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Abstract

Schedulability Analysis and Verification of Real-Time Discrete-Event Systems

by

Christos Stergiou

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Edward A. Lee, Chair

Cyber-physical systems are systems where there is a tight interaction between the com-
puting world and the physical world. In spite of the significance of time in the dynamics
of the physical world, real-time embedded software today is commonly built using program-
ming abstractions with little or no temporal semantics. PTIDES (Programming Temporally
Integrated Distributed Embedded Systems) is a programming model whose goal is to address
this problem. It proposes a model-based design approach for the programming of distributed
real-time embedded systems, in which the timing of real-time operations is specified as part
of the model. This is accomplished by using as an underlying formalism a discrete-event
(DE) model of computation, which is extended with real-time semantics.

We address the schedulability question for PTIDES programs and uniprocessor platforms.
A PTIDES program is schedulable if for all legal sensor inputs, there exists a scheduling of
the PTIDES components that meets all the specified deadlines. The timing specifications
allowed in the discrete-event formalism can be seen as a generalization of end-to-end latencies
which are usually studied in the hard real-time computing literature. This results in a rather
idiosyncratic schedulability problem. We first show that for a large subset of discrete-event
models, the earliest-deadline-first scheduling policy is optimal. Second, we show that all
but a finite part of the infinite state space of a PTIDES execution results in demonstrably
unschedulable behaviors. As a result the schedulability problem can be reduced to a finite-
state reachability problem. We describe this reduction using timed automata.

We next turn to the verification problem for DE systems themselves. We study a basic
deterministic DE model, where actors are simple constant-delay components, and two exten-
sions of it: first, one where actors are not constant but introduce non-deterministic delays,
and second, one where actors are either deterministic delays or are specified using timed
automata. We investigate verification questions on DE models and examine expressiveness
relationships between the DE models and timed automata.

Finally, we discuss extensions of this work to cover a wider range of discrete-event actors,
and propose an approach to design more e�cient and practical analyses for schedulability
testing.
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Chapter 1

Introduction

One of the defining features of embedded software, and one setting it apart from general-
purpose computing, is its intimate relationship with the notion of time. Embedded programs
are expected to interact with an inherently timed physical world, and are thus required to
embrace time as part of their semantics. This is perhaps best exemplified by computer-
control systems, which are required to sense the physical world and act upon it, all in a
timely manner.

Control System C

Plant

Sensor S Actuator A

Latency L

Figure 1.1: Simple control system.

A computer control system can be typically represented as a diagram of the form depicted
in Figure 1.1. A sensor is producing measurements of the environment at certain instances
of time. Each measurement is processed, and in response, an action on the environment is
generated, and handed to an actuator responsible for carrying it out. What is often critical
is that each action be delivered to the actuator within a certain time interval beginning from
the time of the corresponding measurement. This interval is often chosen based on the control
algorithm in use, and the control designer will often try to enforce it by specifying a certain
desired latency from a measurement at the sensor to a response to it from the actuator.
The system engineer is then responsible for implementing the system in such a way that the
latency requirement is met. Assuming a uniprocessor platform, a minimum separation time
between measurements S, a latency specification L, and a worst-case computation time W
required for processing a measurement, the latency requirement can be met if W  L and
W  S.
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C1

Sensor S1 Actuator A1

Latency L1

CN

Sensor SN Actuator AN

Latency LN

Figure 1.2: Multiple sensor-actuator paths.

A control system can include multiple sensors and actuator paths. In keeping the struc-
ture simple, we extend the previous system with more sensor and actuator pairs, each of
which is assigned a separate control law, so the system looks like Figure 1.2. In the case of a
uniprocessor platform, the job of the engineer is a little harder now, because the computing
resources of the system are shared among the di↵erent sensor-actuator paths, which must
be scheduled in a way that ensures that all di↵erent latency requirements are satisfied. If
the measurements are periodic or sporadic, i.e., there is a minimum interval between two
successive measurements, one can rely on classical hard real-time scheduling theory (e.g., see
[4]).

C

Sensor S1

Sensor S2

Actuator A1

Latency L1

Latency L2

Figure 1.3: Merging paths.

Our control system examples are still, however, not very realistic. In a real system,
measurements from di↵erent sensors are likely to be combined to control a single or multiple
actuators. A simple instance of that pattern is shown in 1.3. Here measurements taken
by sensors S

1

and S
2

are processed by computing element C which produces commands for
actuator A while respecting the individual latencies L

1

and L
2

. To be concrete, we assume
that every measurement results in an actuator command, with the exception of measurements
taken at the same time from both sensors, in which case we assume that the measurements
are combined and result in a single command. To make this example interesting, we also
consider element C to carry state.

Assume without loss of generality that L
1

> L
2

. Suppose that S
1

produces a measurement
at time t

1

and that component C eagerly starts processing that measurement. Now, suppose
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that S
2

later produces a measurement m
2

at a time t
2

such that t
2

< t
1

+ L
1

� L
2

. In other
words, suppose that S

2

produces a measurement that according to the latency specifications
will result in an earlier actuation of A. The decision to process m

1

eagerly can have several
unwanted consequences at this point. If the processing of m

1

has finished or it continues to
completion, then the order of the actuation times of the two measurements and the order
of their processing by C, and hence the order with which they a↵ect the state of C, will be
reversed. We argue that this inversion is wrong. The e↵ect on the state of C should obey the
same order as the e↵ect that the measurements have on the physical world. Note here that
on a uniprocessor platform and assuming that the execution of C includes state mutation, it
is not trivial to preempt the execution of m

1

when m
2

becomes available. If no concurrency
control is used, then the state of C might be in an inconsistent state. If locks or some other
mechanism are used, then processing m

2

cannot start until the processing of m
1

reaches a
preemption point, and any state snapshot and rollback mechanism used to immediately start
anew with processing m

2

is likely to be expensive. Therefore, if m
1

is still being processed
at time t

2

, the system will be in a situation where it is processing a measurement with a
larger deadline, t

1

+ L
1

, than another available measurement.
In summary, the relative order of actuation times should translate into a processing order

on shared components. And therefore, assuming that m
2

can be produced at any time t
2

between t
1

and t
1

+ (L
1

� L
2

), m
1

cannot be processed until it is possible to guarantee that
t
1

+ L
1

 t
2

+ L
2

, which is not until t
1

+ (L
1

� L
2

).
What if we try to extend this line of reasoning to more complex structures, such as

the system with two sensors and two actuators as shown in Figure 1.4a? Four latency
specifications are available in this system, one for each pair of sensor and actuator. However,
not all possible latency valuations are sensible. For instance, assume that L

1

> L
2

and
that sensors S

1

and S
2

each take a measurement, m
1

and m
2

, at times t
1

and t
2

such that
t
1

< t
2

< t
1

+ (L
1

� L
2

). In which order should C process the two measurements? Because
t
2

< t
1

+ (L
1

� L
2

), from the perspective of actuator A
1

, see Figure 1.4b, m
2

should be
processed before m

1

. But then if t
2

> t
1

+ (L
3

� L
4

), or if L
1

� L
2

> L
3

� L
4

, from the
perspective of actuator A

2

, see Figure 1.4c, m
1

should be processed before m
2

. So, it has
to be L

1

� L
2

 L
3

� L
4

for the two actuators to agree. The last inequality together with
the initial assumption that L

1

> L
2

imply further that L
3

� L
4

> 0 or L
3

> L
4

. Applying
the symmetric argument we get that it has to be L

3

� L
4

 L
1

� L
2

. Hence, for a latency
assignment to define a consistent ordering, it has to satisfy the equation L

1

�L
2

= L
3

�L
4

.
What this means is that the designer is expected to either come up with a real-time spec-

ification in terms of a number of dependent variables or accept non-deterministic behavior.
Both are rather unappealing and impractical ways to design systems that are unlikely to
scale well on yet more complex structures.

Luckily, there is a very natural solution to this problem. The way to go from dependent
to independent variables is to forgo the notion of a path latency in favour of a notion of a link
delay. For example, to return to the system in Figure 1.3, one may specify a delay D

1

on the
link from S

1

to the processing component C, a delay D
2

on the link from S
2

to C, and a delay
D

3

on the link from C to A, as in Figure 1.5a, and by setting D
1

= L
1

� L
2

, D
2

= 0, and
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C

Sensor S1

Sensor S2

Actuator A1

Actuator A2

Latency L1

Latency L2

Latency L3

Latency L4

Actuator A1

Actuator A2

(a) Sensor and actuator latency specifications.

C

Sensor S1

Sensor S2

Latency L1

Latency L2

Latency L3

Latency L4

Actuator A1

Actuator A2

(b) Actuator A

1

perspective.

C

Sensor S1

Sensor S2

Latency L3

Latency L4

Latency L1

Latency L2

Actuator A1

Actuator A2

(c) Actuator A

2

perspective.

Figure 1.4: Multiple sensors and actuators.

C

D1

D2

D3

Sensor S1

Sensor S2

Actuator A

Latency L1

Latency L2

(a) Merging paths with delays.

C

D1

D2

D3

D4

Sensor S1

Sensor S2

Actuator A1

Actuator A2

Latency L1

Latency L2

Latency L3

Latency L4

Actuator A1

Actuator A2

(b) Multiple sensors and actuators with delays.

Figure 1.5: Link delay specifications.

D
3

= L
2

, one can prescribe the same end-to-end latencies as before. And one can populate
the links of the system in Figure 1.4a with any arbitrary choice of delays without any fear of
ending up with nonsensical specifications. Indeed, according to the link-delay specification
of Figure 1.5b, the di↵erence between L

1

and L
2

will be (D
1

+D
3

)� (D
2

+D
3

) = D
1

�D
2

,
and that between L

3

and L
4

, (D
1

+ D
4

) � (D
2

+ D
4

) = D
1

� D
2

. Hence, by construction,
the end-to-end latencies will satisfy the consistency constraint.

Once liberated from the notion of path latency, the designer may even begin to think of
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C

Sensor S Actuator A

D

Figure 1.6: Feeback loop.

systems with feedback loops, as in Figure 1.6, where end-to-end latency specifications are at
the very least incomplete, if not ambiguous.

Interestingly, it is now possible to come up with the same latency specification in more
than one way. For example, in Figure 1.5a, one may specify the same end-to-end latencies
as before by setting D

1

= L
1

, D
2

= L
2

, and D
3

= 0. This raises the question of what the
semantics of a link-delay specification is, and whether di↵erent delay specifications corre-
sponding to identical latency specifications should be implemented di↵erently by the system
engineer.

One way to address this question is by making use of the above observation that the
relative order of actuation times translates into a processing order on shared components.
Of course, in order to resolve processing decisions at shared components deep inside the
system, one would need to keep track of the paths traversed by the arriving tokens. And
especially in the case of loops, this can become quite complicated. But there is an equivalent,
and we believe, more natural interpretation.

We may think of processing as a logical operation that takes no time, and transmission
over a link as an operation that takes time equal to the delay associated with that link.
For example, in the system of Figure 1.5a, a measurement at S

1

at time t is not available
for processing at C until t + D

1

, at which time it can be safely processed, along with any
measurement arriving at that time through the link from S

2

. This leads naturally to a pro-
gramming model according to which programs are represented as block diagrams, and blocks
correspond to components, or so-called “actors”, consuming and producing timestamped to-
kens, or so-called “events”, conceptually ordered according to their timestamps. What we
end up with is a discrete-event model of computation that is not used for modeling and sim-
ulation (e.g., see [9]), but for real-time programming; this real-time discrete-event model of
computation is called PTIDES, introduced by Zhao et al. [33]. Semantically then, di↵erent
delay specifications correspond to di↵erent programs. However, the notion of time imparted
by the timestamps is not a physical one, but a logical one. And while the designer is free
to think of this as a timed programming model, and think of the components of the control
algorithm and the physical world as living in the same space, and sharing the same temporal
semantics, this is not required for the engineer. A measurement is initially timestamped by
the sensor with the actual time at which it was taken. It is then communicated between
actors, which may increase the timestamp by some arbitrary but fixed amount before for-
warding to the next actor, until it reaches an actuator, where the timestamp is interpreted
as the actual time when actuation is to occur. It does not really matter when events are
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processed, as long as they are processed in timestamp order. And the job of the engineer is to
make sure that every event reaching an actuator is delivered before the time corresponding
to its timestamp.

This amounts to a rather complex schedulability problem that has not been considered
before in the hard real-time computing literature. A typical approach to schedulability prob-
lems is to reduce the problem of scheduling every possible scenario to the problem of schedul-
ing a single “worst-case” scenario. And that “worst-case” scenario typically corresponds to
a job-arrival pattern that maximizes processor demand over a certain time window. But in
our case, there is another factor that may contribute to a bad scenario, i.e., the requirement
to satisfy the timestamp order of processing. And the two pull in opposite directions. In
fact, in section 2.5 we will show, using two example PTIDES programs, that there are cases
where the first strategy is successful in producing a deadline violation whereas the second is
not, and vice versa.

Another source of complexity is the expressiveness of the proposed programming model.
The ability to design systems with feedback loops comes with a cost, namely the possibility
of unbounded accumulation of events with unbounded timestamps circulating in these feed-
back loops, and thus, it is not immediately obvious that the schedulability problem is even
decidable. In fact, the discrete-event model of computation is Turing-complete.

The purpose of this work is to address this schedulability problem for a uniprocessor
system [26]. Because of the above complications, it is unlikely that an analytical solution ex-
ists. Here, we consider an algorithmic solution. We introduce a detailed formalization of the
programming model, prove that the earliest-deadline-first scheduling policy is optimal, and
show that the schedulability problem can be reduced to a finite-state reachability problem.
Finally, we describe how to carry out this reduction using timed automata. The formalism
of timed automata is not intrinsic to our solution, but rather a convenient tool to seamlessly
integrate system abstraction with di↵erent, and complex, input-event arrival models.

Finally, we study the verification problem of traditional discrete-event programs by ap-
plying similar techniques as the ones used for bounding the state-space of PTIDES exe-
cutions [30]. Starting from a model with constant-delay actors, we explore two di↵erent
extensions, one where the delay is non-deterministic, and one where actors can also be de-
scribed using timed-automata. We discuss the di↵erences in expressiveness of the above
models and compare them to timed automata.

1.1 Related work

The use of time as a programming abstraction is not a new idea. Lee et al. [22] motivated
the incorporation of timing constraints into real-time programs and provided a taxonomy
of features that need to be integrated into a high-level languages that supports time as a
first class citizen. Real-Time Java [6], Ada [28], and TimeC [23] are examples of existing
languages that have been extended to allow for the specification of real-time constraints.
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Furthermore, Simulink and LabVIEW are programming frameworks for embedded systems
that also support the development of timed systems.

Synchronous languages (e.g, see [5]) have also been used for programming real-time sys-
tems. However, their approach is di↵erent than the one presented here, in that latencies
arise from the implementation instead of being part of the programming abstraction.

Our programming model belongs in the family of logically execution time based models
that was pioneered by Giotto [17]. A significant di↵erence between Giotto and our case
is the fact that the former is time-triggered. That distinction is moderated with xGiotto
[16], which is an event-triggered extension of Giotto that, however, does not allow for the
specification of relative deadlines on events.

There has been a vast amount of work on the topic of the schedulability of real-time
systems. In a seminal paper [25] for the field, Liu and Layland study systems of periodic
tasks. They prove the optimality of the rate monotonic scheduling policy among fixed pri-
ority policies, and introduce the notions of the utilization factor of a task and utilization
of a system. They provide a simple schedulability test for the case of the EDF scheduling
policy. Their task model restricts tasks to have deadlines equal to their period. Leung and
Whitehead [24] lift that constraint and extend the model of Liu and Layland by allowing
tasks to have deadlines that are independent of their periods. They show that the deadline
monotonic scheduling policy is optimal over fixed priority policies. In the mean time, Der-
touzos [12] shows that the EDF algorithm is optimal in terms of feasibility: if a task system
is schedulable, then it will be schedulable under EDF. Mok [27] introduces sporadic tasks
to model external interrupts of a system. Baruah et al. [4] give a pseudo-polynomial su�-
cient and necessary test for the schedulability of sporadic task systems with task deadlines
independent of their periods. To do that they introduce the concept of the demand bound
function.

More recently, we can identify two directions in the work on schedulability that is relevant
to PTIDES. The split is related on how much focus is placed on the e�ciency of the resulting
feasibility test. On the one hand, there is work that focuses on extending the task model
while insisting on pseudo-polynomial feasibility tests and in most cases sporadic inputs. The
other direction explores the expressiveness of both the input patterns and the task model
and is based on timed automata.

In the first direction, the digraph model [31], generalized multiframe tasks [2], and the
recurring real-time task model [3] are pushing the boundary of expressiveness with the ability
to model di↵erent job types, conditional execution, and looping structures. However, all these
models rely on the task independence assumption in order to o↵er tractability (see Note 1
in [3] and pages 8-10 in [2]). Specifically, they cannot accurately model systems where the
execution of di↵erent tasks depend on each other, which is the case in PTIDES programs.

In the other direction, the use of timed automata for schedulability of real-time task
systems begins by Norström et al. [29]. Timed automata allow for more expressive task
arrival patterns that go beyond the previously studied sporadic and periodic task systems.
[29] is restricted in that it does not allow for preemption. Fersman et al. [15, 14] extend the
previous results to preemptive task systems. Schedulability there is checked algorithmically
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via reduction to a decidable subclass of updatable automata. Asynchronous processes are
bound to timed automata locations thereby allowing for considerable expressiveness in the
task arrival and dependency patterns.

Finally, Yang Zhao in her thesis [32] also investigated the schedulability problem of
PTIDES systems. She distinguished between actors that have a sporadic output given spo-
radic inputs to the model and those that might not. For example, an actor that merges to
sporadic input streams is not sporadic since there can be no lower bound on the distance
between two successive events on the output of such an actor. The outcome of her inves-
tigation was a su�cient schedulability test for PTIDES programs that are scheduled using
EDF and in which actor loops contain solely sporadic actors.
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Chapter 2

Real-Time Discrete-Event Systems

We have introduced PTIDES as a programming model for real-time systems. We saw that it
relies on a discrete-event formalism which we motivated as a means to generalize end-to-end
latency specifications in real-time applications. In this chapter, we will delve into more details
on how the discrete-event model of computation is extended with real-time semantics, the
mechanisms with which the PTIDES framework stays faithful to discrete-event semantics,
and the real-time features of it. This introduction to PTIDES will be kept in an informal
level and guided by examples, so that the main ideas are fully understood before we delve
into the formalization of the programming model in the next chapter. Finally, in the last
section, we will provide more intuition on the schedulability problem through examples.

Note to reader: The PTIDES programming model was introduced in 2007 by Zhao et
al. [33]. Since then, two theses and several papers have been written on it. We find that
the formalism as well as the manner in which the ideas are introduced have evolved as well.
Initial work on PTIDES, e.g., [33] and [32], follows a denotational approach, closer to the
work of denotational semantics for discrete-event systems, whereas, later work, e.g., [34],
[35], and [13] follows a more operational approach. The introduction of PTIDES of this
chapter is similar to the later work, in that there is a focus on events rather than signals.

2.1 Discrete-Event Programs

The discrete-event model of computation is an actor oriented model. Components are actors
that communicate by events, which are timestamped values. Actors can fire in response to
a stimulus or can be source actors with no input channels. For example, in Figure 2.1, the
clock actor, at the top left, is a source actor that generates events with period P , starting
with timestamp t

0

. The value of those events could vary as well, however, in this example it
is constant and equal to v.

A common type of discrete-event actor is one that only introduces a time delay. Actors
D

1

and D
2

in Figure 2.1 are time-delay actors. When a time-delay actor processes an event
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Clock

D1

(t0 + 3P, v)

(t0 + 2P, v)

(t0 + P, v)

D2

C

e(t0, v)

e(t1 = t0 + D1, v)

e0(t2, v
0)

Display

e(t1, v
00)

Figure 2.1: Example discrete-event program.

with timestamp t and value v, it produces an event with timestamp t + D, where D is a
parameter of the actor, and value v. So a time-delay actor adds a delay on the timestamp of
its input events without changing their values. In the following, we will use D

i

to name time-
delay actors, and interchangeably use D

i

to refer to both the actor and its delay parameter.
Note that in the example, in response to input e(t

0

, v), actor D
1

produces event e(t
0

+D
1

, v).
Actor C in the example represents is a generic computation actor. This actor processes

its inputs and does not modify their timestamp. A constraint enforced by the discrete-event
model of computation is that actors process their inputs in timestamp order. Actor C, in this
example, is presented with events in both input channels, events e and e0 with timestamps t

1

and t
2

respectively. If t
1

< t
2

then C has to process e first and then e0. The timestamp order
requirement is important for guaranteeing that the execution of a discrete-event model is
deterministic in the context of stateful (but always deterministic) actors where the processing
order could result in di↵erent outputs. Furthermore, it agrees with the idea that timestamps
represent a logical notion of time. In order to guarantee the timestamp order requirement,
discrete-event frameworks usually maintain an ordered global event-queue, which collects all
events in an execution. If at every step, the event with the smallest timestamp in the queue
is chosen to process, then the timestamp order is guaranteed across all actors in the program.
Note that this is more than what is required for determinism, which per-actor timestamp
order execution.

Last, there are also actors that have no output channels. These consume events and do
not produce any events as a result. An example is the Display actor shown in Figure 2.1.

2.2 Sensors and Actuators

PTIDES is based on the discrete-event model of computation to provide a framework for
programming real-time systems. The inputs in a real-time platform are provided through
sensors. The outputs of a real-time system are actuators. Sensors take measurements of the
physical world or the plant that is being controlled. The real-time system then processes
those measurements and produces commands to a↵ect the physical world or control the
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D C

e1(t1, v) e2(t1 +D, v) e3(t1 +D, v

0
)

Ptides Platform

Sensor Actuator

Plant

Figure 2.2: Sensors and actuators in PTIDES.

plant. PTIDES assigns real-time semantics on a discrete-event program on the boundaries
of the program with the physical world, or in the sensors and actuators.

Therefore, the inputs of a PTIDES platform will be provided by sensors: each measure-
ment a sensor takes will result in a new event at a channel of the platform dedicated to that
sensor. The value of that event will be equal to the measurement. The question that arises
is what should its timestamp be? Again a natural answer is that the timestamp of a new
sensor event should be equal to the time that the measurement was taken. So we assume
that if a sensor takes a measurement at time t, an event with timestamp t is produced and
appears inside the platform at the same time. Note that this is obviously a simplification.
Between the time that the sensor takes the measurement and the time that the event appears
in the platform there will be some delay. If ⌧ is the timestamp of the new event and t the
time that it enters the ptides platform we can be sure that t > ⌧ . This delay is principally
due to the execution time of the sensor device driver, therefore a bound on the di↵erence
t� ⌧ can be computed and in fact the PTIDES simulation environment, see [11], allows the
designer to provide such a bound.

Symmetrically, the outputs of a PTIDES program will be inputs to the actuator devices
of the platform. The timestamp that an event has when it reaches an actuator is interpreted
as a specification of when the actuator should react or actuate. This might be less intuitive
than the assignment of real-time semantics to timestamps at sensors: another natural in-
terpretation would be that the timestamp of an event at an actuator is treated solely as a
deadline, but the actuation occurs as soon as possible. The benefit of the PTIDES approach
is the guarantee that if the inputs to a PTIDES platform are the same and all the deadlines
are met, because of the determinism of the underlying discrete-event formalism, the outputs
of the platform will also be the same, both in their values and in the time that they are
produced. This determinism is one of the most important features of PTIDES: it allows for
real-time systems to be programmed in modular way and independently of the hardware
platform.

Figure 2.2 shows a simple PTIDES program used as a platform to control a plant. The
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sensor takes a measurement at time t
1

with value v, and the event e
1

(t
1

, v) encapsulates that
measurement and appears in the platform at the same time. Next, the time-delay actor D
processes event e

1

, increases its timestamp by D, and produces event e
2

(t
1

+ D, v). Next,
the computation actor process e

2

and produces e
3

(t
1

+D, v0) at its output channel which is
the actuator input. At this point, real-time will be equal to t

1

, the time the measurement is
taken, plus the time that the processing of actors D and C required. If the real-time when e

3

is produced is less than or equal to t
1

+D then when real-time becomes equal to t
1

+D the
actuator will produce the e↵ect described by the value of e

3

, v0, to the plant. If the real-time
when e

3

is produced is greater than t
1

+D, then that “command” is no longer valid, its time
has passed, or a deadline has been missed.

2.3 Safe-to-process

We mentioned in section 2.1 that it is fairly easy to guarantee that actors fire in timestamp
order in an execution of a discrete-event program. Specifically, one solution is to maintain a
global event queue and always choose as the next event to process the smallest event in that
queue. Can we adapt this solution to also guarantee timestamp order in a PTIDES program?
The algorithm relies on the fact that in a discrete-event program all sources of events are
visible and their events are available in the queue. However, in a PTIDES program, the
source of events is the environment of the platform, and hence it is not known in advance
when new events will be produced.

D1

C

D2

Sensor S1

Actuator A

Sensor S2

e2(t+D1)e1(t)

c1

c3

c2

c4

Figure 2.3: Safe-to-process example.

We look at the example program in Figure 2.3. Assume that sensor S1 takes a mea-
surement at time t and produces an event e

1

with timestamp t at the input channel of the
delay actor D

1

. First, note that after time t no event with timestamp smaller than t will
ever appear that the input of D

1

, since events at sensor channels are timestamped with
the real-time that the corresponding measurement is taken. Therefore, assuming that no
other events are pending at the input of D

1

, we are sure that if D
1

immediately processes e,
timestamp order for D

1

will not be violated.
Event e

1

is processed by delay actor D
1

which produces a new event e
2

with timestamp
t+D

1

at the top input channel of the computation actor C. Now, even though we are sure
that no event with smaller timestamp than e

2

will appear at channel c
2

, can we say the same
about channel c

4

, the other input channel of C? Two checks are necessary. First, we need to
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check if any events currently in the system can have a smaller timestamp when they arrive
at C and, second, we need to check if any events that might arrive in the platform in the
future can have a smaller timestamp when they arrive at C. The first question translates to
inspecting channel c

4

for events with timestamp less than t +D
1

and channel c
3

for events
with timestamp less than t + D

1

� D
2

. To answer the second check, we need to wait for
real-time to be larger than t + D

1

� D
2

. Only then we can be sure that any new event
that appears at c

3

from sensor S2 will have timestamp larger than t + D
1

� D
2

and hence
timestamp larger than t+D

1

when it arrives to c
4

.
This analysis that figures out if processing an event could lead to violation of the times-

tamp order property is called safe-to-process analysis. A more elaborate treatment of the
ideas discussed here can be found in [35].

Lastly, note that the way we described it here, the safe-to-process analysis is input
agnostic, meaning it does not use any information on the input pattern of sensors. If more
information about the way inputs arrive at sensors is available, then the analysis can be
made more e�cient. For example, in the case of Figure 2.3, if we knew that sensor S2 is a
sporadic with minimum interarrival time greater than D

2

and moreover that it last fired at
time t, then the second check would not be necessary.

2.4 Scheduling Policy

We continue the introduction of the PTIDES programming model by discussing how the next
event to process is chosen. Whereas, in a discrete-event execution, it was su�cient to always
choose the event with the smallest timestamp, the real-time semantics of PTIDES add an
extra constraint. Since the timestamp of an event at an actuator is treated as a specification
of when the actuation should occur, we would like every event to reach an actuator earlier
than the time specified in its timestamp. Otherwise, because we cannot actuate in the past,
the event will have missed its deadline.

C1

C2 D Actuator 2

Actuator 1

· · ·

· · ·

e1(t1)

e2(t2)

Figure 2.4: Scheduling policy example.

