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Abstract

Scale-Independent Relational Query Processing

by

Michael Paul Armbrust

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Armando Fox, Chair

An increasingly common pattern is for newly-released web applications to succumb to
a “Success Disaster”. In this scenario, overloaded database machines and resultant high
response times destroy a previously good user experience, just as a site is becoming popular.
Unfortunately, the data independence provided by a traditional relational database system,
while useful for agile development, only exacerbates the problem by hiding potentially ex-
pensive queries under simple declarative expressions. The disconnect between expression
complexity and runtime cost often leads developers to mistrust the suitability of relational
database systems for their web applications in the long term. As a result, developers of
these applications are increasingly abandoning relational systems in favor of imperative code
written against distributed “NoSQL” key/value stores, losing the many benefits of data
independence in the process.

While some claim that scalability issues are inherent in the use of the relational model,
this thesis challenges that notion by extending standard data independence with the notion
of scale independence. In contrast to traditional relational databases, a scale-independent
system is capable of providing predictable response time for all of the queries in an appli-
cation, even as the amount of data grows by orders of magnitude. This predictability is
achieved by compile-time enforcement of strict upper bounds on the number of operations
that will be performed for all queries. Coupled with a service level objective (SLO) compli-
ance prediction model and a scalable storage architecture, these upper bounds make it easy
for developers to write success-tolerant applications that support an arbitrarily large number
of users while still providing acceptable performance.

Statically bounding the amount of work required to execute a query can be easy for some
queries, such as those that perform a lookup of a single record by primary key. However,
such simple queries are generally insu�cient for the construction of complex, real-world
applications. Therefore, to enable successful development of such applications, this thesis
defines four levels of scale-independent execution that greatly expand the space of queries
that can be guaranteed to be scalable a priori. Each scale-independent execution level
leverages increasingly sophisticated techniques, ranging from extra cardinality information in
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the schema to incremental precomputation, to ensure that the performance of the application
will not change as the amount of stored data grows. Furthermore, developers can use the
levels to reason about the resource requirements of each query that is run by their application.

In addition to presenting the theory of scale independence, this thesis describes PIQL,
a actual implementation of a scalable relational engine. Using the PIQL system, I present
an empirical analysis of scale independence that includes all the queries from the TPC-W
benchmark and validates PIQL’s ability to maintain nearly constant high-quantile query and
update latency, even as an application scales to hundreds of machines.
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Chapter 1

Introduction

1.1 The Advent of Large-Scale Interactive
Applications

The advent of the internet has resulted in substantial changes to the type and scope of
possible computer applications. Not only do modern web development frameworks make it
easy to build a compelling application in as little time as a weekend, but the connectivity of
the internet allows people to experience these new applications simply by typing an address
into a web-browser. Together, these changes have resulted in the creation of a new category
of fast-growing internet based services, which includes sites such as Amazon, Facebook and
Google. Due to their world-wide availability these internet services are often characterized
by long periods of extremely rapid growth.

Unfortunately, designing and operating applications that are capable of handling rapidly
increasing demand is not trivial. The viral growth rates of these large web applications
represent a fundamentally more di�cult scalability challenge to developers than pre-internet
applications, which only had to provide support for a pool of users that was growing relatively
slowly. These sites must contend with a constant influx of new users from around the globe,
possibly leading to many years of exponential growth. For example, the popular micro-
blogging site Twitter has seen nearly exponential growth in the number of posts made by
its users each day [88]. Another popular social networking site, Facebook, recorded over 1.13
trillion “likes1” in the first three years that this features was available [49]. That is over 700k
likes per minute!

The need to deal with surging popularity is not limited solely to consumer facing social-
media applications. With the increasing prevalence of software as a service (SaaS), the
developers of important business applications such as customer relationship management
(CRM) are also being forced to build software capable of quickly growing to a previously
unimaginable scale. Salesforce.com, for example, has gone from servicing 500 million re-

1
A “like” allows users to tell their friends what content (photos, status updates, products, etc.) they

enjoy when using Facebook.
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quests/quarter to about 10 billion requests/quarter in four years [65].
Furthermore, the challenge of designing software that scales gracefully with demand is

not confined to large companies with huge datacenters. The elasticity provided by cloud
computing [8] enables computational resources to be scaled up with only a credit card rather
than requiring huge capital investments. Thus, even small developers can have access to a
huge number of potential users as well as the computing power to handle them, but only if
their application can adapt fast enough.

1.2 Success Disasters

Current software development tools fail to assist developers with the challenges associated
with rapid scaling. Thus, many web applications succumb to “success disasters” shortly
after becoming popular. In this common scenario, a new web service quickly grows from
thousands of users to millions due to a favorable mention on a prominent blog or other news
source. Driven by the number of users, the application’s database will grow in size by orders
of magnitude. This sudden explosion of data often leads to growing pains in the form of
unacceptable response times or failed requests.

Research has shown that even a small increase in latency has a measurable e↵ect on user
behavior. For example, Google and Microsoft found from user studies that increasing the
time it takes for a given page to load by as little as 200 ms resulted in measurable decrease
in the number of searches users perform on average [73]. The e↵ect of even these tiny delays
was so strong that the researchers were forced to terminate the experiments early for fear of
causing actual harm to the popularity of the site.

Decreased user activity is only the first problem that occurs when an application struggles
with the growing pains associated with a sudden increase in popularity. The internet has
many stories of websites that eventually lost to their competition due to an inability to
overcome the scaling hurdle. For example, the downfall of Friendster, a precursor to the
wildly successful social-networking site Facebook, is often attributed to its inability to deal
with its own early surge in popularity [69].

1.3 Building Applications on a RDBMS

Typically, data management lies at the core of the scalability problem, as most other com-
ponents of a web application are stateless and thus easily adapt to increased demand. The
Relational Database Management System (RDBMS) has long served as a key building block
for applications that store and retrieve data, and web applications are no exception. Database
systems are used nearly everywhere that computers are found including air travel, banking,
retail, defense, scientific computing, and more. These storage systems provide developers
with a simple and consistent way of interacting with data while abstracting away challenges
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such as e�cient storage, retrieval, concurrency, backup, and fault tolerance. These features
greatly simplify the task of quickly building performant applications.

Perhaps most importantly, an RDBMS provides developers with a declarative query lan-
guage: SQL. A declarative language allows developers to specify what data they want re-
turned without requiring them to say how the retrieval will be accomplished. This separation
of concerns, known as data independence, grants the developer the freedom to focus on the
features and user experience of their application without worrying about how changing the
representation of the data will a↵ect the performance. Using techniques from over four
decades of research, the RDBMS can automatically choose the execution strategy for each
query that minimizes the expected cost of computing the answer.

Databases not only make it easier for developers to build the first version of an application,
but they can also ease the process of adding features to adapt to changing user needs. This
agility is yet another positive benefit developers gain by expressing their application’s queries
in a declarative language. Since the application does not specify directly how to retrieve the
data, developers can add or remove columns from tables or even modify the way data is
organized and indexed without the need to change any application code. Instead, it is up to
the RDBMS to adapt to these changes by automatically choosing new execution plans for
existing queries.

1.4 The NoSQL ‘Solution’

Despite the many benefits of their current implementations, database systems are not a
panacea. Most strikingly, existing database systems do little to prevent the applications
built on them from succumbing to a “success disaster”. In fact, the features of modern
relational database systems can actually exacerbate the scaling hurdles faced by a suddenly
popular service. As proponents of “NoSQL” solutions have widely publicized (e.g., [89, 27]),
the declarative, high-level programming interface provided by SQL database systems makes
it easy for developers to inadvertently write queries that are prone to scalability problems.
The issue is that data independence can hide potentially expensive operations, resulting in
queries that perform well over small datasets but fail to meet performance goals as the size of
the database grows. Often such performance problems are detected only after they impede
site usability, and the database system provides little guidance on how to isolate and fix the
problem (assuming a fix is even possible).

To the chagrin of many in the database research community, it is thus increasingly com-
mon for web application developers to abandon SQL-style data independence. Instead, these
developers choose the straightforward pain of hand-coding imperative queries against dis-
tributed key/value stores. This decision is motivated by the fact that many key/value stores
are capable of providing linear scalability as machines are added and of maintaining pre-
dictable per-request latencies [31]. However, this approach creates its own problems. The
use of imperative functions instead of declarative queries means that changes to the data
model often require time-consuming rewrites of application code. Perhaps more critically,
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developers are forced to manually parallelize requests to avoid the delays of sequential exe-
cution. Therefore, the benefits of physical and logical data independence are lost.

1.5 Introducing Scale Independence

The status quo of data management leaves today’s developers with two unacceptable alterna-
tives. Cost-conscious organizations may choose to ignore the possibility of future scalability
issues, opting instead to focus their e↵orts on adding features to their application. Past
experience has shown that such sites often end up as victims of their own success.

In contrast, forward-thinking developers may decide to over-engineer their systems so as
to meet arbitrarily high scalability targets. Unfortunately, this strategy is equally untenable
in practice. Designing for massive scale can squander precious resources during the critical
early stages of application development with no assurance that the application will ever
actually become popular. Had these developers been free instead to focus their e↵orts on
feature development, perhaps their application would have been more successful in attracting
users. Even in the cases where the costs of this over-engineering are eventually warranted,
any chosen scalability target may still end up being overly conservative.

Ideally, developers should be given the tools to develop data-intensive applications rapidly
without needing to worry about meeting some fixed scalability target. Such tools would
ensure that applications will perform predictably as they grow in popularity, while simulta-
neously preserving the many productivity benefits of the relational model. As I demonstrate
in this thesis, this syncretism can be accomplished through the introduction of scale indepen-
dence [9], a new type of data independence. Scale independence provides a new way to reason
about building data management systems, and my thesis presents the theory, algorithms,
and tools that enable this approach for a wide range of relational queries. Scale-independent
queries that satisfy their performance objectives on small data sizes will continue to meet
those objectives as the database size grows, even in a hyper-growth situation such as when
a web service goes viral. A scale-independent system is inherently success-tolerant, making
it easy for developers to ensure that their initial implementation will be able to handle the
massive onslaught of data that is characteristic of success on the web.

1.6 Implementation of a Scale-Independent
Relational System

The mechanism used in this thesis for achieving scale independence is the calculation and
enforcement of an upper bound on the number of storage operations that a query will per-
form regardless of the size of the underlying database. This strategy can be e↵ective at
ensuring predictable performance during period of rapid growth, as the number of storage
operations performed is often the dominant driver of latency in query execution. However,
simply mandating the existence of an upper bound for every query does not accomplish
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the goal of helping developers build success-tolerant applications for two reasons. First,
for interactive applications, performance objectives are typically based on response time
rather than operation count. Therefore, queries whose execution requires an unreasonably
large (though bounded) number of operations could still fail to perform acceptably. Sec-
ond, näıvely adapting existing relational database systems to simply reject queries where
no bounded plan exists results in a large number of false negatives, excluding queries that
could easily be made scale-independent. Instead of simply restricting the space of possible
execution plans, a scale-independent storage system should help developers by suggesting
possible modifications to queries and the application’s schema.

A scale independent relational system uses static analysis to only allow query plans in
which it can calculate a bound on the number of key/value operations to be performed at
every step in their execution. Therefore, in contrast to traditional query optimizers, the
objective function of the query compiler is not to find the plan that is fastest on average.
Rather, the goal is to avoid performance degradation as the database grows. Thus, the
compiler will choose a potentially slower bounded plan over an unbounded plan that happens
to be faster given the current database statistics.

While other systems, such as GQL [37] and CQL [20], also provide a SQL-like query lan-
guage that bounds computation, they impose severe functional restrictions, such as removing
joins, in order to ensure scalability. In contrast, a scale-independent system will also avoid
inherently unscalable queries, but it employs language extensions, query compilation tech-
nology, precomputation, and response-time estimation to provide scale independence over a
larger and more powerful subset of SQL.

If the query compiler cannot create a bounded plan for a query, it warns the developer
and suggests possible ways to bound the computation. This static analysis can be performed
for some queries using existing annotations, such as the LIMIT clause [19] or foreign key
constraints. However, in many cases, it is insu�cient to simply limit the result size, as
intermediate steps also contribute to execution time. Therefore, in this thesis I extend
SQL to allow developers to provide extra bounding information to the compiler. First,
my extended SQL syntax provides a PAGINATE clause, allowing the results of unbounded
queries to be e�ciently traversed, one scale-independent interaction at a time. Second, I
provide constructs that enable bounding intermediate results through relationship cardinality
constraints expressed in the database schema. Together, these additions allow developers to
express complex queries while still providing the query optimizer with enough information
to determine that these queries will not result in performance problems as the application
grows.

To avoid choosing plans that perform too many storage operations, I show that it is
possible to employ a worst case performance prediction model. Specifically, I describe tech-
niques that allow developers to specify Service Level Objectives (SLOs), which are framed
as a target response time for a fraction of the queries observed during a given time interval;
e.g., “99% of queries during each ten-minute interval should complete in under 500 ms.”
Given this information, my SLO compliance prediction model uses the query plan and the
operation bounds to calculate the likelihood of a scale-independent query executing with
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acceptable performance. Section 4.4 demonstrates that, for a variety of benchmark queries,
even a simple model can accurately predict SLO compliance. Intuitively, such prediction is
possible due to a combination of the predictability of the underlying storage system and the
bounds on the number of operations each PIQL query will perform in the worst case. It is
important to note that the focus of this thesis is on interactive queries, as these often have
the most stringent performance requirements. These queries generally require relatively few
accesses and there is typically su�cient headroom between these conservative bounds and
the response time requirements of the application.

Finally, there are SQL queries, common in real world applications, where it is simply
impossible to bound the number of storage operations required if all processing is performed
on-demand when the answer is desired. For example, the online service Twitter needs to
calculate the number of people following popular users. Executing this query on-demand
could result in response time that grows with the size of the database. Fortunately, it is often
possible to answer such queries safely at scale by leveraging incremental precomputation,
e↵ectively shifting some query processing work from execution time to insertion time.

I formally define the classes of SQL queries where precomputation fundamentally changes
the worst case execution cost at scale. Understanding the characteristics of these classes
allows the construction of a scale-independent view selection and maintenance system. My
scale independent view selection system [10] is unlike prior work on materialized views [3,
51, 60], which attempted to minimize cost of query execution for a given workload. While
these prior techniques select views that may speed up the time it takes to answer a query on
average, the overall performance of the application can unfortunately remain dependent on
the size of the underlying database, thereby violating scale independence. Instead, a scale
independent system focuses on ensuring predictable performance, even as the data size and
workload grow.

1.6.1 Impact of Scale-Independent Thinking

Requiring the presence of a strict bound on the number of operations that will be performed
in the worst case means that a scale-independent optimizer will prioritize scale-independent
plans over those that are cost-optimal on average. As a result, there are cases where such
a system will select a plan that does not execute as quickly as possible over small amounts
of data. While this choice may appear counter-intuitive, it is made by the optimizer in the
hopes that the bounded plan will exhibit more predictable behaviour as the amount of data
in the system grows.

In order to quantify the e↵ect of scale-independent plan selection on response time, one
can study what happens when a query known to cause scalability problems is executed over
di↵erent amounts of data using both a scale-independent plan and one that is cost-optimal
on average. The query is used by the microblogging site Twitter and checks to see which
of the current user’s friends are also subscribed to the user whose profile is being viewed.
Figure 1.1 shows where the results of this query are rendered in the Twitter interface.

The schema and SQL for this query are as follows:
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Figure 1.1: Twitter shows a list of common subscribers when viewing the profile of another
user.

Subscriptions(ownerId, targetId, approved) WITH CARDINALITY(ownerId, 50)

SELECT * FROM Subscriptions
WHERE targetId = <target user>
AND ownerId IN <users followed by the current user>

For the purpose of this experiment I create two indexes over the Subscriptions relation.
The first is the clustered index over the primary key (ownerId, targetId). The other is a
secondary index over (targetId).

Given the above physical schema, a query optimizer must decide between two di↵erent
physical plans for executing the above query. The first option performs an unbounded
sequential scan over the secondary index to retrieve the list of all subscriptions that match
the predicate targetId = <target user>. The results of this scan can then be compared
locally with the list of users followed by the current user. To determine the I/O cost of
this plan, the optimizer will look at statistics on the average number of followers for any
given user on Twitter. Since this number is small — 126 in 2009 [11] — and the results
will be contiguous, the optimizer determines the average cost of this plan to be a single I/O
operation.
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The second possible physical plan computes the answer to the query using the clustered
primary index. In this case, the query is executed by probing the clustered index, checking for
the presence of a record for each id from the list of users followed by the current user. Since
these tuples are not necessary contiguous, each probe will require a random I/O. However,
due to the cardinality constraint on the number of subscriptions for any given owner, the
optimizer knows that no more than 50 I/O operations will be required in the worst case.

Presented with these two options, a cost-based optimizer will clearly choose the first
plan. In contrast, a scale-independent optimizer will not even consider this plan, due to its
potentially unbounded I/O costs. To understand empirically how these decisions will a↵ect
overall response time, each plan is hand-coded and then run against users of increasing
popularity. For each data point, 50 randomly-selected users are selected as the friends of
the current user. Figure 1.2 shows how the response time changes with the popularity of the
target user.
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Figure 1.2: A comparison of the 99th percentile response time of 200,000 executions of the
subscriber intersection query using two di↵erent optimization strategies.

While the cost-based plan performs up to 4x faster for an unpopular user, the scale-
independent plan consistently meets the application’s SLO, independent of the popularity
of the target user. For a popular user, such as “Lady GaGa” (12M+ followers), using the
cost-based query plan would certainly violate the SLO.

This experiment empirically demonstrates two key facts. First, the cost of I/O opera-
tions against the key/value store is often the dominant driver of latency in query execution.
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Therefore, predictable performance can often be obtained by bounding the number of storage
operations that will be performed in the worst case. Second, while cost-based optimization
can reduce average query response time, it is not su�cient to ensure SLO compliance during
periods of rapid growth.

Additionally, if it is desirable to further minimize response time, even below the SLO,
a scale-independent system could be extended to use a dynamic approach that determines
at runtime which query plan to execute. However, special care would need to be taken to
ensure that unbounded plans were never run over unsafe amounts of data.

1.7 Summary and Contributions

In this thesis, I demonstrate that it is possible to provide the developers of interactive ap-
plications with both the productivity enhancing features of the RDBMS and the ability to
endure periods of extremely rapid growth. I begin by first formally defining the character-
istics of scalable queries. Then, I use this formalism to construct di↵erent classes of SQL
queries, segmenting them based on the techniques that are required to ensure that they scale
gracefully.

To demonstrate the e↵ectiveness of this approach, I also present PIQL2, a first attempt at
building a scale-independent RDBMS, which is capable of running on hundreds of machines.
The PIQL system builds on decades of database system research, but shifts the focus from
raw performance to long-term scalability. PIQL is capable of both determining the inherent
scalability of all the queries in an application and ensuring they execute with predictable
performance as both data and the number of machines grow. This feat is accomplished by
rethinking the implementation at all layers, including the query language, optimizer, view
selection system, as well as the underlying storage system. In summary, this thesis contains
the following contributions:

• I create and define the notion of a scale-independent storage system, which ensures
that applications will perform predictably even during hyper-growth situations.

• I formalize the invariants on computational resources that must be maintained by a
scale-independent system.

• Using these invariants, I define four levels of scale-independent query execution based
on the resources required during execution.

• I present a minimal extension to SQL that allows developers to express relationship
cardinality and result size requirements.

• I describe a scale independent query compiler, which bounds the number of key/value
store operations performed for a given query.

2
Short for the Performance Insightful Query Language and pronounced “pickle”.
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• I present a performance model that helps developers determine acceptable relationship
cardinalities and reason about SLO compliance.

• I present a scale-independent view construction algorithm along with static analysis
techniques to bound the cost of storage and maintenance.

• I describe a mechanism for automatically detecting and mitigating common temporal
hotspots using a combination of load balancing and parallel execution.

• I present the results of empirical studies that demonstrates the expressiveness of the
extended SQL language, the accuracy of the SLO compliance prediction, and the scale
independence of the PIQL implementation using two benchmarks running on hundreds
of machines.

1.8 Organization

The rest of this thesis is organized as follows: Chapter 2 contains the necessary background
for understanding scale independence. Section 2.2 describes the relational model, which
serves as the theoretical underpinning of the modern RDBMS and the basis for data in-
dependence. Readers familiar with relational algebra and standard database architecture
can safely skip much of this section. However, Section 2.3 contains specifics on materialized
views selection and maintenance, which are less commonly known. Next, Section 2.4 explains
the characteristics and architecture of large scale web services, which serve as a motivating
example of the importance of scale independence. Finally, Section 2.5 describes key/value
stores, which serve as a common alternative to relational database systems for scale oriented
developers.

Chapter 3 formally introduces the notion of scale independence. It begins by explaining
the notion of “scale” as well as how the amount of data returned by various queries will
change as a system grows. Next, it lists the invariants on resource consumption that serve
as the basis for for a scale-independent system. Using these invariants, this chapter then
lays out four levels of scale-independent query execution based on the secondary structures
required for their execution. By understanding which level will be used to execute a given
query, developers can better understand the resource consumption that will be incurred while
executing the query as the system grows. Finally, this chapter describes how the enforcement
of these invariants can map to query response time and thus user experience in a correctly
designed system.

Given that the invariants maintained by a scale independent system have been enumer-
ated, Chapter 4 examines how a database can obey these invariants while executing relational
queries on demand. First, the algorithm that determines if a query has a scale-independent
execution plan is presented. The chapter goes on to describe how empirical measurements of
key/value store performance can be used to predict whether new queries will meet response
time goals as an application grows.
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Chapter 5 expands on Chapter 4 by addressing queries where precomputation is required
for scale-independent execution. Since materialized views must now be created, this chapter
also explains the static analysis required to ensure that the cost of storing and maintaining
these views will not itself threaten scalability.

The implementation of PIQL would not be possible without a scalable underlying stor-
age system. Chapter 6 describes the SCADS [9] key/value store used for my empirical
evaluations, focusing on the architectural decisions that were important for achieving scale
independence.

Finally, Chapter 7 discusses the limitations of the current implementation and lists future
directions for research on scale-independent query processing. It concludes with a summary
of the contributions of this work.
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Chapter 2

Background

2.1 Introduction

In order to understand scale independence, it is important initially to look at current stor-
age systems and how they help developers rapidly build complex applications. This chapter
begins with a description of the relational model and discusses how this model enables data
independence. Sections 2.2.1-2.2.3 give an overview of relational algebra as well as the archi-
tecture used by a modern RDBMS to execute a query expressed relationally. This material
is fairly basic in nature and can safely be skipped by readers familiar with relational query
execution. Building on this foundation, Section 2.3 discusses the selection and incremental
maintenance of materialized views, focusing on techniques that are extended by PIQL when
precomputing the results of queries when required for scale independence.

Section 2.4 introduces one motivating use case for a scale-independent storage system:
Large-scale interactive web services. This section starts by discussing the characteristics
of these applications, contrasting them with more traditional pieces of software. Next, it
discusses how these applications attempt to adapt to a rapidly growing user base and the
pain points they commonly experience during this process.

Finally, Section 2.5 concludes the background material by describing NoSQL systems,
which serve both as a feature-anemic alternative to an RDBMS as well as the underlying
storage system for my implementation of a scale-independent system, PIQL.

2.2 Review of Relational Database Technology1

While the first computers were designed for “pure” computing tasks like calculating missile
trajectories or breaking complex encryption codes, it was quickly realized they were also
useful for storing and retrieving information. As a result, a significant amount of research

1
This chaper is intended to serve as a primer on the necessary background material for readers who are

less acquainted with prior work on relational query processing. Those readers who are already familiar with

the relational model and the architecture of the traditional RDBMs can safely skip this section.
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and engineering e↵ort has gone into making it easier for developers of computer applications
to manage data.

The earliest data management systems were built directly on top of file systems. While
file systems assist developers by abstracting away the challenge of manually interfacing with
storage devices, they fall short in many regards. Most importantly, file systems provide no
support for quickly accessing data unless the location within a given file is already known.
This omission means that developers concerned about performance need to worry about
maintaining structures, such as hash tables or binary trees, that allow faster access to data
based on content.

The ine�ciency of forcing each developer to reinvent abstractions from scratch for each
data management challenge encountered quickly led to the creation of more generalized data
storage systems. This trend towards generalization began with navigational databases in the
1960s and became standardized by the CODASYL group [25].

Navigational databases presented developers with a graph abstraction where each data
item contained pointers to other data items. Upon opening a database, the developer would
receive a pointer to the “first” record. Queries were written by writing programs that would
“navigate” through this graph by following pointers to retrieve the desired data.

This data access paradigm represented a significant advance over simple file systems,
as developers no longer needed to maintain the storage structures that allow a program to
look up records e�ciently given a pointer. However, due to the lack of a built-in support
more complex that following pointers, several issues remained. First, answering a query by
navigating over the provided graph data structure still required the developer to write a sig-
nificant amount of code. Second, because query code was closely coupled with the structure
of the graph, any changes to the way data is stored could require significant modifications
to application code.

2.2.1 The Relational Model

Codd addressed the challenges presented by closely coupled application code and physical
storage of data through the introduction of the relational model, as reported in his seminal
paper “A Relational Model of Data for Large Shared Data Banks” [26]. In this paper, Codd
describes a general model for both representing and querying data stored by a computer.

At the highest level, the relational model represents data as a set of relations (also known
as tables). Each relation is comprised of a set of unordered tuples (also called rows). A tuple
is an ordered set of attributes (also known as columns) that can be optionally identified by
a unique key. The schema, or the names of the attributes and their data types (i.e., String,
Integer, Boolean, etc), is the same for all tuples in a relation.

To better understand this model, consider a simple system that stores a list of books
along with the authors who wrote them. Figure 2.1 shows the parts of the relational data
model as they apply to this schema, along with some sample data. Each book is represented
by a tuple in the Books relation (or relation instance). The author for a given book can
be found by looking up the tuple in Authors whose ID matches the AuthorID from the
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appropriate book tuple.

ID AuthorIDTitle

1

2

3

The Art of Computer Programming I

The Art of Computer Programming II

Transaction Processing: Concepts...

1

1

2

Books

ID FirstName LastName

Donald Knuth

Jim Gray

1

2

Authors

Relation
or Table

Foreign Key

Attribute or Column

Tuple or Row

Key

Year

1968

1976

1992

Figure 2.1: An example of a relational schema for storing books and their authors.

While this model provides a very general scheme for representing many di↵erent types
of data stored in a computer, simply storing the data is insu�cient. The real power of the
relational model comes from the simple, composable primitives it defines for retrieving data.
These data manipulation primitives are built on a mathematical concept known as relational
algebra2 and together represent a general model of transforming and querying data.

