
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Note that the expression (4.11) is the net profit of a single trade in the standard prediction
market framework. That is, the right-hand side may be written 〈φ(o), q′ − q〉−(C(q′)−C(q)),
which is just the payoff of the trade q′−q minus its cost. Hence, Corollary 4.6 says something
surprising: the net profit of a trade in a prediction market can be expressed as the divergence
between the prices before and after the trade. This can be useful when designing a prediction
market according to some notion of “information distance” — one can give the traders a
direct incentive to minimize the distance between the market price and their belief, for any
Bregman information distance.

Finally, to illustrate why extra care is needed for mutual reducibility, we give a very simple
example of a nondifferentable G for which condition (4.8) and Theorem 4.3 do not hold. In
this case, the prediction market has strictly more expressiveness (in terms of the possible
payoffs) than the corresponding scoring rule. The G here is the same as in Example 3.1 and
Figure 3.1.

Example 4.1. Let G(r) = |r| + r2/2 and dGr = r + sgn(r), where sgn(r) denotes the sign
of r (which is 0 at r = 0). By a simple computation, C(q) = G∗(q) = (q − sgn(q))2/2 when
|q| > 1 and C(q) = 0 on [−1, 1]. Now let q = 1/2, which has ∂Cq = {0}. By condition (4.8)
we would need 0 = 〈q − dG0, 0− φ(o)〉 = q · φ(o) for all o. Thus, as long as φ(o) 6= 0 for
some o, we have violated eq. (4.8).

Moreover, we clearly cannot reduce P to S in this case, since each q ∈ [−1, 1] would have
to have ϕ(q) = 0, but except for q = 0 and φ(o) = 0, we have 〈q, φ(o)〉 6= 0 =

〈
dGϕ(q), φ(o)

〉
.

In essence, the prediction market is much more expressive with regard to the belief Ep[φ] = 0,
offering agents an infinite array of utility functions, whereas the scoring rule offers only one.

4.3 Generalized exponential families

As mentioned in §4.1.3, generalized exponential familias (GEFs) are an extension of classical4

exponential families as maximum entropy distributions for non-standard entropy functions.
Below we take the reader through the very basics of the exponential family derivation, and
show how one may generalize them in a natural5 way for other choices of entropy.

The goal of this section is two-fold. First, we wish to develop the theory of generalized
exponential families beyond the excellent foundation of Grünwald and Dawid [54]. Second,
and more relevant to the broader story of this chapter, we seek the machinery necessary
to relate GEFs to divergences, scoring rules, and prediction markets. In many cases, the
relationships we uncover are surprising; as it happens, GEFs are the “answer” to many
natural questions one may ask about the other constructs.

As before, we assume that P is a convex set of distributions. Throughout this section
and the next we will write φ>θ to mean o 7→ 〈φ(o), θ〉. We will also be assuming P ⊆ W for
the dual pair (W ,W∗) given by the duality 〈p, f〉 = Ep[f ], as mentioned in the introduction.

4Throughout, we use the term “classical” to mean the standard definition in the literature.
5Though in same cases it may be more natural to be mean than natural; see p. 77.
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Note: there are many symbols and spaces at play in this section, and for those unfamiliar
with exponential families (and even more for those who are, as we use somewhat nonstandard
notation), it may be helpful to refer to Figure 4.3 as a roadmap.

Our techniques are almost exclusively grounded in convex analysis. In particular, we will
assume for the whole section that we are working with proper and lower semi-continuous
(abbreviated l.s.c.; see Definition 3.7) convex functions f , so that the Fenchel–Moreau The-
orem applies and we may conclude that f ∗∗ = f . Beyond this, a major source of seemingly
mysterious results is the simple observation that by linearity we may pass between inner
products in (W,W ∗) to those in (V ,V∗). Specifically, we will constantly appeal to the fact
that

〈
p, φ>θ

〉
= 〈Ep[φ], θ〉.

Exponential families

Before formally introducing generalized exponential families, we recall some basic concepts
from the literature on classical exponential families. In this case, we have a some base
measure ν on (O,Σ), and a statistic φ : O → Rk, and a parameter space Θ called the natural
parameters. The exponential family {pθ}Θ is defined by

pθ(o) = exp{φ(o)>θ −Ψ(θ)}, (4.13)

where Ψ(θ) is chosen to normalize pθ, namely

Ψ(θ) = log

∫
O

exp{φ(o)>θ} dν(o). (4.14)

Typically the parameter space Θ is actually defined in terms of Ψ, letting Θ
.
= {θ ∈ Rk :

Ψ(θ) <∞}.
Many interesting characteristics of exponential families are known (see e.g. [18, 98]), but

for our exploration two are especially relevant: exponential families have alternate parame-
terizations in terms of the mean of the statistic φ, and they can also be viewed as maximum
entropy distributions under a mean constraint. Very briefly, one can check that, surpris-
ingly, ∇Ψ(θ) = Epθ [φ]; that is, the derivative of Ψ at θ is precisely the φ-mean for pθ.
This allows one to reparametrize the family by Epθ [φ]. Moreover, one can derive this mean
parametrization via a maximum entropy calculation. We briefly sketch this argument now.

The widely-used notion of entropy in probability theory is that of Shannon entropy,
defined as

H(p) = −
∫
O
p(o) log p(o) dν(o). (4.15)

The principle of maximum entropy states that given some data with empirical mean µ̂,
to estimate the distribution from which the data was generated, one should compute the
distribution p of maximum entropy H(p) under the constraint Ep[φ] = µ̂. Formally, we wish
to perform the following optimization.

p ∈ argsup{H(p) : p ∈ P ,Ep[φ] = µ̂}. (4.16)
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To solve this problem, we may turn to variational analysis and Lagrange multipliers, yielding
the solution (4.13) [38, Thm 12.1.1], where θ is the vector of Lagrange multipliers from the
calculation.

One can also derive (4.13) via convex analysis. As it turns out, Ψ is a convex function,
and happens to equal (−H)∗, the convex conjugate of (negative) Shannon entropy, applied
to a particular point. To see this, first compute the entropy dual,

(−H)∗(q) = log

∫
O

exp{q(o)} dν(o), (4.17)

and from there we can check that indeed Φ(θ) = (−H)∗(φ>θ). More surprisingly, we can
rederive (4.13) via the derivative of (−H)∗ at the same point:

∇q(−H)∗(o) =
exp{q(o)}

log
∫
O exp{q(o ′)} dν(o ′)

= exp{q(o)−H∗(q)}, (4.18)

whence we have
∇φ>θ(−H)∗(o) = exp{φ(o)>θ −Ψ(θ) = pθ(o). (4.19)

As we will see below, this derivation via convex analysis is in essence the same as the
maximum entropy calculation.

As a final note, it is common in the literature to restrict to regular families, defined as
follows.

Definition 4.7. An exponential family {pθ}Θ as defined by eq. (4.13) is regular if Θ is an
open set.

Generalizing to other entropies

As we will show in this section, all of the observations and properties of classical exponential
families mention above can be extended to families derived from other entropy functions
other than Shannon entropy. We are heavily influenced by Grünwald and Dawid [54], who
introduced idea of generalized exponential families, along with many of the ideas we will
explore. Our approach is different, however, relying much more on convex analysis. As a
result, our setting will be slightly less general, but the extra regularity will go a long way.
See the discussion before §4.3.1 for more details.

We first set limits on what we will consider an alternate entropy. NB: our entropy
functions will always be convex, unlike Shannon entropy which is concave; the reader may
need to mentally insert negations if more comfortable with the latter.

Definition 4.8. A function F : P → R is a (generalized) entropy function if it is convex,
l.s.c., and proper.

Recall that we adopt the convention F (x) = ∞ for x /∈ dom(F ), i.e., F (p) = ∞ for
all p /∈ P . We can now define our generalized version of an exponential family. Of all
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the derivations above for classical families, the final derivation (4.19) lends itself most to
generalization. We employ this strategy, replacing −H with our alternate entropy F .

Definition 4.9. Let F be a given generalized entropy function, and let statistic φ : O → Rk

be given. Then a family of distributions PΘ = {pθ ∈ ∂F ∗(φ>θ)}θ∈Θ is a F -generalized
exponential family (F -GEF) with cumulant C(θ)

.
= F ∗(φ>θ), where Θ

.
= dom(C).

Of course, we have not yet shown that indeed PΘ ⊆ P . To see this, apply Corollary 3.14
to any d ∈ dom(F ∗); then for all w ∈ W , we have w ∈ ∂F ∗d =⇒ d ∈ ∂Fw. Since ∂Fw = ∅
for w /∈ dom(F ), we must have ∂F ∗ ⊆ dom(F ) = P . In particular then, pθ ∈ P for all θ ∈ Θ.

Definition 4.10. The F -GEF {pθ}θ∈Θ is regular if its cumulant C is l.s.c. and proper.

It is a classic result in convex analysis that given convex f and a linear map A, the
function Af

.
= x 7→ inf{f(y) : Ax = y} is convex if f is, and satisfies (Af)∗ = f ∗ ◦ A>. We

state and prove this result specifically for our setting; see e.g. [95, 103] for more depth.

Lemma 4.7. Let G(v)
.
= inf{F (p) : p ∈ P , Ep[φ] = v}. Then G is convex, and G∗(θ) =

F ∗(φ>θ).

Proof. Note that R .
= dom(G) = {Ep[φ] | p ∈ P}, by the convention inf ∅ = ∞. This R is

convex by convexity of P and linearity of E[φ]. We first show convexity of G.

G(αr + (1− α)r′) = inf
p∈P
{F (p) : Ep[φ] = αr + (1− α)r′}

≤ inf
p,p′∈P

{F (αp+ (1− α)p′) : Ep[φ] = r, Ep′ [φ] = r′}

≤ inf
p,p′∈P

{αF (p) + (1− α)F (p′) : Ep[φ] = r, Ep′ [φ] = r′}

= αG(r) + (1− α)G(r′).

We now compute G∗ directly.

G∗(θ) = sup
r∈R
〈r, θ〉 −G(r)

= sup
r∈R
〈r, θ〉 − inf

p :Ep[φ]=r
F (p)

= sup
r∈R

sup
p :Ep[φ]=r

〈r, θ〉 − F (p)

= sup
p∈P

〈
p, φ>θ

〉
− F (p)

= F ∗(φ>θ),

where the penultimate equality follows by
〈
p, φ>θ

〉
= 〈Ep[φ], θ〉 and by definition of R.
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Thus, Lemma 4.7 implies that the cumulant C of an F -GEF is the convex conjugate
of G(v)

.
= inf{F (p) : p ∈ P , Ep[φ] = v}. It is interesting to compare this result to our

review of classical exponential families above; there we had C = Ψ, and as we saw, Ψ(θ) =
(−H)∗(φ>θ), a result we of course recover by setting F = −H. We now show a generalization
of another classical result, that ∇Ψ(θ) = Epθ [φ]. Note that because of our generality, our
entropy might not be differentiable in any sense, so we instead fall back on subgradients.

Proposition 4.8. A regular F -GEF {pθ} with statistic φ and cumulant C satisfies Epθ [φ] ∈
∂Cθ for all θ.

Proof. First we prove a small claim:

Claim. Let f : X → R convex and A : X → Y linear, and set g
.
= f ◦A>. Then

d ∈ ∂f(A>y) =⇒ Ad ∈ ∂g(y).
Proof.

∀x f(x) ≥ f(A>y) +
〈
d, x− A>y

〉
=⇒ ∀y′ f(A>y′) ≥ f(A>y) +

〈
d,A>y′ − A>y

〉
⇐⇒ ∀y′ g(y′) ≥ g(y) + 〈Ad, y′ − y〉 .

Applying this to f = F ∗, g = C, A : p 7→ Ep[φ] (and thus A> = φ>) yields p ∈ ∂F ∗(φ>θ) =⇒
Ep[φ] ∈ ∂C(θ), from which the result follows.

