
A Platform Architecture for Sensor Data Processing

and Verification in Buildings

Jorge Ortiz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-196

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-196.html

December 3, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Platform Architecture for Sensor Data Processing and Verification in
Buildings

by

Jorge Jose Ortiz

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David E. Culler, Chair
Professor Randy H. Katz

Professor Paul Wright

Fall 2013

A Platform Architecture for Sensor Data Processing and Verification in
Buildings

Copyright 2013
by

Jorge Jose Ortiz

1

Abstract

A Platform Architecture for Sensor Data Processing and Verification in Buildings

by

Jorge Jose Ortiz

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David E. Culler, Chair

This thesis examines the state of the art of building information systems and evaluates
their architecture in the context of emerging technologies and applications for deep analysis
of the built environment. We observe that modern building information systems are difficult
to extend, do not provide general services for application development, do not scale, and
are difficult to set up and manage. We assert that a new architecture must be designed
with four system properties – extensibility, generalizability, scalability, ease of management
– in order to address these shortcomings. Our system, StreamFS, embodies these system
properties through a filesystem abstraction and a set of data services. Data services are made
available to applications through an overloaded pipe abstraction. This allows for dataflow
specification of processing streams to clean and analyze the streaming sensor data.

We deploy StreamFS in seven different buildings and compose several applications on top
of it. One of the driving applications is a phone application called the Mobile Energy Lens.
The Energy Lens provides occupants with mechanisms for collecting building information in a
unified platform and provides a way to view aggregate energy consumption data associated
with the spatial deployment configuration of plug-load devices. We present a three-layer
architecture, where one of the main layers is implemented entirely with the data management
and processing services offered by StreamFS.

We introduce the notion of verification of physical relationships through empiricial data.
We partition the verification problem into three sub problems: 1) functional verification, 2)
spatial verification, and 3) categorical verification. We show how empirical mode decompo-
sition, correlation, and standard machine learning techniques can give us information about
how the sensors are related to each other, statistically and physically. We demonstate an ex-
tensible, generalizable, scalable, and easy-to-manage system for supporting the “appification”
of the built environment.

i

To Aileen Cruz. The love of my life.

My accomplishments are not possible without your love, support, and complete faith in my
abilities.

ii

Contents

Contents ii

List of Figures v

List of Tables x

1 The Vision of Soft Buildings 1
1.1 The Built Environment . 2
1.2 Pervasive Computing . 2
1.3 Cloud Computing, Ubiquitous Connectivity, and Mobile Phones 3
1.4 Applications in Buildings . 4
1.5 Research Statement And Hypothesis . 4
1.6 Thesis Roadmap . 5
1.7 Statement of Joint Work . 6

2 Sensing in the Built Environment 8
2.1 Tightly Integrated Building Information System Architecture 9
2.2 From Supervisory Control to Application Development in Buildings 11
2.3 BMS Architectural Shortcomings for Supporting Emerging Application De-

velopment . 12
2.4 Addressing BMS Shortcomings . 18
2.5 Contextual Accuracy . 20
2.6 Experimental Setting in Real Buildings . 22
2.7 Summary . 24

3 StreamFS System Architecture 25
3.1 Overview . 25
3.2 Name Management . 27
3.3 Time-series Data Store . 30
3.4 Publish-Subscribe Subsystem . 31
3.5 Data Cleaning and Real-time Processing . 33
3.6 Entity-relationship Model . 35

iii

3.7 Related Work . 37
3.8 Summary . 38

4 StreamFS Files and Process Mechanisms 39
4.1 Process Management . 39
4.2 Internal Processes . 40
4.3 External Processes . 47
4.4 Freshness Scheduling . 48
4.5 Dynamic Aggregation Example and Freshness Scheduling Results 51
4.6 Naming and The Filesystem Metaphore . 54
4.7 File Abstraction . 54
4.8 Supporting Multiple Names . 59
4.9 Related Work . 61
4.10 Summary . 61

5 API and an Architectural Evaluation Through Applications 63
5.1 API Overview . 63
5.2 Energy Auditing With Mobile Phones . 65
5.3 Energy Lens Architecture and System Challenges 66
5.4 Energy Lens Experience and Results . 74
5.5 Mounted Filesystem and Matlab Integration 81
5.6 Related Work . 83
5.7 Summary . 85

6 Empirical Verification of System Functionality and Metadata 86
6.1 Verification through Sensor Data . 86
6.2 Types of Verification . 87
6.3 Functional Verification Methodology . 92
6.4 Functional Verification Experimental Results 101
6.5 Spatial Verification Methodology . 106
6.6 Spatial Verification Results . 109
6.7 Categorical Verification Methodology . 118
6.8 Categorical Verification Results . 118
6.9 Related Work . 120
6.10 Summary . 124

7 Conclusions 128
7.1 Lesson Learned . 128
7.2 Future Work . 131
7.3 Thesis Summary . 132

A StreamFS Process Code 135

iv

B StreamFS HTTP/REST Tutorial 138
B.1 Terminology . 139
B.2 Creating a resource . 139
B.3 Creating a stream file . 142
B.4 Pushing data to a stream file . 142
B.5 Bulk data insertion . 145
B.6 Queries . 145
B.7 Bulk default/stream file creation . 147
B.8 Creating symbolic links . 152
B.9 Stream Processing . 154
B.10 Configuration . 154
B.11 Start the processing element . 155
B.12 Creating a processing job . 155
B.13 Start the process . 157
B.14 Stopping the process . 159

Bibliography 161

v

List of Figures

1.1 Building application model. Building sensor deployments send data to the cloud
and applications access it as it streams in. Applications may also feed data to
the cloud and make it available to other applications. 7

2.1 General building control loop. 9
2.2 High-level control board architecture. 10
2.3 BMS network architecture. 11
2.4 BACNet device example. 12
2.5 Screen shot for the Soda Hall Building Management System Interface. 13
2.6 Emerging Application: Hierachical MPC for a cluster of buildings. 16
2.7 Emerging Application: Mobile phone interfacing with the physical infrastructure. 17
2.8 MPC example where metadata must be verified to maintain correct behavior. . 21
2.9 Distribution of energy consumption in buildings by end-use. Table reproduced

here from the 2011 Buildings Energy Data Book [117]. 23

3.1 StreamFS system architecture. The four main components – name register, sub-
scription manager/forwarding engine, process manager, and timeseries datastore
– are shown. It also shows the application layer at the top. 26

3.2 Name management layer implemented behind HAProxy. Name servers handle
individual requests and use the “name registration table” to handle name-lookup
requests accordingly. 29

3.3 The timeseries data store. We use OpenTSDB; a timeseries data-store that runs
in cluster of HBase instances. 31

3.4 Subscription manager and forwarding engine. These components manage the
mapping from sources to sinks and forwards data between client applications and
internal/external processes or external subscribers. 32

3.5 The process manager manages a cluster of processing elements and connections
to external processing units. It works closely with the subscription manager to
forward data between elements. 34

vi

3.6 This figure shows how we translate the OLAP cube to a hierarchical ERG. Note
how the dimensions of the cube translate to the graph. The level of the subtree is
the category, the unit is specified at the node, and there are values at each node
for every time slice. 36

4.1 This figure shows the internal structure of a process element (PE). The PE con-
sists of several javascript sandboxes where internal process code runs. It also
contains a scheduling loop, message router, and instance monitor. 41

4.2 This figure shows how a “slice” operation is translated from the cube to the
ERG. The user queries across all streams or aggregation points at a certain level,
specified by a star level query with the level-specific prefix. The corresponding
slice query is query.slice(’/4F/R*’).start(t1).end(t2). 44

4.3 This figure shows how a “dice” operation is translated from the cube to the
ERG. The user queries across all streams or aggregation points at a certain level,
specified by a star level query with the level-specific prefix. The corresponding
dice query is query.dice(’/4F/R*’).units([’F’]).start(t1).end(). 44

4.4 This shows an illustration of the aggregation tree used by dynamic aggregation.
Data flows from the leaves to the root through user-specified aggregation points.
When the local buffer is full the streams are separated by source, interpolated,
and summed. The aggregated signal is forward up the tree. 45

4.5 External process stub. Note, it contains similar component to a process element
and functions much the same way, managing the buffers, scheduling, errors, and
communication on the client side like the PE. 47

4.6 This figure shows an example of two streams with different sampling frequencies.
Since we do not know the underlying fundamental frequency of the phenomenon,
our algorithm attempts to minimize error by minimizing staleness (or the average
time a data point is in the receive buffer). 49

4.7 Multiple streams in a subscription and their associated parameters. 51
4.8 The power consumes by a laptop in Room 1 is shifted to Room 2 a time t=7.

Notice the aggregagate drops in Room 1 while it rises in Room 2. 52
4.9 This figures shows the tradeoff between staleness and the number of streams being

consumed by the job. Note that out algorithm reduces the staleness of the buffer. 53
4.10 This figures shows that the min buffer algorithm provides a similar average

execution period but generally at the cost of higher variance in delivery times. . 54
4.11 Everything is a file. Temperature sensor represented as a file in a folder that

contains folders for each room. Note, the file that represents a temperature sensor
producing a stream is given a unique identifer. The user may also decorate the
file with extra metadata for searching purposes. 55

4.12 StreamFS console. The tool allows the user to view the namespace as a set of
files, interact with the system, and view stream data. 59

4.13 MPC example where metadata must be verified to maintain correct behavior. . 60

vii

5.1 Swiping gestures in the mobile application. The registration swipe requires on a
single swipe. The linking and registration gestures require two swipes, and the
look-up requires a single swipe. 68

5.2 This diagram shows the relationship capture between the objects and locations
in the building for the energy audit application. Children of a space node have
an “is-in” relationship with the space. An item with another item as a child
have a “is-attached” relationship and meters attached to items are bound to each
other. Note, this is a subset of the relationship diagrams generated across our
three applications. 71

5.3 Standard mechanisms for consistency management on the phone. All READ
request go to the local cached version of the ERG. All WRITES must go through
the OpLog. They are eventually applied to the cache if successful and logged
if the StreamFS is unreachable. These components are directly built into the
Energy Lens application. 73

5.4 Power traces obtained from power meters attached to various plug load on one of
the floors of a building on campus. These show screen shots of the Energy Lens
timerseries data display. 74

5.5 5.5a resolves to the same URL as the 5.5b, after resolution and redirection is com-
plete. The short label resolves to http://tinyurl.com/6235eyw. 5.5b encodes
about half the characters as the 5.5a. We used tinyUrl to reduce the QR code
image complexity and scan time. 76

5.6 The header of the response from the tinyUrl when resolving a QR code. The
‘Location’ attribute is used to extract the unique identifier for the object this QR
code tags. It is also used to re-direct users without the phone application to a
meaningful web address for the object. 77

5.7 Screen shots of the mobile application. The screens on the left are for editing the
state of the deployment. The graph on the right shows a live feed of a the sensor
that’s attached to the item that was scanned with the ‘Scan To View Services’
option in the mobile application. It can also be resolved by scanning the QR code
and following the re-direct to the URL. 78

5.8 A snapshot of the connectivity graph between the wireless plug-load ACmes de-
ployed in the 4th floor of SDH. 79

5.9 SFSFuse implementation. By mapping access and operational semantics to POSIX
file operations we enable legacy, desktop application to interact with the deploy-
ment directly. 82

6.1 Generalized Zero Crossing: the local mean period at the point p is computed
from one quarter period T4, two half periods T x

2 and four full periods T y
1 (where

x = 1, 2, and, y = 1, 2, 3, 4). 89

viii

6.2 (a) EMD decomposes a signal and exposes intrinsic oscillatory components; (b)
Aggregation of IMFs within a pre-defined frequency range makes seemingly sim-
ilar signals from different locations more distinguishable; (c) IMF aggregation
makes seemingly distinct signals of different sensors in the same room show high
correlation. 92

6.3 Correlation coefficients of the raw traces from the Todai dataset. The matrix is
ordered such as the devices serving same/adjacent rooms are nearby in the matrix. 93

6.4 Auto-correlation of a usual signal from the Building 1 dataset. The signal features
daily and weekly patterns (resp. x = 24 and x = 168). 94

6.5 Strip and Bind using two raw signals standing for one week of data from two
different HVACs. (1) Decomposition of the signals in IMFs using EMD (top
to bottom: c1 to cn); (2) aggregation of the IMFs based on their time scale;
(3) comparison of the partial signals (aggregated IMFs) using correlation coefficient. 95

6.6 Reference matrices for the four time scale ranges (the diagonal x = y is colored
in black for better reading). The medium frequencies highlight devices that are
located next to each other thus intrinsically related. The low frequencies contains
the common daily pattern of the data. The residual data permits to visually
identify devices of the similar type. 99

6.7 Number of reported alarms for various threshold value (τ = [3, 10]). 102
6.8 Example of alarms (red rectangles) reported by SBS on the Eng. Bldg 2 dataset 104
6.9 Example of alarms (red rectangles) reported by SBS on the Cory Hall dataset . 105
6.10 The ROC curves depict the sensitivity of the raw signal and mid-frequency IMFs

to the threshold value. We choose the 0.2 FPR point as the boundary threshold
for each room. 109

6.11 We collect data from 15 sensors in five rooms sitting on four different floors. This
is a map of a section of the 3rd floor in Sutardja Dai Hall. 109

6.12 Decomposition of the EHP and light trace using bivariate EMD. IMFs correlation
coefficients highlight the intrinsic relationship of the two traces. 111

6.13 Distribution of the correlation coefficients of the raw traces and correlation coef-
ficients average of the corresponding IMFs using 3 weeks of data from 674 sensors.112

6.14 Map of the floor where the analyzed EHP serves (room C2). The location of the
sensors identified as related by the proposed approach are highlighted, showing a
direct relationship between IMF correlation and spatial proximity. 113

6.15 Two populations are examined for our threshold analysis. A solid line connects
sensors in the same room while a dotted line connects to a pairs in different rooms.114

6.16 CDF of correlation coefficients between IMFs of sensor feeds: the dotted lines
point to some threshold which divides the distribution and produces a TPR and
FPR. 115

6.17 The threshold values all converge to a similar value and we can derive the optimal
value with as minimal as 14 days data. 116

ix

6.18 Clustering with k-means on the corrcoeff matrix after applying multidimensional
scaling (MDS): The EMD-based set achieves an accuracy of 80% while the results
with raw-trace is only 53.3% classification accuracy. 117

6.19 ASO versus AGN. There is a clear value-based boundary between the two sets of
traces at around 3 in the mean. 119

6.20 The VR traces span a wide range, however, any mean above 100 is a VR trace. . 120
6.21 All temperature streams. Note, these are much more difficult to tease part. A

Gaussian mixture model can separate them with approximately 77% accuracy,
but it may not generalize. 121

6.22 Centers for our Gaussian mixture model. Note, 3 of the 5 centers are very close
to each other. This makes these traces very difficult tease apart and accurately
classify. 122

x

List of Tables

4.1 Summary of the four main file types and their valid operations in StreamFS. . . 56
4.2 File operations, the file types that support them, and their general semantics. . 57
4.3 Summary of the 6 special-file sub-types and their valid operations in StreamFS. 58

5.1 Overview of StreamFS file-related API calls. Library written in Java, PHP, and C. 64
5.2 Summary of control interface callbacks in StreamFS. Library written in Java,

PHP, and C. 64
5.3 Summary of control interface callbacks in StreamFS. Library written in Java,

PHP, and C. 65
5.4 Shows the time to scan a long QR code versus a short QR code in light and dark

conditions (loosely defined). Notice that short QR codes scan faster and with less
variance that long ones. 75

5.5 Shows the time to fetch nodes based on the size of the fetch. The fetch time
increased linearly with the number of nodes. Caching maintain fetch time near
that of fetching a single node. A callback is used when cache is invalidated. . . . 79

5.6 Average operation execution time in StreamFS. 80
5.7 Overview of StreamFS file-related API calls. Library written in Java, PHP, and C. 82
5.8 This table summarizes the deployment statistics of for StreamFS over a two years. 85

6.1 Classification of the alarms reported by SBS for both dataset (and the number
of corresponding anomalies). 103

6.2 Room Specs . 109
6.3 Correlation coefficients of the analyzed trace and their IMFs uncovered by EMD 110
6.4 Clustering result using the thresholding method: a “1” means the sensor is clas-

sified as inside the room. We get the “X” and “×” by comparing the clustering
results with ground truth. 117

6.5 Categorical classification results for two data traces. 119

B.1 Terminology. 139
B.2 Parameters . 147

xi

Acknowledgments

I want to thank my advisor, David Culler, for guiding my research work and giving me
the freedom to choose my own problems and go deep. David has an amazing ability to
provide deep insights to any problem and has helped guide my vision in the context of all
the established work, while fearlessly pushing me to examine completely new domains.

I want to thank my wife Aileen Cruz, my mother and father, Judy Zamora and Rudy
Ortiz, my grandmother Lilia Fajardo and my sister Patricia Rivera. They have supported
me throughout my entire career in ways that are too long to list here. I spoke to my family
almost every day since I moved to California in 2005, and they have been with me throughout;
separated by many miles but never closer. Aileen offered unwavering confidence in me since
my years at M.I.T., my arduous transition from Oracle to Berkeley, and for all my years in
the program. We arrived as two and leave as a family of four, with our baby Elias on the
way and our wonderful dog Juani.

A special thanks to Professor Randy Katz, for always being encouraging, offering deep
insights, and excellent baseball conversation. Ever the die-hard SF Giants fan, I will always
remember the games we attended at AT&T Park and our discussions about the statistics of
the game. I also want to thank Processor Paul Wright for giving me great feedback during
my qualifying exam that guided the direction of the work from its inception. I want to thank
my colleagues David Zats, Dezhi Hong, and Romain Fontugne for the work we did together.
I will cherish my interactions with them and I am happy to call them friends. I also want
to thank Michael Andersen for his feedback on my dissertation and taking the time to find
grammatical errors throughout. A special thanks goes to Jay Taneja, Prabal Dutta, Jaein
Jeong, Fred Xiang, Sukun Kim and Arsalan Tavokoli, the original wireless embedded systems
group. Jay, without your pushing me to sit in 410, I might not have had to opportunity to be
as productive as I was those early years. Prabal, thank you for all those long conversations,
early guidance, and helpful advice. He served as the kind of mentor I hope every person gets
to have at some point in their career.

I also want to thank Professors Ion Stoica and Scott Shenker, for giving me those early
opportunities to transition from an employee at Oracle to a PhD student at Berkeley. To
Rodrigo Fonseca, Chris Baker, Daekeong Moon, Jinyang Li, Joel Weinberger, Michael Hein-
rich, Jonathan Chang and Professor Hiroshi Esaki. Thank you for patiently working with
me and giving me an opportunity to succeed. A very special thanks to Albert Goto, for our
long talks and for all your help throughout my time at Berkeley. An extended thank you to
Larry Rudolph at M.I.T. and Josh Jacobs at Drexel, who got me started on research many
years ago, while I was at M.I.T.

Finally, I want to thank the organizations that funded the work in this thesis. These
include the National Science Foundation, Samsung, Intel, and Nokia.

To the block in Woodside, Queens. It took a long time but we in here! Time to go home.

1

Chapter 1

The Vision of Soft Buildings

We begin with a vision for the future of buildings. We would like to turn all buildings
into “smart” buildings that provide services to its occupants, the grid, and the environment.
Currently, buildings are largely built in isolation of one another – each unique in its own
right, from the material the walls are made of to the systems and software that control
them. With the falling cost of memory, the ubiquity of connectivity and sensing, and cheap
cost of computation in the cloud, it should be possible to make buildings “smarter” through
software guided by the principles of extensibility and clean, well-defined software interfaces.

We would like to move towards a vision of building software systems that

1. Support the notion of applications; applications to make use of and directly control
the environment.

2. Provide a clean set of abstraction for application writers that wish to build both ana-
lytical and control applications.

3. Accurately capture the state of the building, even as it evolves.

Recent trends in research and technology set the stage for our work. We give a brief his-
tory of the work that has led us to the vision of a smart built environment. We also describe
the technology that allows us to realize our vision and show how the falling cost of sensor,
ubiquity of connectivity and embedded computation, and falling cost of computation in the
cloud informs our architectural choices. In the next section, we discuss the built environment
and how energy-efficiency has become a prime research focus. Then, we give an overview of
pervasive computing work and explain how they motivate the kinds of applications we look
to support in the built environment. Finally, we will state our research goal and give an
overview of the rest of the thesis.

CHAPTER 1. THE VISION OF SOFT BUILDINGS 2

1.1 The Built Environment
Humans spend a large portion of their lives in buildings and there are known problems

related to energy consumption, comfort, and operational visibility. Buildings consume 40%
of the energy produced in the United States and nearly three quarters of the electricity
produced [117]. With the specter of global warming and the continued decrease in the cost
of storage and communication, buildings have become a major target for improved energy
efficiency.

Buildings have been the subject of study for architects, mechanical, and building engi-
neers. Recently, there has been an interest in buildings by computer scientists as they present
a family of interesting challenges related to cyber-physical systems. Historically, building
manangers and contractors work together with a third-party provider to embed sensors
through the systems and spaces in the building to allow them to observe and manage the
day-to-day operations of the building from a central location. The building manager is the
primary user to interact with the deployment information to diagnose and fix problems from
a central locations. Problem identification primarily occurs through occupant complaints.
The building manager diagnoses through physical inspection and simple inspection of the
associated data through the primary user interface for the building management system.
These BMS’s are common in large buildings. Over 70% of large – 100,000 square feet or
larger – commercial buildings, have a building management system [2]. These systems are
installed primarily for supervisory control and centralized observation of the building. They
help deal with the management complexity and supervisory control of a highly distributed
mechanical system through a graphical view and the sensors and actuators they contain.

1.2 Pervasive Computing
The proliferation of cheap, networked, embedded sensors is moving us towards a future

where our infrastructure is populated with computing that enable smart environments. We
march towards Mark Weiser’s vision of the future of computing [122] where the environment
contains sensors and people interact with the physical environment through their personal
devices and related services. These services also allow us to optimize the performance of our
infrastructure, uncover problems proactively, and share information with others to provide
greater insight into the world around us.

The research in this area starts from the vision for the field. What could the world be
if we are surrounded by computing? How will we interact in that world? What can we
learn from the world and from each other? Hypothetical scenarios guide the early work.
A common scenario is one that makes use of a personal handheld device, “smart” objects,
and ubiquitous connectivity. Much of the early work aimed at constructing a scenario that
captures some aspect of the future envisioned that can be used to highlight and explore fun-
damental challenges in realizing the vision. For example, Christensen et al. [24] explore how
pervasive computing will play a role in assisting office workers in their day to day activities.

CHAPTER 1. THE VISION OF SOFT BUILDINGS 3

They imagine a scenario where office occupants use their mobile devices to interact and share
information with each other through serendipitous work-related activities. Through this sce-
nario draw attention to fundamental issues related to mobility, interrupted operations, and
activity scheduling.

Many fundamental challenges were discovered and addressed in this fashion. Pervasive
computing work eventually branched off into several sub-domains with their own focus. Some
examples are work related to localization [18, 70, 101, 126], mobility and mobile devices [48,
121, 63], context deduction and wearable computing [52, 79, 24, 103], and sensor networks [25,
80]. These and related topic areas have guided our thinking in addressing the problems in
the built environment.

Looking back at the pervasive computing work, we observe that much of the work has
focused on users but not as much on the challenges in the environment itself. There is little
emphasis on the infrastructure and issues with the accuracy in contextual representation
of the physical environment. There is also very little work on how a changing physical
environment affects the accuracy with which applications can deduce the state of the world
around them. Also, there is very little emphasis on control of the physical environment. The
kinds of software processes that runs in buildings are primarily for control of the environment.
These issues are neither addressed in the building science community nor the pervasive and
computer science community. We look at these issues specifically in this thesis.

1.3 Cloud Computing, Ubiquitous Connectivity, and
Mobile Phones

Cloud computing has changed the way we design systems that bring together the physical
and computational world. Coupled with the continued maturation of networking technolo-
gies – both indoors through Wifi and outdoors through cellular – and the explosion of mobile
phone use, today’s systems are designed with the mobile phone as an access tool for infor-
mation in the cloud. It is mostly safe to assume that this information will be accessible.
Moreover, connection speeds can reach up to 300 Mbps, so serving sophisticated applications
from the cloud and designing them in a highly interactive manner is commonplace. The main
bottleneck is the form of interaction, which is still a challenge given the small screen of a
mobile phone.

These technologies also make it easier to design centrally managed, globally accessible
systems. Services in the cloud can serve many clients simultaneously, proving a unified view
of the state of the service and the objects in it. There is little difference between the desktop
application and the mobile application, other than service presentation. Moreover, all the
data lives in the cloud and is fetched from the cloud by all clients. The cloud service mediates
interaction between all participants in the system.

CHAPTER 1. THE VISION OF SOFT BUILDINGS 4

1.4 Applications in Buildings
We introduce the notion of building “app-ification”. Technology enables mobile phone

“apps”; mobile applications that closely interact with content in the cloud. We assert that
a good way to address problem in the building by opening up the building’s sensor data
streams and buildings services that make use of that data. A system should provide uniform
access to the data and facilities for cleaning and aggregation. It should be extensible so dis-
parate systems could join and share information that could enable new kinds of applications.
Figure 1.1 illustrates a high-level of building “app-ification architecture”.

Building-scientists and architects use a family of products and software packages that
take building data and analyze it. We need to support those as well. The main idea is to
expose building sensor streams and related information for applications through the cloud.
This allows us to adopt application development design patterns and inherit the benefits of
centralized management. It also provides an environment where a diverse set of applications
and solutions can be designed and tested to address fundamental challenges in building
management and control. Such service should offer a data-processing primitives as well. It
should mediate access to sensor data and actuators. The system should provide support
holistic control applications that combine disparate data sources through the service itself.
We describe the design of such a system in Chapter 2.

Privacy is a major concern as we consider the “app-ification” of buildings. Detailed
information about energy usage can reveal information about the activity in the building
and can be used to predict the behavior or individuals and organizations. For example,
right before a product launch, employees typically spend longer hours at work. This could
be used by a rival company to acticipate the release of a new product. Individual usage
data can be used by thieves to indicate when a particular occupant is home and what their
move patterns are. We only partially address the topic in this thesis, through mechanisms
in our architecture that allow the user to control access to individual and aggregate pieces
of information. However, privacy is a much broader topic and there are many techniques
available for adoption. We leave this exploration for future work.

1.5 Research Statement And Hypothesis
We formally state the thesis that guides our work: How can we incorporate filesystem and

database constructs and what are the technical challenges in a system that supports applica-
tions in the built environment? Given the emerging applications in the built environment it
is clear that the old information system design is not sufficiently open, flexible, nor scalable
enough to support them. Old information systems are tightly integrated from the field-level
sensor to the central supervisor control system. There are two integration points in tradi-
tional systems that we argue are either fundamentally flawed or insufficient for emerging
applications. We describe the components that currently exist and identify those that are
missing. We show how these components/services enable emerging applications. We also

CHAPTER 1. THE VISION OF SOFT BUILDINGS 5

discuss the technical challenges that must be solved in order to provide the correct semantics
for these services. Furthermore, we discuss a component that is fundamental for providing
correct information to applications and formalize the notion of verification in the context of
the built environment. We provide several algorithmic solutions to these problems, which
lay the foundation for a fundamental service in the broader architecture.

1.6 Thesis Roadmap
In the next chapter, we discuss building information systems today. We dive into their

architectural components and introduce some terminology used in the building space. We
also describe the motivating scenario that they were built for and examine how well the
architecture can support the “app-ification” of buildings. We give examples of specific ap-
plications that we would like to support and walk through the components that are useful
for this purpose and those that are missing. We propose a set of necessary components in
an architectural re-design that could provide the same support as BMS’s today as well as
the emerging ones that we describe and argue that this should be the design of a building
appification system.

In Chapter 3, we give an overview of a system that contains the components we propose
in the previous chapter. The name of the system is StreamFS. StreamFS is a cloud-based
service that combines filesystem and database constructs to organize the streaming sensor
data, clean and process streams, and provides a unified access layer. We discuss the overall
structure each component in the architecture and how they interact with one another.

Chapter 4 dives into the details for the components and mechanisms in StreamFS. Sec-
tion 4.1 focuses on the process management component in StreamFS. The process manage-
ment component manages the streams and the processes that consume those streams. It
is designed to support processes that are specified by the user and managed by StreamFS
as well as integrating external processing components and representing them through the
file system in StreamFS. We discuss some of the challenges and present some solutions to
a scheduling problem related to providing fresh data to processing jobs. We also describe
how various kinds of aggregation can be performed on the data, using the filesystem and
pipe abstraction presented and managed by this component. Section 4.6 discusses how we
represent the world as a collection of files. StreamFS follows the Unix filesystem principle
where everything is a file and this allows us to provide a unified management layer for the
entire set of building deployment data and metadata. We discuss the individual file types
that we support and their semantics. We also introduce the fundamental challenge of dealing
with evolving metadata. Specifically, we show how changes in the physical world can present
problems with the structure and relationships between the files in the system.

We evaluate the StreamFS in Chapter 5. We describe our experience in deploying
StreamFS in several buildings at UC Berkeley and the University of Tokyo. These build-
ings represent a broad range of characteristic “office buildings” in both countries. Office
buildings consume nearly 20% of all energy in the United States and similar proportions

CHAPTER 1. THE VISION OF SOFT BUILDINGS 6

in Japan. Moreoever, there difference between buildings in both countries, such as usage
patterns and HVAC architecture (centralized vs distributed). We show how our architecture
and techniques work well across both and describe these deployments in the context of 2
applications: 1) a real-time visualization and aggregator mobile phone for energy auditing,
and 2) a real filesystem mount and direct integration with a legacy applications. We also
give an overview of the application programming interface and discuss how StreamFS can
help build generable, scalable re-usable software within buildings.

Finally, we discuss verification of building systems and metadata in Chapter 6. We intro-
duce 3 types of verification and describe why each of them is crucial to building applications
that interact with the physical world through a layer of software represent it. We discuss
our work on the Strip, Bind and Search methodology for functional verification, our use of
mode decomposition for spatial verification, and timeseries clustering techniques for type
classification. We discuss future work in Chapter 7 and conclude in Chapter 7.3.

1.7 Statement of Joint Work
The work in Chapter 6 is part of a collaboration with my colleagues Romain Fontugne,

Dezhi Hong, Nicolas Tremblay, Pierre Borgnat, Patrick Flandrin, Kensuke Fukuda, David
Culler, Hiroshi Esaki, and Kamin Whitehouse. We published several papers in the area
of functional [41] and spatial [40, 53] verification. Their input was instrumental to the
exploration and development of the work.

CHAPTER 1. THE VISION OF SOFT BUILDINGS 7

Temperature/PAR/TSR.

Edge%Router%

EBHTTP%/%IPv6%/%6LowPAN%
Wireless%Mesh%Network%

Vibra2on./.Humidity.

AC.plug.meter.

Light.switch.

Cloud

Applications

Sensor Sensor

Figure 1.1: Building application model. Building sensor deployments send data to the cloud
and applications access it as it streams in. Applications may also feed data to the cloud and
make it available to other applications.

8

Chapter 2

Sensing in the Built Environment

Building management systems consist of thousands of sensors embedded in the systems
that control the internal environment and the spaces occupied by people. Many different
sensors take disparate physical measurements, continuously. For example, temperature sen-
sors take Fahrenheit readings in the thermostats, valve-position sensors measure the position
angle of the valve in the pipes, pressure sensors record pressure measurements in the vents,
etc. The BMS presents these through a graphical interface to the building managers. The
graphical interface contains graphical sketches of the systems and spaces in the building with
icon images of the sensors in their approximate physical location represented in the sketch.
The image sketch is generated from building schematics, so the interface is representative at
the time of construction. Building managers can quickly locate any sensor in the building
through a series of clicks.

Although BMS’s have, to some degree, been an effective tool for centralized management
of buildings, they lack the extensibility and analytical capabilities necessary to support an
ecosystem of tools for analyzing the building. In general, software practices in the building
are non-standardized and non-systematic. This presents major challenges with respect to
software re-use and scalability. In this thesis we discuss how we address these challenges
through architectural design choices and analytical methodology. The architectural choices
reconstruct the software layer that sits on top of existing building management systems and
presents a unified interface and standard API for analytical and control building applications.
The analytical methodology offers a general approach for verifying the construction of point
names – the naming scheme for sensors distributed throughout the building.

The thesis is presented in the context of BMS systems and the building applications we
aim to support. In the next section, we describe the state-of-the-art practices followed by
vendors of building information systems. We describe the architectural features and design
principles both implicitly and explicitly implemented into them. We also present the pros
and cons of these decisions and their implications and include a high-level description of our
approach.

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 9

Sensor ControllerControl
Logic

Physical
Phenomenon

Figure 2.1: General building control loop.

2.1 Tightly Integrated Building Information System
Architecture

The first building information systems became commercially available in the 1970’s [43].
Historically, building management systems were constructed as a collection of control loops,
which progressed from pneumatic to analog to digital. These control loops largely form the
foundation for the design decisions made in building information systems. This section gives
a quick overview of the architecture, bottom-up and describes how each stage is built around
the concept of loops and supervisory control. We then describe some of the short-comings
of this architecture and give an overview of how we address it in a system called StreamFS
– described in more details in the remaining chapters.

Control Loops and The Outstation
Each loop is defined by a control domain consisting of a sensor, an actuator, and a

control mechanism. The control mechanism become logic based when signals from sensors
moved to the digital domain. However, the basic control principle is based entirely on local
control loops, with the implicit assumption that these loops are independent. Figure 2.1
shows a high-level control loop. A simple control loop in the building is one that controls
the temperature in a space. It has a temperature sensor as the input and uses the tempera-
ture set-point parameter to decide when and which actuators to activate. For temperature
control, this actuation controls the vent that lets cool air into the space. This causes the
temperature to fall until a lower-bound is reached and the control logic re-activates the fans
and heating/cooling system.

The figure also shows the basic structure inside an outstation. An outstation is a box
that contains up to several control boards, each wired to one or more sensors and one or
more actuators. The outstation is typically close to the sensors and actuators (in the same
room) and contains all the control logic for the local plant. Inside the control logic there is
a CPU and some memory. The memory contains the control program and some space for

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 10

CPU

Memory

RAM ROM

Sensor Controller

Data Bus

Address Bus

Control Bus

Figure 2.2: High-level control board architecture.

sensor readings. It is directly wired to the sensors and actuators through a series of buses
and shown in Figure 2.2.

As readings from the sensors are taken, they are placed in RAM. The amount of RAM
is limited and can get filled up, so it is important to schedule periodic collection tasks from
the central station – the building management system (BMS). The control logic is typically
written in ROM and can only be changed by the equipment or BMS vendor. The input
parameters are set at the BMS and they dictate the operational dynamics of the control
scheme in reaction to the input [75]. Outstations are distributed through the building and
are essentially running independent of one another. In order to enable centralized monitoring
and control, they are networked together and report some of the sensor readings and control-
logic state to a central outstation.

Central Outstation and Communication Protocols
The central outstation is typically a Microsoft Windows-based PC connected to the

outstation through either RS-485/modbus or Ethernet. The user interacts with the sys-
tem through a graphical interface, constructed from the schematics for the building or the
schematics for the component in the system that is being monitored. The BMS running on
the PC communicates with outstations through either a vendor-specific, proprietary protocol
or an open one like BACNet [4] or LonTalk [35]. Note, we focus on BACNet, but the similar
features exist in other protocols, such as LonTalk.

Both protocols define both a wire protocol and packet structure for communicating with
outstations and each other. They also define a high-level naming scheme for sensors in the
building, called ‘points’. A point can also refer to a non-physical object, like a schedule of
operation. It is common for both lights and temperature sensors to run on a daily, weekly,
and seasonal schedules. Such schedule are captured by the schedule object in BACNet. Each
object contains a set of properties that can be read and/or written. A device is identifiable

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 11

BMS Server/
Central Outstation

Routers

Outstations

Boiler AHUs Lights Meters EnvironmentalSensors and
Actuators

Figure 2.3: BMS network architecture.

through a name or address on the network, each object has a unique identifier and is one of
many types. Examples of object types includes the following: input, output, value, analog [4].

These protocols also provide a mechanism for discovery . Each [device, object name/id,
property name/id] tuple forms a name. This name is exposed by the protocol-server to the
application. All the names are set by the vendor and the are shown through the graphical
interface of the BMS. The building manger is the primary user of the BMS, so rather than
expose the underlying protocol, he/she interacts with the building via the graphical interface.

In order to interact with the underlying sensor and actuator layer, the application must
use a stub that communicates directly with the sensor/actuator through the BACnet stack.
External communication stubs are recognized similarly to sensors/actuators. They are rep-
resented as a collection of objects with readable/writable properties. An example service
that is provided in BACNet is WhoIs and EventNotification. The former is a broadcast
service that is used for discovery of other objects, the latter is used for setting alarms on
the sensor data that are reported by the BACNet enabled devices on the network in the
outstation layer. There are many other types of events that are supported and over 50 types
of object types in the baseline protocol, which is extensible. Device and object names that
are added have no restriction on either the number of characters (specified by the vendor)
or the encoding.

2.2 From Supervisory Control to Application
Development in Buildings

Features for interoperability were designed at two interface layers: 1) the protocol layer
and 2) the presentation layer through a data-export feature. The protocol layer provides
services for enabling devices to talk to one another through the network. Several features were
explicitly designed around the notion of interoperability: trending, scheduling, management
services, alarms and events, direct sharing. The graphical interface layer is mainly focused

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 12

Device ID

Object ID, Type

Property ID

Property ID

Property ID

Object ID, Type

Property ID

Property ID

Property ID

Figure 2.4: BACNet device example.

on providing periodic reports in a comma-separated value (CSV) file, which contains point-
name information and time-value pairs of data. For these protocols, interoperability means
adding new devices or exporting the data in a common format. Building information systems
themselves were built to mainly support the in-time management and supervisory control
of the building. Analysis does not extend far beyond univariate plotting and individual
assessment of equipment and control. Most tuning of control parameters is manual. Hard-
wired control logic at the outstation is rarely updated.

Over the last few years, however, there has been in increased interest in energy manage-
ment and comfort as a primary objective in the design of new building applications [119,
127, 82]. Moreover, there is a broad interest in buildings using global control schemes to
optimize their performance and to interact more efficiently in response to renewable sources
and its generation volatility [110, 8, 78]. Model predictive control has introduced new ways
of controling the components in the building to make them more energy efficient [81], there
is an interest in performing dynamic, real-time analysis of building health and efficiency [32].
There has even been interest is improving the visibility of the state of the building to the
occupants through various modalities, including touch-screens and mobile phones [71, 54,
95]. These, and other emerging applications, have pushed the boundaries of demand beyond
what a modern building information system can provide and a re-design must be considered.

2.3 BMS Architectural Shortcomings for Supporting
Emerging Application Development

We examine today’s BMS architecture in the context of 4 potential services with distinct
operational requirements. The first two services are features in today’s BMS’s. We describe
how emerging requirements are driving the evolution of these services and how BMS’s are
struggling to meet the new requirements due to limitations in their architectural design.
The next two are emerging services that BMS’s cannot support today. We describe which

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 13

Figure 2.5: Screen shot for the Soda Hall Building Management System Interface.

architectural components must be included or how current components must be modified in
order to support these. We also make the broader argument that building systems should be
built to support a much wider range of applications that we cannot currently anticipate. We
will show why this requires a fundamental re-design and propose an architectural composition
for such a system. In the rest of the thesis, we will examine an instance of our architecture
and describe the challenges in realizing the use and effectiveness of our system in real building
deployments.

Monitoring and Supervisory Control
The primary objective in the design of building information systems is for centralized

monitoring and supervisory control. Control algorithms are left “to the expert” and embed-
ded in the outstation control board. The intended user of the system is a building manager –
a user whose expertise is much broader than the designer of the control algorithm that runs
on a particular system component. The manager is expected to monitor the health of build-
ing systems and quickly diagnose problems when they occur. The tool is mainly in place to
save the building manager time; and it is very effective at doing so. The extent to which the
building manager is making control decisions is altering control algorithm parameter setting
through the building management interface itself. Even these decisions typically go through
the vendor, through consultation.

Figure 2.5 shows a screenshot of the BMS in Soda Hall at UC Berkeley. This specific
image captures a schematic for one of the air handling units. It shows the various sensors
embedded in different locations on the component – temperature sensors on either side of the
supply/exhaust fans, temperature sensors at the supply/return air ducts and the inlet vent,
measuring the outside air temperature. Accompanying real-time readings are juxtaposed by

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 14

the sensor image. The user can double-click on the sensor or reading to get more information
about that particular measurement point. For example, if you double-click on a temperature
sensor, it will give you the exact name of the point and accompanying information about
related points, such as the set-point, which effectively drives the behavior of the underlying
system. If an occupant makes a complaint about not getting any air from the vents, for
example, the building manager can find the screen for the vents that serve the room the
occupant is in and observe the current pressure readings or look for value-based alerts on
any of the readings, typically displayed on the same screen. If there is a malfunctioning
component or something stuck in the vent, the readings should “look off” to the building
manager.

If the problem recurs often, the astute building manager may be able to characterize
the fault through a series of alarms. They can be proactive about finding and fixing the
problem(s) before they occur. Alarms can be set through interaction with the graphical
interface, in much the same way that a look up on the measurement point occurs – by
double-clicking on the point in question and following instructions for setting an alarm. In
some cases, the problem may be driven by a faulty setting and adjustments can be made to
the control parameters through the associated control points.

