Let's Draw a Graph: An Introduction with Graphviz

Marc Khoury

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-176
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-176.html

October 28, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Let’s Draw a Graph
An Introduction with Graphviz

Marc Khoury

1 Introduction

Graphs are ubiquitous data structures in computer science. Many impmaaigms have solutions hidden
in the complexity of modern graphs, rendering effective visualization iqubs extremely valuable. The
need for such visualization techniques has led to the creation of a myriadpidf grawing algorithms.

We present several algorithms to draw several of the most common tyggapsfs. We will provide
instruction in the use of Graphviz, a popular open-source graph dygveickage developed at AT&T Labs,
to execute these algorithms. All figures shown herein were generated e @z.

2 The DOT Language

Visualization of a given graph requires that it first be represented wrradt understandable by graph
drawing packages. We will use the DOT format, a format that can encodeatidbutes of a graph in a
human-readable mannér [1].

2.1 Undirected Graphs

A DOT file for an undirected graph begins with the keywgrdphfollowed by the name of the graph. An
undirected edge between verticesndv can be specified by- - v. A simple example of an undirected
graph with five vertices and five edges is illustrated by Figlire 1, below.

Listing 1: A DOT file for a simple undirected graph with five vertices.
graph graphnane {

1-- 2;
3 -- 2
4 -- 1;
5 2 --5-- 4

Figure 1: Visualization of Listingl1 graph.

The Graphviz applicationeatois a straightforward method of rapidly visualizing undirected graphs in
the format described above. Figlile 1 was generated by the conmeannd - Teps undirect ed. gv
> undi r ect ed. eps, where undirected.gv is a file containing the code shown in Figure 1 am -Te
specifies an Encapsulated Postscript output format. Graphviz supperte range of output formats in-
cluding GIF, JPEG, PNG, EPS, PS, and SVG. All Graphviz programenmei/O operations on standard
input and output in the absence of specified files.

2.2 Directed Graphs

A directed graph begins with the keywodigraph followed by the name of the graph. A directed edge
between two vertices andv is specified byu- >v. The aforementioned edge starts at u and goes to v.
The DOT code for and visualization of an example directed graph appeérsting [2 and Figurél2, re-
spectively. The visualization in Figué 2 was produced via the commdand - Teps directed. gv >

di rect ed. eps.

Listing 2: A DOT file for a simple directed graph.
digraph graphnane {

a -> b;
a->c¢ ->d;
c -> e

Figure 2: Visualization of Listin@]2 graph.

2.3 Attributes

The DOT format supports a wide selection of attributes for vertices, edgesgraphs. Examples of user-
definable attributes include the color and shape of a vertex or the weidisty@e of an edge. There are far
too many attributes to list here and we direct the reader to the Graphviz dotatioge for a comprehensive

list. Graphviz defines default values for most of the attributes availablB@r files. Many attributes are

only used by specific Graphviz programs. As an example, the reputsive &ttribute is only used by the
sfdpmodule.

Listing 3: A DOT file where most vertices and edges have been assignedwattributes.

graph graphnane {
a [label="Root", shape=circle];
b [shapesbox, color=red];
a-- b -- c[color=blue];

5 b -- d [style=dotted];

a--e--f [color=green];
f [label="Leaf"];

}

http://www.graphviz.org/content/attrs

Leaf

Figure 3: Visualization of Listin§l3 graph.

Attributes may be used to draw attention to sections of a graph (e.g. coloriakdebs adjustment to
highlight a path).

Listing 4: A DOT file where edges along a path have been colored red.

graph {

--1--8--7 [color=red, penwidth=3. 0] ;

10

(DU'IO-bO(:O\JI—‘CD@I\)
1
A OO OARANOUIWOI OO

Figure 4: Visualization of Listingl4 graph.

2.4 Clustering

In some graphs, grouping of vertex subsets is desirable. This groopimertex subsets is particularly
useful in the case of-partite graphs. The DOT language allows the specification of subgvelpich can
be clustered together and visually separated from other parts of the grap

In a graph file the keywordubgraphis used to specify a subgraph. Prefixing the name of the subgraph
with the expression “clustérensures that the subgraph will be visually separated in the layout. Ndte tha
only dot andfdp (explained in detail later in this document) support clustering. Figure 5 wasrgted by
the commandiot - Teps cluster.gv > cluster. eps.