We now see why we are justified in calling C the cumulant, as it generates the first
moment of the statistic. In fact, in light of Proposition 4.8, we are justified to follow
the classical case and identify each distribution pθ with its φ-mean. In this way we may
parametrize PΘ (or a subset thereof; see below for discussion) by the means.

Definition 4.11. Given F -GEF PΘ = {pθ}θ∈Θ, we define the mean parameters to be RΘ =
{Epθ [φ]}θ∈Θ, and a mean parameterization of PΘ to be a family {pr}r∈RΘ

⊆ PΘ such that
∀r ∈ RΘ, Epr [φ] = r}.

Note that in general, there may be multiple distributions in PΘ with the same mean,
and RΘ may be non-convex. However, by Proposition 4.8, we see that there is a unique
mean parametrization if C is strictly convex, since Epθ [φ] ∈ ∂C(θ) but strict convexity
implies that the sets ∂C(θ) are disjoint. Moreover, if C is continuously differentiable, then
Epθ [φ] ∈ ∂C(θ) = {∇C(θ)}, so RΘ is convex as the range of P under linear map p 7→ Ep[φ];
in other words, every mean of φ is realized in PΘ. While uniqueness of the parametrization
and convexity of RΘ are certainly desirable properties, our results will not rely on these
assumptions.

We now return to our above discussion and sketch how to derive a GEF {pθ}Θ as the
maximum entropy family under a mean constraint. We may define pr ∈ arginf{F (p) : p ∈
P ,Ep[φ] = r}, which when the arginf is nonempty for all r, is a parameterized family of
distributions. But is PR

.
= {pr}R a mean parameterization of an F -GEF? As we will see
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C(θ)

θ q

pθr

G(r)

C

dC

φ>

(φ>)−1

F ∗

dF ∗

G

dG

p̂

dF

E[φ]

F

Figure 4.2: An illustration of the relationship between the various spaces, symbols, and maps
in this section. Here (φ>)−1 denotes the left inverse of φ>. Note that the diagram is not
necessarily commutative, though starting from r and θ it is commutative for the most part
when when F and F ∗ are strictly convex and differentiable.

in the proof of Theorem 4.14, and the discussion thereafter, we may select PR such that
φ>dGr ∈ ∂F (pr), where G is defined as in Lemma 4.7. But then Corollary 3.14 gives
pr ∈ ∂F ∗(φ>dGr), which means indeed pr = pθ(r) for an F -GEF PΘ.

Finally, we remark about the relationship between our approach and that of Grünwald
and Dawid [54]. In [54, §7.4], GEFs are defined by the maximum entropy calculation dis-
cussed above, and hence as long as the arginf is nonempty, their results go through. After
defining what we call the mean parametrization, they introduce the “natural” parameteri-
zation in eq. (53), essentially as the argsup in the calculation of F ∗. While in many senses,
the results of [54] hold more generally than ours, we choose instead to restrict to the l.s.c.
and proper setting, so that we may start with the natural parameters, and use them as our
fundamental definition. This allows us to draw closer connections to the existing theory of
exponential families, but as we will see, it also allows us to weave our results into our greater
story involving divergences, scoring rules, and prediction markets.
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4.3.1 Divergences

We now apply the above definitions and machinery to show a bijection between generalized
exponential families and generalized Bregman divergences. This investigation is inspired by
Banerjee et al. [16], which shows a similar result for (classical) exponential families. In fact,
our result will in some sense generalize theirs to other entropies besides Shannon entropy.

Definition 4.12. A generalized Bregman divergence DG,dG for a convex G : V → R is F -
regular for a convex F : P → R if G is proper and l.s.c., and there exists some statistic
φ : O → R such that

G(v) = inf
p∈P
{F (p) : Ep[φ] = v}. (4.20)

We will also say G itself is F -regular with statistic φ.

The bijection we will show will tie Bregman divergences to certain equivalence classes of
GEFs, which we now define.

Definition 4.13. The cumulant class of F -GEFs with cumulant C is the set of F -GEFs
whose cumulant is C.

Of course, two F -GEFs with the same cumulant may be very different from one another,
but in some sense the disparity is only with regard to O, not Θ and R; see the “Overlapping
bijections” discussion below. Note that our definition of regularity, Definition 4.10, really is
a property of the cumulant, and hence naturally applies to cumulant classes; we will say a
cumulant class is regular to mean its cumulant satisfies the same.

Theorem 4.9. Fix entropy function F . The set of F -regular Bregman divergences is in
bijection with the set of regular cumulant classes of F -GEFs.

Proof. Specifically, we will show that each F -regular Bregman divergence DG,dG yields the
cumulant class of C(θ)

.
= G∗(θ), and as the convex conjugate is invertible, we will thus

establish our bijection.
Let F -regular Bregman divergence DG,dG be given, with statistic φ. Then simply take

the cumulant class of the F -GEF PΘ = {pθ ∈ ∂F ∗(φ>θ)}θ∈Θ, where Θ = dom(G∗). By
Lemma 4.7, we have that the cumulant of PΘ is G∗. Finally, by regularity of DG,dG and
Theorem 3.13, we have (G∗)∗∗ = (G∗∗)∗ = G∗, so PΘ is regular.

Now, given any cumulant class of regular F -GEFs with cumulant C and statistic φ,
we take the Bregman divergence with convex function G

.
= C∗. Again by regularity and

Theorem 3.13, we have that G is l.s.c. and proper. Also, since G∗ = C∗∗ = C, we have
G∗(θ) = F ∗(φ>θ), so by Lemma 4.7 we must have G(v) = infp :Ep[φ]=v F (p), meaning G is
F -regular.

We now try to consider the result of Banerjee et al. [16]. They give a bijection between
a certain class of classical exponential families and a certain class of Bregman divergences,
so to begin we state generalized versions of their conditions. We will use the concept of
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Legendre type from convex analysis (cf. [89, §26]) which is the following property of a set and
function pair (X,F ): (a) X is nonempty and open, (b) F is strictly convex and differentiable
on X, and (c) limx→b ‖∇f(x)‖ =∞ for x ∈ X and b ∈ bd(X), the boundary of X.

Definition 4.14. A F -GEF PΘ with cumulant C is super-regular if it is regular and addi-
tionally Θ = int(dom(C)) and (Θ, C) is of Legendre type.

Definition 4.15. A Bregman divergence DG is F -super-regular if it is regular and addition-
ally (int(dom(G)), G) is of Legendre type.

We briefly sketch why these regularity conditions roughly correspond to those of Baner-
jee et al. when F = −H. Their condition on divergences DG is that G = C∗ for some
strictly convex C which (after applying a result due to Devinatz) is of the form C(θ) =
log
∫
Rk exp{〈x, θ〉}dµ(x) for some unique bounded non-negative measure µ. Of course, ap-

plying Lemma 4.7 and appealing to eq. (4.18), we easily see that −H-super-regular implies
their condition. Exponential family regularity follows much more simply, as an application
of Lemma 1 of Banerjee et al. [16].

We now state a refinement of Theorem 4.9, for the super-regular case. When F = −H,
and the statistic φ is minimal (affinely independent), we obtain essentially the same bijection
as [16]. The proof follows from a classic result of convex analysis, that (X,F ) is of Legendre
type if and only if (X∗, F ∗) is [89, Thm 26.5].

Corollary 4.10. Fix entropy function F . The set of F -super-regular Bregman divergences
is in bijection with the set of cumulant classes of F -GEFs.

It has been noted that one can express the relative entropy between two members of a
classical exponential family as a divergence between their corresponding parameters [6, 23,
76]. Specifically, one can write

KL(pθ‖pθ′) = DΨ(θ′, θ). (4.21)

We would like to generalize this result to our setting, hopefully to show that the generalized
relative entropy, given by DF , can be written analogously. First we prove a useful lemma.

Lemma 4.11. Let regular F -GEF {pθ} and F -regular G be given, both with statistic φ.
Then F (pθ) = G(Epθ [φ]) for all θ.

Proof. By Proposition 4.8, we have Epθ [φ] ∈ ∂C(θ), which by Lemma 3.11 implies that
C∗(Epθ [φ]) = 〈Epθ [φ], θ〉 − C(θ). By Lemma 4.7, and the fact that G∗∗ = G, we have C∗ =
G. Moreover, 〈Epθ [φ], θ〉 =

〈
pθ, φ

>θ
〉
, and C(θ) = F ∗(φ>θ), so we now have G(Epθ [φ]) =〈

pθ, φ
>θ
〉
− F ∗(φ>θ). Finally, as pθ ∈ ∂F ∗(φ>θ) by definition, applying Lemma 3.11 once

more yields G(Epθ [φ]) =
〈
pθ, φ

>θ
〉
− F ∗(φ>θ) = F (pθ).

We now generalize equation (4.21) to F -GEFs.
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Proposition 4.12. Let F -GEF {pθ} be given with cumulant C. Then there exist subradients
dF and dC such that for all θ, θ′ ∈ Θ,

DF,dF (pθ′ , pθ) = DC,dC(θ, θ′).

Proof. By Lemma 3.11, and the fact that pθ ∈ ∂F ∗(φ>θ) by definition, we have F ∗(φ>θ) =
〈pθ, dFpθ〉−F (pθ) for all θ ∈ Θ and any choice of subgradient dF . Thus, selecting dFpθ = φ>θ,
we have

DF,dF (pθ′ , pθ) = F (p′θ)− F (pθ)−
〈
pθ′ − pθ, φ>θ

〉
=
〈
pθ′ , φ

>θ′
〉
− F ∗(φ>θ′)−

〈
pθ, φ

>θ
〉

+ F ∗(φ>θ)

−
〈
pθ′ − pθ, φ>θ

〉
= F ∗(φ>θ)− F ∗(φ>θ′) +

〈
pθ′ , φ

>θ′ − φ>θ
〉

= C(θ)− C(θ′) +
〈
Epθ′ [φ], θ′ − θ

〉
,

where we used Lemma 4.7 in the last step. Finally, by Proposition 4.8 we may select
dCθ = Epθ [φ], completing the proof.

We may also derive a similar result for a mean parameterization.

Proposition 4.13. Let entropy F be given, and let G be F -regular with statistic φ, with
G additionally being strictly convex with subgradient dG. Then there exists a subgradient
dF such that for any mean-parametrized F -GEF PR = {pr}r∈R with statistic φ, and any
r, r′ ∈ R,

DF,dF (pr, pr′) = DG,dG(r, r′).

Proof. We first show that for any set of distributions {pr}r with (1) Epr [φ] = r and (2)
G(r) = F (pr), the result holds with dFpr

.
= φ>dGr:

DF,dF (pr, pr′) = F (pr)− F (pr′)−
〈
pr − pr′ , φ>dGr

〉
= G(r)−G(r′)−

〈
Epr [φ]− Epr′ [φ], dGr

〉
= DG,dG(r, r′).

Our set PR trivially satisfies (1); for (2), note that by Definition 4.11 we have some θ(r) such
that pr = pθ(r). Then by Lemma 4.11, G(r) = G(Epθ(r) [φ]) = F (pθ(r)) = F (pr).

Propositions 4.13 and 4.12 give life to our bijection in Theorem 4.9. From them we
see that not only are F -GEFs in bijection with divergences, but these divergences exactly
capture the geometry of the GEF, and succinctly so, in terms of their parameters.

Other remarks

The above exploration of generalized exponential families certainly opens more doors than it
closes. It is in particular quite natural to ask, for each succinct quality of classical exponential
families, does a generalization of this quality hold for GEFs? We briefly touch on a few of
these questions and other points.
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Sufficiency. It is well known that the statistic φ is sufficient for a classical exponential
family, meaning that the likelihood of some data {oi}i depends on the underlying parameter
θ only through the empirical mean of the statistic, specifically µ̂ = 1

n

∑
i φ(oi). This property

follows directly from eq. (4.13). For an F -GEF, though, this property does not hold in
general, simply because ∇F ∗(φ>θ)o 6= h(o)g(θ, φ(o)). Another notion of sufficiency does
hold, however: for any loss function L : R×O → R which is proper for the map Γ(p) = Ep[φ],
the loss of prediction r depends on the data only through µ̂. This follows from Theorem 4.1,
simply negating to turn the score into a loss.