The scope of control is limited to local control loops. Recall our discussion of control
loops in Section 2.1. The building manager can, typically with the help of the vendor,
decide on the best control strategy setting. If the control strategy cannot be met, due to
flaws in the control algorithm itself, the vendor may step in and re-image the controller at
the outstation and expose the necessary parameters through the graphical interface. These
kinds of changes are rare but do happen occasionally and are generally expensive, since the
cost is not usually included with the purchase of the system. The decision is made after
close inspection and analysis, which a BMS enables through the data export feature. For
example, the sense/control points in question may be placed in “trend” mode. This means
that readings from those streams are stored in the local memory buffer at the outstation for
some period of time. If a report is specifically set up at the central system, a report period
is associated with the point of interest. This allows the saved data to be drained from the
local buffer at the outstation. The data are written in a file for observation and graphing by
the building manager.

Although this feature is not necessary in order to change control parameters, it is useful
for observing how parameter changes affect the behavior of the system. The building manager
can, in principle, experiment with different setting and allow empirical observations to guide
her future decisions.

Energy Auditing and Building Modeling
Recently there has been renewed interest in the energy consumption of buildings. In

particular, several studies [31, 44] show that buildings consume a large fraction of the energy
produced in the United States and that as much as 80% of it is wasted[44, 90]. As such,
there has been an emergence of several companies and services for assessing the health

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 15

of commercial buildings with respect to their energy consumption. Organizations such as
LEED [118] provide certification of buildings, specifically rating the energy efficiency of the
building.

Building modeling software, such as EnergyPlus [26], are used extensively by building
scientists. EnergyPlus and simulators like it are part of an ecosystem of software that models
various aspect of the operation of the building. They allow the designer to construct detailed
models of the building, from construction materials to operational usage and occupancy.
Some parameters include construction material, longitude and latitude, zone-based usage
(office building, bathroom, storage room), window size, etc. There are literally thousands of
parameters that can be set. All LEED certification relies on the construction of an accurate
model that demonstrates energy efficient performance.

Model construction can take several months. In order to construct an accurate model,
model output is compared with empirical data. Most BMS systems provide a way to export
the trended data. The file export feature and the ability to “trend” points, serve as an
interface applications. Another option is to obtain the data directly from the system through
the network. Third-party vendors provide systems that will join the building network of
devices and eavesdrop on the network for sensor data reports. In many instances, this is the
only way to obtain truly real-time readings from the sensors on the network. BMS vendors
do not like this, since they such devices may generate traffic that overwhelms the network.
Many buildings use RS-485 rather than Ethernet and there is a general, albeit unfounded,
concern that the network will become overwhelmed if all the points are trended and report
simultaneously.

Modeling and real-time analysis have been separated because of these constraints. The
constraints are largely not fundamental, but the current architecture is simply not designed
to provide real-time readings for all the points, simultaneously. Also, it is clear, even from the
fairly simple workloads generated by these analysis applications, that a history of readings
is needed. BMS’s, as currently designed, require the end-user to manage the history of the
data point individually. When BMS’s were first designed, there were certainly concerns
about bandwidth and storage limits. However, today those concerns are a non-issue. A
few hundred bytes produced on the order of minutes, even from several thousand sensors is
simply not that much data. For example, 10k sensor produces readings every 15 minutes
at 200 bytes per report is only 17 Kbps. Even if the streams are synchronized, the total
amount of data is 2 MB. Ethernet links and switches can handle Gbps transfers.

Holistic Building Optimization
An emerging class of applications, is in holistic control of the building using a new tech-

nique called model-predictive control [81]. Rather than rely on specific changes to control
logic at the local-loop level, MPC techniques observe and learn a model of the behavior of a
components, multiple components, or the whole building, based on the historical data. Once
the model is learned, constraints can be specified to drive the behavior of the system to an
optimal region in the trade off space; solving it as a constraint optimization problem. Fig-

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 16

Figure 2.6: Emerging Application: Hierachical MPC for a cluster of buildings.

ure 2.6, reproduced from [81], shows an example of hierarchical MPC control. It decomposes
a large optimization process – High-level MPC – into individual control decision to be made
at the control-loop level – low-level MPC.

In order to enable the low-level MPC, the process must know the mapping between the
points and their location. The user must connect the right data streams and control points
to the algorithm’s inputs by either manually going through the schematics or locating the
schematic representation in the BMS graphical interface. There is no query interface to a
BMS. This task requires sitting with the building manager or vendor in order to set up the
trending, reporting, and enabling the necessary control permisions. Needless to say, it is
very time consuming and does not scale.

This lack of generalizability and scalability hinders widespread deployment of innovative
solutions. In most cases the mapping of sensor/actuator to their placement in space/system
are captured through in a combination of the schematics, the graphical interface, and the
point name. Moreover, buildings are are one-off constructions and their associated digital
information has followed the same pattern. Although MPC can yield significant savings,
setup complexity and building uniqueness, makes it nearly impossible to replicate quickly.
It is fundamentally difficult to generalize.

Personal Energy Viewer
Imagine having the ability to walk through a building and see live, detailed energy data

as you point your phone at various things and locations. As you enter the building, you scan
its tag and see the live breakdown of energy consumption traces, including HVAC, lighting,
and plug-loads. You continue your walk through the building as you head to your office.
When you arrive to your floor you scan the tag for the floor and observe similar figures, only
this time they are in relation to that floor alone. Since there are several meeting rooms on
that floor, you are curious how much is consumed by occupants versus visitors. You choose

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 17

Figure 2.7: Emerging Application: Mobile phone interfacing with the physical infrastructure.

to view the total load curve co-plotted with the occupant load curve, specifically for that
floor. You see that approximately half the total energy is consumed by visitors during the
day.

Curious about what portion of total are attributed to you, you select the personalized
attribution option and you see your personal load curve plotted with the total load curve –
as well as accompanying statistics, such as the percent of total over time. As you quickly
examine the data on your phone, you see that you consumed energy during hours that you
were not there. You choose to see a more detailed breakdown. You enter your office, scan
various items that you own, and see that your computer did not shut down properly and
your light switch was set to manual. You immediately correct these.

Being able to interact with your environment and get a complete energy break-down can
provide a useful tool for tracing and correcting rampant energy consumption. In buildings,
having the occupants actively participate allows for localized, personal solutions to efficiency
management and is crucial to scaling to large buildings. However, providing this detailed
level of attribution is challenging. There’s lots of data coming from various systems in the
building, and integrating them in real time is difficult. Furthermore, attribution is non-
trivial. We must be able to answer to following: How much of the total consumed on this
floor went to charging laptops? How many of those charging laptops belong to registered
occupants of this floor? For centralized systems, multiple locations are served simultaneously.
It is non-trivial to determine the exact break-down for each location. At the plug-load level,
some plug loads move from place to place throughout the building over the course of the
day. Tracking where they are at any given time is difficult.

Answering these queries is relatively easy once the information is available, however, col-
lecting the information is non-trivial, especially over time. Historically, it has been difficult to
collect plug-load information. Various studies have used wireless power meters to accomplish
just this [28, 72, 94]. All previous work collected the data and performed post-processing to
analyze it. We want to take the next natural set of steps: perform processing in real-time
and present the occupants with live information.

Currently, in order to enable this application, a detailed digital model of the building is

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 18

necessary, data streams from the building must be easy to query, and it should work across
buildings. Also, there needs to be a way to localize the user. Localization technology and
information must be made available to the mobile application to provide in-situ services.
It’s clear that the current information infrastructure cannot provide these. The interface to
the network does not have a strict naming mechanism, there is not explicit representation
of each building that the application could interpret, the sensor/actuator deployment is not
dense enough and adding new sensor is cumbersome. Furthermore, the data itself can be
quite dirty.

Cheap sensors are unreliable. They produce erroneous data and randomly stop and start
at times. Missing/erroneous data is common. Moreover, within building information systems
provided by a single vendor, there is no time synchronization across sensors, so aggregation,
filtering, and re-sampling are common operations that must be performed on the data in
order to summarize and display it. The mobile energy viewer application not only require
these but requires that they be performed in real time.

2.4 Addressing BMS Shortcomings
The main layer of interaction between applications and BMS’s is the underlying network

layer and the data-export component. The BMS export feature decouples the protocol from
the information about each sense/actuation point; time-value pairs and the name of the
point. As auditing applications emerged and energy became a prime target for reduction
in buildings, these interface choices became insufficient. Moreover, as the need to construct
new classes of applications emerges, the architectural pieces that are missing become more
clear. The following is a list of some of them:

1. Narrow waist should be above the network layer.

2. A time-series store is necessary.

3. Mechanisms to distill the readings must be available.

4. Real-time data forwarding should be available, especially for control applications.

5. Contextual relationships between sensor should be verified.

The first four items are commonly built and re-built in emerging applications. There-
fore, we argue that they are fundamental to the future architecture of building information
systems. Moreover, we observe that dealing with network-protocol specific calls is not only
cumbersome, but usually circumvented in order to deal directly with the data. Most appli-
cations that do use the underlying protocol expose a name-time-value (NTV) tuple to the
layers above. This observation leads us to believe that that’s where the interface should be.

The NTV layer allows us to decouple the data from the network protocol. This makes
it easier to include new sensors that may not be directly on the building network; since

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 19

the only information we need is the point name and the data it produces. For example,
wireless plug-load power meters [62] can join the NTV layer by registering the individual
points, while a translation layer between the NTV layer and the wireless meter router pro-
vides the transformation of read/write request to/from points in the network. The same
is true for BACNet or any point protocols for sensors/actuators. Like many problems in
computer science, this one can be solved through layer separation and a level of indirection
and translation.

Each of the services that require the end user to have a deeper understanding of the
underlying dynamics of the building must capture the notion of time. Almost all analytical
processes or control decisions need a set of readings over time. Therefore, there a time-series
data store must be part of future BMS design. The service should be made available through
the NTV.

Point 3 is motivated by the observation that sensor data, especially from cheap sensors, is
dirty and typically goes through a cleaning process before being forwarded to the application.
There are various operations that are commonly performed on the data, that should be
available as primitives. These include re-sampling, filtering, missing-data identification,
and aggregation. Re-sampling refers to taking a set of streams and interpolating missing
values to align their timestamps. This is usually performed before aggregation, especially
for generating time-varying aggregate statistics. Filtering removes certain values based on a
threshold value(s). Since data is often missing, due to intermittent connectivity problems or
faulty sensor equipment, it becomes important to get a summary of missing time intervals
in order to adjust the fetch parameters. Finally, the data is usually more useful in aggregate
than as a univariate signal; for example, for generating a load curve/ Simple operators for
combining values of various streams is key to enabling this procedure.

Finally, in order to enable control, real-time mechanisms must be exposed to the control
application. In addition, we observe the need to provide real-time services for analytical
applications. For example, LEED is proposes the use of building data to provide a dynamic
performance metering [100]. There are also many dashboard companies that make use of
streaming data to provide real-time statistics on the performance of the building. The mobile
energy-audit application, from Section 2.3, also requires a real-time forward and processing
service.

The design of a new system must provide the features highlighted above and contain the
following properties:

1. Extensibility: The system should be able to accommodate different kinds of sensors
and actuators and it should be simple add and remove them.

2. Scalability: The system should scale with the size of the deployment and the number
of applications.

3. Generalizability: The system should provide a general set of primitives for applica-
tion designers. It should support applications described in this chapter and emerging
applications that we cannot currently anticipate.

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 20

4. Ease of Management: The system should make it easier to manage large deployments
and their associated applications.

Modern BMS architectures do not contain these properties. They are difficult to extend,
as new sensors and actuators must physically join the network and follow both a high-level
and low-level protocol in order to do so. They are not scalable. Most BMS’s have a limit
as to how fast they can obtain data from sensors and limit the amount of trending that the
system can do. The central outstation is the only machine handling incoming data. The
entire code-base runs on a single machine. There are bottlenecks throughout the system
in regards to data storage – including the outstation memory and disk storage on the local
machine that houses the BMS. BMS’s are also not generalizable. They only support one
“applicatoin”: the graphical interface. The GUI does have a trending/plotting option, but
extending the BMS to provide other kinds of services is impossible. Finally, the scope of
management is quite limited in BMS’s and although they do provide ease of management
of sensor/actuators on the system through centralized access, we contend that the scope is
simply not broad enough.

In this thesis, we will describe a new system, StreamFS, which contains the properties
missing in the current architecture. We will demonstrate the existence of these properties
through a series of applications that were built over it in several settings. We describe the
API and the scope and usage of the application and draw out how the capabilities enabled
by StreamFS in those apps demonstrate the properties highlighted above.

2.5 Contextual Accuracy
Contextual accuracy is the notion that the context – physical location, type, etc – about

the data we are analyzing, must be accurate to interpret the results for the analysis ac-
curately. For example, an application that is providing aggregate statistics on the power
consumption by plug-load items on each floor of a building, must be sure that all the data
used for the analysis is power-meter data on the specified floor. If power meter A on floor
1 is moved to floor 2, the code doing the aggregation should discover the change and adjust
the aggregates for floor 1 and floor 2. Another example is related to model predictive control
processes that assume contextual relationships among a set of sensors to derive the state
of a physical space and make control decision that affect that state. If sensors are update,
moved, added, or changed, the queries made by such processes will be inaccurate and lead
to incorrect control decisions. Many such processes will exists in future smart buildings, so
automating the verification process as much as possible, is crucial.

All of the metadata for each point is inputted by a human being. Given the scale of the
task – thousands of sensors per building – it is highly error prone. So what may seem like
a trivial problem for a single instance (as described above) leads to gross miscalculations
at scale, in the number for points and in time. The building and the deployment within it

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 21

go through a natural evolution and this will impact processes that depend on knowing the
context of the readings in order to make the right automated decision.

Vent

Vent

Vent

New wall added
at time t1

Figure 2.8: MPC example where metadata must be verified to maintain correct behavior.

Figure 2.8 shows an example where this will have a more direct impact. This example
shows a simplified illustration of the relationship between a chiller and a space in the building.
The building of the future will optimize the space using a model-predictive control strategy
(MPC) based on Equation 2.1. The equation is used to model the temperature dynamics of
the room. In this equation C is the termal capacitance (a constant), T is the temperature
in the space, u is the heating/cooling power input, Pd is the internal load, Toa is the outside
air temperature, and R is the resistivity of the walls.

C∆T = u+ Pd + (Toa − T)
R

(2.1)

This model is used for optimization and combined with actual data coming from the
associated temperature sensors in each room. The particular mapping that is important in
this example is for the variable u. It is used to determine which vents are feeds which rooms.
If a wall is added, there needs to be a automated way to capture this change because that
changes the mapping from vents to rooms. Over time there are many changes that occur
in the building. All the physical changes are recorded, but typically many years pass before
the software in updated to reflect the changes that have occurred. For a building that is
using an MPC-based controller, this is problematic. It is assuming a static model for the

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 22

relationships between the points and the rooms. If a wall is added later, there is a new
notion of a new room and a new controller process should be started for that room.

This is not that difficult to fix and can be done by hand but it is a typical problem in
buildings and over the entire building stock, occurs very often. Buildings evolve slowly, but
in aggregate there are many changes that occur that go unaccounted for. Moreover, these
changes add up over time and lead to huge mis-calculations in energy consumption and
gross accounting errors in computing efficiency. As applications become more widespread,
an automatic verification process is necessary to alter the building manager, or software
directly, that changes have occurred. This will allow the system to remain accurate over
time, leading to more energy savings and more accurate virtual models of the building.

Any approach that is used for verifying context information must be scalable and gen-
eralizable. In order to have significant impact across the building stock, it must be able
to work well very different kinds of buildings, with different equipment, sensors, climates,
architectural designs, and climate-system designs. We discuss our approach for verifying
various aspects of the building context captured in the metadata, through the data. We also
describe how we identify malfunction in a general fashion across very different buildings.

2.6 Experimental Setting in Real Buildings
In this thesis we describe and the architecture and implementation of a system that

supports emerging applications and the “app-ification” of buildings. We construct a system
called StreamFS and deploy it and/or analyze data from several buildings, including Cory
Hall, Sutardja Dai Hall, and Soda Hall, and Engineering Building 2 at the University of
Tokyo (Todai). Cory Hall, at UC Berkeley, is a five-story building hosting mainly class-
rooms, meeting rooms, laboratories and a datacenter. The HVAC system in the building
is centralized and serves several floors per unit. There is a separate unit for an internal
fabrication laboratory, inside the building. Sutardja Dai Hall is a large building at Berkeley.
It is a seven-story, 141, 000 square-foot building which contains classrooms, meeting rooms,
laboratories, a nano-fabrication laboratory, and a cafe. The HVAC system in the building
is centralized and serves several floors per unit. There is also a separate unit for an internal
fabrication laboratory, inside the building. It was built in 2009. Soda Hall is another build-
ing at Berkeley. It is the main building for the computer science department. It was built
in 1994 and also has seven floors and a centralized HVAC system. It contains classrooms,
offices, server rooms, and open office spaces for several labs. The Todai Engineering building
is 12-story building on the main campus of the University of Tokyo in Tokyo, Japan. It
was built in 2005 and contains shared office space, individual offices, lecture classrooms, and
small classrooms.

These buildings represent a wide sampling of characteristics common in an office setting
within the commercial building sector. Moreover, this allows us to examine the generality
across climates and HVAC architectures, since the Tokyo building does not use a centralized
HVAC system. Cory Hall was built in the 1950’s and has been through many changes since

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 23

Figure 2.9: Distribution of energy consumption in buildings by end-use. Table reproduced
here from the 2011 Buildings Energy Data Book [117].

then. Originally, the fifth floor did not exist and several structural aspect of the building
have been altered. Moreover, with changes in technology and research focus, the activities
the building supports has also changed. This is reflected in both the structure of the building
and the design of the HVAC systems inside it. In all, there are about 15 different HVAC
systems within Cory Hall. Soda Hall was built in the 1990’s. It supports mainly small labs,
shared space, and a few small datacenters – clusters of machines in a server room. The Tokyo
building is different from the other three, in that the Tokyo experiences four distinct seasons,
the HVAC system is distrubuted, and the all the data we examine is post-Fukushima disaster
[109]. This events drastically altered the energy usage profile of the building, as mandates
for energy reduction were disseminated across all of Japan.

In the context of the rest of the building stock in the United States. Soda Hall, Cory
Hall, and Sutardja Dai Hall are representative buildings within the office-building category.
Although, both Cory and Sutardja Dai support fabrication laborties that consume high-
than-average energy than most activities in a typical office building. Moreover, all three host
several machine clusters with most of the machines consuming power continuously. More
broadly, they all fall into the “Commerical Sector” category according to the Department of
Energy [117]. Commercial buildings consume > 40% of total energy in the United States.
More specifically, these buildings also fall into the Office category, which consume about
19% of total consumption for the broader “commercial” category. In addition, Cory Hall
and Sutardja Dai Hall are > 100, 000 square feet while Soda Hall is about 60, 000 square
feet. 28% of all buildings fall in the range from 50-200k square feet in the United States
[117]. The distribution of consumption is similar in many ways to the distribution in the
United States. In Japan, buildings consume 33% of total energy [116], which is higher than
either the industrial or transportation sectors.

CHAPTER 2. SENSING IN THE BUILT ENVIRONMENT 24

Figure 2.9 shows the distribution of energy expenditures by end-use category in buildings,
presented in [117] and reproduced here. Note, about 50-60% is used by the HVAC system
and Lighting, and about a third goes to other and plug-loads. These figures motivate the
applications presented in this chapter. In particular, we show how energy audits of miscella-
neous loads is enabled and can be coupled with total consumption data through the ‘Mobile
Energy Lens’ application, presented in Chapter 5. For StreamFS and related applications,
we set up deployments in each of these buildings to collect sensor data. Our verification
processes runs on StreamFS as a mixture of external and internal processes, which we dis-
cuss in Chapter 4. We describe the specific set up of the infrastructure and deployment in
their respective chapters. We give details about the sensors and size of the data set that are
collected as well. We also do four small deployments that we do not describe in the thesis.
They are deployments in small office spaces at Nokia, Intel, and Samsung as well as one in
an apartment with a few appliances and meters.

2.7 Summary
In this chapter we discussed the historical motivation for the design and implementation

of building management systems. We showed how they were built, with the goal to support
the building manager of her primary job: to maintain the building and deal with occupant
complaints. A BMS displays the data from a large sensor deployment and displays it in the
context of the building schematics, from at a central location (i.e. their office). This makes it
easier to find problems through a series of clicks, rather than by walking around the building
and inspecting individual sensors and systems.

We introduce the notion of building “app-ification”. We separate the BMS into three
distinct layers and focus on the graphical interface as one possible interactive modality for
buildings. We explain that if we it as one of many possible interfaces we can raise the
narrow waist of interaction to the naming layer. We also discuss several emerging building
applications: the graphical supervisory control app, the holistic building optimization app,
and the mobile auditing app. We show that current systems does not contain the necessary
layering or architectural components and mechanisms to support emerging applications. We
propose a set of necessary components.

We also introduce the notion of verification of building functionality and metadata,
through software. We talk about the relationship between systems and spaces, expressed in
the naming of sensor streams and how these relationships are used to interpret context. We
argue that verification should be part of any architecture that manages the building. We
give a MPC controller scenario example and discuss how the mis-representation or staleness
of information can lead to gross contro/energy-accounting errors, especially long term.

25

Chapter 3

StreamFS System Architecture

StreamFS is a system that addresses some of the shortcomings in the BMS architecture.
StreamFS uses filesystem constructs to represent all building information. This includes
sensors, actuators, location, processing, streams, categorical organization, etc. It borrows
several mechanisms used in a Unix-style filesystem: files, folders, and the pipe abstraction
for processing streaming data. It also employs the principle that everything is a file that
all interactions are through the filesystem. This eases management of both the raw data
and the processing elements that produce derivative streams for further processing. In this
chapter, we give an overview of the architecture – all the components, their organization,
and their interaction. Throughout this chapter, we refer back to the list in Section 2.4,
where we enumerate the shortcomings in the design of the BMS architecture in the context
of building “app-ification”. We also discuss how each component provides one or more of the
system properties we aim to provide – extensibility, scalability, generalizability, and ease of
management.

3.1 Overview
Each component in StreamFS addresses the fundamental shortcomings discussed in Chap-

ter 2. The four main components are highlighted below:

1. Name Register: The name register maintains both the object id namespace and
the hierarchical namespace that it expose to external applications. It also maintains
an entity-relationship graph that is used to support indirect relationships between
objects. The name register manages various object types as well, which we will discuss
in Chapter 4.

2. Subscription Manager and Forwarding Engine: The subscription manager man-
ages the input stream and output paths to data-processing sinks. It is part of the
publish-subscribe subsystem. The forwarding engine is used for internal and external

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 26

HAProxy

Storage

Fuse
SCache

Traditional
App

Web
App

PE

Process
Manager

NS NS NS NS...

SComm HTTP/REST

Security Manager

Subscription
Manager

Forwarding
Engine

StreamFS

Internal
RequestData Internal

Reply

Client

Request

NS: Nameserver
PE: processing
 element

...

Mobile App

Transaction
Manager

Memcached

Name Register

Figure 3.1: StreamFS system architecture. The four main components – name register,
subscription manager/forwarding engine, process manager, and timeseries datastore – are
shown. It also shows the application layer at the top.

data processing. It queries the subscription manager and name register to determine
where an input datapoint should be forwarded to.

3. Process Manager: The process manager manages the internal and external processes

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 27

running and managed in StreamFS.

4. Timeseries datastore: The timeseries datastore functions like the NTV storage en-
gine, as discussed in Section 2.4.

StreamFS is built as a web service that resides in the cloud. It has several interfaces;
one is by direct TCP socket communication and the other is RESTful [98] over HTTP.
We use HAProxy [47] to scale the service as it grows. We also design each component to be
horizontally scalable; to grow with the size of the deployment and the number of applications.
Figure 3.1 gives an overview of our architecture as well as the application layer.

3.2 Name Management
The name management layer addresses Point 1 in Section 2.4. It provides a high-level

narrow waist for access sensors in context specified in the name itself. StreamFS manages
two namespaces. The first is a flat namespaces that identifies a particular object instance.
The second is a hierarchical namespace that identifies the current instance of a particular
object in some context, specified by the path for the object. We support two namespaces in
order to uniquely identify sensors and actuators while supporting multiple names.

Supporting multiple names for points in the building is requirement in applications.
Sensors and actuators can be accessed in various ways, depending on the application. Some
applications access the sensors in the context of its placement in space. For example, in Soda
Hall, the path /soda/4F/410/temp refers to a temperature sensor in Room 410. The same
temperature sensor drives the fans and heating/cooling sub-system in the HVAC system
that serves room. Other applications refer to this sensor through its association to that sub-
system. For example, /soda/hvac/ahu1/temp gives that contextual information in the name
by using a path name that refers to the specific air-handling unit in the HVAC system that
the temperature sensor drives. In the rest of this section we discuss how both namespaces
are managed and implemented.

Object identifier namespace
When a new object that is created it is assigned a 128-bit unique identifier that uniquely

identifier. This flat namespace is large enough to support to many objects with low probabil-
ity of collisions, even across StreamFS instances. StreamFS only assigns a unique identifier
to stream and control files, since these represent unique channels for a specific object in the
deployment. We discuss StreamFS file types in Section 4.6

Hierarchical Namespace
Hierarchical naming schemes are an effective way to organize information, particularly

for a relatively small amount of information where the access patterns are well defined and

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 28

groups across buildings have a lot of overlap. For example, upon close examination of the
naming scheme for points across Sutardja Dai Hall, Soda Hall, Cory Hall, and the University
of Tokyo Engineering Building 2, we observe that there are two overlapping group types.
All the point name refer to the location of the sensor and the system that it is associated
with. For example, ‘SODA1R430A ART’ encodes the name of the building and the room
number but also encodes the HVAC subsystem id – referred to by the 5th character which
is a ‘1’. The other common encoding include the type of sensor and implies the S.I. units
of measure. Based on our experience with anlysis jobs on building sensor data, we decide it
was less import from a naming persepctive than an interpretive one.

Because of the number of sensors in the building is on the order of one to ten thousand we
adopt the principles articulated in [106], which asserts that hierarchical organization of files is
ineffective when dealing with a large number of files and that databases are poor at providing
direct access to the data, but provide a good way to find the information we are looking for.
We combine these two, as suggested by the authors. We expose a hierarchical namespace
that gives the user direct access to the data through a familiar organization of that data.
The organization itself is directly traversable. Moreover, we separate the metadata from the
naming structure, so that users looking for various kinds of information can quickly locate
it.

The decision to separate these also gives our implementation better scalability. The
growth of the namespace, metadata, and data happen at different rates. For example,
files and often added and removed, but after creation, changes to the metadata occur less
often that writes to stream file (data produced by sensors). Moreover, since the 3 kinds
of meta/data are accessed in different ways, we tailor its acquisition to the information
being fetched and separate how where/how we store each. For example, if the query is
metadata-related, we send it to the metadata management cluster, which not only stores the
metadata, but also indexes it accordingly. The data is stored in a time-series database, and
the namespaces are stored in a relational database. This allows each to grow separately and
maximizes fetch efficiency. Overall, the hierarchical namespaces provides extensibility and
ease of management. We discuss our naming structure in more detail in Chapter 4.6 and
give an overview of fundamental challenges that emerge when naming must reflect physical
associations and the physical environment is changing.

Implementation Details
The name management layer is implemented behind HAProxy, an open source load bal-

ancer. The implementation includes a name registry and a name server. Several name server
handles requests that are forwarded from HAPRoxy to one of the name servers. Each of the
name server knows of each of the databases that contains names. In all our deployments,
we only had a single server. However, for deployments that are large, we put the names in
multiple, replicated databases with a write-through update policy. Reads are done from any
of the database servers, randomly, since they all contain the same information.

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 29

HAProxy

NS NS NS NS...

Security Manager

...

Memcached

Name Register

request

RDBMS RDBMS RDBMS ERG

Figure 3.2: Name management layer implemented behind HAProxy. Name servers handle
individual requests and use the “name registration table” to handle name-lookup requests
accordingly.

The write-through policy is implemented with a write lock. Whenever a name server
receives a request to create or delete a file it informs the other name servers that it wishes to
acquire a lock. To prevent deadlock, we force a lock-acquisition order. A lock is not acquired
unless every name server agrees to give up the lock to the requesting name server. Once
the lock is acquired, the name server performs the same write on each server. The name
server then releases the lock by contacting the other name servers in reverse order. If a name
server has given up a lock and not received a release, the lock is released automatically after
some time. If a name server goes down, the name server that acquired the lock assumes the
release was successful. The name server list is immutable, they are restarted in practice if
they go down.

A layer of memcached [83] is used to reduce the load on the databases. Writes immediately
invalidate any entries in memcached. We also include file metadata in the memcached layer,
so its use reduces the load on both the name register and the metadata store. The security
manager essentially maintains an access control list and set of operations that are supported
by each file. By default, security is disabled, but some of our deployments do enable it.

The name management layer consists of three dependent components, each following
the principles of horizontal scalability. The namespaces are managed in single replicatable,
relational database. The metadata is managed in a separate MongoDB [88] database, which

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 30

is itself shardable. The data associated with streams is managed in a timeseries database.
We follow the principle of scale-out in each sub-component, for scalability.

3.3 Time-series Data Store
The timeseries data store addresses Point 2 in Section 2.4. Data collected from sensor

is timeseries in nature. A sensor produces data periodically. The important aspect of the
stream are the name of the feed, the time the reading was received, and the value for that
reading. There is also metadata that needs to be stored about the stream. For example,
we want to know what the units of measure are, the make/model of the sensor, the date it
was installed, any calibration parameters or other information that will help the user locate
the sensor or interpret it correct. We actively separate the storage of the metadata from the
storage of the data.

In constructing a design for the data store, we considered 3 main questions:

1. What is the typical access pattern or what are the top queries?

2. Should we compress it?

3. How is the data stored long-term?

The typically access pattern is that of scans. Many of the applications that we consider
that make use of historical data, fetch the data is a temporally meaningful manner. The
query specifies the interval of time over which to fetch the data from a particular feed and
either perform cleaning operations on the data, display it, or adjust the scan parameters
for a subsequent query. The data is largely self-similar and highly compressible. Simple
compression tests we ran on real data showed a compression factor between 15 and 30.
Also, the data is essentially append-only, forever. It can grow quite large, but grows have a
fairly slow rate, especially after compression. For example, the total footprint of the SDH
deployment, uncompressed is nearly 100 GB, however, after compression it is only about 4
GB. All timeseries data is stored as a three-tuple that included the name of the stream, a
timestamp, and value. The name we use in the datastore is the unique id that is generated
by StreamFS.

Implementation Details
We use OpenTSDB [93] as our primary data store. We enable compression and index

on the name and timestamp of the feed. OpenTSDB is a timeseries data store built on
HBase [6]. HBase is designed to scale horizontally for very large data sets. OpenTSDB
is a good choice because the compression features keep the footprint small/fast while the
append-only workload requires a scalable solution.

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 31

HAProxy

Storage

PE

Process
Manager

NS NS NS NS...

Security Manager

Subscription
Manager

Forwarding
Engine

StreamFS

...

Memcached

Name Register

otsdb otsdb otsdb

Figure 3.3: The timeseries data store. We use OpenTSDB; a timeseries data-store that runs
in cluster of HBase instances.

3.4 Publish-Subscribe Subsystem
StreamFS uses a flexible construction of the publish/subscribe model in order to support

a wide range of applications. It addresses Point 4 in Section 2.4. It includes both the
process manager and processing features that support online analytical processing (OLAP)
processing. Publish/subscribe is necessary to support physical data application development
at scale. The publish/subscribe model in StreamFS provides mechanisms that enable a
flexible combination of space and time decoupling that enable StreamFS to support of a
wide arrange of application requirements, as described by Eugster et al. [38]. These features
are also fundamentally necessary for scalability. Our pub/sub engine is also tightly coupled
with the namespaces exposed to users, and this design choice allows an application to control
the space coupling between the publisher and the subscriber (similar to TIBCO [113]).

Space decoupling
Space decoupling is achieved when the publisher and subscriber do not know of each

other. By its very design, space decoupling is achieved. Publisher do not hold a reference
to the subscriber and subscribers do not hold references to publishers. However, because of
the coupling of a full pathname and an object, subscriptions to topics expressed as a full
pathname refer to the single publisher. Since we maintain a one-to-one mapping between
the name and an object, only a single stream can fulfill the subscription request. Space
decoupling is achieved when the topic is generalized using the star operator in a a regular
expression match. For example, if the user specifies to obtain all the feeds for /soda/4F/*
then all the publishers that have a name that match that prefix will be forwarded to the
subscriber sink. Space decoupling in achieved because the subscriber and the publishers are
unknown.

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 32

Time decoupling
Time decoupling is achieved when the publisher(s) and subscriber(s) are not interacting at

the same time. Time decoupling is achievable through the timeseries data store. Publisher
push data to StreamFS whether or not subscribers are online. Moreover, data may be
received at the subscriber even if the publisher becomes disconnected. Currently, subscribers
do not receive all information that was missed. In order to achieve fill time-decoupling, we
allow the subscription target to enable or disable the option to buffer all missed readings for
an associated subscription target, while the subscription target it offline.

Synchronization decoupling
Synchronization decoupling is when publishers are not blocked while producing events

and subscribers get asynchronously notified of an event while it is engaged in another other
process (i.e. it is not blocking on wait). Synchronization decoupling is achieved by the
publisher and subscribers through StreamFS. Events are received out of sequence from their
arrival to StreamFS. This is true even when the subscription target is a processing element.
The thread that buffers incoming data for each processing element is separate from the
thread where the process is executed.

Implementation Details

HAProxy

Storage

PE

Process
Manager

NS NS NS NS...

Security Manager

Subscription
Manager

Forwarding
Engine

StreamFS

...

Memcached

Name Register

Figure 3.4: Subscription manager and forwarding engine. These components manage the
mapping from sources to sinks and forwards data between client applications and inter-
nal/external processes or external subscribers.

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 33

The pub-sub system manager works with the name register to determine where to forward
the incoming data. When data arrives, it arrives with a tag that contains the name of the
publisher. The subscription manager resolves the name to an object identifier and resolves
all the names for the object. Then, it scans each of the names and matches them to a
subscription. If the subscription matches any name, the data unit is marked with the
subscription id and sends to the forwarding engine. The forwarding engine then contact
the forwarding sink and send it the data unit. The subscription sink may be a processing
element managed by the process manager. If so, it is forwarded to the process manager’s
buffer and the process manager copies it to either an internal buffer for a process that is
running locally or sends it to an external process stub, which copies it in an internal buffer
on the client side.

3.5 Data Cleaning and Real-time Processing
StreamFS provides sophisticated mechanisms to process data in real time. Processing

features in StreamFS address Point 3 in Section 2.4. Sensor data is fundamentally challenging
to deal with because much of it must be cleaned before it can be processed. For example,
it is not uncommon to receive readings that is out of operational range, that is erroneous
with respect to the previous observed trend, or to stop receiving readings altogether. This
implies the need for processing jobs to provide a level of filtering over the raw streams.
Once the data is cleaned, it is typically consumed by more sophisticated processes that
aggregate or use it for control of equipment. We provide the mechanisms for handling
both classes of processing jobs with our process management layer. We address re-sampling
and processing models. The incoming data is not synchronized, so combining the signals
meaningfully involves interpolation. There are various options that we provide for performing
the interpolation, chosen by the user depending on the units of the data. For example,
temperature data may involve fitting a heat model with the data to attain missing values in
time.

For jobs that need to clean the data or wish to run small, simple operations, we provide
an interface for internal processing. The user submits a job and we schedule it in a machine
in the processing cluster. For jobs that are more complex and require client-side libraries, we
offer a facility where the process is allowed to run on the client side, but is entirely managed
by StreamFS. We provide a client stub that essentially runs like a mini-job scheduler on the
client side and communicate with StreamFS to execute file operations that affect locally-
running jobs. We discuss the details for both kinds of jobs in Section 4.2 and 4.3.

Finally, some processes actually want all the freshest data from all the streams they are
subscribing to, while minimizing the average time that the data for each respective stream
has been waiting in the buffer. We address these problem through a freshness scheduler that
is presented in Section 4.4.

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 34

Implementation Details

HAProxy

Storage

PE

Process
Manager

NS NS NS NS...

Security Manager

Subscription
Manager

Forwarding
Engine

StreamFS

...

Memcached

Name Register

Figure 3.5: The process manager manages a cluster of processing elements and connections
to external processing units. It works closely with the subscription manager to forward data
between elements.

The process manager works closely with the name register to manage process definition
files and process instances. Process definition files are those that are submitted to the server
by the user that define a function to run on the streaming data. Once data is piped to the
process definition file, the process manager spawns and instance of the definition file on one
of the process-element (PE) execution servers. The PE creates a buffer for incoming data
and sets up a job to run periodically according to the specification for the internal processing
job. The internal processing job is mapped to a file that is accessible in StreamFS. It contains
various statistics about the job that is running, such as the streams that feed it, the last time
it ran, the amount of time it took to run, the period of execution, etc. If the user deletes the
file, the process manager contact the corresponding PE server that contains the job and the
job is killed. Once the job is killed it informs the process manager which informs the name
register to remove the file.

For jobs that are more complex and need to run externally, we created an client-stub
that runs like a mini-PE. It spawns a job on the client side when a user pipes data into it. It
manages all instances of running jobs on the client server and it processes requests associated
with operations on the corresponding instance file represented in StreamFS. Figure 3.5 shows
the components of the StreamFS architecture that handles all processing elements.

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 35

3.6 Entity-relationship Model
StreamFS supports symbolic links, which allows the user to specify non-hierarchical re-

lationships. Indeed, they can be used to express relationships which form a directed graph.
We find that many applications, such as control applications and applications that perform
aggregation, precede their timeseries queries with multiple queries to determine indirect
relationships between streams. Fundamentally, the queries were use to ascertain a multiple-
hop relationship between streams and could be easily and efficiently answered with a single
graph query. StreamFS maintains an entity-relationship graph (ERG) that uses the names
and symbolic links to construct a queryable graph.

The ERG is used throughout our architecture; for answering graph queries by the user
and for subscription topic-matching. The latter is slightly different from the topic-matching
mechanism traditionally available in pub-sub systems. We discuss the details of our approach
in Section 3.4.

ERG to OLAP
Many of the operations that users perform are OLAP-style (online analytical processing)

operations[46]. OLAP databases build a logical hypercube along multiple dimensions. The
values in the cells are called measures. Queries makes use of the cube to aggregate data
along those dimensions. We provide OLAP-style queries using the ERG. This is similar to
the work proposed by Chen et al. [21]. The time dimension is fixed, the categorical dimension
is determined by the hierarchy, and the unit are specified by the user.

Below is a typical list of questions that can be answered efficiently with OLAP-style
queries.

1. How much energy is consumed in this room/floor/building? On average?

2. What is the current power draw by this pump? cooling tower? heating sub-system?
Over the last month?

3. How much energy does the computing equipment in this building consume?

These questions require the ability to answer a series of questions about energy flow –
energy data aggregated across multiple categories to determine how, where, and the amount
used. The ability to slice and dice the data allows the analyst to gain better insight into how
the energy is being used. Notice how questions translate into categorical and spatio-temporal
queries. There is also a hierarchical grouping characteristic to them. For example, to answer
the first question we must aggregate the data from the individual rooms up to the whole
building (if the whole building data is not available) Also, the cooling system consists of the
set of pumps, cooling towers, and condensers in the HVAC system that push condenser fluid
and water to remove heat from spaces in the building. We can model this as a set of objects
and inter-relationships which inform how to drill-down, roll-up, and slice and dice the data

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 36

25#

Tim
e#

Unit#

Category#

Category

F PSI F Unit

25
Time

Figure 3.6: This figure shows how we translate the OLAP cube to a hierarchical ERG. Note
how the dimensions of the cube translate to the graph. The level of the subtree is the
category, the unit is specified at the node, and there are values at each node for every time
slice.

– traditional OLAP operations. Figure 3.6 shows how we translate an OLAP cube to a
hierarchical arrangement of nodes in the ERG. Time-range queries on any node translates
to a slice in the cube along the time dimension. Pivoting along any dimension can be done
by taking slices along the “cube” in the bottom of that figure.

Unlike a typical OLAP cube, our “cube” is dynamic. As new data comes in, it is im-
mediately used. Its arrival triggers the aggregator to interpolate values for all other related
streams at that point in time, aggregate them, and update all the measures in the cube. We
find that many applications that require analytics, typically require OLAP style queries. We
describe how this functionality is useful in performing energy audits and describe its use in
a mobile energy auditing applications presented in Section 5.2.

The entity-relationship model helps simplify these problems, both as an interface to the
user and a data structure for the aggregation processes. We argue that using the ERG in
the building context is reduces the cognitive load and makes the formulation of such queries

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 37

easier. The inter-relationships are explicitly specified and this allows users to maintain a
structure that is more natural. Also, it has been shown that a relational model loses this
information [107].

Implementation Details
The graph is maintained in memory. A typical deployment contains about 10k nodes,

so the memory footprint is not that large. In our deployments we kept the unit on its own
machine with 4 GB of memory. The footprint is typically several hundred to about 1 GB in
size. We used a JUNG graph library [61] to maintain the graph.

