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1 Introduction

The goal of this paper is to present a formal connection between synthesis problems that have been considered,
largely separately, in the two research communities of control engineering and formal methods. By making
this connection mathematically precise, we hope to “bridge the gap” between two research areas that aim
at tackling similar synthesis problems, but from different angles, and by emphasizing different, and often
complementary, aspects. Such a formal bridge should be a source of inspiration for new lines of investigation
that will leverage the power of the synthesis techniques that have been developed in these two areas.

1.1 Supervisory Control of Discrete Event Systems

Feedback control of dynamic systems is an essential element of our technological society, yet, it is often
referred to as the hidden technology. It is present in our buildings, for temperature regulation or for elevator
control for example, in our cars, for powertrain control or for anti-lock braking for example, in our computer
disk drives, for speed and positioning control, in our cellular phones, for power control, and so forth. In fact,
it is impossible to find a technological system that does not contain a feedback loop somewhere in its design.
Control theory was originally developed for systems with continuous variables that evolve in time according
to dynamics described by differential or difference equations. Since the 1980s, the field of Discrete Event
Systems (DES) in control engineering has been concerned with the application of the feedback paradigm of
control theory to the class of dynamical systems with discrete state space and event-driven dynamics.

The DES community has been investigating feedback control of DES using models from computer science,
such as automata and Petri nets. The body of control theory developed in DES has been for specifications
that are expressible as regular languages, in the case of DES modeled by automata, or in terms of constraints
on the state (marking vector), in the case of DES modeled by Petri nets. Control-theoretic frameworks have
been developed for both of these modeling formalisms; cf. the recent book [SSvS13]. In this paper, we
focus on the supervisory control theory for systems modeled by finite-state automata and subject to regular
language specifications. Both the plant and the specification are represented as finite-state automata over
a common event set. The foundations for this framework were developed in the seminal work of Ramadge
and Wonham [RW87, RW89]. Since then, a whole body of theory has been developed that covers a wide
variety of control architectures and information structures, with vertical and horizontal modularity. The
reader is referred to [CL08, Won12] for textbook expositions of this theory; other relevant references are the
monograph [KG95] and the survey papers [RW89, Thi96]. The focus of this theory is on the synthesis of
provably safe and non-blocking controllers for a given uncontrolled system, or plant in control engineering
terminology, despite limited actuation and limited sensing capabilities.
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In automated manufacturing applications for instance, the plant could be the joint operation of a set of
robots, conveyors, Automated Guided Vehicles (AGVs), and numerically controlled machines, and the con-
troller could be implemented using one or more Programmable Logic Controllers (PLCs). Safety properties
could be expressed in terms of bad states where robots and/or AGVs collide for instance, or bad sequences
of events that correspond to incorrect assembly for instance. Non-blockingness will capture the fact that
product assembly should be completed in its entirety, followed by a return of all components to their initial
states.

1.2 Reactive Synthesis

It is widely acknowledged that many design defects originate in the failure of the implementation to accurately
capture the designer’s intent. Underlying the reactive synthesis approach is the realization that many
requirements can be expressed as formal temporal assertions, capturing intended system functionality in a
declarative fashion. Assertions can express both safety properties, such as “a Grant is always followed by
Busy”, and liveness properties, such as “a Request is eventually followed by a Grant”. Thus, the functional
specification of a system can be expressed as a set of temporal assertions.

The assertion-based approach to system specification underlays early work on program verification [Fra92],
whose focus was on input/output properties. This was later extended to temporal properties of ongoing
computations [Pnu77], which enabled the application of formal verification techniques to reactive systems–
systems that have ongoing interactions with their environments [HP85]. One of the most successful ap-
plication of the assertion-based approach has been via model checking, an algorithmic formal-verification
technique [CE81, CES86, LP85, QS82, VW86]; see [CGP00] for an in depth coverage.

The design of reactive systems, systems that engage in an ongoing interaction with their environment,
is one of the most challenging problems in computer science [HM03, HP85]. The assertion-based approach
constitutes a significant progress towards addressing this challenge. While there has been impressive recent
progress on applying formal methods in verification [Jac09], in current design methodology, design and
verification are distinct phases, typically executed by separate teams. Substantial resources are spent on
verifying that an implementation conforms to its specifications, and on integrating different components
of the system. Not only do errors discovered during this phase trigger a costly reiteration of design and
programming, but more importantly, verification offers only quality control, not quality improvement, and
hence, current design methodology does not produce systems that are safe, secure, and reliable.

Currently, when formal assertions are being used, it is in testing and verification, after a significant effort
has already gone into the development effort. When errors are found, significant effort has to be expended
on design change. An old dream in computer science is that of design automation, in which the process of
converting formal specification to implementation is, to a major extent, automated. The implication is that
a major portion of the manual design effort should go into the development of high-level specification, since
much of the implementation effort can then be automated. The technique of compiling high-level formal
requirements to low-level system code is referred to as synthesis, and was proposed already in [Chu57, Gre69].
Follow up work in [BL69, Rab72] addressed the problem mathematically, but it seemed quite far from being
applicable to real-life problems.

In the late 1980s, several researchers realized that the classical approach to system synthesis [Gre69],
where a system is extracted from a proof that the specification is satisfiable, is well suited to closed systems,
but not to reactive systems. In reactive systems, the system interacts with the environment, and a correct
system should then satisfy the specification with respect to all environments. If one applies the techniques
of [EC82, MW84] to reactive systems, one obtains systems that are correct only with respect to some
environments. Pnueli and Rosner [PR89a], Abadi, Lamport, and Wolper [ALW89], and Dill [Dil89] argued
that the right way to approach synthesis of reactive systems is to use the model of a, possibly infinite, game
between the environment and the system. A correct system can be then viewed as a winning strategy in
this game. It turns out that satisfiability of the specification is not sufficient to guarantee the existence of
such a strategy. Abadi et al. called specifications for which a winning strategy exists realizable. Since then,
the subject of reactive synthesis has been an active area of research, attracting a considerable attention, for
example [KV00, PR89b, Var95, WTD91].
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1.3 Organization of This Paper

The goal of this paper is to bridge the gap between supervisory control of discrete event systems and reactive
synthesis. We start in Section 2 by presenting brief overviews of supervisory control (Section 2.1) and reactive
synthesis (Section 2.2). While Section 2 is not meant to be a tutorial introduction nor a survey of each area,
we have tried to make it as self-contained as possible; a small set of key references is given throughout the
exposition.

The main results of this paper are contained in Section 3. That section is organized into several parts.
First, we present in Section 3.1 a simplification of the basic supervisory control problem, non-blocking
version, to one where the safety specification has been absorbed into the plant model. We then show that
the resulting Simple Supervisory Control Problem (SSCP) has a state-based solution. The results on SSCP
will facilitate bridging the gap in the remainder of Section 3. Second, for bridging reactive synthesis with
supervisory control, we need two technical steps: the first step is to consider reactive synthesis with plants;
the second step is to bring in the issue of maximal permissiveness into this reactive synthesis setting. These
two steps are covered in Section 3.2. With the above technical results established, we establish the formal
reduction from SSCP to a reactive synthesis problem with plants and maximal permissiveness in Section 3.3.
Section 3.4 discusses links between the reactive synthesis problem with plants and the more standard reactive
synthesis problem without plants.

Some concluding comments and directions for future work are given in Section 4.

1.4 Related Works

This paper is not the first to explore connections between supervisory control and reactive synthesis. On
the supervisory control side, several authors have considered control of discrete event systems subject to
temporal logic specifications; see, e.g., [TW86, Lin93, JK06]. Supervisory control of discrete event systems
with infinite behavior, i.e., modeled by languages over Eω instead of E∗ for a given event set E, has also
been considered by many researchers; see, e.g., [Ram89, KGM92, TW94a, TW94b, Thi95, TM98, LT00].
On the other hand, several researchers in the formal methods community have investigated supervisory
control of fully- and partially-observed discrete event systems, in untimed, timed, and hybrid system settings;
see, e.g., [Mad01, KMTV00, AVW03, RP03, HW92, MPS95, AMP95, HK97, CHR02]. Researchers from
both the supervisory control and formal methods communities have also studied problems of distributed /
decentralized controller synthesis, where more than one controllers are (simultaneously) synthesized, e.g.,
see [PR90, RW92, BL98, YL00, LT00, Tri04, LV09, SSvS13].

In the present paper, we restrict attention to the classical version of centralized supervisory control for
fully-observed systems modeled by languages of finite strings. Our goal is to establish a precise connection of
this work with problems of reactive synthesis, by showing how specific problem instances reduce to each other.
To our knowledge, such reductions have not been published elsewhere. Our results therefore complement
the existing work.

2 Classical Frameworks

In the following, we will give an overview of the fields of supervisory control and reactive synthesis. Due
to the large amount of works in both areas, such overviews can never be comprehensive. We thus focus on
explaining the basic concepts and ideas in these fields in order to allow the reader to compare and relate
these, and in order to prepare the ground for the “bridges” that will be established in Section 3.

2.1 Supervisory Control

In supervisory control of Discrete Event Systems (DES), the system to be controlled, i.e., the plant, is
typically modeled as a set of interacting finite-state automata coupled by common events or as a Petri net.
In order to obtain a monolithic model that will be used for analysis and control synthesis purposes, the
parallel composition of the set of interacting automata is performed or the reachability graph of the Petri
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net is constructed. We restrict attention to plants with finite state spaces. Also, we assume full event
observability.

Let the plant be denoted by G. (Formal definitions will follow.) G captures the entire set of possible
behaviors of the plant and it is called the “uncontrolled system.” In general, some of this behavior is not
acceptable in the sense that it is not safe with respect to a given specification or that it results it deadlock or
livelock. Consequently, we wish to restrict the behavior of G by means of a feedback controller, or supervisor
in DES terminology. The standard feedback loop of supervisory control theory is shown in Fig. 1. The

Plant G
control

actions

Supervisor S

events

Figure 1: Closed-loop system S/G, where S issues control actions in response to the events generated by G.

“input” to the supervisor S is the string of events generated so far by G. All the events of G are observed
by S. The “output” of S is a control action that tells G which event(s) it is allowed to do at that moment.
The supervisor may allow more than one event, in which case the system will decide which allowed event
to execute next. The mechanism by which G chooses which allowed event to execute next is not modeled.
One may think of G as a semi-autonomous system for instance. In general, the supervisor may not have
full actuation capabilities, i.e., there may be events of G that it cannot disable. These events are called
uncontrollable. How to deal with uncontrollable events is one of the contributions of supervisory control
theory.

Example: Coffee Machine. For the sake of illustration, assume that our plant G is a coffee machine that
can grind coffee beans, brew coffee, and deliver a cup of coffee. Its interface with the user is a “coffee button”
that generates an event, denoted by c, when it is pressed by the user. The automaton representation of that
machine is shown in Fig. 2. We give the formal definition of an automaton below; for now, we explain the
transition structure. The initial state is 1 (arc into it); it is also an accepting or marked state (double circle).
Upon occurrence of event c, the coffee machine moves to a new state in which it can execute an arbitrary
number of “grind” events, which are denoted by g, as well as an arbitrary number of “brew” events, which
are denoted by b; these events self-loop at state 2. Finally, when grinding and brewing are completed, the
coffee is delivered (poured in cup) and the machine returns to its initial state; this is represented by event r.
For simplicity, we assume that the machine ignores further pressing of the coffee button while it is grinding
and brewing, i.e., until event r occurs. This is modeled by the self-loop for event c at state 2.

G represents the physical capabilities of the machine, without an appropriate control protocol, i.e.,
without a specification. As given, this behavior is unsafe: first, brewing should always be preceded by
grinding; second, no grinding should occur after brewing has started. Moreover, one may wish to follow
special coffee recipes, parameterized by the number of g events (more events means finer ground coffee) and
the number of b events (more events for stronger coffee). One such recipe could be that coffee is prepared
by one grinding step followed by two brewing steps. Another recipe for stronger coffee could call for two
grinding steps followed by three brewing steps.

We wish to synthesize a supervisor S that will restrict the behavior of G in order to satisfy the above
safety constraints and allow the two possible recipes. In this example, event c is uncontrollable, as the
supervisor cannot tell the plant to ignore a request for coffee when it is in state 1. (Note that such requests
are ignored while the plant is in state 2, as captured in the model in Fig. 2.) The other events are assumed
to be controllable, as the coffee machine has actuators for grinding, brewing, and delivering a cup of coffee;
hence, the control protocol can decide when to activate or de-active these actuators. For instance, after the
occurrence of event c, S needs to tell G that it should execute a g event, not a b event, as grinding must
precede brewing. Hence, immediately after event c occurs, S should disable event b. Similarly, after the first
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1 2
c

r

c

g

r

Figure 2: Automaton G: uncontrolled coffee machine.

b event, S should disable event g until the next cup is prepared. As for event r, it should remain disabled
until a recipe is completed. Here, in the spirit of supervisory control, we assume that the supervisor will
not force one of the allowed recipes. Namely, after one occurrence of g, S can enable both g and b and let
the plant “randomly” choose to do either another g event or to start brewing, i.e., randomly choose which
recipe to implement (perhaps on the basis of some other features not included in this simple model). If the
plant chooses to execute b, then further occurrences of g will be disabled by S. On the other hand, after
two consecutive occurrences of event g, S needs to tell G that it should not execute any more g events for
the current cup under preparation, as no recipe calls for three grinding steps; i.e., S must disable the third
consecutive occurrence of event g. When the plant has completed either recipe, S disables both g and b and
enables r in order to allow the plant to deliver the cup of coffee.

In supervisory control, the objective is to automatically synthesize a supervisor S that provably satisfies
all given specifications. The inputs to the synthesis process are: (i) the model G; (ii) the sets of controllable
and uncontrollable events; and (iii) an automaton model of the specifications imposed on G. In the rest of
this section, we present the main concepts needed before we can proceed to bridging the gap with reactive
synthesis.

2.1.1 Plant Model

In supervisory control theory, plants are typically modeled as deterministic finite-state automata. A deter-
ministic finite-state automaton (DFA) is a 5-tuple

G = (X,x0, Xm, E, δ)

where

• X is a finite set of states, x0 ∈ X is the initial state, and Xm ⊆ X is the set of marked (i.e., accepting)
states;

• E is a finite set of events. E is (implicitly) partitioned into two disjoint subsets:

E = Ec ∪ Euc

where Ec models the set of controllable events and Euc the set of uncontrollable events.

• δ : X × E → X is the transition function, which in general will be partial.

The reason for the transition function to be partial is the fact that G models the physically possible behavior
of a DES, as a generator of events. Selection of the states to “mark,” i.e., to be included in Xm, is a modeling
consideration to capture strings that represent that the system has completed some task. In many systems
with cyclic behavior, such as our coffee machine, the initial state is marked, as returning to it means that a
task has been completed and a new one can start.

A state x ∈ X is called a deadlock state if for all e ∈ E, δ(x, e) is undefined.
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The transition function δ can be “lifted” to a function

δ∗ : X × E∗ → X

defined as follows:

δ∗(x, ε) = x

δ∗(x, σ · e) = δ(δ∗(x, σ), e)

where ε denotes the empty string and · denotes string concatenation. (We usually omit writing · unless
needed for clarify of notation.) Note that since δ is partial, δ∗ is also partial. Since we always extend δ to
δ∗, we shall drop the “*” superscript hereafter and simply refer to the extended function as δ.

The DES G defines the following languages:

L(G) = {σ ∈ E∗ | δ(x0, σ) is defined} and Lm(G) = {σ ∈ E∗ | δ(x0, σ) ∈ Xm}.

Given K ⊆ E∗, let K denote the prefix-closure of K:

K = {σ | ∃σ′ ∈ E∗ : σσ′ ∈ K}

In the definition above σ′ can be the empty string, so K ⊆ K for all K.
Moreover, for any DES G:

Lm(G) ⊆ Lm(G) ⊆ L(G) = L(G)

Note that Lm(G) 6= L(G) in general. This is because L(G) may contain strings that cannot be extended to
yield strings in Lm(G). In other words, G may contain reachable states that cannot reach any marked state.