Assume for example that the execution of a PTIDES program is in the state shown in
Figure 2.4. The fraction of the program shown contains two actor paths to actuators 1 and
2. The first consists of a single actor, C

1

, that does not change the timestamp of the events
it processes. Actors C

1

and C
2

are computation actors that do not change the timestamps of
the events they process. Actor D adds delay D to the timestamps of the events it processes.
Event e

1

in the Figure, which has timestamp t
1

, will be processed by C
1

, and when it reaches
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Actuator 1, its timestamp will still be equal to t
1

. On the other hand, event e
2

, which has
timestamp t

2

, will be processed by actors C
2

and D, and when it reaches Actuator 2, its
timestamp will be t

2

+D. Therefore, if our goal is to produce valid actuation commands at
the actuators, in contrast to a discrete-event execution, the real comparison we should look
at is not that between t

1

and t
2

, but rather the comparison between t
1

and t
2

+D.
In summary, in PTIDES we associate with each event a notion of deadline, equal to the

timestamp of the event when it reaches an actuator. If the event might reach multiple actu-
ators, the minimum of the corresponding timestamps is chosen. For example, in Figure 2.5,
the deadline of e

1

is t
1

and the deadline of e
2

is t
2

.
Despite the fact that we have hinted at an earliest-deadline-first as being the natural

scheduling policy, other policies might be appropriate according to the application. For
instance, it might be the case that we know that it is fine for some of the actuators to
miss their deadlines, while for others it is not. In that case, a fixed priority policy might
be more fitting. In Chapter 4 we will actually prove that the earliest-deadline-first policy
with preemption is optimal with regards to feasibility for PTIDES programs executing on a
uniprocessor platform. Preemption here refers to the mechanism that suspends the execution
of an actor if an event that has a smaller deadline becomes available during its execution.

In general, the algorithm for scheduling events works as follows: first, we take out events
that are not safe to process, since processing those could lead to a violation of the timestamp
order property, and second, choose an event based on the chosen scheduling policy. For
example, in Figure 2.5, there are three events in the system, e

1

, e
2

, and e
3

. Assuming that
e
1

is not safe to process, the first step of the process would remove e
1

from consideration,
and the second step would choose the next event to process between e

2

and e
3

.

D1

D2

W1

W2

W3 D3

S2

S1

A1

A2

S3 A3

e1(t1)

e2(t2)

e3(t3)

Figure 2.5: Scheduling pending events.

Note that the definition of deadline relies on two simplifications. First, it assumes that
every event will eventually reach the actuator. However, an actor is not required to always
produce an output in response to processing an event. It could simply consume the event
and update its state accordingly. Second, the e↵ective use of this deadline notion further
requires to be able to predict for every event what its timestamp will be when it reaches an
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actuator. This might not be trivial in the case that there are actors whose modification on
the timestamp of the events they process depends on their state or on the value of those
events.

2.5 Schedulability

As discussed earlier, a PTIDES program can be compiled and executed on various platforms.
In fact, the PTIDES toolchain includes a code generation framework that has been used to
compile and execute programs on various microprocessors. The details of the framework and
experiments can be found in previous work [10].

The execution of an actor on any specific platform will take up processor time. A worst-
case execution time can be computed for a combination of microprocessor and actor. Another
characteristic of a computing platform is the input model that describes the behavior of the
sensors. A sensor could take measurements periodically, it could sense events sporadically,
which means there is a minimum interarrival time between measurements, or it could allow
for possible bursts of measurements. Roughly, the schedulability problem amounts to, given
that platform specification, whether it can be guaranteed that the every event in a program
execution will meet its deadline.

W1 = 1

D1 = 2

C1

W2 = 1

D2 = 0

C2

W3 = 1

D3 = 2

C3
S2

S1

A1

Figure 2.6: Program that misses deadline due to safe-to-process delay.
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W1 W2 W3 W3 W4

0 1 2 3 4 5 6 7 8

sensor1

fires

sensor2

fires

W1W2 W3 W3W4

0 1 2 3 4 5 6 7 8

sensor1 fires

sensor2 fires

sensor1

deadline

Figure 2.7: Schedule of program in Figure 2.6 with deadline miss due to safe-to-process
delay.

W1 = 2

D1 = 3

C1

W2 = 1

D2 = 0

C2

W3 = 1

D3 = 3

C3

W4 = 2

D4 = 5

C4

S2

S1

A1

A2

Figure 2.8: Program that misses deadline due to computation overlap.
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W1 W2 W3 W3 W4

0 1 2 3 4 5 6 7 8

sensor1

fires

sensor2

fires

W1W2 W3 W3W4

0 1 2 3 4 5 6 7 8

sensor1 fires

sensor2 fires

sensor1

deadline

Figure 2.9: Schedule of program in Figure 2.8 with deadline miss due to computation overlap.

A typical approach to schedulability problems in hard real-time theory, is to reduce the
problem of scheduling every possible scenario to the problem of scheduling a single “worst-
case” scenario. Usually this worst-case scenario corresponds to a job-arrival pattern that
maximizes processor demand over a certain time window. However, in our case, another
factor that may contribute to a bad scenario, is the delay for events to become safe to
process.

For example, consider the system in Figure 2.6, where each actor is annotated with a
worst-case execution time and a delay added to the timestamps of processed events. Suppose
that both sensors produce events at time 0, as in the schedule in top part of Figure 2.7. This
is a scenario that maximizes processor demand, and yet is perfectly schedulable. Now,
suppose that, instead, S

1

produces an event e
1

at time 0, whereas S
2

produces an event e
2

at time 2 � ✏ for some small ✏, as in the bottom part of Figure 2.7. Then C
1

will begin
processing e

1

at time 0, and having a worst-case execution time W = 1 and a delay D = 2,
will produce an event e0

1

at time 1 with timestamp 2. But since C
2

has a delay 0, e0
1

cannot
be processed by C

3

until real time reaches the timestamp of that event, namely 2, lest there
be another event produced by S

2

at some time t between 1 and 2, and thus, another one by
C

2

with timestamp t. Thus, the system remains idle for almost a unit of time, in order to
make sure that events are safely processed in timestamp order. And after C

2

produces e0
2

in
response to e

2

, C
3

will have to process e0
2

before e0
1

, since e0
2

has a timestamp of 2� ✏ whereas
e0
1

a timestamp of 2. This causes the deadline of e0
1

to be missed. The reverse situation is
exhibited by the system of Figure 2.8, where instead, trying to maximize the time wasted
waiting for events to become safe to process does not yield the worst-case scenario.
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Chapter 3

PTIDES Formalization

In this chapter we provide a formalization for the PTIDES programming model. Specifically,
we formally define programs that model discrete-event programs and systems that model
programs executed on a specific platform. We also formally define execution of programs
and executions of systems, and describe how the two are related.

We will focus on discrete-event programs with actors that introduce a constant delay
and always produce outputs in response to processing an event. For such discrete-event
programs, the schedulability analysis presented in Chapter 4 will be necessary and su�cient.
If actors are allowed to not produce outputs, then the analysis remains su�cient, however,
we will not discuss its accuracy.

3.1 Events and signals

We use T to represent our time domain. Even though we could generalize T to some algebraic
structure with at least an addition operation and a total ordering relation, for simplicity,
we fix it here to be the set of positive real numbers R�0

. This choice is motivated by the
reduction to timed automata in 4. There, clock variables that are real valued are used to
track the passage of time. In order to formalize our notion of event, we further postulate an
infinite set C of channels, and an infinite set V of values.

Definition 3.1.1. A sort is a nonempty finite subset of C.

Sorts will serve to represent the interfaces of actors, and facilitate their composition into
programs. We will use C to range over sorts.

Definition 3.1.2. A program event of sort C is an ordered triple hc, t, vi 2 C ⇥ T⇥ V.

We write Eprog(C) for the set of all program events of sort C.
Assume a program event e = hc, t, vi.
We write chan(e) for c, time(e) for t, and val(e) for v.
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Definition 3.1.3. A subset of Eprog(C), s, is a program signal if for every t 2 T and every
c 2 C there is at most one e 2 s such that time(e) = t and chan(e) = c.

Our program signals are related to the signals of the tagged signal model [19]. There, a
signal is a subset of T ⇥ V ,where T is a set of tags and V a set of values. We can view a
program signal of sort C as a signal in the tagged signal model if we set the set of tags T to
be our time domain T, and the set of values V to be the set of nonempty functions from a
subset of C to V. In other words, the value of our signals at a time instant where they are
defined, if they interpreted in the tagged signal model, is a map from channels to values.

We write Sig(C) for the set of all program signals of sort C, and Sig
fin

(C) for the set of
all finite program signals of sort C.

We will use signals to represent inputs and outputs of programs, as well as to store the
events circulating inside programs.

Assume s 2 Sig(C).
We say that s is discrete-event if and only if there is an order-embedding1 from

h{time(e) | e 2 s},i to hN,i where N is the set of natural numbers.
We write Sig

DE

(C) for the set of all discrete-event program signals of sort C.
We say that s is non-Zeno if and only if for every t 2 T, the set {e 2 s | time(e)  t} is

finite.
We write Sig

NZ

(C) for the set of all non-Zeno program signals of sort C.
Here, we will assume that inputs to programs and systems are non-Zeno signals. This is

a realistic assumption, since ultimately, in any implementation, the source of those inputs
will be sensors taking measurements of the physical world.

Notice that Sig
fin

(C) ✓ Sig
NZ

(C) ✓ Sig
DE

(C) ✓ Sig(C).

3.2 Actors

Actors are the basic blocks of computation in our programs. An actor is a stateful, in general,
component that interfaces with its environment through a set of input and a set of output
channels, what we call its input and output sort respectively. Each time it fires, it consumes
a set of events from its input sort, and produces a set of events at its output sort, possibly
updating its state in the process.

Definition 3.2.1. An input action of sort C is a nonempty subset ↵ of Eprog(C) such that
for every c 2 C, |{e 2 ↵ | chan(e) = c}|  1, and for every e

1

, e
2

2 ↵, time(e
1

) = time(e
2

).

For example, if C = {c
1

, c
2

} is a sort consisting of channels c
1

and c
2

, and ⌧
1

, ⌧
2

2 T such
that ⌧

1

6= ⌧
2

, then the following are input actions of sort C: ↵
1

= {(c
1

, ⌧
1

, v
1

), (c
2

, ⌧
1

, v
2

)},
↵
2

= {(c
1

, ⌧
1

, v
1

)}, ↵
3

= {(c
2

, ⌧
2

, v
2

)}, and the following are not input actions of sort C: ;,
{(c

1

, ⌧
1

, v
1

), (c
2

, ⌧
2

, v
2

)}, {(c
1

, ⌧
1

, v
1

), (c
1

, ⌧
2

, v
2

)}.
1
Given two partially ordered sets A and B, an order-embedding is a function f : A ! B such that for

all a, a

0 2 A, a  a

0
if and only if f(a)  f(a

0
).
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We write InputActions(C) for the set of all input actions of sort C.
Assume ↵ 2 InputActions(C).
We write chan(↵) for {chan(e) | e 2 ↵}, and time(↵) for the unique t 2 T such that for

every e 2 ↵, time(e) = t. So, in the previous example we have chan(↵
1

) = {c
1

, c
2

} and
time(↵

1

) = ⌧
1

.
Input actions restrict the possible input behaviors of actors. When actors fire, they

process each time a set of events that share the same timestamp. This is central to our
perception of a timestamp as a logical time instant: an actor fires at the unique logical time
instant time(↵) associated with the corresponding input action ↵.

Definition 3.2.2. An output action of sort C is a nonempty subset ↵ of Eprog(C) such that
for every c 2 C,

|{e 2 ↵ | chan(e) = c}|  1.

We write OutputActions(C) for the set of all output actions of sort C.
Unlike input actions, the events of an output action need not share the same timestamp.

This is not inconsistent with our perception of timestamps as logical time instants. Output
actions can be understood operationally: they schedule events in logical time according
to their timestamps. We have constrained output actions to contain at most one event
per output channel. If an actor could output multiple events on a channel, as a result of
processing an input action, then it would also be possible for di↵erent firings of the actor
to result in events with the same channel and timestamp. While there are approaches for
handling such cases, e.g., the use of superdense time [21], [20], we will not consider them in
this work.

Definition 3.2.3. An actor is an ordered sextuple hS, s
init

, C
in

, C
out

, f, ui such that the
following are true:

1. S is a nonempty set of states;

2. s
init

2 S is the initial state;

3. C
in

is a sort;

4. C
out

is a sort;

5. f is a function from S ⇥ InputActions(C
in

) to OutputActions(C
out

);

6. u is a function from S ⇥ InputActions(C
in

) to S.

Assume an actor A = hS, s
init

, C
in

, C
out

, f, ui.
We write states(A) for S, state

init

(A) for s
init

, CA

in

for C
in

, CA

out

for C
out

, fA for f , and uA

for u.
We now identify the class of actors that we will consider in this work.
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We say that A is output-homogeneous if and only if for every hs,↵i 2 states(A) ⇥
InputActions(CA

in

),
{chan(e) | e 2 fA(hs,↵i)} = CA

out

.

An output-homogeneous actor is simply an actor that, when fired, produces a single event
at each channel in its output sort.

Assume an output-homogeneous actor A.
We say that A is constant-delay if and only if for every c 2 CA

out

, there is � 2 Q�0

,
where Q�0

are the positive rational numbers, such that for every hs,↵i 2 states(A) ⇥
InputActions(CA

in

), and every e 2 fA(hs,↵i) such that chan(e) = c,

time(e) = time(↵) + �.

Perhaps, one would expect the domain of � to be T here. The reason we choose Q�0

instead, is that in Chapter 4 we will use the discrete state of a timed automaton to model
actor delays.

Constant-delay output-homogeneous actors are causal actors, i.e., their output depends
on past and present inputs but not on future ones, that produce events at fixed, non-negative
logical time distances from the logical time instant associated with the input events.

As mentioned in the beginning of the chapter, we need to focus on constant-delay output-
homogeneous actors for the analysis in Chapter 4 to be both necessary and su�cient. Fur-
thermore, note that for this class of actors, we can statically associate an accurate deadline
with each event in the program. If actors are constant-delay but not output-homogeneous
then the analysis will be su�cient. However, for that case, coming up with a necessary and
su�cient schedulability test does not appear to be easy. Assume that an actor, while it has
outputs that lead to actuators, does not produce any outputs when it processes some of its
inputs. Deadline assignment for the events that are on those input channels becomes a dif-
ficult problem and EDF ceases to be an optimal scheduling policy. We defer that discussion
for Section 6.1.

Assume a constant-delay output-homogeneous actor A.
We write delayA for a function from CA

out

to Q�0

such that for every c 2 CA

out

, every
hs,↵i 2 states(A)⇥ InputActions(CA

in

), and every e 2 fA(hs,↵i) such that chan(e) = c,

time(e) = time(↵) + (delayA)(c).

3.3 Programs

For every actor A
1

and A
2

, we say that A
1

and A
2

are compatible if and only if CA

1

in

\CA

2

in

= ;
and CA

1

out

\ CA

2

out

= ;. Every channel in a program will have at most a single writer and a
single reader. Any other behavior can be modeled using simple actors, that either merge the
events of two channels into a single one, or copy the events of a channel to multiple ones.

Definition 3.3.1. A program is a nonempty finite set of pairwise compatible constant-delay
output-homogeneous actors.
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Assume a program P .
We write chan(P ) for

S
{CA

in

,CA

out

| A 2 P}, sort
in

P for
S

{CA

in

| A 2 P} \S
{CA

out

| A 2 P},and CP

out

for
S

{CA

out

| A 2 P} \
S
{CA

in

| A 2 P}.
chan(P ) is the set of all channels appearing in a program, whereas CP

in

and CP

out

are the
sets of all unconnected input and output actor channels respectively.

We use a labeled transition system to formalize all possible executions of P .

Definition 3.3.2. A state of P is an ordered triple hQ, ◆, "i such that the following are true:

1. Q 2 Sig
fin

(chan(P ));

2. there is a partition {P
idle,

P
exec

} of P such that the following are true:

a) ◆ is a function from P
idle

such that for any A 2 P
idle

, ◆(A) 2 states(A);

b) " is a function from P
exec

such that for any A 2 P
exec

, "(A) 2 states(A) ⇥
InputActions(CA

in

).

We write states(P ) for the set of all states of P .
A state hQ, ◆, "i of P captures the composite state of P at some particular time instant

during its execution: Q represents the set of all events circulating inside the program, ◆
the set of all idle actors, along with their state, and " the set of all executing actors, along
with their state and input events processed. Note that it is required that at every state the
domain of ◆ and the domain of " form a partition of the set of actors in the program, or that
an actor must either be idle or executing, but not both.

We write state
init

(P ) for a state hQ, ◆, "i of P such that the following are true:

1. Q is the empty program signal;

2. ◆ is a function from P such that for every A 2 P ,

◆(A) = state
init

(A);

3. " is the empty function.

The labels of the transition system that we will associate with P represent the possible
actions of P . P can either receive an event from its environment, have an idle actor start
processing an input action, have a processing actor finish its execution and produce an output
action, or send an event to its environment.

We write label
in

P for Eprog(CP

in

), label
start

P for

{hA, hs,↵ii | A 2 P , s 2 states(A), and ↵ 2 InputActions(CA

in

)},

label
finish

P for

{hA,↵, si | A 2 P , ↵ 2 OutputActions(CA

out

), and s 2 states(A)},
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Table 3.1: Program transition rules.

input

l 2 label
in

P

hQ, ◆, "i l

P

hQ [ {l}, ◆, "i

output

l 2 label
out

P l 2 Q

hQ, ◆, "i l

P

hQ \ {l}, ◆, "i

start

hA, hs,↵ii 2 label
start

P ↵ ✓ Q ◆(A) = s

hQ, ◆, "i hA,hs,↵ii
P

hQ \ ↵, ◆ \ {hA, si}, " [ {hA, hs,↵ii}i

finish

hA,↵, si 2 label
finish

P
fA("(A)) = ↵ uA("(A)) = s

hQ, ◆, "i hA,↵,si
P

hQ [ ↵, ◆ [ {hA, si}, " \ {hA, "(A)i}i

label
out

P for Eprog(CP

out

), and labelP for

label
in

P [ label
start

P [ label
finish

P [ label
out

P .

We write
P

for a ternary relation between states(P ), labelP , and states(P ) defined
by the rules in Table 3.1.

We write hQ
1

, ◆
1

, "
1

i l

P

hQ
2

, ◆
2

, "
2

i if and only if
P

(hQ
1

, ◆
1

, "
1

i, l, hQ
2

, ◆
2

, "
2

i).
We write hQ

1

, ◆
1

, "
1

i l

in

P

hQ
2

, ◆
2

, "
2

i if and only if hQ
1

, ◆
1

, "
1

i l

P

hQ
2

, ◆
2

, "
2

i and
l 2 label

in

P .
We write hQ

1

, ◆
1

, "
1

i l

start

P

hQ
2

, ◆
2

, "
2

i if and only if hQ
1

, ◆
1

, "
1

i l

P

hQ
2

, ◆
2

, "
2

i and
l 2 label

start

P .

We write hQ
1

, ◆
1

, "
1

i l

finish

P

hQ
2

, ◆
2

, "
2

i if and only if hQ
1

, ◆
1

, "
1

i l

P

hQ
2

, ◆
2

, "
2

i and
l 2 label

finish

P .
We write hQ

1

, ◆
1

, "
1

i l

out

P

hQ
2

, ◆
2

, "
2

i if and only if hQ
1

, ◆
1

, "
1

i l

P

hQ
2

, ◆
2

, "
2

i and
l 2 label

out

P .

Definition 3.3.3. An execution of P is a nonempty sequence Execprog such that the following
are true:

1. Execprog(0) = state
init

(P );
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Q : ;
dom ◆ : P

" : ;

Q : {(c1, 0)}
dom ◆ : P

" : ;

Q : ;
dom ◆ : {A2, A3}
" : {(A1, (c1, 0))}

Q : {(c3, 2)}
dom ◆ : P

" : ;

Q : ;
dom ◆ : {A1, A2}
" : {(A3, (c3, 2))}

Q : {(c5, 4)}
dom ◆ : P

" : ;

Q : ;
dom ◆ : P

" : ;

0

1 2 3 4 5 6

(c1, 0) hA1, {(c1, 0)}i hA1, {(c3, 2)}i hA3, {(c3, 2)}i hA3, {(c5, 4)}i (c5, 4)

Figure 3.1: An example of a finite execution of the program of Figure 2.6, where event values
and actor states have been omitted.

2. one of the following is true:

a) Execprog is finite, and the following are true:

i. for any n < (|Execprog|� 1)/2, Execprog
2n

Exec

prog

2n+1

P

Execprog
2n+2

;

ii. for every l and hQ, ◆, "i, if Execprog(|Execprog| � 1) l

P

hQ, ◆, "i, then l 2
label

in

P ;

b) Execprog is infinite, and for every n 2 N, Execprog
2n

Exec

prog

2n+1

P

Execprog
2n+2

.

Condition 2(a)ii states that an execution can be finite only if at the last state no transi-
tions other than input ones are enabled, which further implies that both Q and dom " must
be empty.

Figure 3.1 displays an example of a finite execution of the program of Figure 2.6, where
event values and actor states have been omitted.

In the following we will borrow from functional programming languages some notation
and vocabulary for manipulating sequences. Specifically, we define a filter operation that
takes as arguments a set and a sequence and returns a new sequence which contains all the
elements of the original sequence that appear in the set. Formally, if head(s) is the first
element of sequence s, tail(s) is the su�x sequence of s after removing the first element of
s, and · is the concatenation of two sequences, then filter is defined as follows:

filter(L, s) =

8
><

>:

hi if s = hi
hhead(s)i · filter(L, tail(s)) if head(s) 2 L

filter(F, tail(s)) if head(s) 62 L

Assume an execution Execprog of P .
Assume L ✓ labelP .
We write trace

in

Execprog for filter(label
in

P,Execprog).
For every A 2 P , we write traceA

start

Execprog for

filter({hA, hs,↵ii | s 2 states(A) and ↵ 2 InputActions(CA

in

)},Execprog).
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For every A 2 P , we write traceA
finish

Execprog for

filter({hA,↵, si | ↵ 2 OutputActions(CA

out

) and s 2 states(A)},Execprog).

For every c 2 CP

out

, we write tracec
out

Execprog for filter(Eprog({c}),Execprog).
We write inExecprog for {Execprog

2n+1

| n 2 N and Execprog
2n+1

2 label
in

P}.
We write outExecprog for {Execprog

2n+1

| n 2 N and Execprog
2n+1

2 label
out

P}.
Notice that inExecprog 2 Sig(CP

in

) and outExecprog 2 Sig(CP

out

).
Clearly, our definition of execution is too liberal. In particular, it allows for executions

where an actor processes its inputs out of timestamp order, what is at odds with the intended
role of timestamps as a logical notion of time.

We say that Execprog is actor-safe if and only if for every A 2 P , and any n
1

, hQ
1

, ◆
1

, "
1

i,
and hs

1

,↵
1

i such that
Execprog

2n

1

= hQ
1

, ◆
1

, "
1

i
and

"
1

(A) = hs
1

,↵
1

i,
and any n

2

, hQ
2

, ◆
2

, "
2

i, and hs
2

,↵
2

i such that

Execprog
2n

2

= hQ
2

, ◆
2

, "
2

i

and
"
2

(A) = hs
2

,↵
2

i,
if n

1

< n
2

, then time(↵
1

) < time(↵
2

).
We say that Execprog is output-safe if and only if for every c 2 CP

out

, and any n
1

and n
2

such
that Execprog

2n

1

+1

2 Eprog({c}) and Execprog
2n

2

+1

2 Eprog({c}), if n
1

< n
2

, then time(Execprog
2n

1

+1

) <
time(Execprog

2n

2

+1

).
We say that Execprog is safe if and only if Execprog is actor-safe and output-safe.
Informally, an execution is safe just as long as every actor processes its input events in

timestamp order. Notice that safety does not constrain a program to process every single
event in timestamp order, only that each actor does so.

Another worrisome type of execution allowed by our definition is that of one where
either an event in the program remains unprocessed indefinitely, or an actor is not given
the opportunity to finish processing, or an output event of the program is never sent to the
environment.

We say that Execprog is actor-fair if and only if for every A 2 P , the following are true:

1. for any n and hQ, ◆, "i such that

Execprog
2n

= hQ, ◆, "i,

if A 2 dom ◆, and there is e 2 Q such that chan(e) 2 CA

in

, then there is n0, hQ0, ◆0, "0i,
s0, and ↵0 such that n < n0,

Execprog
2n

0 = hQ0, ◆0, "0i,
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A 2 dom "0,
"0(A) = hs0,↵0i,

and e 2 ↵0;

2. for any n and hQ, ◆, "i such that

Execprog
2n

= hQ, ◆, "i,

if A 2 dom ", then there is n0 and hQ0, ◆0, "0i such that n < n0,

Execprog
2n

0 = hQ0, ◆0, "0i,

and A 2 dom ◆0.

We say that Execprog is output-fair if and only if for every c 2 CP

out

, and any n and
hQ, ◆, "i such that

Execprog
2n

= hQ, ◆, "i,
if there is e 2 Q such that

chan(e) = c,

then there is n0 such that n  n0 and

Execprog
2n

0
+1

= e.

We say that Execprog is fair if and only if Execprog is actor-fair and output-fair.
Fairness is a well-studied notion in reactive systems (see for example Chapter 3 in [1] for

an introduction). Fairness assumptions have been used to rule out unrealistic executions.
The general form that those assumptions take, is that if an execution of a system visits a
state infinitely often, then all transitions leaving that state should be taken in that execution.
Actor-safety and output-safety have the same form. The transitions in the case of actor-
safety are start and finish transitions, and in the case of output-safety, output transitions.

We say that Execprog is correct if and only if Execprog is safe and fair.
Correct executions of a program constitute a semantic specification of valid implementa-

tions of that program. It has been used to rule out unrealistic

Theorem 3.3.4. For every correct execution Execprog
1

and Execprog
2

of P , if

inExecprog
1

= inExecprog
2

,

then the following are true:

1. for every A 2 P , the following are true:

a) traceA
start

Execprog
1

= traceA
start

Execprog
2

;

b) traceA
finish

Execprog
1

= traceA
finish

Execprog
2

;
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2. for every c 2 CP

out

,
tracec

out

Execprog
1

= tracec
out

Execprog
2

.

Proof. We will show that for every A 2 P , traceA
start

Execprog
1

= traceA
start

Execprog
2

. The other
statements follow easily.

We write ↵A,j

i

for the input action of the jth start transition of actor A in execution E
i

.
We write sA,j

i

for the state of actor A at the jth start transition of A in execution E
i

.
Let n be the largest n such that for all A 2 P :

h(traceA
start

Execprog
1

)(0), . . . , (traceA
start

Execprog
1

)(n� 1)i =
h(traceA

start

Execprog
2

)(0), . . . , (traceA
start

Execprog
2

)(n� 1)i

This implies that there is A 2 P such that either (traceA
start

Execprog
1

(n) 6=
(traceA

start

Execprog
2

(n) or without loss of generality |(traceA
start

Execprog
1

| > n and
|(traceA

start

Execprog
2

| = n.
We examine those cases separately, first assume that (traceA

start

Execprog
1

)(n) exists but
(traceA

start

Execprog
2

)(n) does not.
For any e 2 ↵A,n

1

, if chan(e) 2 CP

in

or there is i < n and A0 such that e is pro-
duced by (traceA

0
finish

Execprog
1

)(i) then e is produced in Execprog
2

as well, and by fairness
(traceA

start

Execprog
1

)(n) exists.
Therefore for every e 2 ↵A,n

1

, there is A0 such that chan(e) 2 CA

0
out

, (traceA
0

start

Execprog
1

)(n)
precedes (traceA

start

Execprog
1

)(n) in Execprog
1

, and |(traceA0
start

Execprog
2

)| < n.
If we apply the same reasoning as we did for A in the case of A0 and so on, we will either

find actor A00 such that CA

00
in

✓ CP

in

or reach actor A again. In the first case, since the input
signals of A00 are the same in Execprog

1

and Execprog
2

, the start transitions cannot di↵er. In
the second case, we will have concluded that the nth start transition of A precedes the nth

start transition of A which is also a contradiction.
Therefore it must be |(trace

start

Execprog
2

)| > n and (traceA
start

Execprog
1

)(n) 6=
(traceA

start

Execprog
2

)(n).
Note that the value of sA,n

i

depends on
h(traceA

start

Execprog
1

)(0), . . . , (traceA
start

Execprog
1

)(n� 1)i therefore sA,n

1

= sA,n

2

, and it has to
be that ↵A,n

1

6= ↵A,n

2

.
One of the following is true:

1. time(↵A,n

1

) > time(↵A,n

2

):

Note that because Execprog
1

is actor-safe, there cannot be any start transitions in
Execprog

1

that process the events in ↵A,n

2

. Furthermore, because Execprog
1

is actor-fair,
we conclude that the events ↵A,n

2

are never produced in Execprog
1

.