To achieve horizontal scalability, we propose that each ERG unit should be separated
into distinct nodes in a cluster and graph queries should be answered across the cluster. This
is a topic for future work, however, since a typical building deployment does not require that
level of scale. A collection of buildings, managed through a single instance of StreamFS,
would likely require a clustered implementation of the ERG.

3.7 Related Work
StreamFS borrows ideas from many places. Naturally, in adopting filesystem as the

main abstraction we borrow directly from the design of Unix-style filesystem and pipes [99].
We translate these ideas into our implementation, transforming these into a web-services
architecture combined with multiple databases. Our filesystem is also hierarchical, but it is
completely divorced from the approach to storage. File information is spread across multiple
databases in StreamFS. The name is made accessible through a RESTful interface or socket
connection, but only the name and its structure is used to identify the object. Moreover,
the notion of symbolic and hard links are used as a way to support multiple names for the
name unique object. In traditional filesystems, these inform the access pattern to the file
on disk. Our filesystem API is not POSIX compliant, since we introduce new file types and
associated file-specific semantics. We discuss these in detail in the next chapter.

StreamFS constructs an entity-relationship graph [22] from the files in the system, in order
to represent different physical and semantics relationships. We use it throughout the platform
for analytical processing and querying. We couple the namespace that is exposed through
the filesystem with an in-memory graph that graphically represents the inter-relationships
between the files. This graph is used to provide OLAP-style queries, similar to the work by
Chen et al. [21]. These authors describe how they translate OLAP operations to a graph.
Their decomposition is different in that nodes in the graph explicitly represent measures
and dimensions. We do represent the time dimension as a separate snapshot of the graph
at another point in time. By separating the raw data from the graphical representation this
becomes a trivial transformation.

The use of a filesystem representation has been explored by researchers. Tilak et al. [114]
use the filesystem interface as a way to represent different naming conventions for a de-

CHAPTER 3. STREAMFS SYSTEM ARCHITECTURE 38

ployment of sensors. StreamFS in similar in that it also adopts the construct for naming
purposes. StreamFS also adopts it as a way to expose a uniform access layer for sensors and
actuators in the world. Actuator, in many ways, are also modeled like a periphal device.
However, StreamFS is more general and adopts more filesystem features and principles. They
do not support symbolic links and they couple the network organization of a wireless sensor
network with the naming structure. Filipponi el al. [124] create a mountable filesystem that
is POSIX compliant, making the deployment nodes look like a peripheral device that can be
directly written to. In contrast to both pieces of work, we do not attempt to make a POSIX
compliant filesystem. We adopt conceptual filesystem construct and re-interpret them as
features in a web architecture. We tightly link the notion of a sensor and its data through
the special file types and operations to handle sensor data queries and organization.

The foundation of our processing framework is a pub/sub system architecture, similar
to [37, 102, 125, 113]. StreamFS has a flexible pub/sub coupling architecture, where user
options can separate certain dependencies between producers and consumers. We also make
use of the ERG to do topic-matching. This is crucial for building applications, where analysis
is tightly coupled with context. In addition, our processing framework revisits many issues
related to dataflow processing systems [27, 73, 16]. StreamFS is focused on providing a tool
that cleans the incoming data and provides real-time data to consumers/applications for the
building. It is not focused on true-real time constraints or modeling.

3.8 Summary
In this chapter we gave an overview of the main components in StreamFS. Each of the

components addresses the concerns stated in Section 2.4. The filesystem name server expose a
uniform namespace for access sensors and actuators in deployed throughout the building. The
timeseries database serve to store data streaming physical information and is optimized for
the scan-style queries posed by applications. These address Points 1 and 2. We also include
a pub-sub system which serves multiple purposes. It provides real-time data forwarding for
external applications and forwards data internally to processing units that are specified or
linked by the user. This addresses Point 4. Finally, we introduce processing elements, both
internal and external to address Point 3. We also introduce an entity-relationship graph
to deal with indirect relationships that are expressed in the construction of names in the
system.

In the next chapter we talk more about processing and discuss the details in the scheduler
that help enable applications that have certain delivery requirement.

39

Chapter 4

StreamFS Files and Process
Mechanisms

This chapter focuses are StreamFS mechanisms for process management, scheduling,
piping, and gives details about the filesystem abstraction and naming. Processing of sensor
data is a fundamental component of any analytics engine. Sensor data is often dirty [11]
and must be cleaned before sophisticated processing jobs can consume it. In this chapter
we discuss the details of our process manager and process scheduler. We describe how our
process manager handles both internal and external processes and manages the buffers for
all the jobs. We give a detailed description of the job-specification API and describe how the
user interacts with StreamFS in order to activate, manage, and de-activate jobs. We also
describe a class of applications that require the freshest data and present a new algorithm
for providing the freshest set of data points to those jobs, in a timely fashion.

This chapter also describes the use of the filesystem abstraction for representing streams
in space. The filesystem naming convention provides a a unified namespace to applications
for accessing physical resources and streams. Moreover, we support multi-naming through
symbolic links – an important requirement for building applications.

4.1 Process Management
The process management unit in StreamFS manages jobs submitted by users. There

are two different kinds of jobs: internal jobs and external jobs. Internal jobs are managed
internally in a process-element cluster. StreamFS accepts javascript code from the user and
maintains it until it is activated. Activation occurs when a pipe process to the specified job
is instantiated. External jobs are written in any language that run on the client machine and
communicate with StreamFS through the external-process job stub. An external processing
job is one that interacts with external code. StreamFS creates an associated file for managing
the external jobs from a central location.

Processes are managed through the filesystem. Our design is guided by the principle

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 40

that everything is a file and every entity is represented in the filesystem. We use the term
subscription and pipe interchangeably, however, for explicit disambiguation, we define a
subscription as a one-way forwarding process of stream data to an external target. A pipe
is a type of subscription to a stream from an instance of a process file. The process can be
internal or external and always has its output represented by a stream file. The latter allows
us to construct processes chains that can be linked via their associated stream files. This
section discusses the difference between internal and external processing jobs.

4.2 Internal Processes
Internal processing jobs are short jobs submitted by users that are managed by StreamFS.

When a user submits a job they specify the name of the job in the request. The process
definition is checked for syntax correcteness and if it is okay, then it is accepted. All newly
created job definitions are placed in /proc.

Listing 4.1: Simple aggregator process job.
function(buffer, state){

var outObj = new Object();
var pavg = state.cnt;
var sum =0;
for(i=0; i<buffer.length; i++){

sum += buffer[i].value;
state.cnt+=1;

}
outObj.value = sum;
state.avg = (state.avg * pavg + sum)/state.cnt;
return outObj;

}

The code in Listing 4.1 gives an snippet of example code that aggregate the data passed
to it in the buffer. If the user names this definition simpleagg, then the file that corresponds
to the job definition is /proc/simpleagg. We do not check the size and complexity of the
job, however, we strongly recommend that jobs be kept small and simple. Generally, we
recommend that a job pipeline be established rather than feeding one large chunk of code.
It makes the pipeline easier to debug once it is activated.

In order to activate the process, the user must pick a set of streams and initiate a
subscription pipe. The subscription manager notes that the sink in a process definition file
and informs the process manager. The process manager fetches the code and passes it to a
node in the processes cluster. The process manager generates an id and passes it back to the
subscription manager. That code is used as a new instance file that represents the output
of the file and that instance file is created in the process file definition file’s folder. So if
the id generated is 550e8400 the corresponding file is /proc/simpleagg/550e8400. This

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 41

file instance is a stream file (which we discuss is detail in Chapter 4.6), which allows the
user to pipe it to another sink. There is also some metadata information that is associated
with each of the files created. The instance file contains information about the streams it is
consuming and various statistics, such as execution time and execution period. If the user
deletes the file the subscription is deleted and the process manager sends a kill message to
the corresponding process element.

The function must have the signature as shown above, where the first parameter is the
buffer and the second parameter is a state variable. It must also return a variable of type
object. The buffer is an array of data objects. Each data object contains two fields, a
ts field that is the timestamp for the data point and the value field which is the value for
the data point. An optional setting is to also include all attribute-value pair values that
are part of the metadata associated with the corresponding stream file for the stream. The
state variable is an object that is passed across executions of the function. This way the
function could maintain any necessary state without losing it after a single run of the job.
Upon creation, the user specifies other parameters that drive the execution period and/or
execution conditions for the job. The user specifies the window size and/or a timeout
parameter. If the window is of size k then the job will run when the incoming buffer for the
job has at least k elements in it. The timeout sets the minimum period for the job to run.
If both are specified the timeout always runs and the job will also run when/if the buffer
has at least k elements.

Process Element

PE

Process
Manager

Javascript
Sandbox
Instance

Javascript
Sandbox
Instance

Scheduling
Loop

Processing Element (PE)

input
buffer

output
buffer Message

Router

Instance
Monitor

Figure 4.1: This figure shows the internal structure of a process element (PE). The PE
consists of several javascript sandboxes where internal process code runs. It also contains a
scheduling loop, message router, and instance monitor.

The process element stub that runs on a separate machine. Its main job is to manage
the jobs that are being executed on that machine. Figure 4.1 shows the components of a
process element. There are four main components in the unit.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 42

1. Scheduler : The scheduler manages the execution schedule for each job running in a
sandbox. The scheduler uses the timeout as the execution period of the job.

2. Sandbox : The sandbox is where the javascript code runs. The sandbox contains an
input and output buffer and simply waits for either an execution signal from the sched-
uler or until the input buffer has window element in it. The output buffer is of size 1.
The object returned by the job is written to the output buffer.

3. Message Router : The message router communicates with the process manager and
sends control and data messages between the PE and the process manager. It monitors
the output buffer for each of the elements and forwards them to the process manager
when it is populated.

4. Instance Monitor : The instance monitor manages the state of the sandbox. If a sand-
box dies, the instance monitor re-starts it. If it continues to die, it kills the sandbox
process and forwards an error message to the message handler to the process manager.
The process manager annotates the instance file with the error.

The process manager keeps a map of which process elements own which jobs. If a process
element goes down, the jobs are automatically migrated to another process element and the
process element is removed from the active list. Each PE and job have a unique identifier.
The messages received from the message router in the PE are annotated with these ids and
the process manager uses these to update the associated instance file in StreamFS. Again,
everything is managed in through filesystem. So errors and data are exposed to external
applications through the meta/data in the files.

Note, the process manager maintains a mapping between job instances and PEs. It also
notes the machine the PE is running on. The instance monitor allows the process manager
to make decisions about job migration in case of failure. PEs are designed to function
independently from one another. This allows the process cluster to scale linearly with the
load – in terms of the number of streams being processed and the number of active jobs.
Like the other components in StreamFS, it is horizontally scalable. The process manager
serves as a single point of failure. If it fails it must be restarted manually. Any messages
sent from the PE to the process manager during the down period is lost.

OLAP-style Aggregation
Online analytical processing (OLAP) provides summarization of data from a set of un-

derlying data repository (date warehouses). Traditionally, OLAP is used to process business
data. Business data summarization allows an analyst to ask targeted questions about ag-
gregates and trends in their data. The data is typically multidimensional in nature and
operations can be performed with respect to those dimensions and their inter-relationship.
In our deployments, we find that most queries are similar to OLAP queries with scan-heavy
queries across the time dimension.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 43

We introduce a mechanism that can perform hierarchical aggregates across a unit of
measure, used in combination with the timeseries data store to support scan-heavy queries,
called aggregation points. We discuss these in more detail in Section 4.2. However, before
discussing aggregation points, we give details on how we make use of the entity-relationship
graph and timeseries database to support OLAP-style queries.

OLAP schemas logically construct a hypercube with different dimensions along each
axis. We presented a visual translation of a OLAP cube to an entity relationship graph in
Section 3.6. Specifically, we showed in Figure 3.6 that each dimension is essentially a unit of
measure, the hiearchy is explicitly constructed, and there time is a dimension that is stored
in a timeseries database. We show how the terminology also translates and some examples
of certain classes of OLAP queries, how they are constructed, and how they are satisfied by
StreamFS.

Measures, Dimenions, and Levels

Measures refer to the actual value, located somewhere is the cube along the intersection
of several dimensions. A dimension is simply a reading and an example is shown in Fig-
ure 3.6. Dimensions are labels for an axis. In StreamFS a measure is a unit of measure
(i.e. Fahrenheit) or time. The hierarchical level is explicit in the construction of the names.
So in the subtree that organizes streams according to the location of the in space, the floor
level would be above the room level. These points can be designated as aggregation points,
whereby all streams that have the specified units, are aggregated at that point and the data
are stored like any other streams.

Operations: drill-down and roll-up

Drill-down and roll-up are explicit in the structure. You can drill down to individual
readings or roll them up into an aggregation point at a particular level in the hierarchy.
Essentially the level is an explicitly specified in the name of either the raw stream or the
aggregation point.

Operations: Slice and Dice

Slice and dice queries are queries that either take a slice of the cube along a dimension or
pick a sub-cube from the cube. Slice and dice operations are translated as traversals of the
hierarchical structure across levels and units. Figure 4.2 shows how a slice query is satisfied
on a hierarchical structure. The corresponding slice query is
query.slice(’/4F/R*’).start(t1).end(t2);.

Figure 4.3 shows how a dice query is satisfied on a hierarchical structure. The corre-
sponding dice query is query.dice(’/4F/R*’).units([’F’]).start(t1).end();.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 44

F PSI F PSI

25

4F

R410 R420
F PSI F PSI

Level Slice Query

Drill

UP

DOWN

Buffer

Stream

Agg. Pt.

Room

S.I. Unit

Tim
e%

Room-Level Cube

Figure 4.2: This figure shows how a “slice” operation is translated from the cube to the
ERG. The user queries across all streams or aggregation points at a certain level, speci-
fied by a star level query with the level-specific prefix. The corresponding slice query is
query.slice(’/4F/R*’).start(t1).end(t2).

Room-Level Cube

F PSI F PSI

25

4F

R410 R420
F PSI F PSI

Level Dice Query

Drill

UP

DOWN

Buffer

Stream

Agg. Pt.
F

Room

S.I. Unit

Tim
e%

Figure 4.3: This figure shows how a “dice” operation is translated from the cube to the
ERG. The user queries across all streams or aggregation points at a certain level, speci-
fied by a star level query with the level-specific prefix. The corresponding dice query is
query.dice(’/4F/R*’).units([’F’]).start(t1).end().

Operations: Pivot

Pivot operations are not explicitly supported. Although you can imagine that if you cut
across a hierarchical level across all dimension, can can effectively construct a pivot-style
query.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 45

Aggregation Points
StreamFS makes use of OLAP-style mechanism to provide the end-user with aggregation

points in the hierarchy. StreamFS distinguishes between nodes that represent streaming data
sources and those that do not. Those that do not, however, can be tagged as aggregation
points. When node is tagged as an aggregation point all the points root at that node in the
tree are set as aggregation points and all streams are aggregated and save to the timeseries
database. Since streams are not synchronized (i.e. they do not produce data at the same
time) each time a value arrives from a sensor the value for all other streams is interpolated
and aggregated along the unit level dimension.

This propagates up to the aggregation point and all of it is saved in the timeseries
database. The aggregation function can be specified by the user, with the default set to as
sum. Other options include avg, sum, max, min and a custom function that can be specified
by the user.

item	
 item	

item	

power	

meter	

meter	

item	

space	

Temp	
 Power	

1	
 Stream	
 nodes	
 forward	
 	

data	
 to	
 parent	

2	
 Parent	
 buffers	
 data	
 point	

by	
 SI	
 unit	

3	
 When	
 buffer	
 fills,	
 interpolate,	

aggregate	
 and	
 forward	

Figure 4.4: This shows an illustration of the aggregation tree used by dynamic aggregation.
Data flows from the leaves to the root through user-specified aggregation points. When the
local buffer is full the streams are separated by source, interpolated, and summed. The
aggregated signal is forward up the tree.

Consider the following example. We need to compute aggregates of KW data and we
declare the node for a particular room as the point of aggregation, we accept data from
all children of that node that, whose units are in KW, and add the streams together over
pre-defined window size or pre-defined timeouts.

The scheme is hierarchical, so a node only accepts data from its children and only sends
data to its parent. StreamFS checks for cycles when before node insertion and prevents
double-counting errors by only allowing aggregation-points that are roots of a tree that is a
sub-graph of the entity-relationship graph. In our deployment, each view is a managed as an
independent hierarchy. So the hierarchy of spaces is separate from the inventory hierarchy
or the taxonomy hierarchy. This allows us to ask questions with a particular view in mind,
without conflict, and is a natural fit for our aggregation scheme.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 46

Although there are different semantics applied to different file types at the application
layer, dynamic aggregation mainly deals with two types of files: (1) container nodes and (2)
stream nodes. The main difference is that container nodes are not explicitly associated with
data coming from a sensor and stream nodes are. Furthermore, container nodes can have
children, while stream nodes cannot. In our application, meters are represented by container
nodes and each stream of data they produce is a stream node.

When an aggregation point is enabled, dynamic aggregation places a buffer at the node
for the type of data that should be aggregated. If we want to aggregate KW data, we specify
the type and send an enable-aggregation request to StreamFS. The flow of data starts at
the leaves when a stream node receives data from a sensor.As data arrives it is immediately
forwarded upstream to the parent(s).

Ignoring the timeouts for now, lets imagine the parent is a point of aggregation and its
buffer is full. At this point the parent separates data into bins for each source and cleans it for
aggregation through interpolation. The main operation is to stretch and fill that data with
linearly interpolated values. The stretch operation orders all the timestamps in increasing
order and, for each bin, interpolates the values using the first (last) pair of data points. If
there is only a single data point, the stretch uses it as the missing value. The fill operation
find the nearest timestamps that are less-than and greater-than the missing sampling time,
uses their values to determine the equation of a line between them and interpolates the
missing value using that equation. Once this is done for each signal, the values are added
together for each unique timestamp and the aggregated signal is reported to the parent,
where the operation occurs recursively to the root. Figure 4.4 shows an illustration of this
processing structure.

Dealing with dynamics

This approach deals with changes in the graph quite naturally. All aggregation points
deal only with local data, so a node is only concerned about the children that give it data
and the parent to send data to. As objects in the environment move from place to place and
these changes are captured, the entity-relationship graph also changes to reflect the move.
This change in aggregation constituents is naturally accounted for in the aggregate. Since
the underlying pub-sub mechanism drives the forwarding (see Section 3.4) the removal of a
child will reject any new data that comes in for the removed node. As such, it will not be
accounted for in the aggregate. If a new child is added, it is forwarded up the tree, since the
name associated with the data point will indicate its position in the hierarchy. Note, however,
that changes in the entity-relationship graph are indistinguishable from energy-consuming
items that have been turned off. For the purposes of aggregation, that is okay.

OLAP-style aggregation is an expensive feature. Each point in the subtree rooted at
the aggregation point is automatically activated to produce streaming data. Special internal
processing elements are enabled to compute the aggregates and run the pre-processing and
communication between the processing unit and name server increases as data is returned
from the process elements to be routed to the timeseries data store. The amount of processing

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 47

and storage scales linearly with the number of streams and the number of aggregation points
in the sub-tree.

4.3 External Processes
In real deployments, users do want to be limited by the particular libraries that are

available to them in javascript or they have already made a significant investment in time
writing and testing their own processing jobs. For these users, we provide an external client
stub that re-directs data from standard in/out through a network connection to/from the
StreamFS process manager. The stub also interprets process management commands to
spawn and kill jobs and associate different subscriptions with different instances of a jobs
running on the client side.

Javascript
Sandbox
Instance

Process

Scheduling
Loop

External Process Stub

input
buffer

output
buffer Message

Router

Instance
Monitor

Figure 4.5: External process stub. Note, it contains similar component to a process element
and functions much the same way, managing the buffers, scheduling, errors, and communi-
cation on the client side like the PE.

Figure 4.5 shows the internal components of a client stub. Note, it contains very similar
components to a process element and work in a similar fashion. The client stub contains the
four major components:

1. Scheduler : The scheduler schedules the execution of jobs on the client machine. It uses
the window and timeout parameters to set when and how often the job is set to run.

2. Process: The process component is simply in charge of managing communication with
the process that is spawn on the local machine. It maintains an pipe to each local
process. The processes run independently and share no memory directly. Data from
the input buffer is copied to the pipe connection to the process.

3. Message Router : The message router maintains a socket connection to the Process
Manager and writes to the associated buffer for specific jobs.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 48

4. Instance Monitor : The instance monitor re-starts jobs when/if they fail and forward
local errors to the process manager to annotate the associated files in StreamFS.

On startup, the client stub read a local configuration file that specifies the path to the
job and metadata that describes job. These are used to register the job with StreamFS and
set the metadata attributes. The registration on the StreamFS server is exposed through
an external process file. The user interact with an external job exactly the same way they
interact with an internal process job. In order to spawn a job on the client, the user simply
“pipes” a stream file to the external process file. The creation of the pipe/subcription send a
spawn message to the client and starts the associated job on the client. Once the process is
started, data from the stream(s) is forwarded to the client, which writes it to the standard-in
of the client job. Starting a job also creates a stream file the StreamFS server. Any data
that’s produced by the job and written to standard-out is re-directed to the server and made
available through the stream file.

This design is consistent with the semantics of pipe/subscription management and func-
tionality. Recall, internal processes work the same way and this allow us to stay consistent
with the file-centric principle whereby everything is managed through the filesystem itself as
a file.

4.4 Freshness Scheduling
Process execution parameters are set by the user when a process element is created.

Generally, job scheduling is strictly driven by these parameters. However, in our deployments
we found there were job pipe sinks that required a minimum freshness property for the set
of data points in the buffer upon consumption. In this section we discuss our scheduling
algorithm in relation to providing this property.

Maximizing Data Freshness
Data is coming in at different, independent rate from sensors and is produced asyn-

chronously from internal processing elements. For certain processes, the freshest data from
all the streams they are subscribing to is necessary; while minimizing the average time that
the data for each respective stream has been waiting in the buffer.

Some streams show lots of variability in its value distribution over time; driven by the
underlying dynamics of the system being monitored. For example, the power consumption of
an active server or laptop tends to have a varying power-draw profile over short time scales.
For jobs doing aggregation of streaming data, it is often the case that the time when the last
reading was received is very different across streams.

For example, consider two rapidly changing streams, as shown in Figure 4.6. Each line
represents the fundamental frequency of a different physical phenomenon. The vertical lines
represent reports times, as observed at the StreamFS server; the time when the data points

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 49

Given a full buffer b[n]:
for all elements in the b do

(1) Calculate the staleness of element i and add to total staleness, Sn;
for all other elements in the buffer do

(1) Determine the next report time Di for this element;
(2) Determine the staleness of all the elements if we wait until Di;
(3) If it is the smallest staleness figure calculate, replace minimum cost, Sl.

end
end
if Sl is less than Sn then

(1) Wait until later to consume;
else

(1) Consume now
end

end
Algorithm 1: min buffer algorithm.

1

2

3

4

Error

Staleness

Figure 4.6: This figure shows an example of two streams with different sampling frequen-
cies. Since we do not know the underlying fundamental frequency of the phenomenon, our
algorithm attempts to minimize error by minimizing staleness (or the average time a data
point is in the receive buffer).

from those sensors are received. The circular dots show the value of the measurement that
is in the buffer. Assuming we have a subscriber that subscribes to only these two streams,
the point labled with a ‘1’ shows the first time that we can aggregate the two readings, ‘2’
shows the second time, etc. Note, the ideal aggregator minimizes aggregation error in the

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 50

sum, as specified in the figure. Since a measurement was received at time t=2 and t=3,
there will be some error associated with the sum – the difference between the actual value of
the phenomenon at time t=3 and the value in the buffer (received at time t=2). The longer
we wait to compute the aggregate, the higher the error; until it resets when a new reading
arrives.

StreamFS does not know the underlying fundamental frequency of the phenomenon being
measured, so it uses the staleness of the measurement to approximate the error and a running
report average for each stream to decide when it is best to compute the aggregate operation.
Since the fundamental frequency is unknow, the driving assumption is that the more stale
the reading, the higher the measurement error. Our measurement scheduler attempts to
minimize aggregation error by minimizing average buffer staleness – the time between the
when the computation is taken and when the data point was received. Note again from
the figure, that the best time to take a measurement is at t=6, since both data point come
in at the same time and will have an average staleness of 0. For applications that wish to
display the freshest aggregate (and approximate minimum error) we provide an algorithm
called min buffer.

The min buffer algorithm discards readings until two conditions are met:

1. There is at least one data point from each stream in the subscription buffer.

2. The staleness factor is minimized within the immediate time window.

Note, there is a fundamental tradeoff between the staleness factor and variability of
consumption. It is sometimes better to wait for the next incoming data point than it is
to use what is currently in the buffer, as waiting will decrease the overall staleness factor.
Other times, it is better to consume the buffered data immediately. This causes a certain
amount of variability in the delivery period to the control process. However, for some
applications, this is a reasonable tradeoff to make. Making use of the freshest data is desirable
for minimizing errors, either in the control of a system or the calculation of some aggregate
state. Generally, the error grows with staleness, therefore the goal of this mechanism is to
continuously minimize the error associated with staleness through scheduling.

Let Ai be the arrival time of the last data point received from stream i and Di be the
arrival time for the next data point from stream i and their relationship as described in
Equation 4.1, where T (i) is the average period between the arrivals from stream i.

Di = Ai + T (i) (4.1)

Periodically, our algorithm runs and checks if there is a data point for each stream in
the subscription. If so, the min buffer algorithm runs and effectively decides whether to
execute the job on the current buffer immediately or whether to wait until later, when the
staleness factor of the buffer will be at a minimum. This decision is driven by Equation 4.3,
whereby we find the next deadline, computed with Equation 4.2, for each stream in the set

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 51

tnow Dk

Ai

Ai+1

Ai+2

tL,i

tL,i+1

T(i)

Figure 4.7: Multiple streams in a subscription and their associated parameters.

and determine the staleness factor will be for the entire buffer if we wait until that deadline
arrives.

tL,i = Ai +
⌊
Dk − Ai

T (i)

⌋
T (i) (4.2)

If there is no deadline Dk for some stream k such that Equation 4.3 holds, then we execute
now. Otherwise we choose to wait until Dk for the stream whose next deadline minimizes
the staleness factor of the buffer.

k−1∑
i=1

Dk − tL,i <
k∑

i=1
tnow − Ai (4.3)

Algorithm 1 shows the pseudocode for the min buffer algorithm.

4.5 Dynamic Aggregation Example and Freshness
Scheduling Results

We present a demonstration of dynamic aggregation and a describe our methodology
and evaluation of our freshness scheduling algorithm. The first demonstration shows how
dynamic aggregation works in a real-world scenario, as a mobile sensor is moved from one
room to another. The evaluation sets up a realistic scenario and measures how the algorithm
performs in comparison to the standard scheduling approach.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 52

Dynamic Aggregation Scenario
We illustrate dynamic aggregation with a common usage scenario. It is typical to consider

widespread deployment of wireless meters when performing an energy audit in a building.
Because such meters are expensive, they are often re-used in order to capture a broad sample
of energy-consuming items. We construct an energy auditing application that provides the
user with a mobile mechanism for virtually “binding” meters with items, so that accounting of
energy can be done correctly. Without record the explicit association between the meter and
the item is is metering, the data stream collected from the meter is meaningless. Moreover,
it is not just meaningless with respect to the item but meaningless in a broader context of
aggregation (i.e. room or floor-level consumption statistics).

For a more specific scenario, imagine there are a number of people in a building, each
owning a number of plug-load appliances and a laptop. When a person is in a room their
laptop is plugged in and when they leave the room they unplug their laptop and take it
with them. As people come and go they attached their laptop to a registered meter and
the association is automatically recorded in StreamFS. The meter is constantly reporting
readings to StreamFS as well.

We setup this experiment in a home office environment with two rooms and set up the
room-level nodes as an aggregation point for all the meters in the room. The monitored 2
laptops and 2 lamps and we demonstrate the aggregate power draw of both rooms as we
move one of the laptops from Room 1 at tick 7, walk to Room 2, and register the laptop in
Room 2.

0 5 10 15 20 25 30

20

40

60

80

100

120

140

160

180

Time Tick

K
W

laptop1
laptop2
lamp1
lamp2
room1 aggregate

Laptop 1
registered

Laptop 2
unregistered

Owner of Laptop 2 walks
to another room

(a) Room 1 object and aggregate streams.

0 5 10 15 20 25 30

20

40

60

80

100

120

140

160

180

Time Tick

K
W

Room2 aggregate

Owner of Laptop 2 walks
to another room

Laptop 2
registered

(b) Room 2 aggregate.

Figure 4.8: The power consumes by a laptop in Room 1 is shifted to Room 2 a time t=7.
Notice the aggregagate drops in Room 1 while it rises in Room 2.

Figure 4.8 show the process of dynamic aggregation. Notice that around tick 5 there is a
drop in the total power draw curve. As we walk to the new location, the energy consumption
remains steady, but lower in Room 1 while it remains steady. Then around tick 12, the energy

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 53

consumption of the Room 2 aggregate rises. Note, the level of rise and fall of both curves is
the same 30 Watts.

Figure 4.9: This figures shows the tradeoff between staleness and the number of streams
being consumed by the job. Note that out algorithm reduces the staleness of the buffer.

Maximum Freshness Methodology and Results
We simulated the effects of the max buffer algorithm shown in Algorithm 1. We start

up multiple streams and have them feed a subscription with the algorithm option enabled.
A single run of the experiment consists of 10 runs with k active streams, where k is between
1 and 20. We let it run for some time and record the total staleness for each run, which is
the sum for all data points, between when the data point arrived and the current time. We
compare these against the default case where data is delivered as soon as at least one data
point from every stream arrives. Figure 4.9 shows the returns of our experiment.

Note, the staleness increases for both cases. The variance of both is also similar, however,
the average staleness is lower when the min buffer algorithm is used. It’s important to note
that this is always true, since the decision is explicitly bounded by the “now” case. The
algorithm chooses between “now” and waiting later for a better staleness calculation.

We also examine the predictability in the report rate of the job that enables this feature.
Most streams in the system report data periodically with a very small variance around
the delivery mean. However, because the algorithm may decide that waiting is better, the
delivery period variance is larger. Observe the effects of min buffer versus the default case.

We see that the average are practically the same, however the error bar on the graph on
the right are larger. This should be considered when the feature is enable. If there is a job

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 54

Figure 4.10: This figures shows that the min buffer algorithm provides a similar average
execution period but generally at the cost of higher variance in delivery times.

that consumes feeds from the output of a process that has enabled this, it should tolerate
delivery times with variable delivery rates.

4.6 Naming and The Filesystem Metaphore
Most applications construct the notion of context using the naming convention ascribed

to a sensor stream. The name conflates the notion of system, space, and type information.
At the very least, these three should be supported, however, often other categorical needs
must be met to perform various kinds of aggregate statistical, analytics, and control. In
addition, we need to support the management of processing jobs that process stream data
and provide integrated management facilities for them.

Building applications are essentially monitoring and control applications built on the
streams generated by sensors embedded through the building or distillates of them. As the
number of applications and streams increased, it becomes desirable to manage them in a
centralized fashion. Moreover, the centralized approach allows all applications to make use
of a uniform naming convention and can allow applications to be interoperable. Systems
that wish to support such applications require the following properties:

1. Logically accessible physical resources.

2. Representation of data producing and data consuming elements.

3. Representation of inter-relationships between elements.

4. Provide uniform naming and access.

4.7 File Abstraction
Our naming scheme is hierarchically structured, like traditional filesystem naming, with

support for symbolic links, allowing arbitrary links between sub-trees. We argue that this
naming scheme is crucial, as it exposes the inter-relationships which inform aggregation
semantics intended by the user. We introduce a naming scheme for physical objects and

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 55

temp

/room/410/temp

owner:jorge	

installed:06/28/10	

uid:d73a3040e095	

/room/420/temp

*	

	

*	

	

*	

Figure 4.11: Everything is a file. Temperature sensor represented as a file in a folder that
contains folders for each room. Note, the file that represents a temperature sensor producing
a stream is given a unique identifer. The user may also decorate the file with extra metadata
for searching purposes.

their inter-relationship. We represent everything as a file. This provides ease of management
for our deployments.

Similar requirements to those aforementioned have been addressed in the design and im-
plementation of filesystems. Filesystems provide logical access to physical resources through
files, with different files and associated semantics, exposed to applications through a shell
or programmtically. Filesystems represent collections of bits, encapsulated by a file, and
grouped with folders. Symbolic links support the notion of multi-naming. A single file or
folder could have multiple names that lead to the same underlying object. Filesystems even
support the notion of streaming data through character and block device files. Moreover,
pipe files allow programs to communicate with each other through of shared memory, where
the source application writes to the pipe and the sink application consumes from the pipe.

We assert that these constructs should be directly adopted for supporting applications in
the buildings. Our approach adopts the Unix file philosophy where everything is represented
as a file. Each object created in StreamFS is assigned two names, by default, one which
uniquely identifies the object and not human-readable and the second which is changeable
and human-readable. Consider the example shown in Figure 4.11.

In this example, the user is creating a temperature stream file in every room of the
building. The name of the file, given by the user, is temp. Upon creation, the file is uniquely
identified by the system using a unique identifier, as shown. Like in a unix filesystem, the
file is created within a folder. Ideally, the name of the folder would encode the placement of
the sensor. In the figure, the user is create a temperature stream file in room 410 and room
420. Note the full file path for the stream file is /room/410/temp. During creation, the user

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 56

may also decorate the file with extra metadata, also shown in the figure. In this example,
they have annotated the file with information about the owner and when the sensor was
installed. This metadata is used for quickly locating the file or grouping files that contain
similar tags, quickly.

File types and operations
As we map the filesystem abstraction into this problem space, we need to consider the

various kinds of files our system will contain, their semantics, and how our system will expose
and manage them. There are essentially four types of files and six sub-types. We summarize
these in Table 4.1. There are also different kinds of operations that the each file type
supports. Operational semantics are file dependent. For example, when you read a folder,
you obtain the metadata associated with the folder and the name of its children. When you
read a stream, you its metadata and the last timestamp-value it produced. Writing to a
stream is a bit different. You can write to a stream to update its metadata tags and the
stream source can write a value to it. The stream source is identified with a publish identifier
(pubid). The stream source includes the pubid in the write operation for the specified stream
file. Without the pubid, the source cannot write to the file. Any other writer should not be
allowed to write to a stream file either.

type description valid operations
container Container file. Used to group other read, write, delete

kinds of files within it.
stream Represents a data stream. read, write, delete, subscribe,

query
controller Represents a controller. read, write, subscribe

special There are several kinds of special files for read, delete
management of jobs and pipes.

Table 4.1: Summary of the four main file types and their valid operations in StreamFS.

Similar to a traditional filesystem, StreamFS includes special files. There are six special
files and five of them are for management purposes. The only one that is not is the symbolic
link file, which is essentially used to support multi-naming and inherit the operational se-
mantics of the file it points to. The delete operation on a symlink, however, only deletes the
symlink. A description of these files and the operations they support is given in Table 4.3.
A detailed description and examples with be presented in later sections.

Container, Stream, and Controller Files
A container or folder file serve primarily as a container for other kinds of files. It is used

to group together different kinds of file and to represent a common attribute of the file within

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 57

operation file type semantics
read folder, stream, ipd, ipi, epd, epi, sub read the metadata and tags for

the associated file.
write stream Write to stream file, only the

appropiate stream source is
permitted.

delete folder, stream, ipd, ipi, epd, epi, sub Folder must be empty.
The others can be directly deleted.

query stream, all streams support time-range
queries. All support metadata-tag
queries.

subscribe stream Forwards data from a stream
to the specified destination.

Table 4.2: File operations, the file types that support them, and their general semantics.

it. For example, a container file is usually used to construct the spatial hierarchy. Each file
at the top level represents a floor, its children are also a set of container files, representing
each of the rooms on that floor. A container file cannot be deleted unless it is empty (i.e.
has no children).

Files that represent streams are called stream files. They are tightly associated with
the stream data in the timeseries data-store. A user creates a stream file and the sensor
stream “writes” to it in order to have its data saved. StreamFS also forwards the data to
the subscription manager in case any subscription sink has subscribed to the feed. When a
stream file is created an id is returned to the user. This id must be used by the stream that
wishes to push its data to StreamFS through this file. If this id is incorrect or not included,
the write operation fails.

Because controllers accept many kinds of input, we design a file that presents a controller
similar to the external processing stub discussed in Section 4.3. Writes to a controller file
and forwarded directly to the control stub running at the controller itself or a proxy machine
that communicates with the controller. Any reply is set as metadata in the controller file.
Controller files also has associated output stream. If a controller process wishes to inform
the process of internal state at the controller, it does so through the controller file output
– a stream file itself. Table 4.1 lists the files in StreamFS and the operations they support.
The operational semantics are listed in Table 4.2.

Special Files
There are 6 types of special files. In Section 4.2 we eluded to the various kinds of files that

are created when a user creates an internal or external file. An internal process definition

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 58

(ipd) file is created when the user submits a script to StreamFS. When a (set of) stream(s)
is piped through the definition file, an internal process instance (ipi) file is created that
represents the output of the process. A subscription instance (sub) file is also created. The
sub file contains information about which streams are feed the file, a reference to the ipi file,
and statistics about the file. If either the sub file or the ipi file are deleted, the process ends.
The ipi file is also a stream file. It can be used to pipe that output of the process to another
processes or to an external URL.

type description valid operations
internal process Javascript process definition. read, write, delete
definition (ipd)
internal process Management file used for managing read, delete
instance (ipi) active processing of this script.
external process Gives information about where an read, write, delete
definition (epd) external process lives.
external process An active processing stream to an read, write, delete
instance (epi) external process.
subscription instance An instance of a subscription. Contains read, delete
(sub) information about the subscription,

such as source/sink and related statistics
symbolic link (symlink) Similar to a symbolic link in Unix.

Table 4.3: Summary of the 6 special-file sub-types and their valid operations in StreamFS.

The same set of files are created when an external processes is defined and started. When
the client stub is started on the client machines it creates an external process definition file
for each process that was listed in the configuration file for the stub on the client machine.
Similarly, when streams are piped to the definition files, the client starts the processes on
the client and create their associated external process instance (epi) files. Those files are
also a sub-type of the stream file and can be used to pipe the output to another process
(internal or external) or an external URL. Any subscription or pipe that is instantiated creates
an associated sub file in the /sub directory. These always contain information about the
subscription and kill the forwarding process when deleted.

Finally, we used symbolic link (symlinks) the same way they are used in a traditional
filesystem. They are also used to generalize the inter-relationship structure in the ERG.
They are important for multi-naming.

Interfaces
We built several interfaces to interact with a StreamFS deployment. Because StreamFS

has its own file types and semantics we use a native shell application and a web-application

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 59

console. The web application console is displayed in Figure 4.12. The console has various
features, all mirrored in the shell application. It provides a graphical interface for viewing
the files in the deployment and changes the attribute-value pairs associated with files.

Figure 4.12: StreamFS console. The tool allows the user to view the namespace as a set of
files, interact with the system, and view stream data.

Also available to the user, is the ability to create and manage symbolic links, submission
of small processing jobs, pipe creation and management for external targets or processing
jobs, and a plotting engine. The plotter is the basic mechanism to check if streams are active.

4.8 Supporting Multiple Names
One of the goals of the naming scheme in StreamFS is to support multiple names for

sensor and actuators. The inclusion of symlinks provides this ability. A file can be named
and linked to from multiple hierarchies. This allows applications to refer to the same physical
entity with a unique object id through multiple names. It is also used by our pub-sub system
when the names are resolved and play a crucial role in dynamic aggregation.

For example, a temperature sensor may have at least two names that are expose to the end
user. It may have a name that refers to it through the context of its spatial placement, such
as /soda/4F/410R/temp and it may have a name that refers to it through the context of its
association with a component in the HVAC system, such as /soda/hvac/ahu1/vent1/temp.
Either of those are names that should access the same item and that item’s associated data.
The underlying stream may actually write the data to a stream file named /strms/temp and
the other two names are just symlinks to this one.

The pub-sub system uses these names when decided which data streams match a subscrip-
tion topic. For example, in a typical pub-sub system, if a job wanted to subscribe to the temp

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 60

stream, it would have to know the name a priori, or simply pick a single name. However,
we support the notion of multi-topic stream tags. So, if a subscriber request all the streams
with the topic /soda/4F/410R/* and a data point is written to /strm/temp, the subscription
manager would list all the aliases for that name, which include /soda/4F/410R/temp and
see that it matches the topic request for that subscription.

Notice how naming explicitly affects how we group sensors according to some hiearchical
organization. Some of those groupings are physical associations with one another that are
important to stay accurate. Let’s re-examine the example presented in Section 2.5. We
present the figure from that section again in Figure 4.13.

Vent

Vent

Vent

New wall added
at time t1

Figure 4.13: MPC example where metadata must be verified to maintain correct behavior.

