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Abstract

Automatic Mapping of Real Time Radio Astronomy Signal Processing Pipelines onto
Heterogeneous Clusters

by

Terry Esther Filiba

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor John Wawrzynek, Co-chair

Daniel Werthimer, Co-chair

Traditional radio astronomy instrumentation relies on custom built designs, specialized
for each science application. Traditional high performance computing (HPC) uses general
purpose clusters and tools to parallelize the each algorithm across a cluster. In real time
radio astronomy processing, a simple CPU/GPU cluster alone is insufficient to process the
data. Instead, digitizing and initial processing of high bandwidth data received from a single
antenna is often done in FPGA as it is infeasible to get the data into a single server.

Choosing which platform to use for different parts of an instrument is a growing challenge.
With instrument specifications and platforms constantly changing as technology progresses,
the design space for these instruments is unstable and often unpredictable. Furthermore,
the astronomers designing these instruments may not be technology experts, and assessing
tradeoffs between different computing architectures, such as FPGAs, GPUs, and ASICs and
determining how to partition an instrument can prove difficult. In this work, I present a tool
called Optimal Rearrangement of Cluster-based Astronomy Signal Processing, or ORCAS,
that automatically determines how to optimally partition an instrument across different
types of hardware for radio astronomy based on a high level description of the instrument
and a set of benchmarks.

In ORCAS, each function in a high level instrument gets profiled on different architec-
tures. The architectural mapping is then done by an optimization technique called integer
linear programming (ILP). The ILP takes the function models as well as the cost model as
input and uses them to determine what architecture is best for every function in the in-
strument. ORCAS judges optimality based on a cost function and generates an instrument
design that minimizes the total monetary cost, power utilization, or another user-defined
cost.
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Chapter 1

Introduction

Radio astronomers are trying to solve a very diverse set of problems. Asking questions such
as “Are we alone,” and “When were the first stars and galaxies formed?” and researching
galactic structure and formation, the nature of gravitational wave background, the transient
universe, black holes, and extrasolar planets.

Naturally, this curiosity leads to the development of larger and higher bandwidth tele-
scopes creating a flood of data. Keeping up with the data requires constant development of
new instrumentation

1.1 Motivation

Figure 1.1: The VLA and Arecibo Telescopes
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The diversity of problems and telescopes create a number of parameters an engineer needs
to worry about while designing an instrument. The instrument be designed based on the
algorithm required to process the data, the bandwidth of the data, the number of channels,
and the list goes on. Figure 1.1 shows two pictures of two very different telescopes, the Very
Large Array, or VLA, in Socorro, New Mexico and the Arecibo Telescope.

Traditionally, observatories dealt with this by designing custom instruments that would
run on one telescope and solve one problem. This custom approach was the only way to get
the requisite processing power to analyze the radio signals, but it resulted in costly designs,
because the boards, backplanes, chips, protocols, and software all needed to be designed
from scratch. To make matters worse, this approach resulted in a very long design cycle,
requiring 5-10 years of development before an instrument could be deployed at a telescope
and by the time the instrument was released, the hardware would be out of date.

Due to their custom implementations, these instruments also lacked flexibility. Each
instrument was designed specifically for a single purpose. A hardware upgrade or algorithm
modification would require a complete redesign of the instrument, and another long design
cycle.

While these older designs needed to trade off flexibility for performance, newer technology
can offer both performance and flexibility. Programmable devices such as FPGAs, GPUs
and even CPUs can provide enough processing power to keep up with the data from many
new telescopes. These devices make it easy to reprogram existing hardware to support newer
algorithms, and, since they are programmed using portable languages, provide a quick path
to upgrade hardware without redesigning the entire instrument.

With a huge range of technology available, choosing what hardware to use to build an
instrument is a challenge. New technology, optimizations, and designs are constantly being
developed and with everything constantly changing it’s difficult to know what is best.

1.2 Technological Challenges

When building a large instrument, there is a wide variety of technology to choose from.
Unlike many applications, where the goal is to provide the fastest possible implementation,
in real time radio astronomy instrumentation there is a performance target. Understanding
the tradeoffs between different implementations is key to cost-effective design.

An instrument designed typically has four choices of hardware for their algorithm im-
plementations. They can use CPUs, GPUs, FPGAs, and ASICs. Figure 1.2 shows each of
these as a spectrum from general purpose to custom. The CPUs and, to a lesser extend
GPUs, provide a very general purpose design experience, while FPGAs and ASICs require
custom designs. This spectrum also can be used to generalize a number of other properties
of the presented hardware. Platforms further right require higher design times and design
complexity and provide less flexibility in the final design. And because the chips will be
deployed in relatively low volume, the platforms on the right will also cost more money. The
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General Purpose Custom

ASIC

FPGA

GPU

CPU

Figure 1.2: Technology Spectrum

tradeoff is in power and performance. The platforms on the right provide higher performance
and lower power consumption.

To better understand these tradeoffs, consider the two platforms in the center of the
spectrum, the GPU and FPGA. NVIDIA GPUs can be programmed in CUDA. Its C-like
structure makes it easy for CPU programmers to pick up and provides a lot of flexibility.
CUDA allows the programmer to use conditional and iterative programming the same way
they would use C, easing the transition into GPU programming. FPGAs are programmed
using a hardware description language, or HDL, which is less flexible and harder to learn than
CUDA. In the FPGA computing model the data is streaming and everything is happening
at the same time, requiring specialized programming. On the other hand, FPGAs offer
an order of magnitude improvement in performance and power consumption. Each GPU
requires hundreds of watts of power while an FPGA can be powered with tens of watts and
a GPU can only process hundreds of megahertz of antenna data while an FPGA is capable
of processing multiple gigahertz.

Although it may be easy to enumerate the differences between these platforms, under-
standing which is best is more difficult. In most cases, a heterogeneous approach is best. The
best mix of platforms will ultimately depend on the desired instrument, available technology,
as well as the price and power restrictions. This means that a brand new implementation
must be designed for every new instrument.

Traditionally, designing an instrument can be a very long process. The astronomer will
determine what type of instrument they want to build and what the specifications should
be. The specification is handed off to a computer expert who will determine what platforms
need to be used. The computer expert evaluates potential platforms. At best this may take
a few hours if the computer expert is familiar with similar designs, but when working with
newer technology or larger instruments this can take at least a week, possibly even months,
giving the engineer time determine how to make the design fit. Any changes in the design
will force the entire design process to iterate again, as was my experience developing part of a
pulsar processor. To make matters worse, this process does not guarantee an optimal result.
The engineer may have a bias towards the technology she or he is familiar with. Benchmarks
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for different technologies are very difficult to compare, as they represent different things, so
the engineer might decide to simply check if it works on the preferred technology without
testing alternate designs.

1.3 Optimal Rearrangement of Cluster-based

Astronomy Signal Processing

This dissertation explores an automated approach to instrument design using a tool called
Optimal Rearrangement of Cluster-based Astronomy Signal Processing or ORCAS. The
major contributions of this work are a toolflow that allows radio astronomy experts to design
cost-optimal high performance instruments without the aid of a computer expert, the ability
to quickly explore different designs in the algorithmic design space, and support for disparate
benchmarks to find an optimal instrument design.

This tool provides cost-optimal mappings in a short amount of time. ORCAS allows the
developer to define the instrument at a high level and a cost function defining some cost
the developer is aiming to minimize. The cost function can represent something as simple
as the price of the instrument or can be used to represent more complex parameters of the
instrument such as design time.

ORCAS assesses the performance of different types of technologies in two ways. First,
by using benchmarks of existing implementations of instrument building blocks such as
FFTs and FIR filters we can directly assess the performance. Second, if a benchmark is
not available, the tool can use a performance model instead, giving an estimate of how the
block will perform. This makes it easy to keep up with improving technology and library
performance without rewriting the entire tool every time a new library version or board is
released.

We evaluate ORCAS by benchmarking existing libraries, such as CUFFT and the CASPER
library, and use those benchmarks to produce mappings for 3 types of instruments. Each
mapping is compared to existing implementations to understand how this automated ap-
proach compares to the old approach of hand optimized mapping.

The remainder of the dissertation is organized as follows. Chapter 2 provides a more
in-depth look at the algorithms commonly used in radio astronomy and their applications.
Chapter 3 describes related work, done by myself and others, that preceded this work.
Chapter 4 presents a high level description of the tool and explains how the tool goes from
a description of the instrument to a fully mapped algorithm. The algorithm used to map
the instrument is fully specified in chapter 5. Chapter 6 describes three instrument case
studies and compares them to existing instruments. And finally, in Chapter 7, I present my
conclusions and some opportunities for future work.
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Chapter 2

Real Time Radio Astronomy
Algorithms

Radio astronomy simply refers to the type of science that can be done by observing astro-
nomical objects at radio wavelengths, rather than a specific scientific goal. There is a huge
variety of different experiments, such as studying the formation and structure of galaxies
stars and black holes and searching for gravity waves, traces of the first stars [19], or aliens
[28]. But, despite this variety, the small number of algorithms detailed in this chapter serve
as the first step in processing the data for many such projects.

Radio telescopes produce very high amounts of data. The reason for this high influx of
data is twofold. First, to enable new science, new radio antennas observe increasingly higher
bandwidths. Second, to sate the need for larger collecting area, rather than designing a
single large dish, many new telescopes are being designed as antenna arrays, where the data
from multiple antennas is combined to act as a single large dish. While it may be cheaper
and easier to get a larger collecting area using small dishes rather than a single large dish,
this adds additional complexity processing the data coming off the telescope. Rather than
processing a single stream of data, now the instrument must process and combine multiple
streams to make the array seem like a single large dish. As the size of the arrays and
bandwidths for single dishes simultaneously increase, the data produced cannot be feasibly
recorded in real-time. To cope with the progress in science and antenna technology, there is
a constant need for new systems to process, rather than record, this data in real time. Each
of these instruments begin processing the data immediately after it is digitized, and need to
reduce the data without losing scientific information. Once the data is partially processed,
and reduced to a manageable bandwidth, it can be stored and processed further offline.

There are a small number of real time algorithms commonly used to reduce the data.
In this work, we specifically focus on spectroscopy, pulsar processing, beamforming and
correlation. Spectroscopy and pulsar processing are both spectral methods of analyzing
data from a single beam. They both can be used on antenna arrays but would either need
to treat the array as separate dishes rather than one large dish, or the data from the dishes
would need to be combined into a single beam, which can be done using the third algorithm
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on the list, beamforming. The last two techniques, beamforming and correlation, are both
ways of combining data from multiple antennas. Beamforming combines the data into a
single beam by delaying and summing the data from each antenna. Correlation doesn’t aim
to form a single beam, but instead is the first step towards getting an image of the sky.

2.1 Spectroscopy

A spectrometer is simply an instrument that produces an integrated, or averaged, frequency
domain spectrum from a time domain signal. A real time spectrometer works by constantly
computing a spectrum over short windows of data (channelization), then each channel is
summed for a predetermined amount of time to compute the average power in that channel
(accumulation). After digitization, there is the channelization step, where the signal is
processed by a digital filter bank, and then the channels are accumulated.

High resolution spectroscopy

Increasing resolution often requires an increase in complexity in the spectrometer design.
Once the number of required channels is sufficiently high, it becomes infeasible to compute
the spectrum using a single filter bank. To cope with this, the channelization is done in two
steps. In the first step, the signal is divided into coarse channels using a filter bank. At
this point the channels are much wider than intended and can’t be accumulated yet. After
coarse channelization, the spectrometer treats the data from a single channel as time domain
data and passes it through a filter bank again. This step breaks up the wide channel into
a number of smaller channels. At this point the data can be accumulated, since it has the
desired resolution.

Applications

This high resolution spectroscopy technique is used in the SERENDIP V.v (Search for Ex-
traterrestrial Radio Emissions from Nearby Developed Intelligent Populations) project. This
project is part of the SETI (Search for Extraterrestrial Intelligence) effort to detect extrater-
restrial intelligence. The SERENDIP V.v project is a commensal survey at the Arecibo ob-
servatory, meaning anytime the ALFA receiver is used for any observation, the SERENDIP
spectrometer will also process and record data.

The project is focused on detecting strong narrow band radio signals, requiring a high
resolution spectrometer installed at the observing telescope to analyze the data. The spec-
trometer should resolve channels of less than 2 Hz, so that natural astronomical signals
that typically have a wider bandwidth can easily be distinguished from narrower, possibly
extraterrestrial, signals. The SERENDIP V.v spectrometer meets this by providing 128 mil-
lion channels across 200 MHz of bandwidth, for an resolution of 1.5 Hz per channel. Since it
would be infeasible to channelize a 200 MHz signal into 128 million channels using a single
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filter bank, the SERENDIP V.v spectrometer uses the high resolution architecture described
in Chapter 3.