Relational algebra defines simple operations, such as union and project, that transform
relations, producing new relations. While each of the operations in this algebra only perform
a simple action on a relation, by combining them it is possible to express a wide range of
queries. Further work done by Hall and others revised this model to include a rename
operator [43]. For simplicity of exposition, the following list describes a representative subset
of relational operators that are su�cient to express all the queries relevant to applications
targeted by this thesis.

2
Codd was also responsible for the definition of relational calculus, which was later shown to be equivalent

to relational algebra.
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Set Operators Relational algebra supports four generic set operations that can performed
on relations with identical schemas. The schemas of the two relations must be identical
because otherwise the result could be a set containing tuples with di↵ering schemas and,
therefore, would not be a relation. These operations are described as they apply to two
arbitrary sets, R and S.

Union R [ S, the union of R and S, is a set containing all tuples found in either R or S.
Duplicate items that appear in both sets will only appear in the result set once.

Intersection R\S, the intersection of R and S, is a set that contains all tuples that appear
in both R and S.

Di↵erence R � S, the di↵erence of R and S, is the set containing all elements of R that
do not appear in S. Unlike the two previous operations, the di↵erence operator is not
commutative, meaning R� S is not necessarily equal to S �R.

Cartesian Product
The Cartesian product operator, ⇥, takes two relations and returns each tuple from
the first relation matched with all tuples from the second relation. The schemata for
the resulting relations is the union of the schema of the two original relations.

For example, using the data from Figure 2.1 once again, the expressionBooks⇥Authors
produces the following result:

title year authorID ID FirstName LastName
The Art . . . I 1968 1 1 Donald Knuth
The Art . . . I 1968 1 2 Jim Gray
The Art . . . II 1976 1 1 Donald Knuth
The Art . . . II 1976 1 2 Jim Gray
Transaction Processing. . . 1992 2 1 Donald Knuth
Transaction Processing. . . 1992 2 2 Jim Gray

Other Relational Operators In addition to the standard set operations, relational al-
gebra defines:

Project
The projection operator, ⇡, takes a relation R and produces a copy of that relation
with only a subset of the attributes present in R.

For example, using the data from Figure 2.1, the expression ⇡
title

(Books) would pro-
duce the following result:

title
The Art of Computer Programming I
The Art of Computer Programming II
Transaction Processing: Concepts and Techniques
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Select
The selection operator, �, can be applied to a relation R and will produce a subset of
the tuples present in R. Tuples are included in the emitted subset if and only if they
match the specified predicate.

For example, using the data from Figure 2.1, the relational expression �
year=1968(Books)

returns only the tuples where the year attribute is equal to the value “1968” and
produces the following result:

title year authorID
The Art of Computer Programming I 1968 1

By combining these simple operations it is possible to express complex queries. For
example, consider the query “Return the last name of all authors who wrote a book during
the year 1976”. This query can be answered by evaluating the following relational algebra
expression.

⇡
LastName

(�
year=019760(�AuthorID=ID

(Books⇥ Authors))) (2.1)

An additional feature of defining an algebra for expressing queries is that this formalism
provides a set of rules that specify how queries can be transformed without changing what
data is returned. This flexibility often allows a database system to execute a query more
e�ciently than the way it was originally expressed. As a concrete example, consider the
query defined in 2.1. As the query is expressed, execution would begin by computing the
Cartesian product of the Books and Authors relations, a potentially expensive operation.
However, the same result can be obtained if the Books relations is first filtered to remove
books that were not written in 1976. The more e�cient equivalent query is expressed as
follows:

⇡
LastName

(�
AuthorID=ID

(�
year=019760(Books)⇥ Authors))) (2.2)

This type of optimization is known as predicate push-down as it involves “pushing” the
predicate deeper in the plan, where it can hopefully filter tuples earlier and reduce the total
amount of work required to answer the query. Predicate push-down is only one of many
transformations utilized by database systems to improve the e�ciency of query execution.

Another important optimization involves the introduction of the join operator. Logically,
a join is a Cartesian product followed by a selection that only returns tuples where the
appropriate attributes match. However, for e�ciency reasons, the full results of the Cartesian
product are never actually produced when performing this computation. Section 2.2.3.2
describes di↵erent types of joins, as well as the analysis performed by the database system
to determine which version of a query is the “best”.

For practical reasons, actual implementations of the relational model di↵er from the
mathematical formalism described above in several ways. First, pure relational algebra
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operates on sets of tuples, meaning that there can be no duplicate tuples in a relation.
Real-word implementations often forgo this restriction both for greater expressiveness and
performance. However, they usually provide a mechanism for removing duplicates from a
result set (e.g. the DISTINCT clause in SQL).

Additionally, while sets are generally considered to be unordered collections, it is often
useful in practice for the database to support sorting tuples. The utility of enabling the
database system to understand sort-order is two-fold. First, it is common to want only a
fixed number of results for a given query. For example, consider a query that returns the ten
most popular books. Such a query can be executed more e�ciently if the database engine
understands ordering and thus can return more popular books first. Section 2.2.4 describes
the mechanisms for enabling these partial-result queries (often known as top-K queries) in
greater detail. Second, when the database is aware of the ordering for a set of tuples, either
due to an explicit sort operation or due to ordering properties of the data structure the tuples
are retrieved from, it can choose more e�cient methods of performing logical operations (e.g.
the database system can leverage the fact that duplicate tuples will be contiguous in a sorted
relation).

A final common addition to the relational model is support for aggregation. Aggregate
operators combine multiple tuples, producing a single result tuple. A simple example is an
operator that simply counts the number of input tuples, returning the final count. Other
common aggregation functions include sum, average, and standard deviation.

In addition to computing aggregate values over all of the tuples in a given result, it
is also possible to produce sub-aggregates for groups of tuples that share a common value
for specified attributes. For example, by grouping on the AuthorID attribute, it would be
possible to produce counts of books for each author in the database.

2.2.2 Data Independence

Expressing data manipulation as a set of relational algebra operations was a huge step
forward as it allowed developers to express their intent declaratively, instead of requiring
them to specify exactly how the data will be retrieved. In contrast, queries expressed using
earlier data management tools were often dependent on the specific representation of the
data. Codd’s original paper enumerated three types of this data dependence: Ordering
dependence, indexing dependence, and access path dependence. Such dependence on the
specific layout of data often makes it di�cult to change characteristics of data representation
without changing the semantics of queries that access the data.

In contrast to programs that directly access data storage primitives to retrieve data,
queries expressed as relational algebra exhibit a useful property known as data indepen-
dence. Data independence can be a boon, especially for developers of rapidly changing
applications, as it allows them to make significant modifications to the representation of
stored data without needing to make any changes to application code. Typically, the de-
grees of representational freedom provided by data independence are broken up into two
categories: Logical and physical.
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Logical Independence Logical data independence refers to the flexibility to change the
schema definition for a given collection of data. This form of independence means that,
for example, attributes can be added to a relation without requiring changes to queries.
Additionally, this independence implies that the correctness of queries that operate on a
subset of the attributes in a relation will not be a↵ected if attributes outside of this subset
are removed.

Logical data independence is also enabled through the concept of views. A view is a
virtual relation that is specified by a relational expression. By creating a view, a developer
can make significant changes to the schema of an application, including modifications such as
changing foreign key relationships, and yet still provide an equivalent final data representa-
tion to the application. Views can be purely logical, meaning they are evaluated at run-time.
However, a potentially more performant option is to materialize, or precompute and store
the view. Section 2.3 discusses trade-o↵s associated with the creation and maintenance of
materialized views in greater detail.

Physical Independence Physical independence refers to the ability to change the phys-
ical representation of the data as it is stored in the memory or on the disk of the computer.
Possible changes to the physical schema include: Changing the ordering, storage structure,
indexes, file layout, or storage device. Relational database systems not only shield developers
from worrying about these types of modifications, but typically also re-optimize queries in
an attempt to find the best execution strategy given the new physical layout.

Executing Relational Algebra Expressing queries declaratively using relational algebra
means that at some point the RDBMS must convert the query expression into a set of op-
erations that realize the query. The specific set of operations that are used to evaluate a
given relational algebra expression are known as a query plan. While the rules of relational
algebra describe the types of transformations that can occur without changing the semantics
of the query, they do not help in finding the best method amongst the many alternatives. In-
stead, this selection is performed using a process known as query optimization. Section 2.2.3
provides the background on how modern systems perform this optimization.

While relational database systems generally do an acceptable job of selecting plans that
minimize average response time, they do not help developers reason about how the perfor-
mance of an application will change as the amount of data grows. In fact, data independence
can often make such reasoning significantly more di�cult. Specifically, the fact that query
plans can change with the specific characteristics of the data stored means that data growth
can result in the reoptimization of a previously well-performing query. In contrast, my
system, PIQL, provides standard data independence but extends it with scale independence.

In the next section, the execution of a relational query is explained in the context of the
architecture of a modern relational database system. Special care is taken to highlight the
parts of the system that need to be adapted to provide scale independence.
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2.2.3 Architecture

Many existing data management systems are capable of executing relational queries, in-
cluding commercial systems like Microsoft SQLServer, Oracle, and IBM DB2. Several open
source options are also available, including Postgresql, MySQL, and SQLite. These mod-
ern relational databases are generally very complex software systems. Even PostgreSQL,
a relatively simple RDBMS compared to its more expensive commercial counterparts, is
comprised of over 600,000 lines of code [79]. As such, architecturally an RDBMS is generally
broken down into several layers, allowing the higher layers to build on top of the abstractions
provided by the lower layers. Figure 2.2 shows how the layers of an RDBMS take a query
written in SQL and eventually translate it to operations that retrieve the requested data.
More importantly, since most systems share this common architecture, advances made by
one particular implementation can often be easily applied to others. This section explains
the functionality of each of the layers of an RDBMS, highlighting the components that need
to be modified to provide scale-independence. For the sake of brevity, I omit details of sub-
systems that primarily e↵ect the relative performance of query execution and not scalability
(e.g. logging and recovery).

SQL Query

Parser

Optimizer

Execution Engine

Storage Engine

Logical Plan

Physical Plan

Storage Operations

Figure 2.2: The phases of query execution through the architecture of a standard relational
database system.
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2.2.3.1 Parser

The first phase of SQL query execution occurs in the parser. The parser takes in a SQL
statement in the form of a string and generates a parse tree of the expression. This parse
tree is then converted into a logical query plan composed of nodes that closely map to the
relational algebra expressions from the previous section. The logical query plan serves as a
representation of what data will be returned by the query, but does not yet specify details
such as which indexes will be used or which algorithms will be invoked for complex operations
such as joins.

As an example, consider the query from the previous section, which returns the last
name of all authors who wrote a book in 1976. A developer would express this query to the
database with the following SQL:

SELECT DISTINCT LastName
FROM Authors, Books
WHERE AuthorID = ID AND

Year = 1976

Figure 2.3 shows the logical query plan that is produced by the parser given the previous
SQL expression. The query plan should be bottom up starting with the relations at the
bottom. The final results are produced by the top operator.

Project
LastName

Join

Authors

Selection
AuthorID = ID

Books

Distinct

Selection
Year = 1976

Figure 2.3: The logical plan for a query that returns the last name of authors who wrote a
book in 1976.
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2.2.3.2 Optimizer

The optimizer serves as a bridge between the programmer’s expression of what query is to
be run and the execution engine that actually answers the query. It starts with the logical
query plan created by the parser and creates a physical query plan that is expected to be
most e�cient.

In the first phase, the optimizer performs algebraic rewrites of the query. These algebraic
transformations produce semantically equivalent queries that are expected to execute more
quickly than the original query. One example of such a transformation was discussed earlier
and is known as “predicate push-down”. This transformation involves pushing selection
operators down deeper into the query plan. Pushing these filters deeper into the query plan
almost always results in faster query execution since removing tuples that do not match a
predicate early prevents wasted work later in the query plan.

Another example of a common algebraic rewrite is the push-down of stop operators, which
enable the e�cient calculation of partial results. Section 2.2.4.1 discusses stop operators and
the rules for pushing them down query plans in greater detail.

After purely algebraic transformations, the optimizer must next generate a physical query
plan. In doing so, it must choose the specific access methods and algorithms that will be
used to execute each operator of the query.

One part of this process is access path selection, which chooses the method that will
be used to retrieve the data requested by the query. The simplest access path, though
not necessarily the most e�cient, is a table scan which simply reads all tuples in a given
relation in an unspecified order. While this approach will always produce the correct answer
eventually, more e�cient methods also exist. For example, often the relation is stored in a
specific order on disk (known as a clustered index) and this ordering can be used to locate
data quickly that satisfies a predicate or even e�ciently retrieve data as required by an ORDER
BY clause.

Even when the ordering of the relation is not helpful for answering the query, other
e�cient access methods exist. For example, database systems also support the ability to
create di↵erent types of secondary indexes, which can be used to retrieve data quickly based
on the value of attributes other than those that define the sorting of the clustered index.
The two types of indexes that are most commonly supported are B-tree and hash table.

A B-tree is a data structure similar to a binary tree and stores all of the records in sorted
order. However, instead of each node of the tree having only two children, each B-tree node
has many. This allows for much larger nodes, each of which can be retrieved by a single
disk operation. Since B-trees store data in order, lookups over the sorting attributes can be
performed e�ciently using using binary search. Furthermore, B-trees can also be used to
execute range queries (e.g. return all records with dates between January 1st and January
31st). Finally, the ordering property of this type of index can be used to satisfy an ORDER
BY or to enable the use of an algorithm that relies on tuple ordering later in the plan.

A hash table, on the other hand, stores each data item in a location that is determined by
a mathematical hash of the attributes specified. Since hashing these values does not lead to
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any useful ordering, hash indexes, in contrast to B-trees, can only be used to locate records
by exact equality of the attributes indexed.

In addition to choosing the access paths for each relation in the query, the optimizer also
needs to choose which algorithms will be used to satisfy other operations in the plan. For
example, the optimizer needs to choose which algorithm to use for each join found in the
logical query plan. While in the previous section on relational algebra joins were described as
a Cartesian product followed by a selection, this execution strategy is virtually never used in
practice due its ine�ciency. Instead, a specific join algorithm is chosen based on properties
such as the ordering of the data, the size of each relation, and the predicates to be applied
to the joined tuples.

One possible join algorithm that is used in practice is known as the nested loop join. This
algorithm starts by reading tuples one by one from the first relation (known as the outer
relation). Next, this algorithm scans each tuple in the other relation (known as the inner
relation) comparing the attributes being joined on. If the attributes match, then a tuple is
produced, otherwise the algorithm proceeds to the next tuple. This algorithm is particularly
nice because it does not require the creation of any secondary structures and allows tuples
to processed one at a time. The benefits of processing tuples one a time are explained in the
next section during a discussion of the iterator model.

For a nested loop join, the number of comparisons that need to be performed is O(mn)
where m is the size of the outer relation and n is the size of the inner relation. Thus, this
join algorithm is often chosen when the size of one of the relations is small.

In cases where the inner relation is actually large, a variation known as an index-loop-join
can be used instead. In this algorithm, the inner loop of the nested join is replaced with
an index lookup. Since each index lookup can be performed in O(1) or O(log n), given a
hash index or B-tree index respectively, this can result in significantly faster execution at
the expense of maintaining an extra index.

Other join algorithms exist such as hash-join, mergesort-join, as well as many others.
These are omitted from this section because they all require reading all the data of a relation
before beginning the join operation and thus are inherently not scale independent.

Given all of these choices, the database system must decide which physical plan to actually
use for query execution. In most systems, this decision is made using a technique known as
cost-based optimization. In the simplest case, the notion of cost used by the database system
is the number of I/O operations that it expects the query to perform based on an estimation
using statistics collected previously about the underlying data. Statistics maintained about a
database include: The number of tuples in a table, the number of unique values in a column,
and the number of times a given value occurs. The number of I/O operations performed is
used as the metric of cost as the time required to retrieve data from disk often dominates
the time required for other processing.



CHAPTER 2. BACKGROUND 23

2.2.3.3 Execution Engine

The execution engine is responsible for taking the physical plan generated by the optimizer,
using it to answer the query by retrieving data from the storage engine, and executing the
other algorithms specified. Traditionally, this is done by implementing each operator in the
physical plan as an iterator. These iterators are then chained together to form an iterator
tree.

An iterator is responsible for implementing the methods open3, getNext, and close. The
primary advantage to implementing each physical operator as an iterator is composability.
Since each operator presents the same interface, they can be ordered arbitrarily, greatly
reducing the number of cases that need to be implemented for each physical operator.

While each operator produces only a single tuple at a time, work can be batched within
the operator for purposes of e�ciency. For example, a physical operator that is performing
a table scan could read each tuple from disk one at a time. However, this strategy could
result in significant delays due to the need to seek the disk to the correct position for each
read. Instead, tuples are generally read one page at a time and bu↵ered, so they are ready
to return the next time getNext is called. Another read from the disk is performed only
when the bu↵er is empty.

Another related detail about the implementation of di↵erent operators is whether they are
streaming or blocking. A streaming operator is capable of producing tuples without reading in
all of the data from its child operator. For example, an operator that is performing a selection
only needs to look at a single tuple at a time to decide if it matches the specified predicate.
Thus, the selection operator can produce a result tuple as soon as a single matching tuple is
read from the child iterator.

In contrast, a blocking operator such as sort needs to see all possible input tuples before
producing any results. To understand why this is the case, consider returning a tuple before
all input tuples have been read. It is always possible the next tuple read in will be less than
the emitted tuple and thus, this implementation of the sort operator would have returned
results out of sorted order.

2.2.3.4 Storage Engine

The storage engine lies at the bottom of the architecture stack and provides primitives
for storing and retrieving data for the layers above. Generally, the responsibilities of this
layer include reading and writing data from persistent storage, maintaining a bu↵er pool of
commonly accessed data, performing logging so data is not lost during a failure, and ensuring
that concurrent transactions do not conflict.

In a traditional system, the storage engine provides concurrency control primitives that
allow the higher layers to provide the illusion of isolated execution to the programmer in
spite of the presence of concurrently executing transactions. For example, the storage engine

3
The Typewriter font is used for method names and other instances where the text refers to code.



CHAPTER 2. BACKGROUND 24

could provide the ability to place read or write locks on di↵erent pages of data that prevent
other transactions from touching that data.

The problem of concurrency control is much harder in a distributed system for two
reasons. First, the latency between machines is much higher than within a single machine.
As a result, the cost of holding locks can often be prohibitively expensive. Additionally, in
a distributed system it is common for failures to occur in individual nodes without causing
the entire system to fail. Without strongly synchronized clocks, it can be very di�cult to
reason about the state of locks held by nodes that have failed.

Due to these complications, most of the target applications forgo full ACID transactions
and instead tolerate only eventual consistency. Thus, the storage manager of this database
system will not be required to provide general locking. Chapter 6 talks about the concurrency
primitives that are acceptable in a scale independent system.

2.2.4 Additional SQL Features

All modern relational engines o↵er additional features on top of what is defined by pure
relational algebra. While a full discussion of all features available is out of the scope of
this thesis, it is important to highlight those that directly impact the set of queries can be
executed in a scalable manner. Specifically, the PIQL system leverages modifications to the
way traditional RDBMS allow for the retrieval of partial results for a query. PIQL also gives
developers new ways to enforce constraints on the data that is allowed to be stored in a given
database.

2.2.4.1 Partial Query Results

It is common for developers to want only partial results for a given query. For example, a
website like Amazon might want to display the top ten most popular items. Another case
where partial results can be useful occurs when the total result set is too large. In this
case, it is desirable to paginate the results, by displaying a subset of the full answer one
page at a time. While it is possible to simply retrieve the entire result from the database
and then only display a subset to the user, this can be very ine�cient as it wastes a lot of
work retrieving results that will never be displayed. For this reason, many modern database
systems provide mechanisms for specifying what subset of a query result is desired. Examples
of such mechanisms include the following:

Cursors Early database systems allowed the retrieval of partial results using a feature
known as cursors. A cursor returns the results of a query one at a time. If the cursor is
closed before retrieving all of the results of a query, then processing can stop early. However,
this technique can still result in wasted work. For example, if the query contains a blocking
operator such as a sort, then all tuples will need to be processed before a single tuple is
returned by the cursor.
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LIMIT Clauses The e�ciency of query processing can be significantly improved if the
database system is made aware of the fact that only some of the result tuples are desired.
Carey and Kossmann suggested providing this information through the creation of the LIMIT
clause, originally named STOP AFTER. Adding LIMIT K to a query tells the execution engine
to return only the first K tuples.

The optimizer is made aware of this limit through the addition of a stop operator to the
resulting logical query plan. A stop operator is a simple operator that returns the specified
number of tuples before stopping. In order to reduce the amount of work required, the stop
operator can be pushed down in the plan to reduce the number of tuples produced early.

The rules for how far a stop operator can be pushed down in a given query plan depend
on whether or not restarting the query is allowed. Restarting a query can potentially be
expensive, but it allows the stop operator to be pushed deeper in the plan. In contrast,
if restarting the query is not allowed it is important that the stop operator not be pushed
beneath any reductive predicates. A reductive predicate is one that can potentially reduce
the number of tuples returned and thus subsequently cause the query to return fewer than
K tuples even though more may exist in the database.

OFFSET The LIMIT clause is su�cient for running top-k queries and returning the results
for the first page of a paginated query, but it does not allow for the e�cient retrieval of tuples
from the middle of the result set for subsequent pages. For this reason, many database
systems also allow developers to specify an OFFSET in addition to a LIMIT clause, which
causes the execution engine to skip the specified number of tuples before beginning to return
the result. However, this mechanism does not avoid any processing that was required to
produce the skipped tuples. Thus, using this method to produce pages one at a time requires
a quadratic amount of work relative to the number of pages produced.

To understand why a quadratic amount of computation is required, consider returning
the nth page with k results on each page. Producing the first page requires computing the
first k tuples. However, when producing the second page those same tuples will be computed
only to be skipped, thus the cost of producing the second page is 2k. Therefore, the cost of
producing the pages 1 through n is:

nX

i=1

ik = O(n2) (2.3)

2.2.4.2 Integrity Constraints

Many SQL systems also allow for the specification of integrity constraints as part of the
schema of an application. The constraints are enforced when data is inserted, modified, or
deleted and can enable the use of certain kinds of query optimization in addition to ensuring
data integrity.
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One example of a constraint that can be specified is a uniqueness constraint, such as that
enforced for the primary key of a relation. This ensures that any given value for the specified
attribute can exist in the database at most once.

Another type of commonly used constraint is a foreign key constraint. This type of
constraint ensures referential integrity for data, meaning that, for example, it will prevent
the insertion of data that refers to a nonexistent key.

Section 3.5.2 discusses a new type of integrity constraint, known as a cardinality con-
straint, that PIQL uses to increase the space of queries that can be guaranteed scale inde-
pendent.

2.3 Materialized Views

Views are an important abstraction provided by database systems that help enable logical
data independence. Using views, developers can present multiple representations of a given
set of relations without having to store and maintain redundant copies of the data. A view
is essentially a virtual table defined by SQL statements. Since views themselves are just
a collection of tuples, developers can run SQL statements over them as though they were
normal relations.

Often, views are a purely virtual abstraction. A virtual view is evaluated on-demand
when a query is executed. Since a view is just a relational algebra expression, this evaluation
can be optimized along with the final query. However, this computation can still be very
expensive to evaluate over and over again each time a query is run.

To avoid such redundant computation, many database systems have support for mate-
rialized views. Instead of computing the result of the view expression each time a query
is run, a materialized view is calculated once and then stored to disk. Since materialized
views contain precomputed results, they can often be used to dramatically speed up query
execution. Techniques even exist to automatically decide when using the results stored in a
materialized view might help execute a query over the base relations faster [36].

However, since the contents of the view are stored and reused, the database now needs
to be concerned with updating these cached results when the data stored in the base re-
lations change. The simplest strategy to ensure that a view is up-to-date is to recompute
the view from scratch each time any of the underlying data changes. This technique can
be very expensive, however, especially for applications that have a very high rate of data
modification. Fortunately, for many views it’s possible to be more e�cient by updating the
view incrementally, only recomputing the rows that change.

In Chapter 5, I describe techniques that leverage materialized views to enable scale inde-
pendent execution of a wider range of queries than would be possible without precomputa-
tion. To enable this discussion, the remainder of this section is devoted to a review of relevant
prior work on materialized views, which will serve as the basis for the a scale-independent
view selection system. Generally, this work falls into two categories. The first, view selec-
tion, refers to the problem of deciding which views should be materialized by the system.



CHAPTER 2. BACKGROUND 27

The second, view maintenance is concerned with the e�cient updating of materialized views
given an update to the base relations.

2.3.1 Automatic Selection

While a smart database administrator (DBA) can often manually decide which materialized
views will help speed up query processing, it is also possible for the system to do this
automatically. Theoretically, this problem can be framed as an optimization problem of the
following tuple (S, V,M,Q) [67]. S represents the schema of an application along with a size
estimation for each relation. V represents the set of all possible views over the schema S.
M is the amount of space available in the system for the materialization of views. Q is the
set of queries present in the workload. A standard view selection system attempts to find
the best subset of V that fits in the storage M such that the queries in Q execute as quickly
as possible.

Static Selection Early work on materializing data cubes [38], a particular type of materi-
alized view, performed view selection statically. A data cube is a multi-dimensional structure
that enables the e�cient execution of aggregation queries over a variety of data groupings.
To better understand the types of queries that might be sped up by a data cube, consider
the TPC-D benchmark [82]. TPC-D simulates a decision support workload for a manufac-
turing company. Aggregate queries for this benchmark commonly group over three di↵erent
attributes: part, supplier, and customer of the relation LineItems.

When deciding which views to materialize, it is important to realize that some views
could be used to answer queries against other views, albeit less e�ciently. Specifically, a
view whose grouping attributes are a superset of another view’s grouping attributes can
always be used to answer queries against the latter view. For example, a query that groups
on part could be answered by view grouped on part and supplier by further aggregation
of tuples with the same value for the part attribute. However, the converse is not possible,
as it is impossible to “un-aggregate” values that have already been grouped together.

To help reason about the trade-o↵ between materialized view size and query execution
time, Harinarayan et al. [44] suggested representing the set of possible views as a lattice.
Each vertex in the lattice represents a possible materialized view, and edges represent which
views can be used to satisfy queries against others. Figure 2.4 shows the lattice structure
for the TPC-D schema along with the estimated number of rows for each possible materi-
alized view. This lattice could be extended further by including a date field present in the
schema. Date fields also contribute to the lattice structure in a manner similar to that of the
subset/superset relationship of group attributes. Specifically, data aggregated over smaller
time units (e.g., days) can be used to calculate queries over larger time units (e.g., years).

