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Abstract

Hybrid Aerial and Terrestrial Locomotion, and Implications for Avian Flight Evolution

by

Kevin C. Peterson

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ronald S. Fearing, Chair

Recent advances in the development of meso-scale legged robots have enabled high perfor-
mance over a variety of terrains. However, there are still many environments where terrestrial
legged robots are limited. The addition of aerodynamic capabilities provides a method of further
extending the performance of small mobile robots towards all-terrain mobility.

This dissertation presents the development of DASH+Wings and BOLT, two small hybrid
legged and winged robots. DASH+Wings is a six-legged, two-winged robot capable of wing-
assisted terrestrial running and controlled aerial descent. BOLT is a two-legged, four-winged robot
capable of high-speed terrestrial running and sustained flight. While the dynamics of legged loco-
motion have been extensively studied, the interaction between legs and flapping wings during ter-
restrial locomotion is poorly understood. WingSLIP, an extension to the canonical SLIP model for
understanding wing-assisted terrestrial locomotion, is introduced. Analysis of the leg/wing phas-
ing and leg stiffnesses elucidates the interaction between the legs and wings. The model suggests
the presence of passively stable gaits for high-speed wing-assisted terrestrial running. The dynam-
ics of wing-assisted terrestrial locomotion for a quasi-static and dynamic gait are examined using
BOLT with the addition of an on-board accelerometer and rate gyroscope. The flapping wings
enable BOLT to run at over two ms�1 and take off in as little as one meter of space. In addition to
flapping wings, the passive effects of aerodynamics on a high-speed legged robot (VelociRoACH)
are also examined. Passive aerodynamic stabilization is shown to improve the performance and
stability of the system. An examination of avian flight evolution is performed using DASH+Wings
to examine the consequences of adding wings to a cursorial locomotor. We note that current sup-
port for the diverse theories of avian flight origins derive from limited fossil evidence, the adult
behavior of extant flying birds, and developmental stages of already volant taxa. The addition of
flapping wings increased the maximum horizontal running speed and the maximum terrestrial in-
cline angle of ascent, along with decreasing the aerial descent angle. To better examine avian flight
evolution, a scaled model of Archaeopteryx is developed, and the effects of flapping frequency and
amplitude are examined through the use of wind tunnel measurements. The findings are discussed
in the context of existing hypotheses for the origins of flapping flight in vertebrates.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The desire to fly is an idea handed down to us by our ancestors who, in their grueling
travels across trackless lands in prehistoric times, looked enviously on the birds soar-
ing freely through space, at full speed, above all obstacles, on the infinite highway of
the air.

–Wilbur Wright

Despite the incredible variety and expanse of environments in nature, animals have evolved to
inhabit nearly every possible location. Biologists often marvel at the specialized features developed
in response to environmental pressures that allow animals to succeed across the many, and often
harsh, terrains. However, focus on a single capability hides the realization that most animals are not
specialists, but generalists. Using a common set of features, namely skeletal muscles, animals have
not only developed specialized capabilities for aerial, terrestrial, and aquatic environments [61],
they repeatedly adapt their current features for highly capable locomotion in all the environments
they encounter.

The gecko has amazed scientists with its climbing and adhesive abilities since they were first
reported on by Aristotle in the 4th century B.C. However, geckos are quite capable at terrestrial
running, and recent research has shown the remarkable use of their tails for aerial maneuverability
[30]. In fact, geckos, and lizards in general, use their tails for a variety of maneuvers when navigat-

Figure 1.1: Periplaneta americana using its wings for added stability when encountering an obsta-
cle. Courtesy of T. Libby.
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ing unexpected obstacles [38]. The desert dwelling sandfish lizard is capable of running across the
surface with its limbs, and “swimming” underneath the sand with an undulatory body motion [42].
A variety of birds are not only capable of aerial flight, but use their wings for efficient underwater
swimming [40]. Precocial birds use their wings to augment their ability to run up steep inclines
[10, 65]. Figure 1.1 shows the american cockroach (Periplaneta americana) using its wings for
stability when encountering an obstacle. Environmental uncertainty repeatedly forces animals into
unknown situations, and the ability to use multifunctional locomotion modes is a strong natural
selector for those that survive.

This same principle can be applied to the design of small mobile robots. While navigating
complex three dimensional environments is an ability that is seemingly trivial for small animals
such as the gecko, it provides significant challenges for robots today. The majority of current robots
focus on a single locomotion capability. This dissertation proposes that the ability for multiple
forms of locomotion as seen throughout the animal kingdom is a mandatory condition for exploring
unstructured environments. Towards this proposal, we discuss the advantages of a robot capable
of both terrestrial and aerial methods of locomotion.

While there are many robots capable of advanced terrestrial or aerial locomotion, they are also
fundamentally limited. Obstacles much larger than the robot present a significant challenge in
legged locomotion, and even robots with the ability to climb up obstacles would be impeded when
confronted with an aquatic obstacle. Legged robots are also very dependent on their foot-ground
interaction dynamics, which can be greatly affected by the environment. In confined spaces, aerial
robots are often unable to navigate, and unsteady airflows can cause catastrophic crashes of small
aerial robots. Flying also requires a large amount of energy, and no robot can stay aloft indefinitely.
Terrestrial locomotion may be more energy efficient for shorter distances, and allows for locomo-
tion even if the energy for flight is spent. By being capable of both aerial and terrestrial locomotion,
a hybrid robot could choose the best mode of locomotion given the obstacles confronting it.

Small, mobile robots (mass on the order of grams, linear dimensions on the order of centime-
ters) provide many advantages when exploring an environment, and are capable of operating in the
small spaces unreachable by larger robots. In addition, their small size allows multiple robots to
be transported and deployed, greatly increasing the amount of area they can cover. The ability of
many small robots to enter the small spaces left in a collapsed building could prove invaluable in
searching for survivors after a natural disaster such as an earthquake. With the continuing decrease
in cost and size of radios and sensors, small robots can also be used to set up a mobile sensor
network for environmental or industrial monitoring in dangerous or hard to access areas.

Many challenges still exist before such small scale robots can reach their promised potential.
At small scales, traditional methods of design and manufacturing become difficult. Mechanisms
such as pin joints become very inefficient due to the increased friction that results from the higher
surface area to volume ratio at small scales. In addition, the small size leads to very high tolerance
requirements on all components. To address this issue, the UC Berkeley Biomimetic Millisystems
Lab has pioneered the use of Smart Composite Microstructures (SCM, [67, 26]). SCM mechanisms
consist of a rigid link (Carbon Fiber or Cardboard) integrated with a compliant polymer (PET) to
form two-dimensional structures that can be folded into complex three-dimensional mechanisms.
This technique allows the creation of complex, many jointed mechanisms at small scales that
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both move efficiently due to flexure joints, and are simpler to build due to a significantly reduced
part count. The 2.5 dimensional fold-up design also leads to lightweight structures compared to
traditional 3-dimensional designs. The SCM process is a critical underlying technology for the
work presented in this dissertation, enabling the creation of complex, multifunctional robots at the
small scale.

A further challenge in designing meso-scale hybrid robots is maintaining high power density,
an important consideration for enabling aerial performance. At the meso-scale, small, brushed
DC motors provide the best performance capabilities in comparison to other actuator technologies
currently available. However, to maintain high power density, the number of actuators must be
limited, leading to uncontrolled degrees of freedom. The proper use and tuning of available ac-
tuators is an important aspect for designing efficient, high performing robots. Towards this end,
reduced order locomotion models can provide key insights, and allow the investigation of the effect
of various tuning parameters on performance.

In addition to studying biology to inform the design of robots, a robotic platform can also be
used to investigate biological theories. One such example is the contentious debate surrounding
avian flight evolution. Current support for the diverse theories of avian flight origins derives from
limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of
already volant taxa. We propose that through the investigation of robotic models, theories on the
evolution of avian flight can be directly tested and evaluated.

1.1 Contributions and Outline
This work makes the following contributions:

• Design of two hybrid legged/winged robots - DASH+Wings (Dynamic Autonomous Sprawled
Hexapod plus Wings) and BOLT (Bipedal Ornithopter for Locomotion Transitioning) are
two meso-scale robots capable of hybrid aerial and terrestrial locomotion. DASH+Wings is
a six-legged, two-winged robot capable of wing-assisted terrestrial running, and controlled
aerial descent. BOLT is a two-legged, four-winged robot capable of both crawling and sus-
tained flight. Chapter 3 presents the key insights that enabled the design of these small, but
highly capable systems, and discuss the methods used in their design and construction.

• Development and analysis of a sagittal plane reduced order model for wing-assisted lo-
comotion - Sagittal plane models have been used frequently in the literature to understand
the complicated dynamics of terrestrial locomotion. In Chapter 4, we develop a reduced
order hybrid model for wing-assisted locomotion. Numerical simulations are used to eluci-
date the interactions between the legs and the wings as various parameters in the model are
adjusted.

• Characterization of flapping wing aerodynamically assisted running of a bipedal robot
- In Chapter 5, we investigate the effects of flapping wings on the terrestrial locomotion of a
hybrid robot (BOLT). The difference in dynamics at different stride frequencies is examined
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and the effect on cost of transport is measured. The ability of the robot to takeoff and fly as
well as climb walls and traverse obstacles is also discussed.

• Characterization of the effects of passive aerodynamic stabilization on a high-speed
running robot - The addition of passive aerodynamic roll stabilization increased the perfor-
mance of VelociRoACH, a 10 cm long running robot. VelociRoACH is capable of running at
2.7 m/s, or 27 bl/s, making it the fastest legged robot relative to scale known to the author. In
Chapter 6, aerodynamic stabilization is shown to reduce the total rotational energy, allowing
the robot to run in a more stable trajectory. The ability of the robot to reject disturbances is
also improved.

• Analysis of a hybrid aerial/terrestrial robot in the context of avian flight evolution -
The origin of avian flight is a hotly contested issue, and one that is difficult to resolve. We
present a discussion of the issue in Chapter 7, and analyze the performance characteristics of
DASH+Wings and the implications its performance has for understanding avian flight evo-
lution. We also examine a new morphologically correct flapping model and further explore
the origins of avian flight.
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Chapter 2

Background

In recent years, the capabilities of legged robots has advanced very rapidly. This advancement was
spurred in part by insights from biologists and mathematicians, and better understanding of how
animals locomote so well. The locomotion dynamics of these robots is characterized by the spring
loaded inverted pendulum model (SLIP) [24], a pattern exhibited by nearly all legged organisms
despite widely varying leg numbers [7].

2.1 Locomotion Models
Animals exhibit an extensive variety of incredibly robust methods of locomotion. The study of the
capabilities found in nature has great implications for the design of similarly robust and capable
robots. However, animals are very complex, high degree of freedom systems subject to many dif-
ferent constraints, of which locomotion is only one. To advance the understanding of locomotion,
Full and Koditschek introduced the concept of templates, or lower dimensional representations of
a system, to explain the underlying dynamics of both animals and legged robots [20]. Through the
creation of representative models, much can be learned about the principles of legged locomotion.

Perhaps the most well known representative model is the spring-loaded inverted pendulum
model for legged locomotion. This model has been studied extensively [24], and the passive dy-
namics of the SLIP have been shown to accurately explain the underlying sagittal plane dynamics
of legged locomotion across a range of animals [7]. The basic SLIP model is a conservative model,
and shows passive stability properties for a range of parameters. However, for many parameters
corresponding to the real-world properties of both animals and robots, the model is unstable and
does not accurately explain the dynamics. To address this, additional complexity has been added
to the model, allowing a better understanding of how the model can inform the design and analysis
of legged locomotion. A common extension to the model is the introduction of actuation into the
model, such as linear leg extension actuators [60] or hip torques [62]. The addition of hip torques
and a simple, clock-based control scheme allows the model to explain the dynamic stability of
legged locomotion with physically relevant parameters. In extending the sagittal plane model to
three dimensions, Seipel and Holmes showed that the model is no longer passively stable, and
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feedback control is necessary for stable running [63]. Along with informing our understanding of
legged locomotion in animals, the underlying principles of dynamic locomotion models have been
used in the mechanical design and control of fast and robust legged robots

2.2 Hybrid Robots
The first robots to take advantage of this understanding included Sprawlita [13] and RHex [59],
both of which used carefully tuned compliant legs to achieve efficient dynamic locomotion. Sprawlita
used pneumatic actuators to achieve exceptional performance for its time, although the actuators
required an external air source. RHex achieved full power autonomy, and fully integrated the no-
tion of preflexes [9] to simplify the control and design of the robot while still maintaining high
performance. Building upon the success of these larger robots, iSprawl [31] and Mini-Whegs [45]
represent the next generation of terrestrial robots. These robots are power autonomous, while also
being smaller in size and faster (as measured in body lengths per second) than previous robots.
Most recently, the use of the Smart Composite Microstructures [67, 26] construction process has
enabled the design of several lightweight, high performance terrestrial robots, including DASH
[6], DynaRoACH [25], and VelociRoACH [22]. DASH achieved similar running performance to
iSprawl, while weighing over an order of magnitude less, leading to a lower energetic cost of loco-
motion. DASH also proved to be extremely durable, capable of surviving falls at terminal velocity.
DynaRoACH examined maneuverability and showed that altering leg stiffnesses can lead to dy-
namic turning maneuvers. The VelociRoACH built upon the designs of DASH and DynaRoACH
to become the fastest legged robot relative to scale built to date, with a maximum forward speed
of 2.7 m/s (27 bl/s). As the abilities of legged robots have advanced, robots have started to in-
corporate additional appendages to advance their capabilities. As an example, TAYLRoACH [33]
incorporates an active tail to enable extremely rapid dynamic turning.

With the exception of Mini-Whegs, these robots all use six legs arranged in an alternating
tripod configuration for passive stability when running. In contrast, dynamic bipedal running has
generally required a complex controller and multiple actuators to maintain stability. Dynamic
bipedal running has been previously demonstrated by RHex [46], along with an extensive list
of larger bipedal robots. At the very small scale, dynamic bipedal running can be seen in the
cockroach Periplaneta americana when it is running at its fastest speeds [19].

Similar to the improvement seen in terrestrial robot, the performance of meso-scale ornithopters
has also dramatically increased recently. The well-known DelFly II [37] is a 28 cm wingspan
ornithopter capable of hovering flight in an indoor environment. At the smaller scale, the Micro
Delfly exhibits high performance while only weighing 3 grams and still being capable of carrying
a camera. The Aerovironment Nano Hummingbird [1] is a true large hummingbird-sized robot,
capable of hovering flight.

While the fields of terrestrial and aerial locomotion have advanced rapidly in recent years,
hybrid locomotion capabilities are relatively new. One of the first small hybrid robots was the
Micro Air Land Vehicle (MALV) [4], a combination of WhegsTM with a fixed wing and propeller
for flight. Capable of both aerial and terrestrial locomotion, MALV requires a 3-5 meter runway
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or a 6 meter vertical drop in order to take off. Its descendant, MMALV [8], is capable of folding
its wings when on the ground for a reduced profile. The SkyhopperTM by WowWeeTM, is an
ornithopter capable of rudimentary hopping when on the ground. The EPFL microglider [34] is
not capable of powered flight, but seeks to combine aerodynamic gliding with terrestrial jumping
to maximize performance. Work has also been done on aerial-terrestrial transitions, with [35] and
[41] both capable of wall perching.

Hybrid robots are not limited to only an aerial-terrestrial combination. Others which have been
developed primarily focus on terrestrial and aquatic locomotion such as Boxybot [36] and AQUA,
a waterproof version of RHex [21].



CHAPTER 3. DESIGN OF HYBRID RUNNING/FLYING ROBOTS 8

Chapter 3

Design of Hybrid Running/Flying Robots

This chapter presents the design of two hybrid legged/winged robots. DASH+Wings [55] is a six
legged/two winged robot derived from DASH [6], the Dynamic Autonomous Sprawled Hexapod.
As DASH was designed as a terrestrial running robot, it is more capable on the ground compared
with in the air. While not capable of sustained flight, DASH+Wings is capable of controlled aerial
descent. Its flapping wings also increase its terrestrial capabilities beyond the original robot.

Whereas DASH+Wings shows many aspects of improved performance, a fully functional flying
and crawling robot requires a more integrative design that focuses equally on aerial and terrestrial
locomotion. Because of DASH+Wings’ origin as a terrestrial robot, it has a more anterior center of
mass location to reduce pitching during acceleration, yield better climbing abilities, and generate
more stable and predictable gaits. By contrast, enhanced gliding performance would derive from a
more posterior center of mass not presently feasible given its transmission design. DASH+Wings’
mass was also too high given the performance capabilities of its wings.