Listing 5: A graph with two clusters representing different processes.
digraph cluster{

subgraph cl uster_0{
label="Process A";

5 node[style=filled, color="lightgray"];
a0 -> al -> a2 -> a3;

}

subgraph cluster_1 {
label="Process B";

10 b0 -> bl -> b2;
}
bl -> a3;
start -> a0;
start -> bO;
15 a3 -> end;

b2 -> end;
start [shape=Mli anond];
end [shape=Msquare] ;

Proceié

a0

l Process B

al

l

a2

»

a3

N

y

n

Figure 5: Visualization of Listingl5 graph.

3 Force-Directed Methods

Force-directed algorithms model graph layouts as physical systems)iagsagfractive and repulsive forces
between vertices and minimizing the total energy in the system. The optimal laydeftried as the layout
corresponding to the global minimum energy.

The spring-electrical model assigns two forces between vertices:ghisiee forcef, and the attractive
force f,. The repulsive force is defined for all pairwise combinations of vertiesis inversely propor-
tional to the distance between them. The attractive force exists only betveggmboring vertices and is
proportional to the square of the distance. Intuitively, every vertexsmankeep its neighbors close while
pushing all other vertices away! [7].

2
fr(i’j)_ oK

i — x|

6

112
falij) = s = 5117 e il

The force on vertex is the sum of the attractive (from verticgse V, j # i, (i,7) € E) and repulsive
(from verticesj € V) forces.

—C’K2 x; — x|
16,500 =3 E e -+ 3 2= 20 0 —) ®)

xz—x]H

(1,)) € E)

The parametefs is known as the optimal distance and the paramétés used to control the relative
strength of the attractive and repulsive forces. While the choice of ffeeseneters is important in practice,
mathematically it can be shown that they only scale the layout [7].

Finally, the total energy in the system is the sum of the squared forces.

energy (K, C) Zf i, K,C)? (4)
eV

For each vertexthe algorithm computes the forces actingi@nd adjusts the position ofn the layout.
The algorithm repeats this process until it converges on a final layoet piésented force-directed layout
algorithm require® (V2) time per iteration and it is generally considered #avt/) iterations are required.

Algorithm 1 ForceDirectedLayoudq,x,tol)
step< initial step length
while not convergedlo
20—z
for i € V do
f+<0
for (i,j) € Edo
f—f+ Hj;j_g)” (‘T - 371)
end for
for j #14,j E V do
R =i
end for
z; — zi+stepf/| f|
end for
step« 0.9x step
if |z — 2°|| < Kxtol then
converged— true
end if
end while
return x

8

The Graphviz progranfidp uses a force-directed algorithm to generate layouts for undirectetiggrap
fdpis suitable for small graphs that are both unweighted and undirected efgbelow, displays a layout
generated bydp for a torus generated using the commaéamip - Teps torus.gv > torus. eps.

Figure 6: A drawing of a torus produced by fdp.

The complexity of this computation can be decreased by employing a Bautessheme to compute
the forces acting on a vertex|[2]. The use of a quadtree to group \&ititee supernodes allows a single
computation to approximate the force contributions of a large collection of gertichis scheme reduces the
complexity of the innermost loop frof (V') to O(log(V')), dropping the whole algorithm 0 (V log(V))
per iteration. The speed of this technique can be further improved by asmgtilevel approach that takes
advantage of graph coarsening techniques. The Graphviz praidmpimplements these techniques and is
currently the optimal choice for generating large graph layouts.

Figure 7: A drawing of a graph with 40000 vertices produced by sfdp.

