
The Role of the Underground Economy in Social

Network Spam and Abuse

Kurt Thomas

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-201

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-201.html

December 11, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The Role of the Underground Economy in Social Network Spam and Abuse

by

Kurt Thomas

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Vern Paxson, Chair
Professor Dawn Song

Professor Brian Carver

Fall 2013

The Role of the Underground Economy in Social Network Spam and Abuse

Copyright 2013
by

Kurt Thomas

1

Abstract

The Role of the Underground Economy in Social Network Spam and Abuse

by

Kurt Thomas

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Vern Paxson, Chair

Online social networks have emerged as real-time communication platforms connecting bil-
lions of users around the globe. Implicit to the interactions within an online social network
is the notion of trust; users create relationships with their friends and valued media outlets,
in turn receiving access to content generated by each relationship. This trust however comes
with a price. On the heels of the widespread adoption of online social networks, scams, phish-
ing, and malware attacks conducted by criminals have become a regular occurrence. Such
attacks exploit the trust users place in their relationships and the integrity of information
found in online social networks.

The threat criminals pose to online social networks is exacerbated by the emergence of an
underground economy—a digital network of criminals who buy and sell goods that directly
enable the abuse of online social networks. Such services empower other miscreants to
penetrate online social networks and engage with victims, while at the same time abstracting
away the complexities of circumventing existing protection mechanisms employed by online
social networks to hinder spam and abuse.

In this dissertation, we empirically analyze in both breadth and depth the range of
threats currently targeting online social networks through the lens of Twitter. We map out
the support infrastructure that is critical to online social network abuse, characterize the
tools and techniques used to disseminate malignant content, and evaluate how such attacks
ultimately realize a profit for the attackers involved. In the process, we argue that the
for-profit infrastructure provided by the underground economy in the form of fake accounts
and affiliate programs has become a fundamental weak point of abuse. Defenders should
concentrate their efforts on disrupting these resources rather than fighting the subsequent,
multifaceted abuse it enables such as scams, phishing, malware, and political attacks.

To aid in this effort, we develop two new strategies for preventing abuse in social networks.
Our first defense identifies abusive links in online social networks (or any web service) before
they are distributed to recipients. At its heart, this technique identifies common HTML
content generated by affiliate programs and criminal hosting infrastructure which act as a
buttress for the abuse ecosystem. Our second defense relies on directly engaging with the

2

underground economy that fuels online social network abuse to understand how millions
of fake accounts are registered in an automated fashion. We leverage this understanding
to detect abusive accounts at the time of their registration, preventing criminals from ever
interacting with the legitimate users of online social networks.

In summary, this dissertation provides a data-driven analysis of spam and abuse on
Twitter. We demonstrate that existing solutions for protecting online social networks fail
to protect the millions of users that now rely on the technology as a global communication
platform, exposing users to scams, phishing, malware, and even political censorship. By
adopting the solutions presented in this dissertation, online social network operators can
effectively defend both the ingress points of abuse—fraudulent and compromised accounts—
and the egress points of abuse—spam links that direct victims to spamvertised products,
fake software, clickfraud, banking theft, and malware that converts a victim’s machine into
a commodity for the underground economy. Such solutions afford online social network
providers an opportunity to strike at the critical infrastructure that criminals rely on in
order to monetize and abuse online social networks.

i

A creature who has spent his life creating one particular representation of his
selfdom will die rather than become the antithesis of that representation.

- Scytale (Dune Messiah)

ii

Contents

Contents ii

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Characterizing Social Network Spam and Abuse 2
1.2 Social Spam: Tools, Techniques, and Monetization 3
1.3 Emerging Threats: Censorship and Astroturfing 4
1.4 Developing Real-Time and Scalable Spam Detection 4
1.5 Disrupting the Underground Account Marketplace 5
1.6 Summary . 5

2 Social Networks, Abuse, and the Criminal Ecosystem 6
2.1 Social Network Organization and Interactions 6
2.2 Components of Social Network Abuse . 8

2.2.1 Credentials . 9
2.2.2 Engagement . 9
2.2.3 Monetization . 11

2.3 Criminal Monetization of Abuse . 11
2.3.1 Spamvertized Goods . 11
2.3.2 Fake Software . 11
2.3.3 Clickfraud . 12
2.3.4 Banking Theft . 12
2.3.5 Commoditizing Compromised Hosts 12