2.2 Pulsar Processing

A pulsar processor is an instrument designed specifically to observe transient events, such as
pulsars. A pulsar is a rotating neutron star that emits an electromagnetic beam. When the
beam sweeps past Earth, due to the rotation of the star, it is observed as a pulse of wideband
noise. As the pulse travels through the interstellar medium (the matter filling interstellar
space), the signal gets dispersed, meaning the low frequencies arrive before high frequencies,
despite the fact that they were emitted at the same time.

Figure 2.1: A Conceptual Pulsar Diagram

A spectrometer, as described in Section
2.1, that accumulates the spectrum would
smear the pulse, so there will need to be
a few adjustments to the spectroscopy al-
gorithm to make it suitable for processing
transient events. In the case of pulsars, the
algorithm starts with a high-resolution spec-
trometer without an accumulator. Instead,
the algorithm becomes specialized to detect
this type of quickly occurring event.

The high resolution data is then sent to
a process called dedispersion, which undoes
the dispersion caused by the ISM, realign-
ing the pulse. There are 2 techniques to do
this. First, the pulse can be dedispersed by
shifting the frequency channels by different
amounts to compensate for the different de-

lays, in a process called incoherent dedispersion. This process can’t be used to reconstruct
the original pulse, but due to its relatively low compute cost, is a useful algorithm to search
for new pulsars. The second technique, coherent dedispersion, models the effect of the ISM
as a convolving filter. To remove this effect, the signal is deconvolved with the model. This
is more compute intensive than incoherent dedispersion, but can recover the original pulse.

After dedispersion, there is a still a lot of data and the pulse has very low SNR. The next
step in processing is folding, or adding together many pulses, reducing the amount of data
and improving the SNR. At this point, the data has been significantly reduced and can be
recorded.
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Applications

Some pulsars serve as very accurate astronomical time keepers. There are millisecond pulsars
with extremely stable periods, allowing any perturbations in the observed pulse period to
be attributed to some external effect. This makes pulsars extremely useful for conducting
relativity experiments. One such example is the North American Nanohertz Observatory for
Gravitational Waves, or NANOGrav, Project, which uses pulsars in an attempt to make the
first detection of gravitational waves [6]. The project will try to detect gravitational waves
by observing an array of pulsars, measuring the effect of the waves passing between Earth
and the pulsars as changes in observed pulse arrival times.

2.3 Beamforming

Beamforming is a technique for combining data from an array of antennas. The beamformer
combines the data from multiple antennas into a single beam pointed at a single point in the
sky. This is achieved by delaying the signal from each antenna by a different amount and
then summing the delayed signals. The signal from the intended source will not arrive at all
the antennas at the same time. The delay compensates for the disparity between the arrival
times, and once the signals are summed it creates constructive interference in the direction
of the source, and destructive interference in other directions. These delays can be changed
to point the beam at a different source or to track a single source moving across the sky.

BF Beamforming

Since the digitized signal from a radio telescopes receiver is discrete, and the amount of delay
might not be an integer multiple of the sample period s, the delay d is applied to the signal,
f [n], in 2 steps. The delay in clock cycles is represented as d/s and broken up into it’s integer
and fractional parts. First, the integer part is applied as a coarse delay, nf = bd/sc. This
can simply be implemented by buffering the signal. Applying the fractional delay d mod s
is more complex. Since there is no observed data at that time, the signal fractional samples
are calculated by convolving the signal with an interpolation filter b. Applying these 2 steps,
results in a new delayed signal f [n] = f [n− nf ] ∗ bfi

In practice, it is common to calculate the spectrum of the beamformed signal. A typical
2 element beamformer, with discrete input signals f [n] and g[n] is trying to calculate the
spectrum of beam i, Hi, using coarse delays nfi ngi and delay filters bfi and bgi, as follows:

Hi(x) = FT (f [n− nfi] ∗ bfi + g[n− ngi] ∗ bgi)

We describe this as BF beamforming because the delay operation (B), happens before the
FT operation (F).
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FB Beamforming

In the case where many beams are required, each beam needs a different FIR filter for every
antenna, and a separate Fourier transform. This is called FB beamforming because the
fourier transform operations (F) occur before the delay (B). Using linearity of the Fourier
transform and the convolution theorem, the computation can be rearranged as follows:

Hi[x] = F [x] ·B′fi + G[x] ·B′gi
Where F [x] and G[x] are the fourier transforms of the signals f and g. The signal delay

becomes a phase shift in frequency domain that is represented by B′fi and B′gi. In this case,
there is a FT for each antenna, rather than one FT per beam. When forming multiple beams,
there is no need to recalculate the Fourier transform of the signals. So, as the number of
beams increases, it can be advantageous to use this algorithm rather than the BF algorithm
described in the previous section.

2.4 Correlation

Aperture synthesis is another technique to combine the data from many antennas. The
goal is to form an image of the sky, using 2 steps, correlation followed by imaging. In the
correlation step, the cross-correlation of each pair of antennas is calculated. Once the cross-
correlation is calculated, it is possible to accumulate the data, greatly reducing the amount
of data that needs to be processed in the imaging step.

The uv plane represents the Fourier transform of the 2-dimensional sky image. The
cross-correlation of an antenna pair represents a point in the uv plane, called a visibility.
Since the visibilities are not evenly or continuously sampled, the imager must interpolate
points on the uv plane in an evenly spaced grid so the FFT algorithm, which relies on even
spacings, can be applied to the data. The imager must also account for the fact that the
response of the telescope distorts the image, undoing the effect using iterative algorithms
like CLEAN or Maximum Entropy. Once this is done, a two dimensional inverse Fourier
transform can be applied to recover the sky image. The book Interferometery and Synthesis
Imaging by Thomson, Moran and Swenson [26] gives a detailed description of how the end
to end synthesis imaging process works, but in this work we will only focus on the real time
computation, the cross-correlation.

Typically, large telescope arrays do correlation in real time and finish the imaging offline,
but there are a few notable exceptions. One of these is the VLBA, or Very Long Baseline
Array. When designing antenna arrays, one important parameter is the distance between
the antennas, or baselines. Arrays with longer baselines provide images with better angular
resolution. The VLBA is an extremely high resolution array, achieving this resolution by
using telescopes on opposite ends of the Earth. The distance between the antennas, while
useful for science, creates a logistical issue for any real time processing that depends on data
from different antennas. Instead of correlating in real time, the VLBA records the digitized
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data directly from the telescopes at each site, without any reduction. Later, the recorded
data is flown to a central location, where it gets correlated.

The cross-correlation of two signals, f[n] and g[n] is defined as:

h[n] = f [n] ? g[n] =
m∑
i=0

f ∗[i]g[n + i]

Like in beamforming, it is often desirable to calculate a spectrum, so the correlation step
typically also calculates the spectrum of the cross-correlations. So, the final result of the
correlator produces the spectrum of the visibilities, H[x].

H[x] = FT (f [n] ? g[n])

XF Correlation

An XF, or lag, correlator calculates the spectrum by calculating the cross-correlation first
(X), followed by a Fourier transform (F). For a telescope with n antennas, this algorithm
requires O(n2) cross-correlations, followed by O(n2) Fourier transform operations.

FX Correlation

The calculation of the cross-correlation is very similar to a convolution, in fact the cross-
correlation of 2 signals can be re-expressed as a convolution. The cross-correlation theorem
further extends the parallel between correlation and convolution, relating the Fourier trans-
form of the cross-correlation of two signals to the Fourier transforms of the original signals.
This allows us to take our original expression for the cross correlation of two antennas and
express it as:

Hi[x] = F ∗[x] ·G[x]

This style of correlator design is advantageous for a number of reasons, including the
reduction in algorithmic complexity [2]. Rather than O(n2) Fourier transform operations, an
FX Correlator only needs to compute one Fourier transform for each antenna, reducing the
complexity to O(n). As the number of antennas gets large, this makes a significant difference
in the total amount of computational power required.

Applications

Correlators are being used to detect the formation of the first stars. The LEDA, PAPER, and
HERA [11] projects are all developing large correlators, correlating hundreds of antennas, to
get the sensitivity necessary to make a detection.

The Very Long Baseline Interferometery or VLBI technique uses an array of antennas
that are extremely far apart to achieve very high angular resolution images. The Very Long
Baseline Array, or VLBA, is a group of telescopes that are used at the same time to do
VLBI. Figure 2.2 shows the locations of the VLBA telescopes.
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Figure 2.2: Telescope Locations in the Very Long Baseline Array
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Chapter 3

Related Work

In this chapter we discuss work related to this dissertation in the fields of radio astronomy and
electrical engineering. The radio astronomy work presented in this chapter share a common
theme of flexibility and paramaterizability, demonstrating how common design patterns in
astronomy are already being used to automate instrument implementation. The work in
electrical engineering focuses on design generation, explaining what type of heterogeneous
design was possible before this work, and why the past work is not sufficient to solve the
radio astronomy instrumentation design problem.

3.1 Radio Astronomy

The need for high bandwidth processing manifests in many different radio astronomy applica-
tions. Keeping up with increasing computation demands has often resulted in the specialized
design of instruments.

Distributed FX Correlator (DiFX)

The DiFX Correlator is a scalable software implementation of an FX Correlator [5]. DiFX
was designed as a software correlator that targets CPUs in order to maintain flexibility in
the design. The DiFX correlator was originally developed to do VLBI (very long baseline
interferometery). The correlator is used by recording data at each VLBI site, collecting it,
and playing back the recorded data through the correlator.

While this instrument does not run in real time, it is still an important instrument because
it represents a parameterized software correlator design. Unfortunately, the flexibility of the
software implementation comes at a high cost. Nearly 100 nodes are required to cross
correlate 64 MHz of bandwidth from 10 antennas. While this design might be reasonable
when a cluster is readily available, the software implementation is very costly to build from
scratch.
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xGPU

xGPU is a CUDA package that implements the cross-correlation operation of an FX Cor-
relator on NVidia GPUs [3]. The CUDA kernel is expertly optimized, providing very high
throughput and allowing it scale and support very large arrays. Figure 3.1 shows the per-
formance of the kernel versus array size, scaling the array size all the way to 512 antennas.
Although the kernel itself is difficult to modify without GPU expertise, the implementation
of the package in CUDA ensures that users without optimization experience are able to use
the tool to implement large correlators.
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Figure 4: Kernel-only execution time, and host!device transfer time for 32-bit and 8-bit
data as a function of number of stations (F = 128, I = 1024). With 32-bit precision, there
is not enough device memory to accomodate N = 512 at these parameters.

30

Figure 3.1: xGPU Performance as a function of array size (reprinted from Clark, La Plante,
and Greenhill [3])

CASPER

At the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER),
we are developing common libraries and hardware that can be used by radio astronomers
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developing instrumentation. The mission statement, available on the group website casper.
berkeley.edu, concisely summarizes the goals of the group:

The primary goal of CASPER is to streamline and simplify the design flow of
radio astronomy instrumentation by promoting design reuse through the develop-
ment of platform-independent, open-source hardware and software. Our aim is to
couple the real-time streaming performance of application-specific hardware with
the design simplicity of general-purpose software. By providing parameterized,
platform-independent “gateware” libraries that run on reconfigurable, modular
hardware building blocks, we abstract away low-level implementation details and
allow astronomers to rapidly design and deploy new instruments.

The collaboration, started at UC Berkeley by Dan Werthimer, Don Backer, and Mel
Wright, has spread to include astronomers all over the world, as shown in Figure 3.2. The
group collaborates with many large digital engineering groups including groups from the
Jet Propulsion Laboratory (JPL), the National Radio Astronomy Observatory (NRAO), the
Arecibo Observatory, SKA South Africa, and the Giant Metrewave Radio Telescope (GMRT)
in India. The diversity and far reach in this collaboration ensure that the tools continue to
be general purpose and widely accessible.

Figure 3.2: Map of CASPER Collaborators

The CASPER FPGA libraries were developed to mitigate the need to redevelop common
signal processing blocks for every new instrument [18]. The library provides parameterized
blocks such as FFTs, digital down-converters, and FIR filters that are the necessary building

casper.berkeley.edu
casper.berkeley.edu
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ADC Name Max sample rate Streams Bitwidth
64ADCx64-12 50 Msps 64 12 bits
ADC4x250-8 or QuadADC 250 Msps 4 8 bits
KatADC 1.5 Gsps 1 8 bits
ADC1X2200-10 2.2 Gsps 1 10 bits
ADC1x10000-4 10 Gsps 1 4 bits

Table 3.1: CASPER ADC Boards

blocks for a wide range of instruments. Coupled with open source FPGA boards, such
as the ROACH (Reconfigurable Open Architecture Computing Hardware), the CASPER
libraries provide a useful toolbox for radio astronomy instrumentation development. The
follow sections describe each of these and how they have been used to create a number of
different instruments.