Conjugate priors. One of the most useful properties of classical exponential families is
the existence of conjugate priors, families of prior distributions which when conditioned on
data from an exponential family yield a posterior from the same family as the prior. It is
not clear whether analogous families of priors exist for generalized exponential families. An
interesting direction to explore would be to find a new notion of Bayesian updating for GEFs
which captured the “geometry” of the entropy function F , and then use this updating to
define conjugate priors.

Overlapping bijections. The observant reader will note that there is a complicated rela-
tionship between entropies F and the possible F -regular convex functions G. In particular,
while it seems clear that the same F yields many different F -regular functions G by changing
φ, it is not clear whether there exists an F which can yield all possible G’s. The converse
relationship is also interesting: a G can be F -regular for many F ’s. Hence, there is a delicate
many-many relationship between F and G. We briefly illustrate with some examples.

Working with P = ∆n for simplicity, take F (p) = ‖p‖2/2. It is easy to see that any G
which is F -regular must be piecewise-quadratic. (In the regime where pr has all positive
entries, this follows from C(θ) = F ∗(φ>θ) = ‖φ>θ‖2/2, so G = C∗ must also be quadratic;
similar reasoning applies to the nonzero entries once pr hits the edge of ∆n.) Hence, even
when k = dim(Θ) << n, G will always be piecewise quadratic when F = ‖ · ‖2.

Conversely, it is trivial to come up with different functions F yielding the same G. The
easiest way to do this is to just relabel the ground set O (and φ accordingly), so that
F has changed due to a permutation of the arguments, but the optimization yielding G
remains equivalent. A less superficial method, given any G and φ, is to take the function
F (p) = G(Ep[φ]) + f(p − p̂(Ep[φ])), where p̂ is a continuous inverse of φ and f is positive
definite.6 Of course, we must restrict to choices of p̂ and f which keep F convex.

Finally, we point out that, like the quadratic example, taking F = −H is very restrictive
in terms of the possible functions G that are F -regular. In particular, it is easy to see that
no −H-regular G can be piecewise quadratic: C(θ) = log

∑
i e
θi has nonzero derivatives of

all orders, but C = G∗ would have locally quadratic points, with zero derivatives beyond
order 2. Thus, the notion of “regular” used by Banerjee et al. [16], which essentially captures
“log-exp-convex” functions, excludes a very natural class of convex functions.

6A function f is positive definite if f(0) = 0 and f(x) > 0 for all x 6= 0.
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4.3.2 Inducing scoring rules

Someone charged with the task of designing a scoring rule S to elicit the mean of some
statistic might naturally wonder whether it suffices to just select a classical scoring rule SP

defined on P and use that — that is, can a designer simply induce S from SP? Specifically,
letting Γ : p 7→ Ep[φ] denote our linear property as usual, it seems natural to pick an arbitrary
p̂ : R → P mapping means r to some p̂(r) ∈ Γr,

7 and take

S(r, o)
.
= SP(p̂(r), o). (4.22)

As we will see, this can be done, but care must be taken in selecting p̂. Even assuming that
equation (4.22) can be satisfied, other questions remain:

1. Does one lose design flexibility by restricting to scores S of the form (4.22)?

2. Are there multiple choices of SP and p̂ that yield the same S?

3. Fixing SP , what scoring rules S can be obtained by varying p̂ or φ?

We will answer many of these questions in this section, as well as similar questions for
prediction markets.

To begin, let us see why not all choices of p̂ suffice for (4.22). Working with P = ∆n, take
SP to be the Brier score SP(p, o) = 2po − ‖p‖2. Now for statistic φ : o 7→ 1{o = 1}, the
indicator for o = 1, we will try p̂(r) = [r, 1 − r, 0, . . . , 0] ∈ P , the distribution with mass r
on 1, 1− r on 2, and 0 otherwise. Clearly Ep̂(r)[φ] = r, but given p = [p1, p2, . . . , pn], solving

r(p) = argsup
r

SP(p̂(r), p) = argsup
r
‖p− p̂(r)‖2, (4.23)

which we can compute by solving 0 = ∇r(2p1r + 2p2(1 − r) − r2 − (1 − r)2), yields r(p) =
(p1−p2 +1)/2. But now we see r(p) 6= Ep[φ], and hence S(r, o) = SP(p̂(r), o) is not proper!
See Figure 4.3 for an illustration.

For a more extreme example, one can take p̂(r) the same as above but with p̂(1/2) =
[1/2, 0, 1/2, 0, . . . , 0]. As we saw in eq. (4.23), the geometry exhibited by the Brier score is
Euclidean, so clearly any p in a small enough ball around p̂(1/2) would prefer r = 1/2 to the
correct report. In fact, as Figure 4.3 shows, the region of points p for which the agent will
report r = 1/2 is the interior of an entire parabolic region of the simplex.

In general, it seems that our choice p̂ must somehow conform to the geometry of F (p)
.
=

SP(p, p). In particular, it must have the property that for all p : Ep[φ] = r, the “closest”
point in {p̂(r′) : r′ ∈ R} to p is p̂(r), where distance is measured by SP . In fact, there are
interesting connections to information geometry (cf. Amari [6]), where one may view p̂ as a
kind of geodesic, though we do not explore this further here.

We now address the central question: given a linear property Γ : p 7→ Ep[φ], can one
induce a Γ-proper scoring rule S from a classical SP : P × O → R? The following result

7Recall that Γr
.
= {p ∈ P : Γ(p) = r}.
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Figure 4.3: Two 3-outcome examples of ways to choose p̂ which do not yield a proper scoring
rule for Γ when SP(p, p) = ‖p‖2. The horizontal dotted lines depict a selection of level sets
of Γ. In (a), an agent with belief p would report 0.7 instead of Γ(p) = 0.5. In (b), the striped
region is the set of points p for which the agent would report r = 0.5.

answers this in the affirmative, and also addresses some of our other questions. Before stating
the result, we introduce two simple concepts. The first is the Bayes risk from decision theory,
which roughly speaking is the score corresponding to the worst-case underlying distribution
consistent with the report r. The second is a technical condition which ensures that our
mean parameterizations have no “holes.” We will also again use the notion of a fair scoring
rule; see Definition 4.4.

Definition 4.16. The Bayes risk of scoring rule S : R×O → R with respect to property Γ
is defined by Risk(S)

.
= (r 7→ infp∈Γr S(r, p)).

Definition 4.17. A convex function F is Γ-bounded for a property Γ if F achieves its lower
bound on Γr for all r ∈ relint(R). That is, if for all r ∈ relint(R), arginfp∈Γr F (p) 6= ∅.

In the following theorem, we say “G is F -regular on S” to mean there exists Γ : p 7→ Ep[φ]
such that G(r) = infp∈Γr F (p) for all r ∈ S.

Theorem 4.14. Let Γ : p 7→ Ep[φ] be a linear map, and let Γ-fair, Γ-proper scoring rule
S : R×O → R and convex function F : P → R be given. Then there exists a proper scoring
rule SP : P ×O → R and a function p̂ : relint(R)→ P such that

Γ ◦ p̂ ≡ id, Risk(SP) = F, and SP(p̂(·), ·) ≡(relint(R),P) S(·, ·) (4.24)

if and only if F is Γ-bounded and Risk(S) is F -regular on relint(R).8

8Here implicitly Γ(p) = p for the Bayes risk computation.
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Proof. For shorthand, let G
.
= Risk(S). Fixing r ∈ relint(R), Theorem 4.1 and fairness

imply S(r, p) = G(r) + 〈Γ(p)− r, dGr〉, so in particular S(r, p) = G(r) for all p ∈ Γr.
For the “only if” direction let p̂ and SP be given satisfying condition (4.24), and note

that we must have F (p) = SP(p, p). Then we have

∀r ∈ relint(R), F (p̂(r)) = SP(p̂(r), p̂(r)) = S(r, p̂(r)) = G(r).

Now fix r ∈ relint(R), p ∈ Γr. Again by fairness and by definition of p̂, we have

F (p) = SP(p, p) ≥ SP(p̂(r), p) = S(r, p) = G(r) = F (p̂(r)),

which implies G(r) = infp∈Γr F (p) on relint(R) as desired. Finally, since p̂ achieves the
infimum, F must be Γ-bounded as well.

For the “if” direction, as F is Γ-bounded, for all r ∈ relint(R) we may take p̂(r) ∈
arginfp∈Γr F (p); this choice trivially satisfies Γ ◦ p̂ ≡ id. Since G is F -regular on relint(R),
we must in particular have G(r) = F (p̂(r)). By Theorem 2.1, we may take SP(p, p) = F (p),
which fully specifies SP up to a choice of subgradient dF . To do this, for each r ∈ relint(R)
we take dFp̂(r) = φ>dGr (the other subgradients may be chosen arbitrarily), though we must
first show that this is indeed a subgradient at p̂(r).

By Lemma 4.7, we have G∗(d) = F ∗(φ>d). Also, 〈r, d〉 − G(r) =
〈
p̂(r), φ>d

〉
− F (p̂(r)).

Hence, applying Lemma 3.11 for G and F ∗, we have

d ∈ ∂G(r) ⇐⇒ G∗(d) = 〈r, d〉 −G(r)

⇐⇒ F ∗(φ>d) =
〈
p̂(r), φ>d

〉
− F (p̂(r))

⇐⇒ φ>d ∈ ∂F (p̂(r)),

so in particular, dFp̂(r) ∈ φ>dGr ∈ ∂F (p̂(r)). Finally, we show that p̂ does in fact induce S
from SP for all r ∈ relint(R):

SP(p̂(r), o) = F (p̂(r)) + dFp̂(r)(o)− dFp̂(r)(p̂(r))
= G(r) + 〈φ(o), dGr〉 − 〈Γ(p̂(r)), dGr〉
= S(r, o).

Theorem 4.14 gives precise conditions under which a score may be induced from another.
The condition (4.24) is just expressing that p̂ induces S from SP , with the additional
assumption that p̂ be calibrated, meaning p̂(r) must itself be consistent with report r, i.e.
Γ(p̂(r)) = r. It is an interesting question whether this calibration property is a consequence
of inducing S, or whether there are choices p̂ which are not consistent in this way.

Note that the fairness assumption above is merely for convenience and is essentially
without loss of generality. We could just have easily asked when SP(p̂(·), ·) ∼= S,9 as the

9Recall that scores are equivalent if their difference is a function solely of the observed outcome, and not
the report.
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answer would be exactly the same, except that we would replace Risk(S) with the Bayes risk
of a fair score equivalent to S.

The proof of Theorem 4.14 reveals something surprising — p̂ is a generalized exponential
family! To see this, note that we took p̂(r) such that φ>dGr ∈ ∂F (p̂(r)), but by Corol-
lary 3.14, this implies p̂(r) ∈ ∂F ∗(φ>dGr), so p̂ is a mean parameterization of an F -GEF.
Hence, under our calibration assumption, GEFs are the unique family of distributions which
induce scoring rules for means from classical scoring rules.

Another way to look at this is that every scoring rule for a linear property can be thought
of as a scoring rule for a F -GEF for some other entropy F . To see this, just take F (p) =
G(Γ(p)), which is convex. Hence we have actually answered question 1 above: the designer
loses no flexibility by inducing scores rather than “starting from scratch.”