By making the assumption that query execution time is proportional to the number of
rows read (an assumption that has been validated experimentally [44]), it is now possible to
reason about the optimal set of views given a set of queries and a space constraint. Finding
the solution to this optimization problem however is NP-Complete, as solving it is equivalent
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Figure 2.4: The lattice of possible materialized views for the TPC-D schema. Adapted from
Venky Harinarayan, Anand Rajaraman, and Je↵rey D. Ullman. “Implementing data cubes
e�ciently”. In: SIGMOD Rec. 25.2 (June 1996), pp. 205–216

to solving the set-cover problem. Fortunately, there is a greedy algorithm [44] that produces
answers very close to optimal and which has been shown experimentally to provide good
performance.

Other work has since extended this type of static view selection to consider the cost of
view maintenance in addition to storage space [15, 42, 56, 70, 90], though discussion of these
techniques is out of the scope of this thesis.

Selection Based on Workload For more complicated schemas and workloads, it is not
feasible to enumerate all possible materialized views. Instead, Agrawal and others [4] sug-
gest a view selection system that starts by taking as input a trace of the workload from a
production database. From this trace it is possible to enumerate syntactically relevant views
and indexes for each query present.

To understand the concept of syntactical relevance, consider the following query over a
schema similar to the TPC-D schema described above.

SELECT SUM(qty) FROM LineItems WHERE part=’transmission’

The following queries are among those that are syntactically relevant to the above query,
as they could be used to compute the answer more e�ciently.
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SELECT SUM(qty) FROM LineItem WHERE part=’transmission’
SELECT SUM(qty) FROM LineItem GROUP BY part
SELECT SUM(qty) FROM LineItem GROUP BY part, supplier
SELECT SUM(qty) FROM LineItem GROUP BY part, customer
SELECT SUM(qty) FROM LineItem GROUP BY part, customer, supplier

A key problem with this approach is selecting candidate materialized views. Specifically,
it is important to avoid considering all syntactically relevant queries, as this would quickly
result in far too many candidate views to consider e�ciently. Instead, Agarwal et al. take a
three part approach based on the concept of table-subsets, a subset of the tables present in
the query from the workload. Given a query from the workload, the view selector starts by
picking a useful subset of all possible table-subsets for the query. The metric for determining
if a given table-subset is useful is based on how often it appears in other queries from the
workload. Next, the algorithm proposes a set of possible materialized views based on the
useful table-subsets. A cost-based analysis is used to select the best possible materialized
views to include in this set. Finally, starting with all of the possible views from the previous
set, a “merged” set of views is created that can be used to satisfy multiple queries from the
workload.

2.3.2 Incremental Maintenance

It is often possible to update a materialized view incrementally when the database is modified
instead of recomputing the whole view from scratch. The problem of incremental view
maintenance has been widely studied and early techniques di↵ered in several dimensions [41]
including:

Information Dimension What data is available to the algorithm while updating the view?
Specifically, can the base relations or the current contents of the view be accessed
while performing the update? Views that can be updated without reading the base
relations are called self-maintainable views. Such views can be especially advantageous
in distributed data warehousing environments. In this distributed scenario, data is
often spread across multiple servers. Self-maintainable views can be updated on a single
machine without needing to perform long read transactions against base relations that
may reside on another machine, thus decreasing contention and improving performance.

Modification Dimension What types of updates can the maintenance algorithm handle?
Insertions? Deletions? Updates? Are updates handled as a deletion followed by an
insertion?

Language Dimension What types of queries are supported? Some algorithms are only
capable of handling select-project-join queries, while others are can handle more com-
plicated expressions including aggregation, recursion, duplicates, and so on.
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Instance Dimension Does the view maintenance algorithm work for all instances of the
database and all possible modifications or not?

For the purpose of this thesis, I focus on views that can be updated given access to the
base relation (i.e., not self-maintainable), have no duplicates, but might include aggregation.
Ceri and Widom [21] proposed a method for incrementally maintaining such views – minus
aggregation – using production rules. Production rules are implemented using a common
database system feature known as a trigger. Triggers allow a developer to specify rules that
will execute anytime the data in a relation is modified. At a high level, Ceri and Widom’s
view maintenance technique is based on the idea of delta queries, which compute the tuples
that must be added or removed from the view given the insertion or deletion of a single tuple
from a base relation. Updates to a tuple can be handled by running the rules for a deletion
of the original tuple followed by an insertion of the updated tuple.

However, before the delta queries can be calculated, the system must first ensure that
e�cient incremental maintenance is possible by performing a static analysis of the view defi-
nition. E�cient maintenance using this technique requires the view to satisfy two conditions:

Duplicates The view must not contain duplicate tuples, though extensions that utilize a
counting solution allow this requirement to be relaxed [39].

Safe References All references to base tables in the view must be “safe”. Safety occurs
when all known keys for each base table are present in the view definition. Note that a
key attribute does not necessarily need to be present in the projection of the view for
it to be implicitly specified by the data of the view. If there is an equality constraint
with an absent key attribute and an attribute that is present in the view then the value
of the absent key attribute is still considered specified. Thus, the check for safety must
transitively figure out which attributes values are known, given a tuple from the view
and the equality constraints present in the view definition.

For an insertion, the production rule executes the SQL statement that defines the view,
replacing the modified table with the tuple being inserted, and inserts the results into the
view. Deletions occur symmetrically. Updates are modeled as a deletion followed by an
insertion. As an example, examine the following schema and view definition.

Products(productID, name)
LineItems(orderID, date, qty, productID)

CREATE MATERIALIZED VIEW Sales
SELECT orderID, qty, l.productID, name
FROM Products p, LineItems l
WHERE p.productID = l.productID

First, the algorithm verifies the possibility of e�cient maintenance for this view definition.
The following attributes are present or bound in the view: {l.orderID, l.qty, l.productId,
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p.name}. The attribute p.productID can also be added to this set due to the equality
constraint. Thus, the key attributes for both relations are present in the view definition
and the view can be e�ciently maintained. Next the following two production rules can be
constructed from the view definition.

ON INSERT Products
INSERT INTO Sales
SELECT orderID, qty, productID, @name
WHERE @productID = productID

ON INSERT LineItems
INSERT INTO Sales
SELECT @orderID, @qty, @productID, name
FROM Products
WHERE productID = @productID

In the preceding example, @attribute denotes the value of the attribute for the tuple
being inserted.

If there were an integrity constraint (described later in Section 2.2.4.2) ensuring that
productIDs from LineItems were present in Products, then the first rule would be unnec-
essary as it could never produce any tuples. The rules for deletions are symmetric and thus
omitted for brevity.

It is possible that, even after performing the substitution provided above, the resulting
delta query can still be a complicated relational expression. Ahmad and Koch [5] realized
that instead of evaluating these delta queries directly, the update can often be more e�ciently
computed through the creation of another materialized view. Creating this view can result in
the recursive creation of many materialized views. Fortunately, it can be shown that for an
interesting subset of SQL, this recursion is guaranteed to terminate [50], thus creating a finite
set of views. The benefit of this recursive view creation approach is that the maintenance
operations for each view are now simple queries that avoid complex join calculations. This
property is exploited in Chapter 5 by the PIQL scale-independent materialized view system.

2.4 Building Large Scale Web Services

Large scale web sites present a particularly interesting data management challenge, one
where existing techniques often fall short. While the ability to handle rapid growth without
experiencing performance degradation is a useful property for developers in many domains,
these web applications present a new problem for two primary reasons. First, their rate
of growth is astronomical. As stated in Chapter 1, it is not uncommon for applications
such as Twitter to experience years of sustained exponential growth [88]. Second, these
applications are of increasing relevance to the everyday life of a large subset of the population.
Additionally, the fact that these applications are often interactive in nature means that they
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are especially sensitive to the performance problems that can occur as a result of rapid
growth.

In this section, I explain some of the most common tools that are currently used to build
and scale these applications. In addition, I focus on how developers currently attempt to
manage rapid growth, and I discuss some of the ways these technique remain inadequate.

2.4.1 History

Early web services were implemented as simple common gateway interface (CGI) scripts.
CGI provides a common interface that allows developers to write programs that interface
with webservers and dynamically generate web pages. CGI, however, only provides a very
basic protocol and thus requires programmers to perform many common tasks manually.
For example, developers would often need to deal with problems such as parsing responses
to forms, maintaining state in-between di↵erent requests, as well as building web pages from
templates.

In contrast to the simplicity of CGI, modern web programming frameworks are often
designed with many more features and can help alleviate much of the redundant programming
work. Many di↵erent web frameworks exist, with at least one being available for every major
programming language. Some popular examples include Rails (Ruby) [71], Play (Scala) [63],
and Django (Python) [32].

2.4.2 Architecture

Most web applications are implemented using a 3-tiered shared nothing architecture. Figure
2.5 illustrates an example of this architecture for a simple web application, where each box
represents a separate machine. A key characteristic of this architecture is that there is
typically no communication between the servers of any given tier.

Typically, requests come in from many clients to a single centralized load balancer. The
load balancer is responsible for distributing these requests across a set of web servers in the
presentation tier. This tier is typically responsible for simple static content such as images
and is not discussed further. In the middle of this system lies the application tier, which is
responsible for implementing the logic of the application. At the bottom of the stack is the
data storage system, which is often a relational database system, as described in Section 2.2.

2.4.2.1 Application Tier

The actual code that comprises the website runs on the servers of the application tier.
Typically, the application server is designed to be stateless. A stateless system is one that
does not preserve any data across di↵erent requests.

There are many benefits to implementing the application code in a stateless manner.
First, this design choice makes it much easier to handle load balancing and fault tolerance.
Requests can be spread out in a round-robin fashion, without worrying about which server
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Figure 2.5: A 3-tiered shared nothing architecture for a simple web application. Reprinted
with permission from Armando Fox and David A. Patterson. Engineering Long-Lasting Soft-
ware: An Agile Approach Using SaaS and Cloud Computing, Alpha Edition. Strawberry
Canyon LLC, 2012

handled previous requests from a particular client. Additionally, if a given application server
fails, no recovery is necessary, and requests can simply be routed to a functioning server.

Finally, the stateless nature of the application server makes it very easy to scale the
processing power at hand as demand for the application changes. When capacity is over-
provisioned, servers can be removed from the pool as soon as they finish processing any out-
standing requests. Similarly, when demand increases, servers can be added without needing
to propagate any state information.

2.4.2.2 Data Tier

Since the application tier is implemented as a stateless service, all persistence across requests
is often left up to the data tier. As a result, it is generally much more di�cult to scale this
part of the system as demand increases.

Unlike the application tier, which is commonly split up amongst many relatively inex-
pensive commodity nodes, the database system often runs on more expensive, specialized
hardware. Thus, when demand begins to outpace capacity, the easiest option for growing the
application is often to attempt to buy a larger machine for the database system. For many
applications this solution is perfectly acceptable, albeit expensive. For very popular appli-
cations, however, this strategy eventually falls short once even the largest available machine
is unable to handle the required request rate.

Once demand outstrips the capability of any single database machine, the developers must
begin to consider partitioning the database across many nodes. Often, developers faced with
this challenge begin by vertically partitioning their system. A vertically-partitioned database
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is one where di↵erent tables exist on di↵erent machines, but no single table is split across
nodes. While this step is often relatively easy to implement, it does make performing joins
of the tables that are now on separate machines more di�cult.

For very popular sites, the vertical partitioning approach will also eventually be insuf-
ficient, and developers will be forced to consider implementing horizontal partitioning or
sharding. In a horizontally-partitioned system, each relation is split across many di↵erent
database servers. While some commercial database systems, such Microsoft SQLServer, pro-
vide native support for this type of partitioning, this support is less common in their open
source equivalents. Hence, many sites must handle the routing of requests to the server
responsible for the needed partitions manually in the application-level code. Performing this
routing correctly often requires significant modifications to the way the application interacts
with the database system. As a result, it can take a significant amount of time to modify
a complex application to run against a database that has been partitioned. This di�culty
causes implementation of this scaling strategy to be a frequent stumbling point for developers
attempting to improve an application that is failing to handle the current workload.

However, many sites find that implementing database partitioning alone is not enough
to deal with huge increases in tra�c. In order to avoid expensive redundant computation
and to further reduce the load on the database system, it is also common to add a caching
tier to the application. Many popular websites — including Twitter, Flickr, and Wikipedia
— use memcached [59] for this purpose. Memcached provides developers with a very simple
interface to an in-memory key/value store.

Developers commonly use memcached to store the results to specific, expensive queries.
This approach often significantly improves performance for several reasons. First, since
memcached is all in-memory, the cost of seeking the disk arm to the correct location, and
its associated latency, can be avoided. Second, the use of the cache allows much data
retrieval to be performed without touching the database system at all. This ability to
answer common queries without the database system can significantly reduce the load on
this critical component and thus improve performance of the whole application significantly.

2.4.3 Service Level Objectives

Interactive applications are characterized by the need for fast response time for all operations.
As mentioned in Chapter 1, even delays as small as 200 ms can have a significant e↵ect
on user behavior [73]. Unfortunately, the distributed nature of their architecture makes
diagnosing performance problems even more di�cult than in a centralized system. Not
only are the various tiers and services running on di↵erent sets of machines, but they are
often implemented by di↵erent teams of programmers. To further complicate things, many
di↵erent systems might all rely on common subsystems in which one aggressive consumer of
resources can hurt the performance of unrelated components.

As a result, it is common to monitor the performance of each component carefully and
to express the expected performance as a service level objective (SLO). However, system
architects and developers need to select a useful set of metrics. Considering only the average
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performance could mean that a significant number of users are still experiencing unacceptable
performance. Due to the use of large quantities of commodity hardware, however, looking at
the worst case performance can be equally ine↵ective, since fixing the worst case performance
in such a complex, failure-prone system is virtually impossible. Instead, developers of these
applications often use high quantile response time as the indicator of application performance.
For example, Amazon typically sets the performance goals for their applications relative to
the 99.9th percentile response time, based on a cost-benefit analysis [31]. A typical SLO for
a web application would specify that 99.9 percent of requests will complete in 300 ms or less.

2.5 NoSQL Storage Systems

As more websites began to struggle with the challenge of scaling traditional relational
databases, a new class of storage systems began to emerge. Examples of NoSQL storage sys-
tems include Google’s BigTable [23], Amazon’s Dynamo [31], Apache Casandra [77], amongst
others. While the design of these systems was often inspired by research on distributed hash
tables (DHTs), they often involve a number of architectural simplifications that are made
possible by the relatively controlled environment of the datacenter. This trend towards large
scale distributed storage systems became increasingly popular after Google and Amazon
began discussing publicly the details of their architecture.

The distributed nature of NoSQL systems is of primary importance, although the name
NoSQL seems to characterize these systems by their sacrifice of a query interface in the
name of scalability. Since these system were designed to take advantage of many machines,
they automatically handle many distributed computing concerns, such as routing requests
and rebalancing data if a single machine gets overloaded. Additionally, a common primary
design goal of NoSQL systems is the ability to provide consistent performance even as the
load on the system increases significantly. For example, Amazon reported that, through a
combination of replication and judicious over-provisioning, their system Dynamo can provide
a 99.9th percentile response time of under 300ms even during the Christmas shopping season
[31].

The space of systems that classify themselves as “NoSQL” is large and rather amor-
phous. Therefore, this section will focus on qualities that will ensure scalability, rather than
attempting to provide a full overview of possible design dimensions. Further discussion of
the specific design choices that were made when implementing PIQL on a NoSQL storage
system can be found in Chapter 6.

2.5.1 Data Models

NoSQL storage systems support a wide range of data models, including everything from
relations to opaque blobs to full documents. For the purpose of scalability, the choice of
data model is most relevant with respect to the level of insight the storage system has into
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a given data item and how this insight a↵ects the types of lookups that the system can
provide.

At the simplest end of the NoSQL data model spectrum lie key/value stores that manage
opaque arrays of bytes. Since the storage system has no knowledge of the encoding used to
store the data, the types of operations that can be e�ciently supported are relatively limited.
Typically, such systems provide two main storage operations: get, which takes a key and
returns a value; and put, which takes a key value pair and adds it to the storage system. The
bytes that comprise the key can be hashed, allowing for an e�cient implementation of both
of these operations. This interface can enable the implementation of SQL constructs such
as equality predicates over the key, but it will not allow the evaluation of range predicates
or ordering constraints.

A more powerful data model allows for the e�cient execution of range queries. One
example of such a system is the column family model provided by the BigTable storage
system [23]. The columns within any given column family are sorted lexicographically and
can be enumerated by the client. This construct allows the e�cient implementation of a
relational engine that supports range queries, as discussed in Chapter 6.

2.5.2 Data Distribution

While some NoSQL storage systems, such as CouchDB[6], use only a single node, these are
not particularly useful for scaling a large website. Those that natively support multi-node
operation must decide how to distribute data across the machines in the cluster. The two
dimensions of this decision are determining what partitioning function should be used and
analyzing how to balance the use of replication versus partitioning.

The two most popular partitioning schemes are hash partitioning and range partitioning.
Similar to the di↵erences between hash indexes and B-Trees, the choice of partitioning scheme
can a↵ect what sorts of predicates can be evaluated without performing a full table scan.
Hash partitioning is easier and trivially ensures that data will be distributed evenly. However,
it only allows lookups by exact equality of the key used to store the data. Range partitioning,
on the other hand, can su↵er from hotspots due to popular key values, but allows for e�cient
order traversal by key.

2.5.3 Consistency

Traditionally database systems support Atomic, Consistent, Isolated, and Durable (ACID)
transactions, which provide the illusion that only one query is running at a time. However,
providing such transactions can be much more di�cult in a distributed system. This di�culty
is due both to the higher communication latency between nodes in the system, as well as
the possibility of di↵erent components of the system failing at any given time. As a result,
most NoSQL storage systems provide significantly weaker consistency guarantees than their
relational counterparts. Fortunately, this weakening has proven to be an acceptable trade-o↵
for many interactive web applications [86].
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However, “weaker” consistency does not imply the total absence of consistency guar-
antees. Virtually all systems will promise at least eventual consistency. An eventually
consistent system is guaranteed to converge on a single value for each key after an arbitrary
amount of time has passed. While the amount of time is generally unspecified, stochastic
models can often provide insight to the expected time required for convergence to occur [12].

Some systems will also provide write monotonicity with respect to a single key. This
property allows the developer to understand the total ordering of writes, but only as it
a↵ects a single key. Providing this type of consistency is easier than general transactions, as
generally achieving it requires less coordination amongst machines.

2.6 Summary

The task of writing data driven applications was greatly simplified by the introduction of
the relational model. In particular, this model enabled the creation of declarative languages,
such as SQL, which separate the specification of what data should be retrieved from how the
specific execution should occur. This separation not only simplifies the task of the program-
mer, but gives flexibility to the underlying storage system to perform complex optimizations.
Unfortunately, these techniques have often proven insu�cient for the rapid growth and strin-
gent SLAs that are typical of large-scale web applications, thus leading to the creation of
many popular NoSQL storage system. In the remainder of this thesis, I present scale in-
dependence, which allows developers to preserve the productivity benefits of the relational
model, and still be assured that their applications will perform predictably as data sizes
grow.
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Chapter 3

A New Data Independence:
Scale Independence

3.1 Introduction

As described in the previous chapter, the data independence provided by relational database
systems can be a huge boon to developer productivity. Separating the concerns of data
management and retrieval from the specifics of the application allows developers to be more
productive when creating the first version of their application. Arguably even more impor-
tant, this independence enables greater agility by making it easier to add features that might
require changing the schema of the application after it has gone public.

Unfortunately, data-independence itself can also make it very di�cult to reason about
the performance of the application, especially as the size of the database grows. Since the
actual execution strategy is divorced from the query specified by the developer, it is possible
for a new physical query plan to be selected based on updated statistics about the data
stored. While these changes should in theory always result in better average performance,
they can also result in unforeseen performance problems simply due to the amount of data
involved. As a result, these unexpected execution choices can result in SLO violations in
production.

As mentioned in Chapter 1, this unpredictability has led many developers to abandon
relational database systems in favor of less fully-featured, but more predictable, key/value
stores. While this technological shift often makes it easier to reason about the scaling behav-
ior of an application, it also forces developers to reinvent many of the helpful abstractions
that were previously provided by the database. This reinvention represents a significant
development challenge, and can increase the time-to-market for new features.

Fortunately, the performance opacity inflicted upon developers by current relational
database systems is not inherent to the relational model. Therefore, instead of throwing
out all useful abstractions provided by modern database systems, I propose the introduc-
tion of a new type of data independence, scale independence. A scale independent system
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attempts to maintain consistent performance even as the data and workload grow by orders
of magnitude.

One technique for ensuring this predictability is to maintain invariants on the oper-
ations1 performed and resources required for all queries in an application. This chapter
starts by describing di↵erent classes of queries based on the amount of data that must be
touched during their execution. Next, it discusses the optimization techniques used for
queries that can be executed on-demand, formalizing the invariant that ensures that a given
query performs a bounded number of operations in the worst case. Building upon this
foundation, I expand the discussion to include queries where scale-independent, on-demand
execution is not possible. Fortunately, for many of theses queries, precomputation through
the creation of an incrementally-maintained materialized view (IMV) (Section 2.3) can en-
able scale-independent execution. Since a scale independent system must ensure that these
automatically created IMVs do not themselves threaten the performance of the application
as it grows, restrictions are placed on the resources required for their storage and mainte-
nance. Finally, I give an overview of the scale-independent workflow, which can be used to
analyze all queries in an application and determine which class each falls into, producing a
list of indexes and IMVs that will enable scale-independent execution.

3.2 Data Scaling Classes

Before going into the details of scale independence, it is useful to step back and consider
the sources of scale dependence in interactive applications. Figure 3.1 shows that queries
can be divided into four classes based on their performance scalability as the database size
increases. These four classes are briefly described below.

Constant In the simplest case, the amount of data required to process a query is constant.
For example, in a web shop, data needed to display a particular product or to show
the profile of a particular user based on a unique ID is naturally limited regardless of
how many products or users there are in the database. The optimizer knows about
this bound since such a query must have an equality predicate against the primary key
of the relevant relation. Other types of queries that fall into this class include queries
with a fixed LIMIT that do not perform any joins or that only perform joins against a
unique primary key.

Bounded A second class of query involves data that will grow as the site becomes more
successful but that is naturally bounded. For example, in social networks, it is known
that while people will gradually add more friends over time, the average person has
around 150 “real” friends [45]. Setting a maximum friend limit of 5000 friends, as

1
For the purpose of this thesis, the term operations is used to refer to data retrieval or modification that

can be performed with nearly constant latency. For example, a bounded lookup given an index. Section 3.4

discusses the specific assumptions that are made in greater detail.
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Figure 3.1: A comparison of the scalability of various queries as database size increases.

Facebook does, satisfies most customers [14]. A scale-independent system allows the
developer to express these limits explicitly in the schema, through an extension to the
DDL (see Section 3.5.2).

Sub-linear or Linear These queries require touching an amount of data that grows sub-
linearly or linearly as the site becomes more successful. A query listing all currently
logged-in users or a count over all customers falls into this category.

Super-linear These queries require computations over intermediate results that grow super-
linearly with the number of users. For example, clustering algorithms that require
computation of a self Cartesian product would fall into this class.

By definition, a success-tolerant web application can support only queries from the first
two classes, constant and bounded. A scale independent storage system should identify such
queries, and in the case of bounded queries, provide hints of acceptable cardinality constraints
for meeting specific SLOs. Furthermore, if a bounded execution plan is only possible through
precomputation in the form of secondary indexes or materialized views, a scale-independent
system should automatically derive these requirements. For the unbounded queries from the
second two classes, a scale independent system should notify the developer which portions
of queries are unbounded and suggest workarounds, such as the introduction of cardinality
constraints or the use of pagination.
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3.3 Scale-Independent Execution Levels

A given query can fall into di↵erent query scaling classes, depending on the execution strategy
that is chosen by the query optimizer. For example, executing a query using an index instead
of a full table scan could result in that query being categorized as bounded instead of linear.
However, executing this query using an index requires more resources when data is modified,
as the index must be stored and maintained as data is added or removed.

In this thesis, I present a variety of techniques that ensure that a large number of complex
queries can be executed scale-independently by touching only constant or bounded amounts
of data. However, di↵erent techniques can require more resources as data is added or removed
from the system. In order to help developers reason about how the use of these techniques will
a↵ect the resource requirements of their application, I define four levels of scale-independent
query execution. While queries in all four levels can be executed at scale with predictable
performance, di↵erent levels may require extra storage or computational resources in order
to make this execution possible. Table 3.1 lists the four execution levels along with the
invariants (Sections 3.3.1 and 3.3.2) on execution, update, and storage costs that are used
to ensure scale-independance.

SI-0 SI-1 SI-2 SI-3
Execution
(Invariant 1)

I D D D

Execution w/ sec. indexes
(Invariant 1)

- I D D

IMV Update
(Invariant 2)

- - I D

IMV Storage
(Invariant 3)

- - I I

IMV Parallel Updates
(Relaxed Invariant 2)

- - - I

Table 3.1: Levels of scale-independent query execution as defined by invariants on the query
processing, update, and storage cost. ‘I’ and ‘D’ denote, respectively, that the cost of
executing a query for a given resource is independent or dependent on scale of the application.
A ‘-’ implies the cost is not applicable and the query is trivially scale independent in this
dimension.

The four scale-independent execution levels are as follows:

Scale Independence Level 0. The first execution level, SI-0, is capable of running triv-
ially scale-independent queries (e.g., SELECT 1) as well as queries that can be answered
in a scale-independent manner using only the clustered index on the primary key of a
relation (e.g., a query that does a lookup by primary key).
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Scale Independence Level 1.. For queries in SI-1, it is similarly possible to bound the
amount of work performed while executing the query, but only through the use of
a secondary index. While the required indexes can be created automatically, it is
important for the developer to be aware of the increased storage and maintenance
costs now associated with the execution of this query.

Section 3.3.1 provides a brief overview of the optimization techniques that statically
analyze queries to determine if they can be executed under these first two execution
levels. Chapter 4 provides an in-depth discussion of the algorithms used by my imple-
mentation, PIQL, while optimizing these queries.

Scale Independence Level 2 In contrast to the queries in SI-0 and SI-1, some queries
could require an unbounded amount of work to execute on-demand, even after the
creation of secondary indexes. Often, precomputation through the automatic creation
of IMVs can fix this problem, enabling scale-independent execution by shifting work to
insertion time. However, unlike with simple indexes, a scale-independent view selection
system must also consider the scalability of storage and maintenance costs, and I reason
about these costs through the use of additional invariants. Section 3.3.2 introduces
these new invariants, which ensure that IMVs themselves do not become a scaling
bottleneck. Queries can be executed under level SI-2 if they can be executed in a
scale-independent manner using an IMV that satisfies both of the new invariants.