Recall that the equation that drives the control process depends on knowing the mapping
between vents and rooms. Therefore, if the room changes and a vent is added or removed,
the control algorithm must be updated to account for the change. The naming structure
would contain a reference to the vent in some group, linked to a sensor that belongs to a
certain room, however, if a wall is put up, we should be able to automatically detect that
this has occurred to update the control process. In summary, the naming scheme is used
to express different kinds of organizational patterns for the sensors and their data. As the
building goes through some changes and evolves an automatic scheme or family of schemes
are necessary to alert the user or process of the chance. In the next section we discuss the
mathematical tools we used to verify that the groups specified by the naming convention are
correct.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 61

4.9 Related Work
FIAP [92] is a web-services architecture for exposes building-specific communication pro-

tocols. It essentially services to map BACnet and/or LonTalk to an HTTP resource archi-
tecture. It is not RESTful, however. You must download and use a communication stub
in order to obtain resource information and related data. Essentially it tunnels building
protocols over HTTP. Their approach to naming is ad-hoc and protocol specific, ours is
also ad-hoc but we offer canonical constructions, allow the user to directly access the data
through multiple interfaces – including a RESTful one.

sMAP [30] proposes a RESTful architecture for streaming sensor data. Their resource-
oriented architecture defines a hierarchical resource structure for a sensor or actuator and
provides facilities for reading and writing that data RESTfully. In contrast, they do not take
a file system approach and only focus on sensor and actuators. They leave the processing
jobs as a function outside of sMAP. Also, by adopting filesystem constructs, we support
multi-naming through symlinks – a crucial feature that is missing from either of these.

4.10 Summary
In this chapter we discussed the mechanisms that drive the pub-sub system and the

OLAP-related features in StreamFS. We gives details about the inner workings of the pro-
cess manager and how it manages both internal and external processes. Internal processes
are distributed in a cluster, where each cluster contains an internal process stub that manages
instances of running code. The code, written in javascript, is managed in an independent
sandbox for isolation. Each stub also monitors the state of the stub and forwards the data
to and from the process manager. A corresponding stub used to manage external processing
elements. It contains very similar components for managing external process instances on
client machines and communicating with the StreamFS server. We also introduce an impor-
tant scheduling feature for forwarding only the freshest data to data sinks. In this chapter,
we also discuss the file abstraction is more detail. We presented the 4 different types of files
and how they are used in StreamFS. We summarized their operations and semantics.

In the next chapter we will evaluate the architecture with respect to its system properties.
We explore these properties by presenting applications that it support that could not be
supported by legacy systems.

We described the details and motivation in the process management and related com-
ponents. We introduced the notion of internal and external processing. The former is used
for small, simple data-cleaning jobs while the latter is for integrating external processing
jobs written in the client’s native language. We also showed how we combine the entity-
relationship graph to provide the infrastructure necessary to support OLAP-style queries.
This is an important features, since many of the queries posed in the building domain have
the following properties:

1. Temporally-driven, scan-heavy queries.

CHAPTER 4. STREAMFS FILES AND PROCESS MECHANISMS 62

2. Hierarchical, unit-specific aggregates.

Dynamic aggregation is an efficient design for these kinds of queries. Unlike traditional
OLAP, where the timestamps are uniform across other dimensions, we must interpolate the
values to keep the “OLAP cube” populated with data at all intervals. It is also necessary to
provide accurate aggregates in time.

Finally, we articulate our observation of the importance of scheduling with jobs that
want a set of readings that are collectively the latest – the collective buffer freshness is
maximized. We formalize the problem and present an algorithm solution and evaluation.
In the next chapter we discuss the files and associated semantics in StreamFS. We show
can they related to traditional filesystems and discuss the motivation for its design. We
also present the mathematical tools for verifying the relationships between sensors that is
constructed through the namespace.

63

Chapter 5

API and an Architectural Evaluation
Through Applications

In this chapter we present an architectural evaluation through our deployment experience.
We give an overview of our application programming interface (API) and discuss its use in
the context on two applications. We describe how we are able to provide extensibility,
generalizability, scalability, and ease-of-management through a description of the API and
the applications that use it.

The primary application that we focus on is the Mobile Energy Lens. It is designed to
collect building inventory and metering information and provide various live, aggregate view
of the energy consumption of devices throughout the building. The application makes use
of several StreamFS features and provides a working, real-world example one of our target
emerging applications. The second application is an mounted Unix filesystem interface for
legacy applications. We discuss how StreamFS can support legacy applciations with minimal
change to application code. We discuss the mapping from StreamFS file semantics to Unix
file semantics. The mounted FS demonstrates the generalizability of our architecture.

We also provide a detailed description of each application. We highlight components of
their architecture where StreamFS provides a critical service. For problems which StreamFS
only provides a partial solution, we demonstrate how that partial solution is extended into
a full solution design and we present an associated evaluation.

5.1 API Overview
In this section we give an overview of the application programming interface. We provide

a description of function calls and the corresponding HTTP/REST version. A full tutorial
of the HTTP/REST interface can be found in Appendix B.

Table 5.1 gives and overview of API calls that are available through the standard library,
available in several languages. It provides functions for creating and deleting files as well as
decorating them with attribute-value pairs. The Energy Lens application makes extensive

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 64

function description
create Create a file. Overlaps with several other calls.
delete Delete a file.

hline register Join as data source.
push Write to associated stream file.
label Add an attribute-value pair.

rlabel Remove an attribute-value pair.

Table 5.1: Overview of StreamFS file-related API calls. Library written in Java, PHP, and
C.

use of this library interface for dealing with consistency-management features and “atomic”
update operations. Applications that run on the phone, typically use the HTTP/REST
interface.

callback description
search General search of terms through file name and content. Similar to grep.

filter Used to filter the returned list by attribute-value pair or path.
query Timeseries query.

Table 5.2: Summary of control interface callbacks in StreamFS. Library written in Java,
PHP, and C.

The search API is simple (summarized in Table 5.2). It includes three main calls, de-
pending on what kind of data you are searching for. If the application wishes to make
a general search based on the name of the file or the metadata it is decorated with, the
search call allows you to specify a set of terms to look for or to specify specific attribute-
value pairs. It performs the search as a filter-forward. It uses provides a general path
sub-option where you can specify that the path match a regular expression. For example,
search(type:plug-load).path(/410/*) returns all the files that contain the “type:plug-
load” attribute-value pair in their metadata and /410/ as a prefix for any of their names.
This example AND’s the search criteria. The filter call can be combined with the search call
to filter on metadata values returned from the path search. For example,
search(type:plug-load).path(/410/*).filter(owner:jorge) fetches the same files as
before but filters those that contain the attribute-value pair “owner:jorge”. Finally, the
query call runs a timeseries query on a specified path or all stream files that match a regular
expression specified by through the path option.

The pub-sub library is used extensively in all our applications. It is specifically used in
the Energy Lens for initiating aggregation processing. Table 5.3 summarizes the two main
API calls for dealing with subscriptions and pipes.

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 65

callback description
pipe Pipes the list of specified streams to

either an active process or a process
definition file.

subscribe Create an subscription from a
set of streams to an external target
through a callback function.

Table 5.3: Summary of control interface callbacks in StreamFS. Library written in Java,
PHP, and C.

Internally, the mechanism for dealing with both is similar, however, the semantics of each
call is differe.t Pipes direct streams to user-defined internal/external processing elements,
while subscriptions are for external sinks running on the client. Subscriptions are managed
through an HTTP POST operation. If the user is using a client stub, the POST is unmarshalled
and a callback is triggered with the body of the POST submission.

5.2 Energy Auditing With Mobile Phones
Mobile phone penetration continues to rise in the United States and abroad. As such, they

serves as convenient interface between people and their environment. The combination of
mobile network coverage and indoor wifi connectivity provides near-ubiquitous connectivity
at all times. Coupled with the fact that mobile phones are personal devices that can serve as
a proxy for the individuals, they provide a valuable point of interaction between the physical
world, people, and computation. Through a combination of cloud technology, ubiquitious
network access, and mobile phones, we can provide new ways to do in-situ diagnosis of
opertional problems in the building, monitor personal energy consumption, and share related
information with other occupants. The phone becomes a lens through which we can directly
observe the dynamics of our surroundings.

There are several systems challenges that must be overcome in order to achieve this vision.
Some can be solved easily through the primitives made available by StreamFS. We examine
the challenges in capturing and maintaining a view of the physical world. We track people
and things, deal with consistency management issues, and provide mechanisms for dealing
with the occasional disconnection. We deploy a number of wireless power meters, use QR
codes as a tagging mechanism, and build an Android application that interacts directly with
StreamFS and plug-load devices. We use mobile phones to construct the entity-relationship
graph of the locations, meters, and plug-loads in the building and use the processing features
in StreamFS to provide detailed energy-attribution statistics. The ‘Mobile Energy Lens’ uses
QR-code sipe gesture to collect this information. For example, if a computer is inside room
Y and connected to meter Z, the user can register the computer, the room, and their “is-

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 66

in” and “attached-to” relationships explicitly through the a series of gestures that build the
associated files and inter-relationships. We use these relationships to guide our analytics.
For example, the load curve of room Y consists of the sum of all the power traces for loads
inside room Y. Our work examines three main challenges in setting up and deploying a tag
infrastructure through the building to support this application.

The first challenge is related to tracking. Mobile phones present classical, fundamental
challenges related to mobility. Typically, mobility refers to the phone, as the person carrying
it moves from place to place. However, in the energy-attribution context, we refer to the
movement of energy-consuming objects. Tracking their relationships to spaces and people
is as important as tracking people. We describe how we deal with both moving people and
moving objects and show that these historically difficult problems can be addressed relatively
easily, if the proper infrastructure and services are in place. StreamFS plays an important
role in offering the necessary services.

The second challenge is about capturing the inter-relationship semantics and having these
inform our analytics. We adopt a general mechanism where physical tags identify objects
in the world. Our system uses QR codes to tag things and locations in the building. Once
tagged, there are three types of swipe interactions – registration, linking, and scanning –
which establish important relationships. Registration is the act of creating a virtual object
to represent a physical one. Linking captures the relationship between pairs of objects.
Scanning is the act of performing an item lookup. Each of these interactions requires a set of
swipe gestures. Linking requires two tag swipes while the other two actions require a single
tag swipe. StreamFS maintains an entity-relationship graph (ERG) and we use it extensively
in the Energy Lens to record things, people, and locations through these gestures.

The third challenge appears in dealing with indoor network connectivity and access. In
order to connect these components, we rely on ‘ubiquitous’ network connectivity. How-
ever, in practice, network availability is intermittent and our system must deal with the
challenges of intermittency. We discuss how caching and logging are used to address these
challenges. Moreover, when connectivity is re-established, we must deal with applying up-
dates to StreamFS; updates recorded by the phone while disconnected. Conflicts may also
occur during an update. For example, the two updates may conflict about which items are
attached to which meters. We implement a very simple conflict resolution scheme, described
in Section 5.3. Finally, physical state-transitions are represented as a set of updates to
StreamFS that must be applied atomically. However, StreamFS does not provide atomicity
across multiple file operations. We implement transactions through log-replay and transac-
tion manager. Our ‘Energy Lens’ system is deployed in Sutardja Dai Hall at UC Bekreley.
We discuss its architecture and design.

5.3 Energy Lens Architecture and System Challenges
The Energy Lens application aims to approximate the vision described in Section 2.3. We

tag items with QR codes and allow users to 1) tag and register new items, 2) tell us which

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 67

meters are attached to which items, and 3) scan QR codes to view their load curve over a
24-hour period. Both individual items and spaces are scannable – spaces present aggregate
information of the energy-consuming items within them.

The architecture consists of three layers: the sensing and tag layer, the data management
and processing layer, and the application layer. In this section we discuss how aspects of
each layer address the aforementioned challenges. In deploying the application we run into
various issues that inform our design. For example, QR code reading times vary substantially
across phones and lighting conditions. You must design for the least-common denominator in
terms of camera quality and lighting. Another aspect to consider is network access. Within
our building, although connectivity is mostly ubiquitous, network access can be intermit-
tent. Network access may be unavailable for several reasons, including disassociation from
an access point due to idleness, dead spots in the building where connectivity to both wifi
and 3G/4G are unavailable, multipath-induced destructive interference, and various other
reasons. Dealing with these throughout the data collection and update phase is especially
troublesome. We discuss mechanisms and algorithms for dealing with disconnected opera-
tion.

StreamFS serves as the data management and processing layer. It must be extensibile
in order to add and remove sensors and contextual information throughout the contextual
capture process – the collection of device inventory, descriptive information, and associations
between plug-loads and other items and locations in the deployment. It must provide scal-
ability with the number of sensors and rooms in the building, since all the sensors produce
periodic readings and live, aggregate statistics is the main goal of the application. Also, the
application is interactive, so many mobile phone users are constantly performing lookups.
StreamFS must handle these requirements.

Challenge 1: Tracking People and Things
The Energy Lens application consists of a web application that displays timeseries data

and an Android-based smartphone app. The Android app is relatively simple; consisting
of a menu with only two options: Update deployment state, scan to view services. Swipe
gestures manipualte a local portion of the entity-relationship graph – local with respect
to a user’s current location. Since each location (room, floor) has a QR code attached
to it and items are associated with those locations, we can identify the location by name
(/buildings/SDH/spaces/4F/toaster). Figure 5.1 goes through the various sets of swipes.

The first set is called a ‘registration’ swipe and we use it to register new items. The user
scans a QR code and the item it is attached to. This creates an ‘attached-to’ link between
them. Adding, removing, binding, and attaching items is done with a pair of swipes. A
lookup is done with by swiping the QR code attached to an item.

We have designed a set of heuristics for setting the location during an update. It pig-
gybacks on the swipe gesture. The following is a list of rules for automatically setting the
location of people and things:

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 68

1	
 Swipe	
 QR	
 Code	

2	
 Enter	
 informa�on	

Registra�on	

swipe	

A�ach	

1	
 Swipe	
 QR	
 Code	

2	
 Select	
 service	

Item	
 swipe	

3	
 View	
 data	

1	
 Swipe	
 QR	
 Code	

2	
 Swipe	
 QR	
 Code	

Add,	
 Remove,	
 	

Bind,	
 A�ach	
 swipes	

3	
 Add,	
 remove,	
 bind,	
 a�ach	

(A)	
 (B)	
 (C)	

Figure 5.1: Swiping gestures in the mobile application. The registration swipe requires on
a single swipe. The linking and registration gestures require two swipes, and the look-up
requires a single swipe.

• When a user swipes at a location L, they are presumed to be at L for fixed period τ .
An “association timer” is set to release this association after τ seconds.

• If the user swipes anything that is associated with a location l at time t ≤ τ , and
l(t) 6= L, then we set the new location of the thing they swiped to l(t) and reset the
association timer.

• If the user swipes anything at location l at time t ≥ τ , we set the location of the person
to l(t). We reset the association timer to τ .

• If a user registers a new location, they are presumed to be at that location.

For each of these, we provide an interactive option to ask for location-change confirmation
from the user. So if we think the user/item has moved but they have not, the preset action
can be overridden. The guiding principle we follow in our design is to leverage the swipe
gesture for as much contextual information as possible. Furthermore, we do not explicitly
track users. Context is only set on the phone and used in operations sent to the server.
We construct an entity relationship graph through naming in StreamFS. Because location
swipes give us direct confirmation of a user’s location, it can be coupled with wifi localization
mechanisms and supervised learning algorithms to adjust the localization model as the user
interacts with their environment.

We construct the entity relationship graph through naming in StreamFS. StreamFS uses
filesystem constructs, such as symbolic links and hierarchical naming which are useful for ex-
pressing an acyclic graph structure (StreamFS checks for cycles when symlinks are created).
The following general path-naming text patterns are used to express different portions of the
ERG. /path/to/device or item, /path/to/qrc, /path/to/space, /path/to/taxonomy,
/path/to/users. Registered meters are placed in the device path, /dev. Items are stored
in /inventory. QR codes are stored in /qrc. When an item is registered a symbolic link

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 69

is created from the specific qr code directory to the item. /spaces contains a hierarchy
of floors, rooms, and sub-spaces. /users contains the list of usernames. We also have a
/tax directory, where we construct an device hierarchy for access by plug-load category.
Placement (location) is also captured with symbolic links.

Each hierarchy not only represents the physical relationships between items but also
provides a structure for enabling hierarchical aggregation and querying. We define a load-
curve generating process called loadcurve, displayed in Listing 5.1. The full process job can
be found in the Appendix, Listing A.1.

Listing 5.1: Partial load curve code used to generate aggregate load curves in the Energy
Lens application.
function(buffer, state){

var outObj = new Object();
var timestamps = new Object();
outObj.msg = ’processed’;
if(typeof state.slope == ’undefined’){

state.slope = function(p1, p2){
if(typeof p1 != ’undefined’ && typeof p2 != ’undefined’ &&

typeof p1.value != ’undefined’ && typeof p1.ts != ’undefined’ &&
typeof p2.value != ’undefined’ && typeof p2.ts != ’undefined’){
if(p1.ts == p2.ts)

return ’inf’;
return (p2.value-p1.value)/(p2.ts-p1.ts);

}
return ’error:undefined data point parameter’;

};
state.intercept = function(slope,p1){

if(typeof p1 != ’undefined’ &&
typeof p1.value != ’undefined’ && typeof p1.ts != ’undefined’){
return p1.value - (slope*p1.ts);

}
return ’error:undefined data point parameter’;

};
}

}

When a new meter is measuring a device in a room, the Energy Lens app activates the
loadcurve process through a general subscription instance. For example
sub.source(/sdh/4F/473R/*).filter(unit:KW).destination(/sdh/4F/473R/lc 324hb)
creates a subscription for streams with the prefix specified in the source call with the filter on
the metadata where the units produced on KW and pipes it into an instance of the loadcurve
process. Note /sdh/4F/473R/lc 324hb is a symbolic link to /proc/loadcurve/324hb, the
instance file the represent the aggregator for this room. The initial instance file can only be

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 70

created if the source has a match. The app checks if there are any streams in the room every
time a new meter is added. If it is the first stream in the room, the pipe and corresponding
symbolic link is created. If all the meters are removed from the room, the process is killed
and the symlink becomes a dangling pointer that needs to be cleaned up. The cleanup is
done by the Energy Lens application. StreamFS does not provide a clean-up mechanism.

Challenge 2: Consistency Management
We use an eventual-consistency model for maintaining the ERG over time. The consis-

tency we must maintain is the mapping between sensors, people, and spaces. The mechanism
for inputting these relationships is specified in the previous section. This section focuses on
the mechanism for capturing the nature of these relationships and how the application lets
users provide input for consistency maintenance. The Energy Lens uses file metadata and
directional associations in the ERG (i.e. what type of parent/child does this file have?) to
capture the nature of relationshups. In order to maximize consistency, we offer two options:
1) periodically re-scan items and their locations; essentially re-capturing the inventory and
placement information or 2) allow building occupants to participate as auditors, capturing
their own personal and shared items. This provides at least as much value as a periodic
energy audit and can be completed in a fraction of the time [94].

Placement (location) is captured with symbolic links. Node types – specified in the
metadata as an attribute value pair – inform the application of the nature of the relation-
ship. We define five distinct types: item, meter, location, category, and tag. The following
relationships are constructed with symlinks between different node types:

• Owned-by: When a meter/item/location is tagged as belonging to a user.

• Bound-to: When a meter is attached to an item and taking physical measurements
associated with that device, we say that the meter is “bound-to” the device.

• Attached-to: When a meter/qr code/item is attached to another meter/qr code/item
but not taking any physical measurements for that item, we say that the meter/item
is “attached-to” the other meter/qr code/item. QR codes cannot not be attached to
each other.

• Is-in: When a meter/item is inside a location, we say that the meter/item “is-in” that
location.

• Type-of: When an item is labeled by as a known, specific, type, we say that the item
is a “type-of” thing specified by the its label.

All symlinks are interpreted based on these rules of association. As items move, symlinks
are removed and re-created in a different folder. We know your current location by following
the path from the QR code directory, across a symlink, to a file in the space directory. Items

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 71

associated with a space have a floor or room folder point to the item via a symlink. This is
how we record the location of things throughout the building.

item	
 item	
 item	

item	

meter	

meter	

item	

A�ach	

A�ach	

Implicit	

Bind	

space	

Is-­‐in	

rela�onship	

Explicit	

Bind	

Figure 5.2: This diagram shows the relationship capture between the objects and locations
in the building for the energy audit application. Children of a space node have an “is-in”
relationship with the space. An item with another item as a child have a “is-attached”
relationship and meters attached to items are bound to each other. Note, this is a subset of
the relationship diagrams generated across our three applications.

Challenge 3: Disconnected Operation
Although connectivity is ubiquitous, network access is not. This occurs due to dead zones,

idle-disconnect and failed hand-off between access points. When encountered in practice,
especially while editing deployment state, it can be quite frustrating and discourage use
of the application. We design a mechanism that does smart caching, not only to improve
performance, but also to enable disconnected operation.

The Energy Lens application downloads a portion of the ERG when a user enters a new
floor. The application fetches the portion of the graph rooted at the floor. The root is
determine by either an item or a floor scan, initiated by the user. A prefetch populates the
cache with all entity nodes on that floor, their associated metadata, and 30 minutes of data
from the stream entities. The full fetch of the 4th floor data set includes 176 nodes and
about 1 MB of meter data. In total, the app downloads 1.2 MB of data upon re-connection.
Prefetching allows users to continue interacting with the application as if they were still
connected (as long as they remain on the same floor). Without it, the application is not
functional until a network connection is established.

The Energy Lens periodically syncs with StreamFS to obtain updates to the ERG and
maintain a locally consistent view. Let OPR be an operation performed on the node rooted
at node R and ti be the current time on the phone. After a set period, the phone sends the
server its last performed operation and the time that operation was performed. The server

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 72

while 1 do
if connected and active then

(1) req ← [ti−n, OPR];
(2) resp← send(req)=[ti−k, OPR], . . . , [tnow, OPR];
(3) n >= k;
for j = 1→ size(resp) do

(1) op← resp[j] = [ti−k+e, OPR];
(2) apply(op);

end
end
if active then

(1) Sleep for 10 minutes;
else

(1) Sleep for 1 hour
end
;

end
end

Algorithm 2: Prefetch Loop.

responds with any operations that have take place since then. This server process runs on top
of StreamFS. All operations performed by the mobile application run through this process for
logging. Essentially, this process maintains a timestamped write-log. The prefetcher queries
the write log for updates since the last down time. The client applies those operations
internally to a cached version of the ERG on the phone in order to maintain consistency.
The “active” parameter-check, is for energy savings. If the phone application is active, the
check occurs every 10 minutes, otherwise it occurs ever hour.

The consistency process that runs on the phones is shown in Figure 5.3. The components
shown are the ERG cache, the operation log (OpLog), and the prefetcher. We separate the
steps in the figure as a READ sequence and a WRITE sequence. All reads go to the cache
(steps 1 and 2 on the left hand side of the figure). Writes go through the OpLog (steps 1 - 5
on the right side of the figure). For writes, the application makes a write request (1) and it
is forwarded to StreamFS (2). If StreamFS is reachable and the write is successful (3), the
operation is applied to the ERG cache (4) and the response is sent the application (5). If
the operation is not successfuly, step 4 is skipped. If StreamFS could not be reached, step 3
is skipped, and the operation is written to the OpLog. The OpLog is flushed to the server,
by the prefetcher, upon re-connection.

The OpLog contains records operations that are eventually applied to StreamFS. Some
of those operations are actually groups of operations that need to be applied atomically.
For example, when a bind or attach operation occurs, we append the timestamp to the
item(s) that are being connected, as well as create a link between them in the graph. The

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 73

application uses both the link and the added metadata to fetch the appropriate graph for
display. These operations must be applied atomically or not be applied at all. When the
log is dumped, the global transaction manager (GTXM) – the layer that handles log dumps
and transaction processing – attempts to apply the log in timestamp order. The GTXM also
runs as a process on top of StreamFS. It assures atomicity by applying each operation in
timestamp order and explicitly checking that the writes were successfully applied after the
operation is initiated.

App Interface

ERG
Cache OpLog

Network Interface

WRITE_REQ

READ

WRITE

WRITE_REQ

WRITE

WRITE_RESPREAD_RESP1 2 1

23

4

5

Prefetcher

1 2

3

Figure 5.3: Standard mechanisms for consistency management on the phone. All READ re-
quest go to the local cached version of the ERG. All WRITES must go through the OpLog.
They are eventually applied to the cache if successful and logged if the StreamFS is unreach-
able. These components are directly built into the Energy Lens application.

When the Energy Lens application is started it contacts the server and attains the server’s
local clock time. It notes its local time as being equal to the timestamp of the server and
calculates all subsequent timestamps using its local clock. When an operation or transaction
is added to the OpLog, a timestamp is appended. Let ts be the timestamp on the server,
tl be the timestamp on the phone when ts is recorded, and tnow be the current time on the
phone. Each operation/transaction is timestamped with tapprox where:

tapprox = ts + (tnow − tl) (5.1)

This timestamp is a general approximation of when the operation should be applied on
the server. The server applies these is ascending timestamp order.

A conflict occurs if there is any operation or transaction that was applied after the
timestamp of the current operation being processed. A typical transaction manager must

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 74

rollback the state of the database, apply the operation, and replay the log. However, conflict
resolution is much simpler in this context. The latest operations reflect the state of the world
because they are updates induced by direct interaction with the world at that point in time.
Therefore, if there is a conflict between a set of operations, the old ones can all be discarded.

Operations that are discarded are done so silently. We make failures silent for two
reasons: 1) There is no way to contact the app when failure occurs. Mobile phones do not
often have reversably reachable addresses. 2) Failure assumes the operation was based on a
false assumption about the state of the world.

5.4 Energy Lens Experience and Results
Figure 5.4 shows three screen shots of power traces obtained from the ACme deployment,

and displayed through the Energy Lens. Notice that there is some data missing in the graph.
This occurs because of in the network transmission, reboots on the data management layer,
or failed scripts that are automatically restarted. In all cases we get holes in the data.
To compute aggregates, interpolation is necessary. StreamFS offers a real-time processing
facility, whereby javascript operaters can be applied to streaming data. This allows us to
clean it as it comes in and compute the aggregate traces. We are currently experimenting
with various aggregation models to give occupants deeper insights.

We distribute several ACmes [62] throughout a single floor in our building and register
various plug loads. We also tag hundreds of items and locations throughout the entire
building. Our audit includes 20 meters, 20 metered items, 351 un-metered items, and 139
rooms over seven floors. Figure 5.4 shows three screen shots of power traces obtained from
the ACme deployment, and displayed through the Energy Lens.

Figure 5.4: Power traces obtained from power meters attached to various plug load on one of
the floors of a building on campus. These show screen shots of the Energy Lens timerseries
data display.

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 75

Average (sec) Variance (sec)
Short,light 1.66 0.33

Short, dark 2.08 0.35
Long, light 2.26 0.71
Long, dark 2.82 0.50

Table 5.4: Shows the time to scan a long QR code versus a short QR code in light and dark
conditions (loosely defined). Notice that short QR codes scan faster and with less variance
that long ones.

In our initial deployment we find the use of our tracking scheme to be effective, especially
in conjunction with interactive confirmation. The ERG is effective at capturing deployment
state, although highly mobile items, such as laptops, were particularly difficult to keep track
of without explicit user re-registration. Our disconnected operation mechanism is effective
at masking intermittent connectivity – although our data show that disconnection is rare in
this building.

QR code design

Our most surprising observation is that the tag design is one of the most important
aspects of the Energy Lens architecture. We use QR codes as our tag mechanism because
they are cheap to produce. They can be printed and attached to items with tape or sticky
paper. Figure 5.5b shows an example QR code used in our deployment. With the number
of physical objects and their placement in the building, we must rely on the occupants to
scale our deployment and manage it. Using QR codes should not burden the user in any
way, lest they stop using the application. QR code scan-times, vary by lighting conditions,
camera quality, and hand movements. In poor conditions scanning is cumbersome; ultimately
de-motivating continued use. QR codes must be designed to minimize scanning time. In
our deployment and experiments we observe that complex QR code code not only have an
longer average scanning time but also experience a larger variance in scanning time. The
more complex the pixel design in the QR code, the harder it is for the camera to focus and
capture it.

We scanned each QR code shown in Figure 5.5, under light and dark lighting conditions.
Each experiment was run 10 times and Table 5.4 shows a statistical summary. Scanning the
simple QR code under well-lit conditions performed the best. The complex QR code under
the same condition takes about 28-36% longer to scan. Perhaps even more important is the
variance. Notice that the variance with the simple QR code is smaller. QR code image
complexity increases with the amount of information you encode on it. Therefore, it was
important to decrease the amount of information we encoded, placing the complexity in the
lookup rather than the tag.

Table 5.4 shows the results of some simple scanning experiment between the two tags

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 76

(a) Long QR Code (b) Short QR Code.

Figure 5.5: 5.5a resolves to the same URL as the 5.5b, after resolution and redirection is
complete. The short label resolves to http://tinyurl.com/6235eyw. 5.5b encodes about
half the characters as the 5.5a. We used tinyUrl to reduce the QR code image complexity
and scan time.

shown above. We scanned each QR code under light and dark lighting conditions, off the
screen of my laptop. Each experiment was run 10 times and the table shows the statistical
overview of the results. Clearly, scanning the simple QR code under well-lit conditions
performed the best. The complex QR code under the same condition takes about 28-36%
longer to scan. On a generic QR code scanner, as used here, there is a portion of the scan time
that is independent of the code complexity. As these are more heavily used, this is expected
to be reduced substantially and the difference is acquisition complexity will be even more
pronounced. Perhaps even more important is the variance. Notice that the variance with the
simple QR code is much smaller and more stable under either condition. In our experience,
large variance in scan time is a major problem for complex QR codes. Thus we decided to
re-design our codes and push more information in the lookup processes, as network access
was more reliable than the focus of the camera on various mobile devices. Tags are placed
on all types of devices in all kinds of locations with varying degrees of lighting. Simple QR
codes are vital for widespread use.

The design choice forced us to examine others that were related. Not being able to encode
much information on our QR codes means we are more reliant on the network to provide the
bulk of the information, to be very reliable, and to be widespread enough that disconnection
is not problematic. Moreover, there are a number of clients that can be used to access and
display the information and the tag has to be meaningful for both. In order to meet these
criteria we (1) shrunk URL’s using tinyURL [1] as a level of indirection and (2) designed
two classes of applications: shallow applications, and deep-inspection applications. Shallow
applications interact with the web-application directly while deep-inspection application use
the URL of the web application to extract a unique identifier and provide deeper inspection
and update capabilities of the entity-relationship graph.

This is an example URL we used in our deployment: http://tinyurl.com/6235eyw.
When resolved, we get an empty response in the body, but we use the header to identify
the QR code identifier that we associate with the item. The response header is down in

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 77

Figure 5.6.

Figure 5.6: The header of the response from the tinyUrl when resolving a QR code. The
‘Location’ attribute is used to extract the unique identifier for the object this QR code tags.
It is also used to re-direct users without the phone application to a meaningful web address
for the object.

Notice the ‘Location’ attribute in the header. This is the location of the re-direct. This
approach gives us flexibility in several ways:

1. It allows us to encode less information in the QR code, decreasing its visual complex-
ity; making it more robust across phones with different camera quality, poor lighting
conditions, and shaky hands.

2. It allows the added layer of indirection to serve two versions of the applications: the
native application, where users can deeply explore and edit the entities and their re-
lationships and the shallow lookup, which re-directs the mobile phone to a read-only
view of the item that was scanned – such as a power trace or a description.

It provides a web address for users to re-direct to and find information and various read-
only services for the object. However, because the URL also contains a unique identifier qrc, it
can be used to provide for sophisticated services and capabilities. An example is the ability
to change the virtual structure of inter-relationship between this object and other objects.
Once items are tagged, they can be added and removed by swiping the tag and pressing the
button for what you want to do with the item. You also check into locations either explicit
with a location-tag swipe or implicitly with an item swipe.

Shallow applications use the URL directly. The qrc URL is unqiue identifier for the item
that this tag is attached to. A shallow application can obtain mostly read-only service
through our web applications. For example, we’ll see how to get either item-specific data
or item-aggregated data with respect to the user making the request (i.e. the total energy
consumed by my devices). Deep-inspection applications are native to the phone, so we can
do much more with the tag. Our energy auditing application allows you to related the
item to other items by maintaining state of swipe history. This is more difficult with the
web-applicaiton. We can also use the tag and item information to couple it with sensor
information coming from sensors on the phone itself. For example, we could determine the

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 78

direction an object is pointing by using the phone’s directional sensor and negating their
direction (i.e. phone is facing east, tag on item must be facing west).

Figure 5.7: Screen shots of the mobile application. The screens on the left are for editing
the state of the deployment. The graph on the right shows a live feed of a the sensor that’s
attached to the item that was scanned with the ‘Scan To View Services’ option in the mobile
application. It can also be resolved by scanning the QR code and following the re-direct to
the URL.

ACme meters are IP-enabled and forward their data through a router that runs sMAP.
sMAP then forwards the incoming data to StreamFS, running in a machine in Amazon’s EC2.
StreamFS is a web service that organizes streaming data and metadata using a hierarchical
naming convention. It also provide a pub/sub facility for streaming data. We construct a
canonical naming convention within StreamFS to express the entity relationships between
people, things, and meters. The pub/sub mechanism allows us to combine the ERG with
streaming data, and feeds our timeseries data viewers.

Prefetching and Transaction Measurements
We measure prefetch download times and discuss strategies for providing scalability. We

also look at the transaction manager and discuss conflict resolution.

Sensing and tag layer

Prefetching occurs when a user enters a new floor, as detected by a floor scan or an item
scan. Table 5.5 shows that the prefetch times scale linearly with the number of items (and
data) to prefetch. Each node holds approximate 100 bytes or information and for a 20-node
deployment of power meters, producing 100 bytes of data per stream (three streams per
ACme) every 20 seconds, we fetch approximately 1 MB of data.

These prefetch times are non-trivial to deal with, especially since they cause the phone
application to slow down until the data is received and loaded into the local cache. The

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 79
8/4/12 acmenetwork_SDH_4F.png (1945×981)

1/1www.eecs.berkeley.edu/~jortiz/acmenetwork_SDH_4F.png

Figure 5.8: A snapshot of the connectivity graph between the wireless plug-load ACmes
deployed in the 4th floor of SDH.

No. nodes Fetch time (sec) Std. Error (sec)
1 0.8902 0.0756

10 5.7342 1.7087
100 52.3145 14.1146

Table 5.5: Shows the time to fetch nodes based on the size of the fetch. The fetch time
increased linearly with the number of nodes. Caching maintain fetch time near that of
fetching a single node. A callback is used when cache is invalidated.

overhead is dominated by the query in StreamFS that constructs the entire sub graph to
send to the application. For future work, we are will implement a callback facility and pass
the application a reference to it. The app can then periodically check back until the query
completes and the data is ready to be downloaded. We can also include partial responses
to the query in the prefetch-loop response. This also allows users to continue using the
application without any frustrating waits.

Table 5.6 shows the operations that the transaction manager calls on the StreamFS
server. Log replay and transaction processing is entirely dependent on the time to execute
these operations on StreamFS. There are five types of transactions, a move, a un/bind,
un/attach. A move is a combination of a ‘delete’ and a ‘create link’, a bind is a ‘create link’
and an ‘update tags’, an unbind and unattach is a ‘delete’ and ‘update tag’. The transaction

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 80

Operation Avg. exec. time (ms)
fetch 250
delete 326
update tags 267
create link 250
create node 336

Table 5.6: Average operation execution time in StreamFS.

latency is the sum of these operations. By far the most expensive operation is a ‘create node’
operation. This occurs when a user adds a new item/space/person to the graph. The time
to apply the operation also scales linearly with the size of the logs.

All logs dumps are processed sequentially. However, for future work we look to parallelize
processing into parallel processes updating different portions of the graph. For example, log
updates rooted at different floors could occur simultaneously.

The global transaction manager implements three main high-level operations – rollback,
apply, and replay. Our current implementation is limited by the time is takes to perform
an operation on StreamFS. Table 5.6 shows the three main operation that the transaction
manager needs to do on the server.

Usually rollbacks consist of delete operation and applies consist of creates. In a worst-
cases analysis of performance we expect the total conflict resolution time to be roughly
bounded by rollback time+apply time+replay time, since replay time = 3Xrollback time
and apply time is negligible, the total time is approximately 4Xrollback time. Therefore
the overhead is driven by how many new links were created that have to be deleted and then
re-created. As an optimization, we limit the scope of a rollback. The naive approach is to
blindly undo all operations up to a certain time. However, we can use the location of the
node in the ERG to limit the conflict-scope to a sub graph, rather than the entire graph.
The simplest approach is to check if the operation on a node either shares an immediate
parent with the node that will have an operation undone on it or it the operation is on the
same node. By limiting conflict-scope we minimize the number of operation that get execute
and, hence, minimize the cost of resolution.

Discussion
StreamFS supports the addition and operations to record all the deployment information.

It also supports active aggregates for 31 rooms on the 4th floor of the deployment and 1 for
the entire building. The number of active users was no more than 10 at any time. Because
these number are not that large they do not truly test the scalability of the system. However,
they do demonstrate both extensibility and generalizability. Without the first property we
could not have added the sensors, related information, user context, spatial configuration

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 81

information and updated it with ease. Without the second property we could not have
supported both the collection of metadata and data about the deployment as well as data
services that are absolutely crucial to the success of the Energy Lens application.

Also, we use a single function and instantiate 32 instances of it in the deployment. This
demonstrates the ease of management property we set to provide through StreamFS. Because
we follow the principle where “everything is a file” the entire deployment data, metadata,
and analytics can be accessed and controlled from the same deployment.

An important aspect of our work that we have not explored it privacy. Privacy is the
ability for a group or individual to hide their information and to selectively share it with
other groups or individuals. StreamFS uses an access control list and adopts Unix-style
file security for sharing information. Users of StreamFS can create users and groups and
control the access rights to individual files in the system, and their corresponding file-specific
operations. If a user wishes to share information about their personal aggregates, they may
share the aggregation point and make all the individual streams inaccessible.

In the Energy Lens application, people and objects are tracked by associating individuals
with locations according to their scans. This information is not explicitly logged and is
inaccessible through StreamFS. Scan history is also not logged on the phone, so privacy and
security should not be a major concern. Moreover, HTTPS is an option for communicating
with the StreamFS servers and for the transaction log layer that sits above it. That said,
privacy is a much broader topic that must be explored in future iterations of our system.
Work on differential privacy [87, 50, 65, 76] may also be a good fit for providing accurate
query responses without revealing the constituent identify information. These methods could
be applied at the database layer within the timeseries datastore and made available through
the filesystem as anonymous, globally accessible stream files.

5.5 Mounted Filesystem and Matlab Integration
Although StreamFS files and semantics are not POSIX compliant, we wrote a FUSE [39]

implementation that allows legacy applications to directly interact with StreamFS file and
operate on them as if they were locally mounted.

Figure 5.9 shows a screen shot of mlatba reading and writing to local files that communi-
cate with the StreamFS server. This implementation represents an exercise and proof-point
that the file abstract can serve as a conveninient interface representing building deployments.
Although not an exact fit, the semantics of StreamFS can be translated to make them look
like a regular unix-style file. Moreover, the security semantics are the same, since those are
adopted directly.

Table 5.7 gives an overview of the operations that we translate from StreamFS to a stan-
dard Unix file. Note that we did not translate all of the operations. These were just a conve-
nient set of them for client-based applications that interact with StreamFS through a filesys-
tem mount. Part of the verification work is implemented entirely through the StreamFS-
FUSE implementation. The work on functional verification, discussed in Section 6.3 uses a

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 82

Figure 5.9: SFSFuse implementation. By mapping access and operational semantics to
POSIX file operations we enable legacy, desktop application to interact with the deployment
directly.

operations description
stream file read Read the data from a timeseries query.

stream file write Only accept query parameters.
hline container read Folder read semantics.

container write Folder write semantics.
tail -f starts a stream subscription, writes to file
pipe writes file contents to pipe

Table 5.7: Overview of StreamFS file-related API calls. Library written in Java, PHP, and
C.

mounted FS version of StreamFS to fetch chunks of the data for bulk, client-side analysis of
the streams.

This interface made interaction with a large amount of data very simple. If the operation
are mainly fetch operations, the implementation is simple enough that the semantics translate
cleanly. Moreover, the suite of tools, like grep and pipe, translate directly. We can leverage
the family of tools and security mechanisms. This also demonstrates the extensibility and
generalizability of the system. This layer can offer a fraction of useful menchanisms that
StreamFS makes available and can leverage a large number of legacy analytical applications.

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 83

5.6 Related Work
Our work touches on several areas from smart home research to logistics. In the building

space, there has been some interest in building various kinds of energy-related visualization
and control applications. This work focuses on the object definition, tracking, and manage-
ment component of the architecture proposed by Hsu et al. [54]. Their work stratified the
set of challenges that one could potentially face if the application were deployed at scale.
Our work, in contrast, bases its design rationale on a real deployment that is taking place at
scale in a building on our campus. We focus on solving fundamental systems challenges in
dealing with intermittent connectivity and conflict resolution in tracking people and things
over time. We also focus on leveraging gestures to minimize the cost of interaction for users,
while maximizing the information we can attain about the state of the world. smart home
research [69] to

Our work touches on several areas from logistics [45] to context-aware mobile applica-
tions [89]. In the building space, there has been some interest in building various kinds
of energy-related visualization and control applications. HBCI [54] proposes a high level
archiecture that also relies on QR codes, mobile phones, and ubiquitous network access.
HBCI introduces the notion of object capture through the mobile phone and individual ser-
vices provides by the object, accessible via an object lookup. The proposed service model
is object-centric, such as individual power traces or direct control accesss. Their “query”
service is a tag lookup mechanism realized through QR code scanning of items. The ‘Energy
Lens’ also embodies the “query” via a tag lookup, however we focus on context-related ser-
vices rather than object-centric services. We build and maintain an entity-relationship graph
(ERG) to capture the inter-relationships between items. The ERG informs our analytical
processing. We use an eventual-consistency model to maintain the inter-relationship graph
over time. HBCI does not address the challenges faced in realizing an indoor, interactive ap-
plication that relies on ubiquitous network connectivity. Our architecture directly addresses
this challenge, as we observe that indoor connectivity characteristics do not comply with the
ubiquitous connectivity requirement for this class of application.