We now briefly address questions 2 and 3, by appealing to the “overlapping bijections”
discussion at end of §4.3.1. In particular, the answer to question 2 is “yes”, as any G is
F -regular for F : p 7→ G(Ep[φ]), while the answer to 3 is more complicated. In general, there
is no succinct characterization of the different G = Risk(S) that are F -regular, except for
specific cases (like “log-exp-concave” for negative Shannon entropy, and piecewise quadratic
for ‖ · ‖2). However, the many-many relationship between F and G from §4.3.1 transfers
to the same relationship between scoring rules which can be induced from classical scoring
rules.

Finally, it may seem that this technique of taking p̂(r) ∈ arginf {F (p) : p ∈ Γr} generalizes
to potentially nonlinear properties — could this method of inducing scores provide an answer
to the questions posed in §3.4.3 and show how to elicit nonlinear properties? As it turns
out, this does not work in general. As a counter-example, take P = ∆3, and define Γ(p) =
(p−x0) · (u−x0)/‖p−x0‖, where x0 = [−ε, (1− ε)/2, (1− ε)/2] and u = [1/3, 1/3, 1/3] is the
uniform distribution. Now take F (p) = ‖p‖2. Then when p = [0, 1/2, 1/2], it is easy to see
that F (p̂(r))+∇F (p̂(r))(p− p̂(r)) = ‖p‖2−‖p− p̂(r)‖2 is locally increasing in r when moving
away from Γ(p), since the error is measured by Euclidean distance, and the selections p̂ are
moving closer to p — indeed, as we see in Figure 4.4, they almost reach p when ε is small.

Inducing prediction markets

We now turn to prediction markets, and ask similar questions here:

1. Can one run an incomplete market mechanism P using a complete market PP?

2. Does the market designer lose flexibility by doing so?

3. In such a scheme, what will be the price space of PP?

Not surprisingly, in light of Theorem 4.3, our answers are very similar. First, we answer
(1) in the affirmative, which as in the scoring rules setting, also answers (2) in the negative.

Theorem 4.15. Let C : V∗ → R and B : W∗ → R be given convex, l.s.c., and proper
functions, and define PP(w∗, o)

.
= w∗(o)− B(w∗) and P(v∗, o)

.
= 〈φ(o), v∗〉 − C(v∗). Then
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Figure 4.4: A 3-outcome example of a nonlinear Γ for which the maximum entropy p̂ fails to
induce a proper scoring rule. Recall any point on the circle with diameter ux0 forms a right
angle with u and x0, meaning it is the closest point to u on the ray out of x0; this explains
the peculiar form of p̂ shown.

there is some q̂ : V∗ →W∗ such that P(·, ·) ≡ PP(q̂(·), ·) if and only if C∗ is B∗-regular for
statistic φ.

Proof. We observe that the condition P(·, ·) ≡ PP(q̂(·), ·) breaks into two: (a) ∀o ∈ O
q̂(v∗)(o) = 〈φ(o), v∗〉, and (b) C(v∗) = B(q̂(v∗)). Condition (a) is equivalent to q̂(v∗) = φ>v∗

by definition. Using this, we can reduce (b) to C(v∗) = B(φ>v∗). Now letting θ
.
= v∗, we can

apply Lemma 4.7, and as has been argued previously (since the Fenchel–Moreau theorem
holds under our assumptions), we see that (b) is equivalent to C∗ being B∗-regular.

While the proof of Theorem 4.15 does not mention GEFs explicitly, we can tease them
out just as we did for Theorem 4.14. The trick lies in the answer to question (3): what is
the price space for PP? We define this as ∂B, but we are interested in the possible prices
attained by varying v∗, namely

⋃
v∗∈V∗ ∂B(q̂(v∗)) =

⋃
θ∈V∗ ∂F

∗(φ>θ), where F = B∗. Hence,
if we pick a price pθ corresponding to each θ, the prices form an F -GEF! In particular, if F ∗

is differentiable, the prices will be unique (often a desirable property for a prediction market
mechanism in its own right), and will correspond to a unique F -GEF.
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This latter observation deserves attention. When an incomplete prediction market P is
induced from a complete one PP , the prices are constrained to be a generalized exponential
family, where the statistic φ is determined by, and indeed the same as, the payoff function
of market P. Hence, traders with beliefs about the mean of the payoff function φ place bets
in the market in exactly the same way as if they were betting directly on the outcomes,
but with the prices constrained to a particular GEF. In particular, when PP is LMSR, the
most widely-used automated prediction market mechanism (see (1.5) and §1.2.2), agents are
essentially trading on the mean parameters of classical exponential families! Furthermore,
any prediction market with C = G∗ for a (−H)-regular G (or a G which is regular in the
sense of Banerjee et al. [16]) can be expressed as an instance of LMSR in this way.

4.4 Discussion

We have just completed a winding tour through four seemingly unrelated concepts, and
shown strong connections among them. To summarize what we have found, we give in
Table 4.1 an overview of the rough conceptual or semantic relationships behind the bijections
of Figure 4.1. It is especially interesting to correlate these relationships (and assumptions)
with Figure 4.1, and in particular when a bijection crosses the duality line and when it does
not.

Many observations can be made from this new vantage point. For example, it is clear
from the assumptions needed (noting also that several are necessary in some respect) that
the connection between scoring rules and divergences is the most fundamental; it is safe to
say that these are essentially different representations of the same object.

More abstractly, though, it is clear that the driver behind nearly all of these results, and
especially the more surprising ones, is convex duality. The functions G and C represent two
sides of the same coin, but often our intuition is hesitant to flip from one side to another.
This is perhaps especially true of the relationship between prediction markets and generalized
exponential families — why should the prices be so structured when using a complete market
to emulate an incomplete one?

Rather than enumerate further observations, we conclude our tour with another tour, to
illustrate our newfound connections. Given an incomplete prediction market P with payoff
function φ, we have found that we can induce P from a complete market PP with cost
function B exactly when the prices in PP form a B∗-GEF PΘ for statistic φ. We may move
from P to a scoring rule S which is mutually reducible to P, which happens to be proper
for the property Γ(p) = Ep[φ], the mean of random variable φ. Asking the same question of
induction for S gives rise to the mean parameterization of the very same GEF PΘ.

If we wish to measure the “distance” between beliefs or prices p in SP or PP , using
generalized relative entropy, or the “regret” faced by agents with one belief who act as if they
had another, the answer can be expressed as a generalized Bregman divergence between the
parameters, which are the reports and prices of S and P, respectively. Finally, to come full
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Bijection Semantic relationship Assumptions

DIV ↔ SR
Thm 4.1

A SR can be written as a DIV and vice versa. (none)

PM ↔ SR
Cor 4.5

Trades in a PM yield the same payoff as a SR of the
corresponding prices.

∇Gri(R), G
∗∗

PM ↔ DIV
Cor 4.6

Trades in a PM have net expected payoff equal to a
divergence of their corresponding prices.

∇Gri(R), G
∗∗

DIV ↔ GEF
Thm 4.9

The generalized relative entropy of two members of a
GEF is a DIV of their corresponding parameters.

〈·, ·〉, F ∗∗, G∗∗,

(G str cvx)

SR ↔ GEF
Thm 4.14

Any SR for the mean of a statistic can be written as a
full-distribution SR applied to GEFs.

〈·, ·〉, F ∗∗, G∗∗, F
Γ-bdd

PM ↔ GEF
Thm 4.15

Payoffs in an incomplete market are identical to a com-
plete market whose prices are restricted to a GEF.

F ∗∗, G∗∗, 〈·, ·〉

Table 4.1: The conceptual relationships between the four constructs presented in this chapter:
generalized Bregman divergences (DIV), scoring rules (SR), prediction markets (PM), and
generalized exponential families (GEF). All results assume that P is convex. For the other
assumptions: ∇ri(R)G denotes the condition presented in Corollary 4.5; f ∗∗ denotes the
requirement that f be proper and l.s.c.; 〈·, ·〉 means the result requires a dual pair; and F
Γ-bdd refers to the Γ-boundedness assumption, that F attains its lower bound on Γr for all
r ∈ relint(R). For DIV ↔ GEF, only the mean parameterization requires G to be strictly
convex.
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circle, we may in turn take these simple divergences and reconstruct the original prediction
market P, scoring rule S, and B∗-GEF PΘ.

We close with a look toward the future. Though comprehensive in a sense, our results
beg the question particularly of generalized exponential families, as to how much of the
extensive body of literature for classical families might extend to the general setting. Such
extensions would immediately apply to the other three concepts discussed here. For example,
we conjecture that the right notion of “generalized Bayesian updating” may yield a version
of Vovk’s aggregating algorithm for other entropies, perhaps shedding light on the theory of
mixability in online learning.
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Chapter 5

A new view of mechanism design

In this chapter, we apply our characterization results to mechanism design. As we will see,
by viewing mechanisms in terms of convex analysis, we are able to make new insights, which
either simplify or clarify existing results, or add new techniques.

We first examine a number of characterizations from the mechanism design literature
that generally focus on when there exist payments that make a given allocation rule truthful.
Figure 5.1 (a) illustrates these characterizations and how they were proved. As it shows,
several of them rely on showing equivalence to a condition known as cyclic monotonicity.
Instead, we translate these results into convex analysis terms and prove them by showing
equivalence to the condition of being a family of subgradients of a convex function; see
Figure 5.1 (b). This has two main benefits. First, since cyclic monotonicity is a difficult
condition to work with, we are able to greatly simplify the proofs of these results. Second, our
proofs generally proceed by explicitly constructing the convex function, which gives a natural
characterization of the payments rather than just showing that they exist. This approach
also illuminates how a result by Carroll [28] about truthful mechanisms is essentially a similar
characterization (see Theorem 5.3).

We then combine these results with our results about properties from Chapter 3, to
obtain new truthfulness checks for the case where there are finitely many outcomes. Finally,
we conclude with remarks about revenue equivalence and future work.

5.1 Implementability conditions via convexity

Interpreted in the general mechanism design framework given by Definition 2.3, Theorem 2.1
says that a mechanism (f, p) is truthful if and only if the consumer surplus function t 7→
U(t, t) that it implicitly defines on the convex hull of T is a convex function which has a
subgradient consistent with f on T . This is a known characterization for the case of convex
T (as well as non-convex T that satisfy an assumption known as outcome compactness) [7],
but in practice the consumer surplus function is not always the most natural representation
of a mechanism. In this section, we examine two other approaches to characterizing truthful
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(a)

Implementable

CMON

Rochet [86]

Subgradient

Myerson [72]

WMON + PI

Mller et al. [73]*

LWMON + VF

Archer, Kleinberg [7]*

(b)

Implementable

Subgradient

Thm 2.1

WMON + PI

Thm 5.2*

LWMON + VF

Cor 5.5*

Weak Local
Subgradient

Thm 5.3*
CMON

Thm 5.1

Figure 5.1: Proof structure of existing mechanism design literature (a), and the new proof
structure presented in this dissertation (b). Rounded rectangles and asterisks denote the
requirement that T be convex.

mechanisms that have been explored in the literature and show that they have insightful
interpretations in convex analysis. This interpretation has two benefits. First, by focusing
on the essential convex analysis questions we are able to greatly simplify many of the proofs.
Second, our proofs are constructive; in many cases we explicitly construct a consumer surplus
function G, which when the mechanism is being represented by its allocation rule gives the
necessary payments rather than simply providing a proof that payments exist.

5.1.1 Subgradient characterizations

From an algorithmic perspective, it may be more natural to focus on the design of the
allocation rule f rather than the specific payments. There is a large literature that focuses
on when there exists a choice of payments p to make f into a truthful mechanism (e.g.
[91, 8]). Since such payments exist if and only if there is a convex function for which f is a
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subgradient at points in T , this is essentially a very natural convex analysis question: when
is a function f a subgradient of a convex function? Unsurprisingly, the central result in the
literature is closely connected to convex analysis.