BOLT [56], the Bipedal Ornithopter for Locomotion Transitioning, was designed based on the
key insights learned from DASH+Wings. The primary design goal for BOLT was the development
of a platform capable of both terrestrial and aerial locomotion. To accomplish this goal, we com-
bine the gearbox and wings from a commercial ornithopter (Air HogsTM V-wing AvengerTM) with
a custom airframe, leg design, and electronics package. Because of the desire for stable hovering
flight, weight and weight distribution are a key consideration in all design decisions. In reducing
the number of legs on BOLT to two, some terrestrial performance is sacrificed. However, the ability
of the flapping wings to aid performance when running along the ground minimizes the decrease
in performance. The decision to reduce the number of legs was made based on this insight from
DASH+Wings. Reducing the number of legs reduced the overall mass of the system and simplified
the design, allowing BOLT to meet the design goal of sustained flight.

3.1 Design of DASH+Wings
DASH (Fig. 3.1a) and DASH+Wings (Fig. 3.1b) are both constructed using the scaled Smart Com-
posite Manufacturing (SCM) process [26]. The SCM process allows the implementation of com-
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(a) DASH [6] (b) DASH+Wings

Figure 3.1: DASH and DASH+Wings, two palm sized hexapedal running robots.

plicated kinematics while keeping the overall weight of the robot low. Additionally, design changes
can be made quickly, allowing the integration of the wings with the original crawling platform.

DASH+Wings has a 14 Hz stride and flapping frequency. The robot runs with an alternating
tripod gait, and each tripod contacts the ground once per stride. The stroke of the wings lies
in the transverse plane, and distends an angle from 32� above horizontal to 2� above horizontal,
yielding a flapping amplitude of 30�. The wings and tail derive from the design of the VAMP RC
ornithopter (Interactive Toy Concepts). The wings consist of a stiff leading edge spar with a thin
plastic membrane anchored to the body at the rear inside corner (Fig. 3.1b). The wing is 0.124 m
long with an average chord of 0.064 m, giving an aspect ratio of 1.94. The total area of each wing
is 0.0079 m2. The membrane is biased to have a positive camber of 0.0626 (calculated as the
maximum vertical displacement from the planform divided by the average chord length) when the
wing is at rest at the lower position of the stroke plane. The total mass of the inertial leading edge
spar alone is 0.17 g, and the mass of the wing membrane is 0.36 g, for a total mass of 0.54 g per
wing. The tail consists also of stiff spars supporting a thin membrane with a length of 0.085 m and
a total area of 0.00419 m2, mounted at an angle of 40.5�with respect to the body. It functions to
provide passive pitch stability to the robot while in flight.

The original DASH robot used a single motor to actuate two plates in relative circular motion
that drives six legs in an alternating tripod gait. The transmission mechanism uses a differential
drive design, causing significant motion of the center of mass (COM) within the robot. In addition,
the compliant design of DASH precludes using the rigid-body kinematics to predict the COM
location, as the center of mass does not follow its prescribed path exactly. These artifacts of
DASH’s design make measuring the accelerations on the center of mass more challenging than on
a robot where the COM can be assumed stationary.

In order to examine the effects of wings on ground locomotion, several changes were made to
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Figure 3.2: Mechanical design of DASH+Wings, showing the wing mount and compliant feet. The
wings are mounted to the top plate of DASH, with the drive linkage connected to the bottom plate.
Compliant feet are added to the legs to maintain the appropriate stiffness for stable running.

the original DASH robot. To drive the flapping motion of the wings, an additional linkage was
added that couples the vertical motion of the two drive plates to the wing mechanism (Figure 3.2);
the same motor that drives the legs thus also drives the flapping wings. The leg-to-wing phasing
was chosen due to the simplicity of integration of the wing mechanism with the already present
leg transmission. The kinematics of the system set the wing to be at the top of its stroke when
the first tripod is mid-stance and at the bottom of its stroke when the second tripod is mid-stance.
The actual position of the wings with respect to the legs changes when the robot is dynamically
running because of compliance present in the mechanism and the high inertia of the wing. High-
speed video shows that the extremes of the wing stroke correspond to the end of the stance phases
instead of the middle of the stance. The wings are easily removed, allowing the same robot to
be tested both with and without wings, and thus minimizing differences in performance due to
construction variability.

Whereas the original DASH robot could run at a stride frequency of 17 Hz, this modified
DASH has a maximum stride frequency of 14 Hz because of the additional power the motor re-
quires to drive the wings in addition to the legs. We therefore implemented a PID controller on the
motor to ensure that stride frequency remained constant over all trials and experimental configura-
tions. The controller runs on a small (2.7 g) electronics package (GINA mote; [44]) containing a
Texas Instruments MSP430 processor, a Kionix KXSD9-1026 triaxial accelerometer, and an Atmel
AT86RF231 radio. Addition of wings, tail, and wing linkages to DASH, along with the electron-
ics controller package, resulted in a total weight of 25 g compared with 16 g for the unmodified
DASH.

Adding these components also resulted in stiffening the compliance present in the body of the
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robot. This distributed compliance was critical for the original DASH robot to maintain a stable
dynamic gait. The GINA mote is also a significant portion of the total mass of the robot, and
its position on the top plate of the robot raises the overall center of mass, further destabilizing
the robot. To compensate for these changes, we added compliant feet to each of the six legs
to properly tune leg stiffness for stable running in all of the test configurations. The feet were
required to meet the following constraints: integrable with the SCM process, lightweight, and
easily tunable. The foot design that met all of these criteria is a basic polyester loop added to the
end of a rigid cardboard leg (Figure 3.2). This is directly integrable with the cardboard process,
and the addition of the polymer loop adds only 40 milligrams to the leg. We adjusted the stiffness
of the feet experimentally by varying the width and loop diameter until the robot ran stably in all
configurations.

A more detailed treatment of the mechanical design of DASH+Wings can be found in [6] and
[57]. The performance of DASH+Wings is discussed in Chapter 7.

3.2 Design of BOLT
The Bipedal Ornithopter for Locomotion Transitioning, or BOLT (Figure 3.3), is a small lightweight
robot capable of both aerial and terrestrial locomotion modes. The integration of an electronics
package allows two-way communication and the investigation of the robot dynamics with a six-
axis inertial measurement unit (IMU). BOLT has a total weight of 11.4 grams, with a wingspan of
28 cm and a length of 17.5 cm. The robot is capable of dynamic high-speed bipedal locomotion by
exploiting its aerodynamic properties for stability. The use of aerodynamics during bipedal loco-
motion has been previously seen in some birds [10], although generally only in inclined running.
The Smart Composite Microstructures (SCM) [67] process allows the integration of a lightweight
leg structure with the rest of the body, comprised mainly of carbon fiber spars.

3.2.1 Airframe Design
BOLT’s airframe uses carbon fiber spars for structural rigidity. The lightweight properties of car-
bon fiber make it ideal for use in a flying platform. A rigid airframe is critical in preventing serial
compliance from reducing the wing thrust. To create the lightweight tail, carbon fiber spars are
placed in a cardboard pattern and a 12.7 µm film of polyethylene terephthalate (PET) is overlaid
and attached to the spars with cyanoacrylate (Fig. 3.4a). The construction materials of the tail are
similar to those used in [37], a successful ornithopter on the same size scale as BOLT.

The center of mass location of the robot is important for determining the posture of the robot
when it is in the air. We place the battery at the very posterior of the robot on the tail, while the
controller board is placed within the airframe. This gives the robot a vertical posture, with the
majority of the wing thrust directed downward. By adjusting the position of the controller board,
the robot can be set to either hover in place or fly forward at a slow rate. The airframe of the robot
also protects the controller board during operation.
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Figure 3.3: BOLT: a bipedal ornithopter capable of both aerial and terrestrial locomotion.

Directly mounting the controller board to the rigid carbon fiber airframe overwhelms the ac-
celerometer due to the high frequency vibrations produced by the motor transmission. To accu-
rately study the dynamics of the robot, the board is moved forward and placed on foam mounts
(Fig. 3.4b) to dampen the vibration noise and improve the quality of the acceleration measure-
ments.

A critical feature enabling ground-to-air transitions of the robot is the angle of attack of the
wings. The clap-and-peel design of the wings produces force directed perpendicularly to the stroke
plane. On the initial iterations of BOLT, the wings had a low angle of attack, directing propulsive
force horizontally when running along the ground. This robot was capable of flight, but could only
takeoff by running from a one meter or higher ledge. Once in the air, the center of mass location
caused the tail to swing under the robot and it entered a stable flight posture. Increasing the wing
angle of attack allows the robot to build lift as the forward speed increases, eventually causing the
robot to pitch upwards, directing the main flapping force downwards. This leads to takeoff from
the ground and the robot entering a stable flight posture due to the center of mass location with
respect to the center of lift. On BOLT, the angle of attack is set to 28 degrees. This value was
chosen experimentally to provide a balance between the robot’s maximum terrestrial speed, and
the distance required for takeoff.
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(a) (b)

Figure 3.4: (a) shows the tail of BOLT, constructed from carbon fiber spars and 12.7 micron thick
PET film. The battery is placed at the back of the tail to maintain proper weight distribution.
(b) shows the controller board mounted on small foam offsets. The foam offsets are critical for
dampening the high frequency vibrations of the body.

3.2.2 Leg Design
BOLT has a bipedal leg design, with each leg going through a symmetrical motion 180 degrees out
of phase with the opposite. A single motor drives both the leg and the wings, allowing sufficiently
high power density to maintain hovering flight. The legs are built using the SCM process [67],
which allows the implementation of a lightweight structure that transforms the output of the motor
to the desired leg trajectory. Four layers of unidirectional carbon fiber pre-preg are sandwiched
around 50.8 µm PET to create the leg structure. The layers of the unidirectional carbon fiber are
arranged crosswise to provide stiffness in two directions, and are mirrored across the flexure layer.
The structure is designed to provide protection to the hips in case of high velocity impacts, while
allowing the legs to still extend in front and below the body.

Figure 3.5 shows a simplified version of the mechanisms that transform the rotation of the
motor in the transverse plane of the robot to the desired leg trajectories. A set of parallel four-bars
drives the vertical motion of the legs (Fig. 3.5a), while a crank-slider mechanism drives the fore-aft
motion of the legs (Fig. 3.5b). One revolution of the motor output gear (hereafter referred to as a
single motor cycle) corresponds to a full left and right leg stride, and a single complete wing beat
(opening stroke and closing stroke). In implementing the mechanisms shown in Figure 3.5, several
implementation details are necessary due to the properties of the SCM process. The structure is
designed such that each of the flexures is in a straight default configuration, reducing the effect of
off-axis forces and minimizing the strain of the PET (Fig. 3.6a). The motion of the legs is shown
in Figure 3.6.
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Figure 3.5: Simplified representation of the mechanisms that enable the (a) vertical motion and (b)
fore-aft motion of BOLT’s legs.

Table 3.1: Physical properties and components of BOLT

Total Mass 11.4 grams
Body Size 17.5 x 28 x 15 cm

Battery Full River 60 mAh lithium polymer
Micro-controller Microchip dsPIC33F
Communications Atmel AT86RF231
Accelerometer Analog Devices ADXL345

Gyroscope Invensense ITG-3200

3.2.3 Power, Communications, and Control
BOLT uses a custom electronics package (ImageProc 2.2) that incorporates a 40 MHz dsPIC pro-
cessor with a motor driver, six-axis IMU, and 1 MB of Flash memory (Table 3.1) [5]. In addition,
the board has an Atmel 802.15.4 radio for communication with a laptop. A Python interface sends
commands to the robot and receives data from the board’s sensors. A 60 mAh battery powers the
electronics board and motor.
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(a) (b) q = 0�

(c) q = 135� (d) q = 205�

Figure 3.6: The implementation of the mechanism described in Figure 3.5 is shown by (a). Here,
the movable flexures have been straightened, reducing the strain and the effect of off-axis forces.
(b)-(d) show frames from high-speed video of the left leg moving through its stride. The right leg
exhibits similar motion in anti-phase with the left.
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Chapter 4

A Sagittal Plane Model for Wing-Assisted
Locomotion

This chapter presents a dynamic model for wing-assisted running based on the design of BOLT.
The experimental results presented in Chapter 5 suggest that there are important differences be-
tween the traditional SLIP-like gait found in pure legged robots and animals and the locomotion
of BOLT due to the influence of the flapping wings. The effects of parameters such as leg stiff-
ness and wingbeat phasing is poorly understood for wing-assisted terrestrial locomotion, and the
use of a dynamic model allows more extensive examination of the parameters effects than can be
implemented in a physical system. Our model combines the classical SLIP model with the effects
of flapping wings, and examines the interaction between the periodic leg and wing forces present
in the system across a range of possible design parameters.

4.1 Description of the Hybrid Dynamic Model
To examine wing-assisted terrestrial locomotion, we develop a reduced order model capable of
qualitatively reproducing the sagittal plane dynamics of a wing-assisted running robot (WingSLIP).
The model consists of a three degree of freedom rigid body, shown in detail in Figure 4.1. A local
coordinate frame, given by e1 and e2, is fixed to the CG of the model with e1 aligned parallel
to the vector between the tail and hip location. The global coordinate frame is represented by
E1 (horizontal) and E2 (vertical). The dynamics of the system are described by the position (r =
[r ·E1,r ·E2]T = [r1,r2]T ) and velocity (ṙ = [ṙ ·E1, ṙ ·E2]T = [ṙ1, ṙ2]T ) of the center of gravity (CG),
as well as the pitch rotation and angular velocity of the body (y, ẏ). Table 4.1 lists the physical
dimensions of the model, based on the design detailed in section 3.2.

4.1.1 Foot, Leg, and Hip Model
The leg model consists of two legs in anti-phase rotating about the hip. Each leg is modeled
as a linear spring, and is attached at the hip to the motor through a torsional spring. We make
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(a) Side view of BOLT, described in section 3.2.
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(b) Reduced-order sagittal plane model.

Figure 4.1: WingSLIP, a hybrid dynamic model for investigating wing-assisted locomotion.

Table 4.1: Physical properties of the WingSLIP model

m, mass 0.012 kg
I, inertia 30.5⇥10�6 kg ·m2

z0, Nominal Leg Length 0.02 m
rCP, CP Location [0.03 m,0.017 m]
rHip, Hip Location [0.065 m,�0.01 m]
rTail , Tail Location [�0.1 m,�0.01 m]

several common assumptions found in prior studies of reduced order models [62, 73]. The mass
of the legs/feet is neglected, as they are generally a very small portion of the total mass. The
leg is assumed to be rigid to bending, allowing the forces from the linear and torsional spring to
be decoupled. Since the legs and feet are massless, we assume that the legs follow the reference
trajectory exactly when not on the ground.
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Figure 4.2: A free body diagram showing all of the forces acting on the WingSLIP model during
the single-stance phase.

Due to the discontinuous nature of the foot contact, the leg dynamics are described by a hybrid
model with four states corresponding to the aerial phase, foot 1 or 2 on the ground, and double
stance. The touchdown condition for each foot is given by

gT D
(i) := (h+z0R(y)[�sinq(i),�cosq(i)]T ) ·E2 = 0, (4.1)

where h is the position of the hip, R(y) is the rotation matrix from e to E, and q(i) is the reference
angle of leg i. A free body diagram of the robot in single stance phase is shown in Figure 4.2. The
force at the hip due to the linear leg spring is given by

FKs = ks(z0�z )(�sinf E1 + cosf E2), (4.2)

where ks is the linear spring constant. The leg angle f is found from the hip position h and the foot
position p:

f =�(
p
2

+ arctan
�h ·E2

(p�h) ·E1
). (4.3)

The leg length z is found from:

z =
h ·E2

cosf
. (4.4)

The torque on the body at the hip from the torsional spring is given by

t = kt(q(i)�f), (4.5)

and the force due to the hip torque is given by

FKt =
t
z

(cosf E1 + sinf E2). (4.6)
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Table 4.2: Parameters of the WingSLIP model

Parameter Description BOLT value
ks Linear Leg Stiffness 4.9 N/m
kt Torsional Leg Stiffness 0.0039 Nm/rad
f Motor/Wingbeat Frequency 9, 12.5 Hz
fratio Leg/Wing Effective Gear Ratio 1
qoffset Leg/Wing Phase Offset 1.75 rad

During stance phase, the foot contact is assumed to act like a pin joint. No adhesion is allowed
by the model, and so the liftoff condition is given by

gLO
(i) := (F(i) ·E2) < 0. (4.7)

As the robot is designed to run on carpet, where the foot often snags on the loops, a pin joint,
non-sliding contact is a valid assumption.