Let e be an event in ↵A,n

2

, and A0 the actor such that chan(e) 2 CA

0
out

. Such an actor
exists since if chan(e) 2 CP

in

it would also exist in Execprog
1

.
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Since Execprog
2

is actor-safe and constant-delay, A0 produces events in timestamp order.
Furthermore, the first n start and finish transitions of A0 are the same in Execprog

1

and
Execprog

2

.

Hence, we conclude that (traceA
0

start

Execprog
1

)(n) 6= (traceA
0

start

Execprog
2

)(n), time(↵A

0
,n

1

) >
time(↵A

0
,n

2

), and (traceA
0

start

Execprog
2

)(n) precedes (traceA
start

Execprog
2

)(n) in Execprog
2

.

2. time(↵A,n

1

) = time(↵A,n

2

):

One of the following is true:

• chan(↵A,n

1

) = chan(↵A,n

2

): there is an upstream actor A0 such that
(traceA

0
start

Execprog
1

)(n) 6= (traceA
0

start

Execprog
2

)(n), (traceA
0

start

Execprog
1

)(n) pre-
cedes (traceA

start

Execprog
1

)(n) in Execprog
1

, (traceA
0

start

Execprog
2

)(n) precedes
(traceA

start

Execprog
2

)(n) in Execprog
2

, and time(↵A

0
,n

1

) = time(↵A

0
,n

2

).

• chan(↵A,n

1

) 6= chan(↵A,n

2

): without loss of generality there is e 2 ↵A,n

1

such that
chan(e) 62 chan(↵A,n

2

) and with the same reasoning as in case 1, we can con-
clude that there is A0 such that (traceA

0
start

Execprog
1

)(n) 6= (traceA
0

start

Execprog
2

)(n),
time(↵A

0
,n

1

) < time(↵A

0
,n

2

), (traceA
0

start

Execprog
1

)(n) precedes (traceA
start

Execprog
1

)(n)
in Execprog

1

, and (traceA
0

start

Execprog
2

)(n) precedes (traceA
start

Execprog
2

)(n).

In all cases, we can repeat the process for the upstream actor A0 in the same way as when
it was showed that both (traceA

start

Execprog
1

)(n) and (traceA
start

Execprog
2

)(n) must exist, and
reach a contradiction.

The following is immediate:

Corollary 3.3.5. For every correct execution Execprog
1

and Execprog
2

of P , if

inExecprog
1

= inExecprog
2

,

then
outExecprog

1

= outExecprog
2

.

Corollary 3.3.5 formally characterizes the determinacy of discrete-event programs. It
asserts that as long as the logical notion of time in a program is not violated, in the rather
loose sense of the safety property, and each party involved is given the opportunity to make
progress, the behaviour of the program is determinate with respect to input and output
signals.

The question remains whether a program has correct executions at all, that is, other than
the trivial one. A program that contains cycles of zero logical-time delay cannot possibly
have an execution where an event enters the cycle without violating either safety or fairness.
Here, we exclude such programs from consideration.

We say that P is well defined if and only if for every nonempty X ✓ P , there is A 2 X
such that for every A0 2 X,

(delayA0)�1(0) \ CA

in

= ;.
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The condition above implies that there cannot be a cycle of actors, such that all of them
have delay equal to zero.

Assume a well defined program P .

Theorem 3.3.6. For any s 2 Sig
NZ

(CP

in

), there is a correct execution Execprog of P such
that

inExecprog = s.

Proof. We describe how to construct given a program P and an input signal s a correct
program execution Execprog such that inExecprog = s.

In every step, we describe how to extend a prefix of the program execution, in a way that
guarantees that the execution is safe and fair. The prefix is extended with either an input
transition, a start transition followed by the corresponding finish transition, or an output
transition.

The initial prefix of the program execution is

Execprog(0) = state
init

(P ).

At the beginning of each iteration, we calculate the next event to be processed.
In the following we assume that the last state of the prefix is hQ, ◆, "i and the remaining

input signal is s.
The source of the next event might be the input signal s, or the program signal Q.
We define a function (min-timeprogP ) from Sig(chan(P )) to T such that for every s0 2

Sig(chan(P )) (min-timeprogP )(s0) = min {time(e) | e 2 s0}.
If we choose the event that has the smallest timestamp, then the resulting execution is

guaranteed to be safe.
Let ⌧

i

= (min-timeprogP )(s) and ⌧
q

= (min-timeprogP )(Q).
If ⌧

i

 ⌧
q

, let e
i

be an event in {e | e 2 s and time(e) = ⌧
i

} and s0 = s \ {e
i

}. We
extend the program execution prefix with an input transition with label e

i

and the new state
hQ [ {e

i

}, ◆, "i
If ⌧

i

> ⌧
q

, we will append a start and a finish transition, or an output transition.
Let S = {e 2 Q | time(e) = ⌧

q

}
We define an order between channels in chan(P ) in the following way: c

1

� c
2

if and only
if there is a sequence of actors A

1

, . . . , A
N

such that c
1

2 CA

1

in

, c
2

2 CAN
in

, and for every i

such that 1  i < N , (delayA
i

)�1(0) \ CAi+1

in

6= ;.
We lift that order to program events and say that e

1

� e
2

if and only if chan(e
1

) �
chan(e

2

).
Let S 0 be the set of events that are minimal elements of S according to �.
We prove now that S 0 cannot nonempty because P is well-defined.
By definition of ⌧

q

, S is not empty. S 0 is empty if and only if S has no �-minimal
elements. Note that S is finite since Q is single-valued and thus for every c 2 chan(P ),
|{e 2 S | chan(e) = c}|  1. Assume that S 0 is empty. The absence of a �-minimal element
implies that there is a sequence e

1

, . . . , e
N

such that for every i such that 1  i < N ,
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e
i

� e
i+1

, and e
1

= e
N

. By the definition of �, given cycle e
1

� . . . � e
N�1

� e
1

, we can
construct a set of actors X ✓ P such that for every A 2 X, there is A0 2 X such that
(delayA0)�1(0) \ CA

in

6= ;. That implies that P is not well-defined, therefore S 0 cannot be
empty.

If the set {A 2 P | there is e 2 S 0 such that chan(e) 2 CA

in

} is empty, then it must be the
case that for every e 2 S 0, chan(e) 2 CP

out

. In that case we pick an event e from S 0 and add
an output transition with label e, and a state hQ \ {e}, ◆, "i.

If the set is not empty, then let B be an actor in the set {A 2 P |
there is e 2 S 0 such that chan(e) 2 CA

in

}, and ↵
input

2 InputActions(B) such that ↵
input

=
{e 2 S 0 | chan(e) 2 CB

in

}.
We extend the current program execution prefix with a start transition for actor B with

label l
start

and input action ↵
input

, a state hQ0, ◆0, "0i, a finish transition for actor B with label
l
finish

, and a final state hQ00, ◆00, "00i.
Let s

B

be the state of actor B at the beginning of the iteration, or s
B

= ◆(A
B

), s00
B

the
state of B after the finish transition, or s00

B

= uB(hs
B

,↵
input

i), and ↵
output

the output action
of the finish transition, or ↵

output

= fB(hs
B

,↵
input

i).
The label of the start transition will then be

l
start

= hB, hs
B

,↵
input

ii,

the intermediate state

hQ0, ◆0, "0i = hQ \ ↵
input

, ◆ \ {hB, s
B

i}, " [ {l
start

}i,

the label of the finish transition

l
finish

= hB,↵
output

, s00
B

i,

and the final state

hQ00, ◆00, "00i = hQ0 [ ↵
output

, ◆0 [ {hB, s00
B

i}, "0 \ {l
start

}i.

The resulting execution is safe.
We know argue about its fairness.
First, the second part of the actor-fairness definition is satisfied because we explicitly

accompany each start transition with the corresponding finish transition.
Second, for both the first part of actor-fairness and output-fairness we argue that in the

resulting execution Execprog if there is n, hQ, ◆, "i, and e such that Execprog(n) = hQ, ◆, "i,
and e 2 Q, then there is n0 and hQ0, ◆0, "0i such that (min-timeprogP )(Q0) > time(e).

Let s be the unprocessed input signal when Execprog(n) was added in the program execu-
tion. At that point it could either be the case that (min-timeprogP )(s)  (min-timeprogP )(Q)
or not. In the former case, because s in non-Zeno, after a finite number of steps that add
input transitions, the latter case will hold. Without loss of generality, we assume that it
holds when the input is s and Execprog(n) is added.



CHAPTER 3. PTIDES FORMALIZATION 31

The process described above will then add a pair of a start and a finish transition such
that the program time of the input action is (min-timeprogP )(Q) and the program time
of the events in the output action is � (min-timeprogP )(Q). Such start and finish tran-
sition pairs with an input action of program time equal to (min-timeprogP )(Q) will con-
tinue to be added as long as there are events in the program with program time equal to
(min-timeprogP )(Q). Because P is well-defined, in a bounded number of transitions, the state
of the program will be hQ0, ◆0, "0i where (min-timeprogP )(Q0) � (min-timeprogP )(Q) + � and
� � min {(delayA)(c) | A 2 P , c 2 CA

out

, and (delayA)(c) > 0}.
The program time of the input action of the next start transition will not be greater or

equal than (min-timeprogP )(Q) + � if the next input event has program time smaller than
that. Note, however, that because the number of input events with program time between
(min-timeprogP )(Q) and (min-timeprogP )(Q) + � is finite, since the input signal is non-Zeno,
it is still guaranteed that in a finite number of steps there will be a start transition with
input action with program time larger than or equal to (min-timeprogP )(Q) + �.

We can now repeat the reasoning above d time(e)�(min-time

prog

P )(Q)

�

e number of times.

Theorem 3.3.6 guarantees that any program free of zero logical-time delay cycles will
have a correct execution for every possible discrete-event and non-Zeno input signal it is
presented with.

We write delayP for a function from chan(P )⇥chan(P ) to Q�0

[{1} such that for every
c
1

, c
2

2 chan(P ),

(delayP )(c
1

, c
2

) =

8
>>>>>>><

>>>>>>>:

0 if c
1

= c
2

;

1 if c
1

6= c
2

and
c
1

2 CP

out

;

min{(delayA)(c) + (delayP )(c, c
2

) | A 2 P ,
c
1

2 CA

in

,
and c 2 CA

out

}

otherwise.

We will frequently “overload” delayP and apply to sets of channels as well. For C
1

, C
2

✓
chan(P ),

(delayP )(C
1

, C
2

) = min{(delayP )(c
1

, c
2

) | c
1

2 C
1

and c
2

2 C
2

}.

3.4 Systems

Programs deal exclusively in logical time. There is nothing in their semantics that bears
any relevance to physical time at all. But if we are to use them as executable real-time
specifications, we need to determine how exactly these two di↵erent notions of time relate
to one another.

Definition 3.4.1. A system is an ordered pair hP,Ri such that the following are true:
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1. P is a well-defined program;

2. R is a function from P to P�1

T,2 such that for every A 2 P , 0 < inf R(A)  supR(A)
and supR(A) 2 Q�0

.

Assume a system hP,Ri.
hP,Ri is understood as a program P running on a given uniprocessor platform. For each

A, the set R(A) represents the possible computation times that A can have on that platform.
We use a timed labeled transition system to formalize all possible executions of hP,Ri.

Definition 3.4.2. A state of hP,Ri is an ordered sextuple hQ, ◆, ", ⇢, ⇡, tsysi such that the
following are true:

1. hQ, ◆, "i 2 states(P );

2. ⇢ is a function from dom " to T such that for any A 2 dom ", there is r 2 R(A) such
that

⇢(A)  r;

3. ⇡ 2 {NULL} [ {A | A 2 dom " and 0 < ⇢(A)};

4. tsys 2 T.

A state hQ, ◆, ", ⇢, ⇡, tsysi of hP,Ri augments the state of P with information on the actual
state of the platform at some particular time instant during the execution of P . Specifically,
⇢ captures the remaining computation time of any processing actor, ⇡ represents the actor
running on the processor at that time instant, and tsys stands for that time instant.

We write states(hP,Ri) for the set of all states of hP,Ri.
We write state

init

(hP,Ri) for a state hQ, ◆, ", ⇢, ⇡, tsysi of hP,Ri such that the following
are true:

1. hQ, ◆, "i = state
init

(P );

2. ⇢ is the empty function;

3. ⇡ = NULL;

4. tsys = 0.

Assume hQ, ◆, ", ⇢, ⇡, tsysi 2 states(hP,Ri).
We write prog hQ, ◆, ", ⇢, ⇡, tsysi for hQ, ◆, "i.
We write timesys hQ, ◆, ", ⇢, ⇡, tsysi for tsys.
We write label

in

hP,Ri for label
in

P .
We write label

start

hP,Ri for {hhA, hs,↵ii, ri | hA, hs,↵ii 2 label
start

P and r 2 R(A)}.
We write label

finish

hP,Ri for label
finish

P .

2
For every set A, we write P�1 A for the set of all nonempty subsets of A.
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Table 3.2: System transition rules.

input

hQ
1

, ◆
1

, "
1

i l

in

P

hQ
2

, ◆
2

, "
2

i time(l) = tsys

hQ
1

, ◆
1

, "
1

, ⇢, ⇡, tsysi l

hP,Ri hQ2

, ◆
2

, "
2

, ⇢, ⇡, tsysi

output

hQ
1

, ◆
1

, "
1

i l

out

P

hQ
2

, ◆
2

, "
2

i time(l) = tsys

hQ
1

, ◆
1

, "
1

, ⇢, ⇡, tsysi l

hP,Ri hQ2

, ◆
2

, "
2

, ⇢, ⇡, tsysi

start

hQ
1

, ◆
1

, "
1

i hA,hs,↵ii start

P

hQ
2

, ◆
2

, "
2

i r 2 R(A) ⇢
2

= ⇢
1

[ {hA, ri}

hQ
1

, ◆
1

, "
1

, ⇢
1

, ⇡, tsysi hhA,hs,↵ii,ri
hP,Ri hQ2

, ◆
2

, "
2

, ⇢
2

, ⇡, tsysi

finish

hQ
1

, ◆
1

, "
1

i hA,↵,si finish

P

hQ
2

, ◆
2

, "
2

i ⇢
1

(A) = 0 ⇢
2

= ⇢
1

\ {hA, 0i}

hQ
1

, ◆
1

, "
1

, ⇢
1

, A, tsysi hA,↵,si
hP,Ri hQ2

, ◆
2

, "
2

, ⇢
2

, NULL, tsysi

context-switch

l 2 {NULL} [ dom "

hQ, ◆, ", ⇢, ⇡, tsysi l

hP,Ri hQ, ◆, ", ⇢, l, tsysi

We write label
out

hP,Ri for label
out

P .
We write label

prog

hP,Ri for label
in

hP,Ri[label
start

hP,Ri[label
finish

hP,Ri[label
out

hP,Ri.
For every l 2 label

prog

hP,Ri, we write prog l for
8
><

>:

hA, hs,↵ii if l 2 label
start

hP,Ri, and there is r such that
l = hhA, hs,↵ii, ri;

l otherwise.

We write label
sch

hP,Ri for {NULL} [ P .
We write label hP,Ri for label

prog

hP,Ri [ label
sch

hP,Ri.
Notice that the labels related to an actor starting to process an input action are aug-

mented with a rational number representing the amount of computation time that will be
required for processing that input action.

We write hP,Ri for a ternary relation between states(hP,Ri), label hP,Ri, and
states(hP,Ri) defined by the rules in Figure 3.2.
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Table 3.3: System time transition rules.

idle

⇡ = NULL

hQ, ◆, ", ⇢, ⇡, tsysi d

hP,Ri hQ, ◆, ", ⇢, ⇡, tsys + di

busy

⇡ 6= NULL d  ⇢
1

(⇡) ⇢
2

(A) =

(
⇢
1

(A)� d if A = ⇡;

⇢
1

(A) otherwise;

hQ, ◆, ", ⇢
1

, ⇡, tsysi d

hP,Ri hQ, ◆, ", ⇢
2

, ⇡, tsys + di

Q : ;
dom ◆ : P

" : ;
⇢ : ;

⇡ : NULL

t

sys
: 0

Q : {(c1, 0)}
dom ◆ : P

" : ;
⇢ : ;

⇡ : NULL

t

sys
: 0

Q : ;
dom ◆ : {A2, A3}
" : {(A1, (c1, 0))}

⇢ : (A1, 1)

⇡ : NULL

t

sys
: 0

Q : ;
dom ◆ : {A2, A3}
" : {(A1, (c1, 0))}

⇢ : (A1, 1)

⇡ : A1

t

sys
: 0

Q : ;
dom ◆ : {A2, A3}
" : {(A1, (c1, 0))}

⇢ : (A1, 0)

⇡ : A1

t

sys
: 1

Q : {(c3, 2)}
dom ◆ : P

" : ;
⇢ : ;

⇡ : NULL

t

sys
: 1

Q : {(c3, 2)}
dom ◆ : P

" : ;
⇢ : ;

⇡ : NULL

t

sys
: 2

Q : ;
dom ◆ : {A1, A2}
" : {(A3, (c3, 2))}

⇢ : (A3, 1)

⇡ : NULL

t

sys
: 2

Q : ;
dom ◆ : {A1, A2}
" : {(A3, (c3, 2))}

⇢ : (A3, 1)

⇡ : A3

t

sys
: 2

Q : ;
dom ◆ : {A1, A2}
" : {(A3, (c3, 2))}

⇢ : (A3, 0)

⇡ : A3

t

sys
: 3

Q : {(c5, 4)}
dom ◆ : P

" : ;
⇢ : ;

⇡ : NULL

t

sys
: 3

Q : {(c5, 4)}
dom ◆ : P

" : ;
⇢ : ;

⇡ : NULL

t

sys
: 4

Q : ;
dom ◆ : P

" : ;
⇢ : ;

⇡ : NULL

t

sys
: 4

0

1 2 3 4 5 6 7 8 9 10 11 12

(c1, 0) hA1, {(c1, 0)}i A1 1 hA1, {(c3, 2)}i 1 hA3, {(c3, 2)}i A3 1 hA3, {(c5, 4)}i 1 (c5, 4)

Figure 3.2: A prefix of an execution of the system of Figure 2.6 corresponding to the program
execution of Figure 3.1, where event values and actor states have been omitted.

There are a few observations that need to be made here.
First, input and output actions of a system bind program time to system time and system

time to program time respectively. One may think of an input channel of a program as con-
nected to an ideal sensor that will timestamp its measurements with the exact physical time
at which they were made, and instantaneously deliver them to the program, and an output
channel as connected to an ideal actuator that will actuate the environment instantaneously
at the exact physical time dictated by the timestamp of the corresponding output event.

Second, every time an actor starts processing, a requirement for computation-time neces-
sary to perform its processing is chosen nondeterministically, and the actor becomes available
for execution. But it is not executed until the system decides to allocate the platform’s pro-
cessor to it. Once it starts executing, it can be preempted and resumed arbitrarily according
to the scheduling decisions of the system.

And third, a processing actor finishes exactly when it has been allocated processor time
equal to its corresponding computation-time requirement, at which point it is taken o↵ the
processor.

System-time progress is modeled using a di↵erent type of transition labeled with the
amount of physical time elapsed.

We write hQ
1

, ◆
1

, "
1

, ⇢
1

, ⇡
1

, tsys
1

i l

hP,Ri hQ
2

, ◆
2

, "
2

, ⇢
2

, ⇡
2

, tsys
2

i if and only if
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hP,Ri(hQ1

, ◆
1

, "
1

, ⇢
1

, ⇡
1

, tsys
1

i, l, hQ
2

, ◆
2

, "
2

, ⇢
2

, ⇡
2

, tsys
2

i).
We write hP,Ri for a ternary relation between states(hP,Ri), T, and states(hP,Ri)

defined by the rules in Figure 3.3.
We write hQ

1

, ◆
1

, "
1

, ⇢
1

, ⇡
1

, tsys
1

i d

hP,Ri hQ
2

, ◆
2

, "
2

, ⇢
2

, ⇡
2

, tsys
2

i if and only if

hP,Ri(hQ1

, ◆
1

, "
1

, ⇢
1

, ⇡
1

, tsys
1

i, d, hQ
2

, ◆
2

, "
2

, ⇢
2

, ⇡
2

, tsys
2

i).
When the processor of the platform is free, there is no actor executing, and unless there

is an actor available for processing that the system decides to execute, system time may
progress arbitrarily. But when the processor is allocated to a processing actor, system time
cannot progress more than the remaining computation time of that actor, for at that point,
a discrete transition corresponding to that actor finishing must occur.

Definition 3.4.3. An execution of hP,Ri is an infinite sequence Execsys such that the
following are true:

1. Execsys(0) = state
init

(hP,Ri);

2. for every n 2 N, one of the following is true:

a) Execsys
2n

Exec

sys

2n+1

hP,Ri Exec
sys

2n+2

;

b) Execsys
2n

Exec

sys

2n+1

hP,Ri Exec
sys

2n+2

;

3. for every tsys 2 T, there is n such that tsys  timesys Execsys
2n

.

4. for any n such that
timesys Execsys

2n

= timesys Execsys
2n+2

,

if Execsys
2n+3

2 label
in

hP,Ri, then Execsys
2n+1

2 label
in

hP,Ri;

A system execution is always infinite, for even if the environment ceases to produce input
stimuli, system time will continue to progress, and in fact, diverge, as required by the third
clause of the definition. What the fourth clause amounts to is giving input transitions a
higher priority, and is necessitated by the idealization choices of our formalization, as will
soon become clear.

We define a map operation, borrowed again from functional languages, that takes as
arguments a function and a sequence, applies the function to every element in the sequence,
and returns a sequence of the results:

map(f, s) =

(
hi if s = hi,
hf(head(s))i ·map(f, tail(s)) otherwise.

Assume an execution Execsys of hP,Ri.
We write progExecsys for a sequence over states(P ) [ labelP such that for every n 2 N,

progExecsys = map(prog, filter(L
prog

[ {Execsys(n) | Execsys(n+ 1) 2 L
prog

},Execsys)).

where L
prog

= label
prog

hP,Ri.
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Proposition 3.4.4. progExecsys is an execution of P .

Figure 3.2 shows a prefix of an execution of the system of Figure 2.6, whose underlying
program execution is that of Figure 3.1, where, again, event values and actor states have
been omitted.

Just as was the case with program executions, system executions are too general. What
we want is that the logical-time specification of our programs prescribe the physical-time
behaviour of our systems. And for that to be the case, we need to make sure that program
time, as expressed through timestamps of events, maintains its role as a logical notion of
time. To do so we have to limit ourselves to system executions whose underlying program
executions are safe. But here we must further guarantee that the resulting system speci-
fication will exclude non-causal implementations that clairvoyantly execute actors without
ever violating program safety, correctly guessing the environment’s future behaviour. And
having bound program time to system time at the input edges of a program, we can use the
structure and state of the program to determine at any given time, whether it is safe for an
actor to process an input event or not.

We say that A is safe to process in hQ, ◆, ", ⇢, ⇡, tsysi if and only if A 2 dom ◆, there is
↵ 2 InputActions(CA

in

) such that ↵ ✓ Q, and the following are true:

1. tsys � time(↵)� (delayP )(CP

in

,CA

in

);

2. for any e 2 Q \ ↵,

time(e) > time(↵)� (delayP )(chan(e),CA

in

);

3. for any A0 and hs0,↵0i such that "(A0) = hs0,↵0i,

time(↵0) > time(↵)� (delayP )(CA

0

in

,CA

in

).

Informally, an actor is safe to process just as long as there is an event to process, it is
impossible for a new event arriving at a sensor to eventually cause an event of smaller or
equal timestamp as the event to be processed, and the same is true for any other event
already circulating or being processed inside the program. Notice that the inequality in the
first clause is non-strict, as opposed to those in the second and third one. This reflects our
idealization that allows a system to instantaneously make a scheduling decision that takes
into account the input status at that same time instant, and is the reason for giving input
transitions a higher priority in system executions.

We say that Execsys is actor-safe if and only if for every A 2 P , and any n,
hQ, ◆, ", ⇢, ⇡, tsysi, hs,↵i, and r such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi

and
Execsys

2n+1

= hhA, hs,↵ii, ri,
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A is safe to process in Execsys
2n

.
Of course, we are interested in system executions that meet the physical-time constraints

implied by the logical-time specification of our programs.
We say that Execsys is output-safe if and only if for any c 2 CP

out

, and every n and
hQ, ◆, ", ⇢, ⇡, tsysi such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

if there is e in Q such that
chan(e) = c,

then
tsys  time(e).

If we think of timestamps of events reaching the output channels of a program as actuator
deadlines, then a system execution is output-safe just as long as no actuator deadline is ever
missed.

We say that Execsys is safe if and only if Execsys is actor-safe and output-safe.
We say that e immediately produces e0 in Execsys if and only if there is A, n, hhA, hs,↵ii, ri,

n0, and hA, s0,↵0i such that the following are true:

1. Execsys
2n+1

= hhA, hs,↵ii, ri;

2. e 2 ↵;

3. Execsys
2n

0
+1

= hA, s0,↵0i;

4. e0 2 ↵0;

5. n < n0;

6. for every n00 such that n < n00 < n0, if there is hA0, s00,↵00i such that Execsys
2n

00
+1

=
hA0, s00,↵00i, then A0 6= A.

We say that e causally produces e0 in Execsys if and only if there is e
1

, . . . , e
N

such that
e
1

= e, e
N

= e0, and for every i such that 1  i < N , e
i

immediately produces e
i+1

in Execsys.
Notice that if e causally produces e0, then

time(e0) > time(e) + (delayP )(chan(e), chan(e0)).

Theorem 3.4.5. If Execsys is safe, then progExecsys is safe.

Proof. We examine two consecutive start transitions of an actor A in Execsys, and show that
the program time of the corresponding input actions strictly increases.

There are n
1

, n
2

, hhA, hs
1

,↵
1

ii, r
1

i, hhA, hs
2

,↵
2

ii, r
2

i, hQ
1

, ◆
1

, "
1

, ⇢
1

, ⇡
1

, tsys
1

i,
hQ

2

, ◆
2

, "
2

, ⇢
2

, ⇡
2

, tsys
2

i such that the following are true:

1. n
1

< n
2

;
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2. Execsys
2n

1

= hQ
1

, ◆
1

, "
1

, ⇢
1

, ⇡
1

, tsys
1

i;

3. Execsys
2n

2

= hQ
2

, ◆
2

, "
2

, ⇢
2

, ⇡
2

, tsys
2

i;

4. Execsys
2n

1

+1

= hhA, hs
1

,↵
1

ii, r
1

i;

5. Execsys
2n

2

+1

= hhA, hs
2

,↵
2

ii, r
2

i;

6. for every n such that n
1

< n < n
2

, if there is hhA0, hs0,↵0ii, r0i such that Execsys
2n+1

=
hhA, hs0,↵0ii, r0i, then A0 6= A.

Execsys
2n

1

+1

and Execsys
2n

2

+1

are the two consecutive start transitions of A in Execsys.
We will show that time(↵

1

) < time(↵
2

).
For every event e in ↵

2

, either e is in Q
1

or it is not.
If it is not in Q

1

, since e is in Q
2

, we will trace its source, i.e. the finish transition of an
actor, an event that causally produces it, or an input transition, in the states and transitions
that preceed Execsys

2n

2

.
Note that for every e 2 ↵

2

, time(e) = time(↵
2

), so it is su�cient to show that time(e) >
time(↵

1

).
For every e 2 ↵

2

one of the following is true:

1. e 2 Q
1

and by condition 2 of the definition of safe to process 3.4 for A for start
transition Execsys

2n

1

+1

,

time(e) > time(↵
1

)� (delayP )(chan(e),CA

in

) = time(↵
1

);

2. e 62 Q
1

and one of the following is true:

a) there exists e0 2 Q
1

that causally produces e, so time(e0)  time(e), and by condi-
tion 2 of the definition of safe to process 3.4 for A for start transition Execsys

2n

1

+1

,

time(e0) > time(↵
1

)� (delayP )(chan(e0),CA

in

);

b) there exists A0, e0, and hs0,↵0i such that the following are true:

i. "
1

(A0) = hs0,↵0i;
ii. e0 2 ↵0, e0 causally produces e, and time(e0)  time(e);

iii. by condition 3 of the definition of safe to process 3.4 for A for start transition
Execsys

2n

1

+1

,

time(↵0) > time(↵
1

)� (delayP )(CA

0

in

,CA

in

);

c) there exists n0, and e0 2 label
in

hP,Ri such that the following are true:

i. Execsys
2n

0
+1

= e0;

ii. e0 causally produces e;

iii. n0 > n
1

implying that time(e0) > tsys
1

by the input-first property of executions;
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iv. by condition 1 of the definition of safe to process 3.4 for A for start transition
Execsys

2n

1

+1

,
tsys
1

� time(↵
1

)� (delayP )(CP

in

,CA

in

).