Definition 5.1. A family {dGt ∈ Lin(V → R)}t∈T satisfies cyclic monotonicity (CMON) if
for all finite sets {t0, . . . , tk} ⊆ T ,

k∑
i=0

dGti(ti+1 − ti) ≤ 0, (5.1)

where indices are taken modulo k + 1. We refer to the weaker condition that (5.1) hold for
all pairs {t0, t1} as weak monotonicity (WMON).

A well known characterization from convex analysis is that a function f defined on a
convex set is a subgradient of a convex function on that set iff it satisfies CMON [89].
Rochet’s [86] proof that such payments exist on a possibly non-convex T iff f satisfies
CMON is effectively a proof of the following generalization of this theorem.

Theorem 5.1. A family {dGt ∈ Lin(V → R)}t∈T satisfies CMON if and only if there exists
a convex G : conv(T )→ R such that dGt is a subgradient of G at t for all t ∈ T .

Rochet notes that his proof is adapted from the one given in Rockafellar’s text [89] of the
weaker theorem where T is restricted to be convex. We adapt Rochet’s proof to highlight
how its core is a construction of G. .

Proof. Given such a G, by (2.2) we have dGti(ti+1 − ti) ≤ G(ti+1) − G(ti). Summing
gives (5.1). Given such a family {dGt}t∈T , fix some t0 ∈ T and define

G(t) = sup
{t1,...,tk+1}⊆T ,

tk+1=t

k∑
i=0

dGti(ti+1 − ti), (5.2)

where {t1, . . . , tk} denotes any finite sequence (k is not fixed).
By CMON, for t ∈ T this sum is upper bounded by −dGt(t0 − t). Thus, the supremum

is finite on T . G is a pointwise supremum of convex functions, so is convex. By convexity,
G is also finite on conv(T ).
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For any t ∈ T and t′ ∈ conv(T ),

G(t) + dGt(t
′ − t) = dGt(t

′ − t) + sup
{t1,...,tk+1}⊆T ,

tk+1=t

k∑
i=0

dGti(ti+1 − ti)

= sup
{t1,...,tk+1}⊆T ,
tk=t, tk+1=t′

k∑
i=0

dGti(ti+1 − ti)

≤ sup
{t1,...,tk+1}⊆T ,

tk+1=t′

k∑
i=0

dGti(ti+1 − ti)

= G(t′),

so dGt satisfies (2.2).

A number of papers have sought simpler and more natural conditions than CMON that
are necessary and sufficient in special cases, e.g. [91, 7, 8]. These results are typically proven
by showing they are equivalent to CMON. However, it is much more natural to directly
construct the relevant G. This also often has the advantage of providing a characterization
of the payments that is more intuitive than the supremum in Rochet’s construction. As an
example, we show one such result has a simple proof using our framework.

As in Myerson’s [72] construction for the single-parameter case, we construct a G by
integrating over dGt. In particular, for any two types x and y our construction makes use of
the line integral ∫

Lxy

dGt(y − x)dt =

∫ 1

0

dG(1−t)x+ty(y − x)dt.

As Berger et al. [20] and Ashlagi et al. [8] observed, if {dGt}t∈T satisfies WMON and T
is convex, this (Riemann) integral is well defined because it is the integral of a monotone
function. If these line integrals vanish around all triangles (equivalently

∫
Lxy

dGt(y− x)dt+∫
Lyz

dGt(z − y)dt =
∫
Lxz

dGt(z − x)dt)) we say {dGt} satisfies path independence.

Theorem 5.2 (adapted from [73]). For convex T , a family {dGt ∈ Lin(V → R)}t∈T is a
subgradient of a convex function if and only if {dGt}t∈T satisfies WMON and path indepen-
dence.

Proof. Given a convex function G and {dGt}, {dGt} satisfies CMON and thus WMON.
Path independence also follows from convexity (Rockafellar [89] p. 232). Now given a
{dGt} that satisfies WMON and path independence, fix a type t0 ∈ T and define G(t′) =∫
Lt0t′

dGt(t
′ − t0)dt (well defined by WMON as the integral of a monotone function). Given

x, y, z ∈ T such that z = λx + (1− λ)y, by path independence and the linearity of dGz we
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have

λG(x) + (1− λ)G(y)

= G(z) + λ

∫
Lzx

dGt(x− z)dt+ (1− λ)

∫
Lzy

dGt(y − z)dt

≥ G(z) + λdGz(x− z) + (1− λ)dGz(y − z) = G(z),

so G is convex. Similarly, for x, y ∈ T , dGt satisfies (2.2) because

dGx(y − x) ≤
∫
Lxy

dGt(y − x)dt = G(y)−G(x).

5.1.2 Local conditions

In many settings, it is natural to specify mechanisms in terms of an algorithm that computes
the allocation and payment. As it is often easier to reason about the behavior of algorithms
given small changes to their input rather than arbitrary changes, several authors have sought
to characterize truthful mechanisms using local conditions [7, 20, 28].

We show in this section how many of these results are in essence a consequence of a more
fundamental statement, that convexity is an inherently local property. For example, in the
twice differentiable case it can be verified by determining whether the Hessian is positive
semidefinite at each point. We start with a local convexity result, and use it to show that
an affine score is truthful if and only if it satisfies a very weak local truthfulness property
introduced by Carroll [28]. Afterwards we turn to a similar characterization by Archer and
Kleinberg [7].

Definition 5.2. Given a function G, a family {dGt ∈ Lin(V → R)}t∈T is a weak local
subgradient with respect to G (G-WLSG) if for all t ∈ T there exists an open neighborhood
Ut of t such that for all t′ ∈ Ut,

G(t) ≥ G(t′) + dGt′(t− t′) and G(t′) ≥ G(t) + dGt(t
′ − t). (5.3)

We now show that G-WLSG is a sufficient condition for a family of functions to be a
subgradient of G. The proof is heavily inspired by Carroll [28].

Theorem 5.3. Let T be convex. A family {dGt ∈ Lin(V → R}t∈T is a subgradient of a
given function G if and only if it satisfies G-WLSG.

(Adapted from [28]). As usual, the forward direction is trivial. For the other, let t, t′ ∈ T
be given; we show that the subgradient inequality for dGt′ holds at t. By compactness of
conv({t, t′}), we have a finite set ti = αit

′ + (1− αi)t, where 0 = α0 ≤ · · · ≤ αk+1 = 1, such
that G-WLSG holds between each ti and ti+1. (The cover {Us | s ∈ conv({t, t′}) has a finite
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subcover. Take t2i from the subcover and t2i+1 ∈ Ut2i∩Ut2i+2
.) By the WLSG condition (5.3),

we have for each i,

0 ≥ G(ti+1)−G(ti) + dGti+1
(ti − ti+1) (5.4)

0 ≥ G(ti)−G(ti+1) + dGti(ti+1 − ti). (5.5)

Now using the identity ti+1 − ti = (αi+1 − αi)(t′ − t) and adding αi/(αi+1 − αi) times (5.4)
to αi+1/(αi+1 − αi) times (5.5), we have

0 ≥ G(ti)−G(ti+1) + αidGti(t
′ − t)− αi+1dGti+1

(t′ − t). (5.6)

Summing (5.6) over 0 ≤ i ≤ k gives

0 ≥ G(t0)−G(tk+1) + α0dGt0(t′ − t)− αk+1dGtk+1
(t′ − t),

which when recalling our definitions for αi and ti yields the result.

The WLSG condition translates to an analogous notion in terms of truthfulness, weak
local truthfulness.

Definition 5.3. An affine score is weakly locally truthful if for all t ∈ T there exists some
open neighborhood Ut of t, such that truthfulness holds between t and every t′ ∈ Ut, and vice
versa. That is,

∀t ∈ T , ∀t′ ∈ Ut, S(t′)(t) ≤ S(t)(t) and S(t)(t′) ≤ S(t′)(t′). (5.7)

Corollary 5.4 (Generalization of Carroll [28]). An affine score S : T → A for convex T is
truthful if and only if it is weakly locally truthful.

Proof. Defining G(t)
.
= S(t)(t), by weak local truthfulness we may write

G(t) = S(t)(t) ≥ S(t′)(t) = G(t′) + S`(t
′)(t− t′)

G(t′) = S(t′)(t′) ≥ S(t)(t′) = G(t) + S`(t)(t
′ − t),

where t′ is local to t and S`(·) is the linear part of S(·). This says that dGt = S`(t) satisfies
G-WLSG; the rest follows from Theorem 5.3 and Theorem 2.1.

Finally, in the spirit of Section 5.1.1, Archer and Kleinberg [7] characterized local condi-
tions under which an allocation rule can be made truthful. A key condition from their paper
is vortex-freeness, which is a condition they show to be equivalent to local path independence.
The other condition, local WMON, means that WMON holds in some neighborhood around
each type. Their result follows directly from an analogous characterization of subgradients.

Corollary 5.5. Let T be convex. A family {dGt ∈ Lin(V → R)}t∈T is a subgradient of a
convex function if and only if it satisfies local WMON and is vortex-free.
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Proof. We prove the reverse direction; suppose {dGt}t∈T satisfies local WMON and is vortex-
free. From Lemma 3.5 of [7] we have that vortex-freeness is equivalent to path independence,
so by Theorem 5.2 for all t there exists some open Ut such that {dGt′}t′∈Ut is the subgradient
of some convex function G(t) : Ut → R. We need only show the existence of some G such
that {dGt}t∈T is the subgradient of G on each Ut; the rest follows from Theorem 5.3.

Fix some t0 ∈ T and define G(t) =
∫
Lt0 t

dGt′dt
′, which is well defined by compactness

of conv({t0, t}) and the fact that a locally increasing real-valued function is increasing. But
for each t′ and t ∈ Ut′ we can also write G(t′)(t) =

∫
Lt′ t

dGt′′dt
′′ by [89, p. 232], and now by

path independence we see that G and G(t′) differ by a constant. Hence {dGt}t∈T must be a
subgradient of G on Ut′ as well, for all t′ ∈ T .

5.2 Properties in mechanism design

In the case when R is finite, we can combine Theorem 3.17 and Corollary 5.4 to obtain
the following simple truthfulness check. This essentially says that one need only check
overlapping report regions for r and r′ (i.e. r and r′ are both correct reports for some type
t) to make sure that any type with r correct and r′ incorrect yields a lower utility for r′ than
r.

Theorem 5.6. For finite R, an affine score S : R → A elicits Γ if and only if for all r, r′

such that Γr ∩ Γr′ 6= ∅, we have S(r′)(t) < S(r)(t) for all t ∈ Γr \ Γr′.

We now apply our results to mechanism design with a finite set of allocations. One
example of such a setting is ordinal utilities over a finite set of outcomes. Let T = (O → R)
and let R be the set of preference orderings over O, which we represent as permutations π
of O (higher preference being first). Then a natural property is

Γ(t) = {π ∈ R | ∀i < j, t(πi) ≤ t(πj)}, (5.8)

the set of rankings consistent with type t. Note that unless there are ties, meaning t(o) = t(o′)
for some o, o′ ∈ O, this mapping will be a singleton. More generally, truncated rankings or
any mechanism with a finite message space yields such a property.

Carroll [28] points out that it is known that for all finite sets of allocations, the set of
types for which a particular allocation is optimal forms a polyhedron and then shows that
for all convex set of types it is sufficient to check incentive compatibility constraints between
polyhedra that intersect at a face. Applying Theorem 3.17 shows something stronger: the
types form not just an arbitrary set of polyhedra, but a power diagram. This observation
yields the following non-implementability check.