CASPER Hardware

The CASPER group provides set of modular FPGA boards and ADCs that are designed
specifically to deal with the high bandwidth requirements of real time radio astronomy signal
processing. Since each FPGA boards meets the needs of the radio astronomy community as
a whole rather than a single application, the group releases a small number of boards and
typically only releases a new board to take advantage of improving technology. By releasing
a handful of boards, the CASPER group ensures that users get proven and tested hardware
for their new instruments. The CASPER library and software, discussed below, also make it
easy to upgrade the hardware since a CASPER design easily be recompiled to work with a
different board and the software interface and the signal processing model are standardized.
And, since the boards communicate over a common set of industry standard protocols, they
can be upgraded one by one, or all at once.

Each FPGA board implements a number of high speed interfaces to send and receive
data. The Z-DOK+ connectors are primarily used to interface the boards to high speed
ADCs and DACs. This common Z-DOK+ interconnect implemented on nearly all CASPER
ADC boards allows the astronomer to choose an ADC to match their scientific goals. The
diversity of available boards is shown in Table 3.1.

Each board can also send or receive data using ethernet. The boards are designed to
communicate using common protocols, like 10 Gigabit Ethernet, so a board can be upgraded
without modifying how it communicates with the rest of the cluster. The use of an industry
standard protocol also makes communication to non-CASPER boards simple, allowing an
FPGA to create UDP packets that eventually get received by a CPU or GPU-based server,
making the CASPER boards an ideal component in a heterogeneous cluster. This makes it
simple to design a cluster, and allows continuous upgrades as technology improves, as the
signal processing model and communication model do not change between boards.
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Figure 3.3: ROACH Board

Currently, CASPER has designed the IBOB, or Interconnect Break-out Board, ROACH
and ROACH 2 boards. The IBOB was originally designed as an interface to digitize an-
tenna data and send it to a server, but the powerful Virtex-II Pro make it very useful for
channelizing data as well. The ROACH board is shown in Figure 3.3 with an iADC board
connected via Z-DOK+ and an ethernet cable to get data off the board, This board is pin-
compatible with two large FPGA chips, the Virtex 5 SX95T and LX110T, with the SX95T
being preferred for its large number of DSP blocks. The ROACH has two Z-DOK+ connec-
tors and supports up to four 10-gigabit Ethernet links. The ROACH 2 is an upgrade to the
ROACH board that takes advantage of the newer Xilinx chips. The Virtex 5 chips have been
upgraded to the Virtex 6 SX475T, and this board supports up to eight 10-gigabit Ethernet
links.
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CASPER Library

In addition to hardware, CASPER develops a DSP library that can be compiled into an
FPGA bitstream. The library is implemented in Simulink, which allows for both simulation
and, using Xilinx System Generator, compilation to FPGA code. The Simulink implemen-
tation is a key part of the success of this project. Using a visual programming language
makes it easy to snap together blocks without getting into the low level details of FPGA
programming.

Figure 3.4: Adder Tree Simulink Simulink Diagram

The library blocks are built out of Xilinx System Generator primitive blocks. These
primitives make it possible to retarget Simulink designs to different Xilinx FPGAs without
changed the original implementation. Figure 3.4 shows a simple example of one of the library
blocks, an adder tree. The adder tree is used to implement pipeplined, parallel addition using
a binary tree. The top left is the library with the adder tree block, and the bottom right is
the implementation of the adder tree block with three inputs.
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Figure 3.5: Adder Tree Simulink Mask Script

In order to configure the number of inputs, Matlab scripts are used to redraw the im-
plementations. Figure 3.5 shows a snippet of code from the script used to redraw the adder
tree block. Every parameterized CASPER block uses at least one of these scripts to redraw
the underlying implementation when the parameters are modified.

The CASPER library includes DSP blocks commonly used in radio astronomy instru-
ments. For example, the CASPER library provides FFTs, FIR filters, accumulators, digital
downconverters, digital mixers which can be linked together to make an instrument. Each
block is parameterized, making them useful for a variety of instruments. Figure 3.6 shows
the FFT library, which contains different types of FFTs, including blocks that can process
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Figure 3.6: CASPER FFT Library

multiple samples in parallel and blocks that are optimized to compute the FFT of a real
signal.

Figure 3.7 shows the options menu for one of the FFT blocks. In order to support a
variety of instruments, this block can be reconfigured to support different FFT lengths.
There are a number of other parameters provided like input bit width, which helps support
a number of different ADCs or preprocessing algorithms, and FPGA-specific parameters like
add latency, and multiply latency which have no effect on the result of the computation but
change how the FFT gets mapped into hardware.

The CASPER library also provides an FIR filter than can be coupled with the FFT to
create a polyphase filter bank or PFB. Figure 3.8 shows a comparison between the FFT and
PFB response. The FFT response (on the left) has a lot of spectral leakage while the PFB
(on the right) has a much sharper filter shape and a better frequency response. Despite the
additional FPGA resources required by the FIR filter before the FFT, many instruments
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Figure 3.7: CASPER FFT Options Menu

Figure 3.8: A comparison of FFT and PFB response

implement a PFB rather than an FFT because of the superior frequency response.
The CASPER library also provides a set of blocks to abstract away the implementation
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Figure 3.9: CASPER Library I/O Blocks

of I/O interfaces, which are called yellow blocks. Figure 3.9 provides some examples of what
those library blocks look like. Each block provides input and output ports that correspond
to the data it can send or receive. For example, the adc block has an output ports labeled
o0,o1,. . . ,o7 that represent the data the FPGA receives from the iADC board. In addition
to this, simulation ports are provided to allow the user to proved test signals mimicking the
outside world. In the case of the ADC, the user could provide a sine wave into the sim in
port to observe how a sine wave would be processed by the system. During compilation,
the CASPER XPS toolflow automatically processes the blocks and ensures the wires are
connected to the correct pins.

CASPER Software

To simplify the use of the FPGA further, the CASPER boards run a modified version of
Linux directly on the board. Using this Linux environment, called the Berkeley Os for
ReProgrammable Hardware or BORPH, programming the FPGA is as simple as running
an executable on the command line [24]. Once the board has been programmed, BORPH
can communicate with the chip using an interface where some components on the FPGA
like registers or memory appear as files in the operating system. These files can be accessed
using normal file I/O, making it simple to send control signals or monitor the status of the
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chip, greatly simplifying debugging and command and control.

SERENDIP V.v

SERENDIP, or the Search for Extraterrestrial Radio Emissions from Nearby Developed
Intelligent Populations, aims to find extraterrestrial intelligence by analyzing radio signals
[23]. SERENDIP V.v is a high resolution SETI spectrometer that was deployed at Arecibo
Observatory in 2009. The installed instrument was built using an iADC, iBOB and BEE2
board. The instrument breaks up a single 200 MHz stream into 128 million frequency
channels, achieving a resolution of about 1Hz.

ADC
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Figure 3.10: SERENDIP V.v Block Diagram

Figure 3.10 shows the dataflow for the spectrometer. The ADC data is fed into an IBOB
where it is processed by a decimating downconverter. The downconverter signal is processed
by a PFB and then transposed so each PFB channel is further channelized by a complex
FFT. Finally, the finely channelized data is thresholded, flagging any high power narrow
signals that are potentially extraterrestrial.

The SERENDIP V.v instrument processes data from the 7 beam Arecibo L-band Feed
Array. The spectrometer doesn’t have enough processing power to process all the beams at
the same time, so they are multiplexed and fed through the spectrometer in a cycle. The
instrument was successfully deployed at Arecibo Observatory in June 2009. Figure 3.11
shows the installed instrument at Arecibo Observatory. The picture on the right shows the
beam multiplexer, and the left picture shows the IBOB and BEE2 boards that were used to
develop the instrument.

CASPER Correlator

The CASPER Correlator is a scalable FPGA correlator design developed using CASPER
hardware and libraries [17]. Figure 3.12 shows the CASPER Correlator architecture imple-
mented using ROACH boards. The cross correlation (X-Engines) and PFBs (F-Engines)
are calculated using ROACH boards, and data is transported between the boards using a
general purpose 10 Gigibit Ethernet switch. This design represents a huge step forward from
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Figure 3.11: SERENDIP V.v Hardware installed at Arecibo Observatory

custom ASIC correlator design, using reprogrammable hardware to update implementations
and providing flexibility in the design.

The switch architecture solves the all-to-all cabling problem, making it easy to add more
hardware to the correlator and validating the CASPER instrument design philosophy of
attaching general purpose hardware to a switch.

Packetized Astronomy Signal Processor

Many radio astronomy instruments channelize the antenna data as soon as it is digitized.
The Packetized Astronomy Signal Processor, or PASP implements a parameterized, FPGA-
based channelizer, shown in Figure 3.13. The FPGA interfaces to an ADC board that
simultaneously digitizes 2 signals. The samples are sent into a polyphase filter bank (PFB),
consisting of an FIR filter and an FFT, which breaks up the entire bandwidth sampled by
the ADC into smaller subbands. After dividing up the subbands, each band is rescaled. This
step allows us to compensate for the shape of the analog filter feeding data into the ADC.
After rescaling, the FPGA forms packets where each packet contains data from a single
subband. The packets are sent out over CX4 ports to a 10 gigabit Ethernet switch.
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Figure 3.12: CASPER Correlator Architecture

Figure 3.13: PASP Dataflow (reprinted from Filiba and Werthimer [8])

PASP is designed for flexibility. Building on the CASPER goal to automate the design of
commonly used signal processing elements such as FFTs and digital downconverters, PASP
automatically designs an entire FPGA instrument using only a few parameters. The user
can input the desired number of subbands, CPU/GPU cluster size, and packet size and a
new design is automatically generated in Simulink. Figure 3.14 shows the high level interface
for the instrument. The user can update the design simply by changing a parameter, clicking
ok, and recompiling the design. [8]

The interface to PASP is a simple menu that consists of four parameters. From the menu,
Number of IPs determines the number of IP addresses the instrument will need to send data
to, defined by the size of the cluster it must communicate with. Samples per Packet defines
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Figure 3.14: PASP Interface

the packet size, adjustable to ensure that the packet rate is low enough for the server to
handle. Number of Channels defines the FFT length. The last parameter Reorder in QDR,
allows the packet buffering to be handled by off chip QDR memory. This is only a parameter
and not the default because it is only supported by certain boards.

Changing any parameter causes the entire low-level design to be redrawn. Figure 3.15
shows the low level implementation of the instrument. Although this diagram is complex,
it is generated automatically by PASP and the user never needs to look at this design to
implement a working instrument.

PASP has a wide variety of potential applications due to the flexibility of the server
software. In the next sections, we describe a few specific applications than can make use of
this package.

Pulsar Processing

This instrument was originally designed to do pulsar science. The fast channelization on
the FPGA with no data reduction makes it an ideal pulsar spectrometer, since no infor-
mation is lost before sending the data to the servers. GPUs provide a good platform for
pulsar processing algorithms such as coherent dedispersion [21], which can easily be used
as the processing function for the server software distributed in our package. Similar to
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Figure 3.15: PASP Low Level Implementation

SETI instruments, pulsar instruments designed using this package can also keep up with
improvements in technology with a simple recompile. [8]

This design has been used in pulsar processors that have been deployed at the Parkes
Observatory, Nanay Decimetric Radio Telescope, and Effelsberg Radio Telescope and aided
in the discovery of a new astronomical object, a diamond planet [1].

Heterogeneous Radio SETI Spectrometer

In the search for extraterrestrial intelligence (SETI), the ability to keep up with changes in
technology allows searching instrumentation to stay on the leading edge of sensitivity. SETI
aims to process the maximum bandwidth possible with very high resolution spectroscopy.
This instrument allows SETI projects to easily keep up with improvements on the telescope
and increasing computational power. An increase in detector bandwidth, improving the
breadth of the search, can be processed simply recompiling the FPGA design and distribut-
ing the extra subbands to new servers. As computation improves, the instrument can be
reconfigured to send more bandwidth to each computer, reducing the required cluster size,
or improve the resolution of the instrument by doing a larger FFT on the server. [8]

The design of HRSS is based on the SERENDIP V.v design presented in Section 3.1.
Figure 3.16 shows how in HRSS the IBOB and BEE2 are replaced with a single chip FPGA
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Figure 3.16: HRSS Design Based on SERENDIP V.v

board such as an IBOB or ROACH, and the fine channelization, thresholding and post
processing are done on a GPU.

Unlike SERENDIP V.v, HRSS is a software package to automatically generate spectrom-
eters with minimal user input. I automated the design of the spectrometer, creating a param-
eterized spectrometer that only requires a recompile to implement a change in specification.
This spectrometer combines FPGAs running PASP with GPUs, doing coarse channelization
on the FPGA and sending each subband to the GPUs for further processing. The server
software is designed for flexibility, allowing astronomers to easily modify the processing al-
gorithm run on the GPU and customize the instrument to fit their science goals.