During the aerial phase, the force from both legs is zero, while in double stance phase, the force
from both legs must be considered.

4.1.2 Wing Model
We use an empirically derived model for the wing forces based on experiments performed using
a wind tunnel (Aerovent, Inc.). The robot was mounted on an ATI Nano-17 6-axis force-torque
transducer, and the lift and drag forces were measured across a range of flapping frequencies and
horizontal airspeeds. At each flapping frequency and horizontal airspeed, we extract the compo-
nents of the force signal by taking the Fourier decomposition of the measured data. The amplitude
and phase coefficients of the Fourier series are then parameterized as a function of the flapping
frequency and airspeed.

Fw = A0 +
n

Â
k=1

Ak cos(2p f k t + k qoffset) (4.8)

Because of the clap and fling wing motion, the thrust and lift force from the opening and closing
stroke are nearly equivalent–leading to a large second harmonic term in the wing force. Therefore,
for simplicity, we only consider the DC term and dominate second harmonic term in our wing
force model. Nonlinear regression was used to find the best least squares fit for the amplitude
coefficients as functions of the flapping frequency and airspeed.

A0 = (0.00492 f �0.02853v+0.00150v2)e1+
(0.00106 f �0.00337v+0.00208 f v+0.00476v2)e2

(4.9)

A2 = (�4.8086⇥10�7 f 4.278)e1+
(0.00210 f v+7.34⇥10�5 f 2)e2

(4.10)
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4.1.3 Tail Contact Model
In addition to the leg and wing forces, a ground contact force is also imposed at the tail of the
model. Because of the location of the hips well forward of the CG location, this constraint force is
necessary for the stability of the model. The ground contact force is modeled as a simple spring-
damper,

Ft =
⇢

0 if t ·E2 � 0
�kg t ·E2�bg ṫ ·E2 if t ·E2 < 0 (4.11)

where t represents the location of the tail. The spring (kg) and damping (bg) constants were chosen
empirically to be 10000 N/m and 100 N/(m/s), respectively. For simplicity we only consider the
vertical force on the tail, and neglect any friction force on the tail. The effect of this assumption is
discussed further in subsection 4.2.5.

4.1.4 Motor Model
The high periodic loading of the wings leads to a periodic oscillation of the velocity of the motor.
Since the same motor is used to drive both the wings and the legs, this oscillation is transmitted
to the legs. The motor is running at the limits of its capability when flapping the wings at higher
frequencies, and has limited bandwidth the alter this signal. This oscillation functions essentially as
a passive Buehler clock [59], with no active control necessary to implement. However, a drawback
is the lack of ability to adjust the parameters.

The motor model was determined in the same way as the wing model, and as with the wing
model, only the DC term and second harmonic is necessary to capture the motor dynamics:

q = 2p f t +q0 +
�4.2184+2.7328 f

4p f
sin(4p f t +

p
2

+qoffset) (4.12)

q̇ = 2p f +(�4.2184+2.7328 f )cos(4p f t +
p
2

+qoffset) (4.13)

4.1.5 Numerical Analysis
Overall, the forces acting on the rigid body are

F = Fw +Ft +
2

Â
i=1

F(i)
ks

+F(i)
kt
�gE2. (4.14)

In addition, we also compute the moments about the CG

M = t +Fw⇥R(y)rwing
+Ft⇥R(y)rtail

+(Â2
i=1 F(i)

ks
+F(i)

kt
)⇥R(y)rhip.

(4.15)
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The equations of motion can then be described by

r̈ =
F
m

(4.16)

ÿ =
M
I

(4.17)

The inclusion of hip torques and wing forces into the model preclude solving the dynamics of
the system analytically, and as such a numerical solver is employed. The ode45 solver in Matlab
was used to compute the solutions. In our simulations, we allow for a settling period, after which
any stumble of the robot (defined as the hips contacting the ground) is considered a failure. We also
constrain the rotation angle to�p

2 < y < p
2 to prevent the robot from flipping over. The simulation

ends when the robot either reaches a stable limit cycle, violates a failure condition, or exceeds the
maximum simulation time. To determine if the robot has reached a stable limit cycle, we define a
Poincaré section at the touchdown of leg 1 as

S := gT D
(1) , (4.18)

and define the state of the system on this section to be:

xT D(n) = [r2(n), ṙ1(n), ṙ2(n),y(n), ẏ(n)]T . (4.19)

Next, we examine the norm of the states from touchdown to touchdown:

eT D(n) = ||xT D(n)�xT D(n�1)||. (4.20)

To determine if a stable limit cycle is reached at step n, we require that the norm be less than our
threshold for the 4 previous consecutive strides to differentiate stable limit cycles from chaotic
gaits:

eT D(n� i) < 1⇥10�4 8i 2 [0,3]. (4.21)

In addition, we define a chaotic gait to be one in which the robot reaches the maximum simula-
tion time (corresponding to approximately 1000 strides) without reaching a stable limit cycle or
violating a failure condition.

4.2 Simulation Results
There are three key parameters for wing-assisted locomotion: linear leg stiffness, torsional leg
stiffness, and leg/wing phasing. All of these parameters show a complex interaction in enabling
fast and stable locomotion. To examine the effects of each parameter in detail, we vary a single pa-
rameter while holding the remaining parameters constant at the nominal values given in Table 4.2.
The parameters in Table 4.2 were determined by measuring the leg stiffnesses and leg/wing phase
offset for BOLT (as shown in section 3.2), and are highlighted with a solid gray bar in each fig-
ure. Examining the effects of each parameter can provide insights towards improving the design
of BOLT in future iterations.
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We also look at two control cases: legs-only and constant-wings. In the legs-only case we set
the wing force to zero. For the constant-wing case, the wing force is equal to the DC component
of the wing model. This allows the investigation of any benefits or drawbacks from using flapping
wings as compared to a propeller-type propulsive force paired with an airplane wing.

4.2.1 Independent Parameter Analysis
To examine the effect of different parameters on the performance, we examine four different met-
rics. First, we look at a bifurcation diagram of the touchdown angle, providing a visual repre-
sentation of the periodicity and stability of the gait. The second metric we examine is the mean
translational velocity over four strides. The velocity is taken over multiple strides to account for
chaotic gaits that may have slightly different velocities from stride to stride.

The third indicator of performance we consider is the magnitudes of the eigenvalues of the
linearized Poincaré return map. The Poincaré map is defined as

P : S! S, (4.22)

where S is the section defined in Equation 4.18. We compute the Jacobian of the map

JxP(x) =
∂P(x)

∂x
(4.23)

using a central finite-difference method. This gives the kth column of the Jacobian to be

∂P(x)
∂xk

=
P(x+dxk)�P(x�dxk)

2dxk
, (4.24)

where xk is a column vector with the value of the kth state at foot 1 touchdown at row k and zero
elsewhere, and d is a small number. For our calculation, we set d = 0.05

Finally, a traditional metric for SLIP-like systems is the nondimensionalized relative leg stiff-
ness,

krel =
Fvert
mg
Dl
l

, (4.25)

where Fvert is the maximum normal force due to the legs, mg is the weight of the model, Dl is the
maximum change in COM height, and l is the nominal leg length. It is important to note that this
stiffness value does not correspond to an actual structural spring in the model (such as the torsional
and linear leg springs). The relative leg stiffness represents a virtual spring value that relates the
vertical oscillations of the COM to the ground reaction forces. It effectively seeks to collapse all
of the forces acting on the system to a single spring value that can explain the motion and ground
reaction forces of the system. This value has been found to be⇠10 for a wide range of both legged
robots and animals [7], and may represent a key metric of stable legged locomotion.
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(a) q =� pi
2 (b) qoffset = 0 (c) qoffset = p

4 (d) qoffset = p
2 (e) qoffset = 3p

4

Figure 4.3: The offset phase (qoffset) between the legs and the wings. By changing the offset phase,
the position of the leg within the cycle remains the same (a), while the position of the wings is
shifted with respect to the legs (b) - (e).

Leg/Wing Phasing

The first model parameter we investigate is the phase offset between the legs and the wings (qoffset).
This parameter determines the relationship between the commanded leg angle and commanded
wing stroke position. Figure 4.3 shows the robot at several different phase offset angles. In each
image, the leg is pointed directly forward (q = �p

2 ), while the position of the wing stroke is
varied from the beginning of the closing stroke to the end of the closing stroke. Since we model
the opening and closing stroke of the wing as equivalent, and the robot has two identical legs,
qoffset = qoffset +p .

Figure 4.4 shows the results of varying the leg/wing phase offset from 0 to p radians for leg
frequencies of 9 Hz and 12.5 Hz. From Figure 4.4, it is clear that the model performs significantly
better at 12.5 Hz compared with 9 Hz. At 12.5 Hz, a stable limit cycle exists for 0.44 rad qoffset
2.36 rad. Chaotic gaits are found at the edges of the stable region, with unstable gaits outside of
0.35 rad < qoffset < 2.62 rad. The range of phases for which stable period-1 gaits can be found at
9 Hz ranges from 1.05 rad  qoffset  1.92 rad. As in the 12.5 Hz case, at the edges of the stable
region the model exhibits chaotic or higher period gaits before becoming unstable.

Using the average translational velocity as a metric, the optimal leg/wing phase offset is found
at 0.96 rad for a frequency of 12.5 Hz. At this phase offset, the translational velocity is nearly
2 ms�1 at the 12.5 Hz motor frequency. While this is the best phase for a 12.5 Hz motor frequency,
it is at the edge of the stable regime for the 9 Hz frequency. At this point, the simulation ex-
hibits a period-2 gait, with the right and left legs no longer symmetrical, as shown by the different
touchdown angles in Figure 4.4.

Examining the eigenvalues of the system shows 3 different magnitudes for each simulation,
corresponding to one real eigenvalue and 2 complex conjugate pairs. One conjugate pair remains
at zero across all phase offset values, while the other conjugate pair is near the stability limit of 1.
The second conjugate pair becomes more stable as the phasing is shifted towards the lower edge
of the stable region for the phase offset before quickly increasing back towards 1 and becoming
unstable. While this value becomes more stable as the phase offset is reduced, the real eigenvalue
is increased towards the stability limit. The effect of this increase in response to a disturbance is
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discussed further in subsection 4.2.3.
Examining the relative leg stiffness (Equation 4.25) shows for a 12.5 Hz motor frequency at

the optimal phase offset (as measured by maximum translational velocity), the relative leg stiffness
is very near the value of 10 found across other SLIP systems. For example, at qoffset = 1.05 rad,
the maximum vertical leg force, Fvert , is 0.0426 N, and the COM vertical displacement, Dl, is
5.75⇥10�4 m. After normalizing by the weight of the model (mg = (0.012 kg)(9.81 ms�2)) and
the leg length (l = .020 m), we find the relative leg stiffness, krel , has a value of 12.6. As the
leg/wing phasing is varied from this value, the relative leg stiffness increases and the simulation
eventually becomes unstable. At 9 Hz, the relative leg stiffness remains nearly constant over the
stable range. The difference in variation in relative leg stiffness between frequencies is due to the
increased wing forces at 12.5 Hz compared with 9 Hz. The higher wing forces at 12.5 Hz have a
greater effect on the system, causing the phasing of the legs and wings to have a larger impact on
the relative leg stiffness.
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Figure 4.4: The effect of the leg/wing offset phase (qoffset) on the simulation performance, with all
other parameters equal to their value in Table 4.2. Circles represent simulations which converged
to stable limit cycles, while the triangles represent chaotic trials. At the top left is a bifurcation
diagram showing the phase between the leg and the ground at touchdown for four consecutive
touchdown events of each foot. The average translational velocity is shown in the bottom left
plot, with the magnitude of the eigenvalues of the linearized Poincaré return map for the stable
simulations shown on the top right. The bottom right plot shows the value of the relative leg
stiffness. The solid gray bar denotes the nominal value for qoffset from Table 4.2. The performance
of the simulation with the values marked by both the solid and dashed gray bar are shown in more
detail in following sections.
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Figure 4.5: Effect of motor, wing, and leg phasing on performance. The complete WingSLIP model
includes the induced oscillation of the motor velocity due to the wing loading. While intrinsically
coupled in the physical system, in the simulation they can be artificially decoupled. The blue
points represent the complete model, the red points represent the model with constant wing force
and periodic motor velocity, and the green points represent the model with periodic wing forces
and constant motor velocity. Circles represent simulations which converged to stable limit cycles,
while the triangles represent chaotic trials. At the top left is a bifurcation diagram showing the
phase between the leg and the ground at touchdown for four consecutive touchdown events of each
foot. The average translational velocity is shown in the bottom left plot, with the magnitude of the
eigenvalues of the linearized Poincaré return map for the stable simulations shown on the top right.
The bottom right plot shows the value of the relative leg stiffness. The solid gray bar denotes the
nominal value for qoffset from Table 4.2.

Motor Oscillation Effect

Changing the offset phase between the legs and the wings not only changes the phase of the wing
force with respect to the legs, it also affects the phase of the oscillation in motor velocity. As
discussed in subsection 4.1.4, the loading from the wings on the motor causes the velocity of the
motor to oscillate with the wings. While this effect is coupled in the physical system due to actuator
limits, it is possible to decouple the effect in simulation and examine the performance. Figure 4.5
shows three different cases: the complete model, with both wing and motor oscillations; a constant
wing model, with constant wing forces and periodic motor velocity; and a constant motor model,
with periodic wing forces and constant motor velocity.

Examining the constant motor model shows that the periodic wing forces have very little effect
on both the stability and translational velocity of the system, suggesting that their effect on these
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metrics is filtered out by the dynamics of the system. It is clear that the phasing effect seen in
the complete model is caused primarily by the periodic motor velocity. As mentioned in subsec-
tion 4.1.4, the periodic motor velocity functions as a Buehler clock [59], a feature which was found
to be key to the stability of RHex. An important difference is found between the Beuhler clock
implemented on RHex and the WingSLIP model. On RHex, the leg is moved quickly through
its swing phase, and moved more slowly when on the ground. By contrast, the WingSLIP model
performs best when the motor is moved quickly through the stance phase, and moved more slowly
though the swing phase. This difference is due to the added force on the system provided by the
wings. The wing force propels the robot faster than the leg forces alone. Due to the faster trans-
lational velocity of the model, the performance is best when the leg is moving faster during the
stance phase, so as to prevent the legs from slowing the motion of the robot.

An effect due to the periodic wing forces is seen in the relative leg stiffness. With the constant
wing forces, the relative leg stiffness is fairly high, with a value near 50 across all stable values for
the offset phase. The addition of the wing forces with the proper phasing reduces the forces due to
the legs, correspondingly reducing the relative leg stiffness.

Leg Stiffness

In addition to the leg/wing phasing, the linear and torsional leg stiffness also have a large effect
on the performance of the simulation, and designing and tuning these values correctly is critical
to an efficient, high-performance system. The performance of the model as the linear stiffness is
varied is shown in Figure 4.6. As with the leg/wing phase, the system is stable over a narrower
range for a motor frequency of 9 Hz compared to 12.5 Hz. At 12.5 Hz, the simulation converges
to a stable limit cycle for 1.3 N/m  ks  66 N/m. Below ks = 1.3 N/m, the system exhibits
chaotic behavior, with the variation in touchdown angle slowly growing until the system becomes
unstable at ks < 0.2 N/m. At 9 Hz, a stable limit cycle is found for a significantly smaller range
of values, 4 N/m  ks  20 N/m. Figure 4.6 shows that the translational velocity of the model is
moderately improved by increasing the leg stiffness for 12.5 Hz running, while the speed remains
nearly constant (only changing by 0.1 ms�1) for a motor frequency of 9 Hz.

While increasing the linear stiffness can increase the translational velocity of the system, it is
accompanied by an increase in one of the system eigenvalues. As with the leg/wing offset phase,
increasing the velocity of the system also reduces the stability of one eigenvalue of the system.
Examining the relative leg stiffness, we see that for linear stiffness values that lead to stable limit
cycles, the relative leg stiffness varies from⇠15 to⇠20, increasing as the linear stiffness is moved
closer to the edge of the stable region.