Scale Independence Level 3. For each of the aforementioned execution levels, the as-
sumption is made that there exists a balanced partitioning of the workload over all of
the machines of a parallel system. Section 3.4 explains in detail why this partitioning is
required to avoid the increased query response time associated with workload hotspots.
It is particularly important to be aware that the naive use of secondary indexes can
violate this assumption in cases where there is temporal locality of insertions relative to
the value being indexed (e.g., an index over a temporal attribute, such as created on).
Fortunately, these hotspots can often be mitigated by spreading new insertions across
the cluster and periodically computing aggregate results in parallel. Since this execu-
tion pattern requires relaxing the invariant on the total work performed by an update,
however, queries that utilize this strategy are executed under SI-3.

3.3.1 Scale-Independent Optimization

A scale independent system takes as input the set of all parameterized queries Q that will
be used by an application. The optimizer can then analyze all queries in Q to ensure that
the database can grow along the following three dimensions while maintaining consistent
performance:
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|R| The size of all base relations,
�

rate

the update rate for all base relations, and
q
rate

the rate of read queries in the system.

A storage system can achieve scale independence across these dimensions by ensuring
the optimizer will only select physical plans that perform a bounded number of storage
operations, independent of |R| (i.e., the size of all base relations). In contrast to standard
average cost minimization performed by most relational database systems, this optimization
technique prevents the selection of query plans that may perform well for most users but that
could violate an application’s Service Level Objective (SLO) for statistical outliers. It also
allows the database system to warn the developer of queries that pose a potential scalability
problem and to provide suggestions for resolving the issue before the query can cause SLO
violations in production. The invariant maintained by this technique can be formalized as:

Invariant 1. Let Exec(q
i

) denote the number of operations performed in the worst
case by a query and cqi

ops

be a constant for a given query q
i

. A scale-independent
optimizer will only create physical query plans such that:

8q
i

2 Q9cqi
ops

: Exec(q
i

) < cqi
ops

A system can verify that an application will satisfy this invariant by performing a static
analysis of the application’s schema and queries. For example, uniqueness constraints ensure
that a query that performs a lookup by primary key will return at most one result. Thus,
as long as an index over the primary key is used to retrieve the matching tuple, this query
will always require a bounded number of operations to execute.

To expand the space of queries that can be verified as scale independent, it is possible to
employ language extensions to standard SQL. For example, PIQL introduces Data Defini-
tion Language (DDL) cardinality constraints, which allow developers to specify restrictions
on the relationships present in their application. Similar to other types of data integrity
constraints, these cardinality constraints are enforced at insertion time. To understand more
concretely how this optimization technique allows a scale-independent system to bound the
work required, consider a simple application that stores documents along with associated
tags with the following schema:

Tags(docId, tag, timestamp) WITH CARDINALITY(tag, K)
Documents(docId, owner, timestamp, text, ...)

Italicised columns form the primary key of a relation and the WITH CARDINALITY clause
denotes a cardinality constraint K on the number of unique values of tag that can exist for
any given docId. An example of a scale-independent query on this schema is the following
parametrized SQL, which returns the set of tags for a given document.

SELECT * FROM Tags WHERE docId = <doc>
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For any value of the <doc> parameter, the query can be executed by scanning a bounded
range of the clustered primary key index on Tags and will return at most K tuples. Thus,
the optimizer can guarantee that this query will never violate Invariant 1.

Scale-independent queries do not necessarily need to execute against the clustered pri-
mary index. For example, consider the following query, which returns the text of the five
most recent documents written by a given user.

SELECT text
FROM Documents
WHERE owner = <userId>
ORDER BY timestamp DESC
LIMIT 5

Without the presence of a secondary index, the only possible physical plans require a
full table scan, and thus are not scale independent. As a solution, the optimizer can suggest
executing the query under SI-1 through the creation of a secondary index over owner and
timestamp.

3.3.2 Scale-Independent View Selection

Not all queries can be answered scale-independently using only indexes, and in this section
I describe how IMV selection can enable the scale-independent execution of many of these
previously unsafe queries. For example, consider the following query, referred to as twoTags,
which returns the five most recent documents that are assigned two user-specified tags.

SELECT t1.docId
FROM tags t1, tags t2, documents d
WHERE t1.docId = t2.docId AND

t1.docId = d.docId AND
t1.tag = <tag1> AND
t2.tag = <tag2>

ORDER BY d.timestamp
LIMIT 5

While a secondary index on Tags.tag would allow e�cient lookup of the documents for
a given tag, such an index is not su�cient to enable the scale-independent execution of the
twoTags query. The performance of the query is potentially dependent on the size of the
data due to the fact that during any given execution an unbounded number of rows matching
tag1 might need to be scanned before finding five documents that also match tag2 or vice
versa. In practice, developers faced with a query such as this one often utilize a technique
known as intersection precomputation or caching [57], where all two-tag combinations for a
document are computed ahead of time (analogous to the creation of a join index [85]).
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As described in Section 2.3, there has been significant prior work on leveraging precompu-
tation through automatic materialized view selection [3, 51, 60] and incremental maintenance
[2, 16, 21, 40, 72]. These approaches, however, have focused on minimizing average cost for a
given workload, rather than ensuring consistent resource requirements as the database grows.
As such, these techniques could create a view that may speed up query execution on average,
while the absolute performance of the query remains dependent on the size of the underlying
data. Simply executing faster is not su�cient to guarantee SLO compliance as an application
explodes in popularity. In contrast, a scale-independent system should creates IMVs when
their existence will allow queries to be answered with a static upper bound on the amount
of work that will be required for execution. In addition to determining the scalability of
the query when it is run over the materialized view, the system must also ensure that the
resources required to incrementally maintain and store the created materialized views do not
themselves threaten the scalability of the application.

To better explain the potential scalability threat posed by the inclusion of material-
ized views, I now formalize the additional invariants that must be maintained by a scale-
independent view selection system.

3.3.2.1 Bounding Update Cost

A scale-independent view selection system must avoid IMVs whose update cost increases
with the scale of the application. To this end, a scale-independent optimizer must check
that there is an upper bound on the number of operations required to incrementally update
all indexes and views given an update to a single tuple in a base relation. Said formally:

Invariant 2. Let Update(r
i

) denote the number of operations performed in the worst
case by index and view maintenance when updating a single tuple in r

i

, and let cri
ops

be a constant for r
i

.
A scale-independent optimizer will only create views such that the total mainte-

nance costs will never violate the following condition:
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For queries in SI-3 it is necessary to slightly relax Invariant 2. This relaxation will permit
queries where serial work performed by a single machine is bounded, instead of the total work
done across all nodes for a single update.

3.3.2.2 Bounding Storage

It is possible for the size of an IMV to grow super-linearly with the size of the base relations,
for example due to an unconstrained join. Therefore, a scale-independent system must verify
that the size of each view can be at most a constant factor larger than one of the base relations
present in the view. Said formally:

Invariant 3. Let V be the set of all created views required to answer the queries in Q
and let cvi

storage

be a constant for a view v
i

. Let r
vi be a relation in R and |r

vi | denote the
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number of tuples in r
vi . A scale independent system creates IMVs with linear storage

requirements by ensuring that:

8v
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2 V 9cvi
storage

, r
vi 2 R : |v
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| < cvi
storage

|r
vi |

3.3.3 Query Compilation

My implementation of a scale-independent system, PIQL, includes an optimizer that only
produces query plans that obey the three invariants listed in the previous section. Figure 3.2
shows the five phases of query optimization in PIQL. Together, these phases determine
if scale-independent execution is possible for a given query. In addition to validating the
scalability of all queries in an application and creating necessary indexes and IMVs, PIQL
will also tell developers which execution level will be used for each query. This feedback
gives developers the insight to reason about the query’s resource requirements and update
latency characteristics.
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Figure 3.2: The phases of the PIQL scale-independent optimizer and view selection system.

Queries executed under SI-0 or SI-1 can be answered on demand by generating a scale-
independent physical execution plan (Phase 0). Any indexes that are required should be
automatically created by the system.
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For cases where a scale-independent physical plan for a query cannot be found by the
optimizer, PIQL will instead attempt to answer the query under SI-2, precomputing the
answer through the creations of an IMV (Phases 1). Before creating this IMV, PIQL will
check that the costs of maintenance and storage for this view will not threaten the scalablilty
of the application (Phases 2-3).

Additionally, PIQL must ensure that common sources of hotspots are avoided (Phase
4). This phase attempts to rewrite the query to execute using a distributed staging step
followed by a periodic parallel view refresh step. Since the resources required by the parallel
view refresh step do not satisfy the strict form of Invariant 2, queries that require this
transformation are considered to be executed under SI-3.

If at any point a query is determined to be scale-dependent, PIQL will invoke the Per-
formance Insight Assistant (Section 4.4.4), which can help developers to identify and fix the
problematic portions of the query.

3.4 Achieving Predictable Response Time

The bounds on execution cost enforced by Invariant 1 are useful not only for constrain-
ing resource requirements, but also for reasoning about performance. Specifically, PIQL
attempts to provide scale-independent performance by taking advantage of the fact that
many key/value stores can execute low-level storage operations operations such as get(key),
getRange(prefix,limit), put(key,value) with consistent performance, even at high quan-
tiles. For example, Amazon’s Dynamo [31] demonstrated the ability to meet SLOs for get/put
operations during their peak shopping season (December 2006) even in the 99.9th percentile
on a large commodity cluster. Of course, a web application may experience load spikes
in addition to normal fluctuation due to diurnal/seasonal usage patterns. However, recent
research by Trushkowsky et al. [84] addresses this situation using an approach based on con-
trol theory in addition to well-known best practices such as replication and over-provisioning.
Trushkowsky’s experiments make use of the elasticity available in a cloud environment to
scale a key/value store up or down in response to load changes while maintaining SLO
compliance.

At a high level, PIQL is able to ensure consistent performance for all queries in an appli-
cation by taking advantage of the fact that each query will only perform a bounded number
of nearly constant-time operations in the worst case. Since each query or update performs
only a bounded number of these operations, it is possible to reason about the probability
distribution of the worst case execution time of each query. This worst case reasoning is es-
pecially valuable for developers of interactive applications who care about the response time
for every user of their system. Taking this a step further, PIQL’s SLO compliance model
(Section 4.4) calculates the risk of violating a response time goal at scale using knowledge
about the query plans and run-time statistics about PIQL’s execution engine.
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3.4.1 A Distributed Architecture for Scale Independence

PIQL is able to leverage the predictability of an existing distributed key/value store through
a library-centric database system architecture. PIQL uses the key/value store as a record
manager and provides all higher-level functionality (such as a declarative query language,
relational execution engine, and secondary indexes) via a database system library. This ap-
proach is similar to the architecture employed by Google’s Megastore, as well as by Brantner
et al. [13, 17]. Figure 3.3) shows this architecture where each application server includes
a PIQL database engine library that directly communicates with the key/value store. In
accordance with the best practices discussed in Section 2.4.2, the application servers, and
thus the database library, are designed to avoid preserving state between requests. This
separation of the database system into a stateless component (the database library) and a
stateful component (the key/value store) also serves to decrease the complexity of the PIQL
system significantly. Query processing is performed at the client, thereby minimizing the
functional complexity of the stateful component.
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Figure 3.3: The PIQL database engine is implemented as a library that runs in the applica-
tion tier and communicates with the underlying key/value store.

Much of PIQL’s database engine is implemented using standard techniques. There are,
however, several notable di↵erences that arise as a result of the performance characteristics
and limitations of the underlying key/value store.

Specifically, since remote operators retrieve data by issuing relatively high-latency re-
quests against the key/value store, the trade-o↵ between lazy evaluation and prefetching
is even more severe than in a traditional system. Additionally, a key/value store, unlike
a record manager running on a single machine, can support many requests made in par-
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allel without interference. This distributed architecture enables two optimizations. First,
the execution engine can leverage the cardinality information from the PIQL optimizer to
prefetch all required data in a single request. Second, each of the operators is able to issue
all of the requests to the key/value store in parallel. The experimental results, presented in
Section 6.4.2.1, show that batching and parallelism greatly reduce the total response time
for a given query.

3.4.2 Partitioning

While prior work [31, 84] demonstrated that it is possible to achieve nearly constant latency
while scaling up, it is important to understand the implicit assumption that enables this
predictability. Specifically, achieving consistent performance as the amount of data and
number of machines grow is only possible when the growing workload can be spread evenly
across machines in an ever-growing cluster. If no balanced partitioning of the workload
exists, then eventually a single partition will become overloaded by the increased workload.
As queues grow on the overloaded machine, the latency for requests to this server will grow
and eventually a↵ect the overall response time of the application. For example, a hotspot
will eventually occur when there is a query that requires a secondary index over the creation
timestamp of a given table. Maintaining this index naively would eventually result in a
hotspot at the server holding the partition corresponding to the current time. Section 5.6
describes how PIQL automatically avoids the creation of such indexes, instead utilizing
workload balancing coupled with a periodic parallel collection step.

3.4.3 Consistency

Finally, di↵erent types of consistency can have a significant e↵ect on the ability of a storage
system to provide predictable performance. Specifically, it is important that the mechanism
used to provide consistency is nonblocking, as the variable performance that results from
blocking operations, such as waiting for a lock, would violate the requirement of predictable
performance for key/value store operations. PIQL’s current implementation meets the non-
blocking requirement by implementing eventual consistency. Section 6.6 provides more detail
about the consistency semantics of the PIQL system. Alternatively, if a given application
requires stronger consistency, it can be achieved using other non-blocking techniques such
as snapshot isolation. A full discussion of how higher-level consistency guarantees can be
implemented on top of key/value stores can be found in [17, 52].

3.5 Language Extensions for Scale Independence

A scale-independent system can increase the space of acceptable queries by extending stan-
dard SQL with constructs that allow developers to bound not only the number of results
returned for each user interaction with the database system, but also to limit the cardinality
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of intermediate results. In this section, I describe the DDL and DML extensions that en-
able the PIQL query compiler to bound the number of operations required even for complex
queries involving joins or unbounded amounts of data.

3.5.1 Bounding Data Returned

In many applications, there are cases where the developer needs to run queries that would
return potentially unbounded amounts of data, such as a query that lists all posts made by a
user in chronological order. While this query itself cannot be made scale-independent, PIQL
extends the SQL language to allow the developer to bound the number of key/value store
operations required for each user interaction with the database by displaying subsets of the
full result one page at a time. PIQL queries can contain a PAGINATE clause, which specifies
how many items should be returned for each user interaction with the database system.
Paginated queries are implemented as client-side cursors and can be invoked repeatedly,
returning the next page of results each time. PIQL also supports the more traditional LIMIT
clause for cases where only the top-K results of the query are required.

Additionally, to simplify the request routing and preserve the stateless nature of the
application servers, the client-side cursor can be serialized and shipped to a user along with
the results of the query. When the next page is desired, the serialized state is sent back
to any application server where it is deserialized and execution can be resumed. The size
of a serialized client-side cursor is generally small as only the last key returned by any
uncompleted index scans needs to be remembered.

Note that the traditional methods of implementing pagination either require onerous
server-side state management or are not scale-independent. Specifically, using server-side
cursors requires the maintenance and garbage collection of the cursor state, even in the face
of hundreds or thousands of users coming and going. The other common implementation of
pagination uses both OFFSET and LIMIT clauses. Unfortunately, executing a query with an
o↵set requires work proportional to the size of the o↵set (Section 2.2.4.1), which is in conflict
with the goal of scale independence [37].

3.5.2 Bounding Intermediate Results

Standard SQL referential integrity constraints in the schema definition already allow the
compiler to infer cardinality in one direction, from a foreign key to a single corresponding
tuple. PIQL extends these constraints by allowing the expression of relationship cardinalities
in the other direction as well. These developer-specified relationship cardinalities provide
extra information for the optimizer and execution system about natural limits to the various
relationships; these limits are often due to real-world constraints. The form of this specifica-
tion is a maximum number of tuples that may contain a distinct value or set of values. For
example, consider modifying the schema of Twitter to limit the number of other users that
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any given person can “follow”. This limit is expressed in the following schema:

CREATE TABLE Users (
userId INT,
firstName VARCHAR(255)
...

);

CREATE TABLE Following (
ownerUserId INT,
targetUserId INT,
...
CARDINALITY LIMIT 100 (ownerUserId)

);

By specifying that there is a limit of 100 on the cardinality of any specific value of
ownerUserId in the Following table, the developer informs the optimizer that no single user
is allowed to have more than 100 subscriptions. Section 4.2 discusses in more detail how this
limit is used during optimization.

Choosing an appropriate limit is crucial. As mentioned earlier, Facebook decided to use
a very loose limit, 5000, for the number of friends. This looseness caused some power users
with more than 3000 friends to complain about their experienced response times [74], as the
system significantly slows down and some features completely break. In contrast, a Facebook
competitor, Path, limits the number of friends to 50, which is even smaller than the natural
limit. PIQL’s prediction framework o↵ers a tool to determine acceptable limits so that all
queries meet the SLO requirements, independent of the scale of the system (see Section 4.4).

3.6 Summary

The di�culty of reasoning about the performance of declarative queries that are divorced
from their actual execution plan by data independence has led many scale-oriented develop-
ers to abandon the helpful abstractions of the modern RDBMS in-favor of predictable but
feature-anemic key/values stores. However, this sacrifice is unnecessary if it is possible to
extend the relational model with the concept of scale independence. A scale-independent
system gives developers the tools to reason about how the performance of their application
will be a↵ected by rapid growth, thus avoiding a possible “success-disaster”.

A relational system can achieve scale independence by enforcing bounds on the number
of operations that will be performed by any given query in an application, independent of
the amount of data stored in the database. These bounds can be calculated statically before
problematic queries can cause problems in production by using information from both the
queries and the application schema. While such analysis is trivial for simple queries, PIQL is
capable of running many complex queries, even those involving joins, in a scale-independent
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manner. This increased expressivity is accomplished using a variety of advanced techniques
including language extensions, automatic index creation, and precomputation.

Since the use of these techniques can a↵ect the resource consumption and update-latency
characteristics of the application, this thesis defines four levels of scale independent query
execution. PIQL analyzes all of the queries in an application to ensure that they can be exe-
cuted without violating the scale-independent invariants defined in this chapter. In addition,
it informs the developer which execution level will be used for each query.
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Chapter 4

On-demand Query Execution

4.1 Introduction

This chapter discusses PIQL’s optimization strategy for queries that can be executed scale-
independently without performing any precomputation. The execution of these “on-demand”
queries falls into SI-0 (Section 3.3) if they don’t require any extra indexes and SI-1 if sec-
ondary indexes must be created for their scale-independent execution. Central to PIQL’s
optimization strategy for these queries is selecting a physical plan that is guaranteed to per-
form a bounded number of operations independent of the size of the underlying database.
This type of optimization can be contrasted with standard cost-based optimization, which
attempts to find a plan that will perform the fewest operations. While running queries as
fast as possible on average is generally beneficial, doing so does not take into account either
the response time for statistical outliers or how response time will change as data is added to
the system. Such variations in response time are significant concerns for website operators
trying meet strict SLOs in order to keep their customer base happy.

Since performing a bounded number of operations is not particularly useful if the bound
can be set arbitrarily high, Section 4.4 presents a model for reasoning about SLO compli-
ance given various bounds on the number of operations. Using this model, developers can
accurately predict if any of the queries in an application are likely to cause performance
problems in production.

4.2 Scale-Independent Optimization

Given a PIQL query, the optimizer must select a scale-independent ordering of physical
operators for its execution. A physical query plan is considered scale-independent if it is
possible to statically ensure that it will perform a bounded number of simple operations in
the worst case. Examples of simple operations include key/value store operations like a get
by primary key or a getRange request that returns a bounded number of results. These
operations are, however, examples based on PIQL’s current implementation. Other storage
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systems that are capable of executing further data retrieval operations with predictable
response-time as data is added could easily be targets for this type of optimization as well.

To better understand PIQL’s optimization strategy, consider one of the benchmark appli-
cations, SCADr. SCADr is a simple clone of the micro-blogging site Twitter1. The schema
for the application is as follows:

Thoughts(userId, timestamp, text)
Subscriptions(owner, target)

SCADr allows users to post “Thoughts” (in Twitter terminology, “tweets”) about their
current activity. Users of SCADr can also subscribe to the thoughts of other users they
are interested in, similar to a standard publish/subscribe system. The subscriptions for
each user are stored as a mapping from the user who is subscribing (the owner) to the
user whose thoughts are being subscribed to (the target). Throughout this chapter the
“thoughtstream” query, which allows a user to retrieve the most recent “thoughts” of all the
users to whom they are currently subscribed, is used as an example. Figure 4.1 shows the
phases of optimization performed on the thoughtstream query.
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Figure 4.1: The stages of optimization for the thoughtstream query in SCADr.

1
http://www.twitter.com
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PIQL’s optimizer operates in two phases as sketched in Algorithm 1 and Algorithm 2.
In the following discussion, these two phases of the optimization algorithm are described in
more detail. Special focus is paid to the scale-independent aspects of the query optimizer.
Other optimizations, such as selecting join orderings, are performed using traditional tech-
niques (e.g., [54]) and are therefore not discussed. Readers unfamiliar with standard query
optimization techniques are referred to Section 2.2.3.2.

4.2.1 Phase I: Stop Operator Insertion

Given a logical plan from the query parser, Phase I starts by finding an appropriate linear
join ordering (Line 1 in Algorithm 1). Next, the optimizer pushes predicates down in the
plan using standard techniques (Line 2).

Algorithm 1 StopOperatorPrepare - Phase I
Require: logicalP lan Logical PIQL Plan
Require: cardinalityConstraints From the applications schema
1:

2: orderedP lan findLinearJoinOrdering(logicalP lan)
3: preparedP lan predicatePushDown(orderedP lan)
4: for all relation r in preparedP lan do
5: for all combinations c of AttributeEquality predicates against r do
6: if attributesOf(c) contains all fields in primaryKey(r) then
7: Insert data-stop of cardinality 1 above c
8: else if attributesOf(c) contains all fields of a cardinality constraint then
9: Insert data-stop of specified cardinality above c
10: end if
11: end for
12: end for
13: finalLogicalP lan stopPushDown(preparedP lan) return finalLogicalPlan

Due to a LIMIT or PAGINATE clause in the actual query, the logical plan might already
contain a standard stop operator to restrict the number of tuples returned [19]. Additionally,
the optimizer will introduce new data-stop operators to the logical plan where schema-based
cardinality information exists (Lines 3 to 11). The data-stop operator is a new operator that
acts as an annotation, telling Phase II of the optimizer that a given section of the plan will
produce no more than the specified number of tuples due to a schema cardinality constraint.

Any time equality predicates reference the entire primary key of the relation, a data-
stop operator is inserted into the plan with a cardinality of one (Lines 5-6). The insertion
of this data-stop operator is possible due to the uniqueness constraint on the primary key.
This constraint ensures that there will never be more than one tuple in the database that
satisfies these predicates. Data-stop operators are also inserted any time there are equality
predicates present that reference all of the fields in a CARDINALITY LIMIT, specified as part
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of the applications schema (Section 3.5.2). These data-stop operators are inserted into the
logical plan with cardinality specified by the developer (Lines 7-8).

Afterwards, data-stop operators from the insertion phase as well as stop operators from
a LIMIT or PAGINATION clause are pushed down as deep as possible into the plan (Line 12).
Pushing stop operators deeper in the plan generally results in faster execution, as doing
so limits the number of tuples that need to be processed earlier in the query’s execution.
While this optimization is useful for average performance, pushing down stop operators can
also be useful when attempting to find a scale-independent execution plan for a query. Stop
operators deep in the plan allow it to be broken into sections, each of which are guaranteed
to perform a bounded number of operations, as described in the next section.

When performing the push down of the stop operators, it is important to ensure that the
query can still be executed without restart. Executing a query that requires an arbitrary
number of restarts could require performing an unbounded number of operations. Therefore
PIQL performs this optimization conservatively, according to rules regarding non-reductive
predicates [19]. Specifically, a stop operator cannot be pushed past a predicate that might
reduce the number of tuples, as this could lead to an incorrect plan that produces fewer
tuples than requested.

The rules for pushing down data-stop operators are di↵erent than those for standard stop
operators. Recall that data-stop operators act as hints that are inserted based on the number
of tuples that can possibly be stored in the database. Integrity constraints on cardinality,
which are enforced at insertion time, ensure that no more than than the specified number of
predicate-satisfying tuples will ever be present in the database. This constraint is in contrast
to a standard stop operator, which merely indicates the number of results that are desired by
the developer. Due to this di↵erence, a data-stop operator can be pushed past all predicates
other than those that caused its insertion. This degree of push-down is possible because
even if a predicate reduces the number of tuples produced by the query, there cannot be any
more tuples in the database due to the cardinality constraint.

Because the data-stop operator can be pushed further down in the plan than would be
possible with a standard stop operator, it is possible to perform scale-independent static
analysis of more queries. For example, in the optimization of the thoughtstream query, the
data-stop operator is pushed past the predicate that ensures that a given subscription was
approved. This degree of push-down would not have been possible with a standard stop
operator. Since the optimizer is able to bound this section of the plan, its heuristic then
chooses a local selection against the primary index instead of creating a new index that
includes the approval field. This approach is cheaper both because it avoids maintaining
an unnecessary index and because lookups over an index require an extra round trip to the
key/value store to retrieve the full tuple.

4.2.2 Phase II: Physical Operator Selection

After the predicate and stop operator push-down, the optimizer transforms the logical plan
recursively into a physical plan (Algorithm 2). This phase is e↵ectively mapping the logical
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operators of the query plan onto equivalent physical operators. The physical operators of
the PIQL execution engine are broken into two groups: Those that operate locally on the
client executing the query, and those that issue requests to the key/value store.

4.2.2.1 Remote Operator Matching

The operators supported by the current implementation of PIQL are based on those that
can be performed with consistent performance as data volume grows by a key/value store,
though this could be easily extended given another storage system capable of providing such
predictability. In order to ensure scale independence, the optimizer requires that each section
of the plan that will be executed using a remote physical operator has an explicit bound on
the number of tuples required. This requirement is due to the fact that a getRange request
will only have consistent performance if the number of tuples requested is bounded. Thus,
whenever a plan section contains a group of logical operators that will be mapped to a remote
operator, it must have either a stop operator or a foreign key uniqueness constraint. The
enforcement of this restriction ensures that there will be a bound not only on the final result
set, but also on any intermediate results that must be shipped across the network from the
storage tier to the query processing library.

Scan(Relation)

Predicate 1

Predicate 2

Sort

Stop

(a) IndexScan

Predicate N

Join

FK Predicate 1

FK Predicate 2

Scan(Relation)

(b) IndexFKJoin

FK Predicate N

Join

Predicate 1

Predicate 2

Sort

Stop

Scan(Relation)

(c)SortedIndexJoin

Predicate N

Bounded
Child Plan

Bounded
Child Plan

Figure 4.2: Every remote operator is equivalent to a pattern of logical operators. Optional
logical operators are denoted by dotted line boxes.