The software package is comprised of two parts, the PASP design that runs on the FPGA
and the server software. Like PASP, the server software is parameterized, supporting a variety
of spectral resolutions and integration times. This software receives data over an Ethernet
port and transfers it from the CPU to the GPU. The GPU runs an FFT and then sends the
data back to the CPU to be recorded. The GPU software, like the GPU benchmark, uses
the CUFFT library to run FFT. This allows for rapid deployment of a working spectrometer
that is configured to take full advantage of available computing resources.

Figure 3.17 shows a high level view of a spectrometer that could be designed with this
package. In this example, a ROACH board divides the input band into 64 subbands and
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sends them out to a 16 server cluster. An ADC is used to digitize data from the telescope
and connects to the ROACH board via Z-DOK connectors. The digitized data is split into 64
subbands and sent through a 10 gigabit Ethernet switch. Each server in the cluster receives
and processes 4 subbands.

Figure 3.17: Example high level spectrometer architecture

The server software was designed so other applications could easily be implemented on
the GPU without altering or rewriting the receive code that interprets the packet headers
and transfers data to the GPU. Once the data is on the GPU, the software calls a process
function and passes it a pointer to the GPU data. An initialization function is called before
the data processing begins to do any setup needed by the processing function, and an cor-
responding destroy function cleans up once the processing is complete. In the spectroscopy
software included in the package, the initialization function creates the FFT plan, the pro-
cessing function calls CUFFT, and the destroy function deletes the FFT plan. Modifying
the application run on the GPU simply requires a redefinition of these three functions. Using
this interface, we successfully replaced the CUFFT processing with software developed for
SETI searches designed by Kondo et al. [15]. [8]

3.2 Algorithm Tuning

Much of the work in Electrical Engineering relating to this kind of mapping uses a fixed
hardware model. In this section, we describe some of that work, and explain why it is not
suitable to radio astronomy instrument design.

The Metropolis project focused on mapping algorithms onto embedded systems [4] [7].
The tool provides a framework for an abstract block based description of the algorithm. This
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description makes it easy to stitch algorithms together without specifying the eventual hard-
ware implementation, providing a simple path to simulation and algorithm development that
is separate from the implemented design. Then, the tool automatically maps the description
onto an existing heterogeneous embedded system.

The mapping generated by the tool is simply a schedule, specifying where and when
each part of the computation gets executed. The tool seeks to optimize performance of the
algorithm, ensuring the generated schedule runs as fast as possible on the hardware provided.
This technique requires a fixed hardware model and uses the existing hardware to optimize
performance. While this work is useful when a hardware model exists, it does not provide
any flexibility in the hardware model while mapping the algorithm. So, when it is necessary
to design the hardware to begin with, this does not solve the problem.

Additionally, this type of solution is ill-suited to mapping the algorithms required to do
real-time radio astronomy signal processing. This tool assumes it must schedule a discrete
task onto a fixed piece of hardware and attempts maximize the performance of the task.
In the applications described in Chapter 2, the computation should always be running and
needs to meet some minimum performance target. Once the performance target is met, it
is better to have a tool that will minimize other costs like power or amount of hardware,
rather attempting to improve the runtime of the algorithm.

There are many other scheduling projects that have issues similar to Metropolis. Axel
[27] uses map-reduce to map computation onto existing cluster nodes. Theodoridis et al.
present a tool in [25] that uses integer linear programming to determine if an application can
feasibly be run on an an existing heterogeneous system. Again, both of these projects require
a fixed hardware model, but this prerequisite that does not exist before a radio astronomy
instrument is designed.
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Chapter 4

High Level Toolflow

Instrument design is often done by building the instrument from scratch. This work extends
the CASPER philosophy, demonstrating that entire heterogeneous instruments can be de-
signed with minimal user input. Rather than designing a completely different instrument
for every different specification, this software package is parameterized so new designs can
be generated quickly.

In this chapter, I introduce a toolflow I developed called ORCAS or Optimal Rearrange-
ment of Cluster-based Astronomy Signal processing. ORCAS automatically sifts through
different designs and chooses the best platforms based on the final cost of the instrument.
This automatic approach makes it easy to keep up with constant changes in technology and
algorithmic implementations. ORCAS is released as an open source Python library, freely
available on GitHub at https://github.com/tfiliba/orcas.

4.1 ORCAS Goals

ORCAS extends the CASPER philosophy discussed in Section 3.1 by providing an end-to-
end toolflow that allows the user to go from a high level description of the instrument to a
low level mapping automatically. While the CASPER toolflow has proven successful in the
FPGA domain, it’s not always clear that FPGAs are the most cost-effective implementation
for a given instrument. ORCAS captures the successful elements of the CASPER tools while
extending its reach to the heterogeneous domain. One of the most important elements of
the CASPER tools is the library of DSP blocks. The CASPER library blocks are constantly
being updated, ensuring that the library can always be compiled on the latest technology.
By incorporating existing libraries implemented for CPUs, such as FFTW, or GPUs, like
cuBLAS, xGPU, and CUFFT, ORCAS can also keep up with changing technology, without
the need for constant updates to the tool itself. The flexibility of the libraries also allows
us to buy technology at the last minute, ensuring we get the cheapest price available for an
instrument that will provide the needed performance.

In addition to the elements drawn from the CASPER library, ORCAS emphasizes a

https://github.com/tfiliba/orcas
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twofold approach to cost reduction in instrument design. The first cost savings is in the
design time. The tool is designed to map designs to hardware within a few hours. This fast
mapping makes it possible to quickly assess performance on new or nonexistent technology
and allows the designer to assess the impact of potential optimizations, making it easy to
test a number of different design ideas without spending time testing different implementa-
tions. By incorporating tested libraries, there is much less debugging needed in the eventual
implementations.

The second cost ORCAS is able to reduce is the cost of the instrument itself. While the
implementation of a design has been greatly simplified by the availability of tools described
in Section 3.1, none of those tools help determine which type of hardware is best. The
extensive library allows the tool to support whatever hardware is cheapest, allowing the
choice of hardware to be completely determined based on cost. This cost could be defined
in a number of ways, depending on which parameters the instrument designer needs to
minimize. Obviously the cost could refer to the monetary price of the hardware, but the tool
can also be used to minimize the amount of power needed by the instrument, the physical
size of the instrument, and other user defined costs.

ORCAS is designed to be be accessible to both computer experts and radio astronomers,
or other domain experts. For a domain expert, ORCAS allows the user to choose a predefined
instrument type and select high level parameters without worrying how it will ultimately
map to hardware.

The computer expert can use the tool to define a new instrument, by specifying the algo-
rithm, and is able to provide optimization. For example, if an engineer wrote an optimized
FFT algorithm, the tool will be able to incorporate that into the final optimized result. In
the end, regardless of who is using this tool, a cost-optimal mapping of the instrument gets
produced.

FX Correlator
16 ant

128 channels
400 MHz

Figure 4.1: The Four Stage ORCAS Toolflow

These goals are achieved through a four stage tool that allows the user to go from a
high level description of an instrument to an optimized cluster design. Each stage of the
ORCAS toolflow is represented in Figure 4.1. The first stage is instrument definition, which
is described in Section 4.2. This stage is designed to fit the needs of the domain expert. It
allows the radio astronomer to create a predefined instrument using a handful of parameters.
The instrument definition is converted into a dataflow model, as described in Section 4.3.
The second stage, the dataflow model, is aimed at the computer expect, since it allows
for a more detailed and flexible definition of the algorithm than the previous stage and
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provides the means to include optimized blocks. The dataflow model represents an abstract
definition of the algorithm without taking into account the eventual hardware target. The
next stage, appropriately named mapping, maps the dataflow model to specific hardware. In
the mapping stage, each block defined by the dataflow model gets mapped to a specific piece
of hardware. This stage takes into account hardware and network limitations to produce
a cost optimal mapping of the original dataflow. Mapping is discussed in Section 4.4 and
Chapter 5 provides more details about the algorithm used to produce a mapped instrument
and the performance of that algorithm. Finally, once each block has been mapped to a piece
of hardware, the code can be stitched together into a working instrument, as presented in
Section 4.5. The rest of the chapter will describe each stage of the toolflow in more detail
and explain how they are designed to meet the needs of the users they are targeting.

4.2 Instrument Definition

FX Correlator
16 ant

128 channels
400 MHz

Figure 4.2: ORCAS Toolflow Instrument Definition

In the first step in the ORCAS toolflow, the user must describe the instrument using high
level parameters. These parameters should all be relevant to the astronomer and abstract
away any implementation details that do not pertain to the scientific goals. While it would
be easy to expose many of the low level parameters at this top layer, this would force the
domain expert to become a computer expert as well, exactly the scenario this tool is aiming
to avoid.

The instrument description as represented in Figure 4.2 fits on a small sticky note. The
idea that the parameters should be so few that they fit on a single sticky note was the driving
force behind the instrument definition. An instrument designer who finds that he or she
needs additional control beyond what is provided by the instrument description always has
the flexibility to work with the dataflow model directly, where many low level parameters are
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exposed. Additional instruments or new parameters for existing instruments can be added
by defining how those parameters affect the final dataflow diagram.

In software, each instrument type is represented by a Python class. The instrument
parameters are used when an instrument object is instantiated. For example, creating the
instrument specified on the sticky note in Figure 4.2 simply requires the following function
call (variables are defined for clarity):

antennas = 16
channe l s = 128
bandwidth = 0 .4 #d e f i n e d in GHz

#c r e a t e the instrument
myfxco r r e l a to r = FXCorrelator ( antennas , channels , bandwidth )

Design space exploration

In addition to defining a single instrument, an astronomer can use this tool to explore
different implementations and assess the tradeoff in cost vs additional processing. Rather
than specifying single values for the instrument parameters, the astronomer can choose a
range to search through and have it generate a design, and an associated cost, for each value.
This proves valuable when the specification of an instrument isn’t fully defined. In the case
of a high resolution spectrometer, the astronomer could adjust the number of coarse and fine
channels, keeping the spectral resolution the same, to find the cheapest design that achieves
that resolution. For polyphase filter banks, the number of taps in the FIR can be varied
to assess the increase in cost associated with a better filter response. Even non-numerical
parameters can be varied, such as the FIR window type, to see how it will affect the eventual
design.

4.3 Dataflow Model

The second step of the toolflow translates the instrument definition into a dataflow model.
The dataflow model represents the instrument as a set of high level blocks (such as FFTs and
FIRs) and input and output connections. The second icon in Figure 4.1 shows an abstract
example of this type of dataflow.

Computational Blocks

The computational blocks are a set of algorithmic building blocks. These blocks are similar
to the set of blocks provided by the CASPER library or CUFFT, allowing for parameteri-
zation, but unlike the afore mentioned libraries, these blocks do not necessarily include an
implementation of the function they claim to compute. Instead, each block provides some
method to assess the performance of that function on each supported platform.
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One way to assess performance is to simply include the code, generating a model by
synthesizing or running the code and getting real performance data. But this is not always
necessary or desirable. Many algorithm designers provide benchmarks that can be used
directly without needing to download or run the code [10] [13]. The predictable scaling of
many DSP functions can also make it easy to create a model for resource utilization [20].
And finally, the user can always estimate the performance of a block, a useful option when
attempting to assess the cost savings of a potential optimization or explore mapping to
hardware that does not exist.

Connection Types

In order to reduce the total number of connections that need to be defined, blocks that
receive data from and send data to the same set of blocks are put into a group. Figure 4.3
shows an example FX Correlator dataflow model, where blocks grouped together have the
same color. In this example, the FFTs all take data from an FIR block and must send data
to the XEng blocks. The name of the group of blocks is referred to as the ‘block type’.

ADC

ADC FIR

ADC

FIR

FIR

Corner 
Turn

Corner 
Turn

Corner 
Turn

X

X

X

X

Σ

Σ

Σ

Σ

FFT

FFT

FFT

Detect

Detect

Detect

Detect

Figure 4.3: Example FX Correlator Dataflow Model Demonstrating Blocktypes

Knowing which block types must communicate with each other is not sufficient to specify
the dataflow. Suppose we know we have 2 types of blocks: A, and B and blocks of type
A must send their data to blocks of type B. We also need to definite the communication
patterns between A blocks and B blocks. This could happen in 2 ways, ‘one-to-one’ and
‘all-to-all’.

A ‘one-to-one’ connection is where every A block communicates with exactly one B block,
as shown in Figure 4.4. With this type of connection, the number of A blocks must be equal
to the number of B blocks. The F-Engines in an FX correlator are a good example of this type
of connection. The correlator has an F-Engine for each antenna, each containing the same
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Figure 4.4: One-to-one and all-to-all connections

blocks linked in the same way. Within an F-Engine, an FIR filter must communicate with
a single FFT. In general, every FIR within an F-Engine, blocktype ‘A’ must communicate
with exactly one FFT, blocktype ‘B’.