2.4 Specialization Within the Criminal Ecosystem 12
2.5 Combating Social Network Spam and Abuse 13

2.5.1 Social Network Spam Analysis Strategies 13
2.5.2 Detecting Scams, Phishing, and Malware Content 13
2.5.3 Spam Filtering and Usability Challenges 14
2.5.4 Social Network-specific Spam Detection 14

iii

3 Characterizing Social Network Spam and Abuse 16
3.1 Introduction . 16
3.2 Blacklist-based Detection of Spam Content on Twitter 17

3.2.1 Twitter monitoring . 18
3.2.2 Blacklist detection . 18
3.2.3 Data summary . 19

3.3 Social Network Spam Content, Distribution, and Clickthrough 19
3.3.1 Spam breakdown . 19
3.3.2 Spam Clickthrough . 22
3.3.3 Spam Accounts . 23

3.4 Detecting, Clustering, and Analyzing Spam Campaigns 28
3.4.1 Clustering URLs into campaigns . 29
3.4.2 Clustering results . 29

3.5 Limitations of Domain Blacklists for Social Networks 33
3.5.1 Blacklist delay . 33
3.5.2 Evading blacklists . 34
3.5.3 Domain blacklist limitations . 35

3.6 Summary of Results . 37

4 Social Spam: Tools, Techniques, and Monetization 38
4.1 Introduction . 38
4.2 Retroactive Detection of Spam Accounts on Twitter 40

4.2.1 Twitter Dataset . 40
4.2.2 Spam URL Dataset . 44
4.2.3 Bit.ly URL and Account Dataset . 45

4.3 Tools and Techniques of Spammers . 45
4.3.1 Accounts . 45
4.3.2 URLs and Domains . 49
4.3.3 API Clients . 53

4.4 The Evolution of Monetization Towards Spam-as-a-Service 54
4.4.1 Affiliate Programs . 55
4.4.2 Ad-Based Shorteners . 56
4.4.3 Account Sellers and Arbiters . 57

4.5 Persistence of Spam Campaigns Despite Detection 58
4.5.1 Afraid . 58
4.5.2 Clickbank . 60
4.5.3 Yuklemdegga . 61
4.5.4 Amazon . 61
4.5.5 Speedling . 62

4.6 Improving Spam Detection in Social Networks 63
4.7 Summary of Results . 64

iv

5 Emerging Threats: Censorship and Astroturfing 65
5.1 Introduction . 65
5.2 Detecting Political Attacks on Twitter . 66

5.2.1 Attacked Hashtags . 67
5.2.2 Dataset . 68

5.3 Overlap of Attack Infrastructure with Spam-as-a-Service Assets 68
5.3.1 Tweets . 68
5.3.2 Accounts . 69
5.3.3 IP Addresses . 73

5.4 Impact of Political Attacks on Free Access to Information 74
5.4.1 Search: Relevance vs. Real-time . 75
5.4.2 Search Pollution . 75

5.5 Summary of Results . 76

6 Developing Real-Time and Scalable Spam Detection 77
6.1 Introduction . 77
6.2 Design Goals for Browser-based Spam Detection 79

6.2.1 Design Goals . 80
6.2.2 System Flow . 81

6.3 Content and Hosting Feature Collection . 82
6.3.1 Web Browser . 82
6.3.2 DNS Resolver . 85
6.3.3 IP Address Analysis . 85
6.3.4 Proxy and Whitelist . 85
6.3.5 Feature Extraction . 86

6.4 Parallelizing Classification as a Distributed Logistic Regression 86
6.4.1 Notation . 87
6.4.2 Logistic Regression with L1-regularization 87
6.4.3 Training Algorithm . 88
6.4.4 Data Set and Ground Truth . 89

6.5 Implementation Details . 90
6.5.1 URL Aggregation . 90
6.5.2 Feature Collection . 91
6.5.3 Feature Extraction . 91
6.5.4 Classifier . 91