Power diagram test: The sets cello := {t|f(t) = o} form a power diagram. (5.9)

Thus, if (5.9) fails, f is not implementable.
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To illustrate this test, consider the following two allocation functions.

f 1(t) =


∅ if ta < 2 and tb < 2

{a} if ta ≥ 2 and tb < 2

{b} if ta < 2 and tb ≥ 2

{a, b} if ta ≥ 2 and tb ≥ 2

(5.10)

f 2(t) =


∅ if ta < 2

{a} if ta ≥ 2 and tb < 2

{a, b} if ta ≥ 2 and tb ≥ 2

(5.11)

As Figure 5.2 shows, f 1 satisfies (5.9), as it partitions the type space T = R2 into a power
diagram; just take sites P = {(1, 1), (1, 3), (3, 1), (3, 3)} and weights wi = −‖pi‖/2. More-
over, f 1 is implementable. The allocation function f 2, however, fails the test: no finite site
exists for the cell {t|ta < 2}, since adjacent cell boundaries are perpendicular to the line
between their sites. Hence we can immediately conclude that f 2 is not implementable, and
in fact any allocation function which partitions the type space in the same way (i.e. uses
the same cases in (5.11) with different values) would fail to be implementable.

3 7

a

{b} {a,b}

{a}{}

{b} {a,b}

{a}{}

ta

tb

aaa a

{a,b}

{a}

{}

{a,b}

{a}

{}

ta

tb

aaa
(1) (2)

Figure 5.2: A mechanism that passes the power diagram test (1) and one that fails (2).

We can now see why polyhedral type spaces are too weak: the allocation function f 2 is not
implementable, yet clearly has a polyhedral type space. The power diagram condition (5.9),
then, is a stronger necessary condition for truthfulness. Note however that it is not sufficient,
as the power diagram test is not sensitive to the actual allocations chosen — just swap {a}
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and {a, b} for f 1, and the resulting allocation function still passes the test but is no longer
implementable. In is true, though, that every power diagram is the type space for some
implementable allocation function.

It remains to show how the test (5.9) can be implemented. In fact, we have already
discussed this in §3.4.1; recall that for the simple case, Aurenhammer gives an algorithm
to detect whether a set C of cells form a power diagram in §2.2 of [10], which runs in time
O(m), where m is the number of facets (cell faces of dimension n− 1, where n is the number
of outcomes). For the general case we may use the polynomial-time algorithm given by
Rybnikov in [90, §12].

5.3 Revenue equivalence

Perhaps the most celebrated result in auction theory is the revenue equivalence theorem,
which states that, in a single item auction, the revenue from an agent (equivalently that
agent’s consumer surplus) is determined up to a constant by the equilibrium probability
that each possible type of that agent will receive the item [72]. A large body of work has
looked for more general conditions under which this property holds (see, e.g., [61, 57]). Many
of these conditions imply the convexity of the set of types. Our main result can be used to
provide intuition for this.

Theorem 5.7. Let T be convex, a truthful affine score S : T → A be given, and {dGt}t∈T
be the corresponding selection of subgradients from (2.3). Then any truthful affine score
S ′ : T → A with the same corresponding selection of subgradients differs from S by a
constant (i.e. S(t′)(t) = S ′(t′)(t) + c).

Proof. By Theorem 2.1, we know that S and S ′ only differ only in their choice of convex
function G. However, each choice has the same selection of subgradients, and two convex
functions with the same selection of subgradents differ by a constant [89]. For intuition, see
the construction of G by integrating its subgradients in the proof of Theorem 5.2.

Note how the convexity of T is crucial here. Theorem 2.1 requires the existence a convex
G on conv(T ). If T is not convex, there may exist convex G and G′ that share the same
selection of subgradients on T but differ on conv(T ) − T , in which case they need not be
revenue equivalent. The following example from [57] is illustrative.

There is an agent who has some demand d for a good. If he receives x units of the good
his utility is ud(x)

.
= min(0, x−d): he has a utility of 0 when he receives at least d units and

x−d < 0 otherwise. Even if the set of possible values of d is a convex set, say [0, 1], this type
space T = {ud(x)|0 ≤ d ≤ 1} is not convex in our sense — for example, (u0.3 + u0.4)/2 /∈ T .

Consider a mechanism that gives the agent exactly his demand d, i.e. f(ud) = d. One
way to extend this onto the convex hull of the type space is to have the mechanism give the
agent the minimum amount of the good this is needed for him to have a utility of 0, namely
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f 1(
∑
αiudi) = max{di}. Note that crucially f 1|T = f . With f 1, the payment p1(x) the

agent makes is constant regardless of his allocation.1

An alternate way to extend this onto the convex hull is to set a schedule of prices such
that an agent given x units of the good pays p2(x) = x + c and then give an agent of type
v =

∑
αiudi his optimal amount of the good (breaking ties in favor of giving more of the

good): f 2(v) = max(argmaxx{v(x) − (x + c)}). Despite once again having f 2|T = f , the
payment of an agent with type v = ud is now p2(d) = d+c, which depends on the demand and
hence is not p1(d) = c. Thus, revenue equivalence does not hold for our original allocation
rule f on T .

In our example, there were several different ways to extend the allocation onto the convex
hull of the type space such that the mechanism was implementable, so the mechanism did
not satisfy revenue equivalence. Clearly convexity of T is a sufficient condition to ensure
that there is a unique extension onto conv(T ), but it is not a necessary one; Heydenreich et
al. give several examples of conditions on allocation rules for this example that ensure they
do satisfy revenue equivalence. Even having a unique extension is actually sufficient but not
necessary. In particular, if some type t ∈ conv(T )−T is indifferent among several outcomes,
it may be possible to change that type’s allocation without changing the resulting G. In
terms of convex analysis, this is because, under mild conditions, a convex function can be
represented up to a constant by any selection of its subgradients (see [61]).

5.4 Future work

Below we detail several possible avenues for future work.

Multi-agent settings. The reader may note that thus far we have considered only single-
agent mechanisms. As we argued in §2.3.1, this is in some sense without loss of generality,
but in practice many constraints on mechanisms are crucially interdependent among agents;
e.g. a single item which can only be given to one agent, or a combinatorial auction with
nontrivial feasibility constraints. To have bite in such settings, we will have to extend our
model and characterizations explicitly.

One way to extend the model is as follows. We have type spaces Ti for each agent, and
joint type space T = ⊗Ti. The affine spaces are Ai ⊆ Aff(Ti → R) with A ⊆ ⊗Ai. Finally,
the utility of agent i with type ti upon reports t′ is A(t′)(t)i = A(t′)i(ti).

While it is common in mechanism design to think of a single outcome being chosen, thus
dictating the utilities of all agents, here the mechanism would seem to have more flexibility,
in choosing ai ∈ Ai more or less independently of j 6= i. However, note that by being a
subset of the cartesian product, A can encode constraints of the mechanism. In particular,
A could be the set of utilities {ai,o}i∈[n] corresponding to each outcome of some set O, thus
reducing to the common mechanism design case.

1 An agent of type ud can always report that he is of type (1− ε)u0 + εud. This type has an arbitarily
small value for receiving the good, but still receives d units according to f1.
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One of the most important results in mechanism design is Roberts’ theorem, which says
that for an unrestricted type space (i.e. T = Rn

+ for n agents), the only implementable
allocation functions are affine maximizers, taking the following form:

f(t) ∈ argmax
o∈O

n∑
i=1

witi(o) + Co , (5.12)

for some weights wi and constants Co . This is often viewed as an impossibility result, but
it is known that as one restricts the type space, other possibilities arise in the form of
f . Naturally, then, recent research has strived to characterize the form of implementable
functions in restricted domains. As a first step in this vein, many new proofs of Roberts’
theorem have appeared (see e.g. [68, 67, 41]) with an eye toward modularity, in the hopes
that the right techniques would extend more easily into restricted domains. Our hope is that
the general convexity-driven approach taken in this dissertation would help in this regard;
we have already seen that our techniques greatly simplify the single-agent case, and given
that a truthful multi-agent mechanism yields a truthful mechanism when fixing n − 1 of
the agents’ types, it seems likely that these techniques could be used to simplify or extend
existing multi-agent characterizations.

Beyond mechanism design, other multi-agent elicitation models have appeared in the
literature, most notably “wagering mechanisms” from Lambert et al. [64], which in essence
are multi-agent scoring rules. In the setting they analyze, the mechanism is constrained
to ensure that for some budget B, the total payout is exactly B no matter what outcome
ω materializes. One could view such a mechanism as an affine score, setting Ai ⊆ {ti 7→
Eω∼ti [si] | si ∈ RΩ}. Note that this in some sense corresponds to a “transfer-free” mechanism,
as Ai is actually a set of linear functions, so the affine term (the “payment”) is 0. Such multi-
agent scoring rules only become interesting when the mechanism has constraints among the
agents; in this case, the budget constraint requires

∑
i si = B for all outcomes ω ∈ Ω.

Envy-free mechanisms and other externalities. In several settings in mechanism de-
sign, one is conerned with agent utilities which depend not only on the chosen allocation,
but possibly on the types of the other agents. For example, when participating in an auction
for a nuclear weapon, my utility may depend on who gets the weapon, and their value for
it. Note however that we have constructed A so that A(t′)(t)i depends only on t′ and ti (the
true type of agent i). Thus, to capture these interdependencies among types, we may simply
lift our restriction on A by requiring only A ⊆ Aff(T → Rn). This would cover settings
such as envy-free mechanisms, as well as other types of externalities, such as those in Fiat
et al. [45]. Given how natural it is to express these settings in our model, it seems promising
to apply our techniques here as well.

Revenue equivalence. Recently results have emerged characterizing revenue equivalence,
specifically, on which domains it does and does not hold; see e.g. [57]. Given the discussion in
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§5.3, it is likely that our approach would be more direct, yielding shorter or more constructive
proofs.

Properties. Our exploration of properties in mechanism design has just scratched the sur-
face. One promising direction is to draw connections to existing notions in mechanism design
which seem to bear some resemblence to properties, such as multidimensional screening (see
e.g. [87]). Another is to use the power diagram test (5.9) and other insights to derive new
negative results for multi-agent settings — in fact, one could regard Hyafil and Boutilier [58]
as a prelude to this general approach. Finally, Saks and Yu [91] proved that all monotone
deterministic allocation rules are implementable when the type space is convex and the num-
ber of outcomes is finite; it may be that our approach using finite-valued properties will yield
a simpler and more intuitive proof of this result.

Report duality in mechanism design. It is interesting to ask whether the notion of
report duality, introduced in §3.3.2, can aid in the design of mechanisms. Such a technique
could proceed by first choosing G∗ and then taking G = G∗∗, just as is now common in
the prediction markets literature. This approach may help meet certain constraints; if one
wants any truthful mechanism with allocations in some set O, one could choose a convex
function G∗ over conv({Evalo|o ∈ O}) and work backwards to get the allocations by taking
f := dG∗∗.
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Chapter 6

Interpreting prediction markets

In this chapter, we strengthen recent connections between prediction markets and learning
by showing that a natural class of market makers can be understood as performing stochastic
mirror descent when trader demands are sequentially drawn from a fixed distribution. This
provides new insights into how market prices (and price paths) may be interpreted as a
summary of the market’s belief distribution by relating them to the optimization problem
being solved. In particular, we show that under certain conditions the stationary point of
the stochastic process of prices generated by the market is equal to the market’s Walrasian
equilibrium of classic market analysis. Together, these results suggest how traditional market
making mechanisms might be replaced with general purpose learning algorithms while still
retaining guarantees about their behavior.

6.1 Introduction and literature review

This chapter is part of an ongoing line of research, spanning several authors, into formal con-
nections between markets and machine learning. In Chen and Vaughan [34] an equivalence
is shown between the theoretically popular prediction market makers based on sequences of
proper scoring rules and follow the regularised leader, a form of no-regret online learning.
By modelling the traders that demand the assets the market maker is offering we are able
to extend the equivalence to stochastic mirror decent. The dynamics of wealth transfer is
studied in Beygelzimer et al. [22], for a sequence of markets between agents that behave
as Kelly bettors (i.e. have log utilities), and an equivalence to stochastic gradient decent
is analysed. More broadly, Storkey [94] and Barbu and Lay [17] have analysed how a wide
range of machine learning models can be implemented in terms of market equilibria.