An ‘all-to-all’ connection occurs when every A block must send some data to ever B
block. Figure 4.4 shows what an all-to-all connection between three A blocks and three B
blocks will look like. In this case, every A block must send some data to every B block.
For example, the type of connection between the per-antenna FFTs and the per-channel
X-Engines in an FX correlator would be ‘all-to-all’. Each X-Engine needs a small amount
of data from every F-Engine to compute the cross-correlations from a single channel. In the
‘all-to-all’ case, there is no reason for the number of sending nodes needs to be the same as
the number of receiving nodes.

It might seem like there are two more possible types of connection that need to be defined,
‘one-to-all’ and ‘all-to-one’. A dataflow with a ‘one-to-all’ connection, shown on the left in
Figure 4.5 would have exactly one A block that needs to send data to many B blocks. This
is exemplified in the dataflow for a high-resolution spectrometer. The coarse channelization
is done in a single FFT block, which then needs to send the data to many other FFTs to do
the fine channelization. The ‘all-to-one’ connection is also shown on the right in Figure 4.5
is the reverse of the ‘one-to-all’ case. In this type of connection, there are many A blocks
and they all need to send data to a single instance of a B block. An example of this arises
when some processing is done in a distributed manner but the instrument needs to record
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Figure 4.5: One-to-all and all-to-one connections

the final result in a central place.
It turns out, these are both special instances of the ‘all-to-all’ connection. The ‘one-to-all’

connection is simply an ‘all-to-all’ where the number of A blocks is fixed at one. Similarly,
the ‘all-to-one’ connection is also an ‘all-to-all’ where the number of B blocks is fixed at
one. Because of this, there is no need to include or support these cases as unique connection
types.

While it may seem like additional link types exist like ‘all-to-some’ or ‘one-to-some’, this
turns out to be impossible. A block of type A cannot send its data to only some blocks of
type B because of the way blocktypes are defined. Any block of the same type should be
interchangeable with another block of the same type. In an ‘all-to-some’ connection, blocks
of type A would need to send data to B1 but not send data to B2. But that connection
patterns implies that the blocks B1 and B2 are not interchangeable and therefore cannot
have the same blocktype.

Software Representation

The dataflow model is created in the initialization function for the instrument. Each block
type is added to the dataflow by creating an instance of the CBlock class and adding that
object to the list of blocks. The constructor for the CBlock has the user define the number
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of blocks in the group, and the input and output connections, indicating the blocks it must
communicate with, the connection type, and the connection bandwidth. A CBlock also needs
to be instantiated with a performance model, which is discussed further in the following
section. The code below gives an example of this kind of instantiation. It creates 16 FFT
blocks that must take data from FIR blocks via a 1-to-1 connection, and sends data to XEng
blocks via an all-to-all connection.

performance model = CBlock . getFFTModel ( s e l f . p lat forms , bandwidth ,
input b i tw id th )

data source = ’PFB ’
sou r c e connec t i on = 0 #0 i n d i c a t e s a one−to−one connect ion
source bandwidth = 0.4∗8
data s ink = ’XEng ’
s i n k c o n n e c t i o n t y p e = 1 #1 i n d i c a t e s an a l l−to−a l l connect ion
s ink bandwidth = 0.4∗8
antennas = 16 # i n d i c a t e s the number o f b l o c k s to c r e a t e
s e l f . b l ocks [ ’FFT ’ ] = CBlock ( performance model , data source ,

source connec t i on , source bandwidth , data s ink ,
s i nk connec t i on type , f f t out bandwidth , antennas )

4.4 Mapping

Once the dataflow and the computational blocks are defined, ORCAS must determine how
to place each computational block into hardware. In the mapping stage, ORCAS determines
what type of hardware should be used for each block, while minimizing the total cost of the
hardware (in dollars, watts, or another used-defined metric). The third icon in Figure 4.1
represents an abstract mapped dataflow.

At this point, the computational blocks and dataflow can no longer be viewed as abstract
algorithms. Each computational block must be paired with a performance model for each
supported platform that shows the resource utilization and bandwidth requirements for that
block. Using the performance model, the tool is able to test a number of hardware mappings
and ensure that none of the available hardware or bandwidth resources are overmapped.

The optimal mapping is determined using an Integer Linear Program or ILP. The re-
sources, such as memory, logic and CPU time, and bandwidth constraints are translated
directly into ILP constraints. These constraints are used to determine a valid mapping, for
example total bandwidth mapped to a link must be less than total link bandwidth. The
variables represent the design decisions, determining where each block should be imple-
mented. And finally, the cost function simply totals up the costs associated with each piece
of hardware used.

A ILP was chosen because it has a number of positive features. Unlike a randomized algo-
rithm such as simulated annealing, the results from a ILP are repeatable. While there might
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be multiple solutions with the same cost, each time the same ILP is run, it is guaranteed to
find one of the solutions of optimal cost. The ILP representation also makes it easy for the
user to guide the algorithm. Since the design choices are represented by variables, they can
also be restricted by adding additional constraints to those variables. This representation
also makes it easy to build out an existing cluster, by allowing a limited amount of zero-cost
hardware.

Unfortunately, the advantages of the ILP come with a high cost, namely that an ILP
is NP-Hard to solve optimally. Current ILP benchmarks are able to solve problems with
a hundred thousand variables in a few hours, but beyond that size the problems become
infeasible. To make matters worse, the ILP runtime is very sensitive to the solver being used
and the problem structure.

Because the runtime for the ORCAS mapper needs to be within a few hours, we use a
number of techniques to reduce the ILP runtime. First, the easiest way to reduce the runtime
without changing the ILP is to change the solver. There is a huge amount of variance in
runtimes between different solvers and simply switching out the backend solver might cause
a previously infeasible problem to become solvable. When that doesn’t improve the runtime
enough, it becomes necessary to modify the ILP. One way to do this is by reducing the
number of variables it needs to solve for. Many of the radio astronomy instruments are
very symmetric, so it is reasonable to assume that the optimal mapping would be symmetric
as well. The symmetry can be preserved by forcing every block of a certain type to be
implemented in the same kind of hardware, drastically reducing the number of decisions
that the ILP needs to make. The ILP can also be modified to ensure that there is a single,
unique optimal solution. When designs are very symmetric, the ILP will often find an
optimal solution quickly but, because it is not unique, the ILP must spend a lot of time
convincing itself that the solution is, in fact, optimal. Additional constraints can be added
to ensure that only one of those solutions is valid, greatly reducing the amount of time it
takes to verify optimality.

Chapter 5 goes into more detail on how the performance models are used as well as how
the ILP is specified, implemented, and optimized to achieve a feasible runtime.

Mapped Dataflow Representation

Once the mapping is complete, the dataflow model is updated to describe what type of
hardware will be used to implement each computational block. Figure 4.6 shows two or many
possible mappings for the FX Correlator dataflow shown in Figure 4.3. In the top dataflow,
each F-Engine and X-Engine require so many resources that they must be implemented
on separate boards. Each F-Engine is implemented on an FPGA-based ROACH board
and the X-Engines are implemented in GPUs. The bottom dataflow shows a less resource-
hungry correlator, allowing all the F-Engines and two X-Engines to share a single board for
computation.

In all designs, any links between two blocks that are not mapped to the same board
must pass through a switch. In the example, all the links between corner turners and cross-
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Figure 4.6: Two potential mappings for the FX Correlator

correlation blocks must run through the switch. This is represented in the diagram by a
single connection from each ROACH and GPU board to the switch.

4.5 Code Generation

The last step in the process is the implementation the instrument. This step is optional, only
being used when the mapped dataflow is being used to design an instrument rather than
assess cost. Since the toolflow relies on established libraries, implementation only consists
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of stitching together existing routines.
In addition to this, common design patterns can be stitched together into parameter-

ized implementations. This style of instrument design greatly accelerates time to science for
many projects. Separating the implementation of the instrument from the hardware spec-
ification has created a design that works well for a variety of computational resources and
applications. As resources improve, the instrument can improve along with them, providing
the opportunity to do new science that wasn’t possible on older technology. We have shown
this is possible by implementing the Packetized Astronomy Signal Processor or PASP using
the CASPER toolflow. [8]
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Chapter 5

Algorithm Partitioning

After coming up with an instrument description, it is necessary to determine how that
instrument will be implemented in hardware. I use Integer Linear Programming (ILP) to
model and solve this problem. As described in Section 3.2, ILP is a powerful technique for
defining and solving optimization problems. In this chapter I explain how the ILP is defined
based on the dataflow model and the techniques used to make sure the program can be
solved quickly.

5.1 Variables

The variables in the ILP are represent the optimal mapping for the system. Ultimately, the
ILP determines which platforms should be used, and what part of the algorithm should get
implemented on each platform. This is achieved by having the ILP consider some platform,
and assume it can instantiate at most np copies of that platform. We will call a copy of the
platform a board. Each board must have some variables that determine which computation
blocks get mapped to it. For some board i, the number of computation blocks of type b that
get mapped to it is represented by the variable ni,b.

A solution to the ILP, with each of the ni,b variables filled in, gives a complete specification
of the optimal mapping for that instrument.

5.2 Constraints

The constraints serve two purposes. First, they ensure that no resource is overmapped, so
that the amount of hardware the ILP generates will be sufficient to do the computation
required. Second, they make sure that the correct design gets implemented.
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Platform Resources

Any resource on a board that gets used by mapping computation blocks to that board must
be accounted for in the linear program. This is abstracted in the ILP using by adding single
constraint for each resource.

Resource Limitations

For some resource, r, we use our performance model of each block to assess how much of
the resource is used up by each block type. The percentage of the resource r required by
some block type, or utilization, is represented by a constant (not a variable), rp,b, where p
represents the platform, and b represents the block type. Multiplying the resources required
for a specific block type by the number of blocks needed on that specific board determines
the total percent of resource r block type b will require on the board. Summing over all of
the block types determines what percent of resource r is used in the final design, which gives
us the final format of the constraint needed to ensure that some resource r is not overmapped
on board i: ∑

b∈Blocks

ni,brp,b ≤ 1 (5.1)

Each resource will require a separate constraint in the ILP of this form. By ensuring that
the total utilization of each resource required is less than 100%, we guarantee that there are
enough resources to allow all the blocks mapped to that board to complete their tasks.

Dataflow Model Constraints

After getting assurance that no resources are overused, it is important to verify that the
correct design was implemented. The resource utilization constrains the value of ni,b, but
there is an additional constraint on these variables. Namely, the ILP must ensure that the
correct number of blocks actually gets implemented. This adds a simple constraint to each
block type:

∑
boardinboards

nboard,blocktype == nblocktype (5.2)

The total number of blocks of a certain type should be equal to the number of blocks of
that type we actually need in the design.

Network Resources

The ILP does not design the network topology. While it would be possible to design the
network using an ILP, this would add unnecessary complexity to the program (therefore
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Figure 5.1: Full-Crossbar Interconnect Model

increasing the runtime) with little gain. As described in Section 3.1, most radio astronomy
applications require a full-crossbar interconnect at some point, because many computational
blocks have an all-to-all or one-to-all communication pattern. Rather than have the ILP
redesign the same topology over and over, we simply assume this interconnect exists and
every board can communicate with every other board directly over a fixed-bandwidth link.

Figure 5.1 shows an example of this topology. Each board gets connected to the same
switch and can communicate with any other board on the switch, regardless of the platform
type.

Bandwidth Limitations

Even a fixed network topology, there still are communication constraints that must be taken
into account in the ILP. While there might be a link available between each pair of boards,
the bandwidth into and out of these boards is limited. Consider Figure 5.1 again. Suppose
every other board in the cluster needed to stream 10 Gbps of data to the CPU board, but it
is only connected to the switch via a single 10 Gbps link. There are additional constraints
to ensure that the input and output bandwidths are not exceeded.

In order to write these constrains, we must first determine how many blocks need to
communicate with a block that is not located on the same board. We introduce new variables
nri,b to represent the number of blocks of type b on board i that need to receive data from
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the cluster, and, similarly, nsi,b to represent the number of blocks of type b on board i that
need to send data to the cluster. Given the amount of data some computational block type
takes as input and the number of those blocks on the board, we can multiply them together
to determine the amount of input bandwidth that computational block type will require.
Summing over every block type determines the total amount of input bandwidth needed
by all the computational blocks on the board, creating a constraint that the total required
bandwidth must be less than or equal to the total available input bandwidth. The constraint
on output bandwidth is calculated the same way, generating a pair of constraints for each
board, one restricting the total amount of input bandwidth, and another restricting the total
amount of output bandwidth.