6.6 Accuracy, Run-time Performance, and Cost 92
6.6.1 Classifier Performance . 93
6.6.2 Run Time Performance . 97
6.6.3 Comparing Email and Tweet Spam 100
6.6.4 Spam Infrastructure . 101

6.7 Evading Browser-based Spam Detection . 103
6.8 Summary of Results . 105

v

7 Disrupting the Underground Account Marketplace 106
7.1 Introduction . 106
7.2 Legal and Ethical Guidelines . 108
7.3 Infiltrating the Marketplace for Twitter Accounts 108

7.3.1 Identifying Merchants . 109
7.3.2 Purchasing from Merchants . 109
7.3.3 Account Pricing & Availability . 110
7.3.4 Other Credentials For Sale . 111
7.3.5 Merchant Fraud . 112

7.4 Characterizing How Criminals Automate Fraudulent Account Creation . . . 112
7.4.1 Dataset Summary . 113
7.4.2 Circumventing IP Defenses . 113
7.4.3 CAPTCHAs & Email Confirmation 117
7.4.4 Stockpiling & Suspension . 119
7.4.5 Recommendations . 120

7.5 Developing a Classifier to Detect Fraudulent Registrations 121
7.5.1 Automatic Pattern Recognition . 121
7.5.2 Pattern Refinement . 123
7.5.3 Alternative Signals . 125
7.5.4 Evaluation . 125

7.6 Impact of the Underground Market . 128
7.6.1 Impact on Twitter Spam . 128
7.6.2 Estimating Revenue . 128

7.7 Disrupting the Underground Market for Fraudulent Accounts 129
7.7.1 Suspending Identified Accounts . 130
7.7.2 Marketplace Fallout and Recovery . 130

7.8 Summary of Results . 131

8 Conclusion 132
8.1 Impact . 132

8.1.1 Failure of Existing Defenses . 133
8.1.2 Adopting New Defenses . 133

8.2 Parting Words . 134

Bibliography 135

vi

List of Figures

2.1 Components necessary to abuse an online social network. This includes cre-
dentials, a mechanism to engage with legitimate users, and finally a means of
monetizing traffic, typically to some form of for-profit abuse. 9

3.1 Clickthrough for spam URLs posted to Twitter. Only the 2.3% of URLs that
generated any traffic are shown. 22

3.2 Scatter plots of times of tweets for three users deemed to not post uniformly.
The x-axis gives the minutes value of each hour and y-axis gives seconds. In
(a), the user posts at regular intervals—approximately every five minutes. The
account in (b) tends to tweet toward the beginning of each minute, indicated by
the prevalence of points low on the y-axis. For (c), the pattern is less obvious but
still caught by the χ2 test as indicating regularized tweeting with respect to the
hour (x-axis). 25

3.3 Most frequently used applications per-account for compromised, fraudulent, and
a random sample of accounts. Fraudulent accounts use different applications than
compromised users, which are closer to the random set. 28

3.4 Number of accounts colluding in campaigns . 30
3.5 Number of landing pages targeted by campaigns 30
3.6 Volume of spam tweets encountered, categorized by either lagging or leading

blacklist detection . 35
3.7 Frequency of redirects and nested redirects amongst distinct spam URLs 36
3.8 Frequency of cross-domain redirects amongst distinct spam URLs containing at

least one hop . 36

4.1 Tweets containing URLs received per day. On average, we receive 12 million
tweets per day, with a ceiling imposed by Twitter. 41

4.2 Daily tweet activity of suspended users. Peak activity preceded the holiday season
in December. 42

4.3 Estimated percentage of all tweets containing URLs we receive per day. Due to
Twitter’s cap of 12 million tweets per day, we receive a smaller sample size as
Twitter grows. 44

vii

4.4 Duration of account activity. 77% of accounts are suspended within a day of their
first tweet and 92% within three days. 46

4.5 Active duration vs. tweets sent for spam accounts. Two strategies appear: (I)
burst accounts and (II) long-lived, low-daily volume accounts 47

4.6 Users following spam accounts. 89% of accounts have fewer than 10 followers;
40% have no followers. 48

4.7 Friends vs. followers for spam and non-spam accounts. Spammers are skewed
towards forming relationships that are never reciprocated. 49