4 Stress Majorization

Stress majorization attempts to embed the graph metricRfit{5]. If the shortest path distance between
two verticesi, j € V' is d;;, then stress majorization will attempt to place these two vertices at disfgnce
apart in the layout. To accomplish this, stress majorization uses an iterativ@zagtion process to find a
global minimum of the stress function shown in Equafibn 5. The iterative equiatiolves two weighted
Laplacian matrices. For a quick introduction to Laplacian matrices and thgegies, please see Appendix
Al

Laplacian matrices permit many different types of weightings. Here wadertsvo weighted Laplacian
matrices that are important for stress majorization.

Letd;; be the shortest path distance - sometimes referred to as the “graphtithdistance” - between
two verticesi, j € V. Letw;; = d;jp and choose = 2. Technically,p could be any integer, byt = 2
seems to produce the best graph drawings in practice.

Definition 1 LetG be a graph and let/ be the shortest path distance matrix@f Definew;; = di‘jz. The
weighted Laplaciar.,* of a graphG is an x n matrix given by:

w o _ — Wiy if Z;é]

The off diagonal elements of the weighted Laplacian-atg;, as opposed te-1 and0. The diagonal
elementZ}’; is the positive sum of the off diagonal elements for rioas with the standard Laplacian matrix.

The second type of weighted Laplacian matrix that we will consider is weidiy@dayout of the graph:
the positions of the vertices ikrdimensional space. We denoté&-aimensional layout by a x k& matrix
X. The position of theth vertex isX; € R*. Lastly define a functiotinv(z) = 1/z whenz # 0 and0
otherwise.

Definition 2 LetG be a graph and leX be a layout forG. The weighted Laplacian matri* is ann x n
matrix given by:
X _) mwgdiinv((1Xs = X)) it i #
Y - Dk L if i=j

The off diagonal elements af* are —w;;d;;inv(||X; — X,||) where||X; — X;|| is the Euclidean
distance between verticésand j in the layout. The diagonal elemeﬂf"; is the positive sum of the off
diagonal elements in row

The optimal layout corresponds to the global minimum of the following stressifun.

stress(z) = Y wi; (|| X; — X;|| — dij)?)
1<j

The minimum of the stress is given by an iterative system involving weightelhtiap matrices. Here
7 is the current layout and’ is the next layout. At the end of each iterati@nis assigned tdZ to compute
a newX. The process continues until the stress function converges. A ral@amut can be used as the
initial layout Z, but tends to require more iterations until convergence and is more likelynieerge to a
local minima.
LYX =172 (6)

Laplacian matrices are known to be positive-semidefinite with a one-dimehsiohapace spanned
byl = (1,1,...,1) € R™. Intuitively, the null space tells us that our stress function is invarianeund

translation. To remove this degree of freedom, we remove the first row@uachn and consider only the
(n—1) x (n—1) submatrix of each Laplacian matrix. This method requires us t¥get 0 in the layout. As
these submatrices are strictly diagonally dominant and positive-definitempioy the conjugate gradient
method to solve the systeim [9]. The conjugate gradient method is a popuwaittatgfor solving systems
of linear equations of the formx = b, wherex is an unknown vector, is a known vector, andl is a
known, square, symmetric, and positive-definite matrix.

Stress majorization produces layouts that approximate the actual graph Ineetigse it considers the
graph-theoretic distance between every two vertices. This method danaeunt for weighted edges
or other desired graph metrics, providing a clear advantage over thieysky described spring-electrical
model.

The requirement of access to the all-pairs shortest path mdtrseverely constrains the scalability of
stress majorization. Execution of Dijkstra’s algorithm at each vertex allowspatation of the APSP matrix
in O(VE + V?1log(V)) time. Additionally, at each iteration we must complité, perform a matrix multi-
plication with Z, and use the conjugate gradient method to solve the system. As a resudtnsdjeszation
is not scalable beyond approximately* vertices. Low-rank Laplacian matrices have recently been used
to extend stress majorization to much larger graphs [8]. An upcoming varsi@naphviz will include an
implementation of this extension.

Stress majorization is implemented in the Graphviz progn@aita neatois suitable for weighted, or
unweighted, undirected graphs.

Figure 8: A drawing byneatoof the nasal824 dataset.