The torsional stiffness also has a significant impact on the model’s performance, as shown by
Figure 4.7. At 12.5 Hz, a stable limit cycle is reached for 0.0006 Nm/rad  kt  0.005 Nm/rad.
At a motor frequency of 9 Hz, the stable range is only slightly smaller, 0.001 Nm/rad  kt 
0.004 Nm/rad. At 9 Hz, the system only has a very small region of chaotic behavior before be-
coming unstable. However, at 12.5 Hz, the simulation shows large regions of chaotic behavior
between the stable and unstable boundaries. While variation in the leg/wing phase and linear leg
stiffness exhibited chaotic regions, the stride-to-stride variation was fairly small. However, as the
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Figure 4.6: The effect of the linear leg stiffness (ks) on the simulation performance, with all other
parameters equal to their value in Table 4.2. Circles represent simulations which converged to
stable limit cycles, while the triangles represent chaotic trials. At the top left is a bifurcation
diagram showing the phase between the leg and the ground at touchdown for four consecutive
touchdown events of each foot. The average translational velocity is shown in the bottom left
plot, with the magnitude of the eigenvalues of the linearized Poincaré return map for the stable
simulations shown on the top right. The bottom right plot shows the value of the relative leg
stiffness. The solid gray bar denotes the nominal value for ks from Table 4.2. The performance of
the simulation with the values marked by both the solid and dashed gray bar are shown in more
detail in following sections.

torsional stiffness is varied outside of the stable region, large changes in the touchdown angle of
the leg are observed. For higher torsional stiffnesses, the translational velocity is decreased, as the
torsional spring is impeding the motion of the robot. Despite the chaotic nature of the gait for tor-
sional stiffnesses below 0.0006 Nm/rad, the translational velocity of the robot does not decrease.
This suggests that the legs are providing little propulsive force, with the wings doing the majority
of the work. This is also supported by the trend shown by the relative leg stiffness for 12.5 Hz.
The relative leg stiffness is proportional to the vertical force from the legs (Equation 4.25). As the
torsional stiffness decreases, the relative leg stiffness decreases along with the force from the legs.
Conversely, as the torsional stiffness increases, the force from the legs (and relative leg stiffness)
also increases.
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Figure 4.7: The effect of the torsional leg stiffness (kt ) on the simulation performance, with all
other parameters equal to their value in Table 4.2. Circles represent simulations which converged
to stable limit cycles, while the triangles represent chaotic trials. At the top left is a bifurcation
diagram showing the phase between the leg and the ground at touchdown for four consecutive
touchdown events of each foot. The average translational velocity is shown in the bottom left
plot, with the magnitude of the eigenvalues of the linearized Poincaré return map for the stable
simulations shown on the top right. The bottom right plot shows the value of the relative leg
stiffness. The solid gray bar denotes the nominal value for kt from Table 4.2. The performance of
the simulation with the values marked by both the solid and dashed gray bar are shown in more
detail in following sections.

4.2.2 Parameter Interaction and Control Experiments
While studying the effect of each parameter individually can illuminate the effect of that parameter
on the performance, the parameters also interact with each other. To investigate this effect, we look
at the performance of the WingSLIP model at 12.5 Hz across a grid of leg stiffness values at four
different leg/wing offset phase values in Figure 4.8. The simulations clearly elucidate an interaction
between the leg/wing offset phase and the torsional leg stiffness. As the torsional leg stiffness is
decreased, the effect of the leg/wing offset phase is decreased. With a soft torsional leg spring, the
majority of the performance is due to the wing forces, and the phasing with the leg forces does not
affect the system. However, as the torsional stiffness is increased, the leg/wing phasing becomes
important as the forces from the legs are increased.

Figure 4.8 also shows the performance of two control cases, legs-only and constant-wings. The
simulation with leg forces only shows significantly slower translational velocity, as the simulation
no longer includes the high propulsive wing forces. In addition, the range of leg stiffnesses over



CHAPTER 4. A SAGITTAL PLANE MODEL FOR WING-ASSISTED LOCOMOTION 29

which the simulation is stable is decreased in the legs-only case. When adding wing forces to
the simulation, the leg forces become less important and the WingSLIP model can better handle
legs that may not be optimally tuned. Investigation of the constant wing simulation shows the
effects of the periodic wing forces as compared to a constant force on the model. Much of the
benefit due to wings can be achieved by adding a constant propulsive and lift force to the system.
However, with the constant wing force, the performance shows significant variation due to leg
stiffness (Fig. 4.8b). With properly phased legs and wings, this variation across leg stiffnesses can
be reduced with flapping wings (Fig. 4.8d).

4.2.3 Perturbation Response
For each simulation, the eigenvalues consisted of one real value and two conjugate pairs. The lack
of damping in the system leads to eigenvalues with a magnitude close to one for each case, as the
effect of disturbances can often take an extended period of time to decay. To better understand
how the eigenvalues relate to the performance of the system, we look at the COM trajectory of
the model for two different disturbances at both 9 and 12.5 Hz across four combinations of model
parameters.

Figure 4.9 and Figure 4.10 show the performance of the system when subjected to a 1 mm
vertical step at touchdown. In each figure, the nominal case based on the parameters from Table 4.2
is shown at the top, with the following three plots varying the leg/wing offset phase, linear leg
stiffness, and torsional leg stiffness, respectively. For the 9 Hz case, we clearly see the effect of the
eigenvalues that have magnitude near 1, with the perturbation of the trajectory from the disturbance
decaying very slowly. Compared to the nominal case, we see that reducing the torsional stiffness
causes the system to stumble and become unstable when subjected to this disturbance. The best
performance is seen by increasing the linear stiffness. While reducing the phase offset improves
the velocity of the robot, we see here that the lower phase offset exhibits higher oscillations to a
step input.

At 12.5 Hz, the performance of the robot is markedly different. All parameter sets are stable
for this frequency. However, there is a clear lower frequency oscillation present that decays fairly
slowly. Comparing the eigenvalues at 12.5 Hz and 9 Hz in Figure 4.4, Figure 4.6, and Figure 4.7,
we see that the model has an eigenvalue near zero and an eigenvalue near 1 at both frequencies.
However, the intermediate eigenvalue is significantly greater at 12.5 Hz compared to 9 Hz, leading
to the increased low frequency oscillation observed in the step response. At 12.5 Hz, the best
performance is achieved by reducing the phase offset to 1.05 rad from 1.75 rad. Increasing the
torsional leg stiffness also improves performance at 12.5 Hz, in contrast to its destabilizing effects
at 9 Hz. This effect is likely due to the increased influence of the wings at the higher frequency,
and correspondingly decreased influence of the leg torsional stiffness.

The second perturbation that is considered is a 20% instantaneous reduction in the transla-
tional velocity of the model. This is analogous to an impulse force on the physical system. At
9 Hz, this has very little effect on the system across all parameter combinations. With reduced
torsional stiffness, the disturbance is nearly completely rejected, with no change in performance.
The system with increased linear stiffness performs nearly as well, with the reduced phase system
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(a) Legs-Only
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(b) Constant Wing and Motor
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(c) qoffset = 0.17rad
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(d) qoffset = 0.96rad
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(e) qoffset = 1.75rad
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(f) qoffset = 2.53rad

Figure 4.8: Multi-parameter variation of the parameters of the WingSLIP model and two control
cases. (a) shows the performance with leg forces only, while (b) shows the performance with
constant wing forces. (c) – (f) shows the performance of the WingSLIP model across a grid of leg
stiffnesses for four different leg/wing phase offset values.
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Figure 4.9: COM height for 3 seconds after being subjected to a 1 mm vertical step at t = 0
when running at 9 Hz. The red lines show the steady state (limit cycle) trajectory, with the blue
lines showing the perturbed trajectory. The results are shown for simulations using four different
parameter combinations.

again performing the worst for the 9 Hz motor frequency.
At 12.5 Hz a significantly greater effect is observed. The horizontal velocity of the system is

greater at this frequency, and the wing forces depend on the square of the velocity. This leads to
a greater observed effect compared to the 9 Hz frequency. For this case, increased linear stiffness
shows the best performance, followed by the nominal case. Decreasing the torsional stiffness or the
phase offset leads to a higher initial effect from the disturbance and a longer recovery time. Again,
the effects of the higher intermediate eigenvalue can be seen in the low frequency oscillations that
are not present when running at 9 Hz.

4.2.4 Steady State Performance
In addition to the perturbation response of the system, we are interested in the COM trajectory and
forces on the system when it has reached a stable limit cycle. As the parameters of the system are
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Figure 4.10: COM height for 3 seconds after being subjected to a 1 mm vertical step at t = 0
when running at 12.5 Hz. The red lines show the steady state (limit cycle) trajectory, with the blue
lines showing the perturbed trajectory. The results are shown for simulations using four different
parameter combinations.

varied, the trajectory of the robot in the state space converges to different limit cycles. Analysis
of the trajectory and leg forces can suggest the specific effects different parameters have on the
system.

The simulation shows that once the model has reached a stable limit cycle, the COM follows
a smooth sinusoidal trajectory, similar to the characteristic pattern exhibited by classical SLIP like
motion. However, the addition of wing forces introduces several important differences between
this model and the standard leg-only models. The fore-aft leg forces for the classical SLIP model
have a characteristic sinusoidal shape, with the leg braking the COM forward velocity for the first
half of the stride, and accelerating it through the second half of the stride. Due to the additional
force provided by the wings, the WingSLIP model runs at a higher velocity than the leg frequency
alone would allow. This causes the leg to primarily provide a braking force when on the ground,
as the actual leg angle often leads the commanded leg angle.

Figure 4.13 shows several interesting features of WingSLIP locomotion for the parameters from
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Figure 4.11: COM height for 3 seconds after being subjected to a 20% instantaneous reduction in
the translational velocity at t = 0 when running at 9 Hz. The red lines show the steady state (limit
cycle) trajectory, with the blue lines showing the perturbed trajectory. The results are shown for
simulations using four different parameter combinations.

Table 4.2. In SLIP systems, the magnitude of the ground reaction forces generally increases with
the stride frequency and translational velocity. However, due to the increase in wing forces with
increasing motor frequency, the WingSLIP model shows a reduction in the ground reaction forces.
This effect is due to the higher lift force provided by the wings, effectively reducing the mass of the
model. An additional effect of the reduced effective mass from wing forces is increased average
COM height at higher frequencies, as less leg compression is necessary to support the weight of
the system. The COM height also exhibits lower oscillation in the 12.5 Hz case, despite the higher
wing forces on the system. This effect is beneficial for mounting obstacles, as seen in Figure 4.10.

Comparing with the nominal case, Figure 4.14 shows the advantage of aligning the wing and
leg phase correctly. When aligned such that the leg is moving fastest when in stance phase, the
negative horizontal leg force on the system is reduced. While the commanded leg phase still lags
the actual leg phase, the difference is reduced and the torsional spring is no longer attempting
to slow down the leg as significantly. This leads to the clear improvement in velocity seen in
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Figure 4.12: COM height for 3 seconds after being subjected to a 20% instantaneous reduction in
the translational velocity at t = 0 when running at 12.5 Hz. The red lines show the steady state
(limit cycle) trajectory, with the blue lines showing the perturbed trajectory. The results are shown
for simulations using four different parameter combinations.

Figure 4.4.
Increasing the linear leg stiffness, as Figure 4.15 shows, increases further the COM height

during steady state running. It also has the effect of smoothing out the leg forces when compared
to the softer leg spring seen in Figure 4.13. The normal leg force exhibits a smooth half-sinusoid
during stance, very similar to the characteristic SLIP model. While the fore-aft leg forces still differ
from the traditional SLIP model, the more upright posture and reduced stance time minimizes the
negative force from the legs. Here, the wings provide the majority of the fore-aft force, with the
legs only providing periodic normal force to keep the robot off the ground.

Figure 4.16 shows an alternate way of reducing the fore-aft force from the legs - reducing the
torsional leg stiffness. Lowering this stiffness reduces the ability of the motor to transmit forces to
the ground through the leg, allowing the wings to accelerate the system without the legs impeding
the motion. However, when subjected to a disturbance, the lack of force production from the legs
can be catastrophic, and cause the robot to stumble as Figure 4.9 shows.
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Figure 4.13: Steady state trajectory and forces for one complete stride of the simulation with the
nominal parameter values from Table 4.2. The gray bars denote the stance phase.

4.2.5 Effect of Assumptions and Physical Implications
By definition, all dynamic models are a simplification of the physical system. The canonical SLIP
model, while informative about the underlying dynamics of complex systems, is unstable for many
actual physical parameters found in both animals and robots [62]. To address this, additional com-
plexity is added to the simple SLIP model through the addition of a clock-torqued control scheme.
The goal of the WingSLIP model is to capture enough of the system complexity to inform the
effect of different system parameters on the dynamics of the system. Examining the performance
of the model at the measured parameter values from the robot, we see that the WingSLIP predicts
stable locomotion for these values. This initial test suggests that a reasonable degree of complexity
has been included, however more detailed experimental results are necessary to fully validate the
model.

While reduced order models sacrifice some accuracy, they allow the effect of the included
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Figure 4.14: Steady state trajectory and forces for one complete stride of the simulation with a
phase offset of 1.05 rad, with the other parameters at their nominal values. The gray bars denote
the stance phase.

parameters to be more easily investigated and understood. Higher order models quickly become
intractable in the number of parameters included. The WingSLIP model makes several assumptions
in order to simplify the understanding of wing assisted locomotion. Both linear and torsional
damping are neglected from the leg model. In addition, rotational aerodynamic damping due to
the wings is also neglected. The lack of damping in the system is evident by the eigenvalues with a
magnitude near one found for all parameter combinations. The addition of damping to the system
would likely decrease the eigenvalues of the system, providing a mechanism to remove the energy
imparted by a disturbance.

The WingSLIP model also over-predicts the translational velocity of the robot compared with
the experimental performance presented in Table 5.2. This is likely due to the effect of friction on
the system, which has been neglected in the WingSLIP model. There are two sources of friction
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Figure 4.15: Steady state trajectory and forces for one complete stride of the simulation with an
increased linear leg stiffness of 15.85 N/m, with the other parameters at their nominal values. The
gray bars denote the stance phase.

in the model, at the foot contact and the tail contact. Inclusion of both static and kinetic friction at
the foot would lead to reduced propulsive force from the legs and slower performance. However,
the largest effect is likely due to the tail friction. Observations of the performance of BOLT show
a complex interaction between the airflow from the flapping wings and the tail. At low flapping
frequencies, the tail drags on the ground and significant friction is present. However, at higher
frequencies, the airflow from the wings flows between the tail and the ground, effectively creating
an air-bearing and reducing the sliding friction on the tail. This leads to the small discrepancy in
predicted translational velocity at 12.5 Hz, and the much larger discrepancy at 9 Hz.

The results presented in this section can provide guidelines for increasing the performance of
the BOLT platform, however physical constraints must also be considered. While the modeling
results suggest that increasing the linear stiffness and decreasing the torsional stiffness would im-
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Figure 4.16: Steady state trajectory and forces for one complete stride of the simulation with a
softer torsional leg stiffness of 0.00126 Nm/rad, with the other parameters at their nominal values.
The gray bars denote the stance phase.

prove performance, this is difficult to do in reality. The leg stiffnesses are coupled through the
complex hip mechanism in the physical system, and it is difficult to increase one stiffness while
decreasing the other. Future designs that include a decoupled hip mechanism may greatly benefit
from this insight however, leading to improved hybrid performance.
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Chapter 5

Experimental Characterization of Flapping
Wing Aerodynamically Assisted Bipedal
Running

5.1 Experimental Dynamics of BOLT
BOLT [56] has two regimes of operation when locomoting terrestrially, a quasi-static gait (9 Hz)
and a dynamic gait (12.5 Hz). To study the dynamics in each of these modes, we use the ac-
celerometer to examine the intra-stride forces at steady-state velocity. The rate gyroscope allows
the acceleration data to be corrected for the pitch and roll of the body, aligning the acceleration
components in the horizontal and vertical directions. We use the maximum velocity obtained by
the robot as a relative measure of the maximum effective locomotive force on the robot. The data
are parameterized by the output gear phase, obtained by integrating the highly periodic back EMF
signal. By performing the tests on carpet, we ensure the legs have good traction with the ground
during the trials.

We consider two control cases to distinguish between the force contributions of the flapping
wings and the legs when running along the ground. We replace the legs on BOLT with lightweight
wheels (Fig. 5.1a) to isolate the effects of the flapping wings (wings-only, WO). In this config-
uration, the flapping wings supply all of the locomotive force. Removing the linkage driving the
wings (Fig. 5.1b) reduces the wings to a passive element with the locomotive force coming entirely
from the legs, (wings-passive, WP). This configuration also allows the differentiation between the
effects of flapping the wings and the passive properties of the airfoil.