4.8 Dormancy duration of accounts. 56% of accounts begin tweeting within the same
day the account is created, while 12% lay dormant for over one week, allowing
for account stockpiling. 50

4.9 The number of subdomains versus the number of registered domains that URLs
posted by a spam account resolve to. Each point corresponds to a single account. 52

4.10 Reputation of spam URLs and domains. 53% of domains appear more frequently
in non-spam tweets than spam tweets, though only 2.8% of URLs. 54

4.11 Comparison of URL reputation and the total spam URLs posted by spam and
non-spam accounts, where each point represents a distinct account. 55

4.12 Prominent spam campaigns on Twitter . 59

5.1 Number of tweets sent per minute during the attack on December 5—6. Tweets
generated by bots appear in two large spikes beginning around 8PM the first day
and 3PM the second day. 69

5.2 Total number of days in November, just prior to the attack, that an account
tweets at least once. Nonspam users were frequently active, while spam accounts
remained dormant. 70

5.3 Pattern of registrations for accounts used in the attack and other accounts reg-
istered by the same spam-as-a-service programs where the attackers purchased
accounts from. 71

5.4 Geolocation of user logins. Higher density regions are shown in black. Over 56%
of logins tied to legitimate users originate from Russia, compared to only 1% of
logins for spam accounts. 72

6.1 Intended operation of Monarch. Web services provide URLs posted to their sites
for Monarch to classify. The decision for whether each URL is spam is returned
in real-time. 80

6.2 System flow of Monarch. URLs appearing in web services are fed into Monarch’s
cloud infrastructure. The system visits each URL to collect features and stores
them in a database for extraction during both training and live decision-making. 80

6.3 Performance of classifier over time. Regular retraining is required to guarantee
the best accuracy, else error slowly increases. 96

viii

6.4 Overlap of features. Email and Twitter spam share only 10% of features in
common, indicating that email spammers and Twitter spammers are entirely
separate actors. 101

6.5 Persistence of URL features. Email spam features are shorter lived compared to
tweet spam, a result of short-lived campaigns and domain churn. 102

7.1 Variation in prices over time for six merchants we track over the longest period
of time. 111

7.2 CDF of registrations per IP tied to purchased accounts, legitimate accounts, and
suspended (spam) accounts. 115

7.3 Availability of unique IPs over time for the six merchants we track over the longest
period. All but one seller we repeatedly purchase from are able to acquire new
IP address to register accounts from over time. 116

7.4 CAPTCHA solution rates per each IP address abused by a variety of merchants
as well as the rates for all merchants combined. 118

7.5 Recall of generated merchant patterns for all purchased accounts as a function of
training the classifier on data only prior to time t. 127

7.6 Fraction of all suspended accounts over time that originate from the underground
market. 129

ix

List of Tables

3.1 Breakdown of spam categories for spam on Twitter, based on tweet text. 20
3.2 Feature frequency by blacklist for mentions (@), retweets (RT), and hashtags

(#), compared to a random sample of tweets and a random sample of tweets
containing URLs. 21

3.3 Campaign statistics after clustering . 29
3.4 Blacklist performance, measured by the number of tweets posted that lead or lag

detection. Positive numbers indicate lead, negative numbers indicate lag. 33
3.5 Blacklist performance, measured by lead and lag times for unique domains posted. 34

4.1 Summary of data collected from Twitter, Bit.ly, and from resolving the first
redirect of URLs . 41

4.2 Top 10 public shortening services abused by spammers. Likelihood ratio indicates
the likelihood a spammer will use the service over a regular user. 51

4.3 Top three free blog hosting sites, the number of blogs registered, and the number
of unique URLs pointing to the blogs. 52

4.4 Top 10 Twitter clients used by spammers. 55
4.5 Programs enabling spam-as-a-service. These include affiliate programs that con-

nect vendors to affiliate advertisers, shorteners that embed ads, as well as account
arbitration services that sell access to accounts. 56

4.6 Affiliates identified for Clickbank and Amazon along with Twitter accounts they
control and the volume of spam they send. Bit.ly accounts reveal a similar result.
Both show a biased environment where a small number of spammers account for
the vast majority of spam. 57