∑
b∈Blocks

nri,bbw inb ≤ bw inp (5.3)∑
b∈Blocks

nsi,bbw outb ≤ bw outp (5.4)

Connection Constraints

First, we observe that the these variables must be bounded by 0 and ni,b, since there cannot
be a negative number of blocks that need to communicate, and the number of blocks of
type b that need to communicate can’t exceed the number of blocks physically on the board.
Next, we must take into account the structure of the algorithm to determine whether or not
a given block needs to communicate with a separate board.

While the constraints on the total input and output bandwidth might seem simple,
ensuring the values for nri,b and nsi,b are sane requires additional constraints. Suppose we
know we have 2 types of blocks: A, and B. A is a source of data, meaning it does not
receive data from any computation block. Similarly, block B is a sink, with no data to send
to another block. Regardless of how many A and B blocks get placed on platform i, none
of the A blocks will need to receive data and none of the B blocks will need to send data.
Knowing that A is a source and B is a sink tells us that nri,A = 0 and nsi,B = 0.

In order to appropriately define the linear program, it is first important to look at the
different ways the computational blocks in a design may need to communicate, and create
appropriate constraints. We must revisit the connection types introduced in Section 4.3, and
determine how the different types of links affect the linear program.

When two blocktypes are linked via a ‘one-to-one’ connection, communication is required
when the number of A blocks is different than the number of B blocks on a single board.
When there are more A blocks then B blocks, ni,A > ni,B, the number of A blocks that need
to send data to the cluster is ni,A − ni,B and none of the B blocks on that board need to
receive data from the cluster. In the opposite case, ni,A < ni,B, and the none of the A blocks
need to send data to the cluster, but ni,B − ni,A blocks of type B will need to receive data
from the cluster. Both of these cases are captured by the same pair of constraints:
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nsi,A ≥ ni,A − ni,B (5.5)

nri,B ≥ ni,B − ni,A (5.6)

When ni,A−ni,B is non-negative, we are guaranteed that we will not underestimate nsi,A,
and when ni,A − ni,B is negative, nsi,A will be forced to at least 0 because of the lower limit
on the variable.

Setting the ns and nr variable is a little more complicated for the ‘all-to-all’ case, and
requires the implementation of some conditional logic in the linear program. When any of
the B blocks are not on the board i, then every A block must send data to the cluster, and
nsi,A = ni,A. Otherwise, none of the A blocks need to send and nsi,A = 0. Similarly on the
receive side, if any of the A blocks are not of board i, nri,B = ni,B, otherwise nri,B = 0. The
conditional logic is easily implemented in an ILP.

Implementing the ILP this way results in an overestimation of the required bandwidth.
In the case where nsi,A = ni,A, it’s true that every block of type A will need to send some
data. However, they might not need to send the full bandwidth bw outA to the switch,
since some portion of the data sent by an A block may be required by B blocks residing on
the same board. A more exact version of this calculation would also take into account the
smaller bandwidth, but due to the complexity and rarity of this case the approximation is
sufficient. As described in Section 3.1, many architectures have this type of connection but
there very few cases where the A and B blocks connected this way reside on the same board.

5.3 ILP Implementation

In software, the ILP can be generated automatically using the dataflow model contained in
an Instrument object. The generic Instrument class has a single function, called runILP()
that iterates through the dataflow model, creating variables and constraints, determines the
cost model depending on what the user wants to optimize for and runs an ILP solver to
generate an optimal mapping. Adding on to the instrument creation example in Section 4.2,
we show how the user can create and map an instrument using only two function calls in the
following code.

antennas = 16
channe l s = 128
bandwidth = 0 .4 #d e f i n e d in GHz

#c r e a t e the instrument
myfxco r r e l a to r = FXCorrelator ( antennas , channels , bandwidth )
myfxco r r e l a to r . runILP ( )
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5.4 Performance Modeling

The data that the ILP uses to measure resource utilization must come from a preexisting
performance model. These models can take a number of forms. Benchmarks of compiled
and running code provide the best information, but are also time consuming to obtain if
they don’t already exist and they require a real implementation of the block. Estimates are
faster to obtain but won’t be as accurate. Nevertheless, many DSP blocks have predictable
performance and a performance estimate based on similar benchmarks can be very reliable.

Benchmarks of the mapped design or running code serve as a very accurate way to assess
performance. Figure 5.2 shows the type of benchmarks that would be useful for an FPGA
block, measuring utilization of available FPGA resources. These benchmarks were taken by
compiling small designs that only had the target block. The designs and compilation results
are in the ORCAS Git repository. The graphs show the utilization of registers, LUTs,
BRAMs and DSPs used on the Virtex 5 SX95T. The top graph is the data for an 800 MHz
FIR filter with 4 taps, and the bottom shows utilization for an 800 MHz FFT. Getting the
performance model for a specific block simply requires looking up the FFT size in the graph.

Similarly, Figure 5.3 has benchmarks for the same blocks, FIR filter above and FFT
below, but these are tested on a GTX 580 GPU. These benchmarks measure the runtime of
each function. The benchmark data was taken by running the routine one hundred times on
the target architecture to get an average runtime. These benchmarks are also available in
the Git repository for this project.

Many papers also provide these kinds of benchmarks, making it easy to get accurate
numbers without installing or running the code. The xGPU paper [3] has a number of graphs
demonstrating kernel performance that can be used directly as an ORCAS benchmark, which
will be shown in Chapter 6.

Performance data can also be represented using formulas. Figure 5.2 clearly shows some
predictable trends in the FIR and FFT utilization. Primiami et al. turned this predictability
into a set of equations that determine the requisite resources [20].

A more extreme example of predictability arises in the CASPER X-Engine. DSP utiliza-
tion on FPGAs has a predictable linear relationship with the number of antennas correlated.
Figure 5.4 displays a bar chart of the real benchmark data with a line interpolated through
the points. The line passes through every point, and we see the relationship can be charac-
terized by the following equation:

DSPs = 8 ∗ antennas + 16

We can also use existing benchmarks to project how a block might perform on newer tech-
nology. In FPGAs, we notice the number of resources required for a block remains nearly
constant between different chips. Table 5.1 shows the resource utilization of an 800MHz 32k
channel FFT on three chips from three different generations, the Virtex 5 SX95T, Virtex 6
SX475T, and Virtex 7 VX980T. Aside from the number of LUTs, which slightly dropped
between the Virtex 5 and Virtex 6, the number of resources required remains very stable
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Figure 5.2: PFB FIR and FFT benchmark data on the Virtex 5 SX95T
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Figure 5.3: PFB FIR and FFT benchmark data on the GTX 580
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Figure 5.4: Cross-Correlator X-engine DSP Utilization

across chips. Although the utilization will change, because different chips will provide dif-
ferent amounts of resources, recording the number of resources required on one chip makes
it possible to predict the utilization on another chip.

Similarly, projections can be made with new processor technology. Even if a new tech-
nology is not yet available to buy, a conservative and optimistic estimate of the speedup can
be used to generate a conservative and optimistic estimate of the instrument cost using that
new technology.

5.5 Cost Modeling

The cost function in the linear program can represent a number of properties like monetary
cost, power, development time or rack space. In this work I focus on monetary costs and
power. Both can be calculated simply by iterating through the boards used and adding the
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Resource Virtex 5 SX95T Virtex 6 SX475T Virtex 7 VX980T
Registers 10881 10789 10788
LUTs 11358 9632 9773
36k BlockRAM 100 100 100
18k BlockRAM 30 30 30
DSPs 60 60 60

Table 5.1: Comparative Resource Utilization of a 32k Channel 800 MHz FFT

Platform Specification Monetary Cost Idle power Maximum power
ROACH Virtex 5 SX95T $6,700 55 W 75 W
ROACH 2 Virtex 6 SX475T $10,500 60 W 80 W
ROACH 3 Virtex 7 VX980T board is still in development 60 W 80 W
NRAO Server GTX 580 $3,500 225 W 475 W

Table 5.2: Monetary and Power Costs for Common CASPER Platforms

GPU Cost Idle power Maximum power
GTX 580 $500 125 W 175 W
GTX 680 $500 100 W 195 W
GTX 690 $1,000 130 W 300 W

Table 5.3: GPU Board Costs

cost of the board to the total cost. Table 5.2 shows the costs for many platforms commonly
used in CASPER instruments.

The model can also take into account donated or existing hardware that will not con-
tribute to the monetary cost of an instrument. Adding another platform, like a ‘Free
ROACH’, with same specifications as a ROACH but a monetary cost of $0 will allow the
model to use the hardware without incurring any cost. This feature is a useful way to
determine if it is worthwhile to replace existing hardware for an instrument upgrade.

The final entry in Table 5.2 is a high performance server, and the reported costs include
a GTX 580 GPU, but that might not be the best GPU to use. The data in Table 5.3 is
useful to determine how a different GPU will affect the total cost of the server. Also note
that the ROACH 3 hasn’t been built, so the dollar cost is unknown but we can estimate the
power consumption.

5.6 Design Options

The cost optimization is guaranteed to find the cheapest instrument, but it’s not necessarily
going to be easy to build. Since the ILP will attempt to use every possible resource, it may
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end up with complex and asymmetrical designs. To simplify these designs, two options can
be enabled that will add extra constraints to the ILP.

The first option is called single design. This option forces every board of a certain
platform type to implement the same design. Instead of allowing any block to go on any
board, the designs must be replicated. The second option is single implementation. This
forces every block with the same block type to be implemented on the same platform type.
More simply, if the platforms available are a GTX 580 server and a ROACH and we are
placing FIR blocks, all the FIR blocks must be placed on ROACH boards or all the FIR
blocks must be placed on GTX 580 servers. These options could drive the cost up, but the
tradeoff may prove beneficial, as they both reduce debugging time and complexity in the
final design.

5.7 Optimization

While Integer Linear Programming has a number of desirable properties, the lack of an
efficient algorithm to solve it constitutes a significant obstacle in designing an ILP with rea-
sonable performance. This section describes how the solver selection, design of this ILP, and
the introduction of a few extra constraints serve to improve the performance and scalability
of the program defined in this chapter.

ILP Solver Selection

The ILP is described using an open source Python package called PuLP, available at http://
www.coin-or.org/PuLP/. PuLP does not include an integer linear program solver. Instead,
it supports a number of existing solvers, allowing the user to choose which one to use.

ORCAS was originally tested using the GNU Linear Programming Kit or GLPK [9],
a free open source package that is supported by PuLP. Unfortunately, as the instrument
models became more complex, GLPK often failed to converge on an optimal solution after
running for 6 hours on my personal laptop, a 2011 Macbook Air and an attempt to get better
performance by using a high powered server was futile.

Because PuLP makes it simple to change the solver, only requiring a change to the single
line of code that calls the solver, I decided to test other solvers before editing the ILP.
Another solver was chosen by referring to a set of integer linear programming benchmarks
publish by Koch et al.[14]. These benchmarks show the feasibility of an ILP is highly sensitive
to the solver used. Recent results from those benchmarks, available online [16], found that
the Gurobi solver [12] has a relatively high number of successes. Gurobi was able to solve
the existing models within minutes and is the solver used to provide all the results in this
work.

http://www.coin-or.org/PuLP/
http://www.coin-or.org/PuLP/
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Guided Optimization

Another solution relies on user aid to guide the mapping. The ILP may spend time going over
solutions that are obviously wrong to a human user. In this case, the user could intervene
by setting some of the ILP variables manually and letting the ILP find a solution for the
remaining variables. While this may be a feasible solution for a computer expert who might
have some idea of what the optimal mapping should be, this not a useful technique for the
domain specific experts who are not as familiar with the hardware and computational block
implementations. This violates one of the basic goals of this tool described in Section 4.1.
The tool needs to be accessible and usable by domain specific experts as well as computer
experts, and dealing with symmetry in this way will require a computer expert in the loop
to generate a mapping and get a cost estimate. To maintain usability for domain experts,
guided optimization will not be the sole solution to this issue.

Combining Blocks

A good way to improve the runtime is to combine blocks that are likely to be placed on the
same board. Many CASPER designs implement a polyphase filter bank using an FIR filter
that is directly connected to an FFT. Observing that these should probably be close to each
other, the FIR and FFT blocks can be replaced by a PFB. The resource utilization model
for a combined block is created by adding the resource utilizations for each subblock.

This technique can also be used to combine blocks of the same type. ILP design opti-
mization will become infeasible if there are many blocks that require very few resources. If
the design is symmetric, as is often the case in radio astronomy, small blocks of the same
type will end up in groups on the same board. Grouping them together before running the
ILP will result in the same design but a dramatically reduced runtime.