2.1.2 Supervisors

A supervisor for G is a function S : E∗ → 2E . It reads a string σ representing the history of what has
happened so far and returns the set of controllable events that are allowed to occur. To ensure that S never
disables an uncontrollable event, we require that Euc ⊆ S(σ) for all σ ∈ E∗ (alternatively, we could also
define S to be a function S : E∗ → 2Ec). Note that S(σ) ∩ Ec may be empty.

Sometimes S is required to satisfy the following property:

∀σ, c ∈ Ec : c ∈ S(σ)⇒ δ(x0, σc) is defined (1)

which states that S allows a controllable event e only if e is feasible in G. This is not an essential requirement
on S: we can simply ignore controllable events that S allows but are not feasible in G. The same comment
applies to enabled but infeasible uncontrollable events.

When S is a supervisor specifically designed for G, the history σ can only be generated by G, therefore
S can also be defined as a function

S : L(G)→ 2E

However, in general, it is more convenient to define S to be a function over E∗, since this allows us to use
the same supervisor for different plants, as long as Ec and Euc remain the same.

Remark: Full observability. In the current framework, a plant is fully observable by a supervisor, for
two reasons. First, the supervisor, defined as a function with domain E∗, observes the entire sequence of
events generated by the plant (in partial observability frameworks, only a subset of events are observed).
Second, the plant itself is a deterministic automaton. Therefore, given the sequence of observed events, the
supervisor can uniquely determine the current state of the plant.
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2.1.3 Closed-Loop System

Given a plant G = (X,x0, Xm, E, δ) and a supervisor S : E∗ → 2E for G, the closed-loop system S/G,
according to the feedback loop in Figure 1, is a DES that is formally defined as follows:

S/G = (X ′, x′0, X
′
m, E, δ

′)

where

• X ′ = X × L(G)

• x′0 = (x0, ε)

• X ′m = Xm × L(G)

• δ′
(
(x, σ), e

)
=

{
(δ(x, e), σe) if δ(x, e) is defined and e ∈ S(σ)
undefined otherwise.

A state in S/G is a pair (x, σ) where x ∈ X is a state of the plant G and σ ∈ L(G) is the history observed
so far. Thus, S/G is an infinite-state automaton, except for the special case that G is loop-free. This need
not worry us for now. At this point, we are mainly interested in defining the synthesis problem, and not the
algorithm to solve it. The initial state of S/G is (x0, ε), since x0 is the initial state of G and the history is
initially empty. X ′m is defined as Xm × L(G), meaning that a behavior of the closed-loop system is marked
iff it is marked by G. In other words, we only consider supervisors that do not affect the marking of states
in the plant. The transition function δ′ is as follows. Given current state (x, σ) and event e:

• when δ(x, e) is undefined (i.e., the plant does not have a transition from x for e), then δ′
(
(x, σ), e

)
is

also undefined

• otherwise, assuming δ(x, e) = x′,

– if e is uncontrollable, i.e., e ∈ Euc, then the next state is (x′, σe), i.e., the plant moves to x′ and
the supervisor observes e,

– if e is controllable and allowed by the supervisor S, i.e., e ∈ Ec ∩ S(σ), then the next state is
again (x′, σe),

– otherwise (i.e., if e ∈ Ec \S(σ), meaning that e is controllable but not allowed by S), δ′
(
(x, σ), e

)
is undefined. This is the only case when an event e which is allowed in G is forbidden in the
closed-loop system.

Note that when δ(x, e) is defined, σ ∈ L(G) implies σe ∈ L(G). This ensures that if (x, σ) is a valid state of
S/G, i.e., (x, σ) ∈ X ′, then δ′

(
(x, σ), e

)
is also a valid state of S/G, so that the state-space of S/G is well

defined.
S/G is an automaton (albeit an infinite-state one), therefore, languages L(S/G) and Lm(S/G) are defined

as stated above. Note that, by definition, S/G is a restriction of G, therefore,

L(S/G) ⊆ L(G) and Lm(S/G) ⊆ Lm(G)

Moreover, it is easy to verify that
Lm(S/G) = L(S/G) ∩ Lm(G)

since a marking in S/G is completely determined by a marking in G. When S is applied to G as described
above, the definition of S(σ) for σ ∈ E∗\L(S/G) is irrelevant, since the controlled behavior will never exceed
L(S/G).

As an example, consider the plant G1 shown in Figure 3. Let Ec = {c1, c2} and Euc = {u} (we generally
use the convention that events c, c′, c1, c2, ... are controllable, while events u, u′, u1, u2, ... are uncontrollable).
Consider two supervisors S1 and S2 for G1, defined as follows:

S1(σ) = {c1, u} for all σ S2(σ) =

{
{c1, u} if σ = ε
{c2, u} otherwise

8
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Figure 3: Plant G1 and two closed-loop systems.

The closed-loop systems S1/G1 and S2/G1 are shown in Figure 3. For simplicity, states in the closed-loop
systems are labeled as in the original plant G1, instead of being labeled as pairs (x0, ε), (x1, c1), (x3, u), and
so on.

Remark: Supervisors vs. controllers. Supervisory control theory typically uses the term “supervisor”
instead of “controller”. The term “supervisor” is well-chosen because in this framework supervisors are like
“parents”: they can disable options, but they cannot “make things happen”. For instance, a supervisor
cannot force the plant to take a certain transition, even when this transition is controllable. The supervisor
can only allow a controllable transition. If this is the only outgoing transition from the current state, then
presumably this will happen (although the state may be marked, with the interpretation that the plant
“stops” there). But if there are multiple (controllable or uncontrollable) transitions from that state, the
plant could choose any of them, without the supervisor having any control over this choice.

2.1.4 An Uninteresting Synthesis Problem

A supervisor is needed because without it the plant may generate illegal behaviors. The supervisor aims at
restricting the plant’s behaviors, so that they are all contained in a set of “good”, or “legal” behaviors.

A straightforward way to formalize this idea is to assume that we are given a language of “good” behaviors,
Lam, called the admissible marked language. Then we could define a synthesis problem where we ask (if it
exists) for a supervisor S such that Lm(S/G) ⊆ Lam. This, however, is not an interesting problem, for a
number of reasons.

First, in terms of synthesis, the problem is trivial. Indeed, instead of searching for an arbitrary supervisor
S, it suffices to simply check whether the most-restrictive (or least-permissive) supervisor works. The most-
restrictive supervisor Smr is the supervisor that disables everything that it can disable, i.e., Smr(σ) = Euc,
for any σ. If Smr satisfies Lm(Smr/G) ⊆ Lam, then we have found a solution to the above synthesis problem.
Otherwise, it is easy to see that no solution exists. Indeed, any other supervisor S is bound to allow more
behaviors than Smr, that is, Lm(Smr/G) ⊆ Lm(S/G). Therefore, if Lm(Smr/G) is not a subset of Lam,
neither can Lm(S/G) be.

The fact that this problem is trivial (indeed, it is not really a synthesis problem, but a verification
problem) should not necessarily deter us. On the contrary, the easier the problem, the better. However,
the second and most important reason why the above problem is not the right one is the fact that the
most-restrictive supervisor is rarely what we want. Indeed, the most-restrictive supervisor may be far too
restrictive. It may, for example, introduce deadlocks. For the plant G1 in Fig. 3, Smr will result in a new
deadlock at state 3 of G1, since the only events out of that state are controllable events that are disabled
by Smr. Absence of deadlocks cannot be expressed in terms of an admissible marked language Lam. We
therefore need a richer way to specify desirable supervisors. Toward this goal, we introduce next the notion
of non-blockingness.
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2.1.5 Non-Blockingness

Let G be a plant and S a supervisor for G. S is said to be non-blocking for G iff

Lm(S/G) = L(S/G).

Note that, as mentioned above, Lm(S/G) ⊆ L(S/G) always holds. Therefore, non-blockingness is equivalent
to L(S/G) ⊆ Lm(S/G). Non-blockingness says that the closed-loop system should not contain behaviors
that cannot be extended to marked behaviors. More precisely, there should be no deadlock states that are
not marked, and there should be no absorbing strongly connected components that do not contain a marked
state; the latter situation corresponds to a livelock.

As an example, consider again plant G1 and supervisors S1, S2 of Figure 3. It can be seen that S1 is
blocking since (uc1 ∈ L(S1/G) but Lm(S1/G) = {ε, c1}); on the other hand, S2 is non-blocking.

The following is a useful characterization of non-blockingness. Its proof is straightforward from the
definition of non-blockingness and may be skipped.

Lemma 1. S is a non-blocking supervisor for G iff from every reachable state of S/G there is a path to a
marked state of S/G.

Proof. Let G = (X,x0, Xm, E, δ). Suppose S is a non-blocking supervisor for G. Let S/G = (X ′, x′0, X
′
m, E,

δ′). Let (x, σ) ∈ X×L(G) be a reachable state of S/G. Then σ ∈ L(S/G) (by definition of S/G). Since S is
non-blocking, L(S/G) ⊆ Lm(S/G). Therefore σ ∈ Lm(S/G), i.e., there exists σ′ such that σσ′ ∈ Lm(S/G).
This means that δ′((x, σ), σ′) is a marked state of S/G, i.e., there is a path from (x, σ) to a marked state of
S/G. This completes the “only if” part.

Conversely, consider some σ ∈ L(S/G). Then δ′((x0, ε), σ) is defined and equal to (x, σ), for some x ∈ X.
From the hypothesis, there must be a path from (x, σ) to some marked state (xm, σ

′) with xm ∈ Xm. By
definition of S/G, σ must be a prefix of σ′ and since σ′ ∈ Lm(S/G), σ ∈ Lm(S/G). This completes the “if”
part and the proof.

2.1.6 Safety Properties and Admissible Marked Languages

Before we can give a formal statement of the basic supervisory control problem defined below (in Sec-
tion 2.1.8), we need to formalize the notions of admissible (marked) language and of maximal permissiveness.
This is done in this and the next subsection.

An admissible marked language in supervisory control, denoted Lam, captures the safety property that
all behaviors of the closed-loop system are “legal”, or “good”. Typically, Lam is obtained as the intersection
Lam := La∩Lm(G), where La is a prefix-closed regular language (i.e., a regular language such that La = La).
La captures the set of legal behaviors. For safety properties, such sets are prefix-closed, since for every unsafe
behavior σ, every extension σ · σ′ of σ is also unsafe. Conversely, if σ is safe, every prefix of σ is also safe.
Then, Lam defined as above captures the set of all safe behaviors that can be generated and are marked by
the plant. This set has two useful properties:

1. Lam ⊆ Lm(G) (by definition, since Lam = La ∩ Lm(G)).

2. Lam is “Lm(G)-closed”. Given languages K and L with K ⊆ L ⊆ E∗, we say that K is L-closed iff

K = K ∩ L.

Notice that since K ⊆ L and K ⊆ K, K ⊆ K ∩ L always holds. Therefore requiring L-closure is
requiring that K∩L ⊆ K. Then, it is easy to see that if Lam = La∩Lm(G) then Lam∩Lm(G) ⊆ Lam.

In the sequel we will assume that legal behaviors are provided as an admissible marked language Lam which
satisfies conditions 1 and 2 above, i.e., Lam ⊆ Lm(G) and Lam is Lm(G)-closed.

Given DES G and Lam ⊆ Lm(G), a supervisor S is said to be safe for G with respect to Lam if L(S/G) ⊆
Lam. When Lam is Lm(G)-closed, safety implies that

Lm(S/G) = L(S/G) ∩ Lm(G) ⊆ Lam ∩ Lm(G) = Lam
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and thus the only marked strings possible under control are safe marked strings. We often drop the reference
to Lam and simply say that a supervisor is “safe” if it is clear from the context which safety specification is
being referred to.

As an example, consider plant G1 of Figure 3. Let L2 = {uc2}, which can be interpreted as capturing the
safety property “c1 should never occur”. (As explained above, L2 is obtained by taking the intersection of
Lm(G1) with the prefix-closed language containing all strings not including c1, i.e., ε, u, c2, uu, c2c2, and so
on.) L2 is Lm(G1)-closed. L2 is also a strict subset of Lm(G1). Therefore, L2 is a valid admissible marked
language. Consider the supervisor S3 defined as follows:

S3(σ) =

{
{u} if σ = ε
{c2, u} otherwise

It can be seen that S3 is non-blocking for G1 and satisfies Lm(S3/G1) ⊆ L2. S3 also satisfies L(S3/G1) ⊆ L2,
therefore, S3 is safe w.r.t. L2.

Remark. Lam ⊆ Lm(G) is not a restrictive assumption, even for arbitrary Lam, i.e., not necessarily satis-
fying Lam = La ∩ Lm(G). If Lam 6⊆ Lm(G), we can set L′am := Lam ∩ Lm(G) (thus achieving the condition
L′am ⊆ Lm(G)) and ask for a supervisor such that Lm(S/G) ⊆ L′am. Any such supervisor S also satisfies
Lm(S/G) ⊆ Lam, since L′am ⊆ Lam. Conversely, any supervisor which satisfies Lm(S/G) ⊆ Lam also satisfies
Lm(S/G) ⊆ L′am, since Lm(S/G) ⊆ Lm(G). Therefore, asking for a supervisor such that Lm(S/G) ⊆ Lam

is equivalent to asking for a supervisor such that Lm(S/G) ⊆ L′am. Thus, we can assume Lam ⊆ Lm(G)
without loss of generality.

On the other hand, an arbitrary Lam is not necessarily Lm(G)-closed, as the following example illustrates.

x0G2: x1 x2
c c

Figure 4: Plant G2.

Consider the plant G2 shown in Figure 4, where Lm(G2) = {c, cc}. Let L1 = {cc}. L1 is not Lm(G2)-
closed. Indeed, c ∈ L1∩Lm(G2) but c 6∈ L1. It is easy to find a blocking supervisor that ensures Lm(S/G2) ⊆
L1. In fact, the most-restrictive supervisor Smr achieves Lm(Smr/G2) = ∅ ⊆ L1. This supervisor is
blocking, because ε is in L(Smr/G2) but not in Lm(Smr/G2) = ∅. A non-blocking supervisor S that ensures
Lm(S/G2) ⊆ L1 does not exist. Indeed, S can only disable transitions, and it cannot disable both transitions
of G2 because this would be blocking. Thus, at least one of c or cc must be in Lm(S/G2). But c ∈ Lm(S/G2)
is not allowed, because this would imply Lm(S/G2) 6⊆ L1. Therefore it must be that Lm(S/G2) = {cc}. But
it is impossible to have S allow cc while it forbids c, since c is a marked prefix of cc. Indeed, this would
require S being able to “unmark” some marked states of the plant, which it cannot do.

2.1.7 Maximal Permissiveness and Uniqueness

An important requirement in the basic supervisory control problem defined below (Section 2.1.8) is maximal
permissiveness, namely, the fact that the supervisor must disable events only when strictly necessary to
enforce the other requirements (non-blockingness or safety). This is a reasonable requirement, as it forces
the supervisor to “disturb” the plant as little as possible, and only when strictly necessary. An important
feature of the basic supervisory control framework is that a unique maximally-permissive supervisor always
exists. As we shall see, this is not generally the case in the reactive synthesis framework. In this section, we
establish this uniqueness property.

First, we define what it means for a supervisor to be more permissive than another supervisor. Consider
a plant G and two supervisors S1, S2 for G. We say that S1 is no more permissive than S2 iff S1(σ) ⊆ S2(σ)
for any σ. We say that S2 is strictly more permissive than S1 iff S1 is no more permissive than S2 and
S1 6= S2.
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Now, consider an admissible marked language Lam satisfying: (1) Lam ⊆ Lm(G) and (2) Lam is Lm(G)-
closed. A supervisor S which is non-blocking for G and safe w.r.t. Lam is said to be maximally-permissive
with respect to G and Lam if there is no supervisor S′ which is non-blocking for G, safe w.r.t. Lam, and strictly
more permissive than S. Note that, a-priori, there could be more than one maximally-permissive supervisor,
as the definition itself does not imply uniqueness. The theorem below shows that, for non-blockingness and
safety, a unique maximally-permissive supervisor exists, provided that a supervisor exists at all.