The literature on the interpretation of prediction market prices, including Manski [70]
and Wolfers and Zitzewitz [102] has had the goal of relating the equilibrium prices to the
distribution of the beliefs of traders. More recent work of Othman and Sandholm [81]
has looked at a stochastic model, and studied the behavior of simple agents sequentially
interacting with the market. We continue this latter path of research, motivated by the
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observation that the equilibrium price may be a poor predictor of the behavior in a volitile
prediction market. As such, we seek a more detailed understanding of the market than the
equilibrium point – we would like to know what the “stationary distribution” of the price is,
as time goes to infinity.

As is standard in the literature, we assume a fixed (product) distribution over traders’
beliefs and wealth. Our model features an automated market maker, following the framework
of Abernethy et al. [1] is becoming a standard framework in the field.

We obtain two results. First, we prove that under certain conditions the stationary point
of our stochastic process defined by the market maker and a belief distribution of traders
converges to the Walrasian equilibrium of the market as the market liquidity increases.
This result, stated in Theorem 6.1, is general in the sense that only technical convergence
conditions are placed on the demand functions of the traders – as such, we believe it is a
generalisation of the stochastic result of [81] to cases where agents are are not limited to
linear demands, and leave this precise connection to future work.

Second, we show in Corollary 6.4 that when traders are Kelly bettors, the resulting
stochastic market process is equivalent to stochastic mirror descent; see e.g. [42]. This result
adds to the growing literature which relates prediction markets, and automated market
makers in general, to online learning; see e.g. [1, 34, 22].

This connection to mirror descent seems to suggest that the prices in a prediction market
at any given time may be meaningless, as the final point in stochastic mirror descent often has
poor convergence guarantees. However, standard results suggest that a prudent way to form
a “consensus estimate” from a prediction market is to average the prices. The average price,
assuming our market model is reasonable, is provably close to the stationary price. In §6.5
we give a natural example that exhibits this behavior. Beyond this, however, Theorem 6.3
gives us insight into the relationship between the market liquidity and the convergence of
prices; in particular it suggests that we should increase liquidity at a rate of

√
t if we wish

the price to settle down at the right rate.

6.2 Model

Our market model will follow the automated market maker framework of Abernethy et al. [1],
as described in §1.2.2, though our notation will differ slightly. We will equip our market
maker with a strictly convex function C : Rn → R which is twice continuously differentiable.
For brevity we will write ϕ

.
= ∇C. The outcome space is Ω, and the contracts are determined

by a payoff function φ : Ω→ Rn such that Π
.
= ϕ(Rn) = conv(φ(Ω)). That is, the derivative

space Π of C (the “instantaneous prices”) must be the convex hull of the payoffs.
A trader purchasing shares at the current prices π ∈ Rn pays C(ϕ−1(π) + r)−C(ϕ−1(π))

for the bundle of contracts r ∈ Rn. Note that our dependence solely on π limits our model
slightly, since in general the share space (domain of C) may contain more information than
the current prices (cf. [1]). The bundle r is determined by an agent’s demand function d(C, π)
which specifies the bundle to buy given the price π and the cost function C.
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Our market dynamics are the following. The market maker posts the current price πt, and
at each time t = 1 . . . T , a trader is chosen with demand function d drawn i.i.d. from some
demand distribution D. Intuitively, these demands are parameterized by latent variables
such as the agent’s belief p ∈ ∆Ω and total wealth W . The price is then updated to

πt+1 = ϕ(ϕ−1(πt) + d(C, πt)). (6.1)

After update T , the outcome is revealed and payout φ(ω)i is given for each contract i ∈
{1, . . . , n}.

6.3 Stationarity and equilibrium

We first would like to relate our stochastic model (6.1) to the standard notion of market
equilibrium from the Economics literature, which we call the Walrasian equilibrium to avoid
confusion. Here prices are fixed, and the equilibrium price is one that clears the market,
meaning that the sum of the demands r is 0 ∈ Rn. In fact, we will show that the stationary
point of our process approaches the Walrasian equilibrium point as the liquidity of the market
approaches infinity.

First, we must add a liquidity parameter to our market. Following the LMSR (the cost
function C(s) = b ln

∑
i e
si/b), we define

Cb(s)
.
= bC(s/b). (6.2)

This transformation of a convex function is called a perspective function and is known to
preserve convexity [25]. Observe that ϕb(s)

.
= ∇Cb(s) = ∇C(s/b) = ϕ(s/b), meaning that

the price under Cb at s is the same as the price under C at s/b. As with the LMSR, we
call b the liquidity parameter ; this terminology is justified by noting that one definition of
liquidity, 1/λmax∇2Cb(s) = b/λmax∇2C(s/b) (cf. [1]). In the following, we will consider the
limit as b→∞.

Second, in order to connect to the Walrasian equilibrium, we need a notion of a fixed-
price demand function: if a trader has demand d(C, ·) given C, what would the same trader’s
demand be under a market where prices are fixed and do not “change” during a trade? For
the sake of generality, we restrict our allowable demand functions to the ones for which the
limit

d(F, π)
.
= lim

b→∞
d(Cb, π) (6.3)

exists; this demand d(F, ·) will be the corresponding fixed-price demand for d. We now define
the Walrasion equilibrium point π∗, which is simply the price at which the market clears
when traders have demands distributed by D. Formally, this is the following condition:1∫

D
d(F, π∗) dD(d) = 0 (6.4)

1Here and throughout we ignore technical issues of uniqueness. One may simply restrict to the class of
demands for which uniqueness is satisfied.
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Note that 0 ∈ Rn; the demand for each contract should be balanced.
The stationary point of our stochastic process, on the other hand, is the price πsb for

which the expected price fluctuation is 0. Formally, we have

Ed∼D[∆(πsb , d(Cb, π
s
b))] = 0, (6.5)

where ∆(π, d)
.
= ϕ(ϕ−1(π) + d) − π is the price fluctuation. We now consider the limit of

our stochastic process as the market liquidity approaches ∞.

Theorem 6.1. Let C be a strictly convex and α-smooth2 cost function, and assume that
∂
∂b
d(Cb, π) = o(1/b) uniformly in π and all d ∈ D. If furthermore the limit (6.3) is uniform

in π and d, then limb→∞ π
s
b = π∗.

Proof. Note that by the stationarity condition (6.5) we may define π∗ and πsb to be the roots
of the following “excess demand” functions, respectively:

Z(π)
.
=

∫
D
d(F, π) dD(d), Zs

b (π)
.
= bEd∼D[∆(π, d(Cb, π))],

where we scale the latter by b so that Zs
b does not limit to the zero function.

Let s = ϕ−1(π) be the current share vector. Then we have

lim
b→∞

b∆(π, d(Cb, π)) = lim
b→∞

b
(
ϕ
(
ϕ−1(π) + d(Cb, π)/b

)
− π

)
= lim

a→0

ϕ
(
s+ a d(C1/a, π)

)
− π

a
= lim

a→0
∇ϕ

(
s+ a d(C1/a, π)

) (
d(C1/a, π) + a ∂

∂a
d(C1/a, π)

)
= lim

b→∞
∇ϕ

(
s+ 1

b
d(Cb, π)

) (
d(Cb, π) + 1

b
∂
∂b
d(Cb, π)(−b2)

)
= lim

b→∞
∇2C(s) d(Cb, π) = ∇2C(s) d(F, π),

where we apply L’Hopital’s rule for the third equality. Crucially, the above limit is uniform
with respect to both d ∈ D and π ∈ Π; uniformity in d is by assumption, and uniformity in
π follows from α-smoothness of C, since C is dominated by a quadratic. Since the limit is
uniform with respect to D, we now have

lim
b→∞

Zs
b (π) = lim

b→∞
bEd∼D[∆(π, d(Cb, π))] = Ed∼D

[
lim
b→∞

b∆(π, d(Cb, π))
]

= ∇2C(s)Ed∼D[d(F, π)] = ∇2C(s)Z(π).

As ∇2C(s) is positive definite by assumption on C, we can conclude that limb→∞ Z
s
b and

Z share the same zeroes. Since Z has compact domain and is assumed continuous with a
unique zero π∗, for each ε ∈ (0, εmax) there must be some δ > 0 s.t. |Z(π)| > ε for all π s.t.

2C is α-smooth if λmax∇2C ≤ α
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‖π − π∗‖ > δ (otherwise there would be a sequence of πn → π′ s.t. f(π′) = 0 but π′ 6= π∗).
By uniform convergence there must be a B > 0 s.t. for all b > B we have ‖Zs

b −Z‖∞ < ε/2.
In particular, for π s.t. ‖π − π∗‖ > δ, |Zs

b (π)| > ε/2. Thus, the corresponding zeros πsb must
be within δ of π∗. Hence limb→∞ π

s
b = π∗.3

6.3.1 Utility-based demands

Maximum Expected Utility (MEU) demand functions are a particular kind of demand func-
tion derived by assuming a trader has some belief p ∈ ∆n over the outcomes in Ω, some
wealth W ≥ 0, and a monotonically increasing utility function of money u : R→ R. If such
a trader buys a bundle r of contracts from a market maker with cost function C and price π,
her wealth after ω occurs is Υω(C,W, π, r)

.
= W +φ(ω) ·r− [C(ϕ−1(π)+r)−C(ϕ−1(π))]. We

ensure traders do not go into debt by requiring that traders only make demands such that
this final wealth is nonnegative: ∀ω Υω(C, π, r) ≥ 0. The set of debt-free bundles for wealth
W and market C at price π is denoted S(C,W, π)

.
= {r ∈ Rn : minω Υω(C,W, π, r) ≥ 0}.

A continuous MEU demand function duW,p(C, π) is then just the demand that maximizes
a trader’s expected utility subject to the debt-free constraint. That is,

duW,p(C, π)
.
= argmax

r∈S(C,W,π)

Eω∼p [u (Υω(C,W, π, r))] . (6.6)

We also define a fixed-price MEU demand function duW,p(F, π) similarly, where Υω(F,W, π, r)
.
=

W +φ(ω) · r−π · r and S(F,W, π)
.
= {r ∈ Rn : minω Υω(F,W, π, r) ≥ 0} are the fixed price

analogues to the continuously priced versions above. Using the notation bS
.
= {b r | r ∈ S},

the following relationships between the continuous and fixed price versions of Υ, SW , and the
expected utility are a consequence of the convexity of C. Their main purpose is to highlight
the relationship between wealth and liquidity in MEU demands. In particular, they show
that scaling up of liquidity is equivalent to a scaling down of wealth and that the continuously
priced constraints and wealth functions monotonically approach the fixed priced versions.

Lemma 6.2. For any strictly convex cost function C, wealth W > 0, price π, demand r,
and liquidity parameter b > 0 the following properties hold:

1. Υω(Cb,W, π, r) = bΥω(C,W/b, π, r/b);

2. S(Cb,W, π) = b S(C,W/b, π);

3. S(C,W, π) is convex for all C;

4. S(C,W, π) ⊆ S(Cb,W, π) ⊆ S(F,W, π) for all b ≥ 1.

5. For monotone utilities u, E
ω∼p

[u (Υω(F,W, π, r))] ≥ E
ω∼p

[u (Υω(C,W, π, r))].

3 We thank Avraham Ruderman for a helpful discussion regarding this proof.
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Proof. Property (1) follows from a simple computation:

Υω(Cb,W, π, r) = W + φ(ω) · r − bC(ϕ−1(π) + r/b) + bC(ϕ−1(π))

= b
(
W/b+ φ(ω) · (r/b)− C(ϕ−1(π) + r/b) + C(ϕ−1(π))

)
,

which equals bΥω(C,W/b, π, r/b) by definition. We now can see property (2) as well:

S(Cb,W, π) = {r : min
ω
bΥω(C,W/b, π, r/b) ≥ 0}

= {b r : min
ω

Υω(C,W/b, π, r) ≥ 0}.