10

5 Reducing Edge Crossings

Thus far, we have limited our discussion to graph drawing algorithms foirectdd graphs. Drawing
directed graphs is an entirely new problem. The naive approach is to simglgeigime direction of the
edges and use an algorithm for drawing undirected graphs. This iafugrdtally unsatisfying because the
directionality is frequently very important to effectively visualizing the graph

(o
NG IO

Figure 9: A comparison of the same graph drawmbwgto(left) and bydot (right).

The Graphviz progrardot uses a four-pass|[6] algorithm for drawing directed graplesrequires that
directed graphs be acyclic, and thus begins its layout algorithm by interea#lysing edges that participate
in many cycles. Note that this reversal is purely an algorithmic one: in the fiaalinlg, the original edge
direction is preserved. Ranks are then assigned to each vertex in tite gral used to generate vertical
coordinates in a top-to-bottom drawing. Ordering the vertices within eadhresluces the number of edge
crossings, so heuristic methods are employed in order to find a goodngrd&he horizontal coordinates
are then assigned with the goal of keeping the edges short. Finally, spteneseated for each edge.

The ranking process attempts to assign an integer x&nksuch that for every € E we havel(e) >
d(e) where the lengthh(e) of e = (v, u) is defined as\(u) — A(v) andd(e) represents a predefined minimum
length constraint. Usually(e) is 1, but it may be any non-negative integer and can be set either internally
or by the user.

A consistent ordering of vertices is possible only if the graph is acyclicceStinis is not guaranteed by
the input, a preprocessing step must be executed in order to breakaey icythe graph. Depth-first search
classifies every edge of a directed graph as either a tree edge,d@dge , cross edge, or back edge. It can
be shown that there is a cycle in a graph if and only if there exists a baek|[dfigHeuristic methods can
be used to reverse the direction of the most offensive back edges (traigarticipate in the most cylces).

We will define an optimal ranking as one where the edges are as sha$siblp. This ranking assign-
ment may be formulated as an integer linear programming (ILP) problem.

11

min Y w(v,u)(Mu) = A(v)) 7)

constraint : AN(u) — \(v) > §(v,u),Y(v,u) € E

To solve this ILP, Graphviz employs a network simplex formulatidn [3].

Having obtained a ranking for the vertices of the graph, we turn to theiogdef vertices within each
rank. The ordering of these vertices determines the number of edgegnge# the drawing, so our goal is
to compute an ordering with the minimum number of crossings. Unfortunatéhngahis problem exactly
is NP-complete, so heuristic methods are employed.

Computation of a good vertex ordering is an iterative process, with initiarorg computed by depth
or breadth-first search starting at the vertices of minimum rank. Vertieegssigned positions within their
ranks in left-to-right order as the search progresses.

Algorithm 2 Ordering()
order<« InitOrdering()
best« order
for ¢ = 0 to maxiterdo

WMedian(order,)
Transpose(order)
if crossings(ordery crossings(besthen
best«+ order
end if
end for
return best

The weighted median heuristic assigns each vertex a median based on ittmpad the adjacent
vertices in the previous rank. The median value of a vertex is defined asatlian position of its adjacent
vertices if that value is uniquely defined. If such a value is not definedptédian is interpolated. The
weighted median heuristic biases the median value to the side where vertice®rarelosely packed.
Finally, the vertices are sorted within their rank by their assigned mediansvalue

Algorithm 3 WMedian(order,iter)
if iter is eventhen
for » = 1 to maxrankdo
for v € order[r]do
medianp] < MedianValue(¢,r — 1)
end for
sort(orderf],median)
end for
end if

The transpose operation iterates through each rank examining neighberiiegs within a rank. Two
vertices are swapped if swapping them decreases the number of edgengs in the layout. The trans-
pose operation terminates when no swap operation will further decremaseittiber of crossings. Since a
minimum must exist, termination is guaranteed.

Once a good ordering is found within each rank, all that remains is to agsigdy coordinates to each
vertex and create the splines to draw the edgesyTduordinates are based on the rank, so vertices with the

12

Algorithm 4 Transpose(rank)
improved« true
while improveddo
improved« false
for » = 0 to maxrankdo
for i = 0 to |rank[r]| -2 do
v < rank[r][4]
w < rankfr][i + 1]
if crossings{,w) > crossingsg,v) then
improved<— true
Swap(rankf][],rank[r][+ 1])
end if
end for
end for
end while

same rank will appear on the same level. Theoordinates are determined using the ordering and chosen
to keep the edges short. Finally, splines are computed for each edge.