We say that Execsys is fair if and only if progExecsys is actor-fair.
We say that Execsys is correct if and only if Execsys is safe and fair.

Theorem 3.4.6. If Execsys is correct, then progExecsys is correct.

Proof. By definition if Execsys is correct then Execsys is safe and fair, or progExecsys is safe
and progExecsys is actor-fair.

Therefore it remains to be shown that progExecsys is output-fair.
Let n, hQ, ◆, ", ⇢, ⇡, tsysi, and e be such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

e 2 Q,

and
chan(e) 2 CP

out

.

We will show that there is n0 such that n  n0 and

Execsys
2n

0
+1

= e.

Since Execsys is output-safe, tsys  time(e).
By definition of an execution, there is n00, hQ00, ◆00, "00, ⇢00, ⇡00, tsys00i, and ✏ > 0 such that

time(e) + ✏  tsys00.
e 62 Q00 because tsys00 > time(e) and Execsys is output-safe.
tsys00 > tsys therefore n00 > n.
Since e is in Q, e is not in Q00, and chan(e) 2 CP

out

, there is n0 such that n  n0 < n00 and
Execsys

2n

0
+1

= e.

3.5 Summary

At the beginning of the chapter we defined programs and actors. Actors are stateful compo-
nents with input and output channels that consume input actions from their input channels,
or sets of events with the same timestamp, and produce output actions, or sets of events
with at most one event per output channel. Programs are then sets of compatible actors,
i.e., actors whose input and output channels do not overlap.

We then defined program executions by introducing a transition system. A state of that
transition system, consists of the set of events circulating in the program, Q, the set of actors
that have not read any inputs and are idle, represented by ◆, and the set of actors that have
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read inputs and have started processing them, represented by ". An actor moves from dom ◆
to dom " by performing a start transition: it reads or consumes a set of events in Q that are
in its input channels and that form an input action, i.e., have the same timestamp. It moves
from dom " back to dom ◆ by performing a finish transition that produces a set of output
events in the actor’s output channels. Input transitions create new events at the program’s
input channels and output transitions remove events from the program’s output transitions.

We first constrained program executions so that they agree with the intuition of times-
tamps representing a notion of time. We thus defined safe program executions to be ones
that have actors process their inputs in timestamp order, and that produce events to the
environment in timestamp order. We further ruled out problematic executions that forever
ignore events or actors by defining fair program executions.

In Theorem 3.3.4, we showed that program executions are deterministic: independent
of transition interleaving, if executions are correct, i.e., if they process events in timestamp
order and they are fair, then, given the same inputs, every actor will be invoked with the
same sequence of inputs and the outputs to the environment will be the same.

Last, we showed in Theorem 3.3.6, that for well-defined programs, i.e., programs that
contain no cycles of zero logical-time delay, a correct execution always exists for program
inputs that are non-Zeno.

Next, we naturally extended programs to systems. Systems model the execution of a
program on a uniprocessor platform. The state of a system extends the program state
with three elements: tsys, ⇡, and ⇢. Variable tsys captures the real time or system time.
As mentioned in previous chapters, input and output transitions bind program and system
time. Time advances on time transitions.

Systems also associate a computation time with each actor that reads inputs in a start
transition. An actor then is not ready to finish, or to produce its outputs, until it has been
executed on the processor for a total time equal to its computation time. Variable ⇡ tracks
the actor that is executing on the processor.

Because of the splitting of the processing of events in programs in start and finish tran-
sitions, the assignment of computation time to actors comes naturally in system executions.
The remaining computation time for each actor that is ready for processing is tracked with
the ⇢ function of the system state: ⇢(A) is initialized to A’s computation time at the start
transition of A and whenever a time transition of delay � is performed, ⇢(A) is reduced by
� if ⇡ is equal to A.

As was the case with program executions, we would like to constraint system executions
to ones that satisfy the discrete-event semantics of the underlying program. However because
of the interplay with system time, we cannot simply constraint system executions to ones
that satisfy timestamp order, for if we do that, we will also allow for executions that happen
to be safe, by “guessing” what the future inputs will be. Thus, we introduce the notion of
safe-to-process analysis, and define safe system executions to be ones that require an actor
to be safe to process every time it reads inputs and performs a start transition.

We define the program projection of a system execution to be the residual program
execution when all system specific parts of a system execution are removed. In Theorem 3.4.5
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we show that if a system execution is safe, then its program projection is safe as well, or
that the safe-to-process analysis associated with the safety or system executions is su�cient
to guarantee the timestamp order processing of events. In Theorem 3.4.6 we show that if a
system execution is correct then its program projection is correct as well.
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Chapter 4

PTIDES Schedulability

In this chapter we address the schedulability problem for a uniprocessor system. We formally
define the problem, prove that the earliest-deadline-first scheduling policy is optimal, and
show that the schedulability problem can be reduced to a finite-state reachability problem.
Finally, we describe how to carry out this reduction using timed automata.

The boundedness of the state space will be based on two observations. First, we will
show that if the number of events in any state of a PTIDES execution exceeds a specific
bound, then it can be shown that that PTIDES execution will lead to a deadline violation.
The second observation is that the absolute value of real-time or of a timestamp of an event
are not individually both necessary for the execution of a PTIDES program. In fact, it is
only the di↵erence between the two that is needed for the execution of a PTIDES program.
Furthermore, we show that this di↵erence can be upper and lower bounded.

4.1 Definition

By Theorem 3.3.6, every well defined program will be able to execute correctly when pre-
sented with any non-Zeno input signal. For a system, because of the fact that each actor
is associated with computation time, this is clearly not the case. The problem is to decide
whether a given system will be able to execute correctly when presented with any non-Zeno
input signal from some given class of such signals.

First we need to address a technical issue. Our definition of a system hP,Ri includes
a function R which returns for every actor a set of possible computation times. When an
actor A reads a set of input events, in order to model the di↵erent possible computation
times for A, one is chosen nondeterministically from the set R(A) and is associated with
the processing of those specific input events. Since the ability to execute a system correctly
depends on those choices we need to be able to quantify system executions over all possible
such choices.

Recall from the previous chapter that the operator traceA
start

extracts the sequence of start
transitions of actor A from a system execution Execsys. In an execution, “start” transitions
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represent the reading of input events that are safe to process by an actor. The label of a start
transition hhA, hs,↵ii, ri contains the actor A, its state s, the input action ↵, which is a set of
events on the inputs of A that have the same timestamp, and r which is the computation time
that actor A will have to execute for in the processor before the processing of the events
is complete. In a system, a start transition label is a pair of a program start transition,
the part hA, hs,↵ii, which is common in program and system executions, paired with the
computation time choice r, which appears only in system executions. The elements of the
sequence traceA

start

Execsys will be start transition labels or pairs of the form hhA, hs,↵ii, ri.
For every A 2 P , we write reqA(Execsys) for:

map(second, trace
start

Execsys),

where second is a function that returns the second element of a pair.
Recall that the map function, defined in the previous chapter, applies the function given

as its first argument to every element of the sequence given as its second argument and
returns the result. The application of second extracts exactly the computation time choice
o↵ of each start transition label and reqA(Execsys) is the sequence of computation times that
actor A spent to complete each input invocation in execution Execsys.

We write OR(hP,Ri) for a set such that for every O 2 OR(hP,Ri), O is a function from
P such that for every A 2 P , O(A) 2 S 1 R(A)1.

In other words, OR(hP,Ri) is a set of oracles, where an oracle is a function that for every
actor returns an infinite sequence of computation times valid for that actor in the system
hP,Ri.

Proposition 4.1.1. For every execution Execsys of a system hP,Ri, there exists O 2
OR(hP,Ri) such that for every A 2 P , reqA(Execsys) v 2O(A).

As we mentioned earlier, the question of whether a system is schedulable should be asso-
ciated with an input model. A system will not and should not be expected to work properly
if its inputs are completely unconstrained. We will thus now introduce the notion of a com-
bination of a system and a class of input signals. This is of course not rare. Schedulability
analyses are always associated with specific input models, such as sporadic or periodic, as
was discussed in the introduction.

Definition 4.1.2. A model is an ordered pair hhP,Ri, Ii such that the following are true:

1. hP,Ri is a well defined system;

2. I ✓ Sig(CP

in

) is a set of input signals for program P .

1
We write S N A for the set of sequences of size N whose elements are in A.

2
For two sequences A and B, we write A v B if A is a prefix of B.
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Assume a model hhP,Ri, Ii.
We discuss now the question of when a model should be deemed schedulable. Intuitively,

in a schedulable model, the system is expected to be able to execute correctly, i.e., to not
miss any deadlines, for every possible input to the system allowed by I. Furthermore, for
a given input, the system should be able to execute correctly for all potential computation
time choices allowed by specification R.

We say that hhP,Ri, Ii is schedulable if and only if for any s 2 I, for every O 2
OR(hP,Ri), there is a correct execution Execsys of hP,Ri such that inExecsys = s and for
every A 2 P , reqA(Execsys) v O(A).

In other words, for every input signal s allowed by the model, i.e., s 2 I, and for all
allowed computation time choices O for the actors of the system, there exists an execution
Execsys that reads all the events of the input, inExecsys = s, the computation times of every
actor match the ones chosen, reqA(Execsys) v O(A), and it is correct: it processes all events,
i.e., it is fair, it processes events only when they are safe to process, i.e., it is actor-safe, and
it does not miss any deadlines, i.e., it is output safe.

To make this definition more clear, note that if each actor is associated with a unique
computation time, i.e., for every A 2 P , there is an r such that R(A) = {r}, then the second
universal quantification O 2 OR(hP,Ri) and the last requirement reqA(Execsys) v O(A) can
simply be removed: the corresponding model is schedulable if and only if for every s 2 I,
there is a correct execution Execsys of hP,Ri such that inExecsys = s.

A convenient tool in approaching schedulability problems is the identification of a par-
ticular scheduling strategy that is optimal, in the sense that if a system is schedulable,
then it is also schedulable under that particular strategy. For uniprocessor platforms, the
earliest-deadline-first (EDF) strategy has been proven optimal over a variety of di↵erent
schedulability problems. To make it applicable here, we first need to formalize a notion of
deadline for the events circulating inside the program of a system.

We write deadlineP for a function from
S
{InputActions(CA

in

) | A 2 P} to T, where
InputActions(CA

in

) is the set of input actions of sort CA

in

, or a set of events on the input channels
of A that share the same timestamp, such that for every ↵ 2

S
{InputActions(CA

in

) | A 2 P},

(deadlineP )(↵) = time(↵) + (delayP )(chan(↵),CP

out

).

Recall from the previous chapter that time(↵) is the shared timestamp of the events in
input action ↵, and that (delayP )(chan(↵),CP

out

) is the minimum delay between the channels
of the events in ↵ and the output channels of the program.

The definition of deadline matches the interpretation of the timestamp of an event at
an output port as the time at which the actuation should be performed. For the actuation
command to be valid, it should be issued at system time earlier than when specified by the
timestamp. Processing an input action ↵ by an actor A will result in events at the output
channels of A, whose processing will result in other events, and eventually, because of the
constraint that actors are constant-delay and output-homogeneous, ↵ will result in events
in all outputs ports c for which (delayP )(chan(↵), c) 6= 1. Among those, the one with
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the smallest timestamp determines the urgency of the input action, or, in other words, its
deadline.

Furthermore, note that the deadlineP function is defined on input actions of an actor,
since those represent the schedulable units in a system execution. In a system execution, the
actors that are eligible for scheduling are those that had safe-to-process events in their input
channels and have read those inputs, or have executed a start transition. The set of those
actors are exactly the ones for which a mapping exists in the function " of the system state.
The set of safe-to-process events that was read as part of the start transition constitutes the
input action on which deadlineP will be called.

Informally, we will also refer to the deadline of a single event. In that case, we simply
assume that the event is lifted to the input action that consists solely of that event. Since
all the events that constitute an input action have the same timestamp, their deadline and
the deadline of the input action match.

Leading to the definition of earliest-deadline-first executions, we will first define eager
executions. Roughly an execution is eager when there is no unnecessary system time delay,
or when system transitions are performed as soon as possible. System time elapses in a system
execution using time transitions. Time transitions are labeled with the amount of time that
passes between the start and the end state. Therefore, in the following, if Execsys

2n+1

2 T,
then Execsys

2n+1

is a time transition that corresponds to system time elapsing by an amount
equal to Execsys

2n+1

.
We say that Execsys is eager if and only if for every A 2 P , the following are true:

1. for any n and hQ, ◆, ", ⇢, ⇡, tsysi such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

and any d such that A is safe to process in hQ, ◆, ", ⇢, ⇡, tsys + di, if Execsys
2n+1

2 T, then

Execsys
2n+1

 d;

2. for any n, hQ, ◆, ", ⇢, ⇡, tsysi, such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

dom " 6= ;,

and
⇡ = NULL,

if Execsys
2n+1

2 T, then
Execsys

2n+1

= 0;

3. for any n and hQ, ◆, ", ⇢, ⇡, tsysi such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,
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A 2 dom ", and
⇢(A) = 0,

if Execsys
2n+1

2 T, then
Execsys

2n+1

= 0.

The first constraint states that an actor will read its inputs as soon as they are safe to
process. The second states that the processor ⇡ will be left idle, or NULL, only if no inputs
are available for processing. Formally, no inputs are available when there is no mapping
between actors and input actions in ", since the latter tracks the safe-to-process events with
which actors have been invoked. The last constraint states that when the processing of an
actor is finished, the resulting outputs will be produced with no delay. The ⇢ function tracks
the remaining computation time of every actor that is ready for processing. Note that the
domains of ⇢ and " match.

Focusing on eager executions allows us to rule out executions that behave lazily in a way
that could only hurt the schedulability of a system.

We now define EDF executions as eager executions. We say that Execsys is earliest-
deadline-first if and only if Execsys is eager and for any n, hQ, ◆, ", ⇢, ⇡, tsysi, and hs,↵i such
that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

and

⇡ 62 {A | there is A such that "(A) = hs,↵i, and for every A0 and hs0,↵0i such that
"(A0) = hs0,↵0i, (deadlineP )(↵)  (deadlineP )(↵0)},

if Execsys
2n+1

2 T, then
Execsys

2n+1

= 0.

The constraint above states that no time is allowed to elapse if the processor is not
assigned to the actor that is invoked with events that have a minimal deadline among other
safe-to-process events in the system.

In other words, a system execution is earliest-deadline-first just as long as it is eager with
respect to start and finish transitions, and at each time instant, allocates the processor to
the actor processing the events with the smallest deadline.

Proposition 4.1.3. If Execsys is earliest-deadline-first, then Execsys is fair.

Proof. We first show that if there is n, hQ, ◆, ", ⇢, ⇡, tsysi, A, and hs,↵i such that Execsys
2n

=
hQ, ◆, ", ⇢, ⇡, tsysi, "(A) = hs,↵i, then there is n0 and hQ0, ◆0, "0, ⇢0, ⇡0, tsys0i such that n < n0,
Execsys

2n

0 = hQ0, ◆0, "0, ⇢0, ⇡0, tsys0i, and A 2 dom ◆0.
By the definition of a system execution there is n00 and hQ00, ◆00, "00, ⇢00, ⇡00, tsys00i such that

n00 > n, Execsys
2n

00 = hQ00, ◆00, "00, ⇢00, ⇡00, tsys00i and tsys00 > time("(A)).
If "00(A) 6= hs,↵i then n0 exists and is between n and n00.
If "00(A) = hs,↵i then the following are true:
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• all new events that arrive through input transitions will have a greater deadline than
↵,

• if there is event e 2 Q00 with deadline({e}) < deadline(↵) then there is A0 and hs0,↵0i
such that "00(A0) = hs0,↵0i and deadline(↵0)  deadline({e}),

Using the same argument as in the proof of 3.3.6, within a finite number of steps, the
set of events and input actions with deadline smaller than deadline(↵) will be exhausted and
thus A will eventually occupy the processor for ⇢(A) time units and the system will execute
a finish transition for A.

We now show that if there is n, hQ, ◆, ", ⇢, ⇡, tsysi, A, and e such that Execsys
2n

=
hQ, ◆, ", ⇢, ⇡, tsysi, A 2 dom ◆, e 2 Q, and chan(e) 2 CA

in

, then there is n0, hQ0, ◆0, "0, ⇢0, ⇡0, tsys0i,
s0, and ↵0 such that n < n0, Execsys

2n

0 = hQ0, ◆0, "0, ⇢0, ⇡0, tsys0i, A 2 dom "0, "0(A) = hs0,↵0i and
e 2 ↵0.

We use the same reasoning as the previous case: by the definition of a system execution
there is n00 and hQ00, ◆00, "00, ⇢00, ⇡00, tsys00i such that n00 > n, Execsys

2n

00 = hQ00, ◆00, "00, ⇢00, ⇡00, tsys00i
and tsys00 > time("(A)).

If e 62 Q00 then n0 exists and is between n and n00.
If e 2 Q00 then the following are true:

• all new events that arrive through input transitions will have a greater deadline than
e,

• for any event e0 2 Q \ {e} such that time(e0)  time(e) � (delayP )(chan(e),CA

in

),
(deadlineP )({e0})  (deadlineP )({e});

• for any A0 and hs0,↵0i such that "(A0) = hs0,↵0i, and time(↵0)  time(e) �
(delayP )(CA

0
in

,CA

in

), (deadlineP )(↵0)  (deadlineP )({e});

As before, eventually, there will be no events or input actions that would make actor A
not be safe to process and A will execute a start transition with an input action that includes
e.

The following is immediate from Proposition 4.1.3:

Theorem 4.1.4. If Execsys is earliest-deadline-first, then Execsys is correct if and only if
Execsys is safe.

The following lemma states that for a given input and actor computation times, if there
is a correct system execution, then there will also be a correct eager execution.

In other words, in deciding the schedulability of a system, we can focus on eager system
executions.
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Lemma 4.1.5. For any s 2 I and every O 2 OR(hP,Ri), if there is a correct execution
Execsys of hP,Ri such that inExecsys = s, and for every A 2 P , reqA(Execsys) v O(A), then
there is a correct eager execution Execsys

eager

of hP,Ri such that inExecsys
eager

= s, and for every
A 2 P , reqA(Execsys

eager

) v O(A).

Proof. Assume there is s, O 2 OR(hP,Ri), and Execsys such that Execsys is a correct execu-
tion of hP,Ri, inExecsys = s, and for every A 2 P , reqA(Execsys) v O(A).

We will describe how to transform Execsys into an execution Execsys0 such that Execsys0 is
eager, Execsys0 is correct, inExecsys0 = s, and for every A 2 P , reqA(Execsys0) = reqA(Execsys).

Let n be the smallest index such that Execsys
2n+1

= d
t

where d
t

2 T and d
t

> 0.
We write s for state Execsys

2n

.
We write Execsys(s . . .) for hExecsys

2n+1

,Execsys
2n+2

, . . .i.
Let hQ, ◆, ", ⇢, ⇡, tsysi be such that Execsys

2n

= hQ, ◆, ", ⇢, ⇡, tsysi.
First, if there is an actor A 2 dom ⇢ such that ⇢(A) = 0, then because Execsys is fair,

there is n0 > n such that Execsys
2n

0
+1

is the corresponding finish transition that removes A
from dom ⇢. In order for the new execution to satisfy the eagerness constraints Execsys

2n

0
+1

has
to be moved at the beginning of Execsys(s . . .).

We write s0 for the state of the new execution that follows all finish transitions for actors
A with ⇢(A) = 0.

Next, for any actor A that is safe to process in s0, we move the corresponding start tran-
sition from Execsys(s . . .) after state s0. Let s00 be the state that follows the start transitions.
Let hQ00, ◆00, "00, ⇢00, ⇡00, tsys00i be such that s00 = hQ00, ◆00, "00, ⇢00, ⇡00, tsys00i.

Next, let d
min

be the smallest delay in T such that there is an actor A that is safe to
process in hQ00, ◆00, "00, ⇢00, ⇡00, tsys00 + d

min

i.
If d

min

< d
t

then we split the time transition that follows s00 to two time transitions with
delays d

min

and d
t

� d
min

. Let t0 be the time transition that follows s00 and d
t

0 its delay.
If dom "00 is not empty and ⇡00 = NULL then we choose a time transition in Execsys(s00 . . .)

during which an actor A from dom "00 is executing. Let d
A

be the delay of that time transition.
If d

A

is smaller than d
t

0 then we replace the t0 time transition with t
A

followed by a time
transition with duration d

A

� d
t

0 during which ⇡ = NULL.
If d

A

is larger than d
t

0 then we split t
A

into two transitions: one with duration d
A

� d
t

0

executing A and one with duration d
t

0 executing NULL, and context-switch to A before time
transition t0.

At this point the new execution including time transition t0 is eager therefore we can
restart the process outlined above in the target state of t0.

The following theorem makes the same statement as before for earliest-deadline-first
executions. It states the optimality of the EDF scheduling policy for our systems.

Theorem 4.1.6. For any s 2 I and every O 2 OR(hP,Ri), if there is a correct execution
Execsys of hP,Ri such that inExecsys = s, and for every A 2 P , reqA(Execsys) v O(A), then
there is a correct earliest-deadline-first execution Execsys

EDF

of hP,Ri such that inExecsys
EDF

= s,
and for every A 2 P , reqA(Execsys

EDF

) v O(A).
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Figure 4.1: Execution that violates EDF properties.

Proof. Given a correct execution Execsys of hP,Ri as described in the theorem, from
lemma 4.1.5 we can construct an eager execution Execsys

eager

such that inExecsys
eager

= s, and
for every A 2 P , reqA(Execsys

eager

) v O(A).
We will show how we can convert Execsys

eager

into an EDF execution Execsys
EDF

. The conver-
sion consists of the following steps: identify the earliest point at which Execsys

eager

violates the
EDF property; fix the violation; produce an intermediate correct execution which is EDF up
to and including the initial violation point; convert the intermediate correct execution into
an eager execution; repeat the process on the rest of the execution.

Assume that figure 4.1 depicts a violation of the EDF property in Execsys
eager

. The horizon-
tal axis represents system time and each rectangle labeled hA,↵i represents the uninterrupted
execution of input action ↵ by actor A on the processor.

For the execution to violate EDF we assume that (deadlineP )(↵
A

) > (deadlineP )(↵
B

)
and B is safe to process ↵

B

when A starts processing ↵
A

. Furthermore, assume that ↵
B

has
the smallest deadline among all input actions that are safe to process at time t

A

and that
t
B

is the first time after t
A

that ↵
B

starts processing.
While the execution should process ↵

B

at time t
A

, it instead processes ↵
A

. In order to
produce an EDF execution, ↵

B

has to be processed at time t
A

. We will place as much as
possible of the d

B

processing time of ↵
B

at time t
A

and shift the processing of ↵
A

to the
future as appropriate.

The input actions ↵
1

, . . . ,↵
M

correspond to input actions that are “caused” by the pro-
cessing of ↵

A

. In other words, ↵
1

, . . . ,↵
M

are the input actions that contain events that
causally depend on the events of ↵

A

. In the rearrangement of Execsys
eager

into an EDF execu-
tion, that causal ordering has to be respected. In e↵ect, this requires the processing of ↵

A

to
pushed into the processing of ↵

1

, . . . ,↵
M

and finally into the region where ↵
B

was previously
executing.

Shifting the processing of ↵
A

will change the times at which the processing of ↵
A

and
↵
1

, . . . ,↵
M

terminate. Therefore, the start transitions of ↵
1

, . . . ,↵
M

and the finish transitions
of ↵

A

and ↵
1

, . . . ,↵
M

will have to be shifted as well.
The intermediate shifted execution is correct. Notice that the shift does not change

the program time of any of the actions. If ↵
i

was safe to process at time t
i

then ↵
i

is guaranteed to be safe to process at any time greater than t
i

. Furthermore, remember
that (deadlineP )(↵

A

) > (deadlineP )(↵
B

) and note that for every i such that 1  i  M ,
(deadlineP )(↵

A

)  (deadlineP )(↵
i

). In the intermediate execution, the processing of ↵
A

and
all ↵

i

’s terminate either at the same time as in the original execution or before B terminates.
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The intermediate execution might not eagerly execute start transitions. We can tranform
it into an eager one using the process described in lemma 4.1.5.

4.2 Decidability

In the previous section we showed that in order to decide whether a model is schedulable
we can narrow our search in the EDF executions of the system. Furthermore, since the
properties of actor-safe and EDF system executions are local properties, we could construct
a transition system whose traces are prefixes of actor-safe EDF system executions. The
question of whether a non-output-safe, actor-safe, and EDF execution exists, is equivalent
to whether a state in which an event misses its deadline is reachable. Is the reachability
problem of a deadline miss state decidable? At first the answer seems negative since the
state space of a system is infinite. However, since we are only interested in the schedulability
of the system we can abstract away a big part of the state space. First, we abstract all states
of a system that contain events that have missed their deadline under a new state called
error.

Note that we have constrained the actors in a program to be output homogeneous and
constant delay. E↵ectively this means that the timing properties of the executions of a
system, and thus its schedulability, do not depend on the actor states or on the event values,
and thus, those can also be abstracted away.

Next, intuitively, it should be the case that in correct executions, or executions that
do not miss deadlines, the number of events in any state of the program could not grow
unboundedly. Events are associated with a computation time requirement and a deadline,
and thus the accumulation of too many computation requirements should conclusively lead
the system to a deadline miss. One complication that arises in our programs is the fact
that the deadline of an event in a channel does not only depend on that channel but also
on the path that the event has followed to reach that channel. Specifically, the deadline of
an event is a function of its timestamp that in principle could grow unboundedly, e.g., if the
event circles around a program loop. However, what is really of interest in order to bound
the number of events is the notion of relative deadline, which does not solely depend on
the timestamp but rather on the di↵erence between the timestamp and the current system
time. That di↵erence can be shown to be bounded in all correct executions for all events
in every channel of a program. The lower bound naturally follows from the definition of
deadline and output-safety. The upper bound, which claims that the timestamp of an event
in a channel cannot grow too much relatively to system time, is a consequence of safety and
the requirement that actors start processing events when they are safe to process.

Theorem 4.2.1. For every correct execution Execsys of hP,Ri, every n and hQ, ◆, ", ⇢, ⇡, tsysi
such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,
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and any e 2 Q,

�(delayP )(chan(e),CP

out

)  time(e)� tsys  (delayP )(CP

in

, chan(e)).

Proof. Assume that there exists correct execution Execsys of hP,Ri, n, hQ, ◆, ", ⇢, ⇡, tsysi, and
e such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

e 2 Q,

and
time(e)� tsys > (delayP )(CP

in

, chan(e)).

If chan(e) 2 CP

in

then (delayP )(CP

in

, chan(e)) = 0, tsys = time(e) at the time of the input
transition that produces e and tsys � time(e) thereafter.

Therefore, it cannot be the case that chan(e) 2 CP

in

, or there is actor A such that chan(e) 2
CA

out

.
Furthermore, there is n0, hQ0, ◆0, "0, ⇢0, ⇡0, tsys0i, s, ↵, and r such that

n0 < n,

Execsys
2n

0 = hQ0, ◆0, "0, ⇢0, ⇡0, tsys0i,

Execsys
2n

0
+1

= hhA, hs,↵ii, ri,

and
time(e) = time(↵) + (delayA)(chan(e)).

Since Execsys is a correct execution, A has to be safe to process in Execsys
2n

0 . However,

time(↵)� (delayP )(CP

in

,CA

in

) =

(time(e)� (delayA)(chan(e)))� ((delayP )(CP

in

, chan(e))� (delayA)(chan(e))) =

time(e)� (delayP )(CP

in

, chan(e)) > tsys � tsys0

The last two inequalities are by assumption and since n0 < n, respectively. Hence, our initial
assumption lead to the conclusion that there exists a start transition of actor A from a state
in which A is not safe to process, or that Execsys is not a correct execution, which is a
contradiction.