For (3), define fC,s,ω(r) = C(s+ r)−C(s)− φ(ω) · r, which is the ex-post cost of purchasing
bundle r. As C is convex, and fC,s,ω is a shifted and translated version of C plus a linear term,
fC,s,ω is convex also. The constraint Υω(C,W, π, r) ≥ 0 then translates to fC,s,ω(r) ≤ W ,
and thus the set of r which satisfy the constraint is convex as a sublevel set of a convex
function. Now S(C,W, π) is convex as an intersection of convex sets, proving (3).

For (4) suppose r satisfies fC,s,ω(r) ≤ W . Note that fC,s,ω(0) = 0 always. Then by
convexity we have for f := fC,s,ω we have f(r/b) = f

(
1
b
r + b−1

b
0
)
≤ 1

b
f(r) + b−1

b
0 ≤ W/b,

which implies S(C,W, π) ⊆ S(Cb,W, π) when considering (3). To complete (4) note that
fC,s,ω dominates fF,s : r 7→ (ϕ(s)− φ(ω)) · r by convexity of C: C(s+ r)−C(s) ≥ ∇C(s) · r.

Finally, proof of (5) is obtained by noting that the convexity of C means that C(ϕ−1(π)+
r)− C(ϕ−1(π)) ≥ ∇C(ϕ−1(π)) · r = π · r and exploting the monotonicty of u.

Lemma 6.2 shows us that MEU demands have a lot of structure, and in particular,
properties (4) and (5) suggest that they may satisfy the conditions of Theorem 6.1; we leave
this as an open question for future work. Another interesting aspect of Lemma 6.2 is the
relationship between markets with cost function Cb and wealths W and markets with cost
function C and wealths W/b – indeed, properties (1) and (2) suggest that the liquidity limit
should in some sense be equivalent to a wealth limit, in that increasing liquidity by a factor
b should yield similar dynamics to decreasing the wealths by b. This would relate our model
to that of Othman and Sandholm [81], where the authors essentially show a wealth-limit
version of Theorem 6.1 for a binary-outcome market where traders have linear utilities (a
special case of (6.6)). We leave this precise connection for future work.

6.4 Market making as mirror descent

We now explore the surprising relationship between our stochastic price update and standard
stochastic optimization techniques. In particular, we will relate our model to a stochastic
mirror descent of the form

xt+1 = argmin
x∈R

{η x · ∇F (xt; ξ) +DR(x, xt)}, (6.7)

where at each step ξ ∼ Ξ are i.i.d. and R is some strictly convex function. We will refer to
an algorithm of the form (6.7) a stochastic mirror descent of f(x)

.
= Eξ∼Ξ[F (x; ξ)].
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Theorem 6.3. If for all d ∈ D we have some F (· ; d) : Rn → Rn such that d(R∗, π) =
−∇F (π; d), then the stochastic update of our model (6.1) is exactly a stochastic mirror
descent of f(π) = Ed∼D[F (π; d)].

Proof. By standard arguments, the mirror descent update (6.7) can be rewritten as

xt+1 = ∇R∗(∇R(xt)−∇F (xt; ξ)),

where R∗ is the conjugate dual of R. Take R = C∗, and let ξ = d ∼ D. By assumption,
we have ∇F (x; d) = −d(R∗, x) = −d(C, x) for all d. As ∇R∗ = ∇C = ϕ, we have ϕ−1 =
(∇R∗)−1 = ∇R by duality, and thus our update becomes xt+1 = ϕ (ϕ−1(xt) + d(C, xt)),
which exactly matches the stochastic update of our model (6.1).

As an example, consider Kelly betters, which correspond to fixed-price demands d(C, π)
.
=

dlog
W,p(F, π) with utility u(x) = log x as defined in (6.3). A simple calculation shows that our

update becomes

πt+1 = ϕ

(
ϕ−1(πt) +

W

π

p− π
1− π

)
, (6.8)

where W and p are drawn (independently) from P and W .

Corollary 6.4. The stochastic update for fixed-price Kelly betters (6.8) is exactly a stochas-
tic mirror descent of f(π) = W · KL(p, π), where p and W are the means of P and W,
respectively.

Proof. We take F (x; dlog
W,p) = W · (KL(p, x) +H(p)). Then

∇F (x; dlog
W,p) = W

(
−p
x

+
p− 1

1− x

)
= −W

x

p− x
1− x

= −dlog
W,p(F, x).

Hence, by Theorem 6.3 our update is a stochastic mirror descent of:

f(x)
.
= E[F (x; dlog

W,p)]

= E[Wp log x+W (1− p) log(1− x)]

= W · (KL(p, x) +H(p)) ,

which of course is equivalent to W ·KL(p, x) as the entropy term does not depend on x.

Note that while this last result is quite compelling, we have mixed fixed-price demands
with a continuous-price market model — see §6.3.1. One could interpret this combination as
a model in which the market maker can only adjust the prices after a trade, according to a
fixed convex cost function C. This of course differs from the standard model, which adjusts
the price continuously during a trade.
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6.4.1 Leveraging existing learning results

Theorem 6.3 not only identifies a fascinating connection between machine learning and our
stochastic prediction market model, but it also allows us to use powerful existing techniques
to make broad conclusions about the behavior of our model. Consider the following result:

Proposition 6.5 ([42]). If ‖∇F (π; p)‖2 ≤ G2 for all p, π, and R is σ-strongly convex, then
with probability 1− δ,

f(πT ) ≤ min
π
f(π) +

(
D2

ηT
+
G2η

2σ

)(
1 + 4

√
log

1

δ

)
.

In our context, Proposition 6.5 says that the average of the prices will be a very good
estimate of the minimizer of f , which as suggested by happens to be the underlying mean
belief p of the traders! Moreover, as the Kelly demands are linear in both p and W , it is easy
to see from Theorem 6.1 that p is also the stationary point and the Walrasian equilibrium
point (the latter was also shown by Wolfers and Zitzewitz [102]). On the other hand, as we
demonstrate next, it is not hard to come up with an example where the instantaneous price
πt is quite far from the equilibrium at any given time period.

Before moving to empirical work, we make one final point. The above relationship be-
tween our stochastic market model and mirror descent sheds light on an important question:
how might an automated market maker adjust the liquidity so that the market actually
converges to the mean of the traders’ beliefs? The learning parameter η can be thought
of as the inverse of the liquidity, and as such, Proposition 6.5 suggests that increasing the
liquidity as

√
t may cause the mean price to converge to the mean belief (assuming a fixed

underlying belief distribution).

6.5 Empirical work

Example: biased coin

Consider a classic Bayesian setting where a coin has unknown bias Pr[heads] = q, and traders
have a prior β(α, α) over q (i.e., traders are α-confident that the coin is fair). Now suppose
each trader independently observes n flips from the coin, and updates her belief; upon seeing
k heads, a trader would have posterior β(α + k, α + n− k).

When presented with a prediction market with contracts for a single toss of the coin,
where and contract 0 pays $1 for tails and contract 1 pays $1 for heads, a trader would
purchase contracts as if according to the mean of their posterior. Hence, the belief distribu-
tion P of the market assigns weight P(p) =

(
n
k

)
qk(1− q)n−k to belief p = (α + k)/(2α + n),

yielding a biased mean belief of (α + nq)/(2α + n).
We show a typical simulation of this market in Figure 6.1, where traders behave as

Kelly betters in the fixed-price LMSR. Clearly, after almost every trade, the market price is
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Figure 6.1: Price movement for Kelly betters with binomial(q = 0.6, n = 6, α = 0.5) beliefs in the
LMSR market with liquidity b = 10.

quite far from the equilibrium/stationary point, and hence the classical supply and demand
analysis of this market yields a poor description of the actual behavior, and in particular, of
the predictive quality of the price at any given time. However, the mean price is consistently
close to the mean belief of the traders, which in turn is quite close to the true parameter q.

Election Survey Data

We now compare the quality of the running average price versus the instantaneous price as a
predictor of the mean belief of a market. We do so by simulating a market maker interacting
with traders with unit wealth, log utility, and beliefs drawn from a fixed distribution. The
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Figure 6.2: Mean square loss of average and instantaneous prices relative to the mean belief
of 0.26 over 20 simulations for State 9 for b = 1 (left), b = 3 (middle), and b = 10 (right).
Bars show standard deviation.

belief distributions are derived from the Princeton election survey data [99]. For each of the
50 US states, participants in the survey were asked to estimate the probability that one of
two possible candidates were going to win that state.4 We use these 50 sets of estimates as
50 different empirical distributions from which to draw trader beliefs.

A simulation is configured by choosing one of the 50 empirical belief distributions S, a

4 The original dataset contains conjunctions of wins as well as conditional statements but we only use
the single variable results of the survey.
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market liquidity parameter b to define the LMSR cost function C(s) = b ln
∑

i e
si/b, and an

initial market position vector of (0, 0) – that is, no contracts for either outcome. A configured
simulation is run for T trades. At each trade, a belief p is drawn from S uniformly and with
replacement. This belief is used to determine the demand of the trader relative to the
current market pricing. The trader purchase a bundle of contracts according to its demand
and the market moves its position and price accordingly. The complete price path πt for
t = 1, . . . , T of the market is recorded as well as a running average price π̄t

.
= 1

t

∑t
i=1 πt for

t = 1 . . . , T . For each of the 50 empirical belief distributions we configured 9 markets with
b ∈ {1, 2, 3, 5, 10, 15, 20, 30, 50} and ran 20 independent simulations of T = 100 trades. We
present a portion of the results for the empirical distributions for states 9 and 11. States 9
and 11 have, respectively, sample sizes of 2,717 and 2,709; means 0.26 and 0.9; and variances
0.04 and 0.02. These are chosen as being representative of the rest of the simulation results:
State 9 with mean off-center and a spread of beliefs (high uncertainty) and State 11 with
highly concentrated beliefs around a single outcome (low uncertainty).

The results are summarised in Figures 6.2, 6.3, and 6.4. The first show the square loss
of the average and instaneous prices relative to the mean belief for high uncertainty State
9 for b = 1, 3, 10. Clearly, the average price is a much more reliable estimator of the mean
belief for low liquidity (b = 1) and is only outperformed by the instaneous price for higher
liquidity (b = 10), but then only early in trading. Similar plots for State 11 are shown in
Figure 6.3 where the advantage of using the average price is significantly diminished.

Figure 6.4 shows the improvement the average price has over the instantaneous price in
square loss relative to the mean belief for all liquidity settings and highlights that average
prices work better in low liquidity settings, consistent with the theory. Similar trends were
observed for all the other States, depending on whether they had high uncertainty – in
which case average price was a much better estimator – or low uncertainty – in which case
instanteous price was better.

6.6 Conclusion and future work

As noted in §6.3.1, there are several open questions with regard to maximum expected utility
demands and Theorem 6.1, as well as the relationship between trader wealth and market
liquidity. It would also be interesting to have a application of Theorem 6.3 to a continuous-
price model, which yields a natural minimization as in Corollary 6.4. The equivalence to
mirror decent stablished in Theorem 6.3 may also lead to a better understanding of the
optimal manner in which a automated prediction market ought to increase liquidity so as to
maximise efficiency.
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Figure 6.3: Mean square loss of average and instantaneous prices relative to the mean belief
of 0.9 over 20 simulations for State 11 for b = 1 (left), b = 3 (middle), and b = 10 (right).
Bars show standard deviation.



CHAPTER 6. INTERPRETING PREDICTION MARKETS 114

Trades

20

40

60
80

100

b

10

20

30

40

50

Loss D
ifference

-0.02

0.00

0.02

0.04

0.06

Improvement of Average over Instant Prices for State 9

Trades

20

40

60
80

100

b

10

20

30

40

50

Loss D
ifference

-0.08

-0.06

-0.04

-0.02

0.00

0.02

Improvement of Average over Instant Prices for State 11

Figure 6.4: An overview of the results for States 9 (left) and 11 (right). For each trade
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