5.1.1 Quasi-static Terrestrial Locomotion
BOLT exhibits a quasi-static walking gait when running at a flapping frequency of 9 Hz. The
aerodynamic effects of the flapping wings are minimal in this gait, with the WO robot reaching
a maximum velocity of 0.17 ms�1. In contrast, the legs of the WP robot propel it at 0.33 ms�1.
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(a) Wings-Only (WO) (b) Wings-Passive (WP)

Figure 5.1: (a) shows the first control case, the robot with wheels instead of legs, allowing the
investigation of the wing effects alone. For the second control case (b), we disconnect the linkage
driving the wings, removing any active effects from flapping.

Overall, the hybrid robot reaches 0.5 ms�1, suggesting a superposition of the leg and wing thrust
components may explain the hybrid gait.

Figure 5.2 shows the fore-aft and vertical accelerations of the robot over a representative cycle.
We show the accelerations for the WO robot, the WP robot, the superposition of the WO and WP
robots, and the hybrid robot. The accelerations of the hybrid robot are similar in both magnitude
and shape to the superposition of the WO and WP robots, suggesting a lower degree of interaction
between the leg and wing forces in this gait. An effect of leg/wing force coupling that can be seen
is the smoother accelerations of the hybrid robot compared to those the WO+WP model predicts.
The flapping wings provide a higher amount of damping on the impulsive leg forces the robot
generates than the passive wings.

The motor velocity over a representative cycle of the quasi-static gait is shown in Figure 5.3.
The robot uses constant PWM control for the motor, causing the motor velocity to vary depending
upon load. Over a single cycle, the effect of the varying load due to the flapping wings or legs is
seen clearly from the change in motor velocity. The variation in motor velocity for the hybrid robot
and the WO robot is nearly identical, implying a similar load in the two cases. Thus, despite the
wings’ ineffectiveness in this gait they are responsible for the majority of the power consumption
of the motor. Table 5.1 shows the WO robot consumes 80% more power than the WP robot despite
traveling at only half the speed. This is reflected by the cost of transport: the WP robot is the most
efficient while the WO robot is the least efficient. The hybrid robot has an efficiency between the
two controls.



CHAPTER 5. EXPERIMENTAL CHARACTERIZATION OF FLAPPING WING
AERODYNAMICALLY ASSISTED BIPEDAL RUNNING 41

−20

0

30
Wings−Only

 

 

Fore−Aft Vertical

−20

0

30
Wings−Passive

Ac
ce

le
ra

tio
n 

(m
/s

 2 )

0 1 2 3 4 5 6
−20

0

30
Hybrid

Phase (rad)

−20

0

30
Wings−Only + Wings−Passive

Figure 5.2: Fore-aft and vertical accelerations shown over a single representative cycle when run-
ning at 9 Hz at a steady state velocity. At slow frequencies the robot exhibits quasi-static motion.
In this regime, the forces on the hybrid robot are consistent with the superposition model of the
individual leg and wing forces.
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Table 5.1: Forward velocity (ms�1), motor input power (W ), and specific resistance of different
configurations and gaits for BOLT.

Gait Configuration
(frequency) Wings-Passive Wings-Only Hybrid

Quasi-static
(9 Hz)

Velocity 0.33 0.17 0.50
Power 0.36 0.65 0.89

SR 9.87 34.4 15.9

Dynamic
(12.5 Hz)

Velocity 0.35 1.5 1.5
Power 0.36 0.79 0.91

SR 9.14 4.68 5.51

0 1 2 3 4 5 6
20
40
60
80

100
120

Phase (rad)

Dynamic Gait

 

 

Wings−Only Passive Wings Hybrid

20
40
60
80

100
120

M
ot

or
 V

el
oc

ity
 (r

ad
/s

)

Quasi−static Gait

Figure 5.3: Motor velocity over a representative cycle for both a quasi-static gait (9 Hz) and a
dynamic gait (12.5 Hz).
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Figure 5.4: Fore-aft and vertical accelerations shown over a single representative cycle when run-
ning at 12.5 Hz. At high speeds, a simple superposition of the leg and wing forces does not
accurately predict the overall force on BOLT. The interactions between the legs and the wings
are an important component of the forces during dynamic locomotion, altering the range of leg
stiffnesses that give stable locomotion.
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5.1.2 Dynamic Locomotion
The second running gait of BOLT is dynamic bipedal locomotion, seen at a flapping frequency of
12.5 Hz. The aerodynamic force the flapping wings provide increases greatly, with the WO robot
running at 1.5 ms�1. The hybrid robot also runs at 1.5 ms�1, while the WP robot is only capable
of 0.35 ms�1. In this gait, there is a strong interaction between the wing and leg dynamics.

The acceleration plots of Figure 5.4 show the same four cases as above (WO, WP, WO+WP,
Hybrid), along with a fifth case: the WO case subtracted from the hybrid case. For this gait, the
WO+WP model is a poor predictor of the hybrid accelerations, predicting magnitudes over double
the measured values.

The WP case shows one overly large single acceleration caused by a footfall centered at a phase
of p , propelling the robot into the air preventing the next footfall from generating the same amount
of force. Between footfalls, the robot is in free-fall, with zero fore-aft acceleration, and a vertical
acceleration of -9.8 m/s2. The high accelerations and gait asymmetry of the WP case are generally
indicative of poor leg tuning on a robot with a traditional SLIP gait. The hybrid robot uses the
same legs as the WP robot at the same frequency, but the accelerations experienced by the robot
are much lower. We again see the effect of the flapping wings damping the leg impulses from the
quasi-static case, but to a higher degree now. The hybrid robot does not have the free-fall state
shown by the WP robot; stopping this free-fall leads to the high accelerations seen in the WP case.
The hybrid robot is “flying between footfalls” instead of falling, greatly reducing the accelerations
that must be affected by the legs.

The WO robot and the hybrid robot both run at the same forward velocity and motor frequency
(see Figure 5.3). This leads to the assumption that the wing forces are nearly the same in both
cases regardless of the ground contacts. Subtracting the WO case from the hybrid case shows the
leg forces for the hybrid robot (Figure 5.4). While they still differ from a traditional SLIP gait due
to the leg/wing interactions, the legs no longer appear poorly tuned. From this data, we conclude
a flapping wing robot should use stiffer legs than would normally be expected for a robot running
with legs alone.

The motor velocities, and thus the dynamic loading, are nearly identical between the hybrid
robot and the WO robot during the dynamic gait (Figure 5.3). As in the quasi-static case, the WP
robot uses the least amount of power, followed by the WO robot with the hybrid robot consuming
the most power (see Table 5.1). Due to the differing forward speeds, the COT relationship is now
markedly different, with the WO case the most efficient and the WP case the least efficient. Once
again, the hybrid provides a compromise between the cases.

5.1.3 Rotational Energy Analysis
To further analyze the locomotion of the two gaits, we apply the analysis presented in section 6.1
and look at the mean rotational energy (Equation 6.5) and mean normalized variance in energy
(Equation 6.6). The results are presented in Table 5.2. For both gaits, the WO case has the lowest
energy, followed by the hybrid case, with the WP case having the highest rotational energy. The
lack of hybrid dynamics in the WO case is the strongest contributor to its low energy state. The
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Table 5.2: Mean rotational energy (ĒRot (J)) and mean normalized variance in energy
(ŝ(ERot)2 (J)) for BOLT

Gait Configuration
(frequency) Wings-Passive Wings-Only Hybrid
Quasi-static

(9 Hz)
Energy 0.5115 0.0449 0.2806

Variance 0.3235 0.0209 0.1358
Dynamic
(12.5 Hz)

Energy 0.9807 0.2376 0.4476
Variance 0.8345 0.0483 0.1407

hybrid case has lower rotational energy compared to the WP case, despite the higher power input to
the system (Table 5.1). This is consistent with the conclusion that flapping wings provide important
damping and stabilization to the system. The WP case has significantly higher mean rotational
energy compared to the other two test conditions. This clearly demonstrates that this system is
poorly suited for running without the wings. The mean normalized variance is also much higher
for the WP case, implying more variability between strides and an inability of the WP robot to
reach a stable limit cycle.

The dynamic gait shows higher energy in all configurations compared with the quasi-static
gait. This result is due to the additional energy input into the system through the higher motor
velocity: greater aerodynamic and inertial forces from the wings and higher leg velocities. The in-
crease in energy from the WO case to the hybrid case is much more significant for the quasi-static
gait (525%) compared to the dynamic gait (88%). At a higher flapping frequency and translational
speed, the wing forces have a greater effect and provide damping of the discrete leg contact dynam-
ics. This further reinforces the conclusion that the robot is best tuned to run at higher frequencies
where the aerodynamic effects of the wings are significant.

5.1.4 Terrestrial to Aerial Transitions
By running along the ground at a high speed, BOLT can generate enough aerodynamic lift to take
off. Depending upon the center of mass location, BOLT requires between one and two meters of
runway space. Figure 5.5 shows the robot during a takeoff maneuver with the controller board
mounted forward, causing a takeoff distance just under 2 meters when flapping at 18 Hz. The
average acceleration for each stride is shown, along with the instantaneous velocity obtained by
integrating the accelerometer data. BOLT accelerates very quickly from a standstill, reaching
1 ms�1 in 0.14 s and 2 ms�1 in 0.38 s. Upon reaching a velocity of 2.5 ms�1, BOLT has taken
off and is no longer touching the ground. The robot continues to accelerate until reaching 3 ms�1.
At this point the tail begins to swing under the robot and it enters a vertical flight posture. The
vertical accelerations oscillate around zero throughout the maneuver as the robot bounces along
the runway. The total vertical velocity stays very near zero however, as the accelerometer does not
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Figure 5.5: BOLT transitioning from terrestrial locomotion to aerial locomotion. The average
acceleration of each stride/wingbeat is plotted, along with the velocity obtained by integrating
the accelerometer data. The robot quickly builds speed (A-C), lifting off at 2.5 ms�1 (D) and
continuing to accelerate until it reaches 3 ms�1 (E). The vertical acceleration oscillates around
zero, giving near zero vertical velocity throughout the run.

pick up the slow movement upwards of the robot.
By moving the location of the controller board (and the center of mass), BOLT can be con-

figured to have different transition properties. Moving the controller board forward increases the
distance required for takeoff (⇠2 m), but also increases the maximum terrestrial speed (2.5 ms�1).
Additionally, it allows the board to be placed on foam offsets, improving the IMU measurements.
When the board is moved to the back of the airframe, the takeoff distance is reduced to 1 meter.
The speed where takeoff occurs is also reduced to 1.75 ms�1.
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(a) BOLT (b) BOLT

(c) Wings-only (d) Wings-only

Figure 5.6: (a-b) show BOLT running at a 2 cm obstacle and easily clearing the top of it. By
contrast, (c-d) show the wings-only robot incapable of getting over the barrier. The wings-passive
robot is capable of clearing the barrier, but is not always successful.

5.2 Advantages of a Hybrid Aerial and Terrestrial Robot
The method BOLT uses to maintain stability when running differs between the quasi-static and
dynamic gait. At low speeds, the tail of the robot remains in contact with the ground and provides
an extra point of stability. At higher speeds, the airflow from the flapping wings passes underneath
the tail, and it lifts off of the ground enabling truly bipedal locomotion. The aerodynamic forces
from the flapping wings and the tail allow the robot to maintain passive stability despite its bipedal
locomotion in the absence of any closed loop control. The sprawled posture of the legs and low-
to-the-ground design help the robot maintain stability during both modes of locomotion.

By using the flapping wings to provide additional thrust, the terrestrial speed of the robot is
significantly increased from a legged robot. With a quasi-static gait, the wings-passive robot has
the best COT, while the wings-only robot performed best at a dynamic gait. The hybrid robot
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(a) 30� incline, 0 s (b) 30� incline, 0.27 s (c) 30� incline, 0.54 s

(d) 30� incline, 0 s (e) 30� incline, 0.27 s (f) 30� incline, 0.54 s

Figure 5.7: BOLT running up 30� and 45� inclines with no special foot attachment mechanisms.

provides a compromise between the two, allowing more efficient locomotion when a range of
speeds is necessary. At slow speeds legs provide more efficient thrust than wing flapping; at high
speeds the wings allow the robot to “fly” along the ground, dramatically reducing the cost of
transport.

BOLT also has the ability to self-right when inverted on the ground by flapping its wings.
When upside down on the ground, the robot rests on its vertical tail stabilizer and its wing tips.
The self-righting maneuver begins with the wing tips pushing the nose of the robot upwards and
beginning the righting motion. From this position, the majority of the wing thrust is directed
directly downwards, and the robot accelerates vertically. The passive aerial stability of the robot
swings the tail underneath the robot and the robot can either continue flying or reduce the throttle
and land, now properly oriented.

5.2.1 Obstacle Clearance
BOLT has also shown the ability to clear terrestrial obstacles, both with a running start and from
standstill. Figure 5.6 shows BOLT clearing a 2 cm obstacle, the highest obstacle it can clear with
a purely terrestrial gait. In the wings-only configuration the robot is unable to clear the 2 cm
obstacle, clearly showing the necessity of the legs. The wings-passive robot can clear the obstacle,
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but does so inconsistently. BOLT has shown two methods of clearing this obstacle, depending on
the initial condition when first encountering the obstacle. If the obstacle is encountered at the low
point in the stride, the robot will run at the obstacle for a few strides until its legs are able to pull
it over the top. During the high point of its stride, the robot simply leaps over the obstacle without
stopping.

5.2.2 Wing-Assisted Climbing
Due to the high thrust provided by the wings, BOLT is capable of ascending both inclines and
vertical walls. Wing-assisted incline running is a behavior utilized by many birds, and has been
determined to require lower energy expenditure compared with aerial ascent at the same angle [29].
It is also a “safer” maneuver, as the robot is less likely to be affected by unsteady airflows. Finally,
the robot is capable of ascending at a faster velocity when flap running compared to ascending
aerially for comparable angles of ascent. Figure 5.7 shows BOLT ascending 30� and 45� inclines,
using its standard carbon fiber legs.

To climb steeper inclines, specialized features are required. Carbon fiber spars are added to the
tail to bias the angle of the robot, rotating the wing force angle to be forward and slightly towards
the surface instead of away. While implemented with fixed spars currently, a similar effect could be
obtained by added an elevator to the tail. In addition, Figure 5.8 shows two different foot designs,
a micro-spine foot and a magnetic foot. Each of these feet has several critical design features to
enable it to engage and release from the surface. The micro-spine foot (Fig. 5.8a) is attached to the
leg through a compliant PET loop. This compliance allows the spines to rotate on the surface as
the foot moves through its trajectory, reducing the impulse forces on the contact. The compliance
also performs a critical force limiting function. At a critical load, the PET ankle will rotate such
that the spines will disengage from the surface. This prevents high forces from being transmitted
to the hip flexures, which can fail at high loads. With the micro-spine feet, BOLT is capable of
climbing smooth (grade A) plywood at a 70� incline, with a speed of 0.2 ms�1. Screenshots of the

(a) Micro-spines (b) Magnetic

Figure 5.8: Different foot attachment mechanisms for wing-assisted climbing.
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(a) 0 s (b) 0.3 s (c) 0.6 s (d) 0.9 s

Figure 5.9: Screenshots from high speed video showing BOLT climbing 70� plywood with the
clawed feet shown in Fig. 5.8a at approximately 0.20 ms�1.

(a) 0 s (b) 0.3 s (c) 0.6 s (d) 0.9 s

Figure 5.10: BOLT climbing 90� metal surface with the magnetic feet shown in Fig. 5.8b at ap-
proximately 0.6 ms�1.

performance are shown in Figure 5.9
In addition to the micro-spine foot, we implemented a magnetic foot (Fig. 5.8b). This foot

consisted of three segments, separated by PET flexures. The first segment attached to the leg
through a very compliant ankle that was rigid in tension, but allowed the foot to rotate significantly
otherwise. This allowed the foot to stick to the surface throughout the stroke. The second segment
consists of a single magnet, with two magnets in the third segment. This foot design assists with
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disengagement. Instead of attempting to lift the magnets directly, a peeling moment is applied to
the magnetic segment, allowing easier disengagement. By placing a single magnet next to the ankle
and two magnets at the toe, a high attachment force is achieved with a smooth disengagement. A
Kevlar string served to keep the toe and ankle aligned properly, preventing the compliant ankle
from twisting too far. Figure 5.10 shows screenshots from a video of the robot climbing a vertical
metal surface. The robot is capable of ascending the vertical surface at a speed of 0.6 ms�1.
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Chapter 6

Experimental Characterization of Passive
Aerodynamic Stabilization of High Speed
Running1

Animals tend to adjust their limb kinematics to increase speed while keeping their stride frequency
relatively constant [19]. This adaptation allows the animal to operate in a single resonant regime,
which is desirable for effective and robust locomotion across a range of speeds. For a minimally
actuated system, adjustment of limb kinematics is often not possible due to the increased actuation
complexity such an adjustment requires. Therefore, the stride frequency provides a useful way to
change the locomotion speed of the robot, at the inertial expense of not running at a single tuned
frequency.