Assume there exists correct execution Execsys of hP,Ri, n, hQ, ◆, ", ⇢, ⇡, tsysi, and e such
that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

e 2 Q,

and
time(e)� tsys < �(delayP )(chan(e),CP

out

).
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If chan(e) 2 CP

out

, the inequality becomes

time(e) > tsys

which would imply that Execsys is not output-safe. Therefore, there is A such that
chan(e) 2 CA

in

. Furthermore, because we have constrained actors to be output homoge-
neous, and by definition of (delayP ) there exists a path from chan(e) to CP

out

with delay
equal to (delayP )(chan(e),CP

out

), it is easy to see that after e and its descendants are pro-
cessed, an event with timestamp time(e) + (delayP )(chan(e),CP

out

) will appear at one of the
programs output channels. Hence, there is n0, hQ0, ◆0, "0, ⇢0, ⇡0, tsys0i, and e0 such that

n0 > n,

Execsys
2n

0 = hQ0, ◆0, "0, ⇢0, ⇡0, tsys0i,

e0 2 Q0,

chan(e0) 2 CP

out

,

and
time(e0) = time(e) + (delayP )(chan(e),CP

out

).

Furthermore, since n0 > n,

tsys0 � tsys > time(e) + (delayP )(chan(e),CP

out

) = time(e0)

or
tsys0 > time(e0)

which implies that Execsys is not output safe, therefore we again reached a contradiction.

Theorem 4.2.2. For every correct execution Execsys of hP,Ri, every n and hQ, ◆, ", ⇢, ⇡, tsysi
such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

and every A 2 P , the following are true:

1. for every c 2 CA

in

,

|{e | e 2 Q and chan(e) = c}|  (delayP )(CP

in

, c) + (delayP )(c,CP

out

)

inf R(A)
;

2. for every c 2 CA

out

,

|{e | e 2 Q and chan(e) = c}|  (delayP )(CP

in

, c) + (delayP )(c,CP

out

)

inf R(A)
+ 1.
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Proof. Assume A, c, n, hQ, ◆, ", ⇢, ⇡, tsysi, e, and N such that

A 2 P ,

c 2 CA

in

,

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

e 2 Q,

chan(e) = c,

time(e) = max {time(e0) | e0 2 Q and chan(e0) = c},

and
N = |{e | e 2 Q and chan(e) = c}|.

The deadline of e is time(e) + (delayP )(chan(e),CP

out

).
Note that system time cannot grow larger than time(e) + (delayP )(chan(e),CP

out

) before
e reaches an actuator channel, otherwise e would miss its deadline and Execsys would not be
output-safe.

Let tsys0 be the system time that A finishes processing e. Since Execsys is output-safe, it
has to at least be the case that tsys0  time(e) + (delayP )(chan(e),CP

out

)
Because e has the largest timestamp between the events in channel c, tsys and tsys0 are

separated by at least N executions of actor A, or

tsys0 � tsys � N · inf R(A).

Hence, since e cannot miss its deadline in Execsys, it is necessary that

N · inf R(A) + tsys  time(e) + (delayP )(chan(e),CP

out

)

N  time(e)� tsys + (delayP )(chan(e),CP

out

)

inf R(A)

Using the bound from 4.2.1 for the di↵erence between time(e)� tsys,

N  (delayP )(CP

in

, chan(e)) + (delayP )(chan(e),CP

out

)

inf R(A)

Assume A, c, n, hQ, ◆, ", ⇢, ⇡, tsysi, e, and N such that

A 2 P ,

c 2 CA

out

,

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

e 2 Q,
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chan(e) = c,

time(e) = min {time(e0) | e0 2 Q and chan(e0) = c},

and
N = |{e | e 2 Q and chan(e) = c}|.

Let tsys0 be the time of the finish transition of A that produced e.
Because e does not to miss its deadline in Execsys, it has to be:

tsys  time(e) + (delayP )(c,CP

out

)

By choosing e to have the smallest timestamp between events in c, it can be inferred that
since tsys0, A has been executed N � 1 times, therefore

tsys � tsys0 � N · inf R(A).

Combining the two inequalities:

(N � 1) · inf R(A) + tsys0  time(e) + (delayP )(c,CP

out

)

N  time(e)� tsys0 + (delayP )(c,CP

out

)

inf R(A)
+ 1

Again using 4.2.1:

N  (delayP )(CP

in

, c) + (delayP )(c,CP

out

)

inf R(A)
+ 1.

Theorem 4.2.2 allows to further abstract under the error state all those system states
that have channels with more events than the specified bound.

We now show that for schedulability of a system hP,Ri it is su�cient to abstract the
ranges of the computation requirement function R with a single worst-case point.

We write worstR for a function from P to P�1

T such that for every A 2 P ,

(worstR)(A) = {supR(A)}.

Theorem 4.2.3. hhP,Ri, Ii is schedulable if and only if hhP,worstRi, Ii is schedulable.

Proof. Since OR(hP,worstRi) ✓ OR(hP,Ri), it is easy to that if hhP,Ri, Ii is schedulable
then hhP,worstRi, Ii is schedulable.

We next prove that if hhP,worstRi, Ii is schedulable then hhP,Ri, Ii is schedulable.
Note that since for every A 2 P , |(worstR)(A)| = 1 it is also the case that

|OR(hP,worstRi)| = 1. Specifically the unique O
worst

2 OR(hP,worstRi) is such that for
every A 2 P , for every i 2 N, O

worst

(A)(i) = supR(A).
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We assume that hhP,worstRi, Ii is schedulable and show that hhP,Ri, Ii is schedulable
as well.

Let s 2 I. Since hhP,worstRi, Ii is schedulable, there is a correct execution Execsys of
hP,worstRi such that inExecsys = s and for every A 2 P , reqA(Execsys) v O

worst

(A).
Let O 2 OR(hP,Ri). Using Execsys, we will construct a correct execution Execsys0 of

hP,Ri such that inExecsys0 = s and for every A 2 P , reqA(Execsys0) v O(A).
We will now describe how we can replace the computation time requirement of a start

transition in Execsys from r to some r0  r. Using that construction, we can produce the
required Execsys0 described above.

Let i, A, s, and ↵ be such that Execsys
2i+1

is a start transition and Execsys
2i+1

= hhA, hs,↵ii, ri.
Further, let j be the smallest j > i such that there is d 2 T, hQ

1

, ◆
1

, "
1

, ⇢
1

, ⇡
1

, tsys
1

i,
hQ

2

, ◆
2

, "
2

, ⇢
2

, ⇡
2

, tsys
2

i, such that Execsys
2j+1

= d, Execsys
2j

= hQ
1

, ◆
1

, "
1

, ⇢
1

, ⇡
1

, tsys
1

i, Execsys
2j+2

=
hQ

2

, ◆
2

, "
2

, ⇢
2

, ⇡
2

, tsys
2

i, ⇡
1

= A, ⇢
2

(A)  r � r0.
In other words Execsys

2j+1

is the first time transition for which the remaining execution
time of ⇢(A) falls below r � r0.

Therefore we can replace the start transition Execsys
2i+1

with hhA, hs,↵ii, r0i, subtract r�r0

from the value of ⇢(A) from all states between Execsys
2i+2

and Execsys
2j

; set the value of ⇢(A) to
0 in all states that follow Execsys

2j

up to the corresponding finish transition in Execsys, replace
the time transition Execsys

2j+1

with time transition of delay ⇢
1

(A) � (r = r0), add a context
switch of NULL and a time transition of delay r � r0.

The following is immediate:

Corollary 4.2.4. For every correct execution Execsys of hP,worstRi, every n and
hQ, ◆, ", ⇢, ⇡, tsysi such that

Execsys
2n

= hQ, ◆, ", ⇢, ⇡, tsysi,

and every A 2 P , the following are true:

1. for every c 2 CA

in

,

|{e | e 2 Q and chan(e) = c}|  (delayP )(CP

in

, c) + (delayP )(c,CP

out

)

supR(A)
;

2. for every c 2 CA

out

,

|{e | e 2 Q and chan(e) = c}|  (delayP )(CP

in

, c) + (delayP )(c,CP

out

)

supR(A)
+ 1.

Lastly, note that both system time and event logical times can grow unboundedly. How-
ever, since all operations of the EDF transition system, i.e., checking if an actor is safe to
process and comparing deadlines of events, only involve di↵erences between logical time and
system time, we can replace both system time and event timestamps with a value that tracks
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for each event the di↵erence of the two. Moreover, because of Theorem 4.2.1, that value will
be bounded.

This last observation together with the reductions shown before, e↵ectively shows that if
we assume a time domain T with some finite resolution, or, in other words, if we discretize
time with some fixed quantum, then the state space of the EDF transition system is finite.
If the class of input signals is also such that it can be described with a finite state system,
then the product of the two systems will also have finite state and hence reachability of the
error state will be decidable. One such a class is, for example, sporadic sources, which
require finite state since after the minimum interarrival time has elapsed the distance from
the last event does not have to be tracked.

In the next section we will further show that the schedulability problem remains decidable
even in the case that the time domain is dense, or equal to the set of real numbers.

4.3 Reduction to reachability of timed-automata

Our goal in this section will be to show that the EDF transition system described in the
previous section can be implemented using finite discrete state and real-valued clocks that
can only be reset and linearly compared.

Starting from the last point of the previous section, namely the su�ciency of system
time and timestamp di↵erence, we observe that it is possible to track the relative time that
an event is in the program by associating a timer and a delay with each event. At input
transitions, the timer and the delay are set to zero. At time transitions, the timers of all
events are incremented by the elapsed time. At start transitions, the timer and delay of
one of the events of an input transition are chosen to represent the input action. At finish
transitions, the delay of each event in the output action is set equal to the sum of the delay
of the input action and the delay of the corresponding output channel of the actor, and the
timer of each event in the output action is set equal to the timer of the input action. It
is easy to see that the di↵erence between the delay and the timer is always equal to the
di↵erence between the logical time of the event and system time. Since the latter was shown
to be bounded, we can impose a bound on the value of both timers and delays. We set a
limit for the value of a timer, and exactly when the timer crosses the limit, we reset it and
subtract the value of the limit from the corresponding delay so that their di↵erence does not
change. In that way both timers and delays remain bounded.

So far, we have argued that the part of the EDF transition system that handles events has
a bounded discrete state and uses timers that are linearly compared and reset. Therefore, it
can be implemented with a timed automaton. What remains is to see whether the part of
the system that deals with actor execution can also be implemented using finite state and
clocks.

In the EDF transition system, actor execution is tracked using the ⇢ function. At the
start transition of an actor A, ⇢(A) is set equal to a value in R(A), which from Theorem 4.2.3
can be fixed to supR(A), and the ⇢ value of the actor that is executing decreases as time
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idle

executing

clock  C

clock := 0 clock = C

idle

executing

preempted

clock  C +

P
Ci· P(i)

clock := 0

pause clock?

P(i)++

clock = C +

P
Ci· P(i)

Figure 4.2: Modeling actor preemption with Timed Automata.

elapses at time transitions. An actor completes its execution when its ⇢ value is equal to
zero. Note that this is equivalent to setting ⇢(A) to zero initially and increase it until it
reaches supR(A). To show that this functionality can be implemented with clocks that do
not freeze when an actor is not executing, we augment the state with a value that tracks
the total preemption time of an actor. When an actor A is first assigned the processor,
⇢(A) is set to zero, and at time transitions all ⇢ values are increased by the elapsed time.
When an actor A is preempted by another actor B, supR(B) is added to the preemption
time of A. An actor A finishes executing when its ⇢ value is equal to the sum of supR(A)
and its preemption time. The scheme above is correct since, in EDF, when B preempts A,
B will finish executing before A executes again. Lastly, note that an actor is added to ⇢’s
domain when the actor is first allocated the processor and not at the start transition. This
is because any delay that follows the allocation time can be accounted for precisely, whereas
the interval between start time and allocation time cannot.

The mechanism is also explained in Figure 4.2. The left side of the figure shows how a
timed automaton would track the execution of an actor if no preemption was allowed. Its
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operation is pretty intuitive: on the transition from the idle to the executing location a clock
is reset, and when the clock becomes equal to the execution time of the actor the automaton
moves back to the idle location. On the right side one can see that when the automaton
moves from the executing to the preempted location, ideally we would want the clock that
tracks the execution time to pause. Since that is not possible in timed automata and because
when an actor is preempted by another actor, the latter is guaranteed to terminate before
the former gets to run again, we just record the preemption event in the automaton. That
information is then used to decide when the actor actually finishes execution and needs to
move from the executing state to the idle state.

With actor execution, all parts of the system have been shown to require finite discrete
state and continuous variables that behave like clocks. Hence, the EDF transition system
can be implemented as a timed automaton. In order to formally describe the equivalent
timed automaton, we use timed automata with deadlines and priorities, as introduced by
Bornot et al. [8], because we found them to significantly simplify modeling. Specifically,
timed automata with deadlines allow us to specify the urgency of transitions. Given that
EDF executions are eager and the fact that the alternative of timed safety automata would
require us to encode such urgency constraints using complex invariant conditions, timed
automata with deadlines proved to be very useful.

We write TADP hhP,Ri, bi for the resulting timed automaton with deadlines and priorities
that simulates safe EDF executions for system hP,Ri, where b is the chosen limit of the event
timers. Of course, in a timed automaton implementation of the system, the inputs also have
to be described using a timed automaton. An input model of sort C is a timelock-free TADP
(see [7] and formally defined below) such that the label set of the automaton is a subset of
L ✓ C [{⌧}, and in any run of the automaton, for each time instant, and every c 2 C, there
can only be one transition with label c.

We postulate a nonempty class X of clock symbols.
Assume a nonempty subset X of X.

Definition 4.3.1. An X-valuation is a function from X to T.

We write V(X) for the set of all X-valuations.

Definition 4.3.2. An X-constraint is a member of the smallest set of formulas � such that
the following are true:

1. for every x 2 X and r 2 Q, the following are true:

a) x  r 2 � ;

b) r  x 2 � ;

2. for every x
1

, x
2

2 X and r 2 Q, the following are true:

a) x
1

� x
2

 r 2 � ;

b) r  x
1

� x
2

2 � ;
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3. for every � 2 � , ¬� 2 � ;

4. for every �
1

, �
2

2 � , �
1

^ �
2

2 � .

We write �(X) for the set of all X-constraints.
For every X-valuation v and every X-constraint �, we say that v satisfies �, and write

|= �(v), if and only if one of the following is true:

1. there is x 2 X and r 2 Q such that one of the following is true:

a) � = x  r and v(x)  r;

b) � = x � r and r  v(x);

2. there is x
1

, x
2

2 X and r 2 Q such that one of the following is true:

a) � = x
1

� x
2

 r and v(x
1

)� v(x
2

)  r;

b) � = r � x
1

� x
2

and r  v(x
1

)� v(x
2

);

3. there is �0 such that � = ¬�0, and v does not satisfy �0;

4. there is �
1

and �
2

such that � = �
1

^ �
2

, and v satisfies �
1

and �
2

.

Definition 4.3.3. A timed automaton with deadlines and priorities (TADP) is an ordered
sextuple hS, s

init

, L,X, T,�i such that the following are true:

1. S is a finite set of discrete states;

2. s
init

2 S is the initial set;

3. L is a finite set of actions;

4. X is a subset of X;

5. T ✓ S ⇥ �(X) ⇥ �(X) ⇥ L ⇥ P X ⇥ S is a set of transitions such that for every
hs

1

, �, �, l, Us
2

i 2 T , � is the guard of the transition, � its deadline, U is the set of
clocks to be reset, and for every v 2 V(X), if |= �(v), then |= �(v);

6. � is a priority order on L.

Assume a TADP hS, s
init

, L,X, T,�i.
We write hS,s

init

,L,X,T,�i for a ternary relation between S ⇥ V(X), L, and S ⇥ V(X)
such that for every hs

1

, v
1

i 2 S ⇥ V(X), l 2 L, and hs
2

, v
2

i 2 S ⇥ V(X),

hS,s
init

,L,X,T,�i (hs1, v1i, l, hs2, v2i)

if and only if there is �, �, and U such that the following are true:
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1. hs
1

, �, �, l, U, s
2

i 2 T and |= �(v
1

), and for every �0, �0, l0, U 0, and s0
2

such that
hs

1

, �0, �0, l0, U 0, s0
2

i 2 T and |= �0(v
1

), l0 � l;

2. for every x 2 X,

v
2

(x) =

(
0 if x 2 U ;

v
1

(x) otherwise.

We write hs
1

, v
1

i l

hS,s
init

,L,X,T,�i hs
2

, v
2

i if and only if hS,s
init

,L,X,T,�i
(hs

1

, v
1

i, l, hs
2

, v
2

i).
We write hS,s

init

,L,X,T,�i for a ternary relation between S ⇥ V(X), T, and S ⇥ V(X)
such that for every hs

1

, v
1

i 2 S ⇥ V(X), d 2 T, and hs
2

, v
2

i 2 S ⇥ V(X),

hS,s
init

,L,X,T,�i (hs1, v1i, d, hs2, v2i)

if and only if the following are true:

1. s
1

= s
2

, and for every �, �, l, U , and s0
2

such that hs
1

, �, �, l, U, s0
2

i 2 T , and every
d0 < d, 6|= �(v0

1

), where v0
1

is an X-valuation such that for every x 2 X,

v0
1

(x) = v
1

(x) + d0.

2. for every x 2 X,
v
2

(x) = v
1

(x) + d.

We write hs
1

, v
1

i d

hS,s
init

,L,X,T,�i hs
2

, v
2

i if and only if hS,s
init

,L,X,T,�i
(hs

1

, v
1

i, d, hs
2

, v
2

i).

Definition 4.3.4. A run of hS, s
init

, L,X, T,�i is an infinite sequence R such that the
following are true:

1. there is v
init

2 V(X) such that for every x 2 X, v
init

(x) = 0, and R(0) = hs
init

, v
init

i;

2. for every n 2 N, one of the following is true:

a) R(2 · n) R(2·n+1)

hS,s
init

,L,X,T,�i R(2 · n+ 2);

b) R(2 · n) R(2·n+1)

hS,s
init

,L,X,T,�i R(2 · n+ 2);

We say that s is reachable in hS, s
init

, L,X, T,�i if and only if there is a run R of
hS, s

init

, L,X, T,�i, n, and v 2 V (X) such that R(n) = hs, vi.
Assume a run R of hS, s

init

, L,X, T,�i.
We write lapseR for a function from N⇥N to T such that for every n

1

, n
2

2 N,

(lapseR)(n
1

, n
2

) =
X

{R(2 · n+ 1) | n
1

 n < n
2

and R(2 · n+ 1) 2 T}.
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We say that R is divergent if and only if for every t 2 T, there is n 2 N such that

t  (lapseR)(0, n).

We say that hS, s
init

, L,X, T,�i is timelock-free if and only if for every run R of
hS, s

init

, L,X, T,�i, and every n 2 N, there is a divergent run R0 of hS, s
init

, L,X, T,�i
such that for any n0 < n,

R0(2 · n0) = R(2 · n0)

and
R0(2 · n0 + 1) = R(2 · n0 + 1).

Previously we described how, in a timed automaton, it is possible to simulate the dif-
ference between real-time and timestamps for each event a timer clock and an accumulated
delay value. In summary, when a new event arrives in the system, it is associated with a
new clock that is reset and an accumulated delay value set to zero. For new events that are
generated when an actor finishes executing, the same clock as the actor input is used and
the new accumulated delay values are adjusted according to the actor delay values. Since
the accumulated delay and clock di↵erence is bounded, and the clock grows continuously,
we can keep both bounded by resetting the clock exactly when it crosses a specific limit and
adjusting at the same time the accumulated value so that their di↵erence stays the same.

We express the clock limit value as a multiple of the greatest common divisor of the actor
delays, thereby restricting the delay accumulator values to a finite domain, as described next.

Assume b 2 N.
We write R

AD

(b) for a function from chan(P ) to P
fin

Q such that for every c 2 chan(P ),

R
AD

(b)(c) = {i · g | i 2 Z and �(delayP )(c,CP

out

)  i · g  (delayP )(CP

in

, c) + b · g},

where g = GCD({(delayA)(c) | A 2 P and c 2 CA

out

}).
We write b

queue

for a function from chan(P ) to N such that for every c 2 chan(P ) and
every A 2 P ,

b
queue

(c) =

8
<

:

j
(delayP )(C

P
in

,c)+(delayP )(c,C

P
out

)

(supR)(A)

k
if c 2 CA

in

;
j
(delayP )(C

P
in

,c)+(delayP )(c,C

P
out

)

(supR)(A)

k
+ 1 if c 2 CA

out

\ CP

out

.

In order to track the execution of actors, we associate a clock with each actor. The clock
is reset every time an actor starts executing in the processor. The execution is complete when
the clock value turns equal to the actor’s execution time, if the actor is not preempted. We
maintain in the state a map from actors to preemption delays to manage actor preemption.
When an actor is preempted by another actor, the execution time of the latter is added to
the map value for the former. When the preempted actor resumes we compare its clock to
the sum of its execution time and the map value.

Furthermore, since relative deadlines were shown to be bounded, if an actor is preempted
too many times the events processing will lose their deadline. Observe that when an actor
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A is preempted k times by an actor B, we know that at least (k� 1) · (supR(B)) time units
have passed since A started executing. Therefore a combination of other actor execution
times is a possible preemption delay for an actor as long as it does not imply that more time
than the actor’s maximum relative deadline has gone by.

We write R
PD

for a function from P to P
fin

Q such that for every A 2 P and every
r 2 Q, r 2 R

PD

(A) if and only if there is a subset P 0 of P \ {A}, and a function f from P 0

to N such that
X

{f(A0) · (supR)(A0) | A0 2 P 0}  (delayP )(CP

in

,CA

in

) + (delayP )(CA

in

,CP

out

)

and
r =

X
{(f(A0) + 1) · (supR)(A0) | A0 2 P 0}.

For every n 2 N, we fix a distinct clock symbol x
n

, and for every actor A, a distinct clock
symbol x

A

.
We write TADP hhP,Ri, bi for a TADP hS, s

init

, L,X, T,�i such that the following are
true:

1. S is the set of all s such that one of the following is true:

(a) s is a ordered quadruple hQ, ", ⇢, ⇡i such that the following are true:

i. Q is a function from chan(P ) such that for every c 2 chan(P ), Q(c) 2
S b

queue

(c)

(X ⇥ R
AD

(b)(c));

ii. there is a subset P
exec

of P such that " is a function from P
exec

such that for
any A 2 P

exec

,
"(A) 2 X ⇥

S
{R

AD

(b)(c) | c 2 CA

in

};

iii. there is a subset P
run

of dom " such that ⇢ is a function from P
run

such that
for any A 2 P

run

,
⇢(A) 2 R

PD

(A);

iv. ⇡ 2 {NULL} [ P ;

(b) s = error;

2. s
init

is an ordered quadruple hQ
init

, "
init

, ⇢
init

, ⇡
init

i such that the following are true:

(a) Q
init

is a function from chan(P ) such that for every c 2 chan(P ),

Q
init

(c) = h i;

(b) "
init

is the empty function;

(c) ⇢
init

is the empty function;

(d) ⇡
init

= NULL;
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3. L = (CP

in

) [ {start-A, finish-A | A 2 P} [ P [ (CP

out

) [ {bound} [ {miss};

4. X = {x
n

| n 2 N and n <
P

{b
queue

(c) | c 2 chan(P )}} [ {x
A

| A 2 P};

5. T is a subset of S⇥�(X)⇥�(X)⇥L⇥P X⇥S such that one of the following is true:

(a) for every hQ
1

, "
1

, ⇢
1

, ⇡
1

i 2 S, every � 2 �(X), every � 2 �(X), every l 2 L, every
U 2 P X, and every hQ

2

, "
2

, ⇢
2

, ⇡
2

i 2 S,

hhQ
1

, "
1

, ⇢
1

, ⇡
1

i, �, �, l, U, hQ
2

, "
2

, ⇢
2

, ⇡
2

ii 2 T

if and only if one of the following is true:

i. there is c 2 CP

in

and i such that the following are true:

A. |Q
1

(c)| < b
queue

(c);

B. i = min{j | for every c0 2 chan(P ), every �, and any n < |Q
1

(c0)|,
Q

1

(c0)(n) 6= hx
j

, �i, and for any A 2 dom "
1

and every �,
"
1

(A) 6= hx
j

, �i};
C. � = true;

D. � = false;

E. l = c;

F. U = {x
i

};
G. for every c0 2 chan(P ),

Q
2

(c0) =

(
Q

1

(c0) · hhx
i

, 0ii if c0 = c;

Q
1

(c0) otherwise;

H. "
2

= "
1

;

I. ⇢
2

= ⇢
1

;

J. ⇡
2

= ⇡
1

;

This transition corresponds to an input transition that creates a new event in
the system. x

i

is the clock that gets associated with the event. By condition B,
x

i

has not been associated with any other event. The sequence of events that
corresponds to input channel c, the channel of the new event, gets extended
with the pair hx

i

, 0i so the accumulated delay of the new event is set to 0.

ii. there is A, I ✓ CA

in

, c 2 I, and hx, di such that the following are true:

A. for every c0 2 I, |Q
1

(c0)| > 0, and headQ
1

(c) = hx, di;
B. A 62 dom "

1

;

C. � = �
action

^ �
safe-to-process

, where the following are true:

(1) �
action

=
V
{d0 � x0 = d� x |

there is c0 2 I such that headQ
1

(c0) = hx0, d0i;
(2) �

safe-to-process

= �
1

^ �
2

^ �
3

, where the following are true:
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a. �
1

= x � d� (delayP )(CP

in

,CA

in

);

b. �
2

=
V
{d0 � x0 + (delayP )(c0,CA

in

) > d� x |
c0 62 I and headQ(c0) = hx0, d0i};

c. �
3

=
V

{d0 � x0 + (delayP )(CA

0
in

,CA

in

) > d� x | "
1

(A0) = hx0, d0i};
D. � = �;

E. l = start-A;

F. U = ;;
G. for every c0 2 chan(P ),

Q
2

(c0) =

(
tailQ

1

(c0) if c0 2 I;

Q
1

(c0) otherwise;

H. "
2

= "
1

[ {hA, hx, dii};
I. ⇢

2

= ⇢
1

;

J. ⇡
2

= ⇡
1

;

This transition corresponds to a start transition by actor A. In a start tran-
sition, the actor reads a set of events from its input channels that form an
input action ↵, i.e., they share the same timestamp. The set I is the set
of channels with the events that form that input action. Condition �

action

guarantees that those events have the same timestamp. The three conjuncts
of condition �

safe-to-process

correspond to the three conditions of the definition
of safe to process 3.4. The transition chooses one of the events of the input
action, whose clock and accumulated delay are hx, di, and adds them with
actor A to ".

iii. there is hx, di such that the following are true:

A. for any c 2 (C⇡

1

out

\ CP

out

), |Q
1

(c)| < b
queue

(c);

B. "
1

(⇡
1

) = hx, di;
C. � = x

⇡

1

= (supR)(⇡
1

) + ⇢
1

(⇡
1

);

D. � = �;

E. l = finish-⇡
1

;

F. U = ;;
G. for every c 2 chan(P ),

Q
2

(c) =

(
Q

1

(c) · hhx, d+ (delay ⇡
1

)(c)ii if c 2 C⇡

1

out

;

Q
1

(c) otherwise;

H. "
2

= "
1

\ {hA, "
1

(A)i};
I. ⇢

2

= ⇢
1

\ {hA, ⇢
1

(A)i};
J. ⇡

2

= NULL;
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This transition corresponds to a finish transition of the currently executing
actor ⇡

1

. Since � = �, it is an eager transition, and it is enabled when the
actor clock x

⇡

1

is equal to the sum of worst-case computation time of the actor
and the time that it has been preempted ⇢

1

(⇡
1

). New events are generated
on the output channels of the actor, associated with the clock of the input
action that the actor was processing, and with an accumulated delay adjusted
according to the delay of the actor for the corresponding output channel. The
actor is removed from " and ⇢, and the processor is set to NULL.

iv. there is c 2 CP

out

and hx, di such that the following are true:

A. headQ
1

(c) = hx, di;
B. � = x = d;

C. � = �;

D. l = c;

E. U = ;;
F. for every c0 2 chan(P ),

Q
2

(c0) =

(
tailQ

1

(c0) if c0 = c;

Q
1

(c0) otherwise;

G. "
2

= "
1

;