An important aspect of the Energy Lens is determining when people and things have
moved. This requires some form of indoor localization. There’s a large body of literature in
the area of indoor localization with mobile phones ranging from using wifi [10], to sonar [97],
to ambient noise [112], and a combination of sensors on the phone[9]. Dita [108] uses acoustic
localization of mobile phones and also uses the infrastructure to determine gestures in free-
space that are classified into pre-defined control actions. Each of these require relatively
complex software and/or infrastrure. We take a radically different, simple approach. We
use cheap, easy to re/produce tags (QR codes), incrementally place them on things in the
environment and use the natural swiping gesture that users make, when interacting with
the Energy Lens application, to track when they have moved or when the objects around
them have moved. The guiding principle is to attain as much information from a gesture as
possible, to determine a move has occurred. We discuss our heuristics in Section 5.3.

ACE [89] uses various sensors on the phone to infer a user’s context. The context domain

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 84

consists of a set of user activities and semantic locations. For example, ACE distinguishes
between Running, Driving, AtHome, or InOffice. ACE can also infer one from the other.
If a user is AtHome then they are not InOffice. Energy Lens uses inference to determine
when a person or thing has moved. Certain swipe combinations give us information about
whether they moved or whether an item moved. The main difference is that we only infer
context when a user is actively swiping, rather than a continuous approach.

Prefetching is a fundamental technique used in many domains. The cost of a prefetch
for mobile application out-weighs the benefits if the prefetched data is not useful. Informed
mobile prefetching [51] uses cost-benefit analysis to determine when to prefetch content
for the user. We prefetch data based on location swipes. Caching prefetched content not
only improves performance and interactivity, but it is necessary to sustain normal operation
during periods of disconnectedness.

Logistic systems focus on tracking objects as the move from distribution sites, to ware-
houses, and across purchase counters. Items are tracked through their unique bar codes,
often embedded in an RFID. The workload in logistic systems is very structured and well
defined. The authors of [45] describe this structure and leverage it to minimize storage re-
quirements and optimize query-processing performance. The Energy Lens uses QR codes as
tags and the phone as an active reader. As objects move, users scan those items to their
new location. However, objects may belong to one or many people, they can be metered by
multiple meters a day, and their history in the system is on-going. In contrast, a typical
logistics workload has a start (distribution site) and end point (leaving the store after a sale).
Our workload is less well-defined. Furthermore, relationship semantics are important; For
example, we interpret a bind relationship differently from an attach relationship. We discuss
the difference later in the paper.

Furthermore, we take advantage of natural gestures the user makes with the phone while
scanning QR codes to extract information about the current location of the user or things.

The key idea in the HP Cooltown [120, 69] work is to web-enable ‘things’ in the world,
grouped-by ‘place’, and accessed by ‘people’ via a standardized acquisition protocol (HTTP)
and format (HTML, XML). Cooltown creates a web presence for things in the world either
directly (embedded web server) or indirectly (URL-lookup tag) as a web page page that dis-
play the services it provides. Many of the core concepts in Cooltown also show up in Energy
Lens. The main overlap is the use of tags in the world that contain a reference to a virtual
resource, accessible via HTTP through a network connection. Cooltown, however, explicitly
chooses not maintain a centralized relationship graph, it leverages the decentralized, linking
structure of the web to group associated web pages together. Furthermore, things are as-
sumed to not move. People are the main mobile entities. The kind of applications we wish
to support must track where things are and their specific inter-relationships. We imposed a
richer set of semantics on our, centrally maintained, relationship graph and use it to provide
detailed energy information.

CHAPTER 5. API AND AN ARCHITECTURAL EVALUATION THROUGH
APPLICATIONS 85

No. deployments 7
Total files > 10k
Locations University of Tokyo,

UCB Cory, SDH,
Stanford Y2E2,
Intel, Nokia,
Samsung

Total data 1TB over 2 years

Table 5.8: This table summarizes the deployment statistics of for StreamFS over a two years.

5.7 Summary
We demonstrate the versatility of StreamFS in its ability to serve a diverse set of appli-

cations. This clearly demonstrates its generalizability and ease of management through the
file system abstraction. In the Energy Lens application we examined three system challenges
– mobility, consistency management, and disconnected operation – for enabling and energy
analytics applications in buildings. StreamFS plays a crucial role in providing the kinds
of services necessary for collecting and managing deployment data and metadata as well
as providing live aggregate statistics on the deployment to the end-user. Furthermore, we
demonstrated the extensibility of the system, as all the StreamFS features were agile enough
to deal with the evolving dynamics of the deployment and the services built to support
fundamental challenges with consistency management and disconnected operation.

Altogether, StreamFS was deployed across seven buildings in two countries, with very
different climates, systems, and usage patterns. Table 5.8 summarizes these. Our largest
deployment has > 7k feeds simultaneously feeding a single StreamFS deployment. Several
hundred derivative streams were generated in these deployments as well. They require a
cluster of processing elements and datastore elements, typically no larger than two machines
per component. This demonstrates the scalability of StreamFS in practice.

86

Chapter 6

Empirical Verification of System
Functionality and Metadata

6.1 Verification through Sensor Data
Every system that manages data in the building specifies the building model manually

at some point in the life cycle of the metadata. Moreover, as the building changes and
physical configuration of the building and deployment change, all changes in the virtual
representation of the building are updated manually. As we move more and more towards
software controlled spaces and system that rely on accurate state capture of the physical
environment, it becomes of highest important to automate the process that verifies correct
configuration specification.

In the architecture we propose we see it as a concurrent process that will be in parallel with
all active deployments. The hierarchical naming scheme explicitly informs the verification
process of “group-by” relationships between sensors. Such “group-by” relationships typically
specify physical relationships, such as grouping sensors that are in the same room in the
same group, or the same floor in the same group. Ideally, a verification process could
perform several clustering algorithms, using the empirical data collected from the sensors,
to infer such physical relationships. Most importantly, it can alert the user when previously
statistically clustered sensors no longer show the same inter-relationship.

In this chapter, we discuss the analytical underpinning for a verification mechanism that
could eventually become a component in the StreamFS – or any other – building software
system. We introduce the various kinds of verification in depth, discuss the mathematical
tools that help us both formulate and solve related verification problems, and present results
for the empirical verification of various physical relationships between sensors. In the next
section we discuss the various types of verification, then we describe the tools, methodologies,
and results for solving each.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 87

6.2 Types of Verification
There are 3 kinds of verification that we discuss in this section.

1. Functional: verifying whether the behavior of the components in changing.

2. Spatial: verifying the spatial relationship between components.

3. Categorical: verifying the unit of measure and phenomenon being observed.

Before we discuss the details and approach for each, let us first examine the mathematical
tools that we use in our solutions. Then we discuss each type of verification in more detail.
We give a detailed description of the methodology for each and present the results of our
analysis.

Correlation
Throughout this work, we make extensive use of the correlation coefficient function de-

fined as:

r(X, Y) = rX,Y =
∑n

i=1(Xi −X)(Yi − Y)√∑n
i=1(Xi −X)2

√∑n
i=1(Yi − Y)2

where X, Y are separate sets of values, n is the total number of sample points in each
set, and X is the mean value of X (same for Y and Y). For each pair of sensors, we compute
the corrcoeff to ascertain the relationship between them.

Empirical Mode Decomposition
Another important tool that we used is empirical mode decomposition. We use it parti-

tion the empirical data is its constituent sub-signals and examine what those sub-signals tell
us about its behavior. We also use it to examine how signals behave between one another
at certain bands of importance that contain important physical information.

Empirical Mode Decomposition (EMD) [58] is a technique that decomposes a signal and
reveals intrinsic patterns, trends, and noise. This technique has been widely applied to a
variety of datasets, including climate variables[74], medical data[14], speech signals[55, 49],
and image processing [91]. EMD’s effectiveness relies on its empirical, adaptive and intuitive
approach. In fact, this technique is designed to efficiently decompose both non-stationary
and non-linear signals without requiring any a priori basis functions or tuning.

EMD decomposes a signal into a set of oscillatory components called intrinsic mode
functions (IMFs). An IMF satisfies two conditions: (1) it contains the same number of
extrema and zero crossings (or differ at most by one); (2) the two IMF envelopes defined by
its local maxima and local minima are symmetric with respect to zero. Consequently, IMFs
are functions that directly convey the amplitude and frequency modulations.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 88

EMD is an iterative algorithm that extracts IMFs step by step by using the so-called
sifting process [58]; each step seeks for the IMF with the highest frequency by sifting, then
the computed IMF is removed from the data and the residual data are used as input for the
next step. The process stops when the residual data becomes a monotonic function from
which no more IMF can be extracted.

We formally describe the EMD algorithm as follows:

1. Sifting process: For a current signal h0 = X, let m0 be the mean of its upper and
lower envelopes as determined from a cubic-spline interpolation of local maxima and
minima.

2. The estimated local mean m0 is removed from the signal, giving a first component:
h1 = h0 −m0

3. The sifting process is iterated, h1 taking the place of h0. Using its upper and lower
envelopes, a new local mean m1 is computed and h2 = h1 −m1.

4. The procedure is repeated k times until hk = hk−1 −mk−1 is an IMF according to the
two conditions above.

5. This first IMF is designated as c1 = hk, and contains the component with shortest
periods. We extract it from the signal to produce a residual: r1 = X− c1. Steps 1 to 4
are repeated on the residual signal r1, providing IMFs cj and residuals rj = rj−1 − cj,
for j from 1 to n.

6. The process stops when residual rn contains no more than 3 extrema.

The result of EMD is a set of IMFs ci and the final residue rn, such as:

X =
n∑

i=1
ci + rn

where the size of the resulting set of IMFs (n) depends on the original signal X and rn

represents the trend of the data (see IMFs in Figure 6.5).
For this work we implemented a variant of EMD called Complete Ensemble EMD [115].

This algorithm computes EMD several times with additional noise, it allows us to efficiently
analyze signals that have flat sections (i.e. consuming no electricity in our case).

Reaggregation of Intrinsic Mode Functions
By applying EMD to energy consumption signals we obtain a set of IMFs that precisely

describe the devices consumption patterns at different frequency bands. Therefore, we can
focus our analysis on the smaller time scales, ignoring the dominant patterns that prevent
us from effectively analyzing raw signals.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 89

0

Figure 6.1: Generalized Zero Crossing: the local mean period at the point p is computed
from one quarter period T4, two half periods T x

2 and four full periods T y
1 (where x = 1, 2,

and, y = 1, 2, 3, 4).

However, comparing the IMFs obtained from different signals is also not trivial, because
EMD is empirically uncovering IMFs from the data there is no guarantee that the two IMFs
c1

i and c2
i obtained from two distinct signals S1 and S2 represent data at the same frequency

domain. Directly comparing c1
i and c2

i is meaningless unless we confirm that they belong to
the same frequency domain.

There are numerous techniques to retrieve IMF frequencies [57]. In this work we take
advantage of the Generalized Zero Crossing (GZC) [56] because it is a simple and robust
estimator of the instantaneous IMF frequency[57]. GZC is a direct estimation of IMF in-
stantaneous frequency using critical points defined as the zero crossings and local extrema
(round dots in Figure 6.1). Formally, given a data point p, GZC measures the quarter (T4),
the two halves (T x

2), and the four full periods (T y
1), p belong to (see Figure 6.1) and the

instantaneous period is computed as:

T = 1
7{4T4 + (2T 1

2 + 2T 2
2) + (T 1

1 + T 2
1 + T 3

1 + T 4
1)}

Since all points p between two critical points have the same instantaneous period GZC
is local down to a quarter period. Hereafter, we refer to the time scale of an IMF as the
average of the instantaneous periods along the whole IMF. Because the time scale of each
IMF depends on the original signal, we propose the following to efficiently compare IMFs from
different signals. We cluster IMFs with respect to their time scales and partially reconstruct
each signal by aggregating its IMFs from the same cluster. Then, we directly compare the
partial signals of different devices.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 90

EMD yields distinct components in different time scales and we compute the instanta-
neous frequencies [57] of IMFs using Generalized Zero-Crossing [56]. We break the time scales
into four frequency bands:

• High Frequency: a time scale smaller than 30 minutes, mainly reflecting the operation
characteristics of devices and noise in system.

• Medium Frequency: a time scale between 30 minutes and 6 hours, which is within the
time span of daily activities inside a building.

• Low Frequency: a time scale between 6 hours and 7 days.

• Residue: everything has a time scale longer than 7 days and shows long-term patterns,
such as seasonal changes.

Later in this thesis we will explain how we use the medium-frequency band for both
spatial verification and functional verification. We discuss the 4 types of verification in the
next section.

Functional Verification
With an increased push for operational efficiency, operators are relying more on historical

data processing to uncover opportunities for energy-savings. However, they are overwhelmed
with the deluge of data and seek more efficient ways to identify potential problems. In
this thesis, we present an approach called the Strip, Bind and Search (SBS); a method
for uncovering abnormal equipment behavior and in-concert usage patterns. SBS uncovers
relationships between devices and constructs a model for their usage pattern relative to other
devices. It then flags deviations from the model.

The intuition behind the proposed approach is that each service provided by the building
requires a minimum subset of devices. The devices within a subset are used at the same time
when the corresponding service is needed and a savings opportunity is characterized by the
partial activation of the devices. For example, office comfort is attained through sufficient
lighting, ventilation, and air conditioning. These are controlled by the lighting and HVAC
(Heating, Ventilation, and Air Conditioning) system. Thus, when the room is occupied both
the air conditioner (heater on a cold day) and lights are used together and should be turned
off when the room is empty. In principle, if a person leaves the room and turns off only the
lights then the air conditioner (or heater) is a source of electricity waste.

Following this basic idea we propose Strip, Bind and Search (SBS), an unsupervised
methodology that systematically detects electricity waste. Our proposal consists of two key
components:

Strip and Bind The first part of the proposed method mines the raw sensor data, iden-
tifying inter-device usage patterns. We first strip the underlying traces of occupancy-
induced trends. Then we bind devices whose underlying behavior is highly correlated.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 91

This allows us to differentiate between devices that are used together (high correla-
tion), used independently (no correlation), and used mutually exclusively (negative
correlation).

Search The second part of the method monitors devices relationships over time and reports
deviations from the norm. It learns the normal inter-device usage using a robust, longi-
tudinal analysis of the building data and detect anomalous usages. Such abnormalities
usually present an opportunity to reduce electricity waste or events that deserve careful
attention (e.g. faulty device).

SBS overcomes several challenges. First, noisy sensor traces that all share a similar
trend, making direct correlation analysis non-trivial. Device energy consumption is mainly
driven by occupancy and weather, all the devices display a similar daily pattern, in roughly
overlapping time intervals and phases. Therefore, one of the main contributions of this
work is uncovering the intrinsic device relationships by filtering out the dominant trend.
For this task we use Empirical Mode Decomposition [58], a known method for de-trending
time-varying signals.

Another key contribution of this work is in using SBS to practically monitor building
energy consumption. Moreover, the proposed method is easy to use and functions in any
building, as it does not require prior knowledge of the building nor extra sensors. It is also
tuned through a single intuitive parameter.

Spatial Verification
Typically, placement information is embedded in the name or associated metadata for

each sensor in the building. These are used to group sensors by location. For example, in
our building data, all sensors that contain the string ‘410’ in their name are in room 410.
Processes typically group streams in this fashion: using regular-expression matching or field-
matching queries on the characters in the sensor name or metadata. If these are not updated
to reflect changes then such group-by query results will not accurately represent true spatial
relationships. We observe that spatial associations can be derived empirically. We start with
this approach in our work and explore, more deeply, the extent to which it can be used as a
verification tool for corroborating the groups constructed from character-matching queries.
We refer to this process as spatial verification.

We start our analysis by extending the methodology used for functional verification,
based on empirical mode decomposition (EMD). In our analysis, we collect traces from
several sensors and run EMD on them. This produces a set of “intrinsic mode functions”
(IMF), which we separate by frequency range and re-aggregate them into distinct bands.
Then, we inspect the relationship between the sensors by computing the corrcoeff within
a particular band, which gives us the spatial information we are interested in. Finally, we
separate the result set into sub-sets, and closely examine their statistical characteristics.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 92

Figure 6.2: (a) EMD decomposes a signal and exposes intrinsic oscillatory components; (b)
Aggregation of IMFs within a pre-defined frequency range makes seemingly similar signals
from different locations more distinguishable; (c) IMF aggregation makes seemingly distinct
signals of different sensors in the same room show high correlation.

Categorical Verification
Categorical verification is the ability to cluster sensor traces by the type of sensor that

it (i.e. its unit of measure) and the thing it is measuring. Ideally we should be able to
separate feeds that are measuring different physical attributes and/or are placed in different
parts of the building. For example, if there are sensors measuring temperature in a pipe
and temperature in a room we should be able to separate them from one another as well
as separate them from sensor pressuring pressure in a valve. We will show that this can be
by examining their distribution and for small data sets with different sensor our approach
works quite well, however we present some challenges in a large, more realistic deployment
data set and we discuss why it is so challenging to deal with.

6.3 Functional Verification Methodology
We run SBS on a set of building sensor traces; each containing hundred sensors reporting

data flows over 18 weeks from two separate buildings with fundamentally different infras-
tructures. We demonstrate that, in many cases, SBS uncovers misbehavior corresponding to

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 93

Device location

D
e

v
ic

e
 l
o

c
a

ti
o

n

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6.3: Correlation coefficients of the raw traces from the Todai dataset. The matrix is
ordered such as the devices serving same/adjacent rooms are nearby in the matrix.

inefficient device usage that leads to energy waste. The average waste uncovered is as high
as 2500 kWh per device.

We validate the effectiveness of our approach using 10 weeks of data from a modern
Japanese building containing 135 sensors and 8 weeks of data from an older American build-
ing containing 70 sensors. These experiments highlight the effectiveness of SBS to uncover
device relationships in a large deployment of 135 sensors. Furthermore, we inspect the SBS
results and show that the reported alarms correspond to significant opportunities to save
energy. The major anomaly reported in the American building lasts 18 days and accounts
for a waste of 2500 kWh. SBS also reports numerous small anomalies, hidden deep within
the building’s overall consumption data. Such errors are very difficult to find without SBS.

The primary objective of SBS is to determine how device usage patterns are correlated
across all pairs of sensors and discover when these relationships change. The naive approach
is to run correlation analysis on pairs of sensor traces, recording their correlation coefficients
over time and examining when there is a statistically-significant deviation from the norm.
However, this approach does not yield any useful information when applied to raw data
traces. For example, the two raw signals shown in Figure 6.5 are from two independent
HVAC systems, serving different rooms on different floors. Since each space is independently
controlled, we expect their power-draw signals to be uncorrelated (or at least distinguishable
from other signal pairs). However, their correlation coefficient (0.57), is not particularly
informative – it is statistically similar to the correlation between itself and other signals in
the trace.

Using a larger set of devices, Figure 6.3 shows a correlation matrix with 135 distinct
lighting and HVAC systems serving numerous rooms in a building. The indices are selected

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 94

1 240 480 720 960 1200 1440 1680

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lag Length (hour)

A
C

F

X = 24
Y = 0.729

 X = 168
Y = 0.662

Figure 6.4: Auto-correlation of a usual signal from the Building 1 dataset. The signal features
daily and weekly patterns (resp. x = 24 and x = 168).

such that their index-difference is indicative of their relative spatial proximity. For example,
a device in location 1 is closer in the building to a device in location 2 than it is to a device in
location 135. The color of the cell is the average pairwise correlation coefficient for devices in
the row-column index. The higher the value, the lighter the color. Devices serving the same
room are along the diagonal. Because these devices are used simultaneously, we expect high
average correlation scores, lighter shades, along the diagonal figure. However, we observe no
such pattern. Most of the signals are correlated with all the others and we see no discernible
structure.

An explanation for this is that the daily occupant usage patterns drive these results.
Figure 6.5 demonstrates this more clearly. It shows two 1-week raw signals traces which
feature the same diurnal pattern. This trend is present in almost every sensor trace, and,
it hides the smaller fluctuations providing more specific patterns driven by local occupant
activity. Upon deeper inspection, we uncovered several dominant patterns, common among
energy-consuming devices in buildings [123]. Figure 6.4 depicts the auto-correlation of a
usual electric power signal for a device. The two highest values in the figure correspond to
a lag of 24 hours and 168 hours (one week). Therefore, the signal has some periodicity and
similar (though not equal) values are seen at daily and weekly time scales. The daily pattern
is due to daily office hours and the weekly pattern corresponds to weekdays and weekends.
Correlation analysis on raw signals cannot be used to determine meaningful inter-device
relationships because periodic components act as non-stationary trends for high-frequency
phenomenon, making the correlation function irrelevant. Such trends must be removed in
order to make meaningful progress towards our aforementioned goals.

In the next section we describe SBS. We discuss strip and bind in section 6.3, which ad-
dresses de-trending and relationship-discovery. Then, we describe how we search for changes

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 95

EMD

IMF agg.

R
a
w

 S
ig

n
a
ls

IM
Fs

Pa
rt

ia
l
S
ig

n
a
ls

C
o
rr

e
la

ti
o
n

M
a
tr

ic
e
s

Corr. Coeff.

High
Freq.

Med.
Freq.

Low
Freq. Res.

R
e
s.

 L

o
w

 M

e
d

.
 H

ig
h

Mon. Tue. Wed. Thu. Fri. Sat. Sun.
0

2

4

6

8

Mon. Tue. Wed. Thu. Fri. Sat. Sun.
0

5

10

15

Figure 6.5: Strip and Bind using two raw signals standing for one week of data from two
different HVACs. (1) Decomposition of the signals in IMFs using EMD (top to bottom: c1
to cn); (2) aggregation of the IMFs based on their time scale; (3) comparison of the partial
signals (aggregated IMFs) using correlation coefficient.

in usage patterns, in section 6.3, to identify potential savings opportunities.

Strip and Bind

Discovering devices that are used in concert is non-trivial. SBS decomposes each signal
into an additive set of components, called Intrinsic Mode Functions (IMF), that reveals the
signal patterns at different frequency bands. IMFs are obtained using Empirical Mode De-
composition (see Figure 6.5 and Section 6.2). We only consider IMFs with time scales shorter
than a day, since we are interested in capturing short-scale usage patterns. Consequently,
SBS aggregates the IMFs that fall into this specific time scale (see IMF agg. in Figure
6.5). The resulting partial signals of different device power traces are compared, pairwise, to
identify the devices that show un/correlated usage patterns (see Corr. Coeff. in Figure 6.5).

The IMFs are clustered using four time scale ranges:

• The high frequencies are all the IMFs with a time scale lower than 20 minutes. These

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 96

IMFs capture the noise.

• The medium frequencies are all the IMFs with a time scale between 20 minutes and 6
hours. These IMFs convey the detailed devices usage.

• The low frequencies are all the IMFs with a time scale between 6 hours and 6 days.
These IMFs represent daily device patterns.

• The residual data is all data with a time scale higher than 6 days. This is mainly
residual data obtained after applying EMD. Also, it highlights the main device trend.

These time scale ranges are chosen based on our experiments and goal. The 20-minute
boundary relies on the sampling period of our dataset (5 minutes) and permits us to capture
IMFs with really short periods. The 6-hour boundary allows us to analyze all patterns that
have a period shorter than the usual office hours. The 6-day boundary allows us to capture
daily patterns and weekday patterns.

Aggregating IMFs, within each time scale range, results in 4 partial signals representing
different characteristics of the device’s energy consumption (see Partial Signals in Figure 6.5).
We do a pairwise device trace comparison, calculating the correlation coefficient of their
partial signals. In the example shown in Figure 6.5, the correlation coefficient of the raw
signals suggests that they are highly correlated (0.57). However, the comparison of the
corresponding partial signals provides new insights; the two devices are poorly correlated at
high and medium frequencies (respectively −0.01 and −0.04) but highly correlated at low
frequencies (0.79) meaning that these devices are not “intrinsically” correlated. They only
share a similar daily pattern.

All the devices are compared pairwise at the four different time scale ranges. Conse-
quently, we obtain four correlation matrices that convey device similarities at different time
scales. Each line of these matrices (or column, since the matrices are symmetric) reveals the
behavior of a device – its relationships with the other devices at a particular time scale. The
matrices form the basis for tracking the behavior of devices and to search for misbehavior.

Search
Search aims at identifying misbehaving devices in an unsupervised manner. Device be-

havior is monitored via the correlation matrices presented in the previous section. Using
numerous observations SBS computes a specific reference that exhibits the normal inter-
device usage pattern. Then, SBS compares the computed reference with the current data
and reports devices that deviate from their usual behavior.

Reference Matrix
We define four reference matrices, which capture normal device behavior at the four

time scale ranges defined in Section 6.2. The references are computed as follows: (1) we

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 97

retrieve the correlation matrices for n consecutive time bins. (2) For each pair of devices
we compute the median correlation over the n time bins and obtain a matrix of the median
device correlations.

Formally, for each time scale range the computed reference matrix for d devices and n
time bins is:

Ri,j = median(C1
i,j, ..., C

n
i,j)

where i and j ranges in [1, d].
Because anomalies are rare by definition, we assume the data used to construct the

reference matrix is an accurate sample of the population; it is unbiased and accurately
captures the range of normal behavior. Abnormal correlation values, that could appear
during model construction, are ignored by the median operator thanks to its robustness to
outlier (50% breakdown point). However, if that assumption does not hold (more than 50%
of the data is anomalous), our model will flag the opposite – labeling abnormal as normal
and vice-versa. From close inspection of our data, we believe our primary assumption is
sound.

Behavior change
We compare each device behavior, for all time bins, to the one provided by the reference

matrix. Consider the correlation matrix Ct obtained from the data for time bin t (1 ≤ t ≤ n).
Vector Ct

i,∗ is the behavior of the ith device for this time bin. Its normal behavior is given
by the corresponding vector in the reference matrix Ri,∗. We measure the device behavior
change at the time bin t with the following Minkowski weighted distance:

lti =
 d∑

j=1
wij

(
Ct

i,j −Ri,j

)p

1/p

where d is the number of devices and wij is:

wij = Ri,j∑d
k=1 Ri,k

.

The weight w enables us to highlight the relationship changes between the device i and those
highly correlated to it in the reference matrix. In other words, our definition of behavior
change is mainly driven by the relationship among devices that are usually used in concert.
We also set p = 4 in order to inhibit small differences between Ct

i,j and Ri,j but emphasize
the important ones.

By monitoring this quantity over several time bins the abnormal device behaviors are
easily identified as the outlier values. In order to identify these outlier values we implement a
robust detector based on median absolute deviation (MAD), a dispersion measure commonly
used in anomaly detection [59, 19]. It is a measure that robustly estimates the variability of
the data by computing the median of the absolute deviations from the median of the data.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 98

Let li = [l1i , ..., lni] be a vector representing the behavior changes of device i over n time bins,
then its MAD value is defined as:

MADi = bmedian(|li −median(li)|)

where the constant b is usually set to 1.4826 for consistency with the usual parameter σ for
Gaussian distributions. Consequently, we define anomalous behavior, for device i at time t,
such that the following equation is satisfied:

lti > median(li) + τ MADi

Note, τ is a parameter that permits to make SBS more or less sensitive.
The final output of SBS is a list of alarms in the form (t, i) meaning that the device i

has abnormal behavior at the time bin t. The priority of the alarms in this list is selected
by the building administrator by tuning the parameter τ .

We evaluate SBS using data collected from buildings in two different geographic locations.
One is a new building on main campus of the University of Tokyo and the other is an older
building at the University of California, Berkeley.

Data pre-processing is not generally required for the proposed approach. Nevertheless,
we observe in a few exceptional cases that sensors reporting excessively high values (i.e.
values higher than the device actual capacity) that greatly alter the performance of SBS by
inducing a large bias in the computation of the correlation coefficient. Therefore, we remove
values that are higher than the maximum capacity of the devices, from the raw data.

The Todai dataset we use contains 10 weeks of data starting from June 27, 2011 and
ending on September 5, 2011. This period of time is particularly interesting for two reasons:
1) in this region, the summer is the most energy-demanding season and 2) the building
manager actively works to curtail energy usage as much as possible due to the Tohoku
earthquake and Fukushima nuclear accident.

Furthermore, this dataset is a valuable ground truth to evaluate the Strip and Bind
portions of SBS. Since the light and HVAC of the rooms are directly controlled by the
room’s occupants, we expect SBS to uncover verifiable devices relationships.

The Cory Hall dataset we use consists of 8 weeks of energy consumption traces measured
by 70 sensors starting on April 5th, 2011. In contrast to the other dataset, a variety of
devices are monitored, including, electric receptacles on certain floors, most of the HVAC
components, power panels and whole-building consumption.

These two building infrastructures are fundamentally different. This enables us to eval-
uate the practical efficacy of the proposed, unsupervised method in two very different envi-
ronments.

In this section we evaluate SBS on our building traces. We demonstrate the benefits
of striping the data by monitoring patterns captured at different time scales. Then, we
thoroughly investigate the alarms reported by SBS.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 99

Device type

D
e

v
ic

e
 t

y
p

e

Time scale < 20 min.

E
H

P
G

H
P

L
ig

h
t

EHP GHP Light

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) High Frequencies
Device location

D
e
v
ic

e
 l
o
c
a
ti
o
n

Time scale > 20min. and < 360 min.

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Medium Frequencies

Device location

D
e
v
ic

e
 l
o
c
a
ti
o
n

Time scale > 360min. and < 8640 min.

20 40 60 80 100 120

20

40

60

80

100

120 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Low Frequencies
Device type

D
e
v
ic

e
 t
y
p
e

Time scale > 8640 min.

E
H

P
G

H
P

L
ig

h
t

EHP GHP Light

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Residual data

Figure 6.6: Reference matrices for the four time scale ranges (the diagonal x = y is colored in
black for better reading). The medium frequencies highlight devices that are located next to
each other thus intrinsically related. The low frequencies contains the common daily pattern
of the data. The residual data permits to visually identify devices of the similar type.

Device behavior at different time scales
The Strip and Bind part of SBS is evaluated using the data from Eng. Bldg 2. This

dataset is appropriate to measure SBS’s performance, since lighting and HVAC systems
serving the same room are usually used simultaneously. Consequently, we analyze this data
using SBS and verify that the higher correlations at medium frequencies correspond to devices

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 100

located in the same room.
The dataset is split into 10, one-week bins and each bin is processed by SBS. Using the

10 correlation matrices at each time scale range, SBS uncovers the four reference matrices
depicted in Figure 6.6.

High frequencies In this work the high frequencies correspond to the signals noise, there-
fore, we do not expect any useful information from the corresponding matrix (Figure 6.6a).
Indeed, the corresponding reference matrix does not provide any help to determine a de-
vice’s relative location. Thus, we emphasize that high frequency data should be ignored for
uncovering device relationships (in contrast to [40]). Interestingly, we find that the sensors
monitoring the lights generate consistent noise.

Medium frequencies Our main focus is on the medium frequencies as it is designed
to capture the intrinsic device relationships. Figure 6.6b shows the correlation matrix at
medium frequencies. It is significantly different from the one obtained with the raw signals
(Figure 6.3): high correlation coefficients are concentrated along the matrix diagonal. Since
devices serving the same or adjacent rooms are placed nearby in the matrix it validates our
hypothesis: high correlation scores within the medium frequency band shows strong inter-
device relationships.

Considering this reference matrix as an adjacency matrix of a graph, in which the nodes
are the devices, we identify the clusters of correlated devices using a community mining
algorithm [15]. As expected we obtain mainly clusters of only two devices (light and HVAC
serving the same room), but we also find clusters that are composed of more devices. For
example a cluster contains 3 HVAC systems serving the three server rooms. Although these
server rooms are located on different floors, SBS shows a strong correlation between these
devices. Coincidentally, they are managed similarly. Interestingly, we also observe a couple
of clusters that consist of independent devices serving adjacent rooms belonging to the same
lab. The bigger cluster contains 33 devices that are 2 GHP devices and the corresponding
lights. This correlation matrix and the corresponding clusters highlight the ability for SBS
to identify such hidden inter-device usage relationships.

Low frequencies Low frequencies capture daily patterns, embedded in all the device
traces. Figure 6.6c depicts the corresponding reference matrix which is similar to the one of
raw signal traces (Figure 6.3) and it shows no particular structure.These partial signals are
discarded as they do not help us in identifying inter-device usage patterns.

Residual data The residual data shows the weekly trend, which gives us no information
about device relationships. But, surprisingly, by reordering the correlation matrix based on
the type of the devices (Figure 6.6d) we can visually identify two major clusters. The first
cluster consists of HVAC devices (see EHP and GHP in Figure 6.6d) and the second one
contains only lights. An in-depth examination of the data reveals that long-term trends are

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 101

inherent to the device types. For example, as the consumption of both the EHP and GHP
devices is driven by the building occupancy and the outside temperature, these two types
of devices follow the same trend. However, the use of light is independent from the outside
temperature thus the lighting systems follow a common trend different from the EHP and
GHP one.

We conduct the same experiments by splitting the dataset in 70 bins of 1 day long and
observe analogous results at high and medium frequencies but not at lower frequencies. This
is because the bins are too short to exhibit daily oscillations and the residual data captures
only the daily trend.

Methodological Shortcomings
Because our analysis is done on historical data, some of the faults found by SBS could

not be fully corroborated. In order to fully examine the effectiveness of our approach, we
must run it in real time and physically check that the problem is actually occurring. When a
problem is detected in the historical trace, months after it has occurred, the current state of
the building may no longer reflect what is in the traces. Some of the anomalies discussed in
this section uncover interpretable patterns that are difficult to find in practice. For example,
simultaneous heating and cooling is a known, recurring problem in buildings, but it is very
hard to identify when it is occurring. Some of the anomalies we could not interpret might be
interpretable by a building manager, however, we did not consult either building manager
for this study. Therefore, the results of this study do not examine the true/false positive
rate exhaustively.

The true/false negative rate is impractical to assess. It may be examined through syn-
thetic stimulation of the building via the control system. However, getting cooperation from
a building manager to hand over control of the building for experimentation in non-trivial.
Therefore, we forgo a full true/false negative analysis in our evaluation.

Because of these challenges, the evaluation of SBS focuses on comparing the output with
known fault signatures. We examine anomalies, in either building, where the anomaly is
easily interpretable but difficult to find by the building manager. We forgo a comparison of
SBS with competing algorithms because related algorithms require detailed knowledge of the
building, a priori. The advantage of SBS is that it requires no such information to provide
immediate value.

6.4 Functional Verification Experimental Results
We evaluate the search performance of SBS using the traces from the Eng. Bldg 2 and

Cory Hall. Due to the lack of historical data, such as room schedule or reports of energy
waste, the evaluation is non-trivial. Furthermore, getting ground truth data from a manual
inspection of the hundreds traces of our data sets is impractical. The lack of ground truth
data prevents us from producing a systematic analysis of the anomalies missed by SBS (i.e.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 102

3 4 5 6 7 8 9 10
0

50

100

150

200

τ

#
a

la
rm

s

Eng. Bldg. 2

Cory Hall

Figure 6.7: Number of reported alarms for various threshold value (τ = [3, 10]).

false negatives rate). Nevertheless, we exhibit the relevance of the anomalies uncovered by
SBS (i.e. high true positive rate and low false positive rate) by manually checking the output
of SBS.

Anomaly classification To validate SBS results we manually inspect the anomalies de-
tected by the algorithm. For each reported alarm (t, i) we investigate the device trace i and
the devices correlated to it to determine the reason for the alarm. Specifically, we retrieve
the major relationship change that causes the alarm (i.e. max(|wj(Ct

i,j −Ri,j)|), see Section
6.3) and examine the metadata associated to the corresponding device. This investigation
allows us to classify the alarms into five groups:

• High power usage: alarms corresponding to electricity waste.

• Low power usage: alarms representing the abnormally low electricity consumption of
a device.

• Punctual abnormal usage: alarms standing for short term (less than 2.5 hours) raise
or drop of the electricity consumption.

• Missing data: alarms raised due to a sensor failure.

• Other : alarms whose root cause is unclear.

Experimental setup For each experiment, the data is split in time bins of one day,
starting from 09:00 a.m. – which is approximately the office’s opening time. We avoid
having bins start at midnight since numerous anomalies appear at night and they are better

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 103

High Low Punc. Missing Other
Eng. Bldg 2 9 (5) 6 (5) 1 (1) 36 (1) 3 (3)
Cory Hall 25 (7) 7 (3) 4 (4) 0 (0) 3 (3)

Table 6.1: Classification of the alarms reported by SBS for both dataset (and the number of
corresponding anomalies).

highlighted if they are not spanning two time bins. Only the data at medium frequencies
are analyzed, the other frequency bands are ignored, and the reference matrix is computed
from all time bins.

The threshold τ tunes the sensitivity of SBS, hence, the number of reported alarms. Fur-
thermore, by plotting the number of alarms against the value of τ for both datasets (Figure
6.7) we observe an elbow in the graph around τ = 5. With thresholds lower than this pivot
value (τ < 5), the number of alarms significantly increases, causing less important anomalies
to be reported. For higher values (τ > 5), the number of alarms is slowly decreasing, pro-
viding more conservative results that consist of the most important anomalies. This pivot
value provides a good trade off for either data set.

Table 6.1 classifies the alarms reported by SBS on both datasets. Anomalies spanning
several time bins (or involving several devices) may raise several alarms. We display these in
Table 6.1 as numbers in brackets – the number of anomalies corresponding to the reported
alarms.

Alarms in Todai
SBS reported 55 alarms over the 10 weeks of the Eng. Bldg 2 dataset. However, 36

alarms are set aside because of sensor errors; one GHP has missing data for the first 18 days.
Since this device is highly correlated to the GHP in the reference matrix, their relationship
is broken for the 18 first bins and for each bin one alarm per device is raised.

In spite of the post-Fukushima measures to reduce Eng. Bldg 2’s energy consumption,
SBS reported nine alarms corresponding to high power usage (Table 6.1). Figure 6.8a depicts
the electricity consumption of the light and EHP in the same room where two alarms are
raised. Because the EHP was not used during daytime (but is turned on at night, when
the light is turned off) the relationship between the two devices is “broken” and an alarm
is raised for each device. Figure 6.8b shows another example of energy waste. The light is
on at night and the EHP is off. The top-priority anomaly reported by SBS is caused by the
10 days long constant use of an EHP (Figure 6.8d) and this waste of electricity accounts for
165 kWh. SBS partially reports this anomaly but lower values of τ permits us to identify
most of it.

We observed six alarms corresponding to abnormally low power use. Upon further in-
spection we notice that it corresponds to energy saving initiatives from the occupants – likely

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 104

0

1

2

3

4

k
W
h

EHP1

day 1 day 2 day 3
0

1

2

3

k
W
h

LIGHT1

(a) High power usage where the
HVAC (EHP) is turned on at night

0

1

2

3

k
W
h

EHP2

day 64 day 65 day 66
0

0.5

1

1.5

k
W
h

LIGHT2

(b) High power usage where the
light is left on at night

0

2

4

6

8

k
W
h

EHP3

day 65 day 66 day 67
0

0.5

1

1.5

k
W
h

LIGHT3

(c) Low power usage where the
HVAC (EHP) is not used during
office hours

0

2

4

6

k
W
h

EHP4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

0.5

1

1.5

day

k
W
h

LIGHT4

(d) Long term high power usage partially detected

Figure 6.8: Example of alarms (red rectangles) reported by SBS on the Eng. Bldg 2 dataset

due to electricity concerns in Japan. This behavior is displayed in Figure 6.8c. The room is
occupied at the usual office hours (indicated by light usage) but the EHP is not on in order
to save electricity.

Alarms in Cory Hall
SBS reported 39 alarms for the Cory Hall dataset (Table 6.1). Seven are classified as low

power usage, however, our inspection revealed that the root causes are different than for the
Eng. Bldg 2 dataset. We observe that the low power usage usually corresponds to device
failures or misconfiguration. For example, Figure 6.9a depicts the electricity consumption of
the 2nd floor chiller and a power riser that comprises the consumption of multiple systems,
including the chiller. As the chiller suddenly stops working, the correlation between both
measurements is significantly altered and an alarm for each device is raised.

SBS also reports 25 alarms corresponding to high power usage. One of the identified
anomalies is particularly interesting. We indirectly observe abnormal usage of a device from
the power consumption of the elevator and a power panel for equipment from the 1st to the 4th

floor. Figure 6.9b and 6.9c show the electricity consumption for both devices. SBS uncovers
the correlation between these two signals, as the amount of electricity going through the panel

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 105

0

10

20

30

k
W

h

1 2F HVAC Chiller

14 15 16 17
60

70

80

90

day

k
W

h

All Floors Misc.

(a) Low power usage due to a
chiller failure

0

2

4

6

8

k
W

h

Elevator

17 18 19 20
25

30

35

40

45

day
k
W

h

1 4 Floors Misc.

(b) High power usage highlighted
by the elevator usage

0

2

4

6

8

k
W

h

Elevator

24 25 26 27
25

30

35

40

45

day

k
W

h

1 4 Floors Misc.