Theorem 1. Consider a plant G, and an admissible marked language Lam satisfying: (1) Lam ⊆ Lm(G)
and (2) Lam is Lm(G)-closed. If there exists a supervisor which is non-blocking for G and safe w.r.t. Lam

then there exists a unique maximally-permissive supervisor Smpnb which is non-blocking for G and safe w.r.t.
Lam.

Proof. The books [CL08, Won12] and the original papers [RW87, WR87] contain proofs of Theorem 1, as well
as statements of necessary and sufficient conditions for the existence of a safe and non-blocking supervisor
and algorithmic procedures for computing Smpnb, given G and given an automaton representation of Lam.
These proofs are normally done by defining the property of controllability of languages, showing that it is
necessary and sufficient for the existence of a supervisor that exactly achieves a given language, and then
proving the existence of the supremal controllable sublanguage.

For the reader interested in understanding the existence of a unique maximally permissive safe and non-
blocking supervisor without reading more detailed treatments of supervisory control theory, we provide in
Appendix A a direct proof based on disjunction of supervisors. This proof does not require the notions of
controllable languages and of supremal controllable languages.

In the sequel, the unique maximally-permissive non-blocking and safe supervisor will be denoted by Smpnb

and its associated closed-loop marked language by Lm(Smpnb/G) = Lmpnb
am . Since Smpnb is non-blocking, then

L(Smpnb/G) = Lmpnb
am . Moreover, as a consequence of the maximal permissiveness property of Smpnb, the

language Lmpnb
am must contain the closed-loop marked language Lm(Sother/G) of any safe and non-blocking

supervisor Sother for G wrt Lam.
As an example, consider again plant G1 of Figure 3, admissible marked language L2 = {uc2}, and

supervisor S3 defined above. S3 is maximally-permissive w.r.t. G1 and L2. Indeed, any other supervisor,
in order to be strictly more permissive than S3, would have to either allow c1 initially, which would violate
safety w.r.t. L2, or allow c2 initially, which would violate non-blockingness, or allow c1 after u, which again
would be blocking.

Remark: Non-uniqueness of supervisors achieving maximal behavior. Note that, although Smpnb

is unique, there are generally more than one supervisor that results in the same maximal closed-loop marked
behavior Lmpnb

am since, by definition, Smpnb might enable infeasible controllable events. As an example,
consider the plant G3 shown in Figure 5, where both c1, c2 are controllable events. Note that all states of G
are accepting and as a result, Lm(G) is prefix-closed and Lm(G) = L(G) = {ε, c1, c1c2}.

x0G3: x1 x2
c1 c2

Figure 5: Plant G3.

Let Lam := {ε, c1}, which can be interpreted as “c2 should never occur”. The maximally-permissive
supervisor w.r.t. G3 and Lam defined as above is

Smpnb(σ) =

{
{c1} if σ = c1
{c1, c2} otherwise

Another, less permissive supervisor, is one that always disables c2. Both these two supervisors, however,
achieve the same maximal closed-loop behavior, which is exactly Lam.

12



A B C

D

F

G

E

c

c

g

c

g

b

c

b

b

b

r

c

cc

Figure 6: Automaton H that marks the language Lam for the coffee machine example.

2.1.8 BSCP-NB: Basic Supervisory Control Problem with Non-Blockingness

We are now ready to define the standard supervisory control problem:

Definition 1 (BSCP-NB). Given DES G and admissible marked language Lam ⊆ Lm(G), with Lam assumed
to be Lm(G)-closed, find if it exists, or state that there does not exist, a supervisor for G which is non-blocking
for G, safe w.r.t. Lam, and maximally-permissive.

Observe that from the safety property Lm(S/G) ⊆ Lam, we get Lm(S/G) ⊆ Lam. Also, from non-
blockingness we know that L(S/G) = Lm(S/G). These two properties imply L(S/G) ⊆ Lam and thus
in BSCP-NB the controlled behavior always stays within the prefix-closure of the admissible marked behav-
ior.

As an example, consider again plant G1 of Figure 3, admissible marked language L2 = {uc2}, and
supervisor S3 defined above. S3 is a solution to this BSCP-NB instance, since it is non-blocking, safe, and
maximally-permissive, as explained above.

It may happen that BSCP-NB has no solution. For instance, suppose that L(G) = {ucuc} and Lm(G) =
{uc, ucuc} with Ec = {c} and Euc = {u}. Take Lam = {uc}. Then no safe and non-blocking supervisor
exists. Any supervisor will allow uncontrollable event u at the beginning of system operation. But enabling
c after observing string u will violate safety, since string ucu will be in the closed-loop language. On the
other hand, disabling c after observing string u causes deadlock. Hence, BSCP-NB has no solution in this
example. This shows that the set of uncontrollable events Euc plays a central role in BSCP-NB. Algorithmic
procedures that solve BSCP-NB must account for both uncontrollability and non-blockingness, and these
two requirements are interdependent.

We postpone the discussion of algorithms to solve BSCP-NB to Section 3.1.4.

Example: Coffee Machine Revisited. We revisit the coffee machine example at the beginning of Sec-
tion 2.1, where the “plant” is the automaton G in Fig. 2. To obtain an instance of BSCP-NB, we formalize the
specifications of safety and the two allowed recipes described earlier in the form a language Lam ⊆ Lm(G).
It is not hard to see that Lam is marked by the non-blocking automaton H shown in Fig. 6. This automaton
ensures that grinding precedes brewing, that no grinding occurs after brewing has started, and it allows
either one of the two recipes: gbb or ggbbb. Its marked language is also a sublanguage of Lm(G) as we have
included self-loops for event c at the states where the coffee machine is not idle, consistent with the structure
of G. Observe that automaton H needs to count the number of g and b events, something that is not done
in G. It is also straightforward to verify from Fig. 6 that Lam satisfies the Lm(G)-closure condition.

If Euc = {c} but all other events are controllable, then the solution of BSCP-NB achieves Lam exactly
under control, i.e., the maximally permissive non-blocking supervisor Smpnb is such that Lm(Smpnb/G) =
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Figure 7: The interface of a controller for a coffee maker.

Lam. In other words, in this simple example, the synthesis step is trivial since the specification language
is exactly achievable by disabling g, b, or r at the right moment along each run of the plant. Hence, the
closed-loop language L(Smpnb/G) = Lam is also equal to L(H). (This is of course not true in general.)
Indeed, initially, Smpnb(ε) = {c, b, g, r}: only c is feasible and it is uncontrollable, so it must be enabled; the
other events are infeasible but added according to the definition of Smpnb. Then the supervisor issues the
following control actions for the given observed strings of G:
Smpnb(c) = {c, g} (i.e., b and r must be disabled to allow grinding to start);
Smpnb(cg) = {c, g, b} (i.e., r must be disabled until a recipe is completed);
Smpnb(cgb) = {c, b} (i.e., b must continue since the first recipe is being followed);
Smpnb(cgg) = {c, b} (i.e., b must start since the second recipe is being followed);
Smpnb(cgbb) = {c, r} (i.e., r must start since the first recipe is completed);
Smpnb(cggb) = {c, b} (i.e., b must continue since the second recipe is being followed);
Smpnb(cggbb) = {c, b} (i.e., b must continue since the second recipe is being followed);
Smpnb(cggbbb) = {c, r} (i.e., r must start since the second recipe is completed);
Smpnb(cgbbr) = Smpnb(cggbbbr) = {c, b, g, r} (i.e., a new cycle can begin);
and so forth.

If either event g, b, or r were uncontrollable, then BSCP-NB would have no solution. In the case where
g ∈ Euc for instance, the strings cgn, n ≥ 3, which are in L(G), cannot be prevented by control, and they
are outside Lam. Similarly for string cb if b is uncontrollable, and for string cr if r is uncontrollable.

2.2 Reactive Synthesis

In reactive synthesis, we build correct-by-construction controllers from declarative specifications. Controllers
are open dynamical systems. A controller is open in the sense that it has inputs and outputs, and its behavior
(its dynamics) depends on the inputs that the controller receives. These inputs come from the controller’s
environment (which may also be an open system, receiving as inputs the controller’s outputs). A specification
is declarative in the sense that it states how a controller must behave, but is not concerned with its internal
structure. Rather, the specification only describes the desired behavior of the controller on the interface
level, i.e., using its sets of inputs and outputs.

Let us illustrate the reactive synthesis framework by re-stating the coffee maker example (Section 2.1) in
this framework. Consider the interface of the controller of a coffee maker that is depicted in Figure 7. The
controller is meant to trigger the mechanical components of the coffee maker. The interface shows that we
have one input signal, c. In this example, it is supposed to represent whether the user of the coffee maker
has pressed the coffee button. There are also two output signals, namely b and g. While b is supposed to
represent whether the brewing unit of the coffee maker is activated, g represents whether the grinding unit
is activated.

In reactive synthesis, we assume that the controller evolves in steps. One difference between the DES
and reactive synthesis frameworks is that in DES the plant and the supervisor communicate via discrete
events, whereas in reactive synthesis, the controller communicates via input and output signals, which all
have some value assigned in every time step. For simplicity, we assume Boolean signals where all values are
Boolean. Controllers can therefore be viewed as state machines of type Moore or Mealy. In typical targets for
reactive synthesis such as on-chip controllers, this assumption is well-justified, as there is typically a global
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clock generator in such systems. In the scope of our coffee maker, which serves mainly as an introductory
example, we just choose a reasonable step duration.

A reactive system has no designated time of going out-of-service, i.e., for every number of time steps n,
we should not synthesize a controller that only works under the assumption that it runs for at most n steps,
as letting it run for n+ 1 time steps is also conceivable. To abstract from this problem, we assume that the
controller never goes out of service, and thus runs for an infinite duration. Such an execution produces a
trace, which describes in which steps which inputs and outputs are set (i.e., have value true). Formally, a
trace is an infinite word w = w0w1w2 . . ., where for every i ∈ N, we have wi ⊆ API ∪APO, where API is the
set of input signals, and APO is the set of output signals. In the case of the coffee maker, API = {c} and
APO = {g, b}. The following example shows an example trace of a coffee maker controller:

w =

c 7→ false
g 7→ false
b 7→ false

c 7→ true
g 7→ true
b 7→ false

c 7→ false
g 7→ true
b 7→ false

c 7→ false
g 7→ false
b 7→ true

c 7→ false
g 7→ false
b 7→ true

c 7→ false
g 7→ false
b 7→ true

 . . . (2)

In this trace, the coffee button is pressed in the second step, and grinding is performed in the two steps
starting with the second one. Then, the brewing unit of the coffee maker is triggered for three steps.

This behavior of the controller could be one that satisfies its specification. For example, a specification
for a coffee maker controller could be that once the coffee button is pressed, grinding should happen for two
steps, and afterwards brewing should be done for three time steps while the grinding unit is idle.

To now perform synthesis from this specification, we need to formalize it. In reactive synthesis, this is
typically done by describing the specification in a logic. The logic CTL? [EH86] is well-suited for this purpose
and extends standard Boolean logic by temporal operators and path quantifiers that intuitively allows us to
connect the system’s signal valuations in one step with the actions in other, future time steps. In the context
of logic, we also call the signals atomic propositions. The informal specification from the previous paragraph
would be formalized into CTL? as follows:

ψ = AG (c→ (g ∧ Xg ∧ XX((b ∧ ¬g) ∧ X(b ∧ ¬g) ∧ XX(b ∧ ¬g)))

The formula starts with the path quantifier A, which denotes that the expression right of the operator should
hold along all executions of a system to be synthesized. It is followed by the temporal operator G, which
is called the globally operator. For some formula Gφ to hold at some point in the execution of a system, φ
needs to hold for all steps from that point onward.

A specification is required to hold right from the start of the system. Thus, prefixing our coffee maker
specification ψ with AG means that the implication c→ . . . has to hold at every step of the system’s execution.
The implication in turn describes that (g∧Xg∧ . . .) shall happen whenever we have c, i.e., the coffee button
has been pressed. The consequent of the implication now is (g ∧Xg ∧XX((b∧¬g)∧X(b∧¬g)∧XX(b∧¬g)),
which is a Boolean formula in which the temporal operator X (next) is used. It describes that we need to
look one step into the future in the trace of the system to test if some sub-formula holds. So Xg holds in the
first step in a trace of the system if g holds in the second step of the trace. Likewise, XXg holds in the first
step in a trace if g holds in the third step of the trace. This example also shows that the operators in CTL?

can be chained, which makes it a rich modeling formalism for specifications. Note that the consequent of
the implication in ψ describes the informal statement of what shall happen upon a coffee button press from
above in a formal way.

To actually synthesize a system from a specification, the specification needs to be realizable, i.e., there
has to exist a system implementation for the given interface that ensures that every trace of the system
satisfies the specification. Most synthesis algorithms also check realizability, i.e., they do not only synthesize
an implementation for realizable specifications, but also detect unrealizability. As a consequence, there is
often no distinction between the two steps in the literature.

While testing realizability appears to be trivial and unnecessary, in the practice of synthesis, it is not.
For example, the coffee maker specification from above is unrealizable, and despite its short length, this
fact is easily overlooked. The reason for unrealizability here is that we might press the coffee button in the
first two successive steps of the system’s execution. The specification part Xg then requires that grinding
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is performed in the third step (as the implication is triggered by the second button press), but at the same
time the specification part XX((b∧¬g)∧ . . .) requires that grinding does not happen in the third step. This
is a contradiction that the system to be synthesized cannot avoid, as the input is not under its control.
Therefore, this specification is unrealizable.

There are two ways to fix the specification. One is to allow the system to delay the production of the
next cup until a grinding and brewing cycle has finished. This can be done using the eventually operator (F)
of CTL?. Intuitively, a CTL? formula Fφ holds at a point in a trace of the system if at some point in the
future, φ holds. The modified specification then looks as follows:

ψ = AG (c→ F(g ∧ Xg ∧ XX((b ∧ ¬g) ∧ X(b ∧ ¬g) ∧ XX(b ∧ ¬g)))

Note that the eventually operator does not impose a bound on the number of steps by which a brewing cycle
might be delayed. Thus, a system that satisfies this specification could react with a delay that gets longer and
longer the more coffees are made. However, none of the contemporary synthesis algorithms produces such
implementations, as such a behavior would require an infinite-state implementation, but they only compute
finite-state ones. As it can be shown that whenever there exists an implementation for a CTL? specification,
there also exists a finite-state one, this is also not necessary. So using the eventually operator in this context
instead of imposing a maximal bound on the number of steps until when grinding should start is reasonable.

Another possibility to fix the specification is to add an assumption to the specification that expresses
that the button cannot be pressed when brewing or grinding is already happening. The new specification
would be:

ψ′ = A (G((g ∨ b)→ ¬Xc)→ G (c→ F(Xg ∧ XXg ∧ XXX((b ∧ ¬g) ∧ X(b ∧ ¬g) ∧ XX(b ∧ ¬g))))

An assumption of course always has to be reasonable in practice to make sense in synthesis. If we know
that the coffee maker in which the controller is supposed to work ensures that the button cannot be pressed
while the maker is running (or alternatively ignores the button press), then the assumption is justified.

After this short introduction to the aims of reactive synthesis, let us now discuss more formally how we
specify the intended behavior of the system to be synthesized and how such a system is actually represented.

2.2.1 Computation Trees

A reactive system has to satisfy a specification regardless of the input to the system. To get an overview about
the possible behaviors of a system, for the scope of synthesis, we typically view a system implementation
as a computation tree, as these describe all system behaviors of a reactive system at once. Formally, for
some interface (API ,APO) of a reactive system, a computation tree is a tuple 〈T, τ〉, where T = (2API )∗

and τ : T → 2API∪APO . The tree describes all the possible traces by having τ map every input sequence to
the system to an output signal valuation that the system produces after having read the input sequence.
Without loss of generality, we assume that every node in the computation tree is also labeled by the last
input, i.e., we have τ(t0 . . . tn)|API

= tn for every t0 . . . tn ∈ (2API )+. While labeling the nodes in the tree
according to the last direction seems to be unnecessary, it allows us to define the logic CTL? below in a way
that generalizes to applying the logic to Kripke structures (which we define in Section 3.2.1) as well. Note
that τ(ε)|API

is not constrained in any way and can be freely set by the computation tree. Figure 8 shows
an example computation tree of a coffee maker controller.