PIQL supports three remote operators: IndexScan, IndexFKJoin, and SortedIndexJoin.
Figure 4.2 shows the patterns of logical operators that can be executed by a given remote
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operator. In the following, I describe the rules for mapping logical operators to the three
remote operators.

Index Scan can be used for the physical execution of a set of predicates evaluated against
a relation where the predicates describe some contiguous section of the index. Fig-
ure 4.2 (a) shows all the logical operators a single index scan can cover. In practice, this
means that there can be any number of equality predicates, while predicates involving
inequality may touch at most one attribute. Additionally, an index scan can be used to
satisfy a logical sort operator using the special ordering of the index. However, if there
is an attribute involved in an inequality, it must be the first field of any sort order to
be satisfied by a scale-independent Index Scan; otherwise, this collection of predicates
and sort constraints would by definition describe a potentially non-contiguous section
of the index. Attempting to return potentially non-contiguous tuples from an index
scan would make it impossible to bound the amount of work required to produce a
given number of matching tuples. This impossibility is due to the fact that, even when
tuples are not returned, the act of scanning over them requires them to be inspected
and thus can still contribute to query processing time.

Index Foreign Key Join can be used for the physical execution of a join where the
predicates filter for equality relative to the primary key of another table. Due to
the uniqueness constraint of the primary key, the optimizer knows that the resulting
number of tuples produced by the join will be less than or equal to the number of
tuples produced by the child plan and thus the final result will also be bounded in
size. Figure 4.2 (b) shows the logical operators that can be executing using the Index
Foreign Key Join.

Sorted Index Join can be used for the physical execution of a join where there is an
optional sort before the next available limit hint, as shown in Figure 4.2 (c). By using
a composite index, the tuples can be pre-sorted for every join key and thereby leverage
the knowledge of the limit hint to bound the number of data items per join key. For
example, the thoughtstream query of Figure 4.1 (c) would normally require all thoughts
per subscription. However, by pre-sorting the thoughts per subscription, the operator
is able to retrieve only a bounded number (here 10) per subscription, which enables
the overall bound.

4.2.2.2 Local Operator Matching

Operators that run in the application tier, called local operators, include sort, select, group
by, and various aggregates. In contrast to remote operators, local operators work entirely on
local data, which is shipped to the client. Consequently, as the remote operators ensure that
all data is bounded in size, all local operators are bounded as well. The query language does
not allow recursion; therefore, it is impossible for the local result size to increase infinitely.
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4.2.2.3 Physical Plan Generation Algorithm

Algorithm 2 PlanGenerate - Phase II
Require: logicalP lan Logical PIQL Plan
1: if (remoteType, child)  match remote operator then
2: if logicalPlan has standardStopOperator then
3: return stop(remoteType(PlanGenerate(child)))
4: else
5: return remoteType(PlanGenerate(child))
6: end if
7: else if (localType, child)  match local operator then
8: return localType(PlanGenerate(child))
9: else if logicalPlan = Ø then
10: return Ø
11: else
12: ERROR(Not scale-independent)
13: end if

Algorithm 2 shows the general algorithm to transform a logical plan into an scale-
independent physical plan. Starting from the top of the logical plan, the compiler tries
to map as many logical operators as possible to a bounded physical remote operator ac-
cording to the rules of Section 4.2.2.1 (Line 1). If the compiler finds a remote operator,
it recursively calls the generator function with the remaining logical plan and attaches the
resulting optimized child plan (Line 2-6). If no remote operator can be found, the compiler
tries to find a local operator (Line 7) and if successful, it continues recursively (Line 8). If all
logical operators are successfully matched either to a remote or a local operator, a bounded
query plan has been found and it is returned (Line 10). However, if at any stage it is impos-
sible to find either a remote or local operator, the physical plan could possibly require an
unbounded amount of work during execution and is, therefore, not scale-independent (Line
12).

Figure 4.1 (c)-(d) shows an example transformation from a logical plan to a physical plan.
The algorithm first selects an IndexScan to retrieve the subscriptions for a given owner. Note
that this selection was made possible by the data-stop operator inserted as a result of the
cardinality constraint on the number of subscriptions allowed for a given owner. Afterwards,
it chooses a LocalSelection on the approved status, followed by a SortedIndexJoin and stop
operator.

4.2.3 Index Selection

Since table scans are not scale-independent, as they require reading a linearly increasing
amount of data (Section 3.2), the PIQL optimizer produces a list of all necessary indexes
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during query optimization. These indexes can be automatically created by the system. For
example, consider the following query from the TPC-W benchmark:

SELECT I_TITLE, I_ID, A_FNAME, A_LNAME
FROM ITEM, AUTHOR
WHERE I_A_ID = A_ID
AND I_TITLE LIKE [1: titleWord]
ORDER BY I_TITLE
LIMIT 50

The PIQL optimizer will select an IndexScan using an index consisting of the fields
(token(I TITLE), I TITLE, I ID) with a limit hint of 50. The first field allows the IndexScan
to find all of the titles that contain the given token. The second field ensures that the items
returned by taking the top 50 records from this index will be sorted by the full title of the
item. Finally, the I ID allows the execution engine to dereference the index and retrieve the
actual item. Above this IndexScan, the optimizer would place a join with the author relation
on the primary key A ID.

4.3 Evaluation of Scale-Independent Plan Selection

My evaluation of PIQL’s ability to maintain performance as an application grows is per-
formed using queries from two di↵erent benchmarks, TPC-W and SCADr. This section
begins with a description of each of these benchmarks.

4.3.1 TPC-W

TPC-W is a web application throughput benchmark for database systems[83]. It models an
online bookstore with a mix of fourteen di↵erent kinds of requests such as searching for
products, displaying products, and placing an order. Every request consists of one or more
queries to render the corresponding web page. Furthermore, the TPC-W benchmark specifies
three kinds of workload mixes: (a) browsing, (b) shopping, and (c) ordering. A workload
mix specifies the probability for each kind of request. In all the experiments reported in
this paper, the ordering mix is used because it is the most update-intensive mix (30% of all
requests lead to an update).

The TPC-W benchmark measures the request throughput by means of emulated browsers
(EBs). Each EB simulates one user who issues a request, waits for the answer, and then
issues the next request after a specified waiting time. The TPC-W metric for throughput
is Web Interactions Per Second (WIPS). According to the TPC-W specification, 90% of
requests must meet the response time requirements. Depending on the kind of request, the
allowed response time varies from 3 to 20 seconds.

The following experiments concentrate on the query execution part of TPC-W. Thus, the
full web pages are not rendered, but instead, only the query execution portion of each web
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interaction is performed. Since the response time requirements specified by the benchmark
are in terms of end-to-end latency measured at the browser, these results are not directly
comparable. However, since the query latency values are small compared to the given SLOs,
query execution will clearly not be the cause of violations. Furthermore, while standard
TPC-W requires full ACID guarantees, the current prototype implements only eventual
consistency (described further in Section 6.6). Additionally, the wait time between requests
was ignored, allowing the clients to place more load on the system with fewer machines.

Finally, the optimization techniques from this chapter are not su�cient to execute two of
web interactions present in the TPC-W benchmark: AdminConfirm and BestSeller. These
queries are analytic in nature and thus there is no scale-independent query plan that can be
executed on-demand (i.e., using execution levels SI-0 or SI-1). However, Chapter 5 describes
techniques for executing these queries scale independently through the use of precomputa-
tion.

4.3.2 SCADr

SCADr is a website that simulates the microblogging platform Twitter by allowing users to
post “thoughts” of at most 140 characters [7]. Users can create a list of other users that
they wish to follow, and the most recent thoughts from these users will be displayed in a
thoughtstream when they log into the site.

The schema for this application is relatively simple and consists of three tables: Users,
subscriptions, and thoughts. The users table contains a username as primary key as well as
normal user attributes such as password and hometown. The subscriptions table specifies
which users are subscribed to whom; that is, it models the n-to-m relationship between the
users themselves. The primary key of the subscriptions table is composed of the owner of the
subscriptions, followed by the target user. An additional attribute of the table specifies if
the subscription has been approved. Finally, the thoughts table stores all the thoughts (i.e.,
microblog posts) of a user. The thoughts relation is composed of three attributes: Username,
timestamp, and the actual message, which is limited to 140 characters. The primary key of
the thoughts table is composed of the username and the timestamp of the thought.

The SCADr benchmark defines 5 di↵erent kinds of queries: “List users I’m following”,
“List my recent thoughts”, “List the most recent thoughts of all of the people I am subscribed
to”, “Find user”, and finally “Post a new thought”, the only updating query. I measured both
the request throughput and response time for executing all queries for a randomly selected
user. This workload simulates a group of applications servers issuing database queries against
the PIQL system, but not the page rendering portion of the site. Except for the “Post a
new thought”, which occurs with a probability of 1 percent, each of the remaining queries is
executed once for every simulated request. The “Post a new thought” query is not further
considered, as it is just a single put request.
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4.3.3 Qualitative Analysis

The evaluation starts with qualitative analysis of the PIQL optimizer’s ability to find scale-
independent physical plans for all of the query in each benchmark. In cases where this is
not initially possible, suggestions provided by the optimizer for improving scalability are
implemented and discussed. Table 4.1 summarizes the necessary modifications (to either
the query or the schema) for making the queries scale-independent, as well as the compiler
selected indexes.

Query Modifications Additional Indexes SI Level

T
P
C
-W

B
en
ch
m
ar
k

Home WI - - SI-0
New Products WI Tokenized

search
Items(Token(I SUBJECT),
I PUB DATE)

SI-1

Product Detail WI - - SI-0
Search By Author WI Tokenized

search
Authors(Token(A FNAME,
A LNAME)),
Items(I A ID, I TITLE)

SI-1

Search By Title WI Tokenized
search

Items(Token(I TITLE),
I TITLE, I A ID)

SI-1

Order Display WI Get
Customer

- - SI-0

Order Display WI Get
Last Order

- Orders(O C UNAME,
O DATE TIME)

SI-1

Order Display WI Get
OrderLines

- - SI-0

Buy Request WI - - SI-0

Bestseller WI
Periodic
Update

- SI-3

Admin Confirm WI
Periodic
Update

- SI-3

S
C
A
D
r Users Followed - - SI-0

Recent Thoughts - - SI-0
Thoughtstream Constraint on

#subscriptions
- SI-0

Find User - - SI-0

Table 4.1: The query modifications and indexes required for scale-independent execution of
SCADr and TPC-W. Queries whose SQL is identical to that of another (e.g., Search By
Subject WI and New Product WI are omitted in the interest of brevity.)
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4.3.3.1 TPC-W

Although many changes were expected, in particular for the TPC-W queries, surprisingly
few changes are required. Most notably, the TPC-W queries require rewriting more general
LIKE predicates as tokenized keyword searches. This change is an artifact of the current
implementation, as PIQL only supports inverted full-text indexes for such queries. The only
real change required from the developer is the addition of a cardinality constraint on the
number of items inside a shopping cart, though this limit is already defined as an optional
constraint in the TPC-W specification. All TPC-W queries except the more analytic “Best
Seller” and “Admin Confirm” are already scale-independent. In addition to the primary
keys, the compiler automatically creates 5 indexes to support all queries more e�ciently.

4.3.3.2 SCADr

The queries for SCADr require a limit on the number of possible subscriptions per user,
similar to how Facebook limits the number of friends, as well as on the number of results
shown per page. In the scale experiment, I set the limits to 10 subscriptions and 10 results
per page. Refer to Section 4.4.4 for more detail on how di↵erent cardinality limits a↵ect
query performance.

4.3.4 Scale Experiments

In order to evaluate the e↵ect of scale-independent optimization on actual performance at
scale, both benchmarks are run on clusters of various sizes and the web interaction latency
is recorded. For each data point, the amount of data per server is kept constant while the
number of storage nodes and client libraries issuing queries increases. After the modifications
from the previous section were made, PIQL’s optimizer is able to find query and update plans
that satisfy all of the scale-independent invariants.

4.3.4.1 TPC-W

TPC-W is scaled by first bulk loading 75 Emulated Browsers’ worth of user data for each
storage node in the cluster. The number of items is kept constant at 10,000 (as specified by
the TPC-W spec), while user data is scaled linearly with the number of machines. Each piece
of data is replicated on two servers both for availability and performance reasons. One client
machine with the PIQL library is present for every two storage servers in the system The
number of storage servers varies from 20 to 100, and this configuration results in clusters
of up to 150 EC2 instances including clients. Each client executes the queries from the
workflow specified by the TPC-W benchmark in 10 concurrent threads. Throughput and
response time values are collected in 5-minute intervals, with at least 5 iterations for each
configuration. The first run of any given setup is discarded to avoid performance anomalies
caused by JITing and other warm-up e↵ects.
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Figure 4.3 shows that the response time per web interaction stayed virtually constant,
even in the 99th percentile, independent of the scale. Thus, PIQL and its execution engine
are able to preserve the scalability and predictable performance of the underlying key/value
store even for a complicated application like TPC-W. Note, the response times from this
experiment are not directly comparable with the predicted response times. This discrepancy
is due to the fact that full web interactions also result in puts to the key/value store, and
thus measured response time is slightly higher than predicted total response time.

Furthermore, Figure 4.4 demonstrates an additional benefit of scale-independent plan
selection. Since the amount of work for each query is bounded, it is possible to obtain a near
linear scale-up of throughput as the number of servers and clients increases.
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Figure 4.4: TPC-W throughput, varying
the number of servers

4.3.4.2 SCADr

The SCADr benchmark is scaled using a methodology similar to the TPC-W benchmark by
varying the number of storage nodes and clients. As with TPC-W, the data size increases
linearly with the number of servers, with 60,000 users per server, 100 thoughts per user, and
10 random subscriptions per user. As with TPC-W, all data is replicated on two servers
for increased availability. One client machine with the PIQL library is present for every
two storage servers in the system. The number of storage servers is varied from 20 to 100
(including clients, this results in up to 150 EC2 instances).

Each client machine repeatedly simulates the rendering of the “home page” for SCADr by
executing all of the given queries and measuring the overall response time. This execution and
measurement are performed by 10 concurrent threads on each client machine. Throughput
and response time statistics are collected in 5-minute intervals, with at least five iterations
for each configuration. As in the previous experiment, I discarded the first run of any given
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setup to avoid performance anomalies cause by JITing and combined all subsequent response
time data to calculate a single 99th percentile value. Figure 4.5 and 4.6 show the results of
this experiment. Again, the response time remains low and nearly constant as the system
scales, even at the 99th percentile on a public cloud. Additionally, the second graph shows
a near linear scale-up of throughput as the number of servers and clients increases.
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4.4 SLO Compliance Prediction

The previous sections described how the PIQL compiler converts a query into a scale-
independent query plan that can execute under SI-0 or SI-1. If PIQL is unable to find
such a plan, the query is reported to the developer as a possible performance risk at scale
through the Performance Insight Assistant (see Section 4.4.4). Even if the compiler is able
to find a bounded plan, however, it still does not guarantee that the plan is success-tolerant
(i.e., that it can be executed in the targeted latency time frame). The number of tuples to
process, although bounded, might still be too high to meet response-time objectives.

In this section, I describe the response time prediction model used by PIQL. This model
calculates the risk that query operations will not complete in the time frame targeted by the
applications SLO. Using this prediction model, the developer will be informed at compile
time whether a bounded query is likely to meet its SLO. In the remainder of this section, I
first describe the model of a single query plan operator and then how to compose operators
together to evaluate the response time of the whole query as well as the risk of violating the
SLO. Finally, I describe how the model is used as part of the Performance Insight Assistant.
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Figure 4.7: Modeling process for PIQL queries. The first step is to create models for each
PIQL operator (a). Then, for each query, combine the operator models according to the
query plan to create a PDF for the whole distribution (b). Finally, repeat the process of (b)
for many timeframe histograms to better reflect the SLO response-time risk (c).

4.4.1 Single Operator Model

As described in the previous section, a physical query plan is composed of one or more oper-
ators. PIQL attempts to reason about the response time of the overall query starting with
the expected performance of each operator. When performing this prediction, it is important
to understand the environment where query execution will occur. PIQL is designed to run
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on large clusters of commodity computers. While such an architecture has been proven to
provide great computation ability at a reasonable cost, it can also result in highly variable
performance [30]. To reflect the volatility in the response time, each operator is modeled as
a random variable ⇥.

To make model building tractable, the assumption is made that the response-time distri-
bution of an operator only depends on the number of tuples and the maximum size of a tuple
that it has to process. This simplification is reasonable, as the architecture is designed to
avoid contention by automatically load-balancing and re-provisioning the key/value store as
well as the application tier. The model is further constrained by only considering the three
remote operators that interact with the key/value store. Empirically I found this simplified
model to be su�cient, as I am primarily targeting interactive queries with SLO goals in the
range of milliseconds up to a few seconds. Therefore, the latency to the key/value store is
often the dominating factor.

However, network bandwidth and round-trip times are improving over time. Thus, in
future versions it may be necessary to extend the model to include the local operators as
well. Accordingly, the IndexScan operator can be modeled as ⇥(↵, �), where ↵ represents the
maximum number of expected tuples (i.e., the bound enforced by a stop operator present
in the logical plan) and � the size of each tuple. In contrast, the two join operators are
described as ⇥(↵

c

,↵
j

, �
j

), where ↵
c

represents the maximum number of tuples from the
child operator (right relation), ↵

j

the bound (e.g., schema cardinality) between the left and
right relations, and �

j

the maximum size of a tuple from the left relation. The model does
not need to consider the size of the child tuples, as the transmission of these tuples over the
network was already considered through the modeling of the operator that produced them.

An empirical distribution is obtained for each of the operator random variables and stored
as a histogram. That is, as part of the model training, the response time behavior for every
operator must be sampled by repeatedly executing the operator with varying cardinality and
tuple sizes. This training is typically done once by setting up a production system in the
cloud for a short period of time, where all operators are measured in parallel. This sampling
collects a set of histograms for each of the three remote operators with di↵erent ↵ and �
values. Since these statistics are not application-specific, they can be pre-calculated for the
most prominent public clouds (e.g., Amazon, Google, Microsoft). Figure 4.7(a) shows two
possible distributions for the IndexScan operator with an expected cardinality limit ↵ of
100 and 150 and a tuple size � of 40 Bytes. The models can be updated periodically as
conditions in the datacenter change (e.g., as hardware is upgraded).

Given a query plan, the maximum cardinality ↵ and the maximum tuple size � can
be obtained for each operator from the optimzer annotations and the schema, respectively.
Thus, choosing a distribution from the histogram collection becomes as simple as looking up
the empirical measurements that correspond to the ↵ and � values for a given operator. ↵
is set to be the maximum cardinality to avoid underestimating the response time.

If the correct values are not present in the table, the (↵, �) setting that is closest to
the desired value while still being larger can be chosen instead. For example, consider the
IndexScan given username on the Subscriptions table described in Section 1.6.1. It is known
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from the schema annotation that the worst case cardinality is 150 and the tuple size is
40 Bytes. Hence, PIQL would choose ⇥

IndexScan

(150, 40Bytes) from the two histograms in
Figure 4.7(a).

It is often also possible to interpolate among the stored models to produce the desired
model; this technique is suitable since the system exhibits a linear relationship between the
cardinality and the response time. Since PIQL is designed for interactive applications, the
response time goals for all queries are typically less than one second. For these purposes,
reporting values with millisecond resolution is su�cient, so each histogram can be well-
represented with on the order of one thousand bins. Therefore, while it is true that PIQL’s
modeling approach requires a separate histogram per (↵, �) pair, this burden is not onerous.
Due to the limited resolution of interest, each histogram can be stored in one kilobyte or
two.

4.4.2 Query Plan Model

To predict the overall query response time, PIQL combines the operator models according to
the physical query plan generated by the PIQL optimizer. Here, it is possible to make use of
another property of the architecture. PIQL’s execution engine is implemented as an iterator
model and thus allows executing several operators in a pipelined fashion; however, since
this thesis is focused on short-running queries, the latency can be modeled with su�cient
accuracy assuming blocking operators. In the worst case, this simplification can result in the
model failing to capture the overlap among the operators. Therefore, in some cases PIQL’s
prediction may be overly conservative. However, recall that PIQL’s goal is not to predict
response time but rather SLO compliance; thus, as long as the prediction is below the SLO,
it still correctly predicts SLO compliance (see Section 4.5 for quantitative analysis).

Accordingly, the model can be simplified by assuming independence among the operators.
For query plans (or plan sections) that are serial, the overall latency is represented by a
random variable whose latency is the sum of the operator latencies, each of which is also
represented by a random variable. For parallel plan sections, e.g. the two child plans of a
union operator, one can determine the latency of each branch and then take the maximum.
Since the latency of each operator is viewed as a random variable, summing the latency
of two operators is equivalent to convolving their densities. Thus, to predict the latency
distribution of a query, PIQL can simply convolve the densities of each operator. The
resulting distribution is that of the query as a whole, as Figure 4.7(b) shows. Recall that the
local operators are ignored by PIQL’s response time modeling as requests to the key/value
store dominate the latency. Accordingly, modeling the timeline query of SCADr shown in
Figure 4.1 requires convolving two operators:

Q
ThoughtStream

=

⇥
IndexScan

(SubscrCard, SubscrSize) ⇤
⇥

SortedJoin

(SubscrCard, ThoughtCard, ThoughtSize)
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4.4.3 Modeling the Volatility of the Cloud

The goal is to determine whether a query will meet its SLO regardless of the underlying
database size. To do so, PIQL will inspect a predicted latency distribution for the query.
PIQL’s target developers are chiefly concerned with detecting violations of SLOs that are
defined in terms of high quantiles of the query latency distribution. Thus, given an SLO
such as “99% of queries during each ten-minute interval should complete in under 500 ms”,
if the 99th-percentile latency of the predicted distribution is less than 500 ms, then it can be
predicted that the query will meet the SLO. Note that the length of the SLO interval a↵ects
its stringency: Longer intervals make the SLO easier to meet, as any brief periods of poor
performance are counterbalanced by mostly good performance. In the following discussion,
the assumption is made that the SLOs are defined over non-overlapping time intervals.

The 99th-percentile latency can vary from one interval to the next, which poses a further
challenge for the model. As mentioned in Section 3.4, PIQL’s ability to provide scale in-
dependence is based on the assumption that the key/value store’s performance is relatively
stable. Natural fluctuations in performance are particularly common in public clouds, where
the machines and network are shared among many clients. The heavy workloads of some
clients (e.g., Netflix’s video encoding on Amazon) might cause short periods of poor perfor-
mance, which could result in violations to an SLO even though it is routinely met under
normal operation. Therefore, rather than providing a point estimate for the 99th-percentile
latency of a given query, PIQL generates an estimation of its distribution, which captures
how it varies from one interval to the next.

In order to estimate a distribution, PIQL takes the data collected from benchmarking the
operators and bins the data according to the interval of interest; e.g., if the SLO is provided
over a ten-minute interval, PIQL will create a separate histogram for each ten-minute period.
This process allows PIQL to obtain a prediction of the query’s 99th-percentile latency for
each interval during which the benchmark was observed. Combining these predictions, as
in Figure 4.7(c), results in a prediction of the distribution of the 99th-percentile latency.
This distribution is a useful tool to a developer as it provides information about the risk of
violating a query’s SLO over time. For example, if the target response time equals the 90th
percentile of the distribution, it means that for 10% of the intervals considered, the SLO
goal may be violated.

4.4.4 Performance Insight Assistant

In order to make it easier for a developer to work within the constraints enforced by the
PIQL optimizer, the system provides helpful feedback for fixing “unsafe” queries and for
appropriately sizing cardinality limitations. Regarding the first case, any time a query is
rejected by the optimizer, the developer is provided with a diagram of the logical query
plan where the problematic segment is highlighted. The system provides the developer with
possible attributes where the addition of a CARDINALITY LIMIT would allow optimization
to proceed. For example, recall the thoughtstream query presented in Figure 4.1. If the
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Figure 4.8: Predicted heatmap for 99th percentile latency (ms) for the thoughtstream query.
On average, the predicted values are 13 ms higher than the actual values.

developer had not specified a limit on the number of subscriptions that a user could own,
optimization would have failed. The assistant would have then pointed out that the problem
was with the number of tuples produced by the subscription relation. The developer should
then set a limit on the number of subscriptions per owner.

The Performance Insight Assistant also provides a sensitivity analysis of the run-time of
a given query with respect to a developer’s specified limit. This feature provides developers
with guidance on how to set cardinality limits that are compatible with SLO compliance.
Given a query written in PIQL, the system will provide the developer with a chart that shows
how the 99th-percentile response time will vary for di↵erent cardinality limits. This chart
can be generated by PIQL simply by predicting the latency distribution for each setting of
the cardinality using the information from the per-operator benchmarks. Figure 4.8 shows
this analysis performed for SCADr’s thoughtstream query. The thoughtstream query has
two parameters: The number of subscriptions a user has and the total number of thoughts
to return. Since there are two parameters, choosing the cardinality limits for this query
is more complicated, therefore a heatmap will be provided so that the developer can see
what the latency would be for each combination of the parameters. The developer can



CHAPTER 4. ON-DEMAND QUERY EXECUTION 71

choose any of the cardinality pairs that would satisfy the query’s SLO. Section 4.5 contains
a complete query-by-query evaluation of the predication accuracy for a more comprehensive
set of queries.

4.5 Evaluation of SLO Compliance Prediction

The accuracy of the SLO compliance prediction was evaluated emperically using the bench-
marks first presented in Section 4.3. Table 4.2 shows the actual and predicted 99th-percentile
values for each of the queries in TPC-W and SCADr. In this experiment, a constant car-
dinality for each query is maintained; for predictions with a varying cardinality, see Section
4.4.4. To train the prediction model, the operators are benchmarked on Amazon EC2 with
a 10-node cluster using two-fold replication, and statistics were gathered for 35 10-minute
intervals.

Query Actual
99th
(ms)

Predicted
99th (ms)

T
P
C
-W

B
en
ch
m
ar
k

Home WI 94 95
New Products WI 302 395
Product Detail WI 118 125
Search By Author
WI

138 136

Search By Title
WI

122 145

Order Display WI
Get Customer

97 95

Order Display WI
Get Last Order

176 207

Order Display WI
Get OrderLines

126 138

Buy Request WI 130 148

S
C
A
D
r Users Followed 113 141

Recent Thoughts 88 89
Thoughtstream 140 153
Find User 84 82

Table 4.2: A comparison of the predicted and measured 99th percentile latency for each
query in the TPC-W and SCADr benchmarks.

A prediction of the per-query 99th-percentile latency for each interval is obtained using
the technique described in Section 4.4.3. In the table, for both the actual and predicted
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cases, the max 99th-percentile value is reported. Taking the max corresponds to a very
conservative approach to setting the cardinality. As the results show, the model slightly
overestimates the actual 99th-percentile value in most cases. As I mentioned in Section 4.4,
the goal of the PIQL system is to predict not response time but rather SLO compliance;
thus, it is preferable to overestimate as long as the di↵erence between the predicted and
actual values is not so large as to be untrustworthy.