(c) Normal power and elevator us-
age

(d) Long term high power usage due to competing heating and cooling

Figure 6.9: Example of alarms (red rectangles) reported by SBS on the Cory Hall dataset

fluctuates along with the elevator power consumption (Figure 6.9c). In fact, the elevator is
a good indicator of the building’s occupancy. Anomalous energy-consumption is identified
during a weekend as the consumption measured at the panel is independently fluctuating
from the elevator usage. These fluctuations are caused by a device that is not directly
monitored. Therefore, we could not identify the root cause more precisely. Nevertheless, the
alarm is worthwhile for building operators to start investigating.

The most important anomaly identified in Cory Hall is shown in Figure 6.9d. This
anomaly corresponds to the malfunctioning of the HVAC heater serving the 4th and 5th

floors. The heater is constantly working for 18 consecutive days, regardless of the underlying
occupant activity. Moreover, in order to maintain appropriate temperature this also results
in an increase of the 4th floor HVAC chiller power consumption and several fans, such as the
one depicted in Figure 6.9d. This situation is indicative of simultaneous heating and cooling
– whereby heating and cooling systems are competing – and it is a well-know problem in
building management that leads to significant energy waste. For this example, the electricity
waste is estimated around 2500 kWh for the heater. Nevertheless, as the anomaly spans over
18 days, it is hidden in the building’s overall consumption, thus, it is difficult to detect by
building administrators without SBS.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 106

6.5 Spatial Verification Methodology
We examine the use of EMD for verifying spatial relationships. We run our separate

analyses on two separate data sets. The first is a data set at Todai and the other is a
data set in Sutardja Dai Hall at UC Berkeley. For the Todai data set, we use a simple
methodology whereby we run a pairwise correlation analysis on the IMFs for traces in that
building. We create clusters of traces that share a high correlation value and examine the
spatial characteristics of the clusters as we sweep through the acceptance threshold on the
correlation values.

The second analysis is on a separate data set in Sutardja Dai Hall. There, we expand the
methodology from the Todai dataset and apply machine learning techniques to systematize
the clustering processes. We also examine the effectiveness of our clustering algorithm as we
sweep through a series of threshold values. We present both methodologies and results in
this section.

Todai Data Set Analysis Methodology
For the first investigation, we focus on a three-week span in the summer of 2011 (from

July 4th to July 24th). The dataset captures regular work days, weekends, and one holiday
(July 18th). This timeframe captures the typical usage of the equipment, triggered by
occupant activity. For the initial analysis, we focus on three sensors; two pumps – electric
heat pump (EHP) and a gas heat pump (GHP) and a light feed, that measure the light
level is lumens. The room lighting system serves the same room as the EHP. The GHP
serves a different room on the same floor. The expanded portion of this analysis pivots on
the EHP and does a pairwise comparison between it and all other sensors in the building.
We use EMD to detrend each of the traces and pay particularly close attention to the high-
frequency IMFs. Our hypothesis is that correlating at the higher frequencies will yield more
meaningful comparisons. In buildings, metadata is poorly and unsystematically managed
within a single system domain. Moreover, with the ever growing number of additional sub-
meters, it is important to quickly integrate sensor data from multiple systems to understand
the full state of the building. It is also important to understand how sensors are used
in concert. Anomalies in usage may indicate underlying problems with the equipment or
inefficient/incorrect usage.

Sutardja Dai Hall Analysis Methodology
The methodology used in the SDH is more extensive and consists of several steps. Each

is discussed in great details in this section.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 107

Distribution Analysis

For the second part of our evaluation, we perform an empirical study on sensor data
collected from 15 sensors across five rooms. Each room has three sensors: a temperature
sensor, a CO2 sensor, and a humidity sensor. The data from these is reported to an sMAP [30]
archiver. The data set used comes from two separate deployments: one is a deployment [111]
lasting over six months on several floors in Sutardja Dai Hall (SDH) at UC Berkeley, where
one sensor box – which contains a thermometer, a humidity sensor and a CO2 sensor – is
placed in each room. The box reports data over 6LowPAN [60] to a sMAP archiver every 15
seconds. The other is a long-term deployment comprised of thousands of sensors in dozens of
buildings on campus. We choose the portion of the SDH data set where the sensor devices,
accessible via BACnet, report data to the archiver every few minutes. Due to intermittent
data loss, we pick a time span without interruption, starting in January until mid-February,
2013, for evaluation.

Let tsi
j,t be a time-series for sensor j in room i observed over some time interval t. For

simplicity, we ignore t in defining subsequent functions and re-introduce it where necessary.
For each trace we run EMD and obtain a set of n IMFs, denoted as follows:

Φi
j = EMD(tsi

j) = {IMF1∼n}

IMFs are traces themselves, so we divide and re-aggregate them into the four bands B.

B = {H(igh),M(edium), L(ow), R(esidue)}

Let the re-aggregation of the bands be denoted as:

Aggr(Φi
j) =

{
IMF i

f,j

}
where f ∈ B. We pick the medium frequency band (M) to compute the pairwise corrcoeff

of the sensor traces. In order to understand and characterize the boundary between sensors
we consider two sets of corrcoeffs for each room; the “intra”-room set and “inter”-room set,
as defined:

Ri
intra,t =

{
r(IMF i

M,j,t, IMF i
M,k,t)

}
, s.t. ∀j, k ∈ Si

The intra set only contains pairs of sensors in the same room, so both tsi
j,t and tsi

k,t are
traces from sensors in room i.

Ri
inter,t =

{
r(IMF i

M,j,t, IMF i′

M,k,t)
}
,

s.t.∀j ∈ Si, ∀k ∈ S ′i, i 6= i′

By contrast, the inter set contains pairs across rooms, meaning tsj,t is a trace from a
sensor in room i and tsk,t is a sensor trace from some other room i′. Note the use of t in the
definitions. We re-introduce t here to denote that the construction of each set is performed
with respect to a specific time interval.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 108

Finally, we examine populations, Ri
intra and Ri

inter, across multiple time intervals (in
days):

Ri
intra =

⋃
∀t
Ri

intra,t, s.t. t ∈ {1, 3, 5, 7, 14, 21, 28}

Ri
inter =

⋃
∀t
Ri

inter,t, s.t. t ∈ {1, 3, 5, 7, 14, 21, 28}

We generate a CDF for each of the two populations with respect to each room. This allows
us to closely examine the statistical characteristics of the relationship between sensors in the
same space and those in different spaces. Each room offers a potentially different perspective
on this relationship.

Threshold Analysis

In order to understand the statistical properties, we generate two corrcoeff distributions
by computing the corrcoeff between pairs of traces within and across each room, as detailed
in the previous section. Figure 6.15 shows how we divide the corrcoeff values into two sets.
The figure shows two intra and two inter sets. Specifically, we examine how a choice in
cut-off threshold affects the ability to separate the sets, when their separation is not known
a priori, relative to each room. Our hypothesis is that there exists a computable, statistical
boundary between sensors in different rooms.

To test our hypothesis, we choose a threshold value relative to the distribution of cor-
rcoeffs. All pairs with a corrcoeff larger than the threshold will be classified as being in the
same room. To closely analyze the threshold parameter, we generate a receiver operating
characteristic (ROC) curve by varying the threshold value. Then, we look for a good trade-
off point between the true-positive and false-positive rate; one that maximizes the difference
between TPR and FPR. We compare the ROCs generated for our “medium” frequency band
IMFs against raw-signal, cross-correlation values, in order to ascertain the extent to which
the SBS [41] methodology is advantageous for discovering a statistical separation, analogous
to a physical one. We also examine whether there is a uniform boundary between clusters
across all the rooms.

Suatardja Dai Hall Data Set Analysis Methodology
We perform an empirical study on sensor data collected from 15 sensors across five rooms

on four different floors of a Sutardja Dai Hall, as detailed in Table 6.2. Each room has three
sensors: a temperature sensor, a CO2 sensor, and a humidity sensor. The data from these
is reported to an sMAP [30] archiver. The data set used comes from a deployment [111]
lasting over 6 months on several floors in Sutardja Dai Hall (SDH) at UC Berkeley, where
one sensor box – which contains a thermometer, a humidity sensor and a CO2 sensor – is
placed in each room. The box reports data over 6LowPAN [60] to a sMAP archiver every 15
seconds. Due to intermittent data loss, we pick a time span without interruption, starting
in January until mid-Feburary, 2013, for evaluation.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 109

Figure 6.10: The ROC curves depict the sensitivity of the raw signal and mid-frequency
IMFs to the threshold value. We choose the 0.2 FPR point as the boundary threshold for
each room.

Figure 6.11: We collect data from 15 sensors in five rooms sitting on four different floors.
This is a map of a section of the 3rd floor in Sutardja Dai Hall.

Table 6.2: Room Specs

Room# Orientation Floor Type
A West 2 Computer Lab
B South 4 Conference Room
C No Window 2 Classroom
D North 7 Conference Room
E South 5 Conference Room

6.6 Spatial Verification Results
Our initial results on the Todai dataset were not surprising. The diurnal pattern domi-

nates the comparison between the sensors. Weather is the main driver for this behavior and

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 110

Raw trace 1st IMF 2nd IMF 3rd IMF Residual
EHP, Light 0.7715 0.43909 0.49344 0.63469 0.82132
EHP, GHP 0.6370 0.0060274 0.063546 0.16764 0.79378

Table 6.3: Correlation coefficients of the analyzed trace and their IMFs uncovered by EMD

it affects the readings in almost all of the sensors in our dataset. Cross-correlation on raw
sensor data is insufficient for filtering intrinsically related behavior. Upon closer examination
of the data we assess the following:

• The main underlying diurnal trend occurs in almost all the traces.

• Occupancy and room activities occur at random times during the day and change at
a higher frequency than weather patterns.

• Sensors that serve the same location observe the same activities. Therefore, their
underlying measurements should be correlated.

In order to uncover these relationships we must remove low-frequency trends in the traces
and compare the readings at high frequencies.

We test our hypothesis in this section by using EMD to remove low-frequency trends
in the data and run correlation calculation at overlapping IMF timescales. We discover
that EMD allows us to find and compare high-frequency intrinsic behavior that is spatially
correlated across sensors. We begin with a small set of three sensors (EHP, GHP, light) and
expand our scope to include all the sensors in the dataset.

Initial Todai Analysis Results
Figure 6.12 shows the raw traces for the three devices discussed in the previous section

(EHP, GHP, light). All three exhibit a diurnal usage pattern. On weekends, each draw
less power. For our initial analysis, we calculated the pairwise correlation coefficient for
all sensors in the set. The correlation coefficient for the EHP and light is 0.7715 and the
correlation coefficient for the EHP and GHP is 0.6370. Running correlation across them
yields high correlation coefficients, mostly due to their underlying daily usage pattern.

We would like to know if the EHP trace is correlated with the two other traces. Recall
that the correlation coefficients of the raw feeds was 0.7715 and 0.6370, corresponding to
the light and GHP, respectively. As stated in previous section this result is correct but not
so meaningful, since most of the traces display the same diurnal pattern. Figure 6.12 shows
the EMD decomposition of the three traces. For each trace, EMD has retrieved three IMFs
that highlight the higher frequencies of the traces.

Figure 6.12 shows the normalized raw trace (top) and EMD output IMFs and residual as
well as the correlation coefficients calculated on the IMFs for the EHP and light traces. The

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 111

0
0.2
0.4
0.6
0.8

tr
a
c
e

Correlation coeff. 0.7715

Correlation coeff. 0.43909

Correlation coeff. 0.49344

Correlation coeff. 0.63469

Correlation coeff. 0.82132

−0.5

0

0.5

IM
F 1

−0.5

0

0.5

IM
F 2

−0.5

0

0.5

IM
F 3

100 200 300 400 500 600 700 800 900 1000

−0.4
−0.2

0
0.2
0.4

re
s
id

u
a
l

Time (30min time bins)

EHP Light

Figure 6.12: Decomposition of the EHP and light trace using bivariate EMD. IMFs correla-
tion coefficients highlight the intrinsic relationship of the two traces.

correlation coefficients are 0.43909, 0.49344 and 0.63469 corresponding to the IMF1, IMF2,
and IMF3, respectively. Notice the high correlation between the high-frequency IMFs. We
know that the light and EHP serve the same room, and their high-frequency IMF correlation
corroborates our prior knowledge.

Initial Observations

We analyze the same three-week time span for all 674 sensors deployed at Todai. For
each trace S we compute two scores: (1) the correlation coefficient between S and the EHP
trace and (2) the average value of the IMF correlation coefficients.

Figure 6.13a shows the distribution correlation coefficients. Notice that a large fraction
of the dataset is correlated with the EHP trace. Half the traces have a correlation coefficient
higher than 0.36. As expected, the underlying trend is shared by a large number of device.
Although the highest score (i.e. 0.7715) corresponds to the light in the same room that
the EHP serves, there are 118 pumps, serving all areas of the building, with a correlation
higher than 0.6. Using only these results, it is not clear where the threshold should be set.
The distribution is close to uniform, making it difficult to know of how well your threshold

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 112

−0.2 0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

Correlation coefficient

#
 t

ra
c
e

s

(a) Raw traces correlation coefficients

−0.2 0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

Avg. IMFs correlation coeff.

#
 t

ra
c
e

s

(b) Average IMFs correlation coefficients

Figure 6.13: Distribution of the correlation coefficients of the raw traces and correlation
coefficients average of the corresponding IMFs using 3 weeks of data from 674 sensors.

discriminates against unrelated traces.
Figure 6.13b shows the distribution of the average correlation value for the IMFs of

each trace and the EHP. The number of traces correlated in the high frequency IMFs is
significantly smaller than the previous results. It’s clear from the distribution that only a
small set of devices are intrinsically correlated with the EHP. In fact, only 10 traces out of
674 yielded a score higher than 0.25. This allows us to easily rank traces by correlation.

Upon closer inspection of the 10 most correlated IMF traces, we find that there is a spatial
relationship between the EHP and the ten devices. In fact, there is a direct relationship
between score and distance from the areas served by the EHP. Figure 6.14 shows a map of
the floor that contains the rooms served by this EHP. The EHP directly serves room C2. We
introduce a correlation threshold to cluster correlated traces by score. We highlight rooms
by the threshold setting on the IMF correlation score. When we set the threshold at 0.5 we
see that the sensors that have a correlation higher fall within room C2 – the room served
directly by the EHP. As we relax the threshold, lowering it to 0.25 and 0.1 we see radial
expansion from C2. The trace with the highest score, 0.522, is the trace corresponding to
the lighting system in the same room. The two highest scores for this floor (i.e. 0.316 and
0.279) are the light and EHP traces from next door, room C1. Lower values correspond to
sensors measuring activities in other rooms that have no specific relationship to the analyzed
trace. The results show a direct relationship between IMF correlation and spatial proximity
and supports our initial hypothesis.

EMD is useful for finding underlying behavioral relationships between traces of sensor
data. However, when we set the timescales smaller than a day, the results were not as strong.
The trace has to be long enough to capture the trend. For this data set, the underlying
trend is daily, therefore it requires there to be a significant number of samples over many
days. Although this was a limitation for this dataset, it really depends on the underlying

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 113

Figure 6.14: Map of the floor where the analyzed EHP serves (room C2). The location of
the sensors identified as related by the proposed approach are highlighted, showing a direct
relationship between IMF correlation and spatial proximity.

phenomenon that the sensors are measuring. Its underlying trend is ultimately what EMD
will be able to separate from the intrinsic modes of the signal.

SDH Spatial Clustering Results
We conduct two sets of experiments. First, we quantify the sensitivity of our method for

different threshold values and examine the effect of different time spans on the threshold.
We then cluster the traces based on our threshold analysis and compare it with a baseline
approach using multidimensional scaling and k-means.

Baseline and Metrics

As a baseline, after we generate the two distributions described previously, we apply
multidimensional scaling (MDS) to the corrcoeff matrix, in order to transform the original
high-dimensional relative space to a 3-D space with an absolute origin, and run the k-means
clustering algorithm. We choose the true-positive rate (TPR, also known as recall rate) and
false-positive rate (FPR) as metrics to evaluate the performance of our method versus the
naive approach, which correlates the raw traces. A true-positive (TP) is when a sensor pair
in a room is classified as being co-located while a false-positive (FP) is when a sensor that
is not in room is classified as being so.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 114

Room 2Room 1
Sensor

Inter

Intra

Figure 6.15: Two populations are examined for our threshold analysis. A solid line connects
sensors in the same room while a dotted line connects to a pairs in different rooms.

Characterizing the Boundary

To corroborate our boundary-existence hypothesis, we first need to characterize the
boundary between sensors in different rooms. We compute the pairwise correlation coef-
ficients (corrcoeffs) between sensor traces in both of populations depicted in Figure 6.15,
over different time spans – ranging from one day to one month. After generating points over
different time spans for each room, we accumulate the corrcoeffs to obtain distributions as
shown in Figure 6.16, for each of the five rooms.

The dashed vertical lines in Figure 6.16 represent an arbitrary threshold that partitions
the distribution into two sets. Pairs of sensors to the right of the line are classified as being
in the same room. Pairs of sensors to the left are classified as being in different rooms. The
CDFs on the left column show the distribution of corrcoeffs for pairs known to be in the
same room and the CDFs on the right show the distribution of corrcoeffs in different rooms.
Note in the figure, we set the threshold to the same value to both the left and right side, in
order to observe the effect of the true/false positive rates. By adjusting the threshold, we
get different TPRs/FPRs parameterized by the threshold. Figure 6.10 captures the range
tradeoff in a corresponding ROC curve.

Figure 6.10 illustrates the TPR/FPR sensitivity to different threshold values for our
method and the naive approach. A good cluster achieves a high TPR and a low FPR. As
we vary the threshold, we see that our approach achieves a TPR between 52%–93% and a
FPR between 5%–59%. We can see that the average TPR for the ROC graph on the right is
higher than the ROC graph on the left. Moreover, the corresponding average FPR is lower
on the right than on the left. In general, as the TPR rises, the FPR also goes up – a tradeoff
exists between maximizing TPR and maintaining a lower FPR.

The “boundary” is represented as the corrcoeff that produces a “good” TPR with an
“acceptable” FPR. In Figure 6.10, we choose 0.2 FPR as the boundary threshold. This
point represents the largest difference between TPR and FPR – an acceptable tradeoff point.
Looking at Figure 6.16, the 0.2 FPR corresponds roughly to the 80th-percentile correlation

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 115

0 0.1 0.2 0.3 0.4
0

0.5

1
Room A

0 0.1 0.2 0.3 0.4
0

0.5

1
Room B

0 0.1 0.2 0.3 0.4
0

0.5

1
Room C

0 0.1 0.2 0.3 0.4
0

0.5

1
Room D

0 0.1 0.2 0.3 0.4
0

0.5

1
Room E

0 0.2 0.4 0.6 0.8
0

0.5

1
Room A

0 0.2 0.4 0.6 0.8
0

0.5

1
Room B

0 0.2 0.4 0.6 0.8
0

0.5

1
Room C

0 0.2 0.4 0.6 0.8
0

0.5

1
Room D

0 0.2 0.4 0.6 0.8
0

0.5

1
Room E

Threshold Threshold

ININ OUTOUT

(a) Intra sets (b) Inter sets

Figure 6.16: CDF of correlation coefficients between IMFs of sensor feeds: the dotted lines
point to some threshold which divides the distribution and produces a TPR and FPR.

coefficient, on the “inter” set (the set of CDFs on the right). The recall rate for each room –
using a 80th-percentile corrcoeff threshold value – ranges between 62%-86% and the threshold
value falls into a narrow interval between 0.1 to 0.12. This shows that we are able to choose
a uniform value for all the rooms regardless of the sensor type.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 116

Convergence Over Time

1 3 5 7 14 21 28
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Different Lengths of Data (day)

B
o

u
n

d
a

ry
 T

h
re

s
h

o
ld

(c

o
rr

e
la

ti
o

n
 c

o
e

ff
ic

ie
n

t
o

f
8

0
%

 p
e

rc
e

n
ta

g
e

)

Room A

Room B

Room C

Room D

Room E

Figure 6.17: The threshold values all converge to a similar value and we can derive the
optimal value with as minimal as 14 days data.

Using the threshold the roughly 80th-percentile corrcoeff corresponds to in the distribu-
tion, we examine how it affects the classification rate across traces that span different lengths
of time. Convergence and consistency across different time spans is critical to automate the
parameter selection process. Observe how the threshold values differ quite significantly in
Figure 6.17. However, the threshold values gradually converge, as the length of training
data increases from one day to one month. The values derived after 14 days of data are
approximately the same as the final convergence value (around 0.07). In other words, we
can determine a threshold from two weeks of data.

Clustering Results

We cluster the sensor traces over the entire one-month period, and use the roughly 80th
percentile corrceff (0.07) as the boundary threshold. A sensor is classified into the cluster
with the largest corrcoeff. The clustering result is shown in Table 6.4. A “1” means the sensor
is classified as inside the corresponding room. In general, after obtaining the sensor clusters,
we don’t know which room each cluster corresponds to without further information such as
the metadata of sensors. The labels “A-E” in Table 6.4 are used to indicate the ground
truth of where each sensor is physically placed since we have such information. Overall, the
classification accuracy is 93.3%. We do not cluster on the corrcoeffs obtained among raw
signals because the 80%-percentile corrcoeff values do not converge across rooms. The reason
that we are able to get such a high accuracy, which is seemingly different from the statistics
in Figure 6.16 and Figure 6.10, is because the statistics in the two figures are generated out
of the corrcoeffs accumulated over different time spans (the same intervals in Figure 6.17)
while the clustering here is performed on the corrcoeffs from the entire one-month period.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 117

A B C D E
SensorA1 1 0 0 0 0 X

A2 1 0 0 0 0 X
A3 1 0 0 0 0 X
B1 0 1 0 0 0 X
B2 0 1 0 0 0 X
B3 0 1 0 0 0 X
C1 0 0 1 0 0 X
C2 0 0 1 0 0 X
C3 0 0 1 0 0 X
D1 0 0 0 1 0 X
D2 0 0 0 1 0 X
D3 0 0 1 0 0 ×
E1 0 0 0 0 1 X
E2 0 0 0 0 1 X
E3 0 0 0 0 1 X

Table 6.4: Clustering result using the thresholding method: a “1” means the sensor is
classified as inside the room. We get the “X” and “×” by comparing the clustering results
with ground truth.

Figure 6.18: Clustering with k-means on the corrcoeff matrix after applying multidimensional
scaling (MDS): The EMD-based set achieves an accuracy of 80% while the results with raw-
trace is only 53.3% classification accuracy.

To compare with our threshold-based method, we also cluster using a baseline approach.
The pairwise corrcoeff for sensors in different rooms can be interpreted as a “distance”

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 118

between them. A larger coefficient indicates a closer “distance”, and vice versa. However,
since the distances between pairs is relative, we use multidimensional scaling [34] to find a
common basis in three dimensions, re-map the relative distance metric (feature vector) into
this three-dimensional grid and use k-means to classify the traces. We set k to equal the
number of rooms, since the goal of the approach is to verify spatial placement at room-level
granularity. Generally, we believe that k should equal the number of rooms you wish to
classify the sensors into. The clustering results are shown in Figure 6.18. Ground truth is
shown through different markers (x, o, +, star, box). Each marker stands for one room. The
cluster each sensor assigned to is denoted with a number. The classification accuracy of the
baseline approach on corrcoeffs matrix of re-aggregated IMFs is 80%. For raw traces, the
baseline approach achieves an accuracy of only 53.3%.

6.7 Categorical Verification Methodology
For categorical classification we took a use a very simple approach. For every trace, we

partition the range into 10 bins and take the average. We sort the bins and take the top 2
and the combine it with the average. This combination forms our feature vector with three
components.

We run our type analysis on three data sets from separate buildings. The first is a
from the University of Tokyo. It contain six types of sensors measuring power, pressure,
temperature, CO2, light, and occupancy. The other is a deployment in Sutardja Dai Hall
at UC Berkeley which measures four different type that include lumens, CO2, temperature,
and humidity. Finally, we used a data set from Soda hall at UC Berkeley which contains 23
different types.

These data sets were chosen in such a way that we could use their categorical information
to verify our approach for classifying them according to statistical markers of categorical dif-
ference. All the data either comes from sensors embedded in a space or a sub-system taking
a physical reading or represents a set-point setting for an actuators that control the environ-
ment. In some cases, we are easily able to separate the stream categorically, using simple
statistical summaries, while other stream – particularly, the ones not actually be generated
by a physical phenomenon (i.e. temperature set point) – are statistical indistinguishable
from their physical-measurement counterpart; their differences are semantic, not behavioral.
We present our analysis and results in this section.

6.8 Categorical Verification Results
Categorical verification works quite well using the simple method describe in the method-

ology. Table 6.5 gives a summary of a pair of large traces with few categories.
The simple methodology is able to separate them quite easily. It is clear that the mean

and standard deviation provides enough information for the classifier to differentiate between

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 119

Building No. Sensors No. Types Accuracy
Todai 400 3 89%
KETI 400 4 97%

Table 6.5: Categorical classification results for two data traces.

Figure 6.19: ASO versus AGN. There is a clear value-based boundary between the two sets
of traces at around 3 in the mean.

the different categories of traces.
The soda hall data traces were much more challenging to deal with. Soda hall was a

much larger trace with 63 different categorical tags on the traces. Figure 6.19 shows the
AGN vs AGO cateogories. Because the metadata for these is not available, we do not have
any semantic information about the meaning of the tags. Note, there is a boundary between
mean values 3 and 4.

Our classifier was able to correctly classify the types with relatively few samples, giving
us over 99% classification accuracy in the range presented in the graph. Similar results were
obtained for separating the values presented in Figure 6.20. There is a clean boundary that
is observable at around a mean value of 100. Every trace with a mean greater than 100 was
labeled as a VR trace. The accuracy is 100%.

However, note the temperature traces between in Figure 6.21. The categorical clusters
overlap signficantly. We examined this distribution more closely by construct a Gaussian
mixture model and plotting the cluster centers. The results are presented in Figure 6.22.

Note, the cluster centers are not easily distinguishable. The classification accuracy varies,

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 120

Figure 6.20: The VR traces span a wide range, however, any mean above 100 is a VR trace.

leading us to believe that these sets of traces are mostly indistinguishable. Moreover, our ap-
proach for this trace is very tightly tailored to the particulars of this trace. More exploration
is necessary.

6.9 Related Work
The research community has addressed the detection of abnormal energy-consumption

in buildings in numerous ways [66, 67].
The rule-based techniques rely on a priori knowledge, they assert the sustainability of a

system by identifying a set of undesired behaviors. Using a hierarchical set of rules, Schein et
al. propose a method to diagnose HVAC systems [104]. In comparison, state machine models
take advantage of historical training data and domain knowledge to learn the states and
transitions of a system. The transitions are based on measured stimuli identified through
a domain expertise. State machines can model the operation of HVAC systems [96] and
permit to predict or detect the abnormal behavior of HVAC’s components [12]. However,
the deployment of these methods require expert knowledge and are mostly applied to HVAC
systems.

In [105], the authors propose a simple unsupervised approach to monitor the average and
peak daily consumption of a building and uncover outlier, nevertheless, the misbehaving
devices are left unidentified.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 121

Figure 6.21: All temperature streams. Note, these are much more difficult to tease part. A
Gaussian mixture model can separate them with approximately 77% accuracy, but it may
not generalize.

Using regression analysis and weather variables the devices energy-consumption is pre-
dicted and abnormal usage is highlighted. The authors of [17] use kernel regression to
forecast device consumption and devices that behave differently from the predictions are
reported as anomalous. Regression models are also used with performances indices to mon-
itor the HVAC’s components and identify inefficiencies [128]. The implementation of these
approaches in real situations is difficult, since it requires a training dataset and non-trivial
parameter tuning.

Similar to our approach, previous studies identify abnormal energy-consumption using
frequency analysis and unsupervised anomaly detection methods. The device’s consumption
is decomposed using Fourier transform and outlier values are detected using clustering tech-
niques [13, 123, 20]. However, these methods assume a constant periodicity in the data and
this causes many false positives in alarm reporting. We do not make any assumption about
the device usage schedule. We only observe and model device relationships.

Reducing a building’s energy consumption has also received a lot of attention from the
research community. The most promising techniques are based on occupancy model predic-
tions as they ensure that empty rooms are not over conditioned needlessly. Room occupancy
is usually monitored through sensor networks [3, 36] or the computer network traffic [68].
These approaches are highly effective for buildings that have rarely-occupied rooms (e.g.

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 122

Figure 6.22: Centers for our Gaussian mixture model. Note, 3 of the 5 centers are very close
to each other. This makes these traces very difficult tease apart and accurately classify.

conference room) and studies show that such approaches can achieve up to 42% annual
energy saving. SBS is fundamentally different from these approaches. SBS identifies the
abnormal usage of any devices rather than optimizing the normal usage of specific devices.
Nevertheless, the two approaches are complementary and energy-efficient buildings should
take advantage of the synergy between them.

Recently, there has been increased interest in minimizing building energy consumption.
Our approach differs quite substantially from related work. Agarwal et al. [5] present a
parameter-fitting approach for a Gaussian model to fit the parameters of an occupancy
model to match the occupancy data with a small data set. The model is then used to
drive HVAC settings to reduce energy consumption. We ignore occupancy entirely in our
approach. It appears as a hidden factor in the correlation patterns we observe.

Kim et al. [68] use branch-level energy monitoring and IP traffic from user’s PCs to
determine the causal relationships between occupancy and energy use. Their approach is
most similar to ours. Understanding how IP traffic, as a proxy for occupancy, correlates
with energy use can help determine where inefficiencies may lie.

In each of these studies and others [42, 84], occupancy is used as a trigger that drives
efficient resource-usage policies. Efficiency when unoccupied means shutting everything off
and efficiency when a space is occupied means anything can be turned on. There is no
question that this is an excellent way to identify savings opportunities, however, we take
a fundamentally different approach. We are agnostic to the underlying cause or driver

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 123

for efficient policies to be implemented. More generally, we look to understand how the
equipment is used in concert. This may help uncover unexpected underlying relationships
and can be used in an anomaly detection application to establish “(in)efficient”, “(ab)normal”
usage patterns. The latter should identify savings opportunities in cases where the space is
unoccupied as well as occupied, because it has to do with the underlying behavior of the
machines and how they generally work together. Our approach could help achieve both
generality and scale for such an application. This article focuses on the first step of this
application, the identification of correlated devices.

SBS is a practical method for mining device traces, uncovering hidden relationships and
abnormal behavior. In this paper, we validate the efficacy of SBS using the sensor metadata
(i.e. device types and location), however, these tags are not needed by SBS to uncover
devices relationships. Furthermore, SBS requires no prior knowledge about the building and
deploying our tool to other buildings requires no human intervention – neither extra sensors
nor a training dataset is needed.

SBS is a best effort approach that takes advantage of all the existing building sensors. For
example, our experiments revealed that SBS indirectly uncovers building occupancy through
device use (e.g. the elevator in the Building 2). The proposed method would benefit from
existing sensors that monitor room occupancy as well (e.g. those deployed in [3, 36]). Savings
opportunities are also observable with a minimum of 2 monitored devices and building energy
consumption can be better understood after using SBS.

SBS constructs a model for normal inter-device behavior by looking at the usage patterns
over time, thus, we run the risk that a device that constantly misbehaves is labeled as nor-
mal. Nevertheless, building operators are able to quickly identify such perpetual anomalies
by validating the clusters of correlated devices uncovered by SBS. The inspection of these
clusters is effortless compare to the investigation of the numerous raw traces. Although this
kind of scenario is possible it was not observed in our experiments.

In this paper, we analyze only the data at medium frequencies, however, we observe that
data at the high frequencies and residual data (Figure 6.6) also permits us to determine the
device type. This information is valuable to automatically retrieve and validate device labels
– a major challenge in building metadata management.

There has been much research work on sensor stream clustering and trace analysis. Chen
and Tu [23] investigate how to cluster data streams in real-time using a density-based ap-
proach with a two-tiered framework. The first tier captures the dynamics of a data stream
with a density decaying technique and then maps it to a grid. The second tier computes a
grid density based on how it clusters the grid. Their approach differs from ours in that they
focus on decreasing algorithm complexity for real-time sensor stream clustering. We run our
analysis on historical traces and use correlation analysis in our clustering algorithm.

Kapitanova et al. [64] describe a technique to monitor sensor operations in the home
and identify sensor failures. The classifier is trained on historical sensor data to obtain the
relationship between sensors, assuming the number and location of sensors is known. When
a failure or removal of a sensor occurs, the classifier’s behavior deviates and the event is
captured. Our method does not require any prior knowledge and instead tries to cluster

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 124

feeds to discover their relative placement.
Lu and Whitehouse [77] formulate a new algorithm, particularly leveraging the seman-

tic constraints interpreted from sensor data to determine sensor locations. The algorithm
identifies how many rooms are present using motion sensors and determines room position
based on physical constraints. Finally, it maps each sensor into the associated room. Our
efforts focus on using intrinsic patterns typically pre-existing in building system sensor feeds
to uncover physical relationships.

Fontugne et al. [40] propose a new method to decompose sensor signals with EMD. They
extract the intrinsic usage pattern from the raw traces and show that sensors close to each
other have higher intrinsic correlation. However, they do not explore the observation more
deeply by answering whether there is a statistically discoverable boundary between sensor
clusters in different rooms, or if there is a uniform threshold in the correlation coefficients
able to be generalized to different rooms.

Fontugne et al. [41] carry on the work and propose an unsupervised method to monitor
sensor behavior in buildings. They constructed a reference model out of the underlying
pattens, obtained with EMD, and use it to compare future activity against it. They report
an anomaly whenever a device deviates from the reference. This work exploits EMD as a
method to detrend the signals and capture the inter-device relationships.

Much work utilizes EMD on medical data [7], speech analysis [55], image processing [86]
and climate analysis [74]. Our method adopts EMD to determine whether a discoverable
statistical boundary exists in sensors traces from sensors in different rooms and whether
such a boundary can be generalized across rooms with various kinds of sensors.

6.10 Summary
This chapter aims to establish a set of methodology for classifying traces and verifying

that relationships specified by users are accurate and continue to stay accurate over time.
We examine a set of buildings that are representative of the “commerical” building category
within the building taxonomy used by the U.S. Department of Energy [117]. We also examine
a building in drastically different weather and HVAC architectural design. The building at
the University of Tokyo is representative of a typical modern building in Asia; with its
distributed HVAC design and low-energy footprint per square foot. We present empirical
techniques to identify abnormalities in device power traces and inter-device usage patterns.

We proposed an unsupervised method to systematically detect abnormal energy con-
sumption in buildings: the Strip, Bind, and Search (SBS) method. SBS uncovers inter-device
usage patterns by striping dominant trends off the devices energy-consumption trace. Then,
it monitors device usage and reports devices that deviate from the norm. Our main contri-
bution is to develop an unsupervised technique to uncover the true inter-device relationships
that are hidden by noise and dominant trends inherent to the sensor data. SBS is used on
two sets of traces captured from two buildings with fundamentally different infrastructures.
The abnormal consumption identified in these two buildings are mainly energy waste. The

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 125

most important one is an instance of a competing heater and cooler that caused the heater
to waste around 2500 kWh.

EMD allows us to effectively identify fundamental relationships between sensor traces.
We believe that identifying meaningful usage-correlation patterns can help reduce oversights
by the occupants and faults that lead to energy waste. A direct application of this is the
identification of simultaneous heating and cooling [85]. Simultaneous heating and cooling is
when the heating and cooling system either compete with one another or compete with the
incoming air from outside. If their combined usage is incorrect, there is major energy waste.
This problem is notoriously difficult to identify, since the occupants do not notice changes
in temperature and building management systems do not perform cross-signal comparisons.
For future work, we intend to run our analysis on the set of sensors that will allow us to
identify this problem: the outside temperature sensors, the cooling coil temperature, and
the air vent position sensor. If their behavior is not correlated as expected, an alarm will be
raised.

We can also apply it to other usage scenarios. In our traces, we found an instance where
the pump was on but the lights were off; where, typically, they are active simultaneously. The
air conditioning was pumping cool air into a room without occupants. With our approach
this could have been identified and corrected. In future work, we intend to package our
solution to serve these kinds of applications.

This chapter we also set out to examine the underlying relationship between sensor traces
to find interesting correlations in use. We used data from a large deployment of sensors in
a building and found that direct correlation analysis on the raw traces was not discrimina-
tory enough to find interesting relationships. Upon closer inspection, we noticed that the
underlying trend was dominating the correlation calculation. In order to extract meaningful
behavior this trend has to be removed. We show that empirical mode decomposition is a
helpful analytical tool for detrending non-linear, non-stationary data; inherent attributes
contained in our traces.

We ran our correlation analysis across IMFs, extracted from each trace by the EMD
process, and found that the pump and light that serve the same room were highly correlated,
while the other pump was not correlated to either. In order to corroborate the applicability
of our approach, we compared the pump trace with all 674 sensor traces and found a strong
correlation between the relative spatial position of the sensors and their IMF correlations.
The most highly-correlated IMFs were serving the same area in the building. As we relax
the admittance criteria we find that the spatial correlation expands radially from the main
location served by the reference trace.

We plan to examine the use of this method in applications that help discover changes
in underlying relationships over time in order to identify opportunities for energy savings
in buildings. We will use it to build inter-device correlation models and use these models
to establish “(ab)normal” usage patterns. We hope to take it a step further and include a
supervised learning approach to distinguish between “(in)efficient” usage patterns as well.

From the results illustrated in Figure 6.16, we observe a bi-modality in the corrcoeff
distribution for the two population sets. Sensors in the same room correlate to each other

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 126

more (typically a corcoeff of 0.4 or higher) than sensors in different rooms. This bi-modal
distribution may provide insight for us to understand the boundary and search for an effective
discriminator more broadly.

To further validate the effectiveness of the proposed method, we should consider using
data from different sources. For example, in room B in Sutardja Dai Hall, there are two
different sets of temperature sensors reporting data at different rates and granularities. We
demonstrate our ability to classify sensor streams on the same platform (recall the sensor box
we used to collect data). It would be more convincing to verify the effectiveness of our method
with sensor streams generated from devices on different systems – since separate systems are
independent. For instance, we can use temperature data from the second deployment and
use the CO2 and humidity sensor data from the first deployment and compare the results to
what we have gathered.

In our results, the boundary threshold parameter converges to a narrow interval, as the
data set expands over a longer time range. This may suggest that our method generalizes
across rooms in a building, although further validation in a larger, more representative data
set is necessary. This study looked at 5 different rooms with a large physical separation from
one another. A more representative data set would consider all the rooms and pay special
attention to rooms that share a common orientation and are separated by a single wall or
floor slab.

We conjecture that local activity modulates various types of physical signals – captured
by the various kinds of physical sensors embedded throughout the building – and that those
signals are attenuated over distance and physical boundaries (such as walls). We believe
that this is what drives our observations. If the conjecture is true, the effects will be less
pronounced in larger rooms, such as an auditorium or a large laboratory space.

As our approach performs slightly better than traditional learning techniques, we must
further evaluate its robustness versus the baseline method; across the entire building and
across multiple buildings. In future work, we will examine the two approaches across larger
intra-building data sets and compare results across multiple buildings. A key factor is the
variance of classification accuracy – smaller variance demonstrates robustness.

We present a new method for spatial placement clustering. We first characterize the
corrcoef distribution of medium frequencies IMFs between sensors in the same/different
room(s), and then we learn the tradeoff between achieving a higher TPR and maintaining a
lower FPR by manipulating a discriminator parameter within these two distributions. For a
preliminary sample of relatively well separated rooms, we find that there is a clear boundary
between sensor clusters in terms of their spatial placement and the boundary can be probed
statistically. We also find a uniform discriminator can be learned and generalized across these
rooms. For this initial study, our method is able to classify the sensors of 93.3% accuracy,
which is 13% higher than a tradition k-means approach, with a TPR between 62%-86% and
a FPR less than 20%.

These results are very encouraging. However, we recognize that they are far from defini-
tive. While the rooms in the study were picked arbitrarily, they are neither comprehensive
nor a systematic sampling. While they are clearly separated by our approach, and not by

CHAPTER 6. EMPIRICAL VERIFICATION OF SYSTEM FUNCTIONALITY AND
METADATA 127

analyses of the raw time series, they do differ substantially in placement and usage. A key
question going forward is, “how well will highly similar rooms be separated?” - say, adjacent
rooms facing the same side of the building and with similar occupancy. Will these tech-
niques hold, more powerful techniques be required, or is further discrimination intractable?
In future work, we will examine how far this method takes us and explore how it may be
used in combination with other techniques to improve the results more generally. Automated
metadata verification is important to include in the lifecycle of building data management.

We also attempt to address the categorical classification problem. With fairly simple
approaches we can use the mean and standard deviation of the trace to classify the category of
the trace, as labeled by the user. However, for large traces with many overlapping categories
we observed that the traces are very similar and cannot be distinguished. In order to uncover
we may need out-of-band information. Statistically they are indistinguishable with the
techniques we present.

128

Chapter 7

Conclusions

Our experience with the design, implementation, and wide-spread deployment of StreamFS
teaches us several lessons about the mechanisms necessary to “app-ify” the building and the
value of opening up the building as a platform for application development in the interest of
1) reducing energy consumption and increased operation efficiency, 2) providing deeper in-
sights about the operational dynamics of the building, 3) enabling the building to participate
in a broader software ecosystem in the interest of more intelligent use of resources.

7.1 Lesson Learned
In this section we discuss the lesson learned from deploying our system. We present

five lessons based on our experience with the design and implementation of StreamFS, the
design and implementation of functional, spatial, and categorical verifiers, and seven different
deployments and applications.