H. ⇢
2

= ⇢
1

;

I. ⇡
2

= ⇡
1

;

This transition corresponds to an output transition. This is also an eager
transition, since � = �. It is enabled when the value of the clock x of an event
in an output channel c, becomes equal to the accumulated delay associated
with the event. If the system time was tsys at that point in a system execution,
then tsys�x+d would be equal to the timestamp of the event, and thus, when
x is equal to d, tsys would be equal to the timestamp of the event. Finally,
the event is removed from the output queue Q(c).

v. there is A and hx, di such that the following are true:

A. "
1

(A) = hx, di;
B. A 62 dom ⇢

1

;

C. ⇡
1

= NULL;

D. � =
V
{(deadlineP )(A, hx, di)  (deadlineP )(A0, hx0, d0i) |

"
1

(A0) = hx0, d0i},
where

(deadlineP )(A, hx, di) = d� x+ (delayP )(CA

in

,CP

out

);

E. � = �;

F. l = A;
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G. U = {x
A

};
H. Q

2

= Q
1

;

I. "
2

= "
1

;

J. ⇢
2

is a function from dom ⇢
1

[{A} such that for every A0 2 dom ⇢
1

[{A},

⇢
2

(A0) =

(
0 if A0 = A;

⇢
1

(A0) + (supR)(A) otherwise;

K. ⇡
2

= A;

This transition corresponds to a scheduler transition that puts actor A on the
processor when no other actor is currently executing. Actor A executes its
inputs for the first time and thus A is not in dom ⇢. The guard of the transition
guarantees that the deadline of the input action that A is processing is the
smallest among all other safe-to-process input actions. The clock of the actor
x

A

is reset, and the computation time of the actor is added to the preemption
times of all other actors that have started executing, i.e., are in dom ⇢.

vi. there is A and hx, di such that the following are true:

A. "
1

(A) = hx, di;
B. A 62 dom ⇢

1

;

C. ⇡
1

6= NULL;

D. � = (deadlineP )(A, hx, di) < (deadlineP )(⇡
1

, "
1

(⇡
1

))^V
{(deadlineP )(A, hx, di)  (deadlineP )(A0, hx0, d0i) |

"
1

(A0) = hx0, d0i}
where

(deadlineP )(A, hx, di) = d� x+ (delayP )(CA

in

,CP

out

);

E. � = �;

F. l = A;

G. U = {x
A

};
H. Q

2

= Q
1

;

I. "
2

= "
1

;

J. ⇢
2

is a function from dom ⇢
1

[{A} such that for every A0 2 dom ⇢
1

[{A},

⇢
2

(A0) =

(
0 if A0 = A;

⇢
1

(A0) + (supR)(A) otherwise;

K. ⇡
2

= A;

This transition corresponds to a scheduler transition that puts actor A on the
processor and preempts the currently executing actor. Actor A executes its
inputs for the first time and thus A is not in dom ⇢. The guard of the transition
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guarantees that the deadline of the input action that A is processing is the
smallest among all other safe-to-process input actions and specifically strictly
smaller than the deadline of the input action currently being processed. The
strict inequality guarantees that input actions with equal deadlines will not
perpetually preempt each other. The clock of the actor x

A

is reset, and the
computation time of the actor is added to the preemption times of all other
actors that have started executing, i.e., are in dom ⇢.

vii. there is A and hx, di such that the following are true:

A. "
1

(A) = hx, di;
B. A 2 dom ⇢

1

;

C. ⇡
1

= NULL;

D. � =
V
{(deadlineP )(A, hx, di)  (deadlineP )(A0, hx0, d0i) |

"
1

(A0) = hx0, d0i},
where

(deadlineP )(A, hx, di) = d� x+ (delayP )(CA

in

,CP

out

);

E. � = �;

F. l = A;

G. U = ;;
H. Q

2

= Q
1

;

I. "
2

= "
1

;

J. ⇢
2

= ⇢
1

;

K. ⇡
2

= A;

This transition corresponds to a scheduler transition that resumes the exe-
cution of actor A. The guard of the transition guarantees that the deadline
of the input action that A is processing is the smallest among all other safe-
to-process input actions. The clock of the actor x

A

is not reset and the
preemption times of other actors are not updated since the actor had earlier
started executing and was preempted.

viii. there is x and g = GCD({(delayA)(c) | A 2 P and c 2 CA

out

}) such that the
following is true:

A. � = x = b · g;
B. � = �;

C. l = bound;

D. U = {x};
E. for every c 2 chan(P ), any n < |Q

1

(c)|, and every d,

Q
2

(c)(n) =

(
hx, d� b · gi if Q

1

(c)(n) = hx, di;
Q

1

(c)(n) otherwise;
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F. for any A 2 dom "
1

and every d,

"
2

(A) =

(
hx, d� b · gi if "

1

(A) = hx, di;
"
1

(A) otherwise;

G. ⇢
2

= ⇢
1

;

H. ⇡
2

= ⇡
1

;

This transition is used to keep the space of possible accumulated delays of
events in the automaton finite, despite the possibility of loops in the program.
Exactly when any event clock x crosses a limit value, equal to b · g, x is reset.
For the semantics of the execution not to be a↵ected, the same limit value is
subtracted from the accumulated delay d of any event that is associated with
that clock, so that the di↵erence x� d stays the same.

(b) for every hQ, ", ⇢, ⇡i 2 S, every � 2 �(X), every � 2 �(X), every l 2 L, and every
U 2 P X,

hhQ, ", ⇢, ⇡i, �, �, l, U, errori 2 T

if and only if one of the following is true:

i. there is c 2 CP

in

such that the following are true:

A. |Q(c)| = b
queue

(c);

B. � = true;

C. � = �;

D. l = c;

E. U = ;;
ii. there is c 2 (C⇡

out

\ CP

out

) such that the following are true:

A. |Q(c)| = b
queue

(c);

B. � = x

⇡

= (supR)(⇡) + ⇢(⇡);

C. � = �;

D. l = finish-⇡;

E. U = ;;
iii. there is c and hx, di such that the following are true:

A. there is n such that Q(c)(n) = hx, di;
B. � = x � d+ (delayP )(c,CP

out

);

C. � = �;

D. l = miss;

E. U = ;;
iv. there is A and hx, di such that the following are true:

A. "(A) = hx, di;
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B. � = x � d+ (delayP )(CA

in

,CP

out

);

C. � = �;

D. l = miss;

E. U = ;;
The set of these transitions are enabled when the execution has reached or can
demonstrably reach a deadline violation. Transitions i and ii correspond to the
case where an event is added to a queue that has reached its maximum size, and
transitions iii and iv to the case where the deadline of an event, either in a queue
or while being processed by an actor, is reached.

6. � is the least order on L such that the following are true:

(a) for every c 2 CP

in

, every A
1

, A
2

, A
3

2 P , start-A
1

, finish-A
2

, A
3

, bound � c;

(b) for every c 2 CP

out

, c � start-A
1

, finish-A
2

, A
3

, bound;

(c) for every c 2 CP

out

, miss � c.

The � order defines the priority of the transitions of the timed automaton. At each
time instant, input transitions are executed first, then start, finish, scheduler, and clock
bound transitions, then output transitions, and last deadline miss transitions.

Definition 4.3.5. An input model of sort C is a timelock-free TADP hS, s
init

, L,X, T,�i
such that the following are true:

1. L ✓ C [ {⌧};

2. for every c 2 C, every run R of hS, s
init

, L,X, T,�i, and every n
1

and n
2

such that
R(n

1

) = c and R(n
2

) = c,
0 < (lapseR)(n

1

, n
2

).

Assume an input model IM of sort C.
We write sigprog IM for a subset of Sig(C) such that for every s 2 Sig(C), s 2 sigprog IM

if and only if there is a run R of IM such that

{hc, ti | there is v such that hc, t, vi 2 s} = {hR(2 · n+ 1), (lapseR)(0, n)i | n 2 ! and
R(2 · n+ 1) 2 C}.

Figure 4.3 shows a prefix of a run of the TADP that corresponds to the system of Fig-
ure 2.6,

Remark about priority of input transitions: The correctness of TADP hhP,Ri, bi || IM
depends on correctly implementing the input priority property described earlier in Defini-
tion 3.4.3(4). Specifically, in order to guarantee that start transitions are restricted to actors
that are safe to process, it is necessary that, for every time instant, any input transition
happens before other transitions of the timed automaton. We focus on a specific channel
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8c.Q(c) : hi
" : ;
⇢ : ;

⇡ : NULL

x0 : 0

Q(c1) : h(x0, 0)i
" : ;
⇢ : ;

⇡ : NULL

x0 : 0

8c.Q(c) : hi
"(A1) : (x0, 0)

⇢ : ;
⇡ : NULL

x0 : 0

8c.Q(c) : hi
"(A1) : (x0, 0)

⇢(A1) : 0

⇡ : A1

x0 : 0, xA1 : 0

8c.Q(c) : hi
"(A1) : (x0, 0)

⇢(A1) : 0

⇡ : A1

x0 : 1, xA1 : 1

Q(c3) : h(x0, 2)i
" : ;
⇢ : ;

⇡ : NULL

x0 : 1

Q(c3) : h(x0, 2)i
" : ;
⇢ : ;

⇡ : NULL

x0 : 2

8c.Q(c) : hi
"(A3) : (x0, 2)

⇢ : ;
⇡ : NULL

x0 : 2

8c.Q(c) : hi
"(A3) : (x0, 2)

⇢(A3) : 0

⇡ : A3

x0 : 2, xA3 : 0

8c.Q(c) : hi
"(A3) : (x0, 2)

⇢(A3) : 0

⇡ : A3

x0 : 3, xA3 : 1

Q(c5) : h(x0, 4)i
" : ;
⇢ : ;

⇡ : NULL

x0 : 3

Q(c5) : h(x0, 4)i
" : ;
⇢ : ;

⇡ : NULL

x0 : 4

8c.Q(c) : hi
" : ;
⇢ : ;

⇡ : NULL

x0 : 4

0

1 2 3 4 5 6 7 8 9 10 11 12

c1 ⌧ ⌧ 1 ⌧ 1 ⌧ ⌧ 1 ⌧ 1 c5

Figure 4.3: A prefix of a run of the TADP of the system of Figure 2.6 corresponding to the
system execution of Figure 3.2.

c 2 CP

in

, and distinguish between two cases: the input model of c can be described with a
deterministic timed automaton or not. In the former case, the transitions of IM with label
c will be eager, and a higher priority, ⌧ � c, is su�cient to guarantee the input priority
property. In the latter case, the IM will include a transition with label c that is delayable
or lazy, i.e. it is not necessarily taken as soon as its guard becomes true. Assigning priority
⌧ � c will block every transition ⌧ as soon as and for as long as that guard is true. Therefore,
the implementation of the input priority property that uses � for inputs that correspond to
non-deterministic transitions of the IM , is incorrect. Notice that a per time instant instead
of global priority is required. That notion of priority can be implemented with the help of
an extra clock x

p

. The clock is reset in every transition with label ⌧ , and the guard x
p

> 0
is conjucted to the guards of all IM transitions with label c. This combination guarantees
that for each time instant, a ⌧ transition cannot be followed by an input transition c.

We say that TADP hhP,Ri, bi || IM is safe if and only if for every s, herror, si is not
reachable in TADP hhP,Ri, bi || IM .

Theorem 4.3.6. The following are equivalent:

1. for every s 2 sigprog IM , there is a safe earliest-deadline-first execution Execsys
EDF

of
hP,worstRi such that inExecsys

EDF

= s;

2. for every b > 0, TADP hhP,Ri, bi || IM is safe.

Proof. First, note that statement 1 is not equivalent to the following:
For every s 2 sigprog IM , for every earliest-deadline-first execution Execsys

EDF

of hP,worstRi
such that inExecsys

EDF

= s, Execsys
EDF

is safe.
The two statements are not equivalent since there is nothing in the definition of earliest-

deadline-first execution that forces it to produce outputs when system time is equal to
timestamps of events in the output channels of the program.

However, the following is true: if there is a non-safe earliest-deadline-first system execu-
tion on an input signal s such that there is an output transition for every event that arrives
at an output channel at a system time less than or equal to the timestamp of the event, then
there is no safe earliest-deadline-first system execution on that input signal.

We assume that the scheduler transitions of a TADP hhP,Ri, bi, i.e. execute v., preempt
vi., and resume vii. transitions, or transitions that change the value of ⇡ to some actor
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A 6= NULL have smaller priority than the other transitions. This allows us to assume that
at every time instant in a run of a TADP hhP,Ri, bi || IM there is at most one scheduler
transition, and further that for every two actors A,A0 2 dom ⇢, x

A

6= x

A

0 since no two such
clocks can be reset at the same time instant (scheduler transitions are the only transitions
that reset actor clocks). This transition priority assumption is not necessary for the theorem
to be true; it is only made in order to simplify the proof.

If TADP hhP,Ri, bi = hS, s
init

, L,X, T,�i, we define a relation R ✓ states(h), P iR ⇥
(S ⇥ V (X)) between states of the system hP,Ri and states of the timed automaton
TADP hhP,Ri, bi such that for every hQ

e

, ◆
e

, "
e

, ⇢
e

, ⇡
e

, tsys
e

i 2 states(h), P iR and every
hhQ

t

, "
t

, ⇢
t

, ⇡
t

i, v
t

i 2 S ⇥ V (X), hhQ
e

, ◆
e

, "
e

, ⇢
e

, ⇡
e

, tsys
e

i, hhQ
t

, "
t

, ⇢
t

, ⇡
t

i, v
t

ii 2 R if and only if
the following true:

1. for every c 2 chan(P ), |{e 2 Q
e

| chan(e) = c}| = |Q
t

(c)| and for every i and hx, di
such that Q

t

(c)(i) = hx, di, there is e 2 Q
e

such that chan(e) = c and tsys
e

� time(e) =
v
t

(x) + d;

2. dom "
e

= dom "
t

and for every A 2 dom "
e

there is s, ↵, and hx, di such that "
e

(A) =
hs,↵i, "

t

(A) = hx, di, and time(↵) = tsys
e

+ d� v
t

(x);

3. dom ⇢
e

= dom "
t

and for every A 2 dom "
t

one of the following is true:

a) A 62 dom ⇢
t

and ⇢
e

(A) = (worstR)(A);

b) A 2 dom ⇢
t

and one of the following is true:

i. for every A0 2 dom ⇢
t

, v(x
A

0) > v(x
A

) and ⇢
e

(A) = (worstR)(A) � v
t

(x
A

) +
⇢
t

(A)

ii. the set S = {v(x
C

) | C 2 dom ⇢
t

and v(x
C

) < v(x
A

)} is nonempty, and there
is B 2 dom ⇢

t

such that v(x
B

) = maxS, and ⇢
e

(A) = (worstR)(A)� v
t

(x
A

)+
⇢
t

(A)� ((worstR)(B)� v
t

(x
B

) + ⇢
t

(B));

4. ⇡
e

= ⇡
t

.

The intuition behind constraint 3 is the following:
At any point in a run of the TADP hhP,Ri, bi, if A,B 2 dom ⇢

t

and v
t

(x
A

) > v
t

(x
B

), then
B started executing on the processor after A did, since actor clocks are only reset when an
actor is first executed and never again during its execution. The relation v

t

(x
A

) > v
t

(x
B

)
therefore implies the following: (i) B has a smaller deadline than A, and (ii) B will be fully
executed before A gets to run again.

From the observation above, we conclude that out of all the actors A0 2 dom ⇢
t

with
v
t

(x
A

) > v
t

(x
A

0), the one with the largest clock value is the one that immediately preempted
actor A. Let this be actor C. If ⇢

t

(A) = 0 when C preempts A then the amount of time
that A has executed for is given by v

t

(x
A

)� v
t

(x
C

). If ⇢
t

(A) 6= 0, then A was preempted by
other actors that completed their execution before C preempted A, and thus the amount of
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time that A has executed for has to be adjusted to be v
t

(x
A

) � v
t

(x
C

) � (⇢
t

(A) � ⇢
t

(C) �
(worstR)(C)).

We now continue with the proof of the theorem and show that 1 implies 2 and vice versa.

1 ) 2 We prove the contrapositive ¬2 ) ¬1:
Assuming that there is b such that TADP hhP,Ri, bi || IM is not safe, we show that
there exists s 2 sigprog IM and earliest-deadline-first execution Execsys

EDF

of hP,worstRi
such that inExecsys

EDF

= s and Execsys
EDF

is not safe. Together with the observation we
made about statement 1 in the beginning of the proof this is su�cient to show that
statement 1 is not true.

Since TADP hhP,Ri, bi || IM is not safe, there exists s such that herror, si is reachable
in TADP hhP,Ri, bi || IM , or there exists a run R of TADP hhP,Ri, bi || IM and n such
that R(n) = herror, si.
Let s be a signal such that:

{hc, ti | there is v such that hc, t, vi 2 s} =

{hR(2 · n+ 1), (lapseR)(0, n)i | n 2 ! and R(2 · n+ 1) 2 C}.

Then s 2 sigprog IM .

From run R, we construct an earliest-deadline-first execution Execsys
EDF

of hP,worstRi
such that in progExecsys

EDF

= s and Execsys
EDF

is not safe.

There is s
init

, sIM
init

, and v
init

such that R(0) = hhs
init

, sIM
init

i, v
init

i
Note that hstate

init

(hP,Ri), hs
init

, v
init

ii 2 R.

For each transition of TADP hhP,Ri, bi in run R we add the corresponding transition
of the system hP,worstRi, until we hit the error state in R. From that point on,
the resulting system execution is guaranteed not to be safe in any way that it gets
extended.

We describe a correspondence between transitions of TADP hhP,Ri, bi in a run R and
system execution transitions such that the following is true: for every n  b|R|/2c,
there is s, sIM , and v such that R(2 · n) = hhs, sIMi, vi, and for every ssys such
that ssys 2 states(hP,Ri) and hhs, vi, ssysi 2 R, the system execution transition that
corresponds to R(2 · n+ 1) is enabled in ssys and if...

We can show that if there is ssys 2 states(hP,worstRi), n, sTADP

1

, sIM
1

, and v
1

such that
R(2 ·n) = hhsTADP

1

, sIM
1

i, v
1

i, hssys, hsTADP, vii 2 R, and R(2 ·n+2) = hhsTADP

2

, sIM
2

i, v
2

i
then the following are true:

• if sTADP

2

6= error and there is c 2 CP

in

such that R(2 ·n+1) = c, then there is ssys0

such that ssys c ssys0 and hssys0, hsTADP

2

, v
2

ii 2 R;
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• if there is c 2 CP

out

such that R(2 · n + 1) = c then there is ssys0 such that
ssys c ssys0 and hssys0, hsTADP

2

, v
2

ii 2 R;

• if there is A 2 P such that R(2·n+1) = start-A, then there is s 2 states(A), ↵ 2
InputActions(CA

in

), and ssys0 such that ssys
hA,hs,↵ii

ssys0 and hssys0, hsTADP

2

, v
2

ii 2 R;

• if sTADP

2

6= error and there is A 2 P such that R(2 ·n+1) = finish-A then there

is s 2 states(A), ↵ 2 OutputActions(CA

out

), and ssys0 such that ssys
hA,↵,si

ssys0 and
hssys0, hsTADP

2

, v
2

ii 2 R;

• if there is A 2 P such that R(2·n+1) = A then there is ssys0 such that ssys A ssys0

and hssys0, hsTADP

2

, v
2

ii 2 R;

• if R(2 · n+ 1) = bound then hssys, hsTADP

2

, v
2

ii 2 R;

• if there is d 2 T such that R(2 ·n+1) = d then there is ssys0 such that ssys d ssys0

and hssys0, hsTADP

2

, v
2

ii 2 R.

Let n be the smallest n such that there is sIM and v such that R(2 · n) =
hherror, sIMi, vi and let sTADP be such that R(2 · n � 2) = hhsTADP, sIMi, vi (note
that error transitions do not change the state of the input model TADP).

Using the previous observation we can indeed construct a prefix of a system execution
Execsys of length n such that hExecsys(n� 1), sTADPi 2 R, which implies that Execsys

is not safe.

Furthermore, because start and finish transitions of the TADP are urgent, and the
action with the smallest deadline is chosen to execute at each point it can be shown
that the constructed prefix satisfies the earliest-deadline-first conditions.

2 ) 1 Again we prove the contrapositive ¬1 ) ¬2.
Assume s 2 sigprog IM such that for every earliest-deadline-first execution Execsys

EDF

of
hP,worstRi such that in progExecsys

EDF

= s, Execsys
EDF

is not safe.

We will show that for every b > 0 TADP hhP,Ri, bi || IM is not safe.

Let Execsys be such an earliest-deadline-first execution such that in progExecsys = s,
Execsys is actor-safe but Execsys is not safe. Note that we can always produce an actor-
safe earliest-deadline-first execution. Furthermore we assume that at every time instant
the transitions in Execsys follow the order input, finish, start, and then context-switch.

By assumption and the definition of safety, Execsys cannot be output-safe. We trans-
form Execsys so that all output transitions that can be made in time are indeed made
in time. There exist output transitions for which that is not possible, since other-
wise there would exist a safe earliest-deadline-first execution and that goes against the
assumption. Let Execsys

EDF

be the resulting execution.

We construct a correspondence between system execution transitions and TADP tran-
sitions, in a symmetrical way to the way we did it in the first part of the proof. Thus
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in the same way we can show how to construct a run R of TADP hhP,Ri, bi for which
there is n such that R(n) = error.

Let t
miss

be the system time when the first deadline miss occurs in Execsys
EDF

. We set b
to be equal to t

miss

. This guarantees that no clock bound transitions are necessary in
R.

For any given choice of b we can transform R to a run of TADP hhP,Ri, bi by splitting
time transitions using clock bound transitions whenever an event clock grows beyond
the specified bound at the old target state.

Let RTADP be the resulting run.

Let RIM be a run of IM such that

{hc, ti | there is v such that hc, t, vi 2 s}
= {hRIM(2 · n+ 1), (lapseRIM)(0, n)i | n 2 ! and RIM(2 · n+ 1) 2 C}.

RIM exists because s 2 sigprog IM .

Given RTADP and RIM we construct a run R of TADP hhP,Ri, bi || IM by interleaving
the two runs appropriately.

Theorem 4.3.6, along with Theorem 4.1.4 and 4.1.6, establishes the decidability of the
schedulability problem for our systems.



75

Chapter 5

Verification of Discrete-Event Models

In this chapter, we take a step back, and examine the verification of discrete-event programs
without assigning them real-time semantics. The general goal will be to find types of con-
straints other than real-time that will allow us to bound the state-space of a discrete-event
program. One main di↵erence in the transition systems that we will see in this chapter
is that, since the processing of events will not require any physical time, the “start” and
“finish” transitions of previous chapters will be generally combined in one transition.

First, we introduce a basic, deterministic DE (DDE) model, where actors are simple
constant (and known) delays. An actor in DDE delays every input event by a constant
delay �, which means that if the input event has timestamp ⌧ then the actor produces
a corresponding output event with timestamp ⌧ + �. A constant delay actor cannot be
represented by an equivalent timed automaton, as the latter would need an unbounded
number of clocks, one for every input event that may arrive within an interval �.

Nevertheless, we can show that the strong deterministic properties of DDE allow its state
space to be reduced to a finite lasso. The latter can be used for exhaustive model-checking of
both signal and state queries. An example of a signal query is “is there an execution where
an event with timestamp > 10 occurs in channel c.” An example of a state query is “is
there a reachable state where channels c

1

and c
2

contain two events with timestamps ⌧
1

, ⌧
2

,
such that |⌧

1

� ⌧
2

|  2.” The lasso can also be used to show that every DDE model can be
transformed to an equivalent timed automaton (TA) model.

We also introduce two extensions to the basic DDE model: non-deterministic DE (NDE)
and DE with timed automata (DETA). In NDE, actors are non-deterministic delays, specified
by an interval, say, [l, u], so that an input event is delayed by some arbitrary � 2 [l, u]. In
DETA, actors are either constant delays, or timed automata. A timed automaton M can be
viewed as an actor which reacts to input events arriving on a given channel c by taking a
discrete transition labeled with input c (we require that M be receptive, that is, always be
able to accept any input). M can spontaneously choose to generate an output event on a
given channel c0 by taking a discrete transition labeled with c0.

Finally, we discuss expressiveness of the above models. We show that DDE ⇢ NDE and
DDE ⇢ TA ⇢ DETA, where all inclusions are strict. We also show that NDE 6✓ TA, and
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conjecture that TA 6✓ NDE and NDE 6✓ DETA.

5.1 Deterministic timed discrete-event models

We abstract away event values, so events are only timestamped tokens. Formally, an event
is represented by a timestamp ⌧ 2 R�0

, where R�0

is the set of non-negative reals. The set
of naturals is denoted N = {0, 1, 2, ...}.

Syntax

A DDE model is a finite labeled directed graph G = (A,C,D) such that

• A is the set of nodes of G. Each node is called a DE actor or actor in short.

• C ✓ A⇥ A is the set of edges of G. Each edge c 2 C is called a channel.

• D : A ! N is a (total) function mapping each actor a 2 A to a non-negative integer
number called the delay of a. Note that D(a) may be 0.

Let c = (a, b) 2 C. Then c is an output channel of a and an input channel of b. We use C in(a)
and Cout(a) to denote the sets of input and output channels of an actor a, respectively. Let
C(a) = C in(a) [ Cout(a). By definition, G is a closed model, in the sense that all input
channels are connected. In fact, every channel has a unique writer and a unique reader. An
actor without input (respectively, output) channels is called a source (respectively, sink).

An example of a DDE model is given Figure 5.1. The model has three actors, a
1

, a
2

, a
3

,
with delays 1, 1, 0, respectively, and four channels (the four arrows).

A channel state for a DE model G is a total function r : C ! 2R�0 which maps every
channel c 2 C to a finite set of events initially pending on c. In Figure 5.1, the bullets
annotating channels c

1

, c
2

specify an initial channel state. In this case there are two initial
events, both with timestamp 3.

1

a1

1

a2

0

a3

c1 : {3}

c2 : {3}

Figure 5.1: A DDE model.
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Partial order: Our model allows cyclic graphs and zero-delay actors. However, we require
that every cycle visits at least one actor a such that D(a) > 0. This condition e↵ectively
allows to “break” zero-delay loops, and to define a partial order � on the set of actors A, so
that a � a0 i↵ there exists a path from a to a0 such that for any actor a00 in the path (including
a but excluding a0) we have D(a00) = 0. The order � is essential for ensuring that actors
are fired in timestamp order (Lemma 5.1.1) which in turn yields important deterministic
properties of the DDE model. For the example of Figure 5.1, the order � is a

3

� a
2

.

Operational Semantics

To a given DDE model G and initial channel state r
0

, we will associate a timed transition
system TTS (G, r

0

) = (S, s
0

,!), where S is its set of states, s
0

= (r
0

, 0) is its (unique) initial
state, and ! ✓ S ⇥ A ⇥ S is its transition relation, defined below. A state s 2 S is a pair
(r, t), where r is a channel state and t 2 R�0

is a global timestamp.
The initial global timestamp is 0.
Given a channel state r : C ! 2R�0 , let ⌧

min

(r) = min
S

c2C r(c). That is, ⌧
min

(r) is the
minimum timestamp among all currently pending events in r. Given actor a 2 A and r, we
denote by ⌧

min

(a, r) the minimum timestamp among all currently pending events in the input
channel(s) of a at r. That is, ⌧

min

(a, r) = min
S

c2Cin
(a)

r(c). Note that ⌧
min

(a, r) � ⌧
min

(r)
for any a, r. By convention we set min ; = 1. This implies that for an empty channel
state r, we have ⌧

min

(r) = 1. Also, if C in(a) = ;, that is, if a has no input channels, then
⌧
min

(a, r) = 1 for all r.
We say that an actor a 2 A is enabled at state s = (r, t), denoted enabled(a, s), if

⌧
min

(a, r) = ⌧
min

(r) = t. That is, a is enabled at s if there is at least one event pending in
one of the inputs of a which has timestamp ⌧ no greater than the smallest timestamp in r
and ⌧ agrees with the global time t. We say that a is strongly enabled at s if enabled(a, s)
and there is no actor b 6= a such that enabled(b, s) and b � a. That is, a is strongly enabled
at s if it is enabled and there is no actor b which is also enabled at s and which comes before
a according to �.