Breaking Symmetry

ADC PFB

ADC PFB

FFT

FFT X

ROACH 0

ROACH 1

ADC PFB

ADC PFB

FFT

FFT X

ROACH 0

ROACH 1

Figure 5.5: Example of Design Symmetry in the ILP
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In this type of program, symmetry significantly increases the amount of time required to
confirm an optimal solution. The boards that have the same platform type are interchange-
able, so if board i implements some design and board j implements a different design in the
optimal solution, there is another optimal solution where their designs are swapped. For
example, suppose 2 ROACH boards are available to implement an FIR filter and an FFT.
The ILP might observe that both blocks cannot fit on a single board and assigns the FIR to
the first ROACH and the FFT to the second ROACH. This obviously seems like an optimal
solution, but the ILP may also need to check the case where the FFT is placed on ROACH 0
and the FIR is on ROACH 1, only to find that it has the same cost as the previous result.
Figure 5.5 shows a more complex example of a cross-correlator where the cross correlation
step can be implemented on either ROACH board. Again, there are two possible solutions
the ILP can find before convincing itself that either is optimal. In these simple examples
there was only one other solution to search, but as the ILP and the search space grows the
number of solutions that are symmetric to the optimal case will also grow.

Searching symmetric solutions can become a major time sink, because the ILP solver may
find an optimal solution early on, but will require a long time to confirm that it is actually
the optimal result, spending time going over many other solutions that are isomorphic to
the first one.

This returns the current best result the solver knows of, but it cannot guarantee that
the solution is globally optimal or, in the case where it is not a globally optimal mapping,
determine if it is close to the optimal solution, since determining that is analogous to solving
the ILP. Early stopping works well when it’s clear that symmetry is the cause of the long
runtime and the amount of time it would take to find one of the isomorphic optimal solutions
is short. Even so, the lack of predictable and repeatable results makes early stopping an
unappealing solution.

The solutions above outline ways to cope with the existing symmetry. Another way to
reduce the runtime is to remove the symmetry altogether. In order to do this, the ILP
must be modified so that only one of the isometric optimal solutions is a valid solution to
the ILP. First, a variable lex orderi is added for each board. This variable is meant to
uniquely identify the design running on the board; it is simply the concatenation of all the
ni,b variables for that board. Note that the ordering of ni,b variables in the concatenation
is irrelevant. The only thing that matters is that the order is consistent for every board.
When lex orderi = lex orderj we can infer that for all blocks b, ni,b = nj,b. Otherwise, there
must be some block b where ni,b 6= nj,b. Now that the designs can be identified, they can be
ordered. They are simply ordered lexicographically, by adding the constraints described in
Equation 5.7.

∀i ≥ 1 : lex orderi−1 ≥ lex orderi (5.7)

While this makes the ILP more complex, adding both constraints and variables, it reduces
the amount of time the solver takes to find a solution. This lexicographic ordering makes it
impossible to swap designs between different blocks, resulting in unique and valid mappings.
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Revisiting the symmetry example at the beginning of this section, the design with one
FIR and no FFTs would be encoded with a lex order = 10, and the design the no FIRs and
a single FFT would get the encoding lex order = 01. When the FIR is placed on ROACH 0,
then lex order0 = 10 ≥ lex order0 = 01, satisfying the new constraint. The solution
where the blocks are swapped and the FIR is on ROACH 1 violates the new constraint
lex order0 = 01 6≥ lex order0 = 10, and will not be considered by the ILP solver.

Generalizing this, it is impossible to take a valid solution (with the lexicographic con-
straint) and get another valid solution by swapping distinct designs between boards. Sup-
pose, without loss of generality, board i has a design with lex orderi = x and board j has
a distinct design with lex orderj = y and i < j. Knowing that the design is valid implies
x ≥ y. Another optimal mapping exists where the designs are swapped and lex orderi = y,
lex orderj = x, but we are guaranteed that this is not a valid solution to the ILP because it
violates the lexicographic ordering constraint.

These constraints have been implemented in the final ILP and they drastically reduce
the amount of time it takes to solve the ILP. The additional constraints do not change the
cost of the optimal solution, instead they just reduce the number of valid optimal solutions.
By modifying the ILP, the performance is greatly improved without sacrificing optimality or
usability.

5.8 Final Mapping

The final mapping produced by the ILP is just a list of variable indicating which blocks go
on which boards and the cost of the design. Figure 5.6 shows an example of the output
produced by ORCAS. The design is a simple wideband spectrometer model. The mapping
indicates that the design will use one ROACH board and two GTX 580 servers, placing the
FIR and coarse FFT on the FPGA and the remaining fine FFTs on the GPU.
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Figure 5.6: ORCAS Output
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Chapter 6

Analysis

The ORCAS tool is analyzed by looking at three case studies. We created three instru-
ment types: Spectrometer, High Resolution Spectrometer, and FX Correlator, as defined
in Sections 2.1, 2.2, and 2.4. Each case study was chosen to illustrate a different aspect of
the toolflow. The spectrometer gives an example of the end to end toolflow using a simple
dataflow, the high resolution spectrometer allows us to explore tradeoffs in the design space
and the FX correlator shows how the tool behaves when designing very large instruments.

6.1 Spectrometer Case Study

The spectrometer is a simple instrument, making it easy to follow the end to end toolflow.
We design an 800 MHz spectrometer that breaks the band into 1024 channels.

Spectrometer Definition

Defining a simple spectrometer requires very few parameters. First, as with most instru-
ments, the astronomer must specify the sky bandwidth the instrument must process, defined
in MHz and the number of bits in each ADC sample. Then, the desired spectral resolution
is defined in MHz per channel, or analogously, the number of channels that should be used
to break up the bandwidth. Finally, the integration time needs to be defined.

One optional parameter, number of antennas, can also be defined. This describes the
number of independent spectrometers that need to be created. While this parameter does
not affect the end to end processing for each antenna, knowing how many spectrometers are
needed allows for more efficient use of the hardware.

The 800 MHz spectrometer is created simply by defining the parameters and instantiating
a Spectrometer object as follows:

# 800MHz spec t rometer
numchannels = 1024
accumulat ion l ength = 10
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bandwidth = 0 .8 #d e f i n e d in GHz
i nput b i tw id th = 8
f f t o u t b i t w i d t h = 4

#c r e a t e the instrument
myspectrometer = Spectrometer ( numchannels , accumulat ion length ,

bandwidth , input b i twidth , f f t o u t b i t w i d t h )

Spectrometer Dataflow

ADC FIR FFT ΣDetect

Figure 6.1: General Spectrometer Dataflow Model

The spectrometer instrument definition generates a very simple dataflow. Figure 6.1
shows the general dataflow model for a single antenna spectrometer. This model can be
applied to any spectrometer, as the spectrometer parameters do not affect how many com-
putational blocks are required or the interconnect layout. The ADC feeds data into an FIR
filter. Then the filtered signal is transformed into channels in the FFT and the complex sam-
ples from the FFT are converted to power data by the detect block. Finally, the data from
each channel is accumulated and saved to disk. Regardless of the parameters the astronomer
chooses, the dataflow will be the same.

The parameters for each block come directly from the instrument definition. The FIR
parameters come from the number of FIR taps and window shape, the FFT is simply defined
by the FFT length parameter and the accumulator also is parameterized by the FFT length
as well as the integration time. In this model and the follow case studies the detect stage and
accumulator are combined into a single block because they both require very few resources.
The code below shows how the blocks are added to the dataflow model.

# add the ADC
adc bw = bandwidth∗ i nput b i tw id th
s e l f . b l ocks [ ’ADC’ ] = CBlock ( CBlock . getADCModel ( s e l f . p lat forms ,

bandwidth , input b i tw id th ) ,−1 ,0 ,0 , ’PFB ’ ,0 , adc bw , antennas )
s e l f . t o t a l b l o c k s += antennas

# add the PFB
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s e l f . b l ocks [ ’PFB ’ ] = CBlock ( CBlock . getPFBModel ( s e l f . p lat forms ,
input b i twidth , numchannels ) , ’ADC’ ,0 , adc bw , ’FFT ’ ,0 , adc bw ,
antennas )

s e l f . t o t a l b l o c k s += antennas

# add the FFT
f f t out bandwidth = bandwidth∗ f f t o u t b i t w i d t h
s e l f . b l ocks [ ’FFT ’ ] = CBlock ( CBlock . getFFTModel ( s e l f . p lat forms ,

numchannels ) , ’PFB ’ ,0 , adc bw , ’VAcc ’ ,0 , f f t out bandwidth , antennas
)

s e l f . t o t a l b l o c k s += antennas

#add the Vacc
s e l f . b l ocks [ ’VAcc ’ ] = CBlock ( CBlock . getVAccModel ( s e l f . p lat forms ,

f f t o u t b i t w i d t h , accumulat ion l ength ) , ’FFT ’ ,0 ,
f f t out bandwidth ,−1 ,0 ,0 , antennas )

s e l f . t o t a l b l o c k s += antennas

Spectrometer Mapping

As a simple case study, an 1024 channel 800 MHz spectrometer is mapped using the ROACH
and GTX 580-based NRAO server as potential platforms. ORCAS produces a solution that
maps the entire design to a single ROACH board. This solution is obviously correct since
the bandwidth cannot be processed by a single GPU and a single ROACH is cheaper than
a combination of boards. The mapping produced by ORCAS is shown below.

Optimal
co s t = 6700.0
i s u s e d ’ROACH’ 0 = 1 .0
num’ADC’ on ’ROACH’ 0 = 1 .0
num’FFT’ on ’ROACH’ 0 = 1 .0
num’PFB’ on ’ROACH’ 0 = 1 .0
num’ VAcc ’ on ’ROACH’ 0 = 1 .0

6.2 High Resolution Spectrometer Case Study

The high resolution spectrometer is a useful instrument for SETI. The two stage channel-
ization creates a large number of channels without using an FFT that is too large to fit on
a single board.
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High Resolution Spectrometer Definition

The main difference between a spectrometer and a high resolution spectrometer is the need
for two stages of channelization rather than just one. The sky bandwidth, integration time,
and number of antennas are defined in the same way as the previous spectrometer type.

The spectral resolution is defined differently, because both the coarse and fine resolutions
need to be defined. The coarse resolution defines how many channels the whole sky band-
width should be broken up into initially. The fine resolution defines how many channels each
coarse channel is broken into. Both can be described in MHz per channel.

High Resolution Spectrometer Dataflow

ADC FIR Corner 
Turn

Fine
FFT

Fine
FFT

Fine
FFT

Fine
FFT

Σ

Σ

Σ

Σ

Detect

Detect

Detect

Detect

Coarse
FFT

Figure 6.2: Example High Resolution Spectrometer Dataflow Model

The high resolution spectrometer dataflow does depend on the parameters specified in
the instrument description. An example dataflow is shown in Figure 6.2. The first three
blocks in the dataflow are exactly the same as the spectrometer dataflow described in the
previous section. An ADC feeds data into an FIR filter followed by an FFT and reorders
the data in the corner turn block, grouping data from the same channel together. After the
corner turn, the algorithm is modified to accommodate the higher resolution required. The
first FFT divides the band into a number of coarse channels and then each coarse channel
must be further divided into a number of fine channels. The coarse FFT must feed its data
to a separate fine FFT for each coarse channel, so the number of fine FFTs in the dataflow
diagram will vary based on the number of coarse channels. At this point, each coarse channel
is processed in an independent pipeline which the finely channelizes the data, calculates the
power of the finely channelized data in the detect block, and accumulates and records the
data to disk. The example in Figure 6.2 shows a spectrometer that divides the data into 4
coarse channels.
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Algorithmic Exploration

The Arecibo L-band feed array, pictured in Figure 6.3 has 7 dual-polarization beams. The
SERENDIP V.v instrument was only able to process one beam at a time, but its planned
successor, SERENDIP 6, will process 300MHz from each beam-pol.

Figure 6.3: Arecibo ALFA Feed

In this case study, we analyze the design space for a 300 MHz 256 million channel spec-
trometer, similar to the SERENDIP 6 instrument. This instrument provides an interesting
case study because the number of channels is so large. The number of channels in the coarse
and fine FFTs can be varied, as long as the product remains 256 million. We explore this
design space by varying the dimensions and number of antennas to see how the channel
balance affects the final cost of the instrument.

This instrument is designed using ROACH boards and the GTX 580-based NRAO server
as supported platforms, and uses the FIR and FFT benchmarks presented in Chapter 5. To
aid the linear program, we assume reordering the coarse FFT data is infeasible on the GPU
and force the design to reorder the data on the FPGA.

Table 6.1 shows the results of this design space exploration. The optimal configurations
for each row are highlighted in purple. We observe that extreme values for the number
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of channels tend to increase costs, likely because it’s difficult to put larger blocks together
on the same board and get high utilization of the hardware. Each test was run with a 30
minute time limit on my personal laptop, a 2011 Macbook Air, to ensure that the designs
could converge quickly. One test, the 7 antenna 512 by 262,144 channel spectrometer did
not converge within the specified time. While it might be able to converge given more time,
the resulting table makes it clear that the optimal configuration is unlikely to lie in that
square, and there is no need to spend extra time trying to get a solution.