6 Conclusion

Graphviz is an extremely powerful and widely used tool for visualizinglysa Several algorithms have
been presented above for drawing the most common types of graphs.

For small unweighted undirected grapfdyp or neatowill produce a good drawing. Once these graphs
exceed 10000 verticesdpshould be used. Unfortunatelfdpdoes not take edge weights into account. To
draw large weighted undirected graphs, low-rank stress majorizationbauwstployed. Finallydotis the
tool of choice for visualization of directed graphs and trees.

7 Acknowledgements

I would like to thank my reviewer, Michael Schoenberg, whose helpfoiroents drastically improved this
manuscript.

13

A Laplacian Matrices

The Laplacian matrix of a grap@¥ is a representation af similar to the adjacency matrix. In fact, the
Laplacian matrix can be defined in terms of the degree matrix and the adjateicy. As we proceed,
consider a simple grapi with n = |V| andm = |E].

Definition 3 The adjacency matri¥d for a graphG is then x n matrix given by:

1 ifE) el
"7 10 otherwise
Definition 4 The Laplacian matrix. for an unweighted, undirected graghis then x n matrix given by:
deg(i) ifi=j
Li,j =4 —1 if (Z,j) ck
0 otherwise
wheredeg (i) is the degree of théth vertex.
For each edgé€i, j) € E the entryL; ; = —1. Additionally, the degrees of each vertex are stored on the

diagonal elements. The Laplacian matrix can also be expressed as
L=D-A

whereD is the degree matrix and is the adjacency matrix.

Figure 10: A simple graph and its Laplacian matrix

All Laplacian matrices are positive-semidefinite and, as a result, have ratlegative eigenvalues,
V;A; > 0. The number of times that O appears as an eigenvalue is equal to the nundoemected
components in the graph. Thiig = 0 for any Laplacian matrix. The first eigenvectgy, corresponding to
the eigenvalue,y, is always equal td = (1,1,...,1) € R™. Notice thatLvy = 0 because the sum of the
elements in any row is 0. The null space of a Laplacian matrix is always wahtbut if G is a connected
graph then the null space is a 1D subspace spanned by the Yedtogeneral, the dimension of the null
space is equal to the number of connected componeidts in

14

References

[1] AT&T Labs. http://ww. gr aphvi z. or g/ Docunent at i on. phpl

[2] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculatilgoathm. Nature 324(6096):446—
449, Dec. 1986.

[3] V. Chvatal. Linear Programming W. H. Freeman, 1st edition, 1983.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéiroduction to AlgorithmsThe MIT Press,
3rd edition, 2009.

[5] E. Gansner, Y. Koren, and S. North. Graph drawing by stressnmajon. In J. Pach, editoGraph
Drawing, volume 3383 ol ecture Notes in Computer Sciengages 239-250. Springer Berlin / Hei-
delberg, 2005.

[6] E. R. Gansner, E. Koutsofios, S. C. North, and K. phong Vo. Anéque for drawing directed graphs.
IEEE Transactions on Software Engineerin®(3):214-230, 1993.

[7] Y. F. Hu. Efficient and high quality force-directed graph drawifipe Mathematica Journal0:37-71,
2005.

[8] M. Khoury, Y. Hu, S. Krishnan, and C. Scheidegger. Drawingéagraphs by low-rank stress majoriza-
tion. Computer Graphics ForupTo Appear.

[9] J. R. Shewchuk. An introduction to the conjugate gradient method withewagonizing pain. Technical
report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

15

http://www.graphviz.org/Documentation.php

	Introduction
	The DOT Language
	Undirected Graphs
	Directed Graphs
	Attributes
	Clustering

	Force-Directed Methods
	Stress Majorization
	Reducing Edge Crossings
	Conclusion
	Acknowledgements
	Laplacian Matrices