We next define the operation of firing an actor, and the e↵ect that this has on the state.
Intuitively, firing an actor a at state s = (r, t) consists in removing the event ⌧

min

(a, r) from
all input channels of a that contain this event, and adding the event ⌧

min

(a, r)+D(a) to each
output channel of a. Formally, we define an auxiliary function f(a, r, d) which, given actor
a 2 A, channel state r, and delay d 2 R�0

, returns a channel state r0 defined as follows:

r0(c) =

8
<

:

r(c)� {⌧
min

(a, r)} if c 2 C in(a)
r(c) [ {⌧

min

(a, r) + d} if c 2 Cout(a)
r(c) otherwise.

(5.1)

We are now ready to define the transition relation ! of TTS (G, r
0

). ! has two types of
transitions: discrete transitions of the form s

a! s0, such that a is strongly-enabled in state

s = (r, t) and s0 = (r0, t) with r0 = f(a, r,D(a)), and timed transitions of the form s
�! s0,
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where s, s0 2 S, a 2 A, and � 2 R�0

. Timed transitions are enabled at a state s = (r, t)
when no discrete transition is enabled at s and when r is not empty. In that case, it must be

t < ⌧
min

(r) and ⌧
min

(r) 6= 1. Then, a timed transition s
�! (r, t0) occurs, with � = ⌧

min

(r)� t
and t0 = t+ � = ⌧

min

(r).
Remarks: (1) Global time is not a↵ected by a discrete transition and channel state is

not a↵ected by a timed transition. (2) In TTS (G, r
0

) there cannot be two timed transitions
in a row. (3) According to the rule ⌧

min

(a, r) = 1, source actors are never enabled, and
therefore never fire. We use source actors simply to allow for initial events at the inputs of
some actors.

A state s = (r, t) is a deadlock, that is, has no outgoing transitions, i↵ r is empty, that
is, for every c 2 C, r(c) = ;.

An execution of TTS (G, r
0

) is a sequence of states ⇢ = s
0

, s
1

, ... such that there is a
(discrete or timed) transition from every s

i

to s
i+1

. We require ⇢ to be maximal, that is,
either infinite or ending in a deadlock state. Note that if the DDE model contains a loop
that is reachable from some initial event, there will not be a deadlock state.

Lemma 5.1.1. Let ⇢ = s
0

, s
1

, ... be an execution of TTS (G, r
0

) and let a be an actor of G.
For any transitions s

i

a! s
i+1

and s
j

a! s
j+1

in ⇢ such that s
i

= (r
i

, t
i

), s
j

= (r
j

, t
j

), and
i < j, we have t

i

< t
j

.

Lemma 5.1.1 states that every actor is fired in timestamp order, and in particular, that
it cannot be fired more than once before time elapses.

TTS (G, r
0

) has several deterministic properties. First, by definition, if s
a! s0 then there

is no s00 6= s0 such that s
a! s00. Second, TTS (G, r

0

) has the so-called “diamond property”:

Lemma 5.1.2. If s
a! s

1

and s
b! s

2

, then there is a unique s0 such that s
1

b! s0 and
s
2

a! s0.

Let ⇢ = s
0

, s
1

, . . . be an execution of TTS (G, r
0

) where G = (A,C,D) and s
i

= (r
i

, t
i

).
The signal of a channel c 2 C under execution ⇢, denoted �⇢

c

, is defined to be the set of all
events occurring in c along the entire execution: �⇢

c

=
S

i2N ri(c).

Lemma 5.1.3 (Kahn property [18]). For any c 2 C and any two executions ⇢
1

and ⇢
2

,
�⇢

1

c

= �⇢

2

c

.

Because of the Kahn property, we can write �
c

for the unique signal of a channel c. This
can be viewed as the denotational semantics of DDE models.
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5.2 Boundedness of DDE

P

a1
a2

c1

{0}

Figure 5.2: Periodic clock.

In this section we study boundedness of the state-space of DDE models. Let us begin with
an illustrative example. Figure 5.2 shows a DDE model G = (A,C,D), with A = {a

1

, a
2

},
C = {c

1

: (a
1

, a
1

), c
2

: (a
1

, a
2

)}, D(a
1

) = P , and D(a
2

) = 0. This model captures a periodic
source with period P , generating events at times P, 2P, · · · . The model includes actor a

1

which delays its input by P and a sink actor a
2

. If the delay of an actor is non-zero, it
is drawn inside the actor. Zero delays are not drawn. The model has two channels, c

1

, c
2

.
Channel c

1

, a self-loop of a
1

, contains an initial event with timestamp 0. This is the only
initial event in the system (empty initial event sets on channels are not drawn). The initial
event models the seed of the periodic source. Actor a

1

adds a delay of P to the event’s
timestamp, outputs the event to c

2

, which represents the source’s output, and starts anew a
cycle where the initial event is replaced with an event with timestamp P .

The initial channel state is r
0

= {(c
1

, {0}), (c
2

, {})}. A prefix of a path in the transition
system TTS (G, r

0

) is the following:

s
0

: (c
1

: {0}, c
2

: {}, t = 0)
a

1! s
1

: (c
1

: {P}, c
2

: {P}, t = 0)
P!

s
2

: (c
1

: {P}, c
2

: {P}, t = P )
a

2! s
3

: (c
1

: {P}, c
2

: {}, t = P )
a

1!
s
4

: (c
1

: {2P}, c
2

: {2P}, t = P )
P! s

5

: (c
1

: {2P}, c
2

: {2P}, t = 2P )
a

1!
s
6

: (c
1

: {3P}, c
2

: {2P, 3P}, t = 2P )
a

2! s
7

: (c
1

: {3P}, c
2

, {3P}, t = 2P )
P! · · ·

Note that in state s
2

there are two events with timestamps equal to ⌧
min

= P but they
are both strongly enabled since it is neither the case that a

1

� a
2

nor a
2

� a
1

. Furthermore,
it is easy to see that the signal in c

1

is �
c

1

= {i · P | i 2 N} and the signal in c
2

is
�
c

2

= {i · P | i 2 N
>0

}.
As it can be seen from the above example, TTS (G, r

0

) is generally infinite-state. There
are two potential sources of infinity of state-space in DE models. First, the timestamps may
grow unbounded, as is the case with the above example. Second, it is unclear whether the
set of events on each channel remain bounded. This is true in the above example, but is
it generally true? In Section 5.2 we show that this is true for all DDE models. Then in
Section 5.2 we show how timestamps can also be bounded.

Bounding the number of events in the channels

Let us begin by providing some intuition about why the number of events in an execution
of TTS (G, r

0

) remains bounded.
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P D

c2c1

{0}

loop1

loop2

Figure 5.3: Loop example.

Consider the example in Figure 5.3. The set of events produced by “loop1” in channel c
1

is {i · P | i 2 N}. Each new event with timestamp t that enters “loop2” from “loop1”, will
result in an infinite set of events {t+ j ·D | j 2 N

>0

} in channel c
2

. Therefore the set of all
events in channel c

2

will be {i · P + j ·D | i, j 2 N
>0

}.
Because P,D 2 N, the timestamp of any event that appears in c

2

can be written as
k · gcd(P,D) for some k. In fact, there exists n, such that for all k > n, there exist positive i
and j such that k · gcd(P,D) = i · P + j ·D. So eventually all multiples of gcd(P,D) appear
as timestamps of events in c

2

.
Note that in every reachable state s = (r, t) of TTS (G, r

0

), for G = (A,C,D), an upper
bound on the timestamp of any event is ⌧

min

(r) + max{D(a) | a 2 A}, and a lower bound
is ⌧

min

(r). Hence, because event timestamps in c
2

are separated by at least gcd(D,P ), the
number of events in c

2

satisfies

|r(c
2

)| 
⇠
max{D(a) | a 2 A}

gcd(D,P )

⇡
in any state s = (r, t).

In general, let G = (A,C,D) be a DE model and let r
0

be an initial channel state for
G. Let TTS (G, r

0

) = (S, s
0

,!). Consider a state s = (r, t) 2 S. Recall that r is a function
r : C ! 2R�0 . The size of r, denoted |r|, is defined to be

|r| :=
X

c2C

|r(c)|

Lemma 5.2.1. For any two states s
1

= (r
1

, t
1

) and s
2

= (r
2

, t
2

) of TTS (G, r
0

), if s
1

! s
2

then ⌧
min

(r
1

)  ⌧
min

(r
2

).

Proof. If there is � 2 R�0

such that s
1

�! s
2

, then r
1

= r
2

so the statement holds.
If there is a such that s

1

a! s
2

, then, by definition, for a channel c, either r
2

(c) = r
1

(c),
or r

2

(c) ⇢ r
1

(c), or r
2

(c) = r
1

(c) [ {⌧
min

(r
1

) +D(a)}.
In the first two cases, min r

2

(c) � min r
1

(c) � ⌧
min

(r
1

). In the third case, since min r
1

(c) �
⌧
min

(r
1

) and ⌧
min

(r
1

) +D(a) � ⌧
min

(r
1

), it will also be true that min r
2

(c) � ⌧
min

(r
1

).
Therefore, in all cases, min r

2

(c) � ⌧
min

(r
2

). Note also that ⌧
min

(r
2

) = min
S

c2C r
2

(c) =
min

c2C(min r
2

(c)). Therefore ⌧
min

(r
2

) � min
c2C ⌧min

(r
1

) = ⌧
min

(r
1

).

Lemma 5.2.2. For every reachable state s = (r, t) of TTS (G, r
0

) where G = (A,C,D), if
an event with timestamp ⌧ is not an initial event then ⌧  ⌧

min

(r) + max
a2A D(a).
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Proof. We write D
max

for max
a2A D(a).

Let c 2 C be the channel of the event. Since the event is not an initial event, i.e.,
⌧ 62 r

0

(c), there is t0, r
1

, r
2

, and a such that (r
1

, t0)
a! (r

2

, t0) !⇤ (r, t), or, ⌧ was produced
by a discrete transition that precedes the current state s.

Therefore, ⌧ = ⌧
min

(r
1

) + D(a)  ⌧
min

(r
1

) + D
max

, and because of Lemma 5.2.1, ⌧ 
⌧
min

(r) +D
max

.

Theorem 5.2.3 (Boundedness of channels). There exists K 2 N such that for every reach-
able state s = (r, t) of TTS (G, r

0

), |r|  K.

Proof. Let ⌧ be the timestamp of an event in r. If the event is an initial event then ⌧ 
max

c2C r
0

(c). Otherwise, by Lemma 5.2.2, ⌧  ⌧
min

(r) + max
a2A D(a).

Therefore, an upper bound of the timestamp of any event is:

U = max

✓
max
c2C

r
0

(c), ⌧
min

(r) + max
a2A

D(a)

◆

and a lower bound is obviously:
L = ⌧

min

(r).

Since by Lemma 5.2.1, ⌧
min

(r) is monotonically increasing, and because ⌧
min

(r) � 0:

U � L = max

✓
max
c2C

r
0

(c), ⌧
min

(r) + max
a2A

D(a)

◆
� ⌧

min

(r)

= max

✓
max
c2C

r
0

(c)� ⌧
min

(r), ⌧
min

(r) + max
a2A

D(a)� ⌧
min

(r)

◆

= max

✓
max
c2C

r
0

(c)� ⌧
min

(r),max
a2A

D(a)

◆

 max

✓
max
c2C

r
0

(c),max
a2A

D(a)

◆

Let R
max

= max (max
c2C r

0

(c),max
a2A D(a)).

Let fr(⌧) be the fractional part of a timestamp.
In any channel state r, the fractional part of any timestamp will be equal to the fractional

part of timestamp of an initial event, since for every actor a, D(a) 2 N.
Therefore in any channel state r, an upper bound on the number of di↵erent timestamps,

or the number of events in the state, is:

K = R
max

· |{fr(⌧) | ⌧ is the timestamp of an initial event}| .
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Bounding timestamps

In TTS (G, r
0

) timestamps of events can still grow unbounded. Moreover, there is the ad-
ditional global timestamp which grows unbounded too. Nevertheless, it is easy to see how
to transform TTS (G, r

0

) in order to obtain an equivalent bounded timed transition system,
which we will denote BTS (G, r

0

). To define BTS (G, r
0

), we introduce some notation. Let
s = (r, t) be a state of TTS (G, r

0

). Let � 2 R�0

be such that �  ⌧
min

(r). Then we denote
by r� � the new channel state r0 obtained from r by decrementing all timestamps in r by �.

We are now ready to define BTS (G, r
0

). Its states are channel states, that is, the global
timestamp is dropped. On the other hand, BTS (G, r

0

) has both discrete and timed tran-

sitions, like TTS (G, r
0

). A timed transition in BTS (G, r
0

) has the form r
��!

b

r0 where
� = ⌧

min

(r) and r0 = r � ⌧
min

(r). A discrete transition in BTS (G, s
0

) has the form r
a�!

b

r0

with r0 = f(a, r,D(a)), such that ⌧
min

(a, r) = ⌧
min

(r) = 0. That is, in BTS (G, r
0

), we keep
track of time elapsing by appropriately decrementing the timestamps of pending events.

In the following, we write ⌧
0,1

, . . . , ⌧
0,N

for the set of N initial events in
S

c2C r
0

(c).

Lemma 5.2.4. For every state r of BTS (G, r
0

), there exists a sequence �r such that |�r| =
N , �r

i

2 {�1, 1}, and for every event e in r, the following is true about its timestamp ⌧
e

:

⌧
e

= n+
NX

i=1

c
i

· ⌧
0,i

where n 2 Z and c
i

2 {0, �r

i

}.

Proof. We will prove the statement using induction on the transition relation of BTS (G, r
0

).
We first show that there is a sequence � that satisfies the statement at the initial state

r
0

. The sequence � is such that for every i, �
i

= 1. Now we need to show that for that
particular �, for every event in r

0

, there is a sequence ce and an n 2 Z such that ce
i

2 {0, �
i

}
and if ⌧

e

is the timestamp of the event then

⌧
e

= n+
NX

i=1

ce
i

· ⌧
0,i

In r
0

every event is an initial event, so its timestamp will be one of ⌧
0,1

, . . . , ⌧
0,N

. Assume it
is initial event e

j

with timestamp ⌧
0,j

.
We set c

ej

i

to be equal to 0 if i 6= j and �
i

or 1 if i = j. We also set n to be 0.
Indeed for those choices, n+

P
N

i=1

c
ej

i

· ⌧
0,i

= 0 + c
ej

j

· ⌧
0,j

= ⌧
0,j

Now assuming that the statement is true at a state r, we will show that it will be true
for any state r0 such that r ! r0.

By assumption, there exists sequence �r for r, such that for every event e with timestamp
⌧
e

in r, there exists nr,e 2 Z and a sequence cr,e such that ⌧
e

= nr,e +
P

N

i=1

cr,e
i

· ⌧
0,i

.

If r
a! r0 for some a 2 A, then �r

0
= �r and for every event e with timestamp ⌧

e

in r0

one of the following is true about e:

1. e is also in r, cr
0
,e = cr,e, and nr

0
,e = nr,e, or
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2. e is not in r, there is event e0 in r such that ⌧
e

= ⌧
e

0 + D(a), cr
0
,e = cr,e

0
, and nr

0
,e =

nr,e

0
+D(a).

It is easy to see that for cr
0
,e and nr

0
,e as defined above, the property is satisfied.

If r
�! r0 where � = ⌧

min

(r), let e
min

be the event in r with the minimum timestamp ⌧
min

.
By assumption, there are nr,e

min and cr,emin such that ⌧
min

= nr,e

min +
P

N

i=1

cr,emin

i

⌧
0,i

.
We claim that the following �r

0
satisfies the property for state r0:

�r

0

i

=

(
�cr,emin

i

if cr,emin

i

6= 0

�r

i

otherwise

Indeed, let e be any event in r with timestamp ⌧
e

= nr,e +
P

N

i=1

cr,e
i

⌧
0,i

. The timestamp
of e in r0 will be:

⌧ 0
e

= nr,e � nr,e

min +
NX

i=1

(cr,e
i

� cr,emin

i

) · ⌧
0,i

.

We set nr

0
,e to be nr,e � nr,e

min and

cr
0
,e

i

=

(
0 if cr,e

i

= cr,emin

i

�r

0
i

otherwise

We have to show that:

⌧ 0
e

= nr

0
,e +

NX

i=1

cr
0
,e

i

· ⌧
0,i

.

or that cr
0
,e

i

= cr,e
i

� cr,emin

i

.
By definition of cr

0
,e this is equivalent to �r

0
i

= cr,e
i

� cr,emin

i

if cr,e
i

6= cr,emin

i

.
If cr,emin

i

6= 0, then cr,e
i

has to be 0 for cr,e
i

6= cr,emin

i

to be true, so cr,e
i

�cr,emin

i

= �cr,emin

i

= �r

0
i

where the last equation is true by definition of �r

0
.

If cr,emin

i

= 0, then cr,e
i

has to be �r

i

for cr,e
i

6= cr,emin

i

to be true, so cr,e
i

� cr,emin

i

= �r

i

= �r

0
i

where the last equation is true by definition of �r

0
.

Theorem 5.2.5. The set of reachable states of BTS (G, r
0

) is finite.

Proof. At any state r of BTS (G, r
0

), if an event in r is not initial, then its timestamp is
smaller than max

a2A D(a).
Therefore, for every timestamp ⌧ the following is true:

⌧  max

✓
max
c2C

r
0

(c),max
a2A

D(a)

◆

It is also obviously true that ⌧ � 0.
By Lemma 5.2.4, and the fact that every timestamp in any state of BTS (G, r

0

) has a
lower and upper bound, we conclude that there can only be a finite number of events across
all states of BTS (G, r

0

).
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Is it easy to show that a bisimulation exists between TTS and BTS. In particular, let
s = (r, t) be a reachable state of TTS (G, r

0

). It can be easily shown, by induction on
the transition relation of TTS (G, r

0

), that s satisfies t  ⌧
min

(r). We define the relation
R between states of TTS (G, r

0

) and states of BTS (G, r
0

), so that R contains all pairs
((r, t), r � t). It can be checked that R is a bisimulation relation.

5.3 Extended discrete-event models

In this section we introduce extensions to the DDE model.

Non-deterministic DE

The non-deterministic DE model (NDE) extends DDE by allowing actors with variable de-
lays, specifically intervals.

The syntax of an NDE model is almost the same as that of a DDE model. It is a labeled
graph G = (A,C,D), with A and C being as in a DDE model, and D associating an interval
instead of a fixed value to each actor. Intervals must be nonempty, and can be of the form
[l, u], (l, u), (l,1), and so on, for l, u 2 N. When the interval is [l, l] we simply write
D(a) = l. We allow loops, but require that every loop visits at least one actor a such that
l(a) � 1, where l(a) is the lower bound of D(a). The partial order � is also defined in NDE,
so that a � a0 i↵ there exists a path from a to a0 such that for any actor a00 in the path
(including a but excluding a0) we have l(a00) = 0.

The semantics of NDE is defined as a timed transition system, as with DDE. Given an
NDE graph G, and an initial channel state r

0

, TTS (G, r
0

) is defined to be the tuple (S, s
0

,!)
where S and s

0

are as in DDE, and the transition relation ! contains both discrete and
timed transitions. A discrete transition of TTS (G, r

0

) is of the form (r, t)
a! (r0, t) where a

is strongly enabled in (r, t) and r0 = f(a, r, d), for some d 2 D(a). The definition of strongly
enabled for NDE is the same as in DDE and uses the partial order � as defined above. The
timed transitions of TTS (G, r

0

) are defined in the same way as in DDE.
We point out that the above semantics allows to “reorder” events, in the sense that an

event produced in a channel could have timestamp smaller than the events already in the
channel.

However, execution of actors is still guaranteed to happen in timestamp order. Also,
since we are not currently using multisets, if an event is added to a channel which already
has an event with the same timestamp then the two events are merged into one.

DE with timed automata

The DE with timed automata model (DETA) extends DDE by allowing actors to be modeled
as timed automata. This extension allows actors in a discrete-event program to model
environment behavior as well as have more elaborate internal behavior than DDE and NDE.
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Like DDE and NDE, a DETA model is represented by a labeled graph. In the case of
DETA, a label is either a fixed delay or a timed automaton (TA). Formally, a DETA model
is a graph G = (A,C, L), with A and C being as in a DDE model, and L being a labeling
function which maps every actor a 2 A to either a delay d 2 N, or a TA M = (Q, q

0

, X, I, E),
where:

• Q is the set of locations of M , and q
0

2 Q is its initial location.

• X is the set of clocks of M . Both Q and X are finite sets.

• I is the invariant function which maps every q 2 Q to a simple convex constraint of
the form

V
i

x
i

 k
i

, where x
i

2 X are clocks and k
i

2 N are constants.

• E is the set of transitions of M . A transition is a tuple h = (q, c, q0,�, X 0) where:

– q, q0 2 Q: q is the source and q0 the destination location of h.

– c 2 C(a), i.e., c is either an input or an output channel of actor a.

– � is a simple constraint on clocks, called the guard of h.

– X 0 ✓ X is a subset of clocks to be reset by h.

We require that every TA M in a DETA model be receptive, that is, able to accept any input
event at any state. Formally, for every location q of M , and for every input channel c of a,
the union of all guards of all outgoing transitions from q labeled with c must cover the whole
space of clock valuations, that is, must be equivalent to the guard true.

We allow loops in DETA models, but we assume conservatively that the delay introduced
by TA actors could be zero. Therefore we require that every loop visits at least one constant
delay actor with delay � 1. The partial order � is defined for DETA in the same way as for
DDE, by treating TA actors like zero-delay actors.

Before defining the semantics of DETA models we briefly recall the semantics of TA. A
state of a TA M is a pair (q, v) where q 2 Q is a location and v is a clock valuation, that is,
a function v : X ! R�0

mapping every clock of M to a non-negative real value. We will use
the term TA state for a pair (q, v), to avoid confusion with states of DE models, which we
sometimes for clarity call channel states. The initial TA state of M is defined to be (q

0

,~0),
where ~0 is the valuation assigning 0 to all clocks. M defines two types of transitions on this
state-space: discrete and timed transitions. A discrete transition is possible from TA state
(q, v) to TA state (q0, v0), denoted (q, v)

c!
M

(q0, v0), if M has a transition h = (q, c, q0,�, X 0)
such that: (1) v satisfies the guard �, denoted v |= �; (2) v0 = v[X 0 := 0], which means
that v0(x) = 0 if x 2 X 0 and v0(x) = v(x) otherwise; and (3) v0 satisfies the invariant of
the destination location q0, denoted v0 |= I(q0). A timed transition of delay � 2 R�0

is

possible from TA state (q, v) to TA state (q, v0), denoted (q, v)
�!

M

(q, v0), if: (1) v0 = v+ �,
which means that v0(x) = v(x) + � for all x 2 X; and (2) v0 |= I(q). The latter condition,
together with our assumption on the form of invariants, ensures that the progress of time



CHAPTER 5. VERIFICATION OF DISCRETE-EVENT MODELS 86

from v to v0 does not violate any urgency constraints at location q. Note that, since I(q) is
downwards-closed, v + � |= I(q) implies that for any �0  �, we also have v + �0 |= I(q).

We are now ready to define the semantics of DETA models. Consider a DETA model
G = (A,C, L) and an initial channel state r

0

. Let A
TA

be the subset of A such that a 2 A
TA

i↵ L(a) is a TA. For a 2 A
TA

, we denote the TA L(a) by M
a

. Then, G and r
0

define the
timed transition system TTS (G, r

0

). A state of TTS (G, r
0

) is a triple (r, w, t) where r is a
channel state, w is a total function mapping actors in A

TA

to TA states, and t 2 R�0

is a
global timestamp. For given a 2 A

TA

, w(a) represents the TA state which M
a

is currently
at.

Like the other timed transition systems defined earlier, TTS (G, r
0

) has two types of
transitions: discrete and timed. A discrete transition has the form (r, w, t)

a! (r0, w0, t), for
a 2 A, and is possible if:

• either a 62 A
TA

, that is, L(a) 2 N, in which case r0 = f(a, r, L(a)) and w0 = w;

• or a 2 A
TA

, in which case

1. either a has an input channel c such that t 2 r(c), in which case:

a) r0 is obtained from r by removing the event with timestamp t from c, that is,
r0(c) = r(c)� {t} and r0(c0) = r(c0) for all c0 6= c.

b) w0 is obtained from w by having M
a

take the discrete transition w(a)
c!
Ma

w0(a) in reaction to the event in c, and having all other TA retain their state,
that is, w0(a0) = w(a) for all a0 2 A

TA

, a0 6= a.

2. or a has an output channel c such that w(a)
c!
Ma w0(a) and for all a0 2 A

TA

s.t.
a0 6= a, we have w0(a0) = w(a). In this case, r0(c) = r(c) [ {t} and r0(c0) = r(c0)
for all c0 6= c.

The case a 62 A
TA

corresponds to the case where a standard DDE actor fires, that is, an
actor introducing a deterministic delay. The case a 2 A

TA

corresponds to the case where a
TA actor fires, that is, makes a discrete transition. In this case, the following subcases are
possible:

• Either a consumes an event from an input channel and reacts to it (Case 1). Note that
since M

a

is assumed to be receptive, the transition w(a)
c!
Ma w0(a) is guaranteed to

exist. Also note that it is by definition impossible for a TA actor to consume multiple
events from multiple input channels in a single transition. This is true even when all
these events may have the same timestamp. On the other hand, in that case the TA
actor will consume all these events in a series of discrete simultaneous transitions, that
is, without time passing in-between these transitions.

• Or a “spontaneously” produces an event to an output channel (Case 2).

A timed transition in TTS (G, r
0

) has the form (r, w, t)
�! (r, w0, t+ �), for � 2 R�0

, and
is possible if:
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1. t+ �  ⌧
min

(r); and

2. for all a 2 A
TA

, M
a

has a timed transition by �, that is, w(a)
�!

Ma w0(a) is a valid
transition.

That is, a timed transition by � is possible if it is possible for every TA in the system to let
time elapse by �, and also if this does not violate the urgency of any pending event in the
system. Note that it is possible in DETA to have several timed transitions in a row.

An example of a DETA model is provided in the left part of Figure 5.4. There are four
actors in this model, one of which, a

2

, is a TA actor. The automaton for a
2

has two locations,
q
0

, q
1

, and a single clock x. The invariant at q
1

is x  1, whereas the invariant at q
0

is true
and therefore not shown. The guard in the transition from q

0

to q
1

is also true, and not
shown either. The label x := 0 means that x is reset on the corresponding transition (absence
of such a label means that the clock is not reset). In the transitions of the automaton, we
use the label c? instead of c when c is an input channel, to emphasize the fact that the actor
consumes an event from c. Similarly, we use c! when c is an output channel, to emphasize
the fact that the actor produces an event in c. A sample execution of this DETA model is
provided in the right part of Figure 5.4.

Executions and signals in NDE and DETA: The notions of executions and signals
can be easily extended from DDE to NDE and DETA models. Because of non-determinism
in both NDE and DETA, Lemmas 5.1.2 and 5.1.3 do not hold in neither NDE nor DETA.
This means in particular that the signal �⇢

c

of a given channel c in these models generally
depends on the execution ⇢. For NDE and DETA models, we define �

c

to be the union of
�⇢

c

over all executions ⇢.

Unboundedness of NDE and DETA: Boundedness does not hold for neither NDE
nor DETA models. We can show that if we feed a variable delay with a periodic stream
of events we can construct a sporadic stream which, in turn, if fed into a periodic loop
causes Theorem 5.2.3 to fail. Figure 5.5 illustrates the idea. In this model, the variable

2

a1
a2

c0

{1}

c1 c2

q0 q1

x  1

c1?

x := 0

c2!

x = 1

c1?

s0 = c0 : {1} / q0 / t = 0

s1 = c0 : {1} / q0 / t = 1

s2 = c0 : {}, c1 : {3} / q0 / t = 1

s3 = c1 : {3} / q0 / t = 3

s4 = c1 : {} / q1, x = 0 / t = 3

s5 = c1 : {} / q1, x = 1 / t = 4

s6 = c2 : {4} / q0 / t = 4

� = 1

a1

� = 2

a2

� = 1

a2

Figure 5.4: A DETA model (left) and a sample execution (right).
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delay is implemented as a TA, resulting in a DETA model. The variable delay can also be
implemented as an NDE actor a with D(a) = [l, u], resulting in an NDE model.