The VelociRoACH (Figure 6.1) is a 10 cm long, 30 gram hexapedal robot capable of running
at 2.7 ms�1. The electronics of the robot controls an alternating tripod gait, and provide a six-
axis inertial measurement unit for measuring the dynamics of the system. The electronics and
mechanical design of the robot is discussed in detail by Haldane et. al. [22]. As previously
discussed, running legged locomotion is characterized by periodic trajectories (limit cycles) of the
system dynamics. As the scale of a robot is reduced, the rotational dynamics of the system have
a larger effect on the motion of the robot: the moment of inertia, I = mr2, scales with L5. For a
given, size-specific perturbation we expect a millirobot to rotate far more than a larger robot. For
example: Edubot undergoes roll oscillations of 1� during steady state locomotion [11], whereas the
30 gram VelociRoACH can experience 25� roll rotations during stable locomotion. While some
amount of rotational oscillation can stabilize the system [11], limit cycles with high rotational
energy–coupled with low inertia–can increase the chance of a disturbance causing catastrophic
failure. We therefore focused our dynamic tuning efforts on finding highly robust, passively stable
limit cycles with minimal rotational energy.

1Based on joint work performed with D. Haldane and F. Garcia Bermudez [22]. This chapter represents K.
Peterson’s contribution to that work.
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Figure 6.1: The VelociRoACH: a highly dynamic bio-inspired millirobot, shown equipped with an
aerodynamic stabilizer. Figure courtesy D. Haldane [22].

6.1 Analysis of Low Rotational Energy Gaits
The gyroscope data can be used to determine the amount of total rotational energy the robot pos-
sesses in each stable limit cycle. To find the energy, we first parameterize the data by the accu-
mulated stride phase, f , which is the total angular rotation of the output link from the beginning
of the trial. The rotational energy is calculated using the angular velocities measured from the on
board gyroscope with

ERot(f) =
1
2

w(f)T Iw(f). (6.1)

The energy is then divided into individual strides

En
Rot(f) = ERot(f) : 2p(n�1) f < 2pn, (6.2)

where n represents the stride number. The mean and variance among k = 10 successive strides is
then computed from

ĒRot(f) =
1
k

k

Â
n=1

Ēn
Rot(f) (6.3)

and

s(ERot(f))2 =
1

k�1

k

Â
n=1

(En
Rot(f)� ĒRot(f))2. (6.4)

As a metric of performance, we define the mean rotational energy during a stride to be

ĒRot =
1

2p

Z 2p

0
ĒRot(f)df . (6.5)
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An additional metric, the mean normalized variance in energy over a stride is given by

ŝ(ERot)2 =
1

2p

Z 2p

0
[s(ERot(f))2/ĒRot(f)]df . (6.6)

6.2 Effect of Passive Roll Stabilizers on a High-Speed
Running Robot.

During steady state running, the VelociRoACH has significant roll oscillations, as shown in Fig-
ure 6.2. These oscillations arise as a dynamic effect due to alternating tripod kinematics wherein
one side of the robot has twice the effective stiffness of the other [11]. To reduce the roll oscil-
lations, we add an aerodynamic stabilizer consisting of two rectangular sections, measuring 5 cm
x 4 cm, of 50 µm PET oriented parallel to the direction of forward travel. These airfoils are
rigidly constrained by a carbon fiber frame at a distance of 15 cm from the center of the robot
(see Figure 6.1). As a control between the inertial and aerodynamic effects, we also examine the
performance of the stabilizer with the PET airfoils removed. The aerodynamic stabilizer is specif-
ically designed to damp roll oscillations, while being lightweight and having minimal drag in the
forward direction. A significant aerodynamic force results when the robot rolls during high-speed
running due to the high drag nature of a flat plate. We computed the differing inertias of the robot
with and without the roll stabilizer using a CAD model of the robot and verified them in part us-
ing rigid body pendulum experiments. The form of the inertia tensors is given in (Equation 6.7),
where x, y and z are the roll, pitch, and yaw axes, respectively. The standard robot has inertia,
I0 (Equation 6.8); IS (Equation 6.9) corresponds to the robot with the stabilizer.

I =

2

4
Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

3

5kg mm2 (6.7)

I0 =

2

4
9.29 �0.12 �0.22
�0.12 21.51 0.007
�0.22 0.007 21.97

3

5kg mm2 (6.8)

IS =

2

4
28.52 �0.12 �0.23
�0.12 23.12 0.005
�0.23 0.005 45.92

3

5kg mm2 (6.9)

6.2.1 Steady State Running
Telemetry data was captured for the VelociRoACH running on closed-loop pile carpet at stride
frequencies in the 4� 25 Hz range. In particular, tri-axial gyroscope data was logged at 300 Hz
during each run (repeated three times). We discarded the leading one second of each trial to remove
any transient effects. To better understand the nature of the VelociRoACH oscillations as a function
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Figure 6.2: Frequency spectra of the robot’s oscillations with and without the aerodynamic stabi-
lizer plotted as a function of the commanded stride frequency. Components between 100–150 Hz
have amplitude less than 30% of the fundamental frequency component and were truncated. Oscil-
latory energy in the roll axis was the highest of all the rotational components prior to the addition
of the stabilizer. The stabilizer effectively filters this energy at higher stride frequencies. Yaw
oscillations (not shown) are relatively unaffected by the stabilizer and have a peak magnitude of
904 �/s (harmonic components are less than 50% of the fundamental frequency maximum). Figure
courtesy F. Garcia-Bermudez [22].



CHAPTER 6. EXPERIMENTAL CHARACTERIZATION OF PASSIVE AERODYNAMIC
STABILIZATION OF HIGH SPEED RUNNING 56

0

0.1

0.2

0.3

0.4

Ē
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Figure 6.3: Lowest energy limit cycle for each treatment [Top] and average variation in the rota-
tional energy over the course of a stride [Bottom].

of the stride frequency, we used Python2 to compute the fast Fourier transform of each run,
first passed through a Hann window, and then averaged across repeated trials. The resulting fre-
quency spectra are plotted for pitch and roll in Figure 6.2. Roll shows a large degree of oscillation
without the stabilizer, visible throughout the spectra and reaching up to the fifth harmonic of the
commanded stride frequency. This motivated the addition of the stabilizer on the roll axis, and
Figure 6.2 shows this approach was successful at reducing the degree of roll oscillations. Both
pitch and yaw, which have less oscillations to begin with, are relatively unaffected by the added
stabilizer.

Figure 6.3 shows the effect of both the aerodynamic stabilizer and the inertial control configu-
ration on the system. At low frequencies, the higher inertias of the aerodynamic stabilizer and the
inertial control increase the total energy. A local minimum in average frequency is found for the
unmodified and inertial control case at 16 Hz, near the dynamically scaled frequency of the robot.
By contrast, with the aerodynamic stabilizer equipped, the range of frequencies with low energy
limit cycles is increased, reducing the robot’s reliance on a single well-tuned frequency. We ob-
serve a clear decrease in the average energy over all frequencies � 10 Hz for the aerodynamically
stabilized robot when compared to the unmodified and inertial control cases. We also consider
the robot’s ability to passively maintain stable limit cycles while running in the presence of small
perturbations, such as foot slip and ground contact variations. The variation in energy between

2Scientific Tools for Python: http://www.scipy.org/

http://www.scipy.org/
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Figure 6.4: Representative energetic disturbance and stabilization response to a step perturbation
while running at 16 Hz. The average energy is computed using a moving average filter with a
window size equivalent to the length of a single stride. Ts represents the duration of the transient
response, which is shaded in gray.

successive strides shown in Figure 6.3 provides a measure of the periodicity of locomotion and
of how robust the limit cycle is to small disturbances. Both the aerodynamic stabilizer and the
inertial control show less variation in response to small perturbations. By contrast, the unmodi-
fied robot shows generally higher variation, and significantly higher variation at some frequencies.
The lower inertia of the unmodified robot increases its susceptibility to small disturbances and
correspondingly decreases the stability margin of the robot.
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Table 6.1: Average disturbance response of VelociRoACH

Stride
frequency

Configuration

Without Stabilizer With Stabilizer

16 Hz
T s 0.37 s 0.18 s

ĒDisturb 1.15 mJ 0.37 mJ
SDisturb 435 µJ · s 66 µJ · s

20 Hz
T s 0.29 s 0.24 s

ĒDisturb 1.97 mJ 0.74 mJ
SDisturb 578 µJ · s 186 µJ · s

6.2.2 Disturbance Rejection
In addition to increasing robustness to small perturbations, we hypothesized that the aerodynamic
damper would allow the robot to recover more quickly from large perturbations. To assess the
validity of this hypothesis, we ran the robot over a known obstacle, in this case a vertical step
equal to 35% of its hip height. We measured the departure of body-centric metrics away from
the median state and their subsequent recovery. The robot is more prone to locomotion failures
due to excessive body rotation, so we chose the body-centric parameter to be the rotational energy
in the system. This was chosen over any individual component of rotation because the specific
response of the robot is highly sensitive to when in the stride the disturbance was encountered, the
robot’s stride frequency, and whether or not the aerodynamic stabilizer was equipped. Therefore,
the rotational energy of the system is a more robust indicator of the perturbed state of the robot. To
account for the variations in the rotational energy due to the periodic motion of the robot, a moving
average filter was applied with a window size equal to the length of a single stride. We selected
the settling time of the robot, Ts, as a disturbance rejection metric. The settling time is defined as
the time that it takes to dissipate 80% of the maximum energy increase due to the disturbance . We
also calculated the average increase in rotational energy from the perturbation,

ĒDisturb =
1
Ts

Z t0+Ts

t0
(E(t)� Ēsteadystate)dt, (6.10)

and the action of the disturbance,
SDisturb = Ts · ĒDisturb (6.11)

as additional figures of merit.
Representative step responses of the robot running at 16 Hz with and without the stabilizer

are shown in Fig. 6.4a and Fig. 6.4b. The robot encounters the step at time t0 and the transient
response duration is shaded in gray. Table 6.1 summarizes the results of the disturbance rejection
experiments (N�3). The robot equipped with stabilizer shows increased performance across all
metrics at both stride frequencies tested. Along with rejecting the disturbance more quickly, the
aerodynamic stabilizer also reduced the amount of energy injected into the system by the distur-
bance. The action of the disturbance is reduced by a factor of six at 16 Hz and a factor of three at
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20 Hz, demonstrating the success of the aerodynamically stabilized robot at initially rejecting and
quickly recovering from the disturbance.
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Chapter 7

Implications For the Evolution of Flight

7.1 Avian Flight Evolution: The Debate
There are four known independent cases of flight evolution: birds, bats, pterosaurs, and pterygote
insects. The evolutionary path towards flight in all instances has been a subject of much academic
debate for more than 100 years, and the theories on avian flight origins remain both paleonto-
logically and biomechanically contentious. The debate has mainly centered around two opposing
theories. The arboreal theory, originally proposed in [43] and extended by many others, posits
that flight evolved through a gliding phase as animals climbed and leapt from tall objects. The
cursorial theory, developed in [66, 48, 47], proposes that flight evolved from specialized forelimbs
used for balance and extending leaps along the ground. Current support for the diverse theories of
avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds,
and developmental stages of already volant taxa.

Much of the debate around avian flight evolution centers on the capabilities and lifestyle of
Archaeopteryx, an early bird that lived around 150 million years ago. Archaeopteryx is generally
accepted as the earliest known bird and its origins are particularly relevant to answering the ques-
tion of avian flight evolution [52]. Many different and conflicting arguments exist on the abilities of
Archaeopteryx. In [18, 71, 72], the authors claim Archaeopteryx is adapted for an arboreal lifestyle
on the basis of an analysis of morphological features such as claw and backbone shape. However,
in [51, 54], the authors use the same features to claim a cursorial adaptation for Archaeopteryx.

The use of wings to augment cursorial locomotion has been shown in extant juvenile and adult
birds [15, 28], and has been proposed as a alternative mechanism underlying the origin of avian
flight. Increasingly abundant fossil evidence suggests that early birds passed through a four-winged
stage prior to dedicated aerodynamic use of the forewings [69, 27, 2, 58], but the use of wings in
cursorial behavior cannot necessarily be excluded given their aforementioned role in living birds.
Nonetheless, the use of extant avian taxa to infer ancestral locomotor origins may not be entirely
relevant given the high wing beat frequencies and amplitudes of modern forms [49]. Also, the most
basal living birds are the already derived and mostly secondarily flightless palaeognaths [23], and
modern avian taxa are thus unlikely to be representative of avian precursors in terms of morphol-



CHAPTER 7. IMPLICATIONS FOR THE EVOLUTION OF FLIGHT 61

ogy or biomechanical performance. Theoretical modeling suggests that an Archaeopteryx-type
morphology could more than triple maximum running speed through wing flapping [12], but this
conclusion neglected drag forces on the wings and body which would significantly reduce horizon-
tal thrust. More generally, the mechanical consequences of adding wings to a pre-existing cursorial
taxon may be multifaceted and require empirical analysis to avoid potential problems associated
with modeling assumptions. Here, we use our robotic platform to evaluate the additive effects of
wing flapping on both cursorial and aerial locomotor performance, and discuss its relation to early
avian flight.

To examine the performance of the platform, we examine several different capabilities. Maxi-
mum running speed is a critical performance metric, as is the ability to rapidly move up inclines.
In cursorial ascent, flapping wings can provide additional normal force to increase foot traction
[10], or can provide additional thrust to propel the body up the incline. In free flight, flapping of
wing precursors will tend to reduce the descent angle, enabling further travel and greater temporal
opportunities to effect maneuvers [16]. This behavior has also been shown in extant juvenile birds
with undeveloped wings [28]. Through the addition of wings to a cursorial robot, we determined
the incremental mechanical advantages associated with wing flapping in contexts of both running
and flying.

7.2 Examination of Avian Flight Evolution Using a Hybrid
Robot

We examined the effects of simple flapping wings on locomotion using DASH+Wings (Fig. 7.1a,
[55]), described in section 3.1. DASH+Wings is set apart from other hybrid robots by being a su-
perior running robot without the wings, allowing direct examination of the effects of wing addition
on a running platform.

7.2.1 Experimental methods
We tested running performance of the robot in four different mechanical configurations: legs alone,
legs with flapping wings, legs with passive wings, and legs with flapping inertial spars (Figure 7.1).
Passive wings are obtained by disconnecting the wing drive linkage, allowing the motor to drive
the legs while the wings are extended laterally. The inertial spars consist of the plastic leading
edge of the wings with the membrane removed, and flap in the same manner as the entire wings.
The spars have a moment of inertia of 1.183⇥ 10�6 kg m2, while the moment of inertia of the
entire wing is 3.377⇥ 10�6 kg m2. Spars with a moment of inertia similar to that of the wings
were found to cause erratic running in the absence of the wing damping. Therefore, we use spars
with lower moment of inertia to allow measurement of stable running performance. To measure
maximum horizontal velocity, a high-speed camera (Casio EX-F1) was used to record the robot’s
motion across a smooth tile floor at 300 fps for multiple trials. Only trials where the robot reached
a steady-state velocity while in the frame of the camera were considered; the remaining trials were
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(a) (b) (c)

Figure 7.1: A dynamic hexapedal robot with flapping wings (DASH+Wings) for (a), flapping
wings configuration; (b), legs-only configuration; and (c), inertial spars configuration. The fourth
configuration (wings passive) is as in (a) but with the wing drive disconnected. Robot length
(excluding the tail) is 10.0 cm; wingspan is 30.5 cm.

discarded. Average maximum running speed was determined by averaging the successful trials for
each test configuration.

An incline oriented at varying angles to horizontal was used to determine the maximum incline
that could be traversed for each experimental configuration of the robot; via incremental increases
in angle, the final slope at which the robot was capable of forward progress could be determined
(Figure 7.2). The incline is composed of smooth particleboard characterized by a static friction
coefficient of 0.26 and a kinetic friction coefficient of 0.21 between the board and the feet of the
robot. Acrylic guide rails on either side of the robot ensured rectilinear displacement directly up
the slope; two trials were carried out at each slope and always yielded the same final angle.