4.7 Summary of major spam campaigns on Twitter. This includes the number of
tweets, accounts, unique URLs, unique hashtags, and unique mentions. In addi-
tion, we include the median number of followers and tweets for accounts in the
campaign. 57

5.1 Top 10 hashtags related to the Russian election used between December 5—6. . 67
5.2 Summary of accounts who participated in hashtags pertaining to the Russian elec-

tion (December 5—6) and the activities of spam accounts outside of the election
period. 67

x

5.3 Number of tweets returned to users searching for hashtags related to the Russian
election. 75

6.1 List of features collected by Monarch . 83
6.2 Blacklist results for URLs appearing on Twitter that were flagged as spam. . . . 90
6.3 Results for training on data with different non-spam to spam ratios. We adopt

a 4:1 ratio for classification because of its low false positives and reasonable false
negatives. 93

6.4 Breakdown of features used for classification before and after regularization. . . 94
6.5 Accuracy of classifier when trained on a single type of feature. Sources, headers,

and HTML content provide the best individual performance, while frame URLs
and DNS data perform the worst. 95

6.6 Effects of training and testing on matching and mismatching data sets. Email
and tweet spam are largely independent in their underlying features, resulting in
low cross classification accuracy. 97

6.7 Effects of including contextual Twitter information. Omitting account and tweet
properties from classification has no statistically significant effect on accuracy
(the error rates are within one standard deviation of each another). 97

6.8 Breakdown of the time spent processing a single URL. 98
6.9 Breakdown for the cost spent for Monarch infrastructure. Feature extraction runs

on the same infrastructure as classification. 99
6.10 Top 10 URL shortening services abused by spammers. 103
6.11 Breakdown of the locations of blacklisted URLs. We mark a page as spam if it

makes any outgoing request to a blacklisted URL. 103

7.1 List of the merchants we track, the months monitored, total purchases performed
(#), accounts purchased, and the price per 100 accounts. Source of solicitations
include blackhat forums†, Fiverrq, and Freelancer� and web storefronts‡. 110

7.2 List of dishonest merchants that reaccessed and resold credentials we purchased
to other parties. 113

7.3 Top 10 most popular geolocations of IP addresses used to register fraudulent
accounts. 114

7.4 Top 10 merchants with the largest estimated pool of IP addresses under their
control on a single day. 117

7.5 Top 5 email providers used to confirm fraudulent Twitter accounts. 118
7.6 Obfuscated sample of names, screennames, and emails of purchased accounts

used to automatically generate seller patterns. Popularity denotes the fraction of
accounts that match the pattern for an individual merchant. 124

7.7 Breakdown of the merchants, the relative volume of all detected accounts in the
last year that match their pattern, precision (P) and recall (R). 126

1

Chapter 1

Introduction

Online social networks have emerged as real-time communication platforms connecting bil-
lions of users around the globe. As of December 2012, over 67% of adults in the United States
participate in at least one online social network [23], while global adoption spans Europe,
South America, Asia, and the Middle-East [94]. Popular web services such as Facebook and
Twitter draw in over 1.1 billion [29] and 200 million [133] active users respectively, allowing
participants to share stories, photos, and disseminate links. The ease of posting content to a
global audience has democratized the spread of ideas and user-generated content [5, 6] with
online social networks fueling political discourse [98, 93, 27], aiding in the organization of
protests [108, 26], and facilitating access to critical information in the absence of credible
news reports [85, 38].

Implicit to the interactions within an online social network is the notion of trust [79, 40];
users create relationships with their friends and valued media outlets, in turn receiving access
to content generated by each relationship. This trust however comes with a price. On the
heels of the widespread adoption of online social networks, scams, phishing, and malware
attacks have become a regular occurrence. Such attacks exploit the trust users place in
their relationships and the integrity of information found in online social networks. Salient
examples of attacks include worms that hijack social networking accounts and spread to
connected friends and followers [10, 117], phishing attacks that promise to increase a user’s
popularity [17, 84], and targeted attacks against news institutions and political dissidents [81,
64, 63].