More precisely, assume that the input stream of a has period P , as shown in Figure 5.5,
and that P > u. Then the TA shown in the figure correctly implements a variable delay
and every event coming out of the loop with period P will be given a variable delay [l, u].
Let a add delay l + u�l

i

to its ith input event. This will result in an output stream of events
{l + u� l, P + l + u�l

2

, 2 · P + l + u�l

4

, . . .}.

P D

a

{0}

q0 q1

x  u

c1?

x := 0

c2!

x � l

c1?

Figure 5.5: Unbounded DETA model.

In general, if a signal of the form {i ·P + x

2

i | i 2 N} is fed into a loop with delay D, then
the signal in the loop will contain events {i · D + j · P + x

2

j | i, j 2 N}. This set of events
has the property that there is no bound K 2 N such that for every n the number of events
in window [n, n + 1] is less than K. Intuitively the reason is that for any K, an n can be
found such that the equation i · D + j · P = n has more than K solutions, and since, for
large enough j, x/2j < 1, the window [n, n+ 1] will contain more than K events.

5.4 Verification

We begin by defining the types of verification queries that we are interested in.
Let G be a DE model (i.e., a DDE, NDE, or DETA model) with set of channels C and

let r
0

be an initial channel state. Let ⇢ be an execution of TTS (G, r
0

). Recall that �⇢

c

, for
channel c 2 C, denotes the set of all events (timestamps) that occur in c along execution ⇢ in
TTS (G, r

0

). A signal query is a query of the form “does �⇢

c

satisfy some property �?”, where
� is a property written in (some subclass of) first-order logic. For instance, the property “an
event occurs in c” can be written as � := 9⌧ : ⌧ � 0. The property “two events occur in c at
two distinct times in the interval [1, 2]” can be written as 9⌧

1

, ⌧
2

: ⌧
1

6= ⌧
2

^ 1  ⌧
1

, ⌧
2

, 2.
The property “two events occur in c separated by at most 1 time unit” can be written as
9⌧

1

, ⌧
2

: |⌧
1

� ⌧
2

|  1.
We are also interested in queries which involve states of TTS (G, r

0

). A state query asks
whether there exists a reachable state s = (r, t) such that r satisfies some property  . Again,



CHAPTER 5. VERIFICATION OF DISCRETE-EVENT MODELS 89

we can imagine various types of properties  . For example, given constant k 2 N,  could
be the expression |r| > k, which states that there are more than k events pending in the
system, or the expression |r(c)| > k, for given c 2 C, which states that there are more than
k events pending on channel c.  could also be an expression such as those mentioned for
signal queries above, stating, for example, that r contains an event with a certain timestamp
or timestamp bounds, two events with a certain time di↵erence, etc.

Channel signals are denotational semantics of DE models and signal queries allow to
express natural properties on these. State queries are also important, as they refer to system
snapshots as well as to implementation properties such as bu↵er space requirements. In the
rest of this section we discuss how signal and state queries can be automatically checked on
DDE models.

First, consider signal queries. They can be checked with the help of a lasso derived from
BTS. This lasso is a finite and deterministic transition system (deterministic in the sense that
every state has at most one successor), derived from BTS by merging all enabled discrete
transitions from a given state s into a single supertransition where all corresponding actors
fire. The diamond property (which by the bisimulation property also holds on BTS) ensures
that this transformation is valid. We can analyze this lasso and compute, for every channel c,
an a�ne expression that describes �

c

. Then we can reduce the problem of checking whether
�
c

satisfies a signal query � to an SMT (satisfiability modulo theory) problem. For example,
the a�ne expression for channel c

2

for the example of Figure 5.3 is i·P+j ·D, with i, j 2 N
>0

.
Checking whether there exist two events ⌧

1

, ⌧
2

in �
c

2

such that ⌧
1

�⌧
2

= 5, can then be reduced
to checking satisfiability of the expression ⌧

1

= i
1

·P + j
1

·D^⌧
2

= i
2

·P + j
2

·D^⌧
1

�⌧
2

= 5.
Second, for state queries, we can again use the lasso and the bisimulation of BTS and

TTS to compute an a�ne expression characterizing the set of timestamps on a per state
basis. We can then reduce the problem of whether there exists a reachable state satisfying a
property  to a series of SMT problems, one for every a�ne expression computed for every
state in the lasso.

5.5 Expressiveness

In this section we discuss how the various DE models introduced above are related to each
other, as well as to timed automata, in terms of expressiveness. We write A ✓ B if for every
model G in formalism A there exists a model G0 in formalism B such that G and G0 are
equivalent in terms of denotational semantics, i.e., channel signals. More precisely, G and
G0 are equivalent if they refer to the same set of channels C, and for every c 2 C, �G

c

= �G

0
c

,
where �G

c

, �G

0
c

are the signals of c in G,G0, respectively.
To be able to compare the DE models with timed automata, we view TA as a subclass of

DETA models. Concretely, supposeM is a TA whose transitions are labeled with c
1

, c
2

, ..., c
n

.
Then M can be seen as a DETA model with n + 1 actors, a, a

1

, ..., a
n

, where a is a source
actor labeled by M , and a

1

, ..., a
n

are sink actors connected to a. In this interpretation,
every label c

i

of M is seen as a distinct output channel of a.
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[0, 1]

1

q0

c1!

1

[0, 1]

c1

{0}

(a) NDE 6✓ DDE (b) DETA 6✓ TA (c) NDE 6✓ TA

x  2

x  2

a

x := 0

b

c

x � 1

[0, 1] [1, 2]

{0}
DDE TA DETANDE

(d) TA 6✓ NDE (e) NDE 6✓ DETA (f) Model expressiveness

Figure 5.6: Models used in expressiveness discussion.

The expressiveness results, summarized in Figure 5.6(f), are as follows:
DDE  NDE: DDE ✓ NDE because the fixed delay d can be expressed as the interval [d, d].
NDE 6✓ DDE because NDE allows non-deterministic behavior but DDE does not. Indeed,
the NDE model of Figure 5.6(a) produces a single event on channel c at time t 2 [0, 1], but
this is impossible to express in DDE.
DDE  TA: TA 6✓ DDE because TA allows non-deterministic behavior but DDE does
not. The example of Figure 5.6(a) can be easily constructed with TA. To see why DDE ✓
TA, consider the lasso defining the signals of a DDE model, discussed in Section 5.4. The
a�ne expressions describing the channel signals can be directly transformed into parallel
compositions of simple TA with periodic self-loops. For example, (2 + 3 · i) [ (3 + 7 · j) can
be trivially transformed into the parallel composition of two TA.
DDE  DETA: DDE ✓ DETA because every DDE model is by definition a DETA model
(one that has no TA actors). DETA 6✓ DDE again because of non-determinism.
TA  DETA: As defined above, TA is by definition a subclass of DETA. To see that
DETA 6✓ TA, consider the DETA model shown in Figure 5.6(b). In this model, every event
produced by the TA on channel c

1

is delayed by the constant delay actor by exactly 1 time
unit. Since there is no bound on the number of events that can be produced on c

1

in a time
interval of size 1, an equivalent TA model would require an unbounded number of clocks.
NDE 6✓ TA: To see this, consider the example of Figure 5.6(c). Similarly to the model of
Figure 5.6(b), in this model the number of events that can be produced in an interval of size
1 on channel c

2

is unbounded, and for every such event a TA implementation would require
a separate clock to produce the corresponding event on channel c

3

.
We also conjecture that the TA of Figure 5.6(d) cannot be implemented in NDE. This

TA produces three events, a, b, c, in that order, with the constraint that the distance between
a and c is in the interval [1, 2]. This behavior requires both non-deterministic delays and
some form of synchronization to ensure that b occurs before c, which does not appear to be
implementable in NDE.
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We finally conjecture that the NDE model of Figure 5.6(e) cannot be implemented in
DETA. The loop in the model can produce unbounded bursts of events in a finite window.
A variable delay needs to be introduced for every such event. In DETA, variable delays can
only be implemented using timed automata, which only have a finite number of clocks.
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Chapter 6

Conclusions and Future Work

We first provided a formalization of the PTIDES programming framework. We proved that
for a rich subset of PTIDES programs, the earliest-deadline-first scheduling policy is optimal
with regards to feasibility. We then showed that the schedulability problem can be reduced
to a finite-state reachability problem, and described the reduction using timed automata.
The finite-state reduction entailed the following steps: perform a schedulability preserving
abstraction of the states of a PTIDES program, and then show that the space of the states
that are visited by executions that do not miss deadlines is bounded.

Intuitively the above was based on two observations. First, if the number of events in a
PTIDES state exceeds a limit, then any execution from that state can be shown to lead to
deadline violation. Since every event is associated with an amount of execution demand from
the processor, overly increasing the number of events will result in an amount of execution
demand that will be impossible to be met by the processor. The second observation is that
the absolute value of real-time or of a timestamp of an event are not both necessary for the
execution of a PTIDES program. Indeed, the di↵erence between real-time and the timestamp
of an event is su�cient to correctly execute the program. That di↵erence is bounded from
above in all schedulable states; that is, if real-time grows too much relative to the timestamp
of an event, then the event is bound to miss its deadline, and it is bounded from below in
all executions because actors are guaranteed to process events in timestamp order.

We used the same intuition of using relative instead of absolute timestamps to show
the boundedness of the state space of a discrete-event program. We further explored this
discrete-event system by enriching actor specifications and compared its expressiveness to
timed automata.

There are some questions that still remain open about the schedulability of PTIDES
programs. First and foremost, as described in section 3.2, we constrained our actors to be
output-homogeneous and constant delay. The combination of the two constrains allowed
us to statically determine event deadlines and was necessary in proving that the earliest-
deadline-first algorithm is optimal. They do not appear to be necessary to either bound the
number of events during the execution of a PTIDES execution, or to bound the di↵erence
between real-time and timestamp of events. However, as we hint in section 6.1, lifting the
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non output-homogeneous constraint allows for events that do not have a statically defined
deadline and makes it di�cult to come up with an optimal scheduling policy, at least when
the input model is unconstrained.

The second question relates to the complexity of the schedulability problem. The re-
duction to reachability in timed automata provides a decision procedure for schedulability;
however, further investigation could reveal more practical and e�cient schedulability tests
in the case of constrained input models, e.g. sporadic and periodic. Section 6.2 describes
the initial steps for a reduction of the schedulability of PTIDES programs with no loops,
constant delays, and sporadic inputs to generalized multiframe tasks, a sporadic task system
model developed by Baruah et al. [2]. The techniques described in chapter 5 should allow
us to deal with periodic loops as well.

6.1 Scheduling with register actors

We begin by explaining the semantics of the register actor. The register actor models a
memory cell: a memory location that can be overwritten and read. We will refer to the
contents of that memory location as the register’s value. The register actor has two input
channels, one called “input” and the other called “trigger”, and one output channel. The
register’s value is set by events in the input channel. When an event in the input channel
is processed, the register’s value is overwritten and set equal to the value of that event.
Processing an event from the trigger channel corresponds to reading the value of the register:
when an event in the trigger channel is processed, an event in the output channel is produced
whose value is equal to the register’s value.

Assume an event e with timestamp ⌧ is at the input channel of a register. Because the
processing of e will not result in an event at the output channel that will eventually reach an
actuator, e is not by itself associated with a deadline. However, in the presence of an event
e0 with timestamp ⌧ 0 > ⌧ at the trigger channel, because e has to be processed before e0 is,
e inherits the deadline of e0.

Since events that are targeted to the input channel of a register are not a priori associated
with a deadline, the question that arises is how should their processing be scheduled. We
call events that are targeted towards the input channel of a register, and have not inherited
a deadline from a trigger channel event, soft events. We call all other events hard events. We
know that if only hard events are present in a network, the earliest-deadline-first scheduling
policy is optimal.

One naive scheduling policy that takes into account soft events is the following: use
earliest-deadline-first among hard events and schedule soft events only when no hard events
are available.

We show an example below, in Figure 6.1, where the naive scheduling policy results in a
deadline miss, even though a schedule that does not miss the deadline exists.

At time 0, requests arrive at sensors S
1

and S
3

. Two events e
1

and e
3

are generated with
timestamp 0. The deadline of e

3

is 5, since the delay on the path from sensor S
3

to actuator
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C1 Register

C2 D2

C3 D3

C1 = 2 C2 = 1 D2 = 2

C3 = 2 D3 = 5

input

trigger

Sensor S1

Sensor S2

Sensor S3 Actuator A2

Actuator A1

t1 = 0

t2 = 2

t3 = 0

Figure 6.1: Register example.

A
2

is 5. Note that e
1

does not have a deadline because no events have arrived at the trigger
channel of the register actor. As shown in the scheduling diagram below, in Figure 6.2, the
naive scheduling policy schedules actor C

2

for execution from time 0 to 2. At time 2, a
request arrives at sensor S

2

and an event e
2

with timestamp 2 is created. Its deadline is
determined by the path S

2

, register, C
2

, D
2

, A
1

and is equal to 4. Because the timestamp
of e

2

is bigger than the timestamp of e
1

, the latter inherits the deadline of e
2

and becomes
a hard event. In order to guarantee that the register actor processes events in timestamp
order, e

1

has to be processed by the register actor before e
2

and hence C
1

executes next from
time 2 to 4. Assuming that the register reacts to both input and trigger instantaneously, C

2

starts processing at time 4 and therefore the deadline is missed.

C1 C2C3
deadline miss

0 1 2 3 4 5 6 7 8

sensors S1, S2 fire

sensor S2 fires

Figure 6.2: Naive policy schedule.

The schedule that does not miss the deadline is shown in Figure 6.3 below. Actor C
1

processes event e
1

from 0 to 2. At time 2, both e
2

and e
3

are available but because the
deadline of e

2

is smaller (4), actor C
2

executes from 2 to 3, and then C
3

executes from 3 to 5.
The di↵erence from the naive scheduling policy is that at time 0, even though a hard event
was available, the scheduler chooses to process a soft event. This schedule can be justified
with several rationales.

At time 0, the deadline of the hard event e
3

is 5 and its computation demand is 2,
therefore its execution can be delayed at least until time 3, making the choice to process the
soft event e

1

not problematic.
At time 0, we consider all possible events that could arrive in the future and decide

whether we should process e
1

or e
3

. One of the possibilities will be that e
2

arrives at 2 and
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hence the decision to process e
1

.

C1 C2 C3

0 1 2 3 4 5 6 7 8

sensors S1, S2 fire

sensor S2 fires

policy executes C1

because there is enough time for C3

Figure 6.3: Clairvoyant policy schedule.

The problems that arise from the discussion above are two:

• Does there exist a scheduling policy that optimally schedules PTIDES programs in the
presence of both soft and hard events?

• Does the answer to the previous question change if we add assumptions about the
input model (e.g. periodic, sporadic, etc.)?

• Is the schedulability decision under that scheduling policy decidable?

6.2 Relation to Multiframe Tasks

Generalized multiframe tasks is a model for describing sporadic task systems. It was in-
troduced by Baruah et al. [2] together with a pseudo-polynomial algorithm for deciding the
feasibility of systems described using it.

W = 1

D = 2

W = 2

D = 2

W = 4

D = 5

S = 3 S = 4

S = 2

Figure 6.4: Generalized multiframe task example.

An example of generalized multiframe task is given in Figure 6.4. Each node in the graph
represents a frame which is associated with an execution time W and a relative deadline D.
Every node has one outgoing edge which is labeled with a separation time S. Informally, an
execution of a multiframe task is a walk on the graph such that a job is released every time
a node or frame is visited. If a frame is visited at time t then a job is released which requires
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computation time equal to W and has an absolute deadline equal to t+D. If two frames F
1

and F
2

are separated by an edge with separation time S, and F
1

is visited at time t, then
the execution transitions from F

1

to F
2

no earlier than time t+ S.

W = 1 W = 2 W = 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 6.5: Example frame arrival sequence for task in Figure 6.4

Figure 6.5 shows an example execution of the multiframe task shown in Figure 6.4. The
execution starts at time 0, when the task is in its initial frame. A job with computation
requirement W = 1 is released and its has absolute deadline equal to 2. After 3 time units,
the task moves to the second frame and releases the next job. This time gap could have any
value greater than or equal to 3.

When a PTIDES program consists solely of actors with a single input and a single output
channel, it can be broken into parallel actor chains. As we saw in Chapter 2, when the
sensor inputs are sporadic, the feasibility problem of such PTIDES programs can be reduced
to the feasibility of a set of sporadic tasks. The reduction fails when the program contains
actors that are connected to multiple input channels, multiple output channels, or both.
Figure 6.6(a) shows an example of a PTIDES program where actor C

1

has two outputs. If
sensor S1 takes a measurement at time t, an event e is generated at the input channel of D

1

with timestamp t. If D
2

< D
3

, the absolute deadline of e is t+D
1

+D
2

. The processing of
e by actor C

1

will result in two events, both with timestamp t+D
1

, one at the input of D
2

with deadline t+D
1

+D
2

and the other at the input of D
3

with deadline t+D
1

+D
3

. From
the perspective of the scheduler, the processing of e requires the processing of three “jobs”,
one with execution demand C

1

and deadline t + D
1

+ D
2

, one with execution demand C
2

and deadline t + D
1

+ D
2

, and one with execution demand C
3

and deadline t + D
1

+ D
3

.
From the above description we can see that the multiframe task at Figure 6.6(b) produces
the same demand for the processor as the program at Figure 6.6(a).
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D1 C1

D2 C2

D3 C3

S1

A1

A2

min.

interarrival

time P

D2 < D3

(a)

(b)

C1 + C2

D1 +D2

C3

D1 +D3
S = 0

S = P

Figure 6.6: PTIDES program with split paths and equivalent multiframe task.

If a PTIDES program contains an actor with multiple inputs, e.g., the PTIDES program
in Figure 6.7(a), the equivalent multiframe task system includes multiple multiframe tasks
and non-zero separation times. In the case of Figure 6.7(a), assuming D

1

> D
2

, the equiva-
lent multiframe task system, shown in Figure 6.7(b), has two multiframe tasks. The one on
the left simulates the execution of events that arrive at sensor S1, and the one on the right
simulates the execution of events that arrive at S2. The separation time between the first
and second frame of the left multitask is equal to D

1

�D
2

. If an event arrives at S1 at time
t, a job is released at t with computation demand C

1

and absolute deadline t + D
1

+ D
3

.
Then at time t+D

1

�D
2

another job is released with computation demand C
3

and the same
absolute deadline. We call that job J

3

. The previous statement is not completely accurate
because J

3

will be released at time t+D
1

�D
2

only if the execution of C
1

has been completed
by the time. This might not be possible if the execution demand of C

1

is larger than D
1

�D
2

or if its execution is preempted by some job with smaller deadline. However, in all cases, the
reason why J

3

might not be released at t+D
1

�D
2

, is some other job with absolute deadline
smaller than or equal to the deadline of J

3

. Therefore, assuming an earliest-deadline-first
execution policy, if we were to release J

3

at t +D
1

�D
2

we would get an execution that is
equivalent to the canonical one from the perspective of schedulability.

The second reason for concern about the multiframe task system in Figure 6.7(b), is
on how accurately it simulates the case where two events arrive at S1 and S2 with time
di↵erence D

1

�D
2

, for example, the case where an event arrives at S1 at time t and an event
arrives at S2 at time t+D

1

�D
2

. The PTIDES program of Figure 6.7(a), will process both
events with timestamp t+D

1

when they arrive at the inputs of D
3

, whereas the multiframe
task system will generate and process two jobs, one corresponding to each event. Generally,
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D1 C1

D2 C2

D3 C3

S1

S2

A1

(a)

D1 > D2

C1

D1 +D3

C3

D2 +D3
S = D1 �D2

S = P1 � (D1 �D2)

D2 + D3 =
D1 + D3 � (D1 � D2)

C2 + C3

D2 +D3

S = P2

(b)

Figure 6.7: PTIDES program with merging paths and equivalent multiframe task.

the equivalent multiframe task system cannot accurately handle simultaneous events at the
inputs of an actor. However, on the one hand, the schedulability of the resulting multiframe
task system trivially gives us a su�cient condition for the schedulability of the PTIDES
program. On the other hand, less trivially but still intuitively, if the model of the inputs
of S1 and S2 is sporadic, and there exists an execution of the PTIDES program that both
misses its deadline and processes simultaneous events, then we can perturb the input pattern
by delaying the arrival of the input by a “small” amount and still get a schedule that misses
a deadline and does not process simultaneous events. With that intuition, the schedulability
of the equivalent multiframe task system is also a necessary condition for the schedulability
of the initial PTIDES program.

Finally, if we want to strictly stick to the generalized multiframe task model, as described
in [2], then the period P

1

is also required to be greater than D
1

� D
2

. However, it seems
plausible to extend the analysis presented in that paper to cover the case where a multiframe
task has a period or a minimum interarrival time that is independent of the separation times
between the di↵erent frames, as shown in Figure 6.8.

Lastly, the analysis we presented here, talks about PTIDES programs that do not have
any loops. However, as discussed in chapter 5, if a sporadic input source feeds into a loop,
then there exists a sporadic input signal that results in a Zeno-signal in some channel of
the loop. Therefore, loops in a PTIDES program will probably make sense with a more
constrained input model than just a sporadic one. In that case it should be possible to
analyze such PTIDES programs using the techniques presented in the same chapter and
reduce them to a model whose execution pattern in conjunction with a set of multiframe
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C1

D1 +D3

C3

D2 +D3
S = D1 �D2

P1

C2 + C3

D2 +D3

P2

Figure 6.8: PTIDES program with merging paths and equivalent multiframe task.

tasks is analyzable.

6.3 DE Verification

The verification problems for NDE and DETA remain open. We are currently exploring ideas
to constrain the model to regain, or statically check for, boundedness, which would enable
transformation of bounded DETA models to timed automata. We are also currently working
on extracting a�ne expressions directly from DDE models (without the use of lassos) and
then extending this technique to NDE, which would allow verification of signal queries on
NDE despite unboundedness. TA are another possible symbolic representation of signals,
natural in DETA models. It is easy to see how to transform TA signal representations by
fork, join, constant- and variable-delay actors, but not how to compute fixpoints which seems
needed for general cyclic networks.

Another direction for future work is investigating model-checking of general temporal
logics against DE models, or coming up with new logics especially designed for DE models.

Another direction is to enrich expressiveness of DDE and NDE models, for instance, by
adding control-expressive actors such as synchronizers, which from the comparison between
NDE and TA appear important. Adding values to events is another possibility for extending
DE models in general, including DETA models.
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[8] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in timed
systems. In Willem-Paul Roever, Hans Langmaack, and Amir Pnueli, editors, Com-
positionality: The Significant Di↵erence, volume 1536 of Lecture Notes in Computer
Science, pages 103–129. Springer Berlin Heidelberg, 1998.

[9] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event Sys-
tems. Springer Publishing Company, Incorporated, 2nd edition, 2010.

[10] Patricia Derler, Eidson John, Goose Stuart, Edward A. Lee, and Michael Zimmer.
Deterministic execution of ptides programs. Technical Report UCB/EECS-2013-65,
EECS Department, University of California, Berkeley, May 2013.



BIBLIOGRAPHY 101

[11] Patricia Derler, Edward A. Lee, and Slobodan Matic. Simulation and implementation
of the ptides programming model. In Proceedings of the 2008 12th IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real-Time Applications (DS-RT ’08),
pages 330–333, October 2008.

[12] ML Dertouzos. Control robotics: the procedural control of physical processes,” infor-
mation processing 74, 1974.

[13] John Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and Jia Zou. Distributed
real-time software for cyber-physical systems. Proceedings of the IEEE (special issue on
CPS), 100(1):45 – 59, January 2012.

[14] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata: Schedu-
lability, decidability and undecidability. Information and Computation, 205(8):1149 –
1172, 2007.

[15] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asynchronous
processes: Schedulability and decidability. In Joost-Pieter Katoen and Perdita Stevens,
editors, Tools and Algorithms for the Construction and Analysis of Systems, volume
2280 of Lecture Notes in Computer Science, pages 125–149. Springer Berlin / Heidelberg,
2002.

[16] Arkadeb Ghosal, ThomasA. Henzinger, ChristophM. Kirsch, and MarcoA.A. Sanvido.
Event-driven programming with logical execution times. In Rajeev Alur and GeorgeJ.
Pappas, editors, Hybrid Systems: Computation and Control, volume 2993 of Lecture
Notes in Computer Science, pages 357–371. Springer Berlin Heidelberg, 2004.

[17] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered language for
embedded programming. Proceedings of the IEEE, 91(1):84 – 99, jan 2003.

[18] G. Kahn. The semantics of a simple language for parallel processing. Information
Processing, 74:471–475, 1974.

[19] E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of compu-
tation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 17(12):1217 –1229, dec 1998.

[20] Edward A. Lee and Haiyang Zheng. Leveraging synchronous language principles for
heterogeneous modeling and design of embedded systems. In Proceedings of the 7th
ACM &amp; IEEE international conference on Embedded software, EMSOFT ’07, pages
114–123, New York, NY, USA, 2007. ACM.

[21] EdwardA. Lee and Haiyang Zheng. Operational semantics of hybrid systems. In Manfred
Morari and Lothar Thiele, editors, Hybrid Systems: Computation and Control, volume
3414 of Lecture Notes in Computer Science, pages 25–53. Springer Berlin Heidelberg,
2005.



BIBLIOGRAPHY 102

[22] Insup Lee, Susan B Davidson, and Victor Fay-Wolfe. Motivating time as a first class
entity. Technical report, 1987.

[23] Allen Leung, Krishna V Palem, and Amir Pnueli. Timec: A time constraint language
for ilp processor compilation. Constraints, 7(2):75–115, 2002.

[24] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance Evaluation, 2(4):237 – 250, 1982.

[25] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20:46–61, January 1973.

[26] Eleftherios Matsikoudis, Christos Stergiou, and Edward A. Lee. On the schedulability
of real-time discrete-event systems. In 13th International Conference on Embedded
Software (EMSOFT), September 2013. Montreal, Canada.

[27] A. K. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. Technical report, Cambridge, MA, USA, 1983.

[28] AK Mok. Annotating ada for real-time program synthesis. Proc. Computer Assurance,
1987.

[29] C. Norström, A. Wall, and Wang Yi. Timed automata as task models for event-driven
systems. In Real-Time Computing Systems and Applications, 1999. RTCSA ’99. Sixth
International Conference on, pages 182–189, 1999.

[30] Christos Stergiou, Stavros Tripakis, Eleftherios Matsikoudis, and Edward A. Lee. On
the verification of timed discrete-event models. In 11th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS), August 2013. Buenos
Aires, Argentina.

[31] M. Stigge, P. Ekberg, Nan Guan, and Wang Yi. The digraph real-time task model. In
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2011 17th
IEEE, pages 71 –80, april 2011.

[32] Yang Zhao. On the Design of Concurrent, Distributed Real-Time Systems. PhD thesis,
EECS Department, University of California, Berkeley, Aug 2009.

[33] Yang Zhao, Jie Liu, and E.A. Lee. A programming model for time-synchronized dis-
tributed real-time systems. In Real Time and Embedded Technology and Applications
Symposium, 2007. RTAS ’07. 13th IEEE, pages 259–268, 2007.

[34] Jia Zou. From Ptides to PtidyOS, Designing Distributed Real-Time Embedded Systems.
PhD thesis, EECS Department, University of California, Berkeley, May 2011.



BIBLIOGRAPHY 103

[35] Jia Zou, S. Matic, E.A. Lee, T.H. Feng, and P. Derler. Execution strategies for ptides,
a programming model for distributed embedded systems. In Real-Time and Embedded
Technology and Applications Symposium, 2009. RTAS 2009. 15th IEEE, pages 77–86,
2009.


	Contents
	List of Figures
	List of Tables
	Introduction
	Related work

	Real-Time Discrete-Event Systems
	Discrete-Event Programs
	Sensors and Actuators
	Safe-to-process
	Scheduling Policy
	Schedulability

	PTIDES Formalization
	Events and signals
	Actors
	Programs
	Systems
	Summary

	PTIDES Schedulability
	Definition
	Decidability
	Reduction to reachability of timed-automata

	Verification of Discrete-Event Models
	Deterministic timed discrete-event models
	Boundedness of DDE
	Extended discrete-event models
	Verification
	Expressiveness

	Conclusions and Future Work
	Scheduling with register actors
	Relation to Multiframe Tasks
	DE Verification

	Bibliography