Data Services Fundamental for Building Applications
Fundamentally, applications in the building must deal with data coming from a dis-

tributed, diverse deployment of sensors taking physical measurements. The vast majority
of building applications are analytical in nature and as we couple streaming sensor data
with models for analysis and control, more data services and jobs will be used across several
applications simultaneously. For example, the loadcurve process in StreamFS was used in
both the Energy Lens application and a building dashboard viewer that runs on StreamFS.

We implemented and deployed seven applications on top of StreamFS. Some applications
provide StreamFS instance management for StreamFS deployments while others provide
services to the end user. For example, the viewer console application presents time-series
query results and displays them to the user, simple control applications trigger cascading
re-activation sequence of home appliances when total energy consumption was above a user-

CHAPTER 7. CONCLUSIONS 129

defined threshold, and the Energy Lens application provides the user with aggregate statistics
based on the spatial configuration of the deployment.

All these applications share a small set of processing elements. One of the elements
is for removing statistical outliers, another for interpolating values, one for computing the
aggregate load curve, and another to compute a moving average of consumption. Because
StreamFS provides the ability to define the function once, it could be used across applica-
tions. The hierarchical model prediction application presented in Chapter 2 require similar
clean and aggregate capabilities before the data is fed into the model. For jobs that require
prediction or machine learning, the same processing is necessary.

Analytics is Dependent on Inter-relationships
In StreamFS, and the associated applications, we demonstrate the value of coupling the

inter-relationships explicitly with our aggregation jobs. Many jobs require the streams be
fetched in the context of the metadata of the deployment and what the metadata captures
about the placement or category of the stream. We find that it is convenient to consider
coupling these associations explicitly, since many applications require it. We find the use
of aggregation points to be a convenient tool for analysis, both from a historical perspective
and from a live feed perspective.

Moreover, queries for determining which sensors are where and how many sensors there
are in a particular space are crucial for achieving generality across buildings – a property
that is rare to find in any aspect of building design and operation. Providing the ability
to traverse the relationship structure and discover, through the structure, the relationships
between the sensors, allows applications from one building to potentially be dropped into a
new building more easily. This capability allow users to write applications for one building
and port them across many buildings.

Centralized Management is better than Distributed Management
StreamFS adopts the Unix philosophy where everything is represented as a file. This

makes it simple to manage the raw and application-specific derivative data. It also simplifies
sharing of processing code across applications. In addition, access control is provided from
a central location. Application writers divide which streams and processes they want to
share – from the individual resource level to groups of resources organized as a collection
within a container file. Generally, when there are many disparate devices that make up a
system, there is a tension between extensibility and ease of management. Large deployments
typically provide protocols for joining the network, but do not yield systems that are easy
to manage. Those that are easy to manage, typically do not handle other kinds of sensors
or devices easily joining the deployment.

When the deployment is presented as a distributed system to the end user, there are
usually complex mechanisms in place for doing discovery. Discovery over a centrally managed
system is much easier, since it is clear where to target the search. The argument against

CHAPTER 7. CONCLUSIONS 130

centralized management is a single point of failure, however the web-services model deals
with centralized services well. StreamFS presents in a centralized service for applications,
while internally it is actually distributed; sharded for load management and replicated for
failure tolerance. StreamFS follows these principles throughout the design of each of its
components.

Similar to the proposal by Dixon et al. [33], we believe that the abstraction should be
raised from the network to the operating system level. The Unix philosophy allows us to
present unified namespace and access to the building deployment information and various
levels granularity. This allows us to manage many applications simultaneously, control infor-
mation sharing between them, and provide a unified view to the application writer; making
it clear what resources are available to her. We believe these centralized view is the right
one. Although StreamFS is a distributed system in the cloud, it presents a unified layer for
access and control which makes application development and management simpler.

Accurate Capture of Physical Configuration is Crucial
As we move towards software-defined building infrastructure and more analytical and

control applications rely on building state to make detailed control decision, it becomes im-
portant to accurately capture the physical configuration of the building and provide mech-
anisms for discovering inconsistencies between the virtual representation and their corre-
sponding physical state. There is a lot of work in the vision community for constructing a
virtual representation of the physical world, accurately. In our work, we show ways the data
already being collected from the building sensor deployment can be used to ascertain physical
relationships between sensors. We introduce three kinds of verification – functional, spatial,
and categorical – however, there are other ways we could explore these physical relationships.
For example, we can combine these techniques with vision-related work, which uses cameras
to determine the physical layout of a space, and combine it to use physical models of heat
transfer to determine if the readings we are collecting are accurate.

Ultimately these should inform the layer presented to the application about the accuracy
of the deployment information. We explain how inaccuracies leads to errors in aggregation
and control. For software interfaces in the built environment to become more widespread,
we must solve these issues related to verification.

OS Abstractions for Managing Truly Physical Resources
Mapping the jobs of organizing and controlling access to physical resources, the use of

operating system abstractions allows us to reason about how to componentize a management
architecture and lets us frame how solutions can be constructed as applications that make use
of the primitives provided by the operating system components. In our work we presented a
filesystem abstraction which adopted several data and management services for organizing
the information in the building. Related work in the home [33] and in buildings [29] take a
similar approach.

CHAPTER 7. CONCLUSIONS 131

Questions remain about how building models fit into a operating system services archi-
tecture. Perhaps they can be included with the verification services. Ideally, we can start
moving towards automated plug-and-play building applications with guarantees for service
quality and efficient management of physical resources. We believe that the best way to
make this a reality it to view the building as a hardware platform and to move towards a
truly distributed operating system for managing the systems, devices, and applications that
run on the building platform.

7.2 Future Work
We explored many aspect of a design for building information information systems. How-

ever, there are still many open questions have have not been tackled in this work. We discuss
three main future or on-going project topics in this section.

Explore More Diverse Verification Methods
There’s a lot of work in capturing the physical state of the environment and building a

virtual representation of it. Althought SBS shows a lot of promise, in terms of its effective-
ness and generality, spatial verification shows poor generality under certain conditions and
categorical classification seems to only work with small data sets. We look to expand our
exploration in the two pieces of work that showed fractional success. We must characterize
the conditions for which these verification approaches work well and formulate algorithms
to detect whether those conditions hold in the data prior to initiating those verification
processes. We can partition the characterization to discover the statistical or semantic prop-
erties or pieces of information that must be known about the deployment beforehand and
tackle those problems only.

For the others, we must explore different techniques that generalize better. Although
it is valuable to solve the problem for a small set of homogeneous buildings, the real value
comes through generalization, since in order to have widespread impact solutions must be
brought to a large fraction of the building stock, quickly.

Deeper Exploration of Control Applications
We did not get a chance to support the kind of control application proposed in the

beginning on the dissertation. It did not allow us to experiment with various kinds of
actuator interfaces for integrating them more generally into the architecture. We intend
to expand our control application work by implementing model-predictive control processes
on building deployments that use StreamFS. We also need to closely examine a diverse set
of control interfaces and APIs in order to generalize the control interface exposed through
StreamFS.

CHAPTER 7. CONCLUSIONS 132

We only explored the class of controllers that consume binary signals. Specifically, we
integrated with the ACme [62] wireless power meter to turn devices on and off, remotely.
There are other kinds of controllers, that do not accept binary input. They input variable
controllers, set-point driven controllers, parameterized controllers, time-based controllers,
etc. For example, controllers based on physical models may used physical configuration-
based parameters to determine how to drive the load for the system controlling the space.
These must be considered and applications should be explored in this context before a
determination can be made.

Version Control For Buildings
Provenance checking is important in many systems. The building has many actors in-

teracting with it and distributed changes cause the once efficient configurations to slowly
deviate back to an inefficient state. Version control would allow us to track changes in the
deployment and associated configuration decisions. It also introduces the notion of state
rollback, whereby we roll the associated state information back to a previous, safe, efficient
state. We would like to explore how rollbacks manifest themselves in the physical envi-
ronment, since it involves not just rolling back the settings, register values, processes, etc.
but the instant rollback operation affects how the physical resources in the environment are
activated. Also, certain conditions cannot be rolled back, such as the weather conditions, so
a rollback operation needs to check if the proper rollback conditions are in place before the
rollback is committed and executed.

In addition, how do we determine commit conflicts between two committers. In a tradi-
tional version control system it is based on the actual data being written to the file. In the
building context, conflict must be determined by models. Model based on first-principles of
the underlying physics or statistical models that used several empirically-derived parameters
to project the state of the system at some point in time. For example, if two commits are
made to change the setpoint of a thermometer, how to we determine that the setpoints will
conflict and how to we resolve them. Both commits are writing to the same devices, so that
cannot be the sole criteria. Any approach must consider how the set point affects the state
of the room temperature that is controlled by that setting or the behavior of the air-handling
unit when commits are happening quickly. Either involves the use of a model to determine
what the correct behavior is and project whether the new set point will lead to the right
behavior. We look to explore these and other related concept further and hope that it leads
to smart, software-defined buildings.

7.3 Thesis Summary
This thesis examines the state of the art of building information systems and evaluates

their architecture in the context of emerging technologies and applications for deep analysis
of the built environment. With the increasing interest in attaining a deeper understanding of

CHAPTER 7. CONCLUSIONS 133

the operational dynamics of buildings and an increased interest in energy efficiency, we assert
that the only way to enable the wide spread of solutions across the entire stock of buildings is
to build a platform that “app-ifies” the built environment. We observe that modern building
information systems hinder wide spread development of building applications. They are
difficult to extend, do not provide general services for application development, do not scale,
and are difficult to set up and manage.

We assert that a new architecture must be designed with four system properties – extensi-
bility, generalizability, scalability, ease of management – in order to address these shortcom-
ings. This new architecture embodies these system principles through a filesystem abstrac-
tion and a set data services. We decompose all deployment data and metadata into three
types of data – structural inter-relationships and naming, attribute-value descriptive pairs,
and timeseries data – and expose them through a filesystem abstraction. We adopt the Unix
philosophy that “everything is a file” in a system called StreamFS. We introduce four types
of files – containers, streams, controllers, and special – that can be arbitrarily composed
to reflect information about the physical configuration of the sensors and actuators relative
to the systems and spaces in the building. The filesystem makes these physical resources
directly accessible, in a centralized and controlled fashion. We also adopt filesystem security
that mediates access between the client-side application and the sensors in the deployment.
Because containers can be used to group files together, the security layer can also explicitly
mediate access to collections of files that represent physical resources.

StreamFS also provides a number of data services, made available to applications through
the pipe abstraction. Applications can designate a set streams to flow through user-defined
process elements. The output of process elements are made available through the filesystem
as stream file themselves, allowing applications to construct complex processing pipe-lines.
We also leverage the relationship structure to inform common processing pipelines to support
OLAP-style aggregation queries. We describe how the underyling entity-relationship graph
(ERG) is used to support the notion of aggregation points. We show this graphical structure
and associated mechanisms map to a traditional OLAP cube. Portions of the hierarchy that
have enabled aggregation points can then support drill-up/drill-down, pivot, and slice and
dice queries.

We deploy StreamFS in seven different buildings with very different setting and wrote
several applications for it as well. One of the driving application is the Mobile Energy
Lens. The Energy Lens app provides occupants with mechanisms for collecting building in-
formation in a unified platforms and provides a way to view aggregate energy consumption
associated with the spatial deployment of plug-load devices. We present a three-layer appli-
cation architecture, where one of the main layers is implemented entirely through StreamFS
data management and data processing services. We also discuss the challenges that have to
be overcome in order to provide a better user experience and discuss how each of mechanisms
used to solve those problems were also implemented on top of StreamFS.

Finally, we introduce the notion of verification of physical relationship through empirical
data. We characterize and motivate the problem in buildings as being a fundamental problem
that needs to be solved as we move toward software-based control of the built environment.

CHAPTER 7. CONCLUSIONS 134

We partition the verification problem into three sub problems: 1) functional verification, 2)
spatial verification, and 3) categorical verification. We should how empirical mode decom-
position, correlation, and simple machine learning techniques can give us information about
how the sensors are related to each other, physically. We propose the use of this information
to verifying the manually specified physical configuration setting.

Through our deployments we demonstrate the importance of specific features and overall,
we demonstrate an extensible, generalizable, scalable, and easy-to-manage system for sup-
porting the “appification” of the built environment. There are still many questions to explore
more deeply, but we believe that StreamFS and verification provide a solid foundation on
which to continue our exploration.

135

Appendix A

StreamFS Process Code

Listing A.1: Load curve code used to generate aggregate load curves in the Energy Lens
application.
function(buffer, state){

var outObj = new Object();
var timestamps = new Object();
outObj.msg = ’processed’;
if(typeof state.slope == ’undefined’){

state.slope = function(p1, p2){
if(typeof p1 != ’undefined’ && typeof p2 != ’undefined’ &&

typeof p1.value != ’undefined’ && typeof p1.ts != ’undefined’ &&
typeof p2.value != ’undefined’ && typeof p2.ts != ’undefined’){
if(p1.ts == p2.ts)

return ’inf’;
return (p2.value-p1.value)/(p2.ts-p1.ts);

}
return ’error:undefined data point parameter’;

};
state.intercept = function(slope,p1){

if(typeof p1 != ’undefined’ &&
typeof p1.value != ’undefined’ && typeof p1.ts != ’undefined’){
return p1.value - (slope*p1.ts);

}
return ’error:undefined data point parameter’;

};
}
if(typeof state.multibuf == ’undefined’){

state.multibuf = new Object();
}
outObj.inputs = new Array();
var noted = new Object();

APPENDIX A. STREAMFS PROCESS CODE 136

for(i=0; i<buffer.length; i++){
var streamid = buffer[i].pubid;
var ts = buffer[i].ts;
if(typeof state.multibuf[streamid] == ’undefined’){

state.multibuf[streamid] = new Array();
}
state.multibuf[streamid].push({’ts’:buffer[i].ts,

’value’:buffer[i].value,’path’:buffer[i].is4_uri});
if(typeof noted[buffer[i].is4_uri] == ’undefined’){

noted[buffer[i].is4_uri]=true;
outObj.inputs.push(buffer[i].is4_uri);

}
timestamps[ts] = true;

}
var streamids = Object.keys(state.multibuf);
var tss = Object.keys(timestamps);
tss = tss.sort();

var ts_per_stream = new Object();
if(streamids.length>=2){

for(j=0; j<streamids.length; j++){
var this_streamid = streamids[j];
var dpts = state.multibuf[this_streamid];
if(dpts.length<2){

outObj.stat = ’pending’;
return outObj;

} else {
for(dpidx = 0; dpidx<dpts.length; dpidx ++){

if(typeof ts_per_stream[this_streamid] == ’undefined’){
ts_per_stream[this_streamid] = new Object();

}
var thists = dpts[dpidx].ts;
ts_per_stream[this_streamid][thists]=true;

}
}

}

var cleaned = new Object();
for(j=0; j<streamids.length; j++){

var this_streamid = streamids[j];
var dpts = state.multibuf[this_streamid];
cleaned[this_streamid]=new Array();
for(tss_idx = 0; tss_idx < tss.length; tss_idx++){

var timestamp = tss[tss_idx];

APPENDIX A. STREAMFS PROCESS CODE 137

if(typeof ts_per_stream[this_streamid][timestamp] == ’undefined’){
var p1 = dpts[0];
var p2 = dpts[dpts.length-1];
var slope = state.slope(p1,p2);
if(slope != ’inf’ || slope.indexOf(’error:’)<0){

var intercept = state.intercept(slope,p1);
var newdpt = new Object();
newdpt.ts = timestamp;
newdpt.value = (slope*timestamp)+intercept;
cleaned[this_streamid].push(newdpt);

} else {
outObj.slope=slope;

}
} else {

for(idx = 0; idx<dpts.length; idx++){
if(dpts[idx].ts==timestamp){

cleaned[this_streamid].push(dpts[idx]);
break;

}
}

}
}

}

var loadcurve = new Array();
var cleaned_keys = Object.keys(cleaned);
var pts_per_key = cleaned[cleaned_keys[0]].length;
for(ts_idx=0; ts_idx<tss.length; ts_idx++){

var sum = 0;
for(idx=0; idx<cleaned_keys.length; idx++){

var thissubid = cleaned_keys[idx];
sum += cleaned[thissubid][ts_idx].value;

}
loadcurve.push({’ts’:cleaned[thissubid][ts_idx].ts,

’value’:sum});
}
outObj.data = loadcurve;

} else {
outObj.stat = ’pending’;

}
buffer = new Array();
return outObj;

}

138

Appendix B

StreamFS HTTP/REST Tutorial

This tutorial is meant to help you get started quickly with StreamFS. StreamFS integrates
all kinds of sensor data and organizes it for easy access, processing, and integration with
external applications. In this tutorial we will go through creating and deleting files in
StreamFS, as well as accessing stream data from incoming data streams.

• Creating a resource

• Creating a stream file

– Streaming data through stream file
– Bulk data insertion

• Bulk file creation

• Queries

• Subscriptions

• Symlinks

• Move

• Stream Processing

– Create process file
– Starting the process
– View the output
– Stopping the process

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 139

Term Description Examples
container/default An logical object that represents a /hvac/heater refers

file physical or logical entity. to a heater in the hvac system
stream file A file that represents a data stream. /room1/temperature/ is

Data is pushed into the stream files the name for a temperature
and queried through stream coming from room1.
the same file path..

control file A file that represents a control /hvac/heater/switch
channel for an associated refers to the switch for
actuator. the heater. Writing a 1 to

that file send an ‘ON’
signal to the heater,
0 is ‘OFF’.

subscriber An external target URL to /subs/550e8400
which data is forwarded as represents a subscription
it comes into StreamFS. file created after a
Subscriptions are used to process subscription request
incoming data in real time in satisfied. The Id is a
external applications. unique id for the

subscriber. It can
be used to manage the
subscription –
to see which streams are
pushing data to which URLs
and its deletion removes
the subscription.

Table B.1: Terminology.

B.1 Terminology

B.2 Creating a resource
A clean installation of StreamFS, it comes with a set of core resources described in

StreamFS documentation. The resource to start with is /. To make sure that StreamFS is
up and running do a GET on that resource. You should receive a reply with some information
about the instance as well as child resource for that resource. Observe the example below:

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 140

Connection: close
Date: Thu, 19 Jan 2012 12:44:54 GMT

{
"status": "success",
"children": [

"ibus",
"sub",
"resync",
"pub",
"time",
"models",
"admin",

],
"uptime": 890,
"uptime_units": "seconds",
"activeResources": 37

}

Now lets create a simple file that we’ll use as our working directory for the tutorial.
Create a temporary directory where you want to save the file you’ll create for this tutorial.
Open a text file and copy-paste this json below (not the PUT line) into the file. Then use
curl (on linux systems) to POST the document to the StreamFS server.

echo "{\"operation\":\"create_resource\", \
\"resourceName\":\"temp\",\"resourceType\":\"default\"}" \
> create_def.json

This creates a text file with json in it that specifies the type of resource file you want to
create and what its name is.

curl -i -X PUT "http://localhost:8080/" -d@create_def.json

The -d parameter in curl specifies the data portion of the PUT request. In this case
we’re forwarding the data to the root path. Once created, we issue an HTTP PUT request
to send the request to the root directory of the StreamFS instance that is running. If created
successfully you should get a reply that looks like the following:

HTTP/1.1 201 Created
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 12:35:25 GMT
Notice that it’s a ’201 Created’ HTTP status. That means the StreamFS was able

to create a default resource for you under /. Now that’s check to make sure

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 141

it’s there.

curl -i "http://localhost:8080/"
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 12:44:54 GMT

{
"status": "success",
"children": [

"ibus",
"sub",
"resync",
"pub",
"time",
"models",
"admin",
"temp",

],
"uptime": 990,
"uptime_units": "seconds",
"activeResources":

}

Notice that when we issue the same GET request to the root directory in StreamFS we
see “temp” in the children array associated with /. Now we can treat the “temp” resource
as a directory and work there (i.e. all requests for resource creation, deletion, etc, will be
forwarded to that file).

curl -i "http://localhost:8080/temp"
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 12:50:12 GMT

{
"status": "success",
"type": "DEFAULT",
"properties": {},
"children": []

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 142

}

As we populate this directory, the name of the newly created files will show up the
“children” array. Now, lets create a stream file that represents a real-time data stream.
We’ll create it as a child of the “temp” folder.

B.3 Creating a stream file
This processes is very similar to create a regular file. Lets create another json file with

the command to create a stream file.

echo "{\"operation\":\"create_generic_publisher\", \
\"resourceName\":\"stream1\"}" > create_stream.json

The operation that we’re running this time is to creata a generic publisher. In StreamFS,
that’s understood to mean a stream file. Once created, lets post it to StreamFS, but this
time lets post it to the directory we created in the previous section:

curl -i -X PUT "http://localhost:8080/temp" -d@create_stream.json
HTTP/1.1 201 Created
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 12:58:31 GMT

{
"status": "success",
"is4_uri": "/temp/stream1",
"PubId": "789cf943-bbc8-428e-97ce-03e7cfe5fc12"

}

In reply above is shown. You should receive explicit confirmation from StreamFS that the
stream file was created and should note the associated publisher ID. The publisher identifier
is used when data is pushed to this resource. The underlying stream uses it when it POSTs
data to this new file.

B.4 Pushing data to a stream file
In order to push data to the stream file, we have to use the pubid associated with the

stream. We can either copy-paste it was from the response we received when we created the
file, or we can simply call a GET on the file in StreamFS to obtain it:

curl -i "http://localhost:8080/temp/stream1"

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 143

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 13:31:55 GMT

{
"status": "success",
"pubid": "789cf943-bbc8-428e-97ce-03e7cfe5fc12",
"head": {},
"properties": {}

}

Now that we have it noted, lets create a fake data object. For simplicity, we leave out any
complicated information other than the value that we wish to save. The units are omitted
for now and i’ll explain why at the end.

echo "{\"value\":123}" > datapt.json

Finally, we post the newly create file to the stream file as follows. To inform StreamFS
to save the file correctly, we need to include the “type” and “pubid” as URL parameters.
The type is always equal to “generic” and the pubid is set to the pubid we noted earlier.
If either is missing or the pubid does not match the pubid associated with this stream, the
POST will fail.

curl -i -X POST \
"http://localhost:8080/temp/stream1?type=generic&pubid=\
789cf943-bbc8-428e-97ce-03e7cfe5fc12" -d@datapt.json

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 13:35:25 GMT

{"status":"success"}

If successfully you should get the response above. This response can be used by the
stream an an acknowledgement that the data has been succesfully saved. We can also check
that by calling GET on the stream file again and seeing the “head” attribute. The “head”
attribute is the last received data object saved and the timestamp associated with it.

curl -i "http://localhost:8080/temp/stream1"
HTTP/1.1 200 OK
Transfer-encoding: chunked

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 144

Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 13:36:23 GMT

{
"status": "success",
"pubid": "789cf943-bbc8-428e-97ce-03e7cfe5fc12",
"head": {

"value": 123,
"ts": 1326980179

},
"properties": {}

}

Notice the “properties” attribute in the GET response to all resources. This is where
the user can place arbitrary information about the object this file represents. For streams,
however, the “units” attribute in the properties object is of particular importance, and we’ll
discuss it’s importance later. For now, I’ll show you how to update the properties. Recall
from the creation of a fake data point that we did not specify the type of data (i.e. the units
of measurement).

Lets create a simple json document with the “properties” attribute defined as a json
object with the “units” attribute. Below, I create a properties object with “psi” (pressure)
units.

echo "{\"operation\":\"overwrite_properties\",\
\"properties\":{\"units\":\"psi\"}}" > overwrite_props.json

Then we POST it to the stream file.

curl -i -X POST \
"http://localhost:8080/temp/stream1" -d@overwrite_props.json
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 22:52:57 GMT

{"status":"success"}

If successful, we should get the preceding reply and we can check to make sure that
everything is set up ok.

curl -i "http://localhost:8080/temp/stream1"
HTTP/1.1 200 OK
Transfer-encoding: chunked

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 145

Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 22:53:07 GMT

{
"status": "success",
"pubid": "789cf943-bbc8-428e-97ce-03e7cfe5fc12",
"head": {

"value": 123,
"ts": 1326980315

},
"properties": {

"units": "psi"
}

}

We can set any properties on the object, as long as it’s a valid json object. The only
attribute that’s currently reserved on the properties object is “units”. The fields added here
are used for properties-related queries – they effectively serve as arbitrary tags on the files,
so that we can find the specific ones later without traversing the entire tree.

B.5 Bulk data insertion
For efficiency, we can also push multiple values in a single request as shown below:

{
"path":"/temp/stream1",
"pubid":"789cf943-bbc8-428e-97ce-03e7cfe5fc12",
"data":[{"value":0},{"value":1},{"value":2, "ts":1347307033198},{"value":3,

"ts":1347307033199}]
}

Note, each element in the data array includes at least the ‘value’ field. The ‘ts’ field is
optional. If not included, StreamFS will add it during processing.

B.6 Queries
The next section will show you how to run queries on the data and queries on the

properties that are set on the files.
Timeseries
Finally, lets do a simple queries, starting with those that are timeseries in nature. We’ll

run a query that return any data point that was saved by this stream file in the last 10000

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 146

seconds. We’ll go over the query syntax is the next section, but for simplicity, run the
following:

curl -i "http://localhost:8080/temp/stream1?query=true&ts_timestamp=gt:now-10000"
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Thu, 19 Jan 2012 13:52:39 GMT

{
"path": "/temp/stream1/",
"ts_query_results": [

{
"value": 123,
"ts": 1326980315

}
],
"props_query_results": {

"errors": [
"Empty or invalid query"

]
}

}

The “ts query results” is really what we care about here. It’s an array of json objects,
where each json object is the object that was saved the underlying database holding data
for this stream. Notice, the timestamp is also included. We can obtain much larger results
using this functionality. We’ll go more in depth in the next few sections.

We’re fundamentally dealing with timeseries data and there’s a very simple syntax for
acquiring the data you need. The following is a list of URL parameters that can be set to
run a timeseries query.

Sub-parameter gt greater than. lt less than. gte greater than or equal to. lte less than
or equal to. now time on streamfs server when query is submitted.

The parameters specified above are URL parameters that should be included in the GET
request URL to StreamFS. Notice that the “query” parameter must be set to “true” in order
for the query to be processed. Below we have included several query examples.

1. curl -i
"http://localhost:8080/temp/stream1?query=true&ts_timestamp=lt:1327017501"

2. curl -i "http://localhost:8080/temp/stream1?query=true&ts_timestamp=lte:now+1"
3. curl -i "http://localhost:8080/temp/stream1?

query=true&ts_timestamp=gte:1326980040,lt:1326980315"

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 147

Parameter Description
query Must be set to “true” for the query to be processed.

ts timestamp A logical object that represents a physical or
logical entity.

Sub-parameters
gt greater than.
lt less than.

gte greater than or equal to.
lte less than or equal to.

now time on streamfs server when query is submitted.

Table B.2: Parameters

The first query fetches all values less than 1327017501. The second query fetches all
values less than or equal to “now+1”. The keyword “now” is used by streamfs to be the
current time on the streamfs server when the query is submitted and can be used as a
variable in the query. The third query is a typical range query, where we want values greater
than or equal to 1326980040 and less than 1326980315. Notice the use of the comma in the
URL parameter value. The comma implies an “AND” condition for the timeseries query.

Properties
Querying properties is a complex and you have more options. There’s essentially two

ways. The first sets the “props ” URL parameter while the other submits a set of keywords.
The latter is the one we’ll go over in this tutorial.

echo "{\"\$or\":[{\"_keywords\":\"units\"}]}" >props_query.json
curl -i -X POST "http://localhost:8080/*?query=true" -d@props_query.json

B.7 Bulk default/stream file creation
Creating each file at a time can incur high overhead when there are many files to cre-

ate, mainly because each request is established over a new HTTP connection. Therefore,
StreamFS support a bulk-creation request:

{
"operation":"create_resources",
"list":[

{
"path":"/temp/one/two/stream3",
"type":"stream"

},

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 148

{
"path":"/temp/one/three/stream4",
"type":"stream"

},
{

"path":"/temp/one_four/two/",
"type":"default"

}
]

}

The operation name is ‘create resources’ and is includes a list array where each element
in the list if an object with the path and type attributes set. The path is the path of
the resource you want to create and the type is it’s type. For each path in the list, it
will create the necessary files that eventually lead to the creation of the file listed. For
example, if only /temp exists, /temp/one and /temp/two will be created as “default” files
and /temp/one/two/stream3 will finally be created as a stream file.

The response is shown below:

HTTP/1.1 201 OK
Content-Type: application/json
Connection: close
Last-Modified: Sun, 09 Sep 2012 21:14:46 GMT
Server: StreamFS/2.0 (Simple 4.0)
Date: Sun, 09 Sep 2012 21:14:46 GMT

{
"/temp/one": {},
"/temp/one/two": {},
"/temp/one/two/stream3": {

"status": "success",
"is4_uri": "/temp/one/two/stream3",
"PubId": "22ee31ce-5975-434e-9836-762050544d3e"

},
"/temp/one/three": {},
"/temp/one/three/stream4": {

"status": "success",
"is4_uri": "/temp/one/three/stream4",
"PubId": "864a4dd7-fff3-4fc5-8cfb-ca55f86aed7f"

},
"/temp/one_four": {},
"/temp/one_four/two": {}

}

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 149

This shows the results of creating the file(s). Each value is the body of the response upon
creation.

Subscribing to a stream
StreamFS offers a subscription facility. StreamFS uses the url specified by the “target”

field in the subscription request to POST the data to the url as soon as it comes into
StreamFS. Lets set one up. First, lets create the subscription request object and POST it
to the /sub file, which is where the subscription handler lives.

echo "{\"s_uri\":\"/temp/stream1\", \
\"target\":\"http://localhost:1337\"}" > subreq.json
curl -i -X POST "http://localhost:8080/sub" -d@subreq.json
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 20 Jan 2012 03:51:49 GMT

{
"operation": "subscribe",
"status": "success",
"subid": "eda7f7ee-99a1-4808-8d68-4be2562dd3bd"

}

Notice, the reply includes a unique identifier for this subscription. It also creates a file in
the /sub directory as an active file for managing the subscription and attaining information
about it.

curl -i -X GET "http://localhost:8080/sub"
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 20 Jan 2012 03:53:07 GMT
{

"status": "success",
"type": "DEFAULT",
"properties": {},
"children": [

"0828106",
"all"

]
}

curl -i -X GET "http://localhost:8080/sub/0828106"

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 150

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 20 Jan 2012 03:53:31 GMT

{
"status": "success",
"subid": "eda7f7ee-99a1-4808-8d68-4be2562dd3bd",
"destination": "http://localhost:1337",
"sourceId": "789cf943-bbc8-428e-97ce-03e7cfe5fc12",
"sourcePath": "/temp/stream1"

}

Notice, by calling GET on the subscription resource we can obtain information about it.
Now lets test the subscription. Here’s a small Node.js script you can use to act as a simple
receiver for the incoming data from the stream.

var http = require(’http’);

function handlePost(req, res){
req.on(’data’, function(chunk) {

console.log("got some data here");
//console.log("Receive_Event::" + chunk.toString());

});
res.writeHead(200, {’Content-Type’: ’text/json’});
res.end("{\"status\":\"success\"}");

}

var server= http.createServer(function(req,res){
req.setEncoding(’utf8’);

console.log(req.headers);

req.on(’data’, function(chunk) {
console.log("Receive_Event::" + chunk);

});

req.on(’end’, function() {
console.log(’on end’);
console.log("Bytes received: " + req.socket.bytesRead);
if(req.method==’POST’){

handlePost(req,res);
} else{

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 151

res.writeHead(200, {’Content-Type’: ’text/plain’});
res.end();

}
});

});
server.listen(1337, "localhost");
console.log(’Server running at http://localhost:1337/’);

You can copy-paste this code in a file and running using it Node.js. After you’ve installed,
start it and POST data to the stream resource.

curl -i -X POST "http://localhost:8080/temp/stream1\
?type=generic&pubid=789cf943-bbc8-428e-97ce-03e7cfe5fc12" \
-d "{\"data\":123}"
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 20 Jan 2012 03:59:32 GMT

{"status":"success"}

$ node dumblistener.js

Server running at http://127.0.0.1:1337/

Receive_Event::
{

"data": 123,
"ts": 1327032612,
"pubid": "789cf943-bbc8-428e-97ce-03e7cfe5fc12",
"timestamp": 1327032612,
"PubId": "789cf943-bbc8-428e-97ce-03e7cfe5fc12",
"is4_uri": "/temp/stream1/"

}

Notice, the data object is received successfully by the listener script. You write code to
consume incoming data through an HTTP POST and run, collect data for whatever streams
you have in your StreamFS instance.

Now, if we want to cancel the subscription to stop incoming data from being forwarded
to the external script, we simple delete the resource with an HTTP DELETE call to it.

curl -i -X DELETE "http://localhost:8080/sub/0828106"
HTTP/1.1 200 OK

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 152

Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 20 Jan 2012 04:14:48 GMT

{"status":"success"}

B.8 Creating symbolic links
A very important feature in StreamFS is the ability to create symbolic links – files that

point to other files. Why is this important? In the case of sensor data management, we want
to be able to access the data source through multiple names. So if we have a temperature
sensor that is both inside a room and belongs to a set of things I own, I can place it in the
room directory and symbolically link to it from my personal directory.

Lets go ahead and create a symbolic link. As usual, we create a json documen with the
operation that will be carried out by StreamFS. Lets name the symlink “stream1 link”.

echo "{\"operation\":\"create_symlink\",\
\"uri\":\"/temp/stream1\", \"name\":\"stream1_link\"}" > \
create_symlink.json

Now lets POST it to the “temp” file and to create it.

curl -i -X POST "http://184.106.109.119:8080/temp" -d@create_symlink.json

HTTP/1.1 201 Created
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 20 Jan 2012 23:21:24 GMT

If everything went well, you should get a response with the HTTP status code 201. Now
that it’s up and created, lets go ahead and see how it is listed when we call the parent
directory.

curl -i "http://184.106.109.119:8080/temp"
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 20 Jan 2012 23:21:26 GMT

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 153

{
"status": "success",
"type": "DEFAULT",
"properties": {},
"children": [

"stream1",
"stream1_link -> /temp/stream1"

]
}

Notice the child named “stream1 link”. The arrow indicate that it is a symbolic link
that points to /temp/stream1. Therefore all HTTP requests to /temp/stream1 link will
be forwarded to the /temp/stream1 file and the response will look as if it had come from
there. Lets check that first hand.

curl -i "http://184.106.109.119:8080/temp/stream1_link"
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 20 Jan 2012 23:21:38 GMT

{
"status": "success",
"pubid": "789cf943-bbc8-428e-97ce-03e7cfe5fc12",
"head": {},
"properties": {

"units": "psi"
}

}

Compare this to the response we received from /temp/stream1 when we created it.
Notice, it’s the same response. Again, this is a useful way to give multiple names to the same
file and we use it in other features in StreamFS, for example to perform various aggregation
procedures.

Moving a resource
Sometimes you either make a mistake in naming a file or simply want to place it in

another directory. StreamFS supports the move operation that allows you to move any file
from one location to another or to rename an existing file.

echo "{\"operation\":\"move\",\
\"src\":\"/temp/stream1\", \"dst\":\"/temp/stream2\"}" > \
move.json

curl -i -X PUT "http://localhost:8080/temp" -d@move.json

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 154

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Tue, 10 Apr 2012 03:07:24 GMT

{"status":"success"}

B.9 Stream Processing
This section starts getting into the stream processing components of StreamFS. StreamFS

supports the ability the run javascript processing scripts on streaming data and return the
result via a stream file/resource. The user can either query or subscribe to the output of
the resource to see the results. In this section we’re going to use the previously created
stream file in /temp/stream1 as the source stream to feed through the processing element.
We will define a processing element, install it, pipe /temp/stream1 through it and obverse
the output as it’s being processed.

B.10 Configuration
The processing engine in StreamFS communicates with processing elements meant to

run on remote machines. Note the contents of the configuration file in lib/local/rest/re-
sources/proc/config/serverlist.json.

{
"procservers":[

{
"name":"proc1",
"host":"127.0.0.1",
"port":1337
}

]
}

This configuration file consists of a list of process element servers. StreamFS automatically
load balances between the servers while trying to maintain the highest leve of efficiency. In
other words, it will use all the resources of a single machine until it decides to spawn jobs
on a new one due to decreasing performance. For testing, lets use the default configuration
which starts a proces-element server on the localhost.

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 155

B.11 Start the processing element
If you’re administering your own copy of StreamFS you’re going to have to fire up the

processing layer and update the configuration files in StreamFS to point to their location.
Each processing element runs in node. Lets starts it with the following command in a new
terminal:

node lib/local/rest/resources/proc/js/runner.js

B.12 Creating a processing job
The script below is a request to to create a new process. The name is how the name

of the file/resource to be created in /proc. The winsize is the window size that will induce
the process to run. A winsize of 10 means that when the window has 10 elements it in,
pass the window of values to the function defined by func. The materialize keyword is a
boolean that sets the output of the function to be saved in the database for querying or
not. The timeout parameters is the time out in milliseconds for the process to run. This
is a special case where both the winsize and the timeout are specified. The timeout beats
out the winsize parameter. In other words, if the timer fires before the buffer has reached
winsize, the function runs on the data that is currently in the buffer. Lets save this in a file
called saveproc.json.

{
"operation":"save_proc",
"name":"testproc",
"script":{

"winsize":10,
"materialize":"false",
"timeout":20000,
"func":function(buffer, state){

var outObj = new Object();
outObj.tag = "processed";
return outObj;

}
}

}

You can use it as a template for getting started with creating different types of processing
scripts. Make sure that the processing script doesn’t have any errors in it before running.
Do not surround the function definition in quotes. The function must take the “buffer”
variable is an Array of Objects, it also accepts an optional parameter ‘state’ which holds
state associated with the process. This is a generic object that is passed to the function

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 156

each time it runs. The returned element must be an Object. It could be an object with any
number of elements in it. This objects will be sent back to StreamFS and made available
through the associated stream element for this process output.

The script that you wish to run on the buffer is defined by func. This function takes a
buffer, where buffer.length ¡= winsize, performs some operation on it, and outputs a buffer.
If the materialize option is set to true and the output object contains the “timestamp” and
“value” fields, it is saved for processing later on. We create it by POSTing it to /proc.

curl -i -X POST http://localhost:8080/proc -d@saveproc.json

This returns a HTTP 201 response. We can check that the new resource has been created
with a GET request to /proc.

curl -i http://localhost:8080/proc
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 11 May 2012 12:24:41 GMT

{
"status": "success",
"type": "DEFAULT",
"properties": {

"status": "active"
},
"children": [

"testproc"
]

}

Notice that one of the children is named testproc. Lets call GET on that new resource.
Notice the properties object. It contains a variant of the script that was entered. It’s the
basic code that will be run on the data directed through a running instance of the script.

curl -i http://localhost:8080/proc/testproc

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 11 May 2012 12:25:06 GMT

{

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 157

"status": "success",
"type": "PROCESS_CODE",
"properties": {

"operation": "save_proc",
"name": "testproc2",
"script": {

"winsize": 10,
"materialize": "false",
"timeout": 20000,
"func": {

"params": [
"inbuf"

],
"text": "var outObj = new Object();

outObj.tag = \"processed\";
return outObj;"

}
}

},
"children": [

"15a73498cfed"
]

}

B.13 Start the process
Lets get a test process started. First lets create a request object and POST it to StreamFS

to get the process ‘installed’.

echo ’{"path":"/temp/stream1", "target":"/proc/testproc"}’ > subreq.json

Now lets post it to the subscription path in /sub to create it.

curl -i -X POST "http://localhost:8080/sub/" -d@subreq.json

The response looks like a regular subscription response. However, this is a special sub-
scription. It’s a subscription that directs incoming data through a running process.