Three queries’ response times are underestimated by the model by 2 ms, an insignificant
error for the purpose of determining SLO compliance. PIQL’s prediction model is most
conservative for TPC-W’s New Products WI. This overestimation is caused by pipelining
that occurs between the query’s two index foreign key joins, which the model does not
currently capture. Future work may extend PIQL’s model to handle this case.

If the SLO is su�ciently above the predicted value, the developer will still be able to make
the correct decision regarding SLO compliance. However, a consequence of this modeling
error is that the Performance Insight Assistant could potentially recommend a cardinality
value lower than what the system could actually handle while still meeting its SLO. Thus,
developers should take the assistant-recommended cardinality as a starting point and poten-
tially increase the cardinality over time if the performance of the deployed application seems
to consistently be well below the SLO. The SLOs provided with the TPC-W specification,
ranging from 3 to 5 seconds for the queries evaluated here, are given in terms of the 90th-
percentile end-to-end response time, whereas this evaluation analyzes the 99th-percentile
query response time. Therefore, they are not directly comparable with these results. How-
ever, even at the 99th percentile, the running time of PIQL queries is significantly less that
the given SLOs, implying that the queries are not the bottleneck to achieving the SLOs.

A target latency of 500 ms was chosen for the SCADr queries, since no SLOs exist for this
benchmark as it was devised for the purpose of this thesis. This response time was chosen
because longer server delays have been shown to a↵ect the number of queries performed by a
user [73]. The queries all complete within this bound even for the worst-case 99th-percentile
response time.

4.6 Summary

By changing the objective function for query optimization to rule out plans that could possi-
bly perform an unbounded number of operations, PIQL can bound the amount of work done
by queries in an application. This section described PIQL’s techniques for mapping logical
query plans onto bounded sets of key/value store operations, thus maintaining Invariant 1.
In doing so, the optimizer takes advantage of extra information in the query and the applica-
tions schema to bound both the final and intermediate results. I also showed that bounding
the number of key/value store operations for a query allows the performance insight assistant
to accurately reason about the worst case query performance and thus the applications SLO
compliance. Together, these techniques let developers benefit from the high-level, declarative
nature of SQL, while still providing a strict upper-bound on the latency for query execution.
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Chapter 5

Precomputing Query Results

5.1 Introduction

The previous chapter showed how an optimizer could bound the number of operations per-
formed by queries that only read data either from base relations or secondary indexes.
However, as I explained in Chapter 1, not all queries can be answered on-demand in a
scale-independent manner using only these data sources. Fortunately, in many cases, it is
still possible to answer these queries if the results are incrementally computed each time
data is added to the database. PIQL performs this precomputation through the creation of
incrementally maintained materialized views (IMVs).

Anytime PIQL encounters a query where it is unable to find an execution plan in SI-0 or
SI-1, the optimizer will check if the creation of an IMV could allow scale-independent execu-
tion. Figure 5.1 shows the four phases that are used to perform IMV selection in the context
of PIQL’s full optimization workflow. The first phase, view construction (Section 5.2), takes
the PIQL query and transforms it into a view that can be used to answer the query for
any value of the query’s runtime parameters. However, even if this IMV enables the scale-
independent execution of the original query, it is still important to analyze the IMV itself
for scalability. Specifically, PIQL will ensure that bounds exist on both the cost of storing
(Section 5.3) and maintaining (Section 5.4) the IMV before allowing its creation. Queries
that are answered using a scale-independent view are executed under SI-2.

Since maintaining an even workload partitioning is key to PIQL’s approach for ensuring
predictable query performance, the optimizer must also analyse any created indexes to ensure
they are not prone to insertion hotspots (Section 5.6). While it is clearly not possible to
predict and avoid all possible hotspots a priori, PIQL provides developers with schema
annotations that enable the detection of a particularly common type. When such a hotspot
is encountered, phase four of view selection will rewrite the query to ensure that insertions
will be evenly distributed across the cluster. However, since the data is now distributed across
many machines, the answer to the original query must instead be computed periodically and
cached. Due to the extra work required for this periodic update, queries that require this
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Figure 5.1: The phases of query optimization in the PIQL system. The shaded portion
denotes the phases that are responsible for the selection of materialized views.

strategy are executed under SI-3.

5.2 View Construction

View construction, the first phase of PIQL’s view selection system, is invoked when the
optimizer is unable to find a scale independent physical plan for a given query. Since this
query does not fall into either SI-0 or SI-1, the optimizer will instead try to answer the
query by creating an IMV. Note that this is only the first step in scale-independent view
selection and merely constructs a view that could be used to answer the query while satisfying
Invariant 1. The algorithms in this section do not yet ensure that this view will meet the
other invariants regarding storage and maintenance costs.

The general form of the IMVs created is as follows:

CREATE MATERIALIZED VIEW <viewName>
SELECT A

view

[A
agg

]
FROM r1, r2, ...rn
WHERE P

view

[GROUP BY A
eq

]
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A
view

is an ordered list of the attributes projected by the IMV, while A
agg

contains any
aggregate expressions. The relations r1 to r

n

are the base relations present in the original
query, and P

view

is the set of predicates for the IMV. In the case of queries with aggregate
expressions, a GROUP BY clause is also added to the IMV definition.

The construction algorithm ensures that the created IMV will allow scale-independent
execution of the original query by making assumptions about the underlying storage struc-
ture. Specifically, this technique requires scale-independent access to tuples stored in the
view given a prefix of the attributes present in A

view

. Recall from Chapter 2 that examples
of acceptable storage systems, given this constraint, include B-Trees and range-partitioned
distributed key/value stores. Towards this end, I adopt the convention that the SQL ex-
pression used to define IMVs must specify not only which tuples are present in the view,
but also the ordering of attributes in the clustered index used to store the view. Thus, the
definitions of created IMVs e↵ectively define the spatial locality of the precomputed tuples,
allowing e�cient retrieval of consecutive tuples.

5.2.1 View Construction Without Aggregates

The view construction algorithm presented in this section handles select-project-join queries
with conjunctive predicates. Section 5.2.2 expands this algorithm to enable support for
queries with aggregate expressions. At a high level, this algorithm is solving a variant of
the view selection problem where the result of the target query must be computable by
scanning a contiguous section of the view for any value of the runtime parameters. I start by
describing how predicates that include runtime parameters are handled. Next, I describe the
checks employed to ensure that the result of the original query can be obtained by scanning
a contiguous section of the selected view. Finally, I describe the construction of the final
view definition.

View construction starts by parsing predicates of the form attr = <parameter> or attr
{<,>,,�} <parameter>. Using these predicates, the algorithm constructs the sets A

eq

and A
ineq

, which contain attributes occurring in equality and inequality predicates respec-
tively. These attribute sets are added to the prefix of the projection of the view, allowing
the predicates of the original query to be evaluated e�ciently using an index scan.

As a concrete example, for the twoTags query (Section 3.3.1) the set A
eq

contains
{t1.tag, t2.tag}, and A

ineq

is empty.
Next, Algorithm 3 checks to ensure that the answer to the original query for any set of

runtime parameters will be a contiguous set of tuples in the view. The requirements for this
condition are as follows: Any number of attributes may be filtered by equality with a runtime
parameter, but the query may contain at most one predicate where an attribute is filtered
by an inequality with a parameter. This limitation is due to the fact that computing the
intersection of the two inequality predicates may involve scanning over an arbitrary number
of tuples in the view, and thus could violate Invariant 1. Similarly, any number of attributes
may be specified in the ORDER BY clause, but this ordering must be prefixed by the inequality
attribute, if one exists.
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Algorithm 3 Confirming Adjacency of Result Tuples
1: A

order

:= ordered list of attributes in ORDER BY clause
2: if |A

ineq

| > 1 _ (|A
order

| > 0 ^ A
order

[0] 6= A
ineq

) then
3: return false
4: end if
5: return true

If Algorithm 3 returns successfully, it then creates the set P
view

. This step is accomplished
by removing any predicates that involve a runtime parameter and then simplifying any
redundant equality predicates.

To avoid changing the meaning of the query, this procedure must not inadvertently dis-
card any transitive equality constraints present due to parameters that appear multiple
times in the query. For example, given a query with the predicates a1 = <p1> and a2 =
<p1>, P

view

must contain the predicate a1 = a2. These transitive equalities are accounted
for by generating predicates for the view from the equivalence classes defined by the equality
predicates in the original query. Inequality predicates, in contrast, are copied directly from
the original query. These predicates will eventually be turned into inequalities with param-
eters during delta query calculation (Section 5.4). Therefore, the rules regarding multiple
attributes participating in inequalities still apply, and thus the creation of the view could be
later be rejected due to a lack of a scale-independent maintenance strategy.

Algorithm 4 describes this process of creating P
view

. Taking as input the set of conjunctive
predicates (Line 1), the algorithm starts by partitioning values found in P into equivalence
classes (Line 2). Next, for every equivalence class (Line 3), the algorithm adds an equality
predicate to P

view

for each attribute pair in the class (Line 4-11). Finally, the algorithm
copies inequality predicates involving non-parameters into P

view

(Line 15-21).
As an example, consider again the twoTags query. The predicates in this query define

three equivalence classes:

{t1.docId, t2.docId, d.id}
{t1.tag, <tag1>}
{t2.tag, <tag2>}

From these classes the following is produced for P
view

:

{t1.docId = t2.docId, t2.docId = d.docId}

Once P
view

has been constructed, the system next creates A
view

. A
view

contains the
attributes in A

eq

and A
ineq

as well as any remaining key attributes from the top-level tables
present in the original query. These key attributes are added to the projection in order to
ensure that the view can be e�ciently maintained using production rules (Section 2.3.2), as
proposed by Ceri and Widom [21]. Specifically, the view selector ensures that there will be no
duplicate tuples in the view and that all top-level table references are safe. Additionally, to
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Algorithm 4 Generating View Predicates
1: P := set of all conjunctive predicates in the query of the form v1 op v2
2: EquivalenceClasses(P) := set of equivalence classes under P
3: P

view

 {}
4: for all X 2 EquivalenceClasses(P ) do
5: prevAttr := ?
6: for all v 2 X do
7: if !isParam(v) then
8: if prevAttr 6= ? then
9: P

view

:= P
view

+ Equality(prevAttr, v)
10: end if
11: prevAttr := v
12: end if
13: end for
14: end for
15: for all p 2 P do
16: if isInequality(p.op) then
17: if !isParam(p.v1)^!isParam(p.v2) then
18: P

view

:= P
view

+ p
19: end if
20: end if
21: end for

avoid unnecessary redundancy, any key attributes that are unified by an equality predicate
in the original query will only appear once in the projection of the view.

Algorithm 5 describes the process used to populate A
view

and starts by initializing A
keys

to be the set of key attributes for all top-level tables from the original query (Line 2). Next,
it initialises A

view

, the ordered list of attributes that will appear in the view, and A
covered

,
the set of attributes already represented in the view definition considering unification, to
be empty (Lines 3-4). Then, it iterates over the ordered concatenation of the attribute sets
(Line 8) and adds to the view any attributes not yet present in the cover set A

covered

(Line
10). To prevent redundant values from appearing in the view, when an attribute is added,
its entire equivalence class is added to A

covered

(Line 11).
Applying Algorithm 5 to the twoTags query, the attributes t1.tag, t2.tag, d.timestamp,

and d.docId are selected. The first two attributes come from A
eq

, d.timestamp comes from
A

order

, and d.docId from A
keys

. By placing attributes from A
eq

first, the view selector en-
sures that tuples satisfying the original query can be located by a prefix of the keys in the
view. Including d.timestamp next ensures that the relevant tuples in the view will be sorted
as specified by the ORDER BY clause. Finally, d.id allows for safe view maintenance and the
retrieval of the actual document.

Continuing the twoTags example, the following materialized view is created by the view
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Algorithm 5 Choosing View Keys
1: R := the set of relations present in the original query
2: A

keys

:= {a : r 2 R, a 2 keyAttrs(r)}
3: A

view

 []
4: A

covered

 {}
5: function EquivalenceClass(P, a)
6: return all values in P unified with a due to equality predicates, including a itself
7: end function
8: for all a 2 A

eq

+ A
ineq

+ A
order

+ A
keys

do
9: if a /2 A

covered

then
10: A

view

:= A
view

+ a
11: A

covered

:= A
covered

[ EquivalenceClass(P, a)
12: end if
13: end for

constructor:

CREATE MATERIALIZED VIEW twoTagsView
SELECT t1.tag as t1tag, t2.tag as t2tag,

d.timestamp, d.docId
FROM Tags t1, Tags t2, Documents d
WHERE t1.docId = t2.docId AND

t1.docId = d.docId

Once the view has been constructed for a given query, the query is rewritten by replacing
the top-level tables with the view and renaming any attributes to their equivalent attribute
in the view. If there are any attributes that are present in the original query, but not in
the view, they can be retrieved either by joining the view with the base relation on the
keys that are present or by adding the missing attributes to the view definition. The former
will require more computation at query time, while the latter will require more storage for
the view. Since the choice of method does not a↵ect the scale independence of the query,
the system decides which technique to use based on the predicted SLO compliance of the
resulting query.

This final step rewrites the twoTags query to use the materialized view as follows:

SELECT t1.docId
FROM twoTagView
WHERE t1tag = <tag1> AND

t2tag = <tag2>
ORDER BY timestamp
LIMIT 5



CHAPTER 5. PRECOMPUTING QUERY RESULTS 79

5.2.2 View Construction With Aggregates

PIQL’s view selection system is also capable of handling many queries that contain aggregates
in the target list. In this subsection, I describe both the class of aggregates that are supported
and the alternative view selection algorithm used when an aggregate is present in a query.

5.2.2.1 Scale-Independent Aggregates

The class of scale-independent aggregates is defined in part by the storage requirements for
partial aggregate values. Using the categories of aggregates first defined by Gray et al. [38],
PIQL can safely store partial aggregate values for both distributive aggregates (such as COUNT
or SUM) and algebraic aggregates (such as AVERAGE and VARIANCE). Both of these categories
have partial state records of fixed size. In contrast, holistic aggregates such as MEDIAN can
require an unbounded amount of partial state to be stored and thus conflict with the goal
of scale independence.

Bounding the storage required for each partial aggregate value alone is not su�cient,
as a scale independent system must also ensure that e�cient incremental maintenance of
aggregated values is possible. Towards this end, PIQL also requires that updates to the
aggregate be both associative and commutative. While both MIN and MAX are distributive
aggregates, updates to them do not always commute in the presence of deletions. For
example, when the maximum value from a given group is deleted, the only way to update
the aggregate is to scan over an unbounded set of tuples looking for the new maximum value.

5.2.2.2 View Selection with Aggregates

When PIQL’s view selection system detects an aggregate in the projection of a scale-
dependent query, it uses a slightly modified view construction algorithm. I explain these
modifications in four parts.

Ordering Views containing aggregates cannot have any inequalities with parameters, as it
could require unbounded computation in order to maintain such views. Additionally,
since each query containing an aggregate will return only one tuple, there is no ORDER
BY clause. These two changes eliminate the need for Algorithm 3.

Keys Views containing aggregates are maintained using techniques analogous to a count-
ing solution [40]. Thus, it is not necessary to use Algorithm 5 to add keys for safe
maintenance.

Aggregate Expressions The view selection algorithm must add partial aggregate values
A

agg

to the created view. In the case of distributive aggregates, only the aggregate
expression itself must be added, while for algebraic aggregates more information may
be required to ensure e�cient incremental maintainability. For example, AVERAGE is
computed by keeping both a SUM and a COUNT.
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Group By Clause All of the attributes in A
eq

are added to the GROUP BY clause of the
created view.

The following is an example of how this modified algorithm would select a view for the
countTags query, which calculates the number of documents assigned a given tag.

SELECT COUNT(*)
FROM Tags
WHERE tag = <tag>

CREATE MATERIALIZED VIEW docsPerTag
SELECT tag, COUNT(*) as count
FROM Tags t
GROUP BY tag

5.2.3 Views for Window Queries

PIQL can handle many queries that operate over windows of data, and the techniques for
handling these queries fall into two categories. For queries that operate over a fixed size
tuple window, an index can be created on insertion timestamp. Since the tuple window
bounds the number of tuples that will need to be retrieved from this index, scale independent
optimization can then be performed on the rest of the query using standard techniques.
Section 5.6 discusses the special consideration required when creating such indexes to avoid
hotspots as the size of the database scales.

Aggregate queries that operate over a time window are handled by prepending an epoch
identifier to the beginning of the view. The epoch identifier calculated using the following
formula: timestamp � (timestamp mod windowSize). For example, consider modifying
the countTags query from the previous section to count tags for a sliding window of length
one minute. PIQL would create the following view (assuming timestamp is measured in
milliseconds).

CREATE VIEW docsPerTagWindowed
SELECT (timestamp - (timestamp % (60*1000)),

tag, COUNT(*) as count
FROM Tags t
GROUP BY (timestamp - (timestamp % (60*1000)), tag

Queries where the window size is larger than the slide amount can also be handled but
will result in updates to all relevant epochs. Stale epochs can be garbage collected.

5.3 Bounding Storage Costs

Once a candidate view has been produced by the selection algorithm described above, Phase 2
performs a static analysis of the maximum possible storage requirements. If the analysis
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determines that the view could grow super-linearly relative to the size of the base relations,
the view is rejected, as its creation might violate Invariant 3.

PIQL’s view size analysis utilizes dependency information from both the schema and
the view definition. Note that the dependencies defined in this section subsume standard
functional dependencies, where the latter can be represented as a cardinality dependency of
weight one.

At a high level, the algorithm bounds the maximum size of view by determining how many
degrees of freedom remain after taking into account all of the tuples from a single relation in
the view definition. In doing so, the algorithm determines whether the dependencies present
are su�cient to ensure that the view is bounded in size by a constant factor relative to at
least one base relation.

5.3.1 Enumerating Dependencies

The analysis starts by constructing the list of all dependencies for a given view definition.
These dependencies are generated by analyzing the view as well as the schema of the appli-
cation using the following four rules:

1. (keyAttributes)! (otherAttributes)
Add a dependency of weight one to represent the functional dependency due to the
primary key’s uniqueness constraint.

2. (keyAttributes)
cardinality������! (constrainedF ields)

Add a dependency for each relation that has a cardinality constraint declared in the
schema, weighted by the cardinality of the constraint.

3. attribute1 $ attribute2
Add a bidirectional dependency of weight one for each attribute pair present in an
equality predicate in the WHERE clause of the view definition.

4. Fixed Value! attr
Add a directional edge from a special fixed node to any attribute that is fixed by an
equality predicate with a literal (e.g. attr = true). This dependency is always implied,
independent of what other dependencies are being considered.

Take, for example, the view definition of the twoTags query from the previous section.
Given this view definition, the algorithm will produce the following list of dependencies. I
omit trivial dependencies for the sake of brevity.
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d.id! (d.timestamp, . . .) (5.1)

t1.docId
K�! t1.tag (5.2)

t2.docId
K�! t2.tag (5.3)

t1.docId$ t2.docId (5.4)

t1.docId$ d.docId (5.5)

First, dependency 1 is added to the set due to the primary key of the document relations.
Next, dependencies 2 and 3 are added to the set due to the cardinality constraint that each
document may have no more than K tags. Finally, dependencies 4 and 5 are added as a
result of the equality predicates present in the view definition.

5.3.2 Bounding Size Relative to a Relation

The following algorithm determines if the maximum size of the view is linearly proportional to
one of the relations present in the query, using the dependency list generated by the above
rules. This analysis is performed by finding a relation present in the query such that all
attributes present in the view are functionally dependent on the primary key of the selected
relation. If independent attributes remain after the inclusion of all possible dependencies,
then a bound on the size of the IMV does not exist relative to that relation. If no relation
can be found such that all attributes are functionally dependent on its primary key, then the
view is rejected due to a possible violation of Invariant 3.

Algorithm 6 Bounding Maximum View Size
1: R := the set of all relations present in the view
2: D := the set of dependencies for the IMV
3: for all r 2 R do
4: A

dep

:= keyAttrs(r)
5: repeat
6: A := {a | a 2 attrs(R), a 62 a

dep

, D |= A
dep

! a}
7: A

dep

:= A
dep

[ A
8: if A

dep

◆ attrs(R) then
9: return true
10: end if
11: until |A| = 0
12: end for
13: return false

Algorithm 6 describes this process formally and takes as input the set of all relations
present in the view and all dependencies for the IMV (Lines 1-2). It returns a boolean value
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indicating if there is an upper bound on the size of the view due to these dependencies.
The algorithm iterates over all of the relations present in the view definition. For each
relation, the set of attributes functionally dependent on this relation a

dep

is initialized to
the key attributes of the relation (Line 4). Then the algorithm iteratively selects the set of
attributes a that are functionally dependent on the attributes in a

dep

given D but are not yet
present in a

dep

(Line 6). These new attributes are then added to a
dep

(Line 7). If a
dep

now
includes all attributes from the view, the optimizer knows the view size is bounded relative
to the relation r, and the algorithm returns true (Lines 8-10). The iteration stops if at any
point there are no more attributes to add to the set (Line 11). If no bound can be found for
any relation, the algorithm returns false (Line 13).

To understand this process more concretely, consider again the definition of the IMV
created by the PIQL system to answer the twoTags query. Algorithm 6 will start by selecting
the Tags (t1) relation. This initializes a

dep

to {t1.id, t1.tag}. On the first iteration, it
will add {t2.docId, d.docId} to a

dep

due to dependencies 4 and 5, respectively. Then, on
the second iteration, it will add all remaining attributes due to dependencies 1 and 3. At
this point, since all attributes in the query are in a

dep

, the algorithm will return true.
Note that Algorithm 6 would return false were it not for the cardinality constraint on

the number of tags per document (functional dependencies 2 and 3). To understand how this
schema modification could cause the twoTagView definition to violate Invariant 3, consider
the degenerate case of a database with only a single document. As the number of tags
increases, the size of the view would grow quadratically.

5.3.3 Views with GROUP BY

When the view contains a GROUP BY clause, the system must modify the procedure for
determining if the storage required by the view is bounded. This modification is a result of
the fact that the GROUP BY e↵ectively collapses many tuples down to those with unique values
for the attributes in the GROUP BY. Thus, instead of requiring attributes from all relations
to be covered by the dependencies, it is su�cient to have dependencies that cover only
the attributes being grouped on. This change can be implemented simply by substituting
attrs(R) with the set of attributes present in the GROUP BY on Line 8 of Algorithm 6.

5.4 Bounding Maintenance Cost

Once the view selection system has produced a candidate view and verified that a bound
exists for the storage required by the view, Phase 3 ensures the existence of an upper bound
on the number of operations required by incremental maintenance, given a single update to
any of the relations present in the view. In this section, I first review the standard techniques
used to perform incremental maintenance. I then explain the analysis performed to ensure
that the total number of operations required by this mechanism will be bounded.
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5.4.1 Maintenance Using Production Rules

Recall from Section 2.3 that incremental maintenance can be performed through the use of
production rules [21] that execute each time a base relation is modified. At a high level, the
production rules update the view by running a delta query. This delta query calculates all
of the tuples that should be added or removed from the view due to a single tuple insertion
or deletion. An updated tuple is processed as a delete followed by an insert.

Since PIQL’s view construction algorithm ensures the safety of incremental maintenance,
the delta query for an update can be derived by substituting the updated relation with the
single tuple being inserted or deleted. In order to understand the delta query’s derivation
more concretely, consider the IMV twoTagsView when a new tag is inserted. PIQL’s view
selection system would calculate the first delta query by substituting the relation t1 with
the modified tuple in the view definition. Notationally, I represent the values of inserted or
deleted tuple as <parameters> to the delta query. This substitution produces the following
rule which will be run anytime a tuple is added to the Tags relation:

CREATE RULE newTag ON INSERT Tags
INSERT INTO twoTagsView
SELECT <tag>, t2.tag as t2tag, d.timestamp, d.docId
FROM Tags t2,

Documents d
WHERE t2.docId = <docId> AND

d.docId = <docId>

Rules containing delta queries must be created for each of the relations present in the
view definition, though I omit the remainder of this process for brevity. It should be noted
that for queries containing self-joins, all delta queries for the modified relation must be run
for an inserted or deleted tuple. For example, when a new tag is inserted the delta query for
both t1 and t2 must be run to update the twoTagsView.

5.4.2 Maintenance Cost Analysis

Given all of the delta queries for a view, PIQL must verify that none of them threaten the
scalability of the application by requiring an unbounded number of operations during execu-
tion. Fortunately, since these delta queries are represented as SQL queries, the view selection
system can reuse the optimization techniques from Chapter 4 to perform this analysis. If the
optimizer is able to find scale-independent plans for all of the delta queries, then the system
can certify that the addition of the view will not cause a violation of Invariant 2.

For example, consider the delta query newTag from the previous subsection. Due to
the cardinality constraint on the number of tags per document, this query can always be
executed by performing a single sequential scan over a secondary index.

Since verifying the scalability of the delta queries involves invoking the optimizer again, it
is possible that the only scale-independent physical plan for a delta query will also require the
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creation of an index or materialized view. Thus, in some cases the creation of a materialized
view could result in multiple recursive invocations of the view selection system. Fortunately,
it is known that this recursion will always terminate since the degree of the query will
decrease with each successive derivation [50].

5.4.3 Updating Aggregates

Materialized views that contain aggregates are also maintained using delta queries with
one important distinction. Delta queries for aggregate functions return a list of updates
to possibly existing rows instead of tuples that will be added or removed from the IMV.
Notationally, I represent the update that will be applied to a given field in the view as an
expression in the SELECT clause prefixed by a +.

The delta queries themselves are derived using rules similar to those used for other queries.
Specifically, the inserted tuple is substituted for the relation being updated and simplified,
leveraging the distributivity properties of joins and aggregates [50]. For example, considering
the view for the countTags query, the following delta query is used for maintenance:

CREATE RULE ON INSERT INTO Tags
ON INSERT INTO Tags
UPDATE twoTagsCount
SELECT <tag>, t2.tag, +1
FROM Tags t2
WHERE t2.docId = <docId>

When a new tag is inserted for a document, this query increments the count of all
combinations of this tag and others already present for that document. The rules for deletions
are symmetric and are omitted for brevity.

5.5 Evaluation of Incremental Precomputation

Incremental precomputation’s ability to convert previously problematic queries into scale-
independent ones is evaluated empirically by running the twoTags query on various data
sizes using both execution strategies. This query is interesting because it has no scale-
independent physical plans in SI-0 or SI-1. Thus, without an IMV, the twoTags query can
often be expected to return quickly, but common data patterns can result in arbitrarily
slow response times. For example, consider a case where a large number of documents are
assigned tag1 but few documents are also assigned tag2. With only an index, the system
will need to read many of the documents with tag1 during query execution, resulting in
query latency that grows proportionally with the number of tuples touched.