6.3 FX Correlator Case Study

FX Correlator Definition

An FX Correlator is also defined by the amount of bandwidth it processes, number of chan-
nels, and integration time, but now the number of antennas is a necessary parameter.

FX Correlator Dataflow

The FX dataflow model is based on the algorithm used by the CASPER correlator described
in Section 3.1. The processing model is described by replicating two basic pipelines, called
an F-Engine and an X-Engine. The number of times each pipeline needs to be replicated
depends on the number of antennas and number of channels this correlator requires.

ADC FIR Corner 
TurnFFT

Figure 6.4: FX Correlator F-Engine Model

An F-Engine, pictured in Figure 6.4 is responsible for channelizing the data from a single
antenna. It takes in data from an ADC, and channelizes the data using an FIR and FFT
to create a polyphase filter bank, or PFB. Then the data from the PFB is rearranged by
the corner turn block, by grouping together data from the same channels. The number of
F-Engines in the correlator dataflow will vary with the number of antennas.

X ΣDetect

Figure 6.5: FX Correlator X-Engine Model
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The second pipeline, the X-Engine, processes the channelized data. Each X-Engine takes
a single channel of data from every antenna in the array, cross-correlates the data, calculates
the power of the baselines in the detect stage, accumulates each baseline and stores the
accumulated data to disk. Figure 6.5 shows the pipeline for a single X-Engine. Since each
X-Engine only operates on a single channel, the total number of X-Engines in the correlator
must be the same as the number of channels in the FFT.

ADC

ADC FIR

ADC

FIR
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Turn

Corner 
Turn

Corner 
Turn

X

X

X

X

Σ

Σ

Σ
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Figure 6.6: Example FX Correlator Dataflow Model

The dataflow for an FX correlator will vary quite a bit based on the input parameters.
Figure 6.6 shows an example three antenna four channel FX correlator. The left half of
the figure has three F-engines, one for each of the three antennas. The right half has four
X-Engines, one for each channel. In the center, since each X-Engine requires data from every
F-engine, the cross-correlation blocks, represented by an X and the Corner Turn blocks are
connected in an all-to-all configuration.

FX Correlator Mapping

The FX Correlator is evaluated by investigating how correlator design scales from 16 to
512 dual polarization antennas. Note that a 512 dual polarization antenna has 1024 inputs
because each antenna produces 2 streams of data. The design is based on the planned HERA
Correlator that processes 100 MHz of data and divides it into 1024 channels.

I use the technique of block combining described in Section 5.7 in two ways to ensure the
problem can be solved quickly even when the number of antennas is large. We expect the
FIR and FFT will be placed together so these blocks are combined into a single block called
a PFB. Then, since we expect to see multiple PFBs on the same board, every group of four
PFBs is combined into a single block that requires four times the resources of a single PFB.
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The X-Engines are combined in the same way, since processing a single channel takes very
few resources.

The symmetry of the correlator dataflow makes this a good instrument to observe the
effects of the ILP options, single design and single implementation. Just by looking at the
results for the 16 antenna mapping with both options disabled, it is already apparent that
the ILP is putting small blocks anywhere it can fit them, without much regard for the
existing symmetry. In the results below we see that the XEng blocks have been allocated
asymmetrically.

Optimal
co s t = 30600.0
num’ADC’ on ’ROACH’ 0 = 3 .0
num’ADC’ on ’ROACH’ 1 = 1 .0
num’PFB’ on ’ROACH’ 0 = 2 .0
num’PFB’ on ’ROACH’ 1 = 1 .0
num’PFB’ on ’ROACH’ 2 = 1 .0
num’ Transpose ’ on ’ROACH’ 1 = 2 .0
num’ Transpose ’ on ’ROACH’ 2 = 2 .0
num’ XEng ’ on ’ GTX580 ’ 0 = 50 .0
num’ XEng ’ on ’ GTX580 ’ 1 = 50 .0
num’ XEng ’ on ’ GTX580 ’ 2 = 26 .0
num’ XEng ’ on ’ROACH’ 2 = 2 .0
total GTX580 = 3 .0
total ROACH = 3.0

In this case, enabling both options doesn’t alter the cost but for larger correlators making
the design symmetric will require additional ROACH boards. One observed side effect of
this approach is the fact that the design might end up creating more blocks than the design
originally required. Consider the case where seven ‘A’ blocks need to be distributed among
four boards. If the single design option is off, the ILP can allocate those blocks however it
wants. But enabling the single design option makes it impossible to allocate them across
those four boards and would come up with a solution that requires seven boards. This is
clearly inefficient and is solved by relaxing the constraint on the total number of blocks.
Rather than requiring the total number of implemented ‘A’ blocks to sum to the total
number of required blocks, the constraint requires that the number of implemented ‘A’
blocks is greater than or equal to the number of required blocks. In the example, it would
allow the instantiated design to add another ‘A’ block and just put two blocks on each board.
Relaxing this constraint can also inadvertently create extra blocks that aren’t needed. The
mapping fo the 16 antenna placement with both options enabled, listed below, overspecifes
the number of XEng blocks to make all the GPU designs the same.

’ADC’ is on ROACH = 1.0
’PFB’ is on ROACH = 1.0
’ Transpose ’ is on ROACH = 1.0
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’XEng ’ is on GTX580 = 1 .0
co s t = 37300.0
num’ADC’ on ’ROACH’ 0 = 1 .0
num’ADC’ on ’ROACH’ 1 = 1 .0
num’ADC’ on ’ROACH’ 2 = 1 .0
num’ADC’ on ’ROACH’ 3 = 1 .0
num’PFB’ on ’ROACH’ 0 = 1 .0
num’PFB’ on ’ROACH’ 1 = 1 .0
num’PFB’ on ’ROACH’ 2 = 1 .0
num’PFB’ on ’ROACH’ 3 = 1 .0
num’ Transpose ’ on ’ROACH’ 0 = 1 .0
num’ Transpose ’ on ’ROACH’ 1 = 1 .0
num’ Transpose ’ on ’ROACH’ 2 = 1 .0
num’ Transpose ’ on ’ROACH’ 3 = 1 .0
num’ XEng ’ on ’ GTX580 ’ 0 = 50 .0
num’ XEng ’ on ’ GTX580 ’ 1 = 50 .0
num’ XEng ’ on ’ GTX580 ’ 2 = 50 .0
total GTX580 = 3 .0
total ROACH = 4.0

Table 6.2 and Table 6.3 show the entire design space optimized for dollars. The tests
with both options enabled consistently require at least as many boards as the placement
that did not preserve symmetry. In both cases, we see a quadratic scaling in the number of
GPU servers required and a linear scaling in the number of ROACH boards indicating that
the cross correlation step should be implemented on GPUs and the channelization should be
on FPGAs.

We also note that enabling these options increases the execution time of the ILP. The
execution time benchmarks were run on a server with two Quad-Core AMD Opteron 2376
Processors and 16GB of RAM. The increase in runtime when enabling either or both options
is expected since these options directly affect the ILP structure by adding a number of
constraints.

Since HERA is a planned instrument it is also interesting to see how this design will
map onto newer technology and compare that to the planned design. To do this, I analyze
the same design but I use the ROACH 2 board and a server that contains two GTX 690s
costing $5,500 as target platforms. Rather than get new benchmarks for the GTX 690
and a ROACH 2, I use existing benchmarks to estimate the performance of these blocks
on the new architecture. The FPGA benchmarks are obtained by assuming the number of
resources required will be the same on the ROACH 1 and the ROACH 2. These resource
benchmarks are divided by the amount of available resources on the ROACH 2 to get the
percent utilization for each resource. The GTX 690 board has two Keplar GPUs while the
GTX 680 only has one, so, for the server, we assume the performance of a server with two
GTX 690 boards is four times the performance of a server with a single GTX 680. CASPER
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Dual Pol
Antennas

GTX 580 Servers ROACH Boards Price ILP Execution time

16 3 2 $23.9k 1.87 seconds
32 6 4 $47.8k 4.44 seconds
64 11 8 $92.1k 10.21 seconds
128 32 16 $219.2k 72.85 seconds
256 121 31 $631.2k 314.01 seconds
512 456 61 $2004.7k 1231.26 seconds

Table 6.2: FX Correlator Design Space using ROACH boards and GTX 680 servers with
Single Implementation and Single Design options disabled optimized for dollars

Dual Pol
Antennas

GTX 580 Servers ROACH Boards Price ILP Execution time

16 3 2 $23.9k 2.14 seconds
32 6 4 $47.8k 4.81 seconds
64 11 8 $92.1k 11.35 seconds
128 32 16 $219.2k 43.24 seconds
256 121 32 $637.9k 281.18 seconds
512 456 64 $2024.8k 1880.38 seconds

Table 6.3: FX Correlator Design Space using ROACH boards and GTX 680 servers with
Single Implementation and Single Design options enabled optimized for dollars

Memo 48 [22] has performance data for the cross correlation block on a GTX 680, so the
utilization is reduced by a factor of four to estimate the cross correlation performance on the
target server. The FIR and FFT performance is estimated by using the resource utilization
for the GTX 580 and reducing it by a factor of four. This provides a reasonable estimate,
since the GTX 680 may provide a performance increase over the GTX 580, but we don’t
expect a significant increase without reoptimizing the code.

Figure 6.4 shows the performance data for the same design on the newer platforms with
single design and single implementation enabled The smaller correlators don’t see a signifi-
cant price benefit from the added resources, likely because of bandwidth limitations, but the
larger correlators are able to take advantage of the additional resources and the 512 antenna
correlator gets a cost reduction of over 50% simply by switching to the next generation
technology.
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Dual Pol
Antennas

Dual GTX 690 Servers ROACH 2 Boards Price ILP Execution time

16 2 1 $21.5k 1.88 seconds
32 3 2 $37.5k 3.90 seconds
64 6 4 $75.0k 13.51 seconds
128 11 8 $144.5k 33.37 seconds
256 26 16 $311.0k 141.38 seconds
512 94 32 $853.0k 550.69 seconds

Table 6.4: FX Correlator Design Space using ROACH 2 boards and Dual GTX 690 servers
with Single Implementation and Single Design options enabled optimized for dollars
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Chapter 7

Conclusions

This dissertation presents an end to end solution that allows domain experts to take a high
level idea and and translate it into a design indicating what types of hardware should be used
to implement the instrument. The ORCAS tool is able to generate these designs quickly,
making it a useful tool to explore the design space of different astronomy algorithms. I
demonstrate three types of instrument design, and explore how changing the parameters
affects the implementation and costs of these instruments.

In the results, it is clear that this approach is much quicker than designing instruments
by hand. The ORCAS flow is able to map small designs in a few seconds and larger designs
still take less than an hour to map. Coupled with optimization techniques that reduce the
number of blocks that need to be placed, ORCAS provides a scalable solution for mapping
large instruments. By allowing the user to leverage existing benchmarks, ORCAS reduces a
traditional design cycle of a least a week down to an hour. Furthermore, ORCAS provides a
better design experience than the traditional approach. The quick feedback is a key strength
of this work, allowing the astronomer to vary the parameters of the algorithm and see how
it affects the total cost.

Even when a benchmark isn’t available, ORCAS makes it easy to add an estimated
benchmark based on an existing one. To get more accurate results, getting new data for
a single benchmark is very fast. The GPU benchmarks can be run in a few minutes and
an FPGA benchmark for a small block can get results in under an hour. So even if new
benchmark data is needed, the entire design cycle will still take less than a day.

7.1 Future Work

The success of this work opens up a lot of related projects to improve upon the existing
mapping capabilities. While the instruments developed with ORCAS are designed for radio
astronomy, ORCAS was developed as a general purpose tool and the expansion of the in-
strument set into other fields would provide interesting new challenges. The existence of a
DSP library and benchmarks would make it easy to transition to other DSP applications.
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Since other applications might not need a full-crossbar network, it would also be useful
to integrate network design into the ILP. In radio astronomy, it is reasonable to assume this
network exists and ignore the cost when designing instruments. The toolflow currently allows
the user to minimize the number of ports required but this still assumes the presence of a
full-crossbar interconnect. In applications with different network architectures, the costs can
significantly change with the network design as well as the platforms used; future versions
of this tool that are used for these applications will need to take those costs into account.

There are also improvements that can be made to the model, but they need to be balanced
with the ILP to ensure fast runtimes. As telescope arrays get larger, a single computational
block may need to span multiple boards. As we saw in the FX Correlator case study, this is
going to be the case for the X-Engine in the near future. Simply supporting that capability
would be useful, but it would be better if the model was able to determine how to split these
blocks between boards.

Finally, the ILP aims to reduce cost in any way possible and often does so by cramming
unrelated blocks onto the same platform. ORCAS does support an option that forces the tool
to create exactly one design on each platform, but this does not prevent the tool from putting
unrelated blocks in the same design. To make the resulting designs more straightforward, it
would be useful if the ILP could preserve the problem structure when translating the design
to hardware.
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