2.2.2 The Temporal Logic CTL?

Let AP be a set of atomic propositions. Expressions in CTL? can either be state formulas or path formulas.
We define the set of path formulas in the temporal logic CTL? inductively by the following rules:

• every CTL? state formula is also a CTL? path formula

• For every CTL? path formula ψ, we have that ¬ψ, Gψ, Fψ, and Xψ are also CTL? path formulas;
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{c 7→ false,
g 7→ false,
b 7→ false}

{c 7→ false,
g 7→ false,
b 7→ false}

{c 7→ true,
g 7→ true,
b 7→ false}

{c 7→ false,
g 7→ false,
b 7→ false}

{c 7→ true,
g 7→ true,
b 7→ false}

{c 7→ false,
g 7→ true,
b 7→ false}

{c 7→ true,
g 7→ true,
b 7→ false}

{c 7→ false,
g 7→ false,
b 7→ true}

{c 7→ true,
g 7→ false,
b 7→ true}

{c 7→ false,
g 7→ false,
b 7→ true}

{c 7→ true,
g 7→ false,
b 7→ true}

. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

{c 7→
fal

se}
{c 7→

true}

Figure 8: A computation tree of a coffee maker controller. Taking a branch to the left always refers to the
input {c 7→ false}, whereas the right branches always refer to the input {c 7→ true}.

• For all CTL? path formulas ψ and ψ′, we have that ψUψ′, ψ Rψ′, ψ ∨ ψ′, and ψ ∧ ψ′ are also CTL?

path formulas.

The set of state formulas is defined as follows:

• For every p ∈ AP, p is a CTL? state formula;

• For all CTL? state formulas φ and φ′, we have that φ∨φ′, φ∧φ′ and ¬φ′ are also CTL? state formulas;

• Given a CTL? path formula ψ, Aψ and Eψ are CTL? state formulas.

The semantics of CTL? is defined over computation trees. Let AP be a set of atomic propositions for
AP = API ∪ APO, ψ be a CTL? formula over AP, and 〈T, τ〉 be a computation tree. A branch in 〈T, τ〉
starting in some node t ∈ T is defined to be a sequence b = b0b1b2 . . . such that (1) b0 = t, (2) for every
i ∈ N, we have bi ∈ T , and (3) for every i ∈ N, we have bi+1 = bix for some x ⊆ API . We denote the
substring of a string b starting at position j ∈ N by bj , i.e., for b = b0b1b2 . . ., we have bj = bjbj+1bj+2 . . ..

Given some node t = t0 . . . tn of 〈T, τ〉, we evaluate the validity of a CTL? state formula at point t by
recursing over the structure of the CTL? state formula (where ψ is a CTL? path formula and φ and φ′ are
CTL? state formulas):

• 〈T, τ〉, t |= p for some p ∈ API ∪ APO if p ∈ τ(t);

• 〈T, τ〉, t |= ¬φ if and only if not 〈T, τ〉, t |= φ;

• 〈T, τ〉, t |= φ ∨ φ′ if and only if 〈T, τ〉, t |= φ or 〈T, τ〉, t |= φ′;

• 〈T, τ〉, t |= φ ∧ φ′ if and only if 〈T, τ〉, t |= φ and 〈T, τ〉, t |= φ′;

• 〈T, τ〉, t |= Aψ if for all branches b starting from t, we have 〈T, τ〉, b |= ψ;

• 〈T, τ〉, t |= Eψ if for some branch b starting from t, we have 〈T, τ〉, b |= ψ.
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Likewise, given some branch b = b0b1 . . . of 〈T, τ〉, we evaluate the validity of a CTL? path formula on b by
recursing over the structure of the CTL? path formula (where ψ and ψ′ are CTL? path formulas and φ is a
CTL? state formula):

• 〈T, τ〉, b |= φ if and only if 〈T, τ〉, b0 |= φ;

• 〈T, τ〉, b |= ¬ψ if and only if not 〈T, τ〉, b |= ψ;

• 〈T, τ〉, b |= ψ ∨ ψ′ if and only if 〈T, τ〉, b |= ψ or 〈T, τ〉, b |= ψ′;

• 〈T, τ〉, b |= ψ ∧ ψ′ if and only if 〈T, τ〉, b |= ψ and 〈T, τ〉, b |= ψ′;

• 〈T, τ〉, b |= Xψ if and only if 〈T, τ〉, b1 . . . |= ψ;

• 〈T, τ〉, b |= Gψ if and only if for all j ∈ N, we have 〈T, τ〉, bj |= ψ;

• 〈T, τ〉, b |= Fψ if and only if for some j ∈ N, we have 〈T, τ〉, bj |= ψ;

• 〈T, τ〉, b |= ψUψ′ if and only if for some j ∈ N, we have 〈T, τ〉, bj |= ψ′, and for all 0 ≤ i < j, we have
〈T, τ〉, bi |= ψ;

• 〈T, τ〉, b |= ψ Rψ′ if either for all j ∈ N, we have 〈T, τ〉, bj |= ψ′, or there exists some j ∈ N such that
〈T, τ〉, bj |= ψ, and for all i ≤ j, we have 〈T, τ〉, bi |= ψ′.

We declare the set of trees for which all children of the root node satisfy some CTL? state formula φ to
be the models of φ.

Given some CTL? state formula φ, we say that φ is realizable for some interface I = (API ,APO) if there
exists an 2APO∪API -labeled 2API -tree that is a model of φ (and that copies the last input correctly to its node
labels).

CTL is the subset of CTL? obtained by restricting the path formulas to be Xφ, Fφ, Gφ, and φUφ′, where
φ, φ′ are CTL state formulas. LTL is the subset of CTL? consisting of the formulas Aφ in which the only
state subformulas in φ are atomic propositions.

Definition 2 (Realizability Problem). Given some system interface I = (API ,APO) and some CTL? state
formula φ (the specification), the realizability problem is to test if there exists some computation tree 〈T, τ〉
with T = (2API )∗ and τ : T → 2API∪APO that copies the respective last input to its node labels correctly and
such that 〈T, τ〉 is a model of φ.

2.2.3 Transducers

The definition of the realizability problem above has one slight problem: while it clearly defines what
constitutes a computation tree that represents a solution to the synthesis problem, such computation trees
have infinitely many nodes. Thus, the model is not directly usable for actually synthesizing systems, which
have to be finite-state in order to be implementable in the field. As a remedy to this problem, we define
transducers here, which serve as finite generators for computation trees. It can be shown that for every
realizable specification, there exists a computation tree that is generated by a transducer, and thus for the
scope of synthesis, it suffices to search for a transducer that generates a suitable computation tree.

Formally, a transducer over some set of input atomic propositions API and output atomic propositions
APO is defined as a tuple T = (S, 2API , 2API∪APO , δ, s0, L), where S is a (finite) set of states, δ : S×2API → S
is the transition function, s0 ∈ S is the initial state of the system, and L : S → 2API∪APO assigns to each
state its labeling. We require that the states always represent the last input to the transducer, i.e., we have
L(s)|API

= x for every s ∈ S such that for some s′ ∈ S, we have δ(s′, x) = s. The definition of a transducer
corresponds to the definition of a Mealy machine that is common in the practice of hardware design, but
with the addition that the transducer always produces the last output.

We say that some word w = w0w1 . . . ∈ (2APO × 2API )ω is a trace of T if there exists some sequence
of states π = π0π1 . . . ∈ Sω such that π0 = s0, and for all i ∈ N, we have πi+1 = δ(πi, x) for some
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x ⊆ API and wi = L(πi). We call π a run of the transducer in this context. We can obtain a computation
tree 〈T, τ〉 from a transducer T = (S, 2API , 2API∪APO , δ, s0, L) by setting T = (2API )∗ and τ(t0t1 . . . tn) =
L(δ(. . . δ(δ(s0, t0), t1), . . . , tn)) for all t0t1 . . . tn ∈ T .

To illustrate the concept of transducers, Figure 9 shows an example transducer for a coffee maker con-
troller that could have the same set of traces as the computation tree in Figure 8. As the computation tree
in Figure 8 is not fully shown (after all, it is infinite), we can however not be sure about that.

c 7→ false
g 7→ false
b 7→ false

c 7→ true
g 7→ true
b 7→ false

c 7→ false
g 7→ true
b 7→ false

c 7→ false
g 7→ false
b 7→ true

c 7→ false
g 7→ false
b 7→ true

c 7→ false
g 7→ false
b 7→ true

c 7→ true
g 7→ true
b 7→ false

c 7→ true
g 7→ false
b 7→ true

c 7→ true
g 7→ false
b 7→ true

c 7→ true
g 7→ false
b 7→ true

¬c
c

c

¬c

c ¬c ¬c ¬c ¬c

c c c c

¬c ¬c ¬c

c c c

¬c

Figure 9: An example transducer structure for a coffee maker controller with API = {c} and APO = {b, g}.
The initial state is marked with an incoming arrow. Edges are labeled by simple Boolean formulas that
represent the conditions over the input characters under which the transition is taken.

2.2.4 Reactive Synthesis Problem (RSP)

Definition 3 (RSP). Given some system interface I = (API ,APO) and some CTL? state formula φ (the
specification), the reactive synthesis problem (RSP) for I and φ is to compute a transducer over I whose
computation tree satisfies φ whenever it exists, and to deduce that no such transducer exists whenever this
is the case.

We postpone a discussion of algorithms to solve RSP to Section 3.2.6.

2.2.5 Maximal Permissiveness in RSP

The reader may have noted that in the definition of the supervisory control problem, we are concerned with
computing maximally permissive controllers, but in the reactive synthesis problem, we just search for any
controller that satisfies the specification. There are two reasons for this difference. First of all, the reactive
synthesis problem has been originally defined in this form by Church [Chu63]. The second, more important
reason is however that in general, maximally-permissive controllers do not exist.

To actually discuss maximally-permissiveness in the context of the reactive synthesis problem, we first of
all need to change our transducer definition, as the transducers currently dealt with are deterministic. For
a transducer T = (S, 2API , 2APO , δ, s0, L), we redefine δ to map from S × 2API to a subset of S. This way,
whenever the controller is in some state s and reads some input x ⊆ API , then it can transition to any of
the states in δ(s, x). We require that for all s ∈ S and x ⊆ API , δ(s, x) is non-empty. We furthermore allow
more than one initial state and modify the definition of a computation tree of account for these facts.

Computation trees for such non-deterministic transducers T = (S, 2API , 2API∪APO , δ, S0, L) are then tuples
〈T, τ〉 with T ⊆ S∗ such that for some s0 ∈ S0, we have:
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1.1. τ(ε) = L(s0)

1.2. |{s ∈ S | s ∈ T}| = |2API | and {L(s)|2API : s ∈ S ∧ s ∈ T} = 2API

1.3. For all s ∈ S with s ∈ T , we have s ∈ δ(s0, L(s)|2API )

2.1. For all t = t0 . . . tn ∈ T \ {ε}, we have τ(t0 . . . tn) = L(tn)

2.2. For all t = t0 . . . tn ∈ T \ {ε}, we have that |{s ∈ S | ts ∈ T}| = |2API | and {L(ts)|2API : ts ∈ T} = 2API

2.3. For all t = t0 . . . tn ∈ T \ {ε} with n ≥ 1, we have tn ∈ δ(tn−1, L(tn)|2API ).

Note that we actually only have three different conditions, but for the sake of completeness need one copy
of each condition for the root and one copy for the other nodes. The conditions together ensure that all the
possible computation trees of a transducer are input-complete, i.e., from every node, they have one possible
successor for every next input. We say that a non-deterministic transducer satisfies some CTL* state formula
φ if every input-complete computation tree induced by the transducer satisfies φ (at the root).

We furthermore say that two computation trees 〈T, τ〉 and 〈T ′, τ ′〉 are isomorphic if there exists a bijection
between nodes in T and T ′, i.e., if there exits some bijective function f : T → T ′ with |f(t)| = |t| for all
t ∈ T and τ(t) = τ ′(f ′(t)) for all t ∈ T . Bijective trees effectively represent the same behavior of a reactive
system although the internal structure of the transducers from which the trees are possibly generated may
be different.

We call a non-deterministic transducer maximally permissive for some CTL* state formula specification
φ and interface I = (API ,APO) if (1) the transducer branches over API and satisfies φ on all trees induced
by the transducer, and (2) every input-responsive computation tree for I that satisfies φ (at the root) has
an isomorphic computation tree that is induced by the transducer.

Note that maximally permissive finite-state controllers/transducers do not exist in general for RSP. For
example, let API = {r}, APO = {g}, φ = AGFg, and T = (S, 2API , 2API∪APO , δ, s0, L) be any transducer that
satisfies φ. Since T satisfies φ, there has to be some upper bound b ∈ N on the number of steps until g is set
to true by the controller for the first time, as otherwise, there exists some path in some computation tree
induced by T on which GFg is not satisfied. However, since a controller that sets g to true every (b + 1)th
cycle satisfies φ as well, T cannot be maximally permissive. As we started with an arbitrary finite-state
transducer, this proves that no controller can be maximally permissive.

For a discussion of maximal permissiveness in the reactive synthesis context, see also Section 3.2.5.

3 Bridging the Gap

After giving an introduction to the basic concepts of both supervisory control theory and reactive synthesis,
we turn towards bridging the gap between them. The general situation is described in Figure 10, where
the basic supervisory control problem (BSCP-NB) and the reactive synthesis problem (RSP) are the cases
at the cliffs of the gap. We introduce problems that conceptually lie in between BSCP-NB and RSP in
order to bridge the gap. These problems always differ in one aspect from their neighbors, and we can
perform reductions between these problems. As a result, we can move gently between the BSCP-NB and
RSP problems, which simplifies understanding the concepts to follow.

However, our bridge does not exactly meet in the middle. The reason is that the aim of supervisory control
and the aim of reactive synthesis slightly differ. In supervisory control, we always want our supervisor to be
maximally permissive (being a “parent”), as it should only block unwanted actions. In reactive synthesis,
on the other hand, where maximal permissiveness in unachievable in general, we want our controller to
actively enforce certain properties, possibly at the expense of preventing certain overall system behavior
that is unproblematic. This mismatch, and the lack of study of the general reactive synthesis problem with
maximal permissiveness, RSCPmax (see Definition 8 that follows), prevent us from performing a sequence of
reductions that map the problems completely onto each other.
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BSCP-NB
(Def. 1)

RSP
(Def. 3)

RSCPAGEFq
max

(Def. 7)

SSCP
(Def. 4)

RSCP
(Def. 6)

Corollary 1

Corollary 1

Corollary 2

Section 3.2.6

Section 3.4

Section 3.4Automata

Section 3.2.6Section 3.2.6

Figure 10: Relations between different synthesis and control problems.

Having said this, we can perform reductions to bring the problem into very similar forms, and conceptually
differing only in whether maximal permissiveness of the solution is required or not. We will see that the
problems that are closest to the missing piece of our bridge can be solved using techniques from automata
theory and thus, on an algorithmic level, we have obtained a complete connection, which is depicted in
Figure 10 by the fact that access to a joint vehicle to solve the problems is available from both sides of the
bridge although the bridge is actually not complete.

The reductions from the ends of the bridge towards the vehicle are the ones that we would perform
in order to apply an automata-based reasoning engine to solve the original problems. For discussing the
conceptual similarities and differences of the intermediate problems that we introduce, we also discuss the
backward directions of these reduction, whenever this makes sense. In must be stressed, however, that in an
algorithmic workflow for either RSP or BSCP-NB, we would never apply any of these reductions for reasons
of efficiency.

As a result of our bridging endeavor, we obtain a joint view onto the supervisory control and reactive
synthesis problems, which we hope to be useful to foster cross-fertilization between these research areas in
the future.