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 11 May 2012 12:23:37 GMT

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 158

{
"operation": "subscribe",
"status": "success",
"subid": "bc2e1035-7f19-4a34-baa2-60e49470a988"

}

Below I have included a nodejs script that you can copy-paste in order to view the output
of the running process. Copy-paste it and fire it up with node.

var http = require(’http’);
function handlePost(req, res){

console.log("Handling post event");
res.writeHead(200, {’Content-Type’: ’text/json’});
res.end("{\"status\":\"success\"}");

}
var server= http.createServer(function(req,res){

req.setEncoding(’utf8’);
console.log(req.headers);
req.on(’data’, function(chunk) {

console.log("Receive_Event::" + chunk);
if(req.method==’POST’){

handlePost(req,res);
}

});

req.on(’end’, function() {
console.log(’on end’);

});

console.log("Bytes received: " + req.socket.bytesRead);
if(req.method!=’POST’){

res.writeHead(200, {’Content-Type’: ’text/plain’});
res.end();

}
}).listen(1338, "localhost");
console.log(’Server running at http://localhost:1338/’);

Notice, the stream resource is a child of the testproc resource that was created when you
saved the script. The stream resource was created after the subscription was installed (the
initial one) that is piping incoming data through a running instance of the process.

echo ’{"path":"/proc/testproc/15a73498cfed/", "target":"http://localhost:1338"}’
> subreq2.json

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 159

Now, we want to subscribe to this resource in order to observe the output of the process
as data runs through it.

curl -i -X POST "http://localhost:8080/sub/" -d@subreq2.json

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 11 May 2012 12:30:00 GMT

{
"operation": "subscribe",
"status": "success",
"subid": "14637d35-68d2-4757-bdf8-4438b12fce1f"

}

Viewing the output
As the process run, the output should look like similar to the output shown below:

{ ’content-type’: ’application/json’,
’cache-control’: ’no-cache’,
pragma: ’no-cache’,
’user-agent’: ’Java/1.7.0_03’,
host: ’localhost:1338’,
accept: ’text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2’,
connection: ’close’,
’content-length’: ’66’ }

Bytes received: 247
Receive_Event::{

"tag":"processed",
"PubId":"a58227c6-2324-4a6a-bca8-72411d27340f"

}
Handling post event
on end

B.14 Stopping the process
To stop the process altogether, simple delete the stream resource, the subscription, or

even the source, /temp/stream1. Any of those will stop the process altogether.

curl -i -X DELETE http://localhost:8080/proc/testproc2/15a73498cfed

APPENDIX B. STREAMFS HTTP/REST TUTORIAL 160

HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Connection: close
Date: Fri, 11 May 2012 12:35:41 GMT

161

Bibliography

[1] http://tinyurl.com/.
[2] U.S. Energy Information Administration. COMMERCIAL BUILDINGS ENERGY

CONSUMPTION SURVEY. 2003.
[3] Yuvraj Agarwal et al. “Duty-cycling buildings aggressively: The next frontier in HVAC

control”. In: IPSN’11. Chicago, IL, USA, 2011, pp. 246–257.
[4] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE

Standard 135-1995: BACnet. ASHRAE, Inc., 1995.
[5] Miguel A. Carreira-Perpinan Ankur Kamthe Varick Erickson and Alberto Cerpa. “En-

abling Building Energy Auditing Using Adapted Occupancy Models”. In: Buildsys’11.
Seattle, WA, 2011, p. 6.

[6] Apache HBase. http://hbase.apache.org/.
[7] A. Arafat and T. Hasan. “Automatic detection of ECG wave boundaries using empir-

ical mode decomposition”. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2009.

[8] A. Aswani et al. “Reducing Transient and Steady State Electricity Consumption in
HVAC Using Learning-Based Model-Predictive Control”. In: Proceedings of the IEEE
100.1 (2012), pp. 240–253. issn: 0018-9219. doi: 10.1109/JPROC.2011.2161242.

[9] Martin Azizyan, Ionut Constandache, and Romit Roy Choudhury. “SurroundSense:
mobile phone localization via ambience fingerprinting”. In: Proceedings of the 15th
annual international conference on Mobile computing and networking. MobiCom ’09.
Beijing, China: ACM, 2009, pp. 261–272. isbn: 978-1-60558-702-8. doi: 10.1145/
1614320.1614350. url: http://doi.acm.org/10.1145/1614320.1614350.

[10] Paramvir Bahl and Venkata N. Padmanabhan. “RADAR: An In-Building RF-Based
User Location and Tracking System”. In: INFOCOM. 2000, pp. 775–784.

[11] M. Balazinska et al. “Data Management in the Worldwide Sensor Web”. In: Pervasive
Computing, IEEE 6.2 (2007), pp. 30–40. issn: 1536-1268. doi: 10.1109/MPRV.2007.
27.

[12] Gowtham Bellala et al. “A finite state machine-based characterization of building
entities for monitoring and control”. In: BuildSys ’12 (2012), pp. 153–160.

http://tinyurl.com/
http://hbase.apache.org/
http://dx.doi.org/10.1109/JPROC.2011.2161242
http://dx.doi.org/10.1145/1614320.1614350
http://dx.doi.org/10.1145/1614320.1614350
http://doi.acm.org/10.1145/1614320.1614350
http://dx.doi.org/10.1109/MPRV.2007.27
http://dx.doi.org/10.1109/MPRV.2007.27

BIBLIOGRAPHY 162

[13] Gowtham Bellala et al. “Towards an Understanding of Campus-Scale Power Con-
sumption”. In: Buildsys’11. Seattle, WA, 2011, p. 6.

[14] Manuel Blanco-Velasco, Binwei Weng, and Kenneth E. Barner. “ECG signal denoising
and baseline wander correction based on the empirical mode decomposition”. In:
Computers in biology and medicine 38.1 (2008), pp. 1–13.

[15] Vincent D. Blondel et al. “Fast unfolding of communities in large networks”. In:
J.STAT.MECH. (2008).

[16] Christopher Brooks et al. Heterogeneous Concurrent Modeling and Design in Java
(Volume 1: Introduction to Ptolemy II). Tech. rep. UCB/EECS-2007-7. EECS Depart-
ment, University of California, Berkeley, 2007. url: http://www.eecs.berkeley.
edu/Pubs/TechRpts/2007/EECS-2007-7.html.

[17] Matthew Brown, Chris Barrington-Leigh, and Zosia Brown. “Kernel regression for
real-time building energy analysis”. In: Journal of Building Performance Simulation
5.4 (2012), pp. 263–276.

[18] Paul Castro et al. “A Probabilistic Room Location Service for Wireless Networked
Environments”. In: Proceedings of the 3rd International Conference on Ubiquitous
Computing. UbiComp ’01. Atlanta, Georgia, USA: Springer-Verlag, 2001, pp. 18–34.
isbn: 3-540-42614-0. url: http://dl.acm.org/citation.cfm?id=647987.741335.

[19] Philip Chan, Matthew Mahoney, and Muhammad Arshad. “Learning Rules and Clus-
ters for Anomaly Detection in Network Traffic”. In: Managing Cyber Threats. Vol. 5.
Massive Computing. Springer US, 2005, pp. 81–99.

[20] Chao Chen and Diane J. Cook. “Energy Outlier Detection in Smart Environments.”
In: Artificial Intelligence and Smarter Living. Vol. WS-11-07. AAAI Workshops.
AAAI, 2011.

[21] Chen Chen et al. “Graph OLAP: Towards Online Analytical Processing on Graphs”.
In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining.
ICDM ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 103–112. isbn:
978-0-7695-3502-9. doi: 10.1109/ICDM.2008.30. url: http://dx.doi.org/10.
1109/ICDM.2008.30.

[22] Peter Pin shan Chen. “The Entity-Relationship Model: Toward a Unified View of
Data”. In: ACM Transactions on Database Systems 1 (1976), pp. 9–36.

[23] Yixin Chen and Li Tu. “Density-based clustering for real-time stream data”. In: Pro-
ceedings of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining. KDD ’07. 2007.

[24] Henrik Baerbak Christensen and Jakob Bardram. “Supporting Human Activities - Ex-
ploring Activity-Centered Computing”. In: Proceedings of the 4th international con-
ference on Ubiquitous Computing. UbiComp ’02. Goteborg, Sweden: Springer-Verlag,
2002, pp. 107–116. isbn: 3-540-44267-7. url: http://dl.acm.org/citation.cfm?
id=647988.741475.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://dl.acm.org/citation.cfm?id=647987.741335
http://dx.doi.org/10.1109/ICDM.2008.30
http://dx.doi.org/10.1109/ICDM.2008.30
http://dx.doi.org/10.1109/ICDM.2008.30
http://dl.acm.org/citation.cfm?id=647988.741475
http://dl.acm.org/citation.cfm?id=647988.741475

BIBLIOGRAPHY 163

[25] W. Steven Conner, Lakshman Krishnamurthy, and Roy Want. “Making Everyday
Life Easier Using Dense Sensor Networks”. In: Proceedings of the 3rd international
conference on Ubiquitous Computing. UbiComp ’01. Atlanta, Georgia, USA: Springer-
Verlag, 2001, pp. 49–55. isbn: 3-540-42614-0. url: http://dl.acm.org/citation.
cfm?id=647987.741329.

[26] Drury B. Crawley and Linda K. Lawrie. ENERGYPLUS: NEW CAPABILITIES IN
A WHOLE-BUILDING ENERGY SIMULATION PROGRAM.

[27] David E. Culler, Klaus Erik Schauser, and Thorsten von Eicken. Two Fundamental
Limits on Dataflow Multiprocessing. Tech. rep. UCB/CSD-92-716. EECS Department,
University of California, Berkeley, 1992. url: http://www.eecs.berkeley.edu/
Pubs/TechRpts/1992/6259.html.

[28] Stephen Dawson-Haggerty et al. “At scale: insights from a large, long-lived appliance
energy WSN”. In: Proceedings of the 11th international conference on Information
Processing in Sensor Networks. IPSN ’12. Beijing, China: ACM, 2012, pp. 37–48.
isbn: 978-1-4503-1227-1. doi: 10.1145/2185677.2185683. url: http://doi.acm.
org/10.1145/2185677.2185683.

[29] Stephen Dawson-Haggerty et al. “BOSS: building operating system services”. In: Pro-
ceedings of the 10th USENIX conference on Networked Systems Design and Implemen-
tation. nsdi’13. Lombard, IL: USENIX Association, 2013, pp. 443–458. url: http:
//dl.acm.org/citation.cfm?id=2482626.2482669.

[30] Stephen Dawson-Haggerty et al. “sMAP: a simple measurement and actuation profile
for physical information”. In: Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems. SenSys ’10. Zurich, Switzerland: ACM, 2010, pp. 197–210.
isbn: 978-1-4503-0344-6. doi: 10.1145/1869983.1870003. url: http://doi.acm.
org/10.1145/1869983.1870003.

[31] Department of Energy. 2011 Buildings Energy Data Book. http://buildingsdatabook.
eren.doe.gov/.

[32] Department of Energy. USGBC Exploring A New Kind of LEED Plaque. http://
www.leeduser.com/blogs/usgbc-exploring-new-kind-leed-plaque-v4-gbci-
certification-platinum.

[33] Colin Dixon et al. “An operating system for the home”. In: Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation. NSDI’12.
San Jose, CA: USENIX Association, 2012, pp. 25–25. url: http://dl.acm.org/
citation.cfm?id=2228298.2228332.

[34] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, 2001.
[35] Echelon Corporation. LonTalk Protocol Specification. Echelon Corp. 1994.
[36] Varick L. Erickson, Miguel Á. Carreira-Perpiñán, and Alberto Cerpa. “OBSERVE:

Occupancy-based system for efficient reduction of HVAC energy”. In: IPSN’11. Chicago,
IL, USA, 2011, pp. 258–269.

http://dl.acm.org/citation.cfm?id=647987.741329
http://dl.acm.org/citation.cfm?id=647987.741329
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/6259.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/6259.html
http://dx.doi.org/10.1145/2185677.2185683
http://doi.acm.org/10.1145/2185677.2185683
http://doi.acm.org/10.1145/2185677.2185683
http://dl.acm.org/citation.cfm?id=2482626.2482669
http://dl.acm.org/citation.cfm?id=2482626.2482669
http://dx.doi.org/10.1145/1869983.1870003
http://doi.acm.org/10.1145/1869983.1870003
http://doi.acm.org/10.1145/1869983.1870003
http://buildingsdatabook.eren.doe.gov/
http://buildingsdatabook.eren.doe.gov/
http://www.leeduser.com/blogs/usgbc-exploring-new-kind-leed-plaque-v4-gbci-certification-platinum
http://www.leeduser.com/blogs/usgbc-exploring-new-kind-leed-plaque-v4-gbci-certification-platinum
http://www.leeduser.com/blogs/usgbc-exploring-new-kind-leed-plaque-v4-gbci-certification-platinum
http://dl.acm.org/citation.cfm?id=2228298.2228332
http://dl.acm.org/citation.cfm?id=2228298.2228332

BIBLIOGRAPHY 164

[37] Patrick Th. Eugster and Rachid Guerraoui. Content-Based Publish/Subscribe with
Structural Reflection. 2001.

[38] Patrick Th. Eugster et al. “The many faces of publish/subscribe”. In: ACM Comput.
Surv. 35.2 (June 2003), pp. 114–131. issn: 0360-0300. doi: 10.1145/857076.857078.
url: http://doi.acm.org/10.1145/857076.857078.

[39] File System in User Space (FUSE). url: http://fuse.sourceforge.net/.
[40] Romain Fontugne et al. “Empirical Mode Decomposition for Intrinsic-Relationship

Extraction in Large Sensor Deployments”. In: IoT-App’12, Workshop on Internet of
Things Applications. Beijing, China, 2012.

[41] Romain Fontugne et al. “Strip, bind, and search: a method for identifying abnormal
energy consumption in buildings”. In: Proceedings of the 12th international conference
on Information processing in sensor networks. IPSN ’13. 2013.

[42] Ge Gao and Kamin Whitehouse. “The self-programming thermostat: optimizing set-
back schedules based on home occupancy patterns”. In: BuildSys’09. Berkeley, Cal-
ifornia, 2009, pp. 67–72. isbn: 978-1-60558-824-7. doi: http://doi.acm.org/10.
1145/1810279.1810294. url: http://doi.acm.org/10.1145/1810279.1810294.

[43] P. Gardner and L. Ward. Energy Management Systems in Buildings: The Practical
Lessons. Energy Publications, 1987. isbn: 9780905332543. url: http : / / books .
google.com/books?id=_1wKfAEACAAJ.

[44] Neil Gershenfeld, Stephen Samouhos, and Bruce Nordman. “Intelligent Infrastructure
for Energy Efficiency”. In: Science 327.5969 (2010), p. 3.

[45] Hector Gonzalez et al. “Warehousing and Analyzing Massive RFID Data Sets”. In:
Proceedings of the 22nd International Conference on Data Engineering. ICDE ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 83–. isbn: 0-7695-2570-9.
doi: 10.1109/ICDE.2006.171. url: http://dx.doi.org/10.1109/ICDE.2006.171.

[46] Jim Gray et al. “Data Cube: A Relational Aggregation Operator Generalizing Group-
By, Cross-Tab, and Sub-Total”. In: Proceedings of the Twelfth International Confer-
ence on Data Engineering. ICDE ’96. Washington, DC, USA: IEEE Computer Society,
1996, pp. 152–159. isbn: 0-8186-7240-4. url: http://dl.acm.org/citation.cfm?
id=645481.655593.

[47] HAProxy: The Reliable, High Performance TCP/HTTP Load Balancer. http : / /
haproxy.1wt.eu/.

[48] Ismail Haritaoglu. “InfoScope: Link from Real World to Digital Information Space”.
In: Proceedings of the 3rd international conference on Ubiquitous Computing. Ubi-
Comp ’01. Atlanta, Georgia, USA: Springer-Verlag, 2001, pp. 247–255. isbn: 3-540-
42614-0. url: http://dl.acm.org/citation.cfm?id=647987.741331.

http://dx.doi.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://fuse.sourceforge.net/
http://dx.doi.org/http://doi.acm.org/10.1145/1810279.1810294
http://dx.doi.org/http://doi.acm.org/10.1145/1810279.1810294
http://doi.acm.org/10.1145/1810279.1810294
http://books.google.com/books?id=_1wKfAEACAAJ
http://books.google.com/books?id=_1wKfAEACAAJ
http://dx.doi.org/10.1109/ICDE.2006.171
http://dx.doi.org/10.1109/ICDE.2006.171
http://dl.acm.org/citation.cfm?id=645481.655593
http://dl.acm.org/citation.cfm?id=645481.655593
http://haproxy.1wt.eu/
http://haproxy.1wt.eu/
http://dl.acm.org/citation.cfm?id=647987.741331

BIBLIOGRAPHY 165

[49] T. Hasan and M.K. Hasan. “Suppression of Residual Noise From Speech Signals Using
Empirical Mode Decomposition”. In: Signal Processing Letters, IEEE 16.1 (2009),
pp. 2 –5. issn: 1070-9908.

[50] Michael Hay et al. “Boosting the Accuracy of Differentially Private Histograms Through
Consistency”. In: Proc. VLDB Endow. 3.1-2 (Sept. 2010), pp. 1021–1032. issn: 2150-
8097. url: http://dl.acm.org/citation.cfm?id=1920841.1920970.

[51] Brett D. Higgins et al. “Informed mobile prefetching”. In: Proceedings of the 10th
international conference on Mobile systems, applications, and services. MobiSys ’12.
Low Wood Bay, Lake District, UK: ACM, 2012, pp. 155–168. isbn: 978-1-4503-1301-
8. doi: 10.1145/2307636.2307651. url: http://doi.acm.org/10.1145/2307636.
2307651.

[52] Lars Erik Holmquist et al. Smart-Its Friends: A Technique for Users to Easily Estab-
lish Connections between Smart Artefacts. 2001.

[53] Dezhi Hong et al. “Towards Automatic Spatial Verification of Sensor Placement in
Buildings”. In: Proceedings of the 5th ACM Workshop on Embedded Systems For
Energy-Efficient Buildings. BuildSys’13. Roma, Italy: ACM, 2013, 13:1–13:8. isbn:
978-1-4503-2431-1. doi: 10.1145/2528282.2528302. url: http://doi.acm.org/
10.1145/2528282.2528302.

[54] Jeff Hsu et al. “HBCI: human-building-computer interaction”. In: Proceedings of the
2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building.
BuildSys ’10. Zurich, Switzerland: ACM, 2010, pp. 55–60. isbn: 978-1-4503-0458-0.
doi: 10.1145/1878431.1878444. url: http://doi.acm.org/10.1145/1878431.
1878444.

[55] Hai Huang and Jiaqiang Pan. “Speech pitch determination based on Hilbert-Huang
transform”. In: Signal Processing 86.4 (2006), pp. 792 –803. issn: 0165-1684.

[56] Norden E. Huang. “Computing frequency by using generalized zero-crossing applied
to intrinsic mode functions”. Pat. 6990436. 2006.

[57] Norden E. Huang et al. “On Instantaneous Frequency”. In: Advances in Adaptive
Data Analysis 1.2 (2009).

[58] Norden E. Huang et al. “The empirical mode decomposition and the Hilbert spectrum
for nonlinear and non-stationary time series analysis”. In: Proceedings of the Royal
Society of London. Series A 454.1971 (1998), pp. 903–995.

[59] P.J. Huber and E.M. Ronchetti. Robust Statistics. Wiley Series in Probability and
Statistics. Wiley, 2009. isbn: 9780470434680.

[60] Jonathan W. Hui and David E. Culler. “Extending IP to Low-Power, Wireless Per-
sonal Area Networks”. In: Internet Computing, IEEE 12.4 (2008).

[61] Java Universal Network/Graph Framework. http://jung.sourceforge.net/.

http://dl.acm.org/citation.cfm?id=1920841.1920970
http://dx.doi.org/10.1145/2307636.2307651
http://doi.acm.org/10.1145/2307636.2307651
http://doi.acm.org/10.1145/2307636.2307651
http://dx.doi.org/10.1145/2528282.2528302
http://doi.acm.org/10.1145/2528282.2528302
http://doi.acm.org/10.1145/2528282.2528302
http://dx.doi.org/10.1145/1878431.1878444
http://doi.acm.org/10.1145/1878431.1878444
http://doi.acm.org/10.1145/1878431.1878444
http://jung.sourceforge.net/

BIBLIOGRAPHY 166

[62] Xiaofan Jiang et al. “Design and implementation of a high-fidelity AC metering net-
work”. In: Proceedings of the 2009 International Conference on Information Process-
ing in Sensor Networks. IPSN ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 253–264. isbn: 978-1-4244-5108-1. url: http://dl.acm.org/citation.
cfm?id=1602165.1602189.

[63] Yifei Jiang et al. “MAQS: a personalized mobile sensing system for indoor air qual-
ity monitoring”. In: Proceedings of the 13th international conference on Ubiquitous
computing. UbiComp ’11. Beijing, China: ACM, 2011, pp. 271–280. isbn: 978-1-4503-
0630-0. doi: 10.1145/2030112.2030150. url: http://doi.acm.org/10.1145/
2030112.2030150.

[64] Krasimira Kapitanova et al. “Being SMART about failures: assessing repairs in SMART
homes”. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing. Ubi-
Comp ’12. 2012.

[65] Vishesh Karwa et al. “Private analysis of graph structure”. In: In VLDB. 2011.
[66] S. Katipamula and M.R. Brambley. “Review Article: Methods for Fault Detection,

Diagnostics, and Prognostics for Building Systems, A Review, Part I”. In: HVAC&R
Research 11.1 (2005), pp. 3–25.

[67] S. Katipamula and M.R. Brambley. “Review Article: Methods for Fault Detection,
Diagnostics, and Prognostics for Building Systems, A Review, Part II”. In: HVAC&R
Research 11.2 (2005), pp. 169–187.

[68] Younghun Kim et al. “Granger causality analysis on IP traffic and circuit-level energy
monitoring”. In: BuildSys’10. Zurich, Switzerland, 2010, pp. 43–48. isbn: 978-1-4503-
0458-0.

[69] Tim Kindberg et al. “People, Places, Things: Web Presence for the Real World”. In:
WMCSA2000. 2000, pp. 365–376.

[70] Jahyoung Koo, Jiyoung Yi, and Hojung Cha. “Localization in mobile ad hoc networks
using cumulative route information”. In: Proceedings of the 10th international confer-
ence on Ubiquitous computing. UbiComp ’08. Seoul, Korea: ACM, 2008, pp. 124–133.
isbn: 978-1-60558-136-1. doi: 10.1145/1409635.1409652. url: http://doi.acm.
org/10.1145/1409635.1409652.

[71] Andrew Krioukov and David Culler. “Personal building controls”. In: Proceedings
of the 11th international conference on Information Processing in Sensor Networks.
IPSN ’12. Beijing, China: ACM, 2012, pp. 157–158. isbn: 978-1-4503-1227-1. doi: 10.
1145/2185677.2185726. url: http://doi.acm.org/10.1145/2185677.2185726.

[72] Steven M Lanzisera et al. “Wireless Electricity Metering of Miscellaneous and Elec-
tronic Devices in Buildings”. In: 2011 Future of Instrumentation International Work-
shop. 2011.

http://dl.acm.org/citation.cfm?id=1602165.1602189
http://dl.acm.org/citation.cfm?id=1602165.1602189
http://dx.doi.org/10.1145/2030112.2030150
http://doi.acm.org/10.1145/2030112.2030150
http://doi.acm.org/10.1145/2030112.2030150
http://dx.doi.org/10.1145/1409635.1409652
http://doi.acm.org/10.1145/1409635.1409652
http://doi.acm.org/10.1145/1409635.1409652
http://dx.doi.org/10.1145/2185677.2185726
http://dx.doi.org/10.1145/2185677.2185726
http://doi.acm.org/10.1145/2185677.2185726

BIBLIOGRAPHY 167

[73] Edward A. Lee et al. Overview of the Ptolemy Project. Tech. rep. UCB/ERL M01/11.
EECS Department, University of California, Berkeley, 2001. url: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2001/3947.html.

[74] T. Lee and T. B. M. J. Ouarda. “Prediction of climate nonstationary oscillation
processes with empirical mode decomposition”. In: Journal of Geophysical Research:
Atmospheres 116.D6 (2011).

[75] Geoff Levermore. “Building Energy Management Systems: An Application to Heat-
ing, Natural Ventilation, Lighting and Occupant Satisfaction, Edition 2”. In: Geoff
Levermore, 2000.

[76] Chao Li et al. “Optimizing linear counting queries under differential privacy”. In:
In PODS 2010: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems of data. ACM, 2010, pp. 123–134.

[77] Jiakang Lu and Kamin Whitehouse. “Smart blueprints: automatically generated maps
of homes and the devices within them”. In: Proceedings of the 10th international
conference on Pervasive Computing. Pervasive’12. 2012.

[78] Xi Lu, Michael McElroy, and Juha Kiviluoma. “Global potential for wind-generated
electricity”. In: Proceedings of the National Academy of Sciences 106.27 (July 2009).
url: http://www.pnas.org/content/106/27/10933.full.

[79] Paul Lukowicz et al. “WearNET: A Distributed Multi-sensor System for Context
Aware Wearables”. In: Proceedings of the 4th international conference on Ubiquitous
Computing. UbiComp ’02. Goteborg, Sweden: Springer-Verlag, 2002, pp. 361–370.
isbn: 3-540-44267-7. url: http://dl.acm.org/citation.cfm?id=647988.741494.

[80] Dimitrios Lymberopoulos. “A methodology for extracting temporal properties from
sensor network data streams”. In: In Proceedings of the 7th ACM/Usenix International
Conference on Mobile Systems, Applications and Services (MobiSys 09). 2009.

[81] Yudong Ma et al. “Predictive Control for Energy Efficient Buildings with Thermal
Storage: Modeling, Stimulation, and Experiments”. In: Control Systems, IEEE 32.1
(2012), pp. 44–64. issn: 1066-033X. doi: 10.1109/MCS.2011.2172532.

[82] Sunil Mamidi, Yu-Han Chang, and Rajiv Maheswaran. “Improving building energy
efficiency with a network of sensing, learning and prediction agents”. In: Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems
- Volume 1. AAMAS ’12. Valencia, Spain: International Foundation for Autonomous
Agents and Multiagent Systems, 2012, pp. 45–52. isbn: 0-9817381-1-7, 978-0-9817381-
1-6. url: http://dl.acm.org/citation.cfm?id=2343576.2343582.

[83] Memcached. http://memcached.org/.
[84] Sean Meyn et al. “Anomaly detection using projective Markov models in a distributed

sensor network”. In: CDC’09. Shanghai, China, 2009.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2001/3947.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2001/3947.html
http://www.pnas.org/content/106/27/10933.full
http://dl.acm.org/citation.cfm?id=647988.741494
http://dx.doi.org/10.1109/MCS.2011.2172532
http://dl.acm.org/citation.cfm?id=2343576.2343582
http://memcached.org/

BIBLIOGRAPHY 168

[85] Mark Modera et al. “Efficient Thermal Energy Distribution in Commercial Buildings
Final Report to California Institute for Energy Efficiency”. In: Environmental Energy
Technologies Division, LBNL Technical Report (1994).

[86] H. Mohammadzade et al. “BEMD for expression transformation in face recogni-
tion”. In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2011.

[87] Prashanth Mohan et al. “GUPT: Privacy Preserving Data Analysis Made Easy”. In:
Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’12. Scottsdale, Arizona, USA: ACM, 2012, pp. 349–360. isbn: 978-
1-4503-1247-9. doi: 10.1145/2213836.2213876. url: http://doi.acm.org/10.
1145/2213836.2213876.

[88] MongoDB. url: http://www.mongodb.org/.
[89] Suman Nath. “ACE: exploiting correlation for energy-efficient and continuous con-

text sensing”. In: Proceedings of the 10th international conference on Mobile systems,
applications, and services. MobiSys ’12. Low Wood Bay, Lake District, UK: ACM,
2012, pp. 29–42. isbn: 978-1-4503-1301-8. doi: 10.1145/2307636.2307640. url:
http://doi.acm.org/10.1145/2307636.2307640.

[90] Next10. Untapped Potential of Commericial Buildings: Energy Use and Emissions.
2010. url: http : / / next10 . org / next10 / pdf / NXT10 _ BuildingEfficiencies _
final.pdf.

[91] J. C. Nunes, S. Guyot, and E. Delechelle. “Texture analysis based on local analy-
sis of the Bidimensional Empirical Mode Decomposition”. In: Machine Vision and
Applications 16 (3 2005), pp. 177–188. issn: 0932-8092.

[92] H. Ochiai et al. “FIAP: Facility information access protocol for data-centric building
automation systems”. In: Computer Communications Workshops (INFOCOM WK-
SHPS), 2011 IEEE Conference on. 2011, pp. 229–234. doi: 10.1109/INFCOMW.2011.
5928814.

[93] OpenTSDB. url: http://opentsdb.net/.
[94] Jorge Ortiz et al. “Live, Continuous Energy Auditing of Miscellaneous Electrical

Loads: Methodology and Results”. In: ACEEE Summer Study on Energy Efficient
Buildings 2012. ACEEE ’12.

[95] Jorge Ortiz et al. “Towards real-time, fine-grained energy analytics in buildings through
mobile phones”. In: Proceedings of the Fourth ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings. BuildSys ’12. Toronto, Ontario, Canada:
ACM, 2012, pp. 42–44. isbn: 978-1-4503-1170-0. doi: 10.1145/2422531.2422540.
url: http://doi.acm.org/10.1145/2422531.2422540.

[96] D. Patnaik et al. “Temporal data mining approaches for sustainable chiller manage-
ment in data centers”. In: ACM Transactions on Intelligent Systems and Technology
2.4 (2011).

http://dx.doi.org/10.1145/2213836.2213876
http://doi.acm.org/10.1145/2213836.2213876
http://doi.acm.org/10.1145/2213836.2213876
http://www.mongodb.org/
http://dx.doi.org/10.1145/2307636.2307640
http://doi.acm.org/10.1145/2307636.2307640
http://next10.org/next10/pdf/NXT10_BuildingEfficiencies_final.pdf
http://next10.org/next10/pdf/NXT10_BuildingEfficiencies_final.pdf
http://dx.doi.org/10.1109/INFCOMW.2011.5928814
http://dx.doi.org/10.1109/INFCOMW.2011.5928814
http://opentsdb.net/
http://dx.doi.org/10.1145/2422531.2422540
http://doi.acm.org/10.1145/2422531.2422540

BIBLIOGRAPHY 169

[97] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. “The Cricket
Location-Support System”. In: 2000, pp. 32–43.

[98] R. Richards. “”Representational State Transfer (REST)” in ”Pro PHP XML and
Web Services””. In: Springer Publishing, 2006. Chap. 17, pp. 633–672. url: http:
//dx.doi.org/10.1007/978-1-4302-0139-7_17.

[99] D. M. Ritchie and K. Thompson. “The Unix Time-Sharing System”. In: Communi-
cations of the ACM 17 (1974), pp. 365–375.

[100] Tristan Roberts. USGBC Exploring A New Kind of LEED Plaque. url: http://
www.leeduser.com/blogs/usgbc-exploring-new-kind-leed-plaque-v4-gbci-
certification-platinum.

[101] Kay Romer. The Lighthouse Location System for Smart Dust. 2003.
[102] David S. Rosenblum and Alexander L. Wolf. “A Design Framework for Internet-Scale

Event Observation and Notification”. In: In Proc. of the 6 th European Software En-
gineering Conf. held jointly with the 5 th ACM SIGSOFT Symp. on the Foundations
of Software Engineering (ESEC/FSE97), number 1301 in LNCS. Springer, 1997.

[103] Mirco Rossi, Burcu Cinaz, and Gerhard Tröster. “Ready-to-live: wearable computing
meets fashion”. In: Proceedings of the 13th international conference on Ubiquitous
computing. UbiComp ’11. Beijing, China: ACM, 2011, pp. 609–610. isbn: 978-1-4503-
0630-0. doi: 10.1145/2030112.2030238. url: http://doi.acm.org/10.1145/
2030112.2030238.

[104] J. Schein and S.T. Bushby. “A hierarchical rule-based fault detection and diagnostic
method for HVAC systems”. In: HVAC&R Research 12.1 (2006), pp. 111–125.

[105] John E. Seem. “Using intelligent data analysis to detect abnormal energy consumption
in buildings”. In: Energy and Buildings 39.1 (2007), pp. 52 –58.

[106] Margo Seltzer and Nicholas Murphy. “Hierarchical file systems are dead”. In: Pro-
ceedings of the 12th conference on Hot topics in operating systems. HotOS’09. Monte
Verit, Switzerland: USENIX Association, 2009, pp. 1–6. url: http://dl.acm.org/
citation.cfm?id=1855568.1855569.

[107] M. E. Senko et al. “Data structures and accessing in data-base systems: III data
representations and the data independent accessing model”. In: IBM Syst. J. 12 (1
1973), pp. 64–93. issn: 0018-8670. url: http://dl.acm.org/citation.cfm?id=
1661096.1661100.

[108] Guobin Shen et al. Dita: Enabling Gesture-based Human-Device Interaction using
Mobile Phone. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.186.7191.

[109] Eliza Strickland. Explainer: What Went Wrong in Japan’s Nuclear Reactors. url:
http://spectrum.ieee.org/tech- talk/energy/nuclear/explainer- what-
went-wrong-in-japans-nuclear-reactors.

http://dx.doi.org/10.1007/978-1-4302-0139-7_17
http://dx.doi.org/10.1007/978-1-4302-0139-7_17
http://www.leeduser.com/blogs/usgbc-exploring-new-kind-leed-plaque-v4-gbci-certification-platinum
http://www.leeduser.com/blogs/usgbc-exploring-new-kind-leed-plaque-v4-gbci-certification-platinum
http://www.leeduser.com/blogs/usgbc-exploring-new-kind-leed-plaque-v4-gbci-certification-platinum
http://dx.doi.org/10.1145/2030112.2030238
http://doi.acm.org/10.1145/2030112.2030238
http://doi.acm.org/10.1145/2030112.2030238
http://dl.acm.org/citation.cfm?id=1855568.1855569
http://dl.acm.org/citation.cfm?id=1855568.1855569
http://dl.acm.org/citation.cfm?id=1661096.1661100
http://dl.acm.org/citation.cfm?id=1661096.1661100
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.7191
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.7191
http://spectrum.ieee.org/tech-talk/energy/nuclear/explainer-what-went-wrong-in-japans-nuclear-reactors
http://spectrum.ieee.org/tech-talk/energy/nuclear/explainer-what-went-wrong-in-japans-nuclear-reactors

BIBLIOGRAPHY 170

[110] Jay Taneja, Randy Katz, and David Culler. “Defining CPS Challenges in a Sustainable
Electricity Grid”. In: Proceedings of the 2012 IEEE/ACM Third International Confer-
ence on Cyber-Physical Systems. ICCPS ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 119–128. isbn: 978-0-7695-4695-7. doi: 10.1109/ICCPS.2012.20.
url: http://dx.doi.org/10.1109/ICCPS.2012.20.

[111] Jay Taneja et al. Enabling Advanced Environmental Conditioning with a Building
Application Stack. Tech. rep. UCB/EECS-2013-14. EECS Department, University of
California, Berkeley, 2013. url: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2013/EECS-2013-14.html.

[112] Stephen P. Tarzia et al. “Indoor localization without infrastructure using the acoustic
background spectrum”. In: Proceedings of the 9th international conference on Mobile
systems, applications, and services. MobiSys ’11. Bethesda, Maryland, USA: ACM,
2011, pp. 155–168. isbn: 978-1-4503-0643-0. doi: 10.1145/1999995.2000011. url:
http://doi.acm.org/10.1145/1999995.2000011.

[113] TIBCO. Using TIBCO Enterprise Message Service with Storage Foundation Cluster
File System Increasing Availability and Performance. 2006.

[114] Sameer Tilak et al. “A file system abstraction for sense and respond systems”. In:
Proceedings of the 2005 workshop on End-to-end, sense-and-respond systems, applica-
tions and services. EESR ’05. Seattle, Washington: USENIX Association, 2005, pp. 1–
6. isbn: 1-931971-32-3. url: http://dl.acm.org/citation.cfm?id=1072530.
1072532.

[115] M.E. Torres et al. “A complete ensemble empirical mode decomposition with adaptive
noise”. In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2011, pp. 4144 –4147.

[116] U.S. Department of Energy. Country Report on Building Energy Codes in Japan.
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-
17849.pdf.

[117] U.S. Environmental Protection Agency. Buildings Energy Data Book. 2010. url:
http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2010_BEDB.pdf.

[118] U.S. Green Building Council Leadership in Energy and Environmental Design. http:
//www.usgbc.org/leed/.

[119] Lingfeng Wang, Zhu Wang, and Rui Yang. “Intelligent Multiagent Control System
for Energy and Comfort Management in Smart and Sustainable Buildings”. In: Smart
Grid, IEEE Transactions on 3.2 (2012), pp. 605–617. issn: 1949-3053. doi: 10.1109/
TSG.2011.2178044.

[120] Roy Want et al. Bridging Physical and Virtual Worlds with Electronic Tags. 1999.
[121] Roy Want et al. “The Personal Server: Changing the Way We Think about Ubiquitous

Computing”. In: In Proceedings of Ubicomp 2002: 4th International Conference on
Ubiquitous Computing, Goteborg. Springer-Verlag, 2002, pp. 194–209.

http://dx.doi.org/10.1109/ICCPS.2012.20
http://dx.doi.org/10.1109/ICCPS.2012.20
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-14.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-14.html
http://dx.doi.org/10.1145/1999995.2000011
http://doi.acm.org/10.1145/1999995.2000011
http://dl.acm.org/citation.cfm?id=1072530.1072532
http://dl.acm.org/citation.cfm?id=1072530.1072532
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-17849.pdf
http://www.pnl.gov/main/publications/external/technical_reports/PNNL-17849.pdf
http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2010_BEDB.pdf
http://www.usgbc.org/leed/
http://www.usgbc.org/leed/
http://dx.doi.org/10.1109/TSG.2011.2178044
http://dx.doi.org/10.1109/TSG.2011.2178044

BIBLIOGRAPHY 171

[122] Mark Weiser. “Human-computer interaction”. In: ed. by Ronald M. Baecker et al. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995. Chap. The computer
for the 21st century, pp. 933–940. isbn: 1-55860-246-1. url: http://dl.acm.org/
citation.cfm?id=212925.213017.

[123] Michael Wrinch, Tarek H.M. EL-Fouly, and Steven Wong. “Anomaly Detection of
Building Systems Using Energy Demand Frequency Domain Anlaysis”. In: IEEE
Power & Energy Society General Meeting. San-Diego, CA, USA, 2012.

[124] WSNFuse: accessing Wireless Sensor Networks as a Filesystem. http://sourceforge.
net/projects/wsnfuse/.

[125] P. Wyckoff et al. “T spaces”. In: IBM Syst. J. 37.3 (July 1998), pp. 454–474. issn:
0018-8670. doi: 10.1147/sj.373.0454. url: http://dx.doi.org/10.1147/sj.
373.0454.

[126] Sungro Yoon, Kyunghan Lee, and Injong Rhee. “FM-based indoor localization via au-
tomatic fingerprint DB construction and matching”. In: Proceeding of the 11th annual
international conference on Mobile systems, applications, and services. MobiSys ’13.
Taipei, Taiwan: ACM, 2013, pp. 207–220. isbn: 978-1-4503-1672-9. doi: 10.1145/
2462456.2464445. url: http://doi.acm.org/10.1145/2462456.2464445.

[127] Tina Yu. “Modeling Occupancy Behavior for Energy Efficiency and Occupants Com-
fort Management in Intelligent Buildings”. In: Proceedings of the 2010 Ninth Interna-
tional Conference on Machine Learning and Applications. ICMLA ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 726–731. isbn: 978-0-7695-4300-0. doi:
10.1109/ICMLA.2010.111. url: http://dx.doi.org/10.1109/ICMLA.2010.111.

[128] Q. Zhou, S. Wang, and Z. Ma. “A model-based fault detection and diagnosis strat-
egy for HVAC systems”. In: International Journal of Energy Research 33.10 (2009),
pp. 903–918.

http://dl.acm.org/citation.cfm?id=212925.213017
http://dl.acm.org/citation.cfm?id=212925.213017
http://sourceforge.net/projects/wsnfuse/
http://sourceforge.net/projects/wsnfuse/
http://dx.doi.org/10.1147/sj.373.0454
http://dx.doi.org/10.1147/sj.373.0454
http://dx.doi.org/10.1147/sj.373.0454
http://dx.doi.org/10.1145/2462456.2464445
http://dx.doi.org/10.1145/2462456.2464445
http://doi.acm.org/10.1145/2462456.2464445
http://dx.doi.org/10.1109/ICMLA.2010.111
http://dx.doi.org/10.1109/ICMLA.2010.111

	Contents
	List of Figures
	List of Tables
	The Vision of Soft Buildings
	The Built Environment
	Pervasive Computing
	Cloud Computing, Ubiquitous Connectivity, and Mobile Phones
	Applications in Buildings
	Research Statement And Hypothesis
	Thesis Roadmap
	Statement of Joint Work

	Sensing in the Built Environment
	Tightly Integrated Building Information System Architecture
	From Supervisory Control to Application Development in Buildings
	BMS Architectural Shortcomings for Supporting Emerging Application Development
	Addressing BMS Shortcomings
	Contextual Accuracy
	Experimental Setting in Real Buildings
	Summary

	StreamFS System Architecture
	Overview
	Name Management
	Time-series Data Store
	Publish-Subscribe Subsystem
	Data Cleaning and Real-time Processing
	Entity-relationship Model
	Related Work
	Summary

	StreamFS Files and Process Mechanisms
	Process Management
	Internal Processes
	External Processes
	Freshness Scheduling
	Dynamic Aggregation Example and Freshness Scheduling Results
	Naming and The Filesystem Metaphore
	File Abstraction
	Supporting Multiple Names
	Related Work
	Summary

	API and an Architectural Evaluation Through Applications
	API Overview
	Energy Auditing With Mobile Phones
	Energy Lens Architecture and System Challenges
	Energy Lens Experience and Results
	Mounted Filesystem and Matlab Integration
	Related Work
	Summary

	Empirical Verification of System Functionality and Metadata
	Verification through Sensor Data
	Types of Verification
	Functional Verification Methodology
	Functional Verification Experimental Results
	Spatial Verification Methodology
	Spatial Verification Results
	Categorical Verification Methodology
	Categorical Verification Results
	Related Work
	Summary

	Conclusions
	Lesson Learned
	Future Work
	Thesis Summary

	StreamFS Process Code
	StreamFS HTTP/REST Tutorial
	Terminology
	Creating a resource
	Creating a stream file
	Pushing data to a stream file
	Bulk data insertion
	Queries
	Bulk default/stream file creation
	Creating symbolic links
	Stream Processing
	Configuration
	Start the processing element
	Creating a processing job
	Start the process
	Stopping the process

	Bibliography