To validate whether this problematic scenario arises in practice, a dataset is constructed
at varying scales. The cardinality for each document’s tags is sampled from a Zipf distribu-
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tion (n=2000, s=0.1). This distribution was chosen as it approximates the frequency of tags
in a social context [29, 61].

The performance of the twoTags query is measured at scale by partitioning the Tags
relation as well as its materialized view evenly across the cluster. Each partition is replicated
twice for both availability and performance. For each data point, the experiment begins by
bulk loading a set of initial tags into each partition, ensuring the number of tags chosen fits
in the memory of the machine. This in-memory constraint was met by fixing the number of
tags at 200,000 for each physical partition. This configuration guarantees that the amount
of data and the number of machines increase at the same rate. A cardinality constraint of
10 tags per document is enforced, with an average of four tags per document initially. For
each data point, the results from multiple runs across di↵erent EC2 cluster instantiations are
combined, and the first run of any setup is discarded to mitigate JIT warm-up e↵ects. A 2:1
ratio of storage to client nodes is maintained across cluster sizes, with each client utilizing
two reader and two writer threads to issue requests to storage concurrently. Since writes are
significantly more expensive than reads, this results in a read-write ratio to the database of
approximately 25 to 1.

5.5.1 On-Demand vs. Materialization

The evaluation begins with a comparison of the execution time both execution strategies.
Figure 5.2 shows that if the system attempts to execute the query using an unbounded
query plan, the 99th percentile latency grows linearly with the size of the data, and the
query read latency quickly rises to over a second. The significant increase in response time
clearly demonstrates the danger of allowing queries with scale-dependent plans to run in
production. In contrast, when the same query is executed under SI-2 with an IMV, the
response time remains nearly constant, leveling o↵ at a 99th percentile latency of 8ms.

Additionally, Figure 5.3 shows that the throughput of the application increases nearly
linearly with the number of machines utilized when taking advantage of the IMV. In contrast,
the performance su↵ers when attempting to run the same query using the unbounded physical
plan due to the increasing cost of execution.

5.5.2 Cost of Incremental View Maintenance

The previous section demonstrated that the use of unbounded query plan can have a signifi-
cant e↵ect on the response time of queries in an application. Fortunately, when the twoTags
query is instead executed using a physical plan from SI-2 the response time remains nearly
constant at 8ms. However, since executing the query under SI-2 involves shifting some of
the computational work to insertion time, the analysis must also verify that this extra work
does not negatively impact the scalability of writes to the application. This verification is
performed by measuring the write performance as both the size of the data and the number
of machines in the cluster increase.
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Figure 5.2: 99th-percentile query latency as cluster size grows. When executing the query
with an unbounded physical plan, the latency of the twoTags query grows linearly with the
scale of the application. In contrast, read latency is nearly constant (and much lower) when
using a scale-independent query plan under execution level SI-2.

While the incremental view maintenance could be performed asynchronously, returning
to the user immediately after the write is received, the system is instead modified to perform
all maintenance synchronously for the purpose of this experiment. Figure 5.4 shows the
e↵ect that the maintenance of the materialized view has on write latency.

While latency of updates to the Tags relation is a↵ected by view maintenance, the increase
is relatively small (⇠ 110ms in the worst case) and remained virtually constant for cluster
sizes larger than 40 nodes. The initial increase in write latency as the cluster grows is due to
the fact that the number of partitions in the system was small with respect to the cardinality
constraint on tags. This relatively large cardinality constraint means that, for a smaller
cluster, fewer partitions are often contacted per write, since some writes will go to the same
machine. However, since Invariant 2 bounds the number of writes that will be performed in
the worst case, eventually the maximum distribution is reached and the performance e↵ect
leveled o↵. Developers who wish to reason about the worst case performance as the cluster
grows could simply disable the batching optimization performed by the execution engine.
Doing so would simulate the performance that could be expected when maximum possible
distribution is achieved.
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Figure 5.3: The throughput of the system increases linearly with the resources provided
when using an IMV.

Figure 5.4: The write completion time remains bounded even with the additional overhead
of incremental view maintenance.

5.6 Avoiding Common Hotspots

Preventing workload hotspots is critical when attempting to maintain consistent performance
in a distributed query execution system. While clearly it is not possible to predict and avoid
all possible hotspots, PIQL is able to detect some common cases using schema annotations
provided by the developer.

Based on these annotations, PIQL will avoid creating indexes that could result in a
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hotspot, and will instead suggest views that spread the insertions across the cluster. In this
section, I describe an addition to standard SQL Data Definition Language (DDL) and the
technique used to rewrite potentially problematic queries.

5.6.1 DDL Annotations

PIQL allows developers to annotate columns whose values exhibit strong temporal locality
with respect to insertions. Figure 5.5 shows the canonical example of such locality, an index
over the creation timestamp for a given record. Since all records created within a short time
period will have similar values for this attribute, all updates to an index ordered over this
attribute will be routed to the same partition. While this concentration of updates will not
result in performance issues at a small scale, it is in direct conflict of the goal of predictable
performance as the system grows.
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Figure 5.5: Indexes over timestamp can result in hotspots, denoted by the shaded server. In
contrast, PIQL chooses to distribute insertions over all machines in the cluster.

Developers can warn the optimizer to avoid the creation of these hotspot-prone indexes
by using the TEMPORAL keyword. For example, consider the following modification to the
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Tags schema, first introduced in Section 2.3.2.

CREATE TABLE Tags (
docId INT,
tag VARCHAR,
timestamp DATETIME TEMPORAL,
CARDINALITY LIMIT 5 (docID)

);

5.6.2 Query Rewriting

When PIQL detects a hot-spot prone index, it instead creates materialized views that can
be used to answer the query using a two step process. As an example of a case where this
rewriting would occur, consider the following query, popularTags, which returns the most
popular tags out of the most recent 5000 insertions.

SELECT tag, COUNT(*)
FROM (SELECT * FROM Tags

ORDER BY timestamp
LIMIT 5000)
GROUP BY tag

If the developer failed to include the TEMPORAL keyword on timestamp, the optimizer
would attempt to execute this query on-demand under SI-1 using an index over Tags.timestamp.
This execution plan would be problematic at scale, however, as maintaining this index in a
range-partitioned system would eventually lead to an overloaded partition and subsequently
high query latency.

Instead of creating this hot-spot prone index, PIQL will instead create a view that is
hash partitioned by the primary key of the relation. In the example below, this partitioning
can be seen though the HASH keyword at the beginning of the view definition. Within each
partition the records are sorted by the TEMPORAL attribute (i.e., timestamp in this example).
Any remaining required attributes are appended to the end of SELECT clause. This procedure
results in the following materialized view for the popularTags query.

CREATE VIEW popularTagStaging
SELECT HASH(tag, docId), timestamp, tag
FROM Tags

Next, the original query is rewritten as a periodically updated materialized view by
substituting the original relation with the hash-partitioned materialized view. For the
popularTags query this transformation results in the following SQL.

CREATE VIEW popularTags PERIODIC 1 MIN
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SELECT tag, COUNT(*)
FROM (SELECT * FROM popularTagStaging

ORDER BY timestamp
LIMIT 5000)

GROUP BY tag

The optimizer will choose a physical plan that executes the subquery in parallel on each
partition. Since the tuples in each of the partitions are sorted by the desired ordering at-
tribute, each partition will only need to scan over 5000 tuples in the worst case. Therefore,
the total amount of work that needs to be performed serially has a constant upper bound.
However, since the total amount of computation is now proportional to the number of ma-
chines in the cluster, this query now falls into SI-3, unlike the twoTags query from the
previous sections, which falls into SI-2. The next section demonstrates empirically that even
though the total amount of work grows with the size of the cluster, the increased parallelism
allows us to execute the query with only minor increases in the periodic update latency.

5.7 Evaluation of Periodic Refresh

The performance of periodically refreshed views is evaluated by executing the TPC-W bench-
mark, which was introduced in Section 4.3. Recall from earlier that two of the web inter-
actions have no scale independent plans under SI-0 or SI-1. Fortunately, PIQL’s automatic
creation of materialized views allows for full scale-independent execution of the benchmark,
including the analytic queries.

These two web interactions require the creation of materialized views due to the work-
load hotspots that would result from their unmodified execution. The first, the BestSellerWI,
returns the top 50 most popular items from the last 3333 orders. The second, AdminCon-
firmWI, returns the 5 most common items co-purchased with a specified item from the last
10,000 orders. Since executing either of these interactions on-demand would require an in-
dex over the creation time for a given order, the system instead suggests that the answer is
precomputed using periodically refreshed materialized views.

For the purpose of this evaluation, this transformation is taken a step further by changing
the tuple windows to calculate instead the result over hour-long time windows. The reasoning
behind this transformation is as follows: TPC-W was initially designed to be run on a single
machine and thus the queries were not written expecting arbitrarily high order rates. Since
a time window both provides a more semantically consistent result as the system grows and
requires strictly more work to maintain than simple tuple windows, this implementation is
preferable for a full evaluation.

The first part of the evaluation looks at the 99th percentile response time for each of
the web interactions as datasize grows. Figure 5.6 shows that, even after adding the two
analytic web interactions, the response time remains virtually constant, independent of the
size of the data.
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Figure 5.6: The response time for maintaining the IMVs for the TPC-W workload increases
slightly initially, but it eventually levels o↵ due to the limitations imposed by the the scale-
independent invariants.

Only the ShoppingCart web interaction shows any noticeable change in performance with
datasize. This initial increase in latency occurs because at small cluster sizes fewer machines
need to be contacted in order to answer the query. However, due to the upper bound on
the total number of operations that will be performed by any query, the latency eventually
levels o↵ as query execution begins to touch the maximum possible number of machines.

Since the execution of the two analytic queries in the TPC-W benchmark requires main-
tenance to be performed as data is added into the database, it is also important to measure
the latency of the web interaction that performs this maintenance. Figure 5.7 shows that,
due to the invariants enforced by PIQL’s optimizer, the response time for delta query exe-
cution is bounded even as the size of the cluster increases. While the response time exhibits
an initial increase in latency similar to the twoTags query or the ShoppingCart interaction,
the strict upper bound on the number of operations performed in the worst case causes the
performance to level o↵ eventually.

5.7.1 Latency of Parallel View Refresh

The performance of the incremental maintenance that was analyzed in the previous section
is not the only precomputation that must occur to enable scale-independent execution of
these analytic web interactions. Specifically, since the results are hash partitioned across
the cluster to avoid hotspots, the actual results for these two web interactions also need
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Figure 5.7: The response time for maintaining the IMVs for the TPC-W workload increases
initially, but eventually levels o↵ due to the limitations imposed by the the scale-independent
invariants.

to be periodically computed in parallel. Figure 5.8 shows that since each partition can be
processed in parallel, the overall time taken for the refresh step increases only slightly (less
than a second) as the system scales from 20 to 100 machines.

Figure 5.8: Since the amount of serial work per update stays constant independent of the
size of the cluster, the latency for periodic view refresh remains nearly constant.
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5.8 Summary

Precomputation can often enable the scale independent execution of queries that have no
scale-independent physical plans in SI-0 or SI-1. The PIQL optimizer will automatically
recognize such queries and construct an appropriate IMV. However, it is important to avoid
cases where the storage and maintenance cost of an IMV could cause scaling problems in
production. To avoid the creation of potentially unscalable views, PIQL view selection
system uses novel static analysis algorithms that ensure that bounds exist on the size and
update costs for all created views.

Using these computation-shifting techniques greatly expands the space of scale indepen-
dent queries. Now that I have described a range of strategies for the scale-independent
relational query execution, the next chapter continues with a discussion of the infrastruc-
tural support that these techniques leverage in order to provide predictable overall execution
time.
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Chapter 6

Distributed Storage Manager Support
for Scale Independence

6.1 Introduction

PIQL’s query execution engine is designed to leverage the scalability of existing distributed
storage systems. However, during the construction of the PIQL system, it was found that
no freely available storage systems implemented the features required for a full evaluation
of scale-independent query processing. This chapter describes the SCADS1 key/value store
[9], which was developed to address these concerns. In addition to describing the function-
ality of SCADS, I di↵erentiate those aspects of the design that are key to providing scale
independence from those which simply help to reduce query processing latency.

This chapter starts with a high-level description of the storage operations that are re-
quired by the PIQL execution engine. Next, Section 6.3 describes the overall architecture of
SCADS. In particular, this section focuses on the division of responsibility between storage
nodes and the SCADS client library. Building on this foundation, Section 6.4 evaluates the
importance of asynchrony in communication between these two components. SCADS is only
able to provide consistent performance for storage operations when data is evenly distributed
across many machines. Section 6.5 describes the API for managing this distribution. Key to
the performance of any distributed system is the trade-o↵ that is made between consistency,
availability, and partition tolerance [34]. Towards this end, Section 6.6 discusses how PIQL
builds on the eventual consistency provided by SCADS to ensure all secondary structures
used in query execution are maintained consistently. Finally, Section 6.7 describes the in-
frastructure used in this thesis for running experiments on large clusters of machines. This
section is aimed primarily at readers who wish to recreate or extend the evaluation presented
in this thesis and can be safely skipped by others.

1
Short for Scalable Consistency Adjustable Data Storage.
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6.2 Supported Operations

SCADS supports two types of operations: Those that touch a bounded number of servers,
and those that run requests on all machines in parallel. Each operation is performed against
a namespace. A namespace is a logical collection of data that have the same schema. PIQL
uses di↵erent namespaces for each relation, index, or materialized view that is present in an
application.

6.2.1 Bounded-Time Operations

SCADS supports common key/value operations for accessing and modifying data in the
system. This section describes the semantics of each of these five basic operations. Each
basic operation touches a fixed number of servers and is expected to return in a bounded
amount of time, independent of the number of machines in the cluster.

get(key): value A get takes a full key and returns a single value. The get operation
is used by PIQL for the IndexForeignKeyJoin operation, since the whole key for the
joined tuple is known. While this operation could be emulated by a getRange, it is
included for e�ciency reasons. This e�ciency comes from the simpler operation used
to lookup a single value, which does not require opening a cursor in the underlying
storage system.

put(key, value) A put request updates the value stored for the specified key. If the value
does not exist in the system, then a new record is created. If no value is specified,
then the record with that key is deleted. PIQL translates INSERT operations into put
requests.

testAndSet(key, oldValue, newValue): success Test and set conditionally changes
the value stored for the specified key to newValue, but only if the currently stored
value is equal to oldValue. By leaving oldValue blank, PIQL can ensure that the
update is only performed if the key was not previously stored in the system. PIQL
uses the operation to enforce uniqueness constraints when adding new records to the
database.

getRange(startKey, endKey, limit, ascending): key/value pairs A getRange op-
eration returns up to limit key/value pairs that fall in-between startKey and endKey.
The key/value pairs are returned in sorted order, either ascending or descending, de-
pending on the value of the ascending parameter. Additionally, if only a prefix
of the fields present in the key are specified, the startKey and endKey are padded
with the minimum and maximum values respectively. Together these semantics make
it possible for PIQL to use getRange requests to perform index scans. For exam-
ple, consider the twoTag materialized view from Section 2.3.2, which has the follow-
ing schema: TwoTags(tag1, tag2, timestamp, docId). PIQL can retrieve the ten
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most-recent documents with the tags “lady” and “gaga” by issuing the following re-
quest: getRange({lady, gaga, ,}, {lady, gaga, ,}, 10, false).

incrementField(key, field, delta) An incrementField request updates the record
with the specified key by adding delta to the specified field. This operation could
also be performed by a get followed by a testAndSet; however, this method adds the
additional latency of a server round trip. Additionally, multiple increment fields can
be coalesced as a result of the commutativity of this operation.

6.2.2 Scale-Dependent Operations

Not all operations supported by SCADS touch a fixed number of servers. For example, the
operations that are used to periodically refresh views maintained under SI-3 require scanning
large amounts of data in parallel on many di↵erent storage nodes. In order to support this
type of update e�ciently, SCADS provides the following two operations:

topK(startKey, endKey, ordering, k): result The topK operation is performed by
sending requests to one replica in each partition between startKey and endKey. Each
partition is of roughly a fixed size and the operation proceeds in parallel on each
machine. Therefore, in general, topK operations take roughly a fixed amount of time
to complete independent of the amount of data in the system. However, the number
of tuples that must be sent back to the client might grow with the size of the cluster.
Fortunately, as shown in the evaluation from Section 5.7, this growth resulted in a
negligible slowdown as the side of the cluster grew.

groupedTopK(startKey, endKey, grouping, ordering, k, target) The grouped-topK
is similar to the previous operation but instead calculates the top K records for each
each unique value of the specified groupingFields. For e�ciency, the grouping fields
must be a prefix of the key. This restriction ensures that the tuples for any given group
are contiguous, thus avoiding the need for inter-partition communication.

The number of groups is proportional to the cardinality of the grouping attributes,
thus instead of each partition returning the topK tuples to a single client machine, the
results are instead inserted into a target namespace. As long as this target namespace
is evenly partitioned across the cluster, the inserts will be spread out to many di↵erent
machines.

To better understand the operation of the groupedTopK, consider the following view used
to count book orders per subject in the TPC-W benchmark.
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subject itemID count
computers 111 1
computers 112 999
computers 113 2
computers 114 0
poetry 115 10
poetry 116 1000

The operation groupedTopK({,,}, {,,}, [subject], [count], 1) would return the
tuples for items 112 and 116.

Another important set of advanced operations involve changing the placement of data in
the cluster. This placement is critical to scale independence, as machines that are over ca-
pacity are unable to handle requests in a timely manner and can hurt the overall performance
of query execution. Section 6.5 describes these operations in more detail.

6.3 Architecture Overview

Figure 6.1 shows the high-level architecture of the SCADS/PIQL system. At the top of the
stack lie the components of the PIQL relational engine. Beneath PIQL lies the client portion
of the SCADS key/value store (Section 6.3.2). The client communicates with the storage
nodes (Section 6.3.1) using a message passing abstraction (Section 6.4.2).

All of the components run on top of Mesos [46], a cluster scheduling system, which
allows more nodes to be dynamically added to the SCADS cluster as the workload demands.
Coordination between SCADS components, such as storing the routing table and distributing
metadata, is performed using ZooKeeper [48]. Based on Google’s Chubby [18], ZooKeeper
acts partly as a lock manager and partly as a consistent distributed filesystem.

6.3.1 Storage Nodes

At the base of the SCADS/PIQL database system architecture lie the storage nodes. Berkeley
DB (BDB) is used as the backing store and is responsible for persistence of data. The storage
nodes are designed to be relatively simple and communicate primarily with the clients instead
of amongst themselves. The only exception to this rule is the bulk data transfer operations.
When changing the layout of data for a given cluster, servers use an e�cient bulk transfer
protocol to directly move data between nodes.

6.3.2 Client Library

A majority of SCADS functionality, including concerns such as consistency and index man-
agement, is implemented as part of the client library. In Figure 6.1, the client library consists
of the red layers, “Trigger Support” through “Range Routing”.
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Figure 6.1: The architecture of the SCADS key/value store.

Di↵erent modules are implemented as Scala traits, allowing the developer to mix and
match the desired storage functionality for a given application. This development style is
known as the cake pattern [87]. For example, depending on the type of queries that are
required, the developer could choose either range partitioning or hash partitioning of data.
For the purpose of the experiments presented in this thesis, the following configuration was
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utilized:

class PairNamespace[Pair <: AvroPair : Manifest](
val name: String,
val cluster: ScadsCluster,
val root: ZooKeeperProxy#ZooKeeperNode)

extends Namespace
with SimpleRecordMetadata
with ZooKeeperGlobalMetadata
with DefaultKeyRangeRoutable
with QuorumRangeProtocol
with AvroPairSerializer[Pair]
with RecordStore[Pair]
with CacheManager[Pair]
with index.IndexManager[Pair]
with index.ViewManager[Pair]
with DebuggingClient
with PerformanceLogger[Pair]
with NamespaceIterator[Pair]
...

The handling of metadata in the cluster as well as the partitioning of data across nodes
are specified by the top three traits in the namespace declaration (SimpleRecordMetadata,
ZooKeeperGlobalMetadata, DefaultKeyRangeRoutable). The QuorumRangeProtocol trait
indicates that consistency will be managed using a quorum strategy [81]. Next, the traits
AvroPairSerializer and RecordStore specify how records will be serialized for storage
and transmission over the network. Other functionality required by PIQL, such as index and
view maintenance, are then added to the system through the addition of the IndexManager
and ViewManager traits, respectively. Finally, debugging support for both performance and
correctness is provided by the final three traits.

6.4 Communications Layer

Between the storage nodes and client nodes lies the SCADS communication layer. This
section discusses the details of serialization and request handling, focusing on how SCADS
design choices both enable the functionality required by PIQL and decrease overall query
response time.

6.4.1 Serialization

Many key/value stores do not specify a particular data serialization format. Instead, these
systems model data as simple binary strings. This approach is su�cient for simple operations
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like get and put, and allows for increased flexibility by giving the higher layers the option
to choose the most appropriate representation of data.

Unfortunately, there are many important operations that are not possible when the stor-
age system is unable to understand the semantics of the data being stored. For example,
operations such as incrementField cannot be performed if the storage system does not
have access to the individual attributes for a given tuple. Additionally, operations such as
groupedTopK, which are necessary for SI-3, also require understanding the schema of the
data being stored.

For this reason, SCADS was designed to use Apache Avro [76] serialization to store and
transmit data. Similar to other cross-language serialization schemes, such as Google Protocol
Bu↵ers [64] and Thrift [78], Avro allows developers to define schema using a language-
independent interface definition language (IDL). This IDL allows the specification of record
schemas, each of which can contain strongly typed attributes, arrays, and even other nested
records. Using this description, the Avro libraries are capable of quickly and compactly
serializing a tuple into a string of bytes.

SCADS takes this concept one step further by providing language integrated schema
definition. Using a plug-in to the Scala compiler, SCADS scans the code of an application
for classes that are annotated with a special marker, AvroPair, and adds methods allowing for
e�cient binary serialization. For example, the schema for the twoTags query (Section 3.3.1)
can be represented as follows:

case class Document(var docId: Int, var timestamp: Long) extends AvroPair {
var text: String

}
case class Tag(var docId: Int, var tag: String) extends AvroPair

This feature allows developers to avoid the mismatch between SQL and the program-
ming languages type system (often referred to as an impedance mismatch) that is typically
associated with relational database interface libraries, such as JDBC [68].

6.4.2 Message Passing

While orthogonal to scale independence, allowing asynchrony for remote requests is key to
meeting the strict SLOs common for web applications. Specifically, it is very important that
the execution engine is capable of issuing many requests to the key/value store in parallel.
Similar to the concept of asynchronous iteration [35], parallel requests can reduce overall
response time by by overlapping the wait time. This functionality is critical to performance,
because sending the requests individually wastes valuable execution time while waiting for
requests to return. Figure 6.2 illustrates the e↵ect on query response time when requests are
made in parallel instead of serially.

To enable this performance optimization, the SCADS communication system supports
the following three di↵erent types of remote requests.
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Figure 6.2: An illustration of overall query response time with synchronous and asynchronous
RPCs.

Synchronous When only a single request needs to be made or when simplicity is more
important than performance, the communication system allows the developer to make
standard blocking RPC calls. Each remote request must result in exactly one response.
A user configurable timeout is used to avoid stalling forever in the case of lost requests.

Asynchronous Futures Since blocking while waiting for a response can waste significant
amounts of execution time, the SCADS communication layer also provides the option
to receive a future as the result of a remote call. Using this feature, many messages
can be sent simultaneously, returning a collection of futures to the developer. Later,
when the result of the request is required, the future can be inspected to determine
if a response has been received. Library functions are also provided to operate on
collections of futures. For example, when implementing a quorum protocol, it is useful
to be able to send several requests to di↵erent machines and block until at least a
majority of the machines have responded.

Custom Message Handlers Finally, the communication system allows the developer to
write lightweight custom message handlers that process the responses to an arbitrary
number of remote requests in an event-driven manner. These handlers can either
process messages in parallel on multiple threads or provide actor semantics by ensuring
the message handler code is never run for more than a single message at a time. Custom
message handlers ease the implementation of complex multiphase protocols, such as
MDCC [53].
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6.4.2.1 Evaluation of Asynchrony

The flexibility of the communication system allows for the implementation of di↵erent ex-
ecution strategies, the choice of which can have a significant e↵ect on the overall response
time for an application. This e↵ect can be evaluated by running the TPC-W benchmark on
a fixed cluster size using each of the di↵erent execution strategies. In this experiment, three
di↵erent variants of the PIQL execution engine are run on a cluster with 10 storage nodes
and 5 client machines. The amount of data and the length of the experiment are kept the
same as in the TPC-W scale experiment.

Figure 6.3 shows the 99th-percentile latency for each execution strategy. The first strat-
egy, called the Lazy Executor, operates in a similar fashion to a traditional relational
database system by requesting a single tuple at a time from the key/value store, block-
ing until a response is received. The second strategy, called the Simple Executor, utilizes
the extra limit hint information provided by the optimizer to request data in batches from
the key/value store; however, it waits for each request to return before issuing the next. The
final strategy, called the Parallel Executor, uses the extra limit hint information and issues
all key/value store requests in parallel for a given remote operator. The results show the
importance of both the limit hint information and the intra-query parallelism enabled by
the SCADS communication layer.

331#
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0# 200# 400# 600# 800#
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Figure 6.3: TPC-W 99th Percentile Response Time By Varying the Execution Strategy.

6.5 Data partitioning

The ability to spread data out over many machines is critical to building a scale-independent
system. PIQL is only able to maintain consistent response time as the data and system size
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grow because SCADS is capable of evenly spreading data and requests across a cluster of
increasing size.

At the core of SCADS data layout abstraction lies the idea of a partition. Each partition
is responsible for the data in a namespace that falls between the specified start key and
end key. Multiple replicas can exist for each partition, allowing for greater availability and
performance. As suggested by Je↵ Dean [30], an architect of many of Google’s distributed
system, each machine is responsible for ⇠ 10 � 100 partitions. This level of partitioning
balances the need for fine-grained control of placement and workload information with the
overhead of managing individual partitions.

6.5.1 API for Changing Data Partitioning

In order to allow for experimentation with di↵erent data layout policies, SCADS provides
a programmatic API for modifying the placement of data. This API allows developers to
change the distribution of data across many machines while automatically handling concerns
such as transferring data, updating the routing table, and notifying clients of the update.
SCADS provides developers with the following four data placement primitives.

replicate(partitionId, newStorageNodeId): newPartitionId A replicate request takes
an existing partition and a storage node as arguments. Data from the existing parti-
tion is copied to the new server, and the routing table is updated to include the new
partition.

delete(partitionId) A delete request takes the address of an existing replica. The routing
table is updated to remove the specified replica and the data is lazily deleted. Data
can be moved from one server to another by issuing a replicate request followed by a
delete request.

split(splitPoint): newPartitionIds When a partition grows too large, it can be split.
A split request takes as input a value for the new split point. All replicas that contain
this point are then split into two new partitions and the address of these new partitions
is returned to the developer. The routing table is also updated to reflect the presence
of these new partitions.

merge(splitPoint): newPartitionIds Conversely, the developer can also merge parti-
tions by specifying a split point that should be removed from the routing table. The
replicas on either side of these points are merged, and the addresses of the newly
merged partitions are returned to the developer.