The rest of this section is organized as follows. In Section 3.1 we show that BSCP-NB is equivalent to
a simpler supervisory control problem in which only non-blockingness is required, called SSCP, and which
simplifies the reduction to the reactive synthesis setting. In Section 3.2 we define a reactive synthesis problem
with an explicit notion of plants, called RSCP. This makes it easier to capture supervisory control problems
where the plant is an input to the problem. RSCP does not generally admit maximally-permissive solutions,
but does so for the non-blocking requirement, which is the only requirement of SSCP. In Section 3.3 we show
how SSCP can be reduced to a version of RSCP which requires maximal permissiveness. In Section 3.4 we
informally discuss the links between reactive synthesis with plants and reactive synthesis without plants.

3.1 Simplifying the Supervisory Control Problem

In view of reducing BSCP-NB to the reactive synthesis framework, we first reduce BSCP-NB to a simpler
problem. In particular, we will eliminate the safety specification Lam by incorporating it into the plant. This
can be done by taking as new plant the product of the original plant G and an automaton recognizing Lam.
The simpler problem asks for a non-blocking supervisor for the new plant. We next formalize this idea.
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3.1.1 Incorporating Safety into the Plant

Let G = (X,x0, Xm, E, δ) be a DES plant. Let Lam ⊆ Lm(G) and let Lam be Lm(G)-closed. Let A =
(XA, xA0 , X

A
m, E, δ

A) be a deterministic finite-state automaton such that Lm(A) = Lam and L(A) = E∗.
We can assume without loss of generality that A is complete in the sense that its transition function δA is
total. Therefore, every string in E∗ has a unique run in A, although only some runs will generally end up
in a marked state; in fact, A is generally a blocking automaton, since strings outside Lam will never reach a
marked state. (The fact that L(A) 6⊆ L(G) is not a problem; this will become apparent below.)

The product of G and A, denoted by G×A, is defined to be the automaton

G×A = (X ×XA, (x0, x
A
0 ), Xm ×XA

m, E, δ
′)

such that

δ′
(
(x, xA), e

)
=

{ (
δ(x, e), δA(xA, e)

)
if δ(x, e) is defined (δA is total, so δA(xA, e) is always defined)

undefined otherwise

It follows from the construction of A and the assumptions on Lam and A that

L(G×A) = L(G) ∩ L(A) = L(G) ∩ E∗ = L(G) and

Lm(G×A) = Lm(G) ∩ Lm(A) = Lm(G) ∩ Lam = Lam.

G and G×A have the same set of events E, thus also the same subsets of controllable and uncontrollable
events. Therefore, any supervisor S for G is also a supervisor for G × A, and vice versa. This allows us to
state the following:

Lemma 2. Let G = (X,x0, Xm, E, δ), Lam ⊆ Lm(G), and assume that Lam is Lm(G)-closed. Let A be a
complete DFA such that Lm(A) = Lam. Let S be a supervisor for G, and therefore also for G × A. Then,
the following hold:

1. If S is non-blocking for plant G×A, then S is non-blocking for plant G.

2. If S is non-blocking for plant G×A, then S is safe for plant G w.r.t. Lam.

3. If S is non-blocking for plant G and safe for plant G w.r.t. Lam, then S is non-blocking for plant G×A.

4. S is safe for plant G×A w.r.t. Lm(G×A).

Proof.

1. To show that S is non-blocking for G, we need to show L(S/G) ⊆ Lm(S/G). Let σ ∈ L(S/G). We
need to find σ′ such that σ · σ′ ∈ Lm(S/G). We know that σ ∈ L(S/G × A) because A is complete.
Also, S is non-blocking for G × A, thus σ ∈ Lm(S/G×A). Therefore there exists σ′ such that
σ · σ′ ∈ Lm(S/G × A). By definition of the marked states of G × A, both G and A accept σ · σ′.
Therefore, σ · σ′ ∈ Lm(S/G).

2. To show that S is safe for G w.r.t. Lam, we need to show Lm(S/G) ⊆ Lam. Let σ ∈ Lm(S/G). We
need to show σ ∈ Lam. σ ∈ Lm(S/G) implies σ ∈ L(S/G), and therefore σ ∈ L(S/G × A) because
A is complete. Consider the (unique) run of G × A on σ. We claim that this run ends on a product
state that is marked for both G and A. σ ∈ Lm(S/G), therefore the product state must indeed be
marked for G. We show that σ ∈ Lm(A) which implies that the product state is also marked for A.
Since S is non-blocking for G × A, there exists σ′ such that σ · σ′ ∈ Lm(S/G × A). But this means
σ ·σ′ ∈ Lm(A), which implies σ ∈ Lm(A). Also, σ ∈ Lm(S/G) implies σ ∈ Lm(G). Therefore, we have
σ ∈ Lm(G) ∩ Lm(A). Since Lm(A) (i.e., Lam) is Lm(G)-closed, σ ∈ Lm(A).
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3. To show that S is non-blocking for plant G × A, we need to show L(S/G × A) ⊆ Lm(S/G×A). Let
σ ∈ L(S/G × A). We need to find σ′ such that σ · σ′ ∈ Lm(S/G × A). σ ∈ L(S/G × A) implies
σ ∈ L(S/G) and σ ∈ L(A). Since S is non-blocking for G, there exists σ′ such that σ · σ′ ∈ Lm(S/G).
Since Lm(S/G) ⊆ Lam = Lm(A), σ · σ′ ∈ Lm(A). σ · σ′ ∈ Lm(S/G) and σ · σ′ ∈ Lm(A) implies
σ · σ′ ∈ Lm(S/G×A). Therefore σ ∈ Lm(S/G×A).

4. Trivially, since safe w.r.t. Lm(G×A) means Lm(S/G×A) ⊆ Lm(G×A), which holds for any S.

Theorem 2. Let G = (X,x0, Xm, E, δ), Lam ⊆ Lm(G), and assume that Lam is Lm(G)-closed. Let A be a
complete DFA such that Lm(A) = Lam. Let S be a supervisor for G, and therefore also for G × A. Then,
the following statements are equivalent:

1. S solves BSCP-NB for plant G with respect to admissible marked language Lam.

2. S solves BSCP-NB for plant G×A with respect to admissible marked language Lm(G×A).

Proof.
2 ⇒ 1 : We need to show that S is non-blocking for G, safe w.r.t. Lam, and maximally-permissive. Non-
blockingness follows from Lemma 2, part 1. Safety follows from Lemma 2, part 2.

To show that S is maximally-permissive in G, suppose there exists a non-blocking and safe w.r.t. Lam

supervisor S′ which is strictly more permissive than S. By Lemma 2, parts 3 and 4, S′ is non-blocking for
G × A and safe for G × A w.r.t. Lm(G × A). The fact that S′ is strictly more permissive than S in G
also means that S′ is strictly more permissive than S in G × A. This contradicts the hypothesis that S is
maximally-permissive in G×A.

1⇒ 2 : We need to show that S is non-blocking for G×A, safe for G×A w.r.t. Lm(G×A), and maximally-
permissive. Non-blockingness follows from Lemma 2, part 3. Safety follows from Lemma 2, part 4.

To show that S is maximally-permissive in G×A, suppose there exists a non-blocking supervisor S′ for
G × A (and also trivially safe w.r.t. Lm(G × A)) which is strictly more permissive than S. By Lemma 2,
parts 1 and 2, S′ is non-blocking for G and safe for G w.r.t. Lam. The fact that S′ is strictly more permissive
than S in G×A also means that S′ is strictly more permissive than S in G. This contradicts the hypothesis
that S is maximally-permissive in G.

3.1.2 SSCP: Simple Supervisory Control Problem

Theorem 2 allows to reduce BSCP-NB to a simpler problem, namely, that of finding a maximally-permissive
non-blocking supervisor for a given plant, with no external admissible marked behavior. We call the resulting
problem the Simple Supervisory Control Problem (SSCP) and restate it formally:

Definition 4 (SSCP). Given DES G, find (if it exists, or state that none exists) a maximally-permissive
non-blocking supervisor for G, that is, a supervisor S which is non-blocking for G, and such that there is no
supervisor S′ which is non-blocking for G and strictly more permissive than S.

Corollary 1. BSCP-NB and SSCP are equivalent problems, i.e., each one can be reduced to the other with
a polynomial-time reduction.

Proof. SSCP is equivalent to the special case of BSCP-NB with Lam := Lm(G). This is because Lm(G)
is trivially Lm(G)-closed and Lm(S/G) ⊆ Lm(G) always holds. Obviously this special case of BSCP-NB
can be reduced to BSCP-NB. Conversely, Theorem 2 demonstrates that BSCP-NB can be reduced to this
special case of BSCP-NB. This reduction is polynomial-time because G×A can be computed in polynomial
time from G and A. Therefore all three problems, BSCP-NB, BSCP-NB with Lam := Lm(G), and SSCP
are equivalent with polynomial-time reductions.

It also follows from the above results and Theorem 1 that if a solution to SSCP exists, then this solution
is unique, i.e., the maximally-permissive non-blocking supervisor is unique.
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3.1.3 Finite-Memory, State-Based Supervisors

We will use SSCP to establish a precise connection between supervisory control and reactive synthesis. In
this regard, we prove a useful property for the type of supervisors that need to be considered in solving
SSCP.

A supervisor is a function S : E∗ → 2E . The domain of this function is E∗, which is an infinite set. This
makes it a priori possible for S to require infinite memory. Fortunately, it can be shown that finite-memory,
and in particular state-based supervisors, are sufficient for SSCP.

Definition 5. Let G = (X,x0, Xm, E, δ) be a DES plant with E = Ec ∪ Euc and let S : E∗ → 2E be a
supervisor for G. S is said to be state-based if

∀σ1, σ2 ∈ E∗ : δ(x0, σ1) = δ(x0, σ2)⇒ S(σ1) = S(σ2).

That is, S is state-based if it outputs the same decision for two behaviors σ1, σ2 of G that end up in
the same state. Therefore, S only needs to know the current state of the plant in order to decide which
controllable events should be allowed. Note that we assume that, when one or both of δ(x0, σ1), δ(x0, σ2) are
undefined, the equality δ(x0, σ1) = δ(x0, σ2) is false, and therefore in that case the implication is trivially
true. Given that, Definition 5 does not constrain the structure of S outside of L(G), i.e., for strings in
E∗ \L(G). This is because we do not need to make any assumptions regarding the form of S over E∗ \L(G),
since these control actions will never be invoked when S is applied to G.

Let S be a state-based supervisor for G, and assume all states of G are reachable, that is, ∀x ∈ X : ∃σ ∈
E∗ : δ(x0, σ) = x; note that unreachable states can be removed from X without affecting SSCP. Then the
action of S on G can be viewed as a function S′ : X → 2E , where S′(x) = S(σ) where σ is any string such
that δ(x0, σ) = x (x is reachable, so at least one such σ exists). Because S is state-based, it returns the same
choice S(σ′) = S(σ) for any other string σ′ such that δ(x0, σ

′) = x. Therefore, S′ is well-defined. Thus, we
can assume, without loss of generality, that a state-based supervisor for G is a function S : X → 2E . As
in the case of general supervisors, we assume that Euc ⊆ S(x), for all x ∈ X, to ensure that a state-based
supervisor never disables an uncontrollable event.

In addition, the definition of the closed-loop system S/G can be simplified in the case of state-based
supervisors. In particular, S/G can be defined as S/G = (X ′, x′0, X

′
m, E, δ

′) where X ′ = X (instead of
X × L(G)), x′0 = x0, X ′m = Xm, and

δ′(x, e) =

{
δ(x, e) if δ(x, e) is defined and e ∈ S(x)
undefined otherwise.

The following result states that in order to solve the SSCP it suffices to consider only state-based supervisors.

Theorem 3. The solution to SSCP, if it exists, is a state-based supervisor.

Proof. Let Smpnb be the unique solution of SSCP. Suppose that δ(x0, σ1) = δ(x0, σ2) = xp but that
Smpnb(σ1) 6= Smpnb(σ2). Then there must exist ec ∈ Ec such that ec ∈ Smpnb(σ1) \ Smpnb(σ2). (Re-
call that we assume that all uncontrollable events are always enabled by a supervisor.) Since δ(x0, σ1) =
δ(x0, σ2) = xp, the post-languages in G from xp are the same, i.e.,

L(G)/σ1 = L(G)/σ2

Lm(G)/σ1 = Lm(G)/σ2

Since in SSCP the control problem involves the simple safety specification Lm(G) and the non-blocking
property, as captured by the marked states of G, the decision to enable or not an event after a given (safe)
string σ depends entirely on the post-language after σ, equivalently, on the state δ(x0, σ) reached by σ, since
the states of G are equivalence classes for future behavior. (Recall Lemma 1.) Thus, no such ec can exist at
state xp, otherwise Smpnb(σ1) would be incorrect or Smpnb(σ2) would not be maximally permissive. Hence,
Smpnb is a state-based supervisor.
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The consequence of Theorem 3 is that in order to solve SSCP, it suffices to search over state-based
supervisors. The state-based supervisor that satisfies the requirements of SSCP among all state-based
supervisors will be equal to Smpnb, the solution of SSCP.

Observe that Theorem 3 does not hold for BSCP-NB, since in general Lam/σ 6= Lam/σ
′, i.e., safety of

continuations from a given state may depend on how the state was reached.
As an illustration of state-based supervisors, consider our running example, and supervisors S1 and S2

defined in Section 2.1.3 and illustrated in Figure 3. Both S1 and S2 are state-based and can be equivalently
defined as follows:

S1(x) = {c1, u} for all x ∈ {x0, x1, x2, x3} S2(x) =

{
{c1, u} if x = x0
{c2, u} if x ∈ {x1, x2, x3}

Also consider supervisor S3 defined in Section 2.1.6. S3 is also state-based and can be equivalently defined
as follows:

S3(x) =

{
{u} if x = x0
{c2, u} if x ∈ {x1, x2, x3}

3.1.4 Algorithms for Supervisory Control Problems

The formulation and solution of BSCP-NB were first presented in the seminal papers of Ramadge & Wonham
[RW87, WR87]. The “standard” algorithm for solving BSCP-NB builds a non-blocking automaton that
marks the language Lm(Smpnb/G) = Lmpnb

am in the notation of Section 2.1.7 from G and from a non-blocking
automaton that marks the language Lam. Let H be such that L(H) = Lam and Lm(H) = Lam. Let G have
n states and H have m states. The standard algorithm for BSCP-NB builds automaton Hmpnb such that

L(Hmpnb) = Lmpnb
am and Lm(Hmpnb) = Lmpnb

am by first forming the product of G with H, and then iterating
over the resulting structure to delete states that violate the safety property with an uncontrollable event
and/or are blocking. Iterations are necessary in general since deletion of states that violate the safety property
with an uncontrollable transition may create new blocking states, and vice-versa. Convergence is guaranteed
in a finite number of steps since the number of states is finite. Hence, the computational complexity of the
algorithm is O(n2m2) in the worst case. This complexity does not include the construction of automaton
H. There are special cases where the computational complexity can be reduced to O(nm) in the worst case,
such as when Lam = Lam or when all cycles in G contain a marked state.

Once Hmpnb has been obtained, it is effectively an encoding of a state-based (with respect to G × H)
supervisor that achieves the maximally permissive language Lmpnb

am ; the transitions that are defined at each
state of Hmpnb, which is a pair (xG, xH) with xG a state of G and xH a state of H, are the enabled controllable
events and the feasible uncontrollable events.

It can be seen that our transformation of BSCP-NB to SSCP is in effect an implementation of the first
step of the standard algorithm (although we used an automaton A with a complete transition function).

The reader is referred to [CL08, Won12] for textbook expositions of the above material. To make this
paper more self-contained, a simple algorithm for solving SSCP is given in Appendix B.