Aerodynamic characteristics of the robot were measured in a wind tunnel (Aerovent, Inc.) with
a square cross section for the working section of 0.61 m2. The wingspan of the robot was 0.031
meters, giving a clearance of a half wingspan on either side. Particle Image Velocimetry was used
to characterize the wind tunnel and determine the turbulence present. Measurements show 4.6,
1.2, 1.0, and 1.0 percent turbulence, for 1.5, 3, 6, and 9 ms�1 respectively. For the two conditions
of flapping and passive wings, we varied the body angle of attack (0� to 45�) and wind speed (0
to 9 ms�1), and measured the ensuing lift and drag using an ATI Nano 17 6-axis force transducer.
The lift and drag coefficients were calculated using the total planform area of the robot (0.0256
m2). The raw sampling frequency of the sensor is 10 kHz, with an averaging level of 16, giving
the collected data a sampling rate of 625 Hz. Forces were averaged over 20 s to remove inertial
influences of the drive mechanism, and each trial was repeated 5 times to remove the effects of
sensor noise and air turbulence.

Gliding and flapping trajectories of the robot in free flight were measured using 2 Casio EX-
F1 cameras in FHD mode (resolution of 1920x1080 pixels at 30 fps) positioned at an orthogonal
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(a) (b)

(c) (d)

Figure 7.2: DASH+Wings running up a 16.9� incline using flapping wings.

distance of 25 m and 23 m to the flight path, spaced 7 m apart. To start the robots flight, it
runs off a 0.3 m long ledge under its own power. To determine the path of the robot in free
flight, we use a basic pinhole camera model. The cameras are set up in a large area with a well-
defined background. By measuring the location of points in the backdrop, the intrinsic and extrinsic
parameters of each camera can be found. We use MATLAB to perform a least squares regression
on the known locations in the frame to determine the parameters in the collinearity equations for
camera calibration. By combining the robots location from each camera, the location of the robot
in three dimensions can be found. After correcting for perspective, the equilibrium flight speeds
and angles relative to horizontal were determined from linear regressions of positional data versus
time.

7.2.2 Running Performance
Maximum horizontal running speed of the robot with flapping wings was 1.29 ± 0.07 ms�1 [mean
± 1 s.d.; 11 trials), as compared to 0.68 ± 0.07 ms�1 (15 trials) for the legs-only configuration
(Figure 7.3; ANOVA for overall effect of four treatments: F=653, d.f. 3, 52, P < 0.0001). With
fixed wings, the maximum attained horizontal velocity was 0.72 ± 0.019 ms�1 (16 trials; see
Figure 7.3), which was statistically equivalent (Fishers PLSD, mean difference of 0.29 ms�1, P
> 0.05) to the legs-only condition despite the marginal weight and drag increase associated with
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Figure 7.3: Maximum steady-state running speed (left) and maximum traversed incline (right) for
DASH+Wings under different mechanical configurations at a stride frequency of 14 Hz. For maxi-
mum speed data, error bars indicate one s.d., and the numerical insets indicate the number of trials
at each configuration. Standard deviations for maximum incline were zero for each configuration
(see text).

the wings. With added inertial spars rather than wings, maximum horizontal speed of the robot
dropped substantially to 0.48 ± 0.04 ms�1 (14 trials; Figure 7.3), the lowest value for all test
cases. All cases except the passive wings and legs-only case were statistically different (Fishers
PLSD, P < 0.0001).

To examine the intra-stride forces present on the robot, we averaged accelerometer data from
the robot for several successive strides when the robot was running at a constant velocity with
a smooth gait in each configuration (Figure 7.4). Large accelerations caused by the differential
transmission design, evidenced by the high accelerations seen while the robot is in free fall, prevent
straightforward analysis of the forces on the center of mass. The effects of the different forces
from each configuration are better understood studying the position profile. A clear consequence
of the different configurations on the intra-stride motions of the robot can be seen by looking at
the horizontal and vertical position of the robot, obtained by twice integrating the accelerometer
data (Figure 7.5). From this data, we observe that the amplitude of the vertical oscillations of the
robot over the different configurations is inversely proportional to the horizontal speed it is capable
of attaining. By directing less energy into vertical oscillations, it is possible that more energy is
available for increasing the horizontal speed of the robot.

In ascending an incline, the use of flapping wings increased the maximum attainable incline
nearly three-fold, from a value of 5.6� with the legs alone to 16.9� with flapping wings (Figure 7.3).
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Figure 7.4: Accelerometer measurements of the robot over an average revolution of the motor out-
put gear. The four tested configurations are shown, along with the acceleration while the robot is in
free fall. The large sinusoidal signal seen in all five cases is due to the motion of the accelerometer
with respect to the center of mass due to the differential drive mechanism.

For the configurations of either inertial spars or passive wings, the maximum slope attained was
nearly the same as for the legs-only case: 5.6� and 7.1�, respectively. All cases except for the
legs-only and inertial spars case were statistically different (Fishers PLSD following ANOVA,
P<0.0001 in each case).

7.2.3 Aerial Performance
Lift and drag forces measured on the robot when fixed within a wind tunnel demonstrated strong
variation with both airspeed and body (i.e., stroke plane) orientation. At an airspeed of 1.5 ms�1,
the flapping wings produce negative drag (or positive thrust) on the robot at lower angles of attack,
resulting in the negative coefficients of drag seen in Figure 7.6. At airspeeds of 3 ms�1 and above,
the drag force from the air-flow overcomes the force produced by the wings, and the coefficient
of drag is positive for both flapping and gliding cases. In this scenario, the flapping wings always
demonstrated a higher lift-to-drag ratio compared to passive wings (Figure 7.6, Table 7.1). While
the flapping wings always show better performance, the margin of improvement decreases as the
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Figure 7.5: Change in the fore-aft and normal position of the robot over one complete stride. The
amplitude of the normal variation in position over the four configurations is inversely related to the
horizontal speed the robot is capable of reaching.

airspeed and body angle of attack increase. From the measured forces on the robot, the descent
angle (g) of the robot gliding in equilibrium can be predicted. When the robot is moving at constant
velocity and orientation, the total forces on the robot must equal zero:

mg = FD sing +FL cosg (7.1)

0 = FD cosgFL sing (7.2)

From these equations the relationship between the magnitude of the lift and drag forces is given
by:

(F2
L +F2

D)
1
2 = mg (7.3)

For a given angle of attack of the body and use of either flapping or gliding wings, the air speed is
increased computationally until the magnitude of the forces meet this equilibrium condition. The
descent slope is then found from:

g = tan1 FL

FD
(7.4)

Based on the wind tunnel measurements, we estimate the lowest attainable descent angle for
the gliding wings to be 38.9�, at an airspeed of 6 ms�1 and a body angle of attack of 30�. With
flapping wings, the estimated descent angle improves to 24.7�, at the slower airspeed of 4.9 ms�1

and a body angle of attack of 25�.
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Figure 7.6: Coefficients of lift and drag at different airspeeds with the wings flapping (at 14 Hz)
and passive over a range of body angles of attack (5� intervals starting at 0�). Flapping wings
show a dramatic advantage at low airspeeds, with the effect diminishing at higher speeds. Advance
ratios based on wingtip speed ranged from 2.7 at an airspeed of 1.5 ms�1 to 16.3 at 9 ms�1; mean
Reynolds number of the wings (based on mean chord length and airspeed) ranged from 6.1⇥103

at 1.5 ms�1 to 3.67⇥104 at 9 ms�1. Five trials were performed at each data point, with st. devs.
of the lift and drag coefficients on the order of 0.001.
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Table 7.1: Selected lift:drag ratios of DASH+Wings measured in wind tunnela

Body angle Airspeed
of attack (a) Condition 3 ms�1 6 ms�1 9 ms�1

10� Flapping 3.65 0.62 0.03
Gliding 0.73 0.11 -0.20

20� Flapping 3.47 1.59 0.88
Gliding 3.47 1.59 0.88

30� Flapping 2.40 1.69 N/Ab

Gliding 1.26 1.23 0.96

aThe complete set of wind tunnel measurements can be found in
Figure 7.6
bThe motor cannot produce enough force to flap the wings at this
airflow and body angle of attack.

In free flight, the weight distribution of the robot (dependent upon the transmission design and
motor position necessary to drive the legs and wings, see [6, 57] for details) precludes gliding at
such body angles of attack that would yield the lowest glide angles. Instead, the robot is only
capable of approximately a 10� body angle of attack. Nonetheless, direct measurement of descent
angles for the robot in free flight demonstrated a value of 68.0 ± 1.8� for passive wings and a sub-
stantial decrease to 57.7 ± 2.24� using flapping wings (ANOVA, n = 6, P < 0.0001), (Figure 7.7);
equilibrium airspeeds averaged 9.8 ms�1 and 10.7 ms�1 for these two cases, respectively.

7.2.4 Discussion of DASH+Wings performance
For running on level ground, wing flapping creates a significant increase in the horizontal trans-
lational velocity of the robot. The additional thrust from the wings allows for a near doubling of
the translational speed of the legs-only configuration. The tradeoff for this improvement is the
additional power required from the motor to drive the wings as well as the legs. The addition of
flapping wings also has important implications for the stability of the robot during terrestrial and
aerial locomotion.

The added thrust provided by the wings critically underpins the ability of DASH+Wings to
traverse greater inclines relative to DASH alone. Whereas higher friction materials or claws can
increase traction of a robot climbing an incline, their efficacy is typically very surface-dependent.
In addition, the stiffness and frictional properties of the substrate, along with leg stiffness, greatly
affect the center of mass dynamics of a basic legged robot. With greater adhesion to the surface,
the robot requires more precise tuning and control to prevent legs from jamming and destabilizing
the robot. Whereas running animals can dynamically c[64], this outcome is not possible using
a single actuator robot. The added thrust from the wings, in addition to aerodynamic and iner-
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Figure 7.7: Flight trajectories for the passive and flapping wing robot. The dashed lines represent
the individual trials, with the solid bold lines representing the average descent slope at the end of
the flight, 68.0 ± 1.8� and 57.7 ± 2.24� for gliding and flapping flight respectively.
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tial damping, enhances performance by the robot independent of various parameters that directly
influence ground reaction forces.

Well-tuned cursorial systems typically exhibit smoothly varying sinusoidal forces on the center
of mass from ground reaction forces [24]. In this context, incorrectly tuned legs can result in im-
pulsive foot contact forces, leading to inefficient and potentially unstable gaits [31]. Unstable gaits
in a legged platform can excite growing pitch or roll oscillations, which can lead to platform roll-
over or inversion. The robot in the legs-only configuration requires a narrow range of leg stiffness
to achieve stable, high-speed running for a given stride frequency and mass [6]. To examine the
effect of flapping wings on stability, we examined the performance of the robot with and without
the flapping wings when running on improperly tuned legs. Over fifteen trials with the legs-only
robot, the robot exhibited roll instability in ten trials, pitch instability in two trials, and both roll
and pitch instability in three trials. Eleven of the fifteen trials ended with failure about the roll axis
of the robot. In contrast, when running with flapping wings, the robot experienced no instability
or failure over ten trials, running smoothly in each case despite the improper leg tuning.

We hypothesize the addition of flapping wings to DASH reduces the effect of impulses from
improperly tuned legs on the dynamics of the robot, with the aerodynamic damping from the wings
lessening the sensitivity of the robot to leg tuning. Whereas increasing leg forces can be destabiliz-
ing without proper tuning, wing addition is a simple means of increasing locomotor force without
compromising stability due to the wings inherent damping. Flapping wings have previously been
shown to increase stability about the axis perpendicular to the stroke plane during flight [17].
DASH+Wings shows a similar effect when running along the ground, exhibiting greatly improved
roll stability with flapping wings.

Adding wings and a tail to DASH also allowed the robot to attain stable aerial descent, albeit at
a fairly high descent angle. It should be emphasized, however, that prior work has demonstrated the
robustness of SCM structures when falling from large heights [6]. Stable descent facilitates landing
on the legs and the resumption of cursorial locomotion. When combined with stable running and
the ability to move up inclines, the performance space of DASH+Wings is dramatically enhanced
relative to the original DASH design. By contrast, wind tunnel measurements of aerodynamic
performance reveal deficiencies in the current aerial design of the robot. The body angle of attack
of the robot in free flight is determined by the relative positions of the center of mass and center of
pressure. The transmission design and motor position necessary to drive both legs and wings cause
the center of mass to be in a position that gives a low angle of attack when compared to the optimal
angles of attack found from the wind tunnel results. This lower angle of attack leads to the higher
descent angles and faster velocities seen in the free flight results. Additionally, at low body angles
of attack the wing camber was substantially reduced at higher airspeeds because of the intrinsic
flexibility of the wing membrane. Lift and the lift:drag ratio were correspondingly reduced for both
flapping and passive wings. The motor also reaches power limits at higher airspeeds and angles of
attack and is unable to flap the wings.
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7.2.5 Functional Insight on Avian Flight Origins
From a paleobiological perspective, these results broaden our understanding of the consequences
of wing flapping for avian precursors. An important question concerns the extent to which wing
flapping will increase either running or aerial performance. The addition of wings flapping at 14
Hz to the DASH robot increases maximum horizontal running speed by only a factor of 1.88. By
contrast, Burgers and Chiappe [12] estimated from a theoretical model that wing flapping by a
running Archaeopteryx would require an almost four-fold increase in translational speed to ob-
tain forces sufficient to attain free flight. As mentioned in section 7.1, optimistic aerodynamic
assumptions in the model of Burgers and Chiappe [12] may have contributed to excessively high
estimates for thrust production. The robot used here is of course hexapedal rather than bipedal, and
other features of the platform (e.g., mass, wing structure) do not match those of Archaeopteryx or
other early birds. We nonetheless view these results as heuristically important and indicative of
the need for continuing interdisciplinary work. DASH+Wings is also capable of wing assisted
incline running (WAIR) as documented in multiple extant birds by Dial et. al. [14], although it
uses a significantly different mechanism to do so. The chukars observed by Bundle and Dial [10]
show a significant increase in performance during WAIR by varying their wing kinematics so as
to redirect aerodynamic forces toward the substrate and enhance traction. DASH+Wings simply
takes advantage of the added thrust provided by the wings to increase speed and climbing ability.
Whereas this method provides a lower degree of performance, it does not require a rotation of the
wing stroke with respect to the body, and may have been more easily accomplished by early avian
precursors with simple wing kinematics. Wing flapping by DASH+Wings in free flight reduces the
equilibrium glide angle by 10.3�, although this enhancement is here limited primarily for reasons
of stability of the robotic platform, and would likely be greater for more avian-like body forms. As
expected, wing flapping does improve the lift:drag performance relative to static wings at all fixed
body orientations of DASH+Wings (see Table 7.1). A progressive evolutionary increase in wing
beat frequency in an early bird would thus increase lift relative to drag for a fixed wing geometry,
thereby enhancing aerodynamic performance while gliding (see [16, 50]). Low-amplitude wing
motions could also serve in maneuvers, perhaps a more important feature than steady-state gliding
ability. At present, it is not possible given the kinematics and body planform used here to elucidate
further such aerodynamic benefits.

Similarly, the observed increase in horizontal translational speed with wing flapping, together
with an 11� increase in attainable incline, suggest associated locomotor advantage, although to a
lesser degree than that predicted by previous cursorial models, at least for the kinematics (flapping
frequency of 14 Hz; stroke amplitude of 30�) implemented here. Although there are substantial
differences in the robot dimensions and mechanical configuration used here relative to those of pos-
tulated avian precursors, these values of flapping frequency and amplitude are likely higher than
those that characterized incipient fliers, whether terrestrial or arboreal in origin. Recent paleonto-
logical findings indicate flight feathers on all four limbs of dinosaur lineages close to the origins
of birds [27]. Recent findings have also discovered the existence of small theropod dinosaurs [68],
possibly more suited to arboreal and aerial behaviors. If indeed avian flight was characterized by
gliding and thus aerial origins, any demonstration of beneficial effects of wing flapping is informa-
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Figure 7.8: Morphologically scaled Archaeopteryx model.

tive, although a key goal of future work in this area must be to assess a broader range of kinematics
than we have implemented here. Nonetheless, these results suggest that benefits of wing flapping
to cursorial performance have been over-estimated. By contrast, even simple wing flapping with a
flexible membrane (and no pronation or supination) can improve gliding performance, at least for
the relatively high value of wingbeat frequency used here, We accordingly hypothesize that even
simplified wing strokes may have yielded aerodynamic advantage to gliding avian precursors.

7.3 Aerodynamic Capabilities of Archaeopteryx

The flight performance characteristics of Archaeopteryx are widely debated. While most scientists
classify Archaeopteryx as an early bird, the extent of its aerial abilities is contested. Padian and
Chiappe [53] argue that Archaeopteryx is not aerodynamically designed for gliding, and likely lived
on the ground. However, Yalden [70] believes that it is likely possible that it could fly for short
time periods, as well as being arboreal. These divergent conclusions based on the same set of fossil
evidence highlight the shortcomings of paleontological analysis; with no way of truly knowing the
musculature and behavior of the specimen, it is possible to reach very different conclusions.