6.5.2 Autonomic Control

When performing the evaluation presented in this thesis, the above partitioning API was used
to statically distribute data evenly throughout the cluster, ensuring consistent response time
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for low-level storage operations. However, Trushkowsky, et al. [84] demonstrated that similar
performance can be obtained using a more autonomic approach. The SCADS director uses
the data partitioning API to dynamically change the distribution of data based on statistics
collected on the current workload.

Their technique, known as model predictive control, is based on building performance
models of the expected performance given a workload. This strategy avoids unnecessary
churn that results from attempting to make placement decisions using a noisy indicator like
99th percentile response time. Given a previously trained performance model and statistics
about the current workload, the director makes decisions about how to distribute data in
order to maintain the specified SLO.

6.6 Consistency

The SCADS storage system currently supports only eventual consistency [75]. While e�-
ciently providing full ACID transactions in a distributed system is out of the scope of this
thesis, it is important that PIQL does not allow permanent inconsistency in the secondary
structures used for query execution. Therefore, PIQL must build on the primitives provided
by SCADS to give developers a reasonable environment for building applications. For exam-
ple, atomic operations such as test-and-set can be used to deliver the expected uniqueness
semantics required to implement benchmarks such as TPC-W.

Other consistency requirements, however, can be more complicated. For example, main-
taining secondary indexes requires a form of atomicity, as a crash might cause indexes never
to be updated, which would not even provide eventual consistency. PIQL avoids this po-
tential inconsistency using the following index maintenance protocol. First, all new keys are
inserted to the namespace that holds the secondary index. Next, the actual value of the
record is updated. Finally, all stale secondary index entries are deleted from the secondary
index. This protocol ensures that, in the worse case, a crash could result in the presence of
dangling pointers in the secondary index. Fortunately, these can be detected and garbage
collected lazily using a modified form of read repair [47].

Cardinality constraints present an additional challenge in the face of eventual consistency.
PIQL ensures the cardinality constraints on relationships using the following protocol: After
inserting an item, the system checks the cardinality constraint using a count range request.
If the total count returned is less than the constraint, the insert is considered successful.
If not, the inserted record is deleted. Note that this protocol might temporarily violate
cardinality constraints for concurrent insertions.

Correctly maintaining views in the face of concurrent updates is the final challenge re-
sulting from SCADSs eventual consistency semantics. PIQL’s static analysis of materialized
views is generally orthogonal to the mechanism used to perform maintenance. Thus, these
techniques could be used together with di↵erent consistency maintenance strategies, such
as online maintenance [58, 62] or deferred view maintenance [66, 28], each of which provide
their own consistency semantics. Additionally, for applications with strong consistency re-
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quirements, a locking-based view maintenance mechanism can be used [62, 58]. However,
depending on the data access patterns involved, such locking-based techniques might create
contention points and, therefore, potentially violate the goal of predictable performance at
scale.

As an alternative to locking-based techniques, many deferred view maintenance tech-
niques, such as 2VNL [66], perform optimistic view maintenance. This approach frequently
yields better performance by avoiding contention points while providing a weaker consistency
guarantee (e.g., snapshot isolation). Finally, eventually consistent view maintenance tech-
niques [62] provide the lowest overhead per update, but often at the price of a few concurrent
updates never being reflected in the view (see also view maintenance anomalies [55]).

The current implementation of PIQL uses the simplest technique, relaxed view main-
tenance. This strategy ensures that all updates are eventually reflected in the view using
the following procedure: Delta queries execute under relaxed consistency, while background
batch jobs check for and repair any inconsistencies that may arise by periodically reconstruct-
ing the entire materialized view. The frequency of the execution of these batch jobs can be
tuned to meet the needs of a specific application. This approach represents a balance between
the needs for low-latency update propagation, high availability, and consistency. Clearly, the
e�ciency of PIQL could be improved by only checking for inconsistencies in those sections
of the view that have changed recently as done in [66]. This optimization, as well as other
mechanisms for eventually-consistent, distributed, incremental view maintenance, represent
interesting future research problems.

6.7 Deploying on Large Clusters

Another key feature of SCADS, which enabled much of the evaluation presented in this thesis,
is the built-in support for deploying the system on large clusters of machines. This section
briefly describes deploylib, the library used to run SCADS on large clusters of EC2 machines.
Readers who would like to experiment with the code presented can download SCADS, PIQL,
and all the code used for evaluation from https://github.com/radlab/scads. This section is
not intended as a full overview of the features of deploylib, but merely a starting point for
those wishing to rerun the experiments presented in this thesis. A more thorough description
of deploylib can be found at: https://github.com/radlab/SCADS/wiki/Deploylib.

The evaluation of SCADS and PIQL primarily relies on two components of deploylib.
The first component, deploylib.mesos.Cluster, uses ssh to set up and manage a cluster
of machines running the Mesos cluster scheduling system. The second, the service scheduler,
integrates with the sbt [80] build system to gather up all the required executable files and
launch a given program on Mesos. As an example, consider the following code segment,
which starts up a Mesos cluster on a set of EC2 machines and then runs a SCADS storage
node.

~/Workspace/radlab/scads> sbt mviews/deploy-console
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[info] Loading project definition from ~/Workspace/radlab/scads/project
[info] Set project to scads (in build file:~/Workspace/radlab/scads/)
[info] Starting scala interpreter...

import deploylib._
import deploylib.ec2._
import deploylib.mesos._
allJars: Seq[java.io.File] = List(deploylib_2.9.1-2.1.4-SNAPSHOT.jar, ...)
Type in expressions to have them evaluated.
Type :help for more information.

scala> cluster.setup(1)
INF [20130204-15:04:00.892] ec2: Updated EC2 instances state
INF [20130204-15:04:01.257] mesos: Starting a master.
INF [20130204-15:04:02.876] deploylib: Waiting for instance i-fe2b35a7
INF [20130204-15:04:03.631] deploylib: Waiting for instance i-f02b35a9
INF [20130204-15:04:04.168] deploylib: Waiting for instance i-f22b35ab
INF [20130204-15:05:35.188] ec2: Uploadingdeploylib_2.9.1-2...
...

scala> import org.apache.zookeeper.CreateMode
scala> val scadsRoot = cluster.zooKeeperRoot.createChild("testCluster")
scala> val engTask = ScalaEngineTask(scadsRoot.canonicalAddress).toJvmTask
scala> cluster.serviceScheduler !? RunExperimentRequest(engTask :: Nil)

The previous code segment starts by bringing up the deployment console. A deploy-
ment console provides support for interactively running commands on a cluster of machines.
Additionally, it integrates with the build system for the current project to ensure that the
latest version of any application code, including dependencies, is shipped to the servers
of the cluster for execution. Once the console is launched, the example next launches a
cluster of machines on Amazon’s EC2 using the cluster.setup command. A cluster con-
sists of a ZooKeeper quorum, a mesos master, and the specified number of machines. Af-
ter the cluster is started, the final three lines of code create a coordination point for the
scads cluster in ZooKeeper and then start a scads storage node instance by submitting a
RunExperimentRequest to the serviceScheduler. While this is only a simple example, all of
the experiments presented in this thesis can be run using similar techniques.

6.8 Summary

The SCADS storage system combines several techniques that enable the execution of com-
plicated applications that continue to meet their SLOs as the data grows rapidly. Some of
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these techniques are critical to scale independence. For example, the bounded time from
operations (Section 6.2.1) are used by the PIQL execution engine to answer queries under
execution level SI-0 – SI-2. Additionally, when queries are answered under SI-3 using peri-
odic view refresh, parallel operations such as topK and groupedTopK are required. Finally,
all of the performance guarantees provided by SCADS for these operations are only valid
when data is evenly distributed across the cluster using the data partitioning API.

In addition to providing the primitives required for scale-independent query execution,
SCADS also leverages several techniques that greatly reduce the absolute time taken to
execute queries. Specifically, the ability to make asynchronous requests to many storage
servers in parallel significantly diminishes the amount of time wasted waiting for requests to
return from remote machines. Taken together, the scale-independent optimization provided
by PIQL and the scalability of the SCADS architecture make it possible for developers to
easily build applications that perform predictably even as data sizes grow rapidly.
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Chapter 7

Conclusion

This chapter begins with a review of the primary contributions of this thesis. Next, I discuss
some of the primary limitations of PIQL’s implementation of scale independence, as well as
some possible future directions for scale independence research.

7.1 Contributions

I began this thesis by formally defining the characteristics of scalable queries. I used this
formalism to construct di↵erent classes of SQL queries, segmenting them based on the tech-
niques that are required to ensure they scale gracefully. Building on this theoretical foun-
dation, I presented PIQL, a first attempt at building a scale-independent RDBMS. PIQL is
capable of determining the inherent scalability of all the queries in an application. Further-
more, if these queries have been determined scalable, the underlying distributed architecture
can ensure that they execute with predictable performance as both data and the number of
machines grow. This accomplishment required rethinking the implementation at all layers,
including the query language, optimizer, view selection system, as well as the underlying
storage system.

The PIQL query compiler uses static analysis to allow only query plans where it can
calculate a bound on the number of key/value operations to be performed at every step in
their execution. Therefore, in contrast to traditional query optimizers, the objective function
of the query compiler is not to find the plan that is fastest on average. Rather, the goal is to
avoid performance degradation as the database grows. To avoid choosing plans that perform
too many storage operations, PIQL employs a worst case performance prediction model. If
the PIQL compiler cannot create a bounded plan for a query, it warns the developer and
suggests possible ways to bound the computation.

PIQL will warn the user if any queries cannot be deemed scale independent, in order to
prevent performance problems at runtime. Therefore, to support real-world applications, I
had to enhance the systems capabilities to handle SQL queries where it is simply impossible
to bound the number of storage operations required if all processing is performed on-demand.
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I found that it is often possible to answer such queries safely at scale by leveraging incremen-
tal precomputation, e↵ectively shifting some query processing work from execution time to
insertion time. I formally defined the classes of SQL queries where precomputation funda-
mentally changes the worst case execution cost at scale. Understanding the characteristics
of these classes allowed me to construct a scale-independent view selection and maintenance
system within PIQL.

7.2 Limitations

While the techniques presented in this thesis are more than su�cient to implement several
complex applications, it is my belief that this work represents only the tip of the scale-
independence iceberg. Specifically, the scale independence execution levels supported by
PIQL most likely represent only a subset of all possible mechanisms for executing queries
with predictable performance, even as the data grows by orders of magnitude. Since not
all possible execution strategies are supported in the current implementation, there exist
queries which the system will wrongly deem unscalable.

Traditional database systems take a di↵erent approach by allowing users to run any
query, even when an e�cient execution strategy cannot be found. PIQL, in contrast, can
make promises about the worst case execution time, but these assurances come at the cost
of possible false negatives. False negatives occur when a query that could theoretically be
executed scale-independently is rejected by the system. They can occur for two di↵erent rea-
sons. The first reason is that the optimizer might be missing necessary execution techniques,
such as range trees [22], as discussed below. In other words, the query belongs to a scale
independence execution level that has not yet been defined. The second reason is the built-in
assumption that all tables are going to grow significantly in size. While this assumption is
clearly safe, it can result in the system being overly cautious about what queries can be
executed, since in practice many tables are not going to grow arbitrarily large.

While rejecting false negatives limits the ability of PIQL to handle all queries as a tra-
ditional RDBMS would, I feel that it is a much better approach than accepting any false
positives, which would erode developer confidence in the performance guarantees and drive
them back to NoSQL ine�ciency.

7.3 Future Challenges

Going forward, research into scale-independent thinking should strive to increase the space of
queries which can be analyzed, optimized, and executed safely at scale. I see several specific
areas in which progress against this metric can be made.
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7.3.1 Other Index Structures and Execution Strategies

Increasing the number of index structures and execution strategies that are available to
the optimizer could increase the set of queries that can be run scale-independently. For
example, R-Trees could enable other types of queries to be run while only performing a
bounded number of operations. PIQL is currently unable to execute queries that involve
inequalities over multiple attributes as doing so might require scanning over an arbitrary
number of tuples from a standard secondary index. Fortunately, these other structures
could make such queries safe to run by extending SI-1.

7.3.2 Eventually Consistent View Maintenance

Precomputation is essential to alleviating many possible scaling problems. Unfortunately,
current view maintenance techniques are woefully inadequate, as they make many assump-
tions about consistency in order to ensure correct maintenance.

Since these assumptions are often unreasonable in a distributed system, the current
implementation of PIQL is only able to perform eventually consistent view maintenance by
periodically recomputing the contents of each view from scratch. While this strategy avoids
permanently lost writes, it comes at the cost of significant computational overhead.

Instead, an ideal system would be capable of updating views incrementally, detecting
conflicts and repairing them using a more e�cient process. Supporting scalability through
eventually consistent view maintenance is only going to become more important as geo-
graphic distribution of data becomes more pervasive. Therefore, developing a system with
such capabilities will be important to continue to support SI-2 and SI-3 for global data
management situations.

7.3.3 Big Data and Estimation

The scale-independent execution techniques described in this thesis focus on executing
queries where it is possible to return the exact results while bounding the amount of pro-
cessing work required. With the increasing popularity of “Big Data” analytics, it is often
desirable to be able to bound the response time for more complex analytic queries even when
it is not possible to bound the total amount of work required to compute an exact answer.

Fortunately, there has been a significant amount of work on estimating the answer to re-
lational queries using techniques such as sampling [1]. Switching to such a strategy, however,
raises several questions including: “In what cases can sampling be used to bound strictly
the amount of work required to answer a query?” and “How does error change for di↵erent
queries as the amount of data grows by orders of magnitude?” Expanding the concept of
scale-independence to answer these questions is likely a PhD thesis in itself.
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7.4 Final Remarks

The advent of the Internet has ushered in a new paradigm of software development, one in
which interactive applications can be developed in a single weekend and deployed without
capital investment to a user base that will ideally grow exponentially. The success of these
new applications is often evaluated by their ability to handle such intense scaling gracefully
over years of worldwide growth, since exploiting network e↵ects increases the value of the
experience that they o↵er to their users. A “success disaster” befalls applications whose
designers fail to predict the e↵ects that ceaseless growth will render on their performance
and user experience, often leading to the untimely demise of the application at the hands of
a less-bottlenecked competitor.

Unfortunately, the software development tools available to system architects embarking
on such projects lack the ability to provide insight into ine�ciencies that will threaten perfor-
mance as the application grows in popularity. Data management is the heart of the scalability
challenge, since most other components of web applications are stateless and, hence, trivially
scalable. Examining the current landscape of data management solutions reveals that none
of them support both ongoing developer productivity and long-term scalability robustness.

Traditional RDBMS tools provide developers with a consistent way of interacting with
data, hide challenges associated with concurrency and fault tolerance, and support declara-
tive query languages that make feature development faster and more agile. The data inde-
pendence provided by relational database systems has proven to be a huge boon to developer
productivity. By separating the semantics of data access from the details of performing it
e�ciently, the relational model allows developers to focus on adding features while often
providing better performance than hand-coded implementations. Even more importantly in
the modern world of agile development, this separation makes it easy to change the repre-
sentation of the data without impairing the functionality of the application.

However, RDBMS do little to prevent “success disasters”. In fact, many developers feel
that the declarative, high-level programming interface provided by SQL database systems
invites disaster by enabling them to inadvertently write queries prone to scalability problems.
As the actual mechanism for execution is divorced from specification given by the developer,
it can be very di�cult for developers to reason about performance problems. Furthermore,
as database statistics change with data growth, it is not uncommon for new query execution
strategies to be chosen. This inherent unpredictability can make it virtually impossible to
determine how application performance will change as popularity increases.

In contrast, NoSQL data management solutions provide developers with key/value stores
that are capable of scaling performance with machine count nearly as easily as stateless
system components. Developers seem willing to accept the straightforward pain of hand-
coding imperative queries against such distributed key/value stores, even at the cost of losing
physical and logical data independence. While changes to the data model in this paradigm
often require time-consuming rewrites of application-level code, the NoSQL developer can
feel confident in the performance of the current implementation.

Unfortunately, these developers must still choose an arbitrary scalability target and en-
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gineer their application to handle that particular level of tra�c. This brute-force solution
is sub-optimal for two reasons. First, this approach diverts critical development energy and
resources planning for tra�c that may never arrive. Second, even if popularity is achieved
and the engineering e↵ort is eventually warranted, the chosen scalability target may still
be insu�cient. So, while popular in the wild, NoSQL solutions add a host of di�culties to
application maintainability, all in the name of more predictable performance.

My thesis is that the schism between productivity and predictability is not fundamental
to distributed data management. By defining and reasoning about scale independence, a new
type of data independence, I have provided tools that ensure that applications will perform
predictably as they grow in popularity, while simultaneously preserving the many productiv-
ity benefits of the relational model. A scale-independent system is inherently success-tolerant,
assuring developers that their initial high-level, declarative implementation will survive the
massive onslaught of data intrinsic to success on the web.
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Appendix A

Creative Commons License

This is the text of Creative Commons Attribution-NonCommercial-NoDerivs License, version
3.0

A.1 License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE (”CCPL” OR ”LICENSE”). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF
THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU AC-
CEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE
EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LI-
CENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF
YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

(a) ”Adaptation” means a work based upon the Work, or upon the Work and other
pre-existing works, such as a translation, adaptation, derivative work, arrangement
of music or other alterations of a literary or artistic work, or phonogram or perfor-
mance and includes cinematographic adaptations or any other form in which the
Work may be recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a Collection will not
be considered an Adaptation for the purpose of this License. For the avoidance
of doubt, where the Work is a musical work, performance or phonogram, the syn-
chronization of the Work in timed-relation with a moving image (”synching”) will
be considered an Adaptation for the purpose of this License.
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(b) ”Collection” means a collection of literary or artistic works, such as encyclopedias
and anthologies, or performances, phonograms or broadcasts, or other works or
subject matter other than works listed in Section 1(f) below, which, by reason of
the selection and arrangement of their contents, constitute intellectual creations,
in which the Work is included in its entirety in unmodified form along with one
or more other contributions, each constituting separate and independent works in
themselves, which together are assembled into a collective whole. A work that
constitutes a Collection will not be considered an Adaptation (as defined above)
for the purposes of this License.

(c) ”Distribute” means to make available to the public the original and copies of the
Work through sale or other transfer of ownership.

(d) ”Licensor” means the individual, individuals, entity or entities that o↵er(s) the
Work under the terms of this License.

(e) ”Original Author” means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity
can be identified, the publisher; and in addition (i) in the case of a performance
the actors, singers, musicians, dancers, and other persons who act, sing, deliver,
declaim, play in, interpret or otherwise perform literary or artistic works or ex-
pressions of folklore; (ii) in the case of a phonogram the producer being the person
or legal entity who first fixes the sounds of a performance or other sounds; and,
(iii) in the case of broadcasts, the organization that transmits the broadcast.

(f) ”Work” means the literary and/or artistic work o↵ered under the terms of this
License including without limitation any production in the literary, scientific and
artistic domain, whatever may be the mode or form of its expression including
digital form, such as a book, pamphlet and other writing; a lecture, address, ser-
mon or other work of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical composition with or
without words; a cinematographic work to which are assimilated works expressed
by a process analogous to cinematography; a work of drawing, painting, archi-
tecture, sculpture, engraving or lithography; a photographic work to which are
assimilated works expressed by a process analogous to photography; a work of
applied art; an illustration, map, plan, sketch or three-dimensional work relative
to geography, topography, architecture or science; a performance; a broadcast; a
phonogram; a compilation of data to the extent it is protected as a copyrightable
work; or a work performed by a variety or circus performer to the extent it is not
otherwise considered a literary or artistic work.

(g) ”You” means an individual or entity exercising rights under this License who has
not previously violated the terms of this License with respect to the Work, or who
has received express permission from the Licensor to exercise rights under this
License despite a previous violation.
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(h) ”Publicly Perform” means to perform public recitations of the Work and to com-
municate to the public those public recitations, by any means or process, including
by wire or wireless means or public digital performances; to make available to the
public Works in such a way that members of the public may access these Works
from a place and at a place individually chosen by them; to perform the Work to
the public by any means or process and the communication to the public of the
performances of the Work, including by public digital performance; to broadcast
and rebroadcast the Work by any means including signs, sounds or images.

(i) ”Reproduce” means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram
in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict
any uses free from copyright or rights arising from limitations or exceptions that are
provided for in connection with the copyright protection under copyright law or other
applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the
applicable copyright) license to exercise the rights in the Work as stated below:

(a) to Reproduce the Work, to incorporate the Work into one or more Collections, and
to Reproduce the Work as incorporated in the Collections; and,

(b) to Distribute and Publicly Perform the Work including as incorporated in Collec-
tions.

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as are
technically necessary to exercise the rights in other media and formats, but otherwise
you have no rights to make Adaptations. Subject to 8(f), all rights not expressly
granted by Licensor are hereby reserved, including but not limited to the rights set
forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

(a) You may Distribute or Publicly Perform the Work only under the terms of this
License. You must include a copy of, or the Uniform Resource Identifier (URI)
for, this License with every copy of the Work You Distribute or Publicly Perform.
You may not o↵er or impose any terms on the Work that restrict the terms of this
License or the ability of the recipient of the Work to exercise the rights granted to
that recipient under the terms of the License. You may not sublicense the Work.
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You must keep intact all notices that refer to this License and to the disclaimer of
warranties with every copy of the Work You Distribute or Publicly Perform. When
You Distribute or Publicly Perform the Work, You may not impose any e↵ective
technological measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under the terms of
the License. This Section 4(a) applies to the Work as incorporated in a Collection,
but this does not require the Collection apart from the Work itself to be made
subject to the terms of this License. If You create a Collection, upon notice from
any Licensor You must, to the extent practicable, remove from the Collection any
credit as required by Section 4(c), as requested.

(b) You may not exercise any of the rights granted to You in Section 3 above in any
manner that is primarily intended for or directed toward commercial advantage
or private monetary compensation. The exchange of the Work for other copy-
righted works by means of digital file-sharing or otherwise shall not be considered
to be intended for or directed toward commercial advantage or private monetary
compensation, provided there is no payment of any monetary compensation in
connection with the exchange of copyrighted works.

(c) If You Distribute, or Publicly Perform the Work or Collections, You must, unless
a request has been made pursuant to Section 4(a), keep intact all copyright notices
for the Work and provide, reasonable to the medium or means You are utilizing:
(i) the name of the Original Author (or pseudonym, if applicable) if supplied,
and/or if the Original Author and/or Licensor designate another party or parties
(e.g., a sponsor institute, publishing entity, journal) for attribution (”Attribution
Parties”) in Licensor’s copyright notice, terms of service or by other reasonable
means, the name of such party or parties; (ii) the title of the Work if supplied;
(iii) to the extent reasonably practicable, the URI, if any, that Licensor specifies
to be associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work. The credit required by this Section
4(c) may be implemented in any reasonable manner; provided, however, that in
the case of a Collection, at a minimum such credit will appear, if a credit for all
contributing authors of Collection appears, then as part of these credits and in
a manner at least as prominent as the credits for the other contributing authors.
For the avoidance of doubt, You may only use the credit required by this Section
for the purpose of attribution in the manner set out above and, by exercising
Your rights under this License, You may not implicitly or explicitly assert or imply
any connection with, sponsorship or endorsement by the Original Author, Licensor
and/or Attribution Parties, as appropriate, of You or Your use of the Work, without
the separate, express prior written permission of the Original Author, Licensor
and/or Attribution Parties.

(d) For the avoidance of doubt:

i Non-waivable Compulsory License Schemes. In those jurisdictions in which
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the right to collect royalties through any statutory or compulsory licensing
scheme cannot be waived, the Licensor reserves the exclusive right to collect
such royalties for any exercise by You of the rights granted under this License;

ii Waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme
can be waived, the Licensor reserves the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License if Your exercise
of such rights is for a purpose or use which is otherwise than noncommercial as
permitted under Section 4(b) and otherwise waives the right to collect royalties
through any statutory or compulsory licensing scheme; and,

iii Voluntary License Schemes. The Licensor reserves the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a col-
lecting society that administers voluntary licensing schemes, via that society,
from any exercise by You of the rights granted under this License that is for
a purpose or use which is otherwise than noncommercial as permitted under
Section 4(b).

(e) Except as otherwise agreed in writing by the Licensor or as may be otherwise
permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the
Work either by itself or as part of any Collections, You must not distort, mutilate,
modify or take other derogatory action in relation to the Work which would be
prejudicial to the Original Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IM-
PLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR
OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ER-
RORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

6. Limitation on Liability.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARYDAM-
AGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination
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(a) This License and the rights granted hereunder will terminate automatically upon
any breach by You of the terms of this License. Individuals or entities who have
received Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance
with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of
this License.

(b) Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under di↵erent license terms or to
stop distributing the Work at any time; provided, however that any such election
will not serve to withdraw this License (or any other license that has been, or
is required to be, granted under the terms of this License), and this License will
continue in full force and e↵ect unless terminated as stated above.

8. Miscellaneous

(a) Each time You Distribute or Publicly Perform the Work or a Collection, the Licen-
sor o↵ers to the recipient a license to the Work on the same terms and conditions
as the license granted to You under this License.

(b) If any provision of this License is invalid or unenforceable under applicable law, it
shall not a↵ect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provision
shall be reformed to the minimum extent necessary to make such provision valid
and enforceable.

(c) No term or provision of this License shall be deemed waived and no breach con-
sented to unless such waiver or consent shall be in writing and signed by the party
to be charged with such waiver or consent.

(d) This License constitutes the entire agreement between the parties with respect to
the Work licensed here. There are no understandings, agreements or representa-
tions with respect to the Work not specified here. Licensor shall not be bound by
any additional provisions that may appear in any communication from You. This
License may not be modified without the mutual written agreement of the Licensor
and You.

(e) The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of
Literary and Artistic Works (as amended on September 28, 1979), the Rome Con-
vention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and
Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised
on July 24, 1971). These rights and subject matter take e↵ect in the relevant
jurisdiction in which the License terms are sought to be enforced according to the
corresponding provisions of the implementation of those treaty provisions in the
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applicable national law. If the standard suite of rights granted under applicable
copyright law includes additional rights not granted under this License, such addi-
tional rights are deemed to be included in the License; this License is not intended
to restrict the license of any rights under applicable law.
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