3.2 Reactive Synthesis With Plants

Most classical reactive synthesis frameworks [MW84, PR89a] do not have a notion of plant. In [PR89a],
the realizability problem is defined as the problem of synthesizing, given a temporal logic specification φ, an
input-output strategy that implements φ. This is also how the reactive synthesis problem (RSP) is defined
in Section 2.2. An exception to the above is the work of Madhusudan [Mad01], where the control problem for
non-reactive environments1 is defined as the problem of synthesizing a controller for a given plant modeled
as a finite-state Kripke structure, so that the closed-loop system satisfies a specification in CTL or CTL?.

1 In [Mad01] this is also called the control problem for the universal environment. In his thesis, Madhusudan also defines a
control problem for reactive environments, where the goal is to find a controller that works against all possible strategies of the
environment, instead of a controller that works against the single, “maximally nondeterministic” strategy of the environment
which is to offer all possible inputs (the latter is the universal environment). In the case of LTL specifications, a winning strategy
for the maximally-nondeterministic environment is also winning for any other environment. As pointed out in [Mad01], this
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In view of building a bridge between supervisory control and reactive synthesis, in this section we re-
call Madhusudan’s reactive synthesis problem with an explicit notion of plant, giving it the name reactive
synthesis control problem (RSCP). In Section 3.4 we discuss links between RSCP and RSP.

3.2.1 Plants as Kripke Structures

As done in [Mad01], a plant can be captured as a transition system, specifically a form of Kripke structure:

P = (W,w0, R,AP,L)

where

• AP is a set of atomic propositions.

• W is a set of states, w0 ∈ W being the initial state. W is (implicitly) partitioned into two disjoint
subsets

W = Ws ∪We

Ws models the system states (where the system must choose a move). We models the environment
states (where the environment must choose a move).

• R ⊆W ×W is the transition relation.

• L : W → 2AP is a labeling function mapping every state w to a set of propositions true in this state.
L must be total.

We assume that R is total, that is, for any w ∈ W , there exists w′ ∈ W such that (w,w′) ∈ R. We define
succP (w) = {w′ | (w,w′) ∈ R}. Because R is total, succP (w) 6= ∅ for all w ∈ W . When P is clear from
context we write succ instead of succP .

0

1

2

3

p

Figure 11: Kripke structure P1.

As an example, consider the Kripke structure P1 shown in Figure 11. States drawn as circles are system
states. The square state is an environment state (it is also the initial state). The arrows between states
represent the transition relation. Notice that there is at least one outgoing transition from every state, which
ensures that the transition relation is total. P1 has a single atomic proposition p holding only at state 3.

A Kripke structure plant is called finite when its set of states is finite.

is not the case for CTL or CTL? specifications. For example, a specification of the form Eφ may be satisfied in a maximally-
nondeterministic environment which allows a certain path satisfying φ, whereas in a more restrictive environment which does
not allow such a path, the formula may not hold. [Mad01] shows that the control problem for reactive environments is harder
(from a complexity point of view) than the control problem for the universal environment. For our purposes, the latter problem
suffices to capture SSCP.
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3.2.2 Using CTL? for Kripke Structures

We have introduced the temporal logic CTL? for the specification of a system to be synthesized in Section
2.2.2. This logic is equally useful for specifying control objectives in plants. In this context, we evaluate the
CTL? formula on the tree that is induced by the Kripke structure.

Let P = (W,w0, R,AP,L) be a Kripke structure. We say that P induces a computation tree 〈T, τ〉 if the
following conditions hold:

• T ⊆W ∗

• {t ∈ T : |t| = 1} = {w ∈W : (w0, w) ∈ R}

• τ(ε) = L(w0)

• For all t = t0t1 . . . tn ∈ T , the set of t′s children is precisely {t0t1 . . . tntn+1 | tn+1 ∈W, (tn, tn+1) ∈ R}

• For all t = t0t1 . . . tn ∈ T , we have τ(t) = L(tn).

In a nutshell, the computation tree that is induced by a Kripke structure represents all possible paths in
the Kripke structure at the same time. A path of P is an infinite sequence π = w0w1 · · · , such that wi ∈W
and (wi, wi+1) ∈ R, for all i ≥ 0. Given some CTL? state formula φ, we say that some state w ∈W satisfies
φ if the computation tree for the Kripke structure Pw = (W,w,R,AP,L) that only differs from P by its
initial state, satisfies φ. We say that a plant satisfies a CTL? state formula φ, written formally as P |= φ, if
the tree induced by P satisfies φ.

3.2.3 Strategies

A plant P may not generally satisfy a CTL? specification φ. A strategy aims to restrict P so that it satisfies
φ. Let P = (W,w0, R,AP,L) with W = Ws ∪We. A strategy for P is a (total) function

f : W ∗ ×Ws → 2W

such that for all u ∈W ∗, w ∈Ws, f(u,w) is a non-empty subset of succ(w). The intuition is that f observes
the history of all states visited previously, u ∈W ∗, as well as the current system state w ∈Ws, and chooses
to allow moves to only a subset (but a non-empty subset) of the successors of w.

A strategy f is state-based if for all u1, u2 ∈ W ∗, and for all w ∈ Ws, we have f(u1, w) = f(u2, w). This
means that the strategy only depends on the current state w and not on the previous history u.

A strategy f defines a new (infinite-state) Kripke structure P f :

P f = (W f , wf
0 , R

f , AP, Lf )

where

• W f = W ∗ ×W

• wf
0 = (ε, w0)

• Rf = {
(
(u,w), (u · w,w′)

)
|
(
w ∈We ∧ (w,w′) ∈ R

)
∨
(
w ∈Ws ∧ w′ ∈ f(u,w)

)
}

• Lf (u,w) = L(w) for all u ∈W ∗, w ∈W .

Note that Rf is guaranteed to be total. This is because R is assumed to be total, and f is required to be
such that f(u,w) 6= ∅.

Some strategies for P1 are shown in Figure 12. The strategies f1, f2, f3 are state-based, where f2 disables
the transition 2→ 1, f3 disables the transition 1→ 2, and f1 disables both of these transitions.
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Figure 12: Some strategies enforcing AFp on the Kripke structure P1 of Figure 11.

3.2.4 Reactive Synthesis Control Problem (RSCP)

Given Kripke structure plant P and CTL? formula φ, we say that a strategy f enforces φ on P if it is the
case that P f |= φ. The reactive synthesis control problem (RSCP) is the following:

Definition 6 (RSCP). Given finite Kripke structure plant P and CTL? formula φ, find (if it exists, or state
that there does not exist) a strategy which enforces φ on P .

RSCP-CTL denotes RSCP where φ is required to be a CTL formula. RSCP-LTL denotes RSCP where
φ is required to be an LTL formula.

3.2.5 Maximal Permissiveness in RSCP

The reader may have observed that in the definition of RSCP above, we did not require that the strategy
f be maximally-permissive in any way. The reason is that unique maximally-permissive strategies do not
always exist. An example is given below. Let us first introduce some terminology.

Let f1, f2 be two strategies for a plant P . f1 is said to be no more permissive than f2 iff for all u ∈W ∗,
w ∈ Ws such that uw is a sequence of states that can be a prefix of a run in P f2 , f1(u,w) ⊆ f2(u,w). f2 is
said to be strictly more permissive than f1 if f1 is no more permissive than f2 and f1(u,w) 6= f2(u,w) for
some u ∈ W ∗, w ∈ Ws such that uw is a sequence of states that can be a prefix of a run in P f2 . f1 is said
to be maximally permissive with respect to specification φ if f1 enforces φ and there is no strategy f2 which
enforces φ and is strictly more permissive than f1.

Let us return to the example of Figures 11 and 12. Suppose we wish to find a strategy that makes the
plant P1 meet the specification AFp. The latter states that all executions must eventually reach a state
satisfying p. Since state 3 is the only state satisfying p in P1, we want all executions to reach state 3. On
its own, P1 does not satisfy AFp, because it contains two executions “oscillating” between states 1 and 2.

All three strategies f1, f2, f3 of Figure 12 enforce AFp on P1. Strategies f2 and f3 are strictly more
permissive than f1, and are the two (incomparable) most permissive state-based strategies for AFp. However,
there are infinitely many other, more permissive strategies which also enforce AFp, not shown in Figure 12.
In particular, any (non-state-based) strategy which allows a finite number of transitions between states 1
and 2 before forbidding them, enforces AFp. There is a set of increasingly permissive such strategies, but the
limit of this set is the strategy that forbids nothing, and this strategy no longer enforces AFp. This example
shows that a unique maximally-permissive strategy does not generally exist for the RSCP problem.

In Section 3.3.2, we will be concerned with CTL? specifications of the form AGEFq, where q is a CTL? or
CTL state formula without any temporal operator. For these, maximally-permissive strategies do exist, and
they are at the same time state-based. Let us conclude the discussion of maximal permissiveness by proving
this fact.

Lemma 3. Let P = (W,w0, R,AP,L) be a Kripke structure, and q be a CTL state formula without temporal
operators. If there exists a strategy enforcing AGEFq on P , then there exists a unique, maximally-permissive,
state-based strategy enforcing AGEFq on P .

Proof. Let A be the set of states of P from which there is no state reachable in P that satisfies q. Then any
strategy f that allows to eventually visit a state of A in P f cannot induce a computation tree that satisfies
AGEFq, as there exists at least one node in the tree from which EFq is false (i.e., one node in A).
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On the other hand, if a strategy only leads to visiting states other than A, then every node in the
computation tree for P f satisfies EFq (by the definition of A). Therefore, in order for P f to satisfy AGEFq,
it suffices for the strategy f to avoid visiting a state in A.

We prove that there exists a maximally-permissive, state-based strategy by showing that we can compute
a set of bad states B that over-approximates A, and precisely the strategies that stay out of B lead to never
having a path in P f that eventually visits A.

We build B gradually, starting with A. We add some state w ∈ Ws to B whenever there exists no
successor of w that is not in B yet. Furthermore, we add some state w ∈ We to B whenever there is some
successor of w that is in B. As we only add states to B in this process, and never remove states, B converges
to some well-defined set.

It can be shown by induction over the step of the computation in which a state is added to B that from
all of them, EFq cannot be enforced. For step 0, in which we initialize B with A, the claim is trivial. For
step i+ 1, we can assume that the claim is true for i ∈ N. If there is a state w ∈ Ws from which no matter
what the strategy does, we land in a state in B, then obviously, once a run entered B, we cannot avoid to
visit a state in A in the future (by induction), so adding w to B is justified. Likewise, if there is a state
w ∈We with a successor in B, then we cannot avoid that after one step, we land in a state in B, so adding
w to B is again justified.

Now assume that we have a strategy of the following form: we set f(w,w) = {w′ ∈W | (w,w′) ∈ R,w′ /∈
B} if w /∈ B, and f(w,w) = {w′ ∈ W | (w,w′) ∈ R} otherwise. By definition, there is no strategy f ′ that
has f(w,w) ⊂ f ′(w,w) for some w and w such that ww is a path in the run tree of P f ′ and at the same time
prevents visiting B from a state that is not in B, as it allows any transition to states not in B. As we have
proven already that any strategy that allows visiting B from w0 cannot enforce AGEFq, there is no strategy
that allows a move that is not allowed by f and enforces AGEFq. Thus, f is the unique maximally-permissive
strategy enforcing AGEFq if f is actually winning. Note that f is state-based, too.

It remains to prove that f is winning (i.e., f is not “too permissive”). We show this by induction over
the length of a path in the run tree for P f . As long as along no such path, we ever reach a state from B, all
nodes in the computation tree satisfy EFq. We start with the root of the computation tree of P f and know
already that if w0 ∈ B, then there is no strategy to enforce AGEFq. So we can assume that w0 /∈ B. For the
inductive step, take some node ww that is not in B (by the inductive hypothesis). If w ∈ We, then by the
definition of B, we have that all successors of w in P f are also not in B. So we have that for all computation
tree nodes www′ of P f with w,w′ ∈ W that www′ /∈ B. If w ∈ Ws, then as f restricts Pf to the successor
states that are not in B, the claim holds in this case as well.

In view of reducing supervisory control problems to reactive synthesis problems, we would like to reduce
SSCP to RSCP. However, this reduction cannot be done directly, because SSCP asks for a maximally-
permissive supervisor, whereas RSCP only asks for a strategy (since a maximally-permissive strategy may
not generally exist). To avoid this problem, we exploit the result of Lemma 3 and introduce a new problem,
called RSCPAGEFq

max , which is a variant of RSCP, and more precisely a variant of RSCP-CTL. In RSCPAGEFq
max ,

the specification is a CTL formula of the form AGEFq where q is a CTL formula without temporal operators.
Lemma 3 shows that for this class of specifications, existence of a strategy implies existence of a unique
maximally-permissive strategy. RSCPAGEFq

max asks precisely for this strategy, if it exists.

Definition 7 (RSCPAGEFq
max ). Given finite Kripke structure plant P and CTL formula φ of the form AGEFq

where q is a CTL formula without temporal operators, find (if it exists, or state that there does not exist)
the unique maximally-permissive state-based strategy that enforces φ on P .

We can generalize RSCPAGEFq
max to a more general (and ambitious) reactive synthesis control problem with

maximal-permissiveness. Although we currently do not know how to solve this problem, it is useful to define
it as a way of motivating future work.

Definition 8 (RSCPmax). Given finite Kripke structure plant P and CTL? formula φ, find if there exists a
strategy which enforces φ on P . If so, find whether a maximally-permissive such strategy exists, and whether
it is unique, and if so, compute it.
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3.2.6 Algorithms for Reactive Synthesis Problems

Algorithms for solving RSP-LTL have been provided in a number of works, e.g., in [PR89a]. Generally, these
algorithms follow a similar flow, where the LTL formula φ is translated into some type of word automaton
such as a Büchi automaton Aw, then Aw is translated into a tree automaton At, and finally At is translated
into a game which is then solved algorithmically. Different methods differ by the type of automata and games
that they use and how they represent them (e.g., enumeratively or symbolically). Also, in some cases some
of the above steps may be missing as they are trivial. We refer the reader to [Ehl13] for a comprehensive
overview.

Techniques for solving RSP-CTL and RSP-CTL? are provided in a number of works, for instance, [KV99,
Mad01]. Madhusudan’s thesis [Mad01] also provides a method for solving RSCP-CTL? (and thus also RSCP-
LTL and RSCP-CTL as special cases) by reducing it to the module-checking problem [KV96].

Because of the special form of the formula AGEFq, RSCPAGEFq
max can be solved using the algorithms from

supervisory control problems such as SSCP or BSCP-NB. The general idea is to start from a set of bad states
(initially those that violate EFq) and iterate by labeling additional states as bad, if no strategy exists to avoid
states that are already labeled bad. In the finite-state case, the algorithm ends when no more states can be
added to the set of bad states, or when the initial state is added to that set. In the latter case, no winning
strategy exists. The complexity of such an algorithm is polynomial in the number of states.

3.3 From Supervisory Control to Reactive Synthesis with Plants

In this section we show how to reduce SSCP to RSCPAGEFq
max .

3.3.1 From DES plants to Kripke structure plants

Given a plant G in the form of a DES, we first construct a plant PG in the form of a Kripke structure.
Consider plant G1 of Figure 3. The Kripke structure PG1 is shown in Figure 13. States drawn as circles are
system states. States drawn as rectangles are environment states.

x0 x0,⊥

x0, c1

x0, c2

x3

x1

x2

x3,⊥

x3, c2

x3, c1

x2,⊥

x1,⊥

Figure 13: Kripke structure PG1
for DES G1 of Figure 3.

A system state of PG is a state x of G. An environment state of PG is either of the form (x, c), where
c ∈ Ec, or (x,⊥). All successors of system states are environment states, and vice versa. From a system
state x, PG has at most |Ec| + 1 possible successors, one successor of the form (x, c) for each controllable
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event c which is enabled at state x in G, plus an extra successor (x,⊥). Intuitively, choosing a subset of the
successors of x amounts to allowing a subset of the controllable events enabled at x. If only (x,⊥) is chosen,
then all controllable events are disabled and only uncontrollable events (if any) are allowed to occur at x.