To address this issue, a morphologically scaled model of Archaeopteryx was built. The model
was based on the reconstruction performed by Yalden [70] and Longrich [39]. Table 7.2 shows
some critical dimensions of Archaeopteryx, and their corresponding scaled dimensions on our
model. Morphologically correct physical models of avian precursors have been used previously,
both in wind tunnel [32] and free flight experiments [3]. However, these studies examine static
models, and do not examine the effects of wing flapping on performance. Our model implements
a flapping wing with simplified kinematics and passive aerodynamic rotation of the airfoil. By
altering the parameters of the wing stroke (frequency, amplitude), we can investigate their effect



CHAPTER 7. IMPLICATIONS FOR THE EVOLUTION OF FLIGHT 73

(a) (b)

Figure 7.9: Custom transmission for allowing variable flapping frequency of the Ar-
chaeopteryx model.

on performance, and draw additional insight into flight evolution.

7.3.1 Design and Experimental Methodology
Our model of the Archaeopteryx (Figure 7.8) draws heavily from the design of BOLT, presented
in section 3.2. However, several modifications to the design are implemented. The model uses
a single custom wing, in contrast with the two-wing flap-and-cling design of BOLT. The wing is
reinforced with 0.28 mm carbon fiber spars to provide some rigidity, while still allowing the wing
to passively rotate in response to aerodynamic forces. To allow the amplitude of the wing to be
altered, a custom transmission and gears are used (Figure 7.9). The custom gears provide different
attachment points for the wing drive rod. By changing the length of the crank, the amplitude of
the wing can be can be varied from 30� to 70�. Figure 7.10 shows the frames from high speed
video of the different wing amplitudes. In addition, the passive rotation of the airfoil is evident. In
addition, the wing stroke is limited to 20� above horizontal, regardless of the flapping amplitude.
This limitation seeks to accurately capture the hypothesized limitations in the shoulder structure of
Archaeopteryx.

Table 7.2 shows the scaling parameters and dimensions for creating the aerodynamic surfaces
of the model. Figure 7.11 shows a top view of the model, with a scale bar included for reference.
Overall, our model has a wingspan of 26 cm, and a total length of 27 cm, including the foam
nose cone. This corresponds to a linear scaling factor of aL = 0.43 when compared with an Ar-
chaeopteryx with wingspan of 60 cm. The remainder of the dimensions are scaled geometrically,
with surface areas scaled by a2

L and the mass by a3
L . The tail and hindwings (Figure 7.12) were

created by vacuum forming 125 µm PET film on molds created with a 3D printer. This allows for
the creation of lightweight airfoils with more complex shapes than a simple flat plate. The shape
also add structural integrity, preventing the surface from significant deformation under load.
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(a) 30� Flapping amplitude (b) 70� Flapping amplitude

Figure 7.10: Flapping motion of the Archaeopteryx model. The downstroke begins in the top
frame and the upstroke begins in the 4th frame. The flexible wing passively rotates to provide
thrust during both the downstroke and upstroke.
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Table 7.2: Scaling the model Archaeopteryx

Parameter Archaeopteryx Scale Factor Model
Wing Span 60 cm aL = 0.43 26 cm
Aspect Ratio 5.0 1 5.0
Wing & Body Strip Area 720 cm2 a2

L 138 cm2

Hindwing Area 125 cm2 a2
L 33.4 cm2

Length 47.5 cm aL 27 cm
Tail Area 245 cm2 a2

L 55.5 cm2

Mass 150 — 250 g a3
L 16 g

Figure 7.11: Top view of the geometrically scaled Archaeopteryx model.
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Figure 7.12: Vacuum formed tail and legs for the scaled Archaeopteryx model.

Figure 7.13: Wind tunnel setup. The Archaeopteryx model was mounted in a wind tunnel with a
force/torque sensor for measuring the lift and drag over variations in wind speed, angle of attack,
flapping frequency, and flapping amplitude.

7.3.2 Effect of Flapping Frequency and Amplitude on Performance
Wind Tunnel Experiments

To examine the performance of the model Archaeopteryx, we placed the model in a wind tunnel
and measured the lift and drag on the system. Figure 7.13 shows the model mounted on a Nano-
17 force-torque sensor in a wind tunnel. To examine the performance of the model we vary four
different parameters: airspeed, body angle of attack, flapping frequency, and flapping amplitude.
In Figure 7.14 and Figure 7.15, the results from the wind tunnel experiments are shown. At lower
airspeeds, the flapping wings reduce the drag on the model – creating positive thrust at higher
frequencies. Wing flapping also produces higher lift at body angles of attack of 10� and greater.
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Figure 7.14: Drag forces on the Archaeopteryx model measured in a wind tunnel. The circles
represent the measured forces from the wind tunnel, while the crosses are evenly-spaced, linearly
interpolated values used to generate a model of the forces. Each column shows a different flapping
amplitude, with each row a different body angle of attack.
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Figure 7.15: Lift forces on the Archaeopteryx model measured in a wind tunnel. The circles
represent the measured forces from the wind tunnel, while the crosses are evenly-spaced, linearly
interpolated values used to generate a model of the forces. Each column shows a different flapping
amplitude, with each row a different body angle of attack.
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Figure 7.16: Lift and drag forces on the model without flapping. The circles represent the measured
values while the lines represent least-squares fit models from Equation 7.5.

As the airspeed, angle of attack, and wing amplitude are increased, the power required by the motor
also increases. Eventually the motor reaches a limit and is no longer capable of flapping the wings.
All data points up to the limits of the motor are shown. Motor limits also preclude steady flapping
at lower frequencies, with the minimum steady motor speed near 5 Hz. Because the motor does
not flap at the exact same frequencies across all velocities, angles of attack, and amplitudes, we
linearly interpolate to find the intermediate values. This allows the comparison of a single flapping
frequency across the other independent parameters.

To examine the performance of the Archaeopteryx model, we first examine the steady state
case, with no flapping. In this scenario, the forces follow the standard lift and drag equation,

F =
1
2

CrAv2, (7.5)

where F is the lift or drag force, C is the lift or drag coefficient, r is the density of air, A is the
planform area of the model (0.0227 m2), and v is the airspeed. For each angle of attack, the lift
and drag coefficient can be determined using a least-squares fit from the measured force data.
Figure 7.16 shows the measured force data along with the model. Comparing the lift to drag ratio
at each angle of attack allows the best glide slope to be determined. Table 7.3 and Table 7.4 show
the coefficients of drag and lift for each angle of attack. Taking the ratio of lift to drag at each
angle of attack, the best glide slope can be found. Without flapping, the best glide slope is 30�at a
30� body angle of attack.
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Table 7.3: Drag coefficients and offsets of the Archaeopteryx model at selected flapping frequen-
cies, amplitudes, and body angles of attack (a) for Equation 7.5 and Equation 7.6.

Flapping Amplitude
30� 45� 60�

Frequency (Hz) a (deg) F0
D (N) CD F0

D (N) CD F0
D (N) CD

0 — 0.12 — 0.12 — —
10 — 0.15 — 0.15 — 0.16

0 20 — 0.21 — 0.22 — 0.22
30 — 0.34 — 0.33 — 0.34
40 — 0.51 — 0.53 — 0.53
0 -0.0032 0.12 0.0014 0.12 -0.012 0.13

10 -0.00099 0.16 -0.0082 0.16 -0.01 0.16
6 20 -0.0025 0.23 -0.0091 0.24 -0.013 0.24

30 -0.0038 0.36 -0.0062 0.36 -0.013 0.36
40 0.0012 0.55 — — — —
0 -0.005 0.12 -0.0042 0.12 -0.017 0.13

10 -0.003 0.16 -0.015 0.17 -0.021 0.18
8 20 -0.0057 0.23 -0.015 0.25 -0.025 0.27

30 -0.0068 0.37 -0.013 0.37 -0.023 0.39
40 -0.0018 0.56 — — — —
0 -0.009 0.12 -0.012 0.13 -0.031 0.14

10 -0.0064 0.16 -0.024 0.18 -0.037 0.19
10 20 -0.0095 0.24 -0.027 0.27 -0.041 0.29

30 -0.0099 0.37 -0.021 0.38 — —
40 -0.005 0.57 — — — —

With the addition of flapping, the standard lift and drag equation no longer adequately describes
the force on the model. Because the wing can provide force in the absence of airflow, an additional
parameter is necessary in the equation to account for this force offset. With flapping, the forces are
now described by

F = F0 +
1
2

CrAv2, (7.6)

where F0 represents the offset force. The offset force and coefficient can again be found from a
least squares fit of the wind tunnel data. Table 7.3 and Table 7.4 show the values of these parameters
for drag and lift at multiple flapping frequencies, amplitudes, and body angles of attack. With the
flapping wings, a negative drag offset force is observed over frequencies, amplitudes, and angles
of attack, implying that the wings are providing positive thrust. In addition, we observe from
Table 7.3 that for a given angle of attack, increasing the flapping frequency or amplitude also
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Table 7.4: Lift coefficients and offsets of the Archaeopteryx model at selected flapping frequencies,
amplitudes, and body angles of attack (a) for Equation 7.5 and Equation 7.6.

Flapping Amplitude
30� 45� 60�

Frequency (Hz) a (deg) F0
L (N) CL F0

L (N) CL F0
L (N) CL

0 — 0.11 — 0.034 — —
10 — 0.19 — 0.17 — 0.16

0 20 — 0.33 — 0.37 — 0.32
30 — 0.58 — 0.58 — 0.54
40 — 0.74 — 0.79 — 0.79
0 -0.0098 0.096 -0.032 0.061 0.00076 0.074

10 0.0031 0.19 0.0069 0.17 0.011 0.16
6 20 0.01 0.38 0.012 0.38 0.013 0.34

30 0.0075 0.69 0.014 0.68 0.014 0.71
40 0.013 0.9 — — — —
0 -0.015 0.097 -0.036 0.064 0.0027 0.059

10 0.0029 0.19 0.0093 0.17 0.016 0.16
8 20 0.014 0.38 0.019 0.4 0.02 0.37

30 0.011 0.7 0.02 0.69 0.027 0.7
40 0.018 0.9 — — — —
0 -0.017 0.097 -0.039 0.064 -0.0039 0.063

10 0.0036 0.19 0.012 0.17 0.023 0.16
10 20 0.018 0.38 0.02 0.43 0.032 0.4

30 0.016 0.7 0.028 0.7 — —
40 0.024 0.9 — — — —

increases the drag offset force. We also observe positive lift offset forces with the flapping wings
(except at a = 0), again increasing with flapping frequency and amplitude in Table 7.4.

Using these models, in combination with the equations from subsection 7.2.3, the glide slope
can be predicted. Figure 7.17 shows the result of taking the best glide slope across the varying
angle of attacks for each flapping frequency and amplitude. This clearly shows the improvement
in descent slope with increased flapping frequency and amplitude. With an amplitude of only 30�,
the descent slope improves from 30� to 22�. At the higher amplitude of 60�, the slope increases
dramatically from 32� to 12�.
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Figure 7.17: Glide slope of the model Archaeopteryx as a function of flapping frequency and
amplitude.

7.3.3 Discussion of Performance and Implications for Flight Evolution
Our examination of the performance of a scaled Archaeopteryx model continue to suggest the
utility of flapping wings in an aerial setting. An arboreal dwelling Archaeopteryx would derive
great benefit from developing flapping, as even the simple kinematics of our scaled model show
a dramatic decrease in the descent slope. A key observation from the wind tunnel experiments
is the interaction between flapping frequency and amplitude. The glide slope decreases linearly
with increasing flapping frequency for each amplitude. However, as the amplitude is increased,
the slope of the linear relationship between the flapping frequency and glide slope increases in
magnitude. At a higher amplitude, a similar increase in flapping frequency will be more beneficial
than the same increase in flapping frequency at a lower amplitude. Similarly, the same applies
when increasing the flapping amplitude. At a higher flapping frequency, more benefit is derived
from increasing the flapping amplitude than at lower frequencies. This suggests a biomechanical
reason for co-evolution of the flapping frequency and flapping amplitude, with each increasing
simultaneously.
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Chapter 8

Conclusion

This work has explored hybrid legged and winged robots at the meso-scale. The design of two
hybrid robots was presented, each with its own abilities. Our initial hybrid robot, DASH+Wings,
provided many key insights into hybrid locomotion, and was instrumental in enabling the design of
BOLT. DASH+Wings also provided a novel platform for investigating theories on avian flight evo-
lution. Through evaluation of the capabilities of DASH+Wings, we examined the biomechanical
likelihood that flight evolved from either a cursorial or arboreal environment. While the flapping
wings provided utility during both aerial and terrestrial modes of locomotion, they fell short of
the performance increase predicted necessary for the cursorial takeoff of a ground-dwelling avian
precursor. We further investigated the aerial performance of a scaled model for Archaeopteryx, and
showed the utility of increased flapping frequency and amplitude for improving force production
towards improved gliding and eventual sustained flight. Taken in context with new fossil discov-
eries suggesting a four-winged phase for early birds, these experiments suggest that flight likely
evolved in an arboreal context.

Our second hybrid robot, BOLT, achieved the goal of being capable of both aerial and terrestrial
locomotion, and transitioning between the two in an indoor environment. During dynamic running,
BOLT uses a unique method for maintaining passively stable bipedal locomotion, exploiting the
aerodynamic effects of its flapping wings. Because of the aerodynamic forces present on the
robot, BOLT does not run using a traditional SLIP gait. Despite this fact, the robot is capable
of high speed locomotion, “flying” along the ground using a combination of aerodynamic forces
and ground reaction forces to propel itself. This mode of locomotion was elucidated through the
development of WingSLIP, a hybrid dynamic model incorporating both leg and wing forces. With
the addition of wing forces, the legs function mainly as supports keeping the hips off the ground
and allowing the wings to propel the system across the ground.

The integration of both legs and wings into the BOLT platform enable a highly capable mobile
robot in many environments. The robot is capable of self-righting, and climbing vertical inclines
at 0.6 ms�1 through the use of magnetic feet. The legs and wings hybrid configuration is also
particularly adept at crossing low obstacles placed in its path without needing to resort to aerial
locomotion. While not the first hybrid aerial/terrestrial robot, BOLT is currently the smallest.
Its ability to transition from terrestrial locomotion to aerial locomotion in a small space enables
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it to take advantage of both modes of transportation, especially in a confined environment. The
key contribution setting BOLT apart is the integration of a smart electronics package capable of
measuring the dynamics of a fully capable hybrid platform. BOLT has begun to provide insights
into the dynamics of wing assisted locomotion, and allows the interactions between legs and wings
to be examined.

8.1 Future Work
While this thesis has explored the capabilities of hybrid robots, there are still many rich questions
on the interaction of legs and wings where this concept can be extended further. The use of hybrid
robots shows great potential in both expanding the utility of small mobile robots as well as further
investigating the theories of avian flight evolution.

8.1.1 Hybrid locomotion
While BOLT utilizes its legs and flapping wings to enable a variety of novel locomotion abilities,
its use in terrestrial locomotion is limited by its high cost of transport. Further analysis of the
WingSLIP model alongside BOLT can investigate ways to improve the performance while also
increasing the efficiency of the system as well. Additionally, a transmission capable of selectively
driving the legs or wings would allow further improvement to the efficiency of the robot. By
turning off the wings at low terrestrial speeds, or disengaging the legs when flying, the robot can
minimize the power lost to unnecessary appendages.

From a biologically inspired perspective, flapping wings allow remarkable maneuverability
in insects and birds through within-wingbeat adjustments and among-wingbeat variations. Us-
ing flapping wings enables scaling and increased maneuverability of future robots, as biological
understanding increases and actuator technologies advance. Future work will harness these ad-
vancements to create flying and crawling platforms that begin to push the boundaries seen in the
locomotion abilities of animals.

8.1.2 Avian Flight Evolution
DASH+Wings showed the power of using a small legged and winged robot to investigate theories
on avian flight evolution in a biomechanical context. While not morphologically correct, the plat-
form was capable of directly evaluating the consequences of adding wings to a cursorial platform
in both aerial and terrestrial modes of locomotion. Our scaled Archaeopteryx model enabled the
investigation of the aerial benefits of increased flapping frequency and amplitude on a morpholog-
ically correct platform. The cursorial benefits on this platform remain unknown. The addition of
lightweight legs, similar to those used for BOLT, can enable a comprehensive investigation of the
utility of flapping wings in an early avian precursor.
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