From environment state (x, c), PG has an outgoing transition to a system state x′ if either G has an
uncontrollable transition from x to x′, or G has a transition labeled c from x to x′. That is, the only
transitions enabled from (x, c) are uncontrollable transitions or the controllable transition labeled c (there can
only be one controllable transition labeled c, because G is deterministic). Note that if x has no controllable
transition labeled c, then (x, c) is not a successor of x by construction. Therefore, an outgoing transition is
guaranteed to exist from every reachable environment state of the form (x, c) with c ∈ Ec.

Finally, from environment state (x,⊥), PG has an outgoing transition to a system state x′ if G has an
uncontrollable transition from x to x′. That is, only uncontrollable transitions are allowed from (x,⊥). If
x has no outgoing uncontrollable transitions then a transition back to x is added to (x,⊥). In the example
of Figure 13, this is the case with states (x1,⊥), (x2,⊥), and (x3,⊥). These “back-transitions” achieve two
goals. First, they prevent deadlocks in PG. Second, they will allow us to prove that non-blocking strategies
can always be extended to allow successors of the form (x,⊥) (Lemma 5), a property which facilitates the
arguments for maximal permissiveness.

So far we have defined the states and transitions of PG. We also need to define its set of atomic
propositions and labeling function. PG will have a single atomic proposition, acc. The states of PG labeled
with acc will be system states x which are marked states in G, and environment states (x, c) or (x,⊥) where
x is marked in G. In our example of Figure 13, this is the case with states x1 and (x1,⊥), drawn with double
lines to represent the fact that they are labeled with acc.

3.3.2 Stating SSCP in temporal logic

We now express the requirements of SSCP as a temporal logic formula. We will use the CTL formula

φnb := AGEF acc.

φnb states that it is always possible to reach a marked state, from any reachable state. This formula
characterizes non-blockingness.

Returning to our example of Figure 13, we observe that PG1 does not satisfy φnb on its own: this is
because from state x2 there is no path reaching a state where acc holds. The same is true for state (x2,⊥).
Therefore, in order to enforce φnb, a strategy must make these states unreachable.2 Three such (state-based)
strategies are shown in Figure 14.

The interpretation of the two right-most strategies of Figure 14 is quite clear. f5 disables c2 at state x0
and c1 at x3. f6 disables both c1 and c2 at x0, and c1 at x3. Neither f5 nor f6 are maximally-permissive
strategies for φnb. Strategy f4, on the other hand, is maximally-permissive.

The interpretation of f4 is perhaps puzzling. Interpreted as a supervisor, it appears both to allow c1 at
x0, and at the same time to disable all controllable events. We will not worry about this paradox, which we
take to be only a matter of interpretation. The way PG is defined, every successor of (x,⊥) is also a successor
of (x, c) for any c ∈ Ec. As a result, (x,⊥) may be redundant, but it does not harm. On the contrary, it
will allow us to prove existence of unique maximally-permissive strategies. This intuition is formalized in
Lemma 5 below.

3.3.3 The formal reduction

Let G = (X,x0, Xm, E, δ) be a DES plant with E = Ec ∪ Euc. It is convenient to define the functions
En : X → 2E with En(x) = {e | δ(x, e) is defined}, Enc : X → 2Ec with Enc(x) = En(x) ∩ Ec, and

2 Note that from state (x3,⊥) there is a path to acc. This may seem counter-intuitive, as (x3,⊥) may be interpreted as
the state where the plant is at x3 and the supervisor has disabled all controllable events. Since no uncontrollable event exists
at x3, this must be a blocking situation. As it turns out, this is not a problem, because we insist on maximally-permissive
supervisors and strategies. Such a strategy either allows also controllable events from x3, in which case blockingness is avoided
by reaching the corresponding controllable successors, or disables all controllable successors of x3, in which case x3 is already
blocking. Therefore, it is safe to allow a back-transition from (x3,⊥) to x3.
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x1,⊥
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Figure 14: Strategies enforcing φnb on PG1 of Figure 13.

Enu : X → 2Eu with Enu(x) = En(x) ∩ Eu. The functions En,Enc,Enu return, respectively, the set of all
events, controllable events, and uncontrollable events, enabled at state x. For instance, a state x ∈ X is a
deadlock in G iff En(x) = ∅.

The Kripke structure plant PG is defined to be

PG = (W,w0, R,AP,L)

such that

• W = Ws ∪We, with Ws = X and We = X × (Ec ∪ {⊥}).

• w0 = x0. Therefore, w0 is a system state.

• R = Rs ∪Re, with

Rs = {
(
x, (x, c)

)
| x ∈ X, c ∈ Enc(x)} ∪ {

(
x, (x,⊥)

)
| x ∈ X}

Re = {
(
(x, c), x′

)
| x, x′ ∈ X,∃e ∈ Eu ∪ {c} : δ(x, e) = x′}

∪ {
(
(x, c), x) | x ∈ X, c ∈ Ec, c /∈ Enc(x)}

∪ {
(
(x,⊥), x′

)
| x, x′ ∈ X,∃u ∈ Eu : δ(x, u) = x′}

∪ {
(
(x,⊥), x

)
| x ∈ X,Enu(x) = ∅}

• AP = {acc}.

• L(s) =

{
{acc} if s = x or s = (x,⊥) for some x ∈ Xm

{} otherwise.

The following lemma guarantees that PG does not have deadlocks, therefore, it is a valid Kripke structure
plant as required in Section 3.2.1.

Lemma 4. The transition relation R of PG defined above is total.

Proof. Let w ∈W be a state of PG. We need to find w′ ∈W such that (w,w′) ∈ R. We distinguish cases.

• Suppose w ∈Ws = X. In this case, we have that
(
w, (w,⊥)

)
∈ R by definition of Rs.

• Suppose w ∈We = X × (Ec ∪ {⊥}).

– Suppose w is of the form (x, c), for x ∈ X, c ∈ Ec.
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∗ If Enu(x) 6= ∅ then there exists x′ ∈ X and u ∈ Eu such that δ(x, u) = x′. Then
(
(x, c), x′

)
∈ R

by definition of Re.

∗ If Enu(x) = ∅ then

· if δ(x, c) is defined and equals x′, then
(
(x, c), x′

)
∈ R by definition of Re;

· otherwise, c 6∈ Enc(x), therefore
(
(x, c), x

)
∈ R by definition of Re.

– Suppose w is of the form (x,⊥), for x ∈ X.

∗ If Enu(x) 6= ∅ then there exists x′ ∈ X and u ∈ Eu such that δ(x, u) = x′. Then
(
(x,⊥), x′

)
∈

R by definition of Re.

∗ If Enu(x) = ∅ then
(
(x,⊥), x

)
∈ R by definition of Re.

In the sequel we simplify notation for state-based strategies as follows. Whenever we are concerned with
a state-based strategy f for some set of states W , we simply write f(w) for some w ∈Ws to mean the value
of f(w,w) for any w ∈W ∗. Since for state-based strategies the value of w does not make a difference, f(w)
is uniquely defined.

Definition 9. Let G = (X,x0, Xm, E, δ) be a DES plant and PG = (W,w0, R,AP,L) be a Kripke structure
built from G by the construction above. Let f be a state-based strategy for PG. The ⊥-closure of f is defined
to be the state-based strategy f ′ that results from setting f ′(x) = f(x) ∪ {(x,⊥)} for all x ∈Ws.

Lemma 5. Let G = (X,x0, Xm, E, δ) be a DES plant and PG = (W,w0, R,AP,L) be a Kripke structure
built from G by the construction above. Let f be a strategy enforcing φnb on PG. Let f ′ be the ⊥-closure of
f . Then f ′ also enforces φnb on PG.

Proof. The specification φnb is AGEFacc. This formula can only hold in a node of the computation tree if
from ever node in the computation tree, some other node marked acc can be reached. For every state-based
strategy f and x ∈ Ws, we have that if f ′(x) 6= f(x), then there has to exist some (x, c) ∈ f(x). This is
because f(x) must be non-empty and if all it contains is (x,⊥) then we would have f ′(x) = f(x). As (x,⊥)’s
successors are always a subset of (x, c)’s successors, and adding paths to nodes that already satisfy AGEFacc
does not change the fact that the computation tree satisfies AGEFacc, such a modification of the strategy
does not alter the fact that it induces a computation tree that satisfies φnb.

Theorem 4. Let G = (X,x0, Xm, E, δ) be a DES plant and PG = (W,w0, R,AP,L) be a Kripke structure
built from G by the construction above.

1. Given a non-blocking maximally-permissive state-based supervisor S : E∗ → 2E for G, we can compute
a maximally-permissive state-based strategy fS enforcing AGEFacc on PG as follows:

For all w ∈Ws, fS(w) = {(w, c) | c ∈ S(w) ∩ Ec} ∪ {(w,⊥)}.

2. Given a maximally-permissive state-based strategy f enforcing AGEFacc on PG, we can compute a
non-blocking state-based maximally-permissive supervisor Sf for G as follows:

For all x ∈ X,Sf (x) = Euc ∪ {e ∈ Ec | (x, e) ∈ f(x)}.

Proof. We prove this claim in three steps:

(a) For every state-based supervisor S which is non-blocking for G, the state-based strategy fS defined
above is ⊥-closed and enforces AGEFacc on PG.

(b) Starting from a ⊥-closed state-based strategy f which enforces AGEFacc on PG, the supervisor Sf

defined above is a state-based supervisor which is non-blocking for G.
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(c) Translating from a ⊥-closed strategy f to S and back will yield the same strategy as we started with,
i.e., fSf

= f . Furthermore, if f is a strategy that is strictly more permissive than some strategy f ′,
then Sf is strictly more permissive than Sf ′ . Likewise, if S is strictly more permissive than S′, then
fS is strictly more permissive than fS′ .

Taking these facts together, we obtain that the translations above must map the (unique) maximally-
permissive non-blocking supervisor S for G and the maximally-permissive strategy enforcing φnb on PG

onto each other. Otherwise, mapping one of the maximal solutions would yield a “more maximal solution”
that is still a valid strategy/supervisor, which contradicts maximal permissiveness.

More precisely, facts (a) and (c) imply part 1 of the theorem. Indeed, let S∗ be the (unique) state-based
maximally-permissive non-blocking supervisory for G and let f∗ = fS∗ . By definition f∗ is state-based.
Also, by (a), we know that f∗ enforces φnb on PG. To prove part 1 of the theorem, it remains to show that
f∗ is maximally-permissive. Suppose not. Then there exists strategy f which enforces φnb on PG and is
strictly more permissive than f∗. By (a), f∗ is ⊥-closed, therefore f must also be ⊥-closed. Let S = Sf . By
(c), S must be strictly more permissive than S∗, which contradicts maximal permissiveness of the latter.

Similarly, facts (b) and (c) imply part 2 of the theorem. Indeed, let f∗ be the unique (by Lemma 3)
state-based maximally-permissive strategy enforcing φnb on PG. Lemma 5 and maximal permissiveness of
f∗ ensure that f∗ is ⊥-closed. Let S∗ = Sf∗ . By definition S∗ is state-based. Also, by (b), we know that S∗

is non-blocking for G. It remains to show that S∗ is maximally-permissive. Suppose not. Then there exists
non-blocking supervisor S for G which is strictly more permissive than S∗. Let f = fS . By (c), f must be
strictly more permissive than f∗, which contradicts maximal permissiveness of the latter.

It remains to perform the three steps outlined above.

Step (a): We prove two sub-steps. First of all, we show that for every state s that is reachable in S/G,

from any state (w, s) in P f
G, we can reach an acc-labeled state. This implies that EFacc holds at state (w, s).

Then, we show that the only reachable states (w, s) in P f
G are those that have a successor state (w, s′) for

which s′ is reachable in S/G, or s is reachable in S/G. This shows that for all reachable states in P f
G, EFacc

holds, and thus, the computation tree of P f
G satisfies AGEFacc. The fact that f is ⊥-closed is trivial as it is

⊥-closed by definition.
For the first sub-step, consider a state s ∈ S that is reachable in S/G. As S is a non-blocking supervisor

for G, we have that there exists some sequence s1e1s2e2 . . . en−1sn in S/G with s1 = s, L(sn) = acc, and

for every i ∈ {1, . . . , n − 1}, we have that si+1 = δ(si, ei). The construction of f and P f
G makes sure that

π = s1(s1, c1)s2(s2, c2) . . . (sn−1, cn−1)sn is a valid path in PG for ci = ei whenever ei ∈ Ec, and ci = ⊥
otherwise, and for every node (w, s) in P f

G, there is a path from (w, s) whose projection is π.

The second sub-step is proven by induction over a run in P f
G. We start with state (ε, w0) = (ε, x0),

for which x0 in S/G is reachable by definition. For the induction step, assume that the claim holds for all
previous states (w,w) for w ∈ W . If we have that w = x for some x ∈ X, then all possible successors in

P f
G can only be of the form (w′, (x, c)), so the claim holds here as well. If on the other hand we have that
w = (x, c) for some x ∈ X, then either we have c = ⊥, or we have c ∈ Ec with c ∈ S(x), as we defined f to

only allow these actions, and thus, these are the only successors that occur in P f
G. If c = ⊥, then the next

element of the run in P f
G can only be either (w′, x), in which case the claim holds, or (w′, x′) for some x′ with

x′ = δ(x, c′) for some c′ ∈ Eu. As by the definition of a supervisor for controlling a plant, the supervisor
cannot deactivate uncontrollable actions, if x is reachable, then x′ is also reachable, and thus the claim holds
here, too. On the other hand if c 6= ⊥, then the next element of the run in P f

G can only be either (w′, (x, c))
or x′ with x′ = δ(x, c). In the first case, the claim holds again, and in the second, as c can only have been
selected if c ∈ S(x), we need to have that the transition from x to x′ is possible in S/G, too, so again, the
claim holds in this case.

Step (b): We prove two sub-steps. First of all, we show that for every state (w, x) for some x ∈ X that

is reachable in P f
G, from state x in Sf/G, we can reach an accepting state. Then, we show that for every
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reachable states s in Sf/G, there is some reachable state (w, s) in P f
G. This shows that from all states that

are reachable in Sf/G, there is some path to an accepting state, which implies that Sf is a valid supervisor
for G.

For sub-step 1, let (w, x) be some reachable state in P f
G. As P f

G satisfies AGEFacc, there has to exist
some path π from (w, x) to some (w′, x′) with L((w′, x′)) = acc. Without loss of generality, let this path
be loop-free (as we can always cut out loops in the path). We build from π a path from x to x′ in Sf/G.
Whenever we move along this path from some state (w′′, x) to some state (w′′′, (x, c)) or to (w′′′, (x,⊥)), we
do not add a step in the path for Sf/G. On the other hand, whenever we move from some state (w′′, (x, c))
or (w′′, (x,⊥)) to (w′′′, x′), we add x′ to the path to be constructed. By the definition of Sf , this is always
a transition that is allowed by Sf . At the end of the path, as we have L((w′, x′)) = acc if and only if x′ is
marked, our reconstructed path in Sf/G ends in a marked state.

For sub-step 2, we reconstruct a path in P f
G from a path π = x0 . . . xn ∈ Xω in Sf/G. Let ρ =

ρ0 . . . ρn−1 be the actions to create the path π, i.e., we have xi+1 ∈ δ(xi, ρi) for every i ∈ N. We
have ρi ∈ f(xi) by the definition of S for every i ∈ N. This allows us to construct the path π′ =

(ε, x0)(x0, (x0, c0))(x0(x0, c0), x1)(x0(x0, c0)x1, (x1, c1)) . . . in P f
G, where for every i ∈ N, we have ci = ⊥

if ρi is an uncontrollable action, and ci = ρi otherwise. As π will end in (w, xn) for some w, the sub-claim
follows.

Step (c): The claim for step 3 consists of three sub-steps. For the first sub-step, let f be a ⊥-closed
strategy, and Sf be the corresponding supervisor. We translate Sf back to a state-based supervisor for PG

and obtain:

fSf
(w) = {(w, c) | c ∈ Sf (w) ∩ Ec} ∪ {(w,⊥)}

= {(w, c) | c ∈ {e ∈ Ec | (w, c) ∈ f(w)}} ∪ {(w,⊥)}
= f(w)

For the second sub-step, let f and f ′ be state-based strategies such that for all w ∈ W , we have
f ′(w) ⊆ f(w) and for one w ∈W , we have f ′(w) ⊂ f(w). In this case, we have for all w′ ∈W \ {w}:

S′f (w′)

= Euc ∪ {e ∈ Ec | (w′, e) ∈ f ′(w′)}
⊆ Euc ∪ {e ∈ Ec | (w′, e) ∈ f(w′)}
= Sf (w′)

Furthermore, we have:

S′f (w)

= Euc ∪ {e ∈ Ec | (w, e) ∈ f ′(w)}
⊂ Euc ∪ {e ∈ Ec | (w, e) ∈ f(w)}
= Sf (w)

From line two to line three in this equation, we used the fact that the elements of f ′(w) are all of the form
(w, c) for some c ∈ Ec ∪ {⊥} (except if En(w) = ∅, in which case f ′(w) ⊂ f(w) cannot be fulfilled as we
need to have f ′(w) = f(w) = (w,⊥) then) and by assumption, we have that (w′,⊥) ∈ f ′(w′), so there has
to exist some c ∈ Enc(w) with (w, c) ∈ f(w) but (w′, c) /∈ f ′(w) for all w′ ∈W .

For the third sub-step, we apply the same idea as in sub-step two. Let S and S′ be state-based supervisors
such that for all x ∈ X, we have S′(x) ⊆ S(x) and for one x ∈ X, we have S′(x) ⊂ S(x). Then for all
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x ∈ X \ {x}, we have:

fS′(x
′)

= {(x′, c) | c ∈ S′(x′) ∩ EC} ∪ {(w,⊥)}
⊆ {(x′, c) | c ∈ S(x′) ∩ EC} ∪ {(w,⊥)}
= fS(x′)

Furthermore, we have:

fS′(x)

= {(x, c) | c ∈ S′(x) ∩ EC} ∪ {(w,⊥)}
⊂ {(x, c) | c ∈ S(x) ∩ EC} ∪ {(w,⊥)}
= fS(x)

This result completes step three over the overall proof.

Corollary 2. SSCP can be reduced to RSCPAGEFq
max with a polynomial-time reduction.

Proof. Theorem 4 establishes a one-to-one correspondence between maximally-permissive state-based non-
blocking supervisors for a DES plant G and a maximally-permissive state-based strategy for AGEFacc in a
Kripke structure PG that we construct from G. It follows that we can reduce the search for a supervisor in G
as SSCP requests to searching for a strategy in PG as RSCPAGEFq

max requests. Moreover, PG can be constructed
from G in polynomial time: the number of states of PG is O(n · (m+ 2)) where n is the number of states of
G and m is the number of controllable events.

3.4 Reactive Synthesis with Plants vs. Reactive Synthesis without Plants

In this section we informally discuss the links between the reactive synthesis problem with plants, RSCP, and
the reactive synthesis problem without plants, RSP. Roughly speaking, RSP can be seen as a special case of
RSCP, where the plant offers some possible input at every step (some technical details need to be resolved,
as RSP is formulated in terms of inputs and outputs whereas RSCP is formulated in terms of system and
environment states).

Conversely, RSP may appear at first sight more restrictive than it really is, as there is no notion of a
plant that encodes the possible environment behavior. Yet, we can encode the possible plant behavior into
the specification. Starting from a specification φ, we can modify it to some specification φ′ such that for
satisfying φ′, the controller computed from a RSP algorithm has to satisfy φ for precisely those input streams
that correspond to paths in a given plant. In this way, a strategy for controlling a plant can be obtained by
chopping away the irrelevant parts of a computation tree that satisfies φ′.

However, this approach is not interesting from a practical perspective, especially when a plant is already
available in the form of an automaton (or a network of automata). In this case, encoding the plant to a
temporal logic specification does not make much sense, due to computational complexity reasons. Indeed,
for most temporal logics, the reactive synthesis problems for the logic is at least exponential in the length
of the formula, so keeping the size of the formula small is essential. This complexity often arises because of
the need to translate the formula into some form of automaton during the synthesis algorithm. As plants
are naturally described as automata, it is not wise to translate a plant automaton into a plant formula, and
then back into an automaton.

4 Conclusions & Perspectives

This work is a first step toward bridging the gap between two research fields, and their corresponding
communities, that developed over the last three decades independently for a large part, although both
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targeting the general problem of controller synthesis. Some of the results presented here may be unsurprising,
or even known to some researchers in the field. Still, to our knowledge, no similar written account exists,
and we believe there is a need to fill this gap.

A number of interesting topics are left as part of future work, including extending the bridge to partially-
observed systems, to languages of infinite strings, and to distributed / decentralized control settings.

Another missing aspect from the present work is modeling and evaluation. We have only discussed toy
examples for the purposes of illustration and, although more serious case studies in synthesis do exist (for
instance, see [WLK+09, URD+13, BGJ+07]), these are also have limited comparative value, as they are
done in one of the two frameworks, but not in both. It would be worthwhile to devlelop case studies that
would allow a detailed comparison of these two frameworks in terms of plant and specification modeling,
computational complexity of synthesis, and implementation of derived supervisor/controller.
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[TM98] J.G. Thistle and R.P. Malhamé. Control of omega-automata under state fairness assumptions.
Systems and Control Letters, 33, 1998.

[Tri04] S. Tripakis. Undecidable Problems of Decentralized Observation and Control on Regular Lan-
guages. Information Processing Letters, 90(1):21–28, April 2004.

[TW86] J.G. Thistle and W.M. Wonham. Control problems in a temporal logic framework. International
Journal of Control, 44(4):943–976, April 1986.

[TW94a] J. Thistle and W. Wonham. Control of infinite behavior of finite automata. SIAM Journal on
Control and Optimization, 32(4):1075–1097, 1994.

[TW94b] J. Thistle and W. Wonham. Supervision of infinite behavior of discrete-event systems. SIAM
Journal on Control and Optimization, 32(4):1098–1113, 1994.

[URD+13] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. K. Martin, and R. Alur.
TRANSIT: specifying protocols with concolic snippets. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, pages 287–296. ACM, 2013.

[Var95] M.Y. Vardi. An automata-theoretic approach to fair realizability and synthesis. In Proc. 7th Int.
Conf. on Computer Aided Verification, volume 939 of Lecture Notes in Computer Science, pages
267–292. Springer, 1995.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proc. 1st IEEE Symp. on Logic in Computer Science, pages 332–344, 1986.

[WLK+09] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke. The theory of deadlock avoidance
via discrete control. In 36th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’09, pages 252–263. ACM, 2009.

[Won12] W.M. Wonham. Supervisory Control of Discrete Event Systems. Available at http://www.

control.toronto.edu/cgi-bin/dldes.cgi, 2012.

[WR87] W. Wonham and P. Ramadge. On the supremal controllable sublanguage of a given language.
SIAM J. Control Optim., 25(3):637–659, 1987.

[WTD91] H. Wong-Toi and D.L. Dill. Synthesizing processes and schedulers from temporal specifications.
In E.M. Clarke and R.P. Kurshan, editors, Proc. 2nd Int. Conf. on Computer Aided Verification,
volume 3 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages
177–186. AMS, 1991.

[YL00] T. Yoo and S. Lafortune. New results on decentralized supervisory control of discrete-event
systems. In IEEE Conference on Decision and Control, 2000.

40

http://www.control.toronto.edu/cgi-bin/dldes.cgi
http://www.control.toronto.edu/cgi-bin/dldes.cgi


A Proof of Theorem 1

We use the formalism defined in Section 2.1 to show that the concept of maximally permissive solution,
which is a central requirement in problem BSCP-NB of Section 2.1.8, is well defined. This will provide a
proof of Theorem 1 that is self-contained.

For this purpose, we must first define the disjunction of two supervisors.
Let G be a DES plant and let S1, S2 be two supervisors for G. We define S1 ∪S2 to be a new supervisor,

denoted by S1∪2 for G, such that S1∪2(σ) = S1(σ) ∪ S2(σ) for all σ ∈ E∗. We call S1∪2 the disjunction of
S1 and S2, since S1∪2 allows all strings that S1 and S2 respectively allow.

We now wish to characterize the controlled behavior L(S1∪2/G) under the disjunction of S1 and S2. Recall
that when Si is applied to G in isolation, the definition of Si over E∗ \ L(Si/G) is irrelevant, since these
strings will never occur in the controlled system. However, in the context of disjunction, this is no longer true
since the controlled behavior will in general exceed L(Si/G) due to the actions of the other supervisor(s).
In order to allow for a simple characterization of L(S1∪2/G), we make the following assumption:

Si(σ) = Euc for all σ ∈ E∗ \ L(Si/G). (3)

In words, Si “shuts itself off” when the controlled behavior is beyond what it is what designed to do when
it is the single supervisor controlling G. Let us call such supervisors “G-matched supervisors.” Therefore, it
follows directly from this assumption and from the definition of disjunction that

L(S1∪2/G) = L(S1/G) ∪ L(S2/G). (4)

Since marking is a property of the plant, we similarly have that

Lm(S1∪2/G) = L(S1∪2/G) ∩ Lm(G) (5)

= [L(S1/G) ∪ L(S2/G)] ∩ Lm(G) (6)

= [L(S1/G) ∩ Lm(G)] ∪ [L(S2/G)) ∩ Lm(G)] (7)

= Lm(S1/G) ∪ Lm(S2/G) (8)

Remark: Supervisor disjunction. It is worth noting that, without the assumption in equation( 3), the
closed-loop language under disjunction of supervisors may not be the union of their respective languages.
As an example, consider again plant G3 of Figure 5, with Lam := {ε, c1}. Consider supervisors S1 and S2

where S1 always disables c1 and enables c2, whereas S2 always disables c2 and enables c1. Both S1 and S2

are non-blocking for G3, because all states in the closed-loop system are accepting. Moreover, both S1 and
S2 are safe w.r.t. the above Lam. Indeed, S2 always disables c2, while S1, by disabling c1, prevents G3 from
reaching state x1, thus indirectly preventing c2. However, S1 ∪ S2 is not safe, since it allows both c1 and c2
at any state.

The following result establishes a key property of supervisor disjunction.

Theorem 5. Let G be a DES plant and let Lam ⊆ Lm(G) be the admissible marked language. If S1, S2

are two non-blocking and safe supervisors that are G-matched, then S1 ∪ S2 is also a non-blocking and safe
supervisor, and it is G-matched.

Proof. We have that Lm(Si/G) = L(Si/G) and L(Si/G) ⊆ Lam, for i = 1, 2.
Safety: Clearly,

L(S1∪2/G) = L(S1/G) ∪ L(S2/G) ⊆ Lam

and thus S1 ∪ S2 is a safe supervisor.
Non-blockingness: Since prefix-closure can be distributed over union (reader check!), we have that

Lm(S1∪2/G) = Lm(S1/G) ∪ Lm(S2/G) (9)

= Lm(S1/G) ∪ Lm(S2/G) (10)

= L(S1/G) ∪ L(S2/G) (11)

= L(S1∪2/G). (12)
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which proves that S1 ∪ S2 is a non-blocking supervisor.
Finally, it is clear that S1∪2 is G-matched as it inherits this property from the definitions of S1 and S2

outside of L(S1∪2/G).

Corollary 3. Theorem 5 holds for infinite disjunctions of supervisors.

Proof. All steps in the proof of Theorem 5 hold for an arbitrary number of disjunctions.

The hypothesis of Theorem 1 is that there exists at least one non-blocking supervisor for G that is safe
w.r.t. Lam. If there exists a single supervisor with these properties, then it is necessarily the unique desired
Smpnb, as no other safe non-blocking supervisor exists. Let us assume then that there are several safe and
non-blocking supervisors. If a supervisor S is not G-matched, then we can always make it G-matched without
changing L(S/G) or Lm(S/G). By taking the disjunction of all G-matched non-blocking supervisors for G
that are safe w.r.t. Lam, we obtain a unique G-matched supervisor that is also safe and non-blocking by
Corollary 3; let us denote it by SG

disj . Then Lm(SG
disj) contains all the sublanguages of Lam that can be

achieved by any safe and non-blocking supervisor. Otherwise, if the sublanguage of Lam achieved by one
supervisor is not contained in Lm(SG

disj), then the G-matched version of that supervisor would not have been
added in the disjunction of all G-matched safe and non-blocking supervisors, a contradiction.

Once we have the unique maximally-permissive closed-loop behavior Lm(SG
disj), we take Smpnb to be

the unique maximally permissive supervisor that achieves it. To obtain Smpnb, we simply add to SG
disj

all infeasible (in G) controllable events for strings in L(SG
disj/G) and all controllable events for strings in

E∗ \ L(SG
disj/G). Since L(Smpnb/G) = L(SG

disj/G) and Lm(Smpnb/G) = Lm(SG
disj/G), then Smpnb is non-

blocking for G and safe w.r.t. Lam. Smpnb is not G-matched anymore, but this is of no consequence in the
later developments in the paper.

This completes the proof of Theorem 1.

B An Algorithm for SSCP

A simple algorithm to solve SSCP is presented below. The algorithm starts by labeling as Blocking all states
that cannot reach a marked state. Then it iterates, repeatedly labeling more states as Blocking, until no more
can be labeled. A state is labeled during this iteration, if either it has an uncontrollable successor already
labeled, or all its successors are already labeled. At the end, if the initial state is labeled Blocking then no
supervisor exists. Otherwise, a state-based supervisor can easily be constructed by avoiding all controllable
transitions leading to Blocking states.

Algorithm: Solve SSCP.

Input: DES G = (X,x0, Xm, E, δ), with E = Ec ∪ Euc.
Output: A maximally-permissive non-blocking supervisor S for G, if one exists, “no” otherwise.
Blocking := {s ∈ X | @ path from s to any state in Xm};
repeat

StatesWithUncontrollablyBlockingSuccs := {s ∈ X | ∃u ∈ Euc : δ(s, u) ∈ Blocking};
NewDeadlocks := {s ∈ X | ∀e ∈ E : δ(s, e) ∈ Blocking or δ(s, e) is undefined};
Blocking := Blocking ∪ StatesWithUncontrollablyBlockingSuccs ∪ NewDeadlocks;

until set Blocking does not change;
if (x0 ∈ Blocking) then return “no supervisor exists”;
else

let for s ∈ X, S(s) := Euc ∪
{
Ec if s ∈ Blocking
{c ∈ Ec | δ(s, c) /∈ Blocking} otherwise

;

return S;

42


	Introduction
	Supervisory Control of Discrete Event Systems
	Reactive Synthesis
	Organization of This Paper
	Related Works

	Classical Frameworks
	Supervisory Control
	Plant Model
	Supervisors
	Closed-Loop System
	An Uninteresting Synthesis Problem
	Non-Blockingness
	Safety Properties and Admissible Marked Languages
	Maximal Permissiveness and Uniqueness
	BSCP-NB: Basic Supervisory Control Problem with Non-Blockingness

	Reactive Synthesis
	Computation Trees
	The Temporal Logic CTL*
	Transducers
	Reactive Synthesis Problem (RSP)
	Maximal Permissiveness in RSP


	Bridging the Gap
	Simplifying the Supervisory Control Problem
	Incorporating Safety into the Plant
	SSCP: Simple Supervisory Control Problem
	Finite-Memory, State-Based Supervisors
	Algorithms for Supervisory Control Problems

	Reactive Synthesis With Plants
	Plants as Kripke Structures
	Using CTL* for Kripke Structures
	Strategies
	Reactive Synthesis Control Problem (RSCP)
	Maximal Permissiveness in RSCP
	Algorithms for Reactive Synthesis Problems

	From Supervisory Control to Reactive Synthesis with Plants
	From DES plants to Kripke structure plants
	Stating SSCP in temporal logic
	The formal reduction

	Reactive Synthesis with Plants vs. Reactive Synthesis without Plants

	Conclusions & Perspectives
	Proof of Theorem 1
	An Algorithm for SSCP