The criminals operating in this space are financially motivated. Miscreants that dis-
seminate spam for generic pharmaceuticals and knock-off designer products generate an
estimated revenue between $12—$92 million each year [75], with similar criminals that dupe
victim’s into installing ineffectual software pulling in $5-116 million over the course of their
operations [111]. The threat these criminals pose to online social networks is exacerbated by
the emergence of an underground economy—a digital network of criminals who buy and sell
goods that directly enable the abuse of online social networks. The miscreants operating in
this space sell fake accounts, generate spurious relationships to inflate a user’s popularity,
as well as provide access to fundamental resources required for abuse such as compromised

CHAPTER 1. INTRODUCTION 2

machines [11], CAPTCHA solving services [86], and proxies to diversify an attacker’s IP
addresses [49]; all for a small price. Such services empower other miscreants to penetrate
online social networks and engage with victims, while at the same time abstracting away
the complexities of circumventing existing protection mechanisms employed by online social
networks to hinder spam and abuse.

Despite the gamut of threats facing online social networks, a comprehensive understand-
ing of how criminals target online social networks and the role the underground economy
plays in facilitating these attacks has remained elusive. The absence of this critical intelli-
gence has forced online social network providers into an unending firefight. Operators deploy
weak heuristics to detect abusive accounts (e.g., identifying the formation of too many rela-
tionships or sending unsolicited messages to victim’s [122]), which criminals quickly adapt
to in order to resume operation. This reactive development cycle never affords defenders
an opportunity to step back and investigate the critical infrastructure that underpins the
entire abuse ecosystem or to identify fundamental weaknesses in how criminals monetize
online social networks that might otherwise fundamentally change the war against for-profit,
criminal abuse.

In this dissertation, we empirically analyze in both breadth and depth the range of
threats currently targeting online social networks through the lens of Twitter. We map out
the support infrastructure that is critical to online social network abuse, characterize the
tools and techniques used to disseminate malignant content, and evaluate how such attacks
ultimately realize a profit for the attackers involved. In the process, we argue that the
for-profit infrastructure provided by the underground economy in the form of fake accounts
and affiliate programs has become a fundamental weak point of abuse. Defenders should
concentrate their efforts on disrupting these resources rather than fighting the subsequent,
multifaceted abuse it enables such as scams, phishing, malware, and political attacks.

To aid in this effort, we develop two new strategies for preventing abuse in social networks.
Our first defense identifies abusive links in online social networks (or any web service) before
they are distributed to recipients. At its heart, this technique identifies common HTML
content generated by affiliate programs and criminal hosting infrastructure which act as a
buttress for the abuse ecosystem [69]. Our second defense relies on directly engaging with
the underground economy that fuels online social network abuse to understand how millions
of fake accounts are registered in an automated fashion. We leverage this understanding
to detect abusive accounts at the time of their registration, preventing criminals from ever
interacting with the legitimate users of online social networks.

1.1 Characterizing Social Network Spam and Abuse

We begin with a characterization of spam and abuse targeting Twitter. Tapping into a
real-time feed of content posted to Twitter, we find that 8% of 25 million URLs posted to
the site over the course of a month direct to phishing, malware, and scams listed on popular
domain blacklists. We find evidence that suggests the accounts involved in disseminating

CHAPTER 1. INTRODUCTION 3

this nefarious content are in fact legitimate accounts that have been compromised and are
now being puppeteered by criminals. Using clickthrough data, we analyze criminals’ use of
communication features unique to Twitter and the degree that they affect the success of
spam. We find that Twitter is a highly successful platform for coercing users to visit spam
pages, with a clickthrough rate of 0.13%, compared to much lower rates previously reported
for email spam.

Given the absence of spam filtering on Twitter at the time of our study, we examine
whether the use of URL blacklists would help to significantly stem the spread of abusive
content. Our results indicate that blacklists are too slow at identifying new threats, allowing
more than 90% of visitors to view a page before it becomes blacklisted. We also find that even
if blacklist delays were reduced, the use by criminals of URL shortening services for obfus-
cation negates the potential gains unless tools that use blacklists develop more sophisticated
spam filtering.

1.2 Social Spam: Tools, Techniques, and

Monetization

We continue with an in-depth study of the tools, techniques, and support infrastructure that
miscreants attacking online social networks rely upon. To perform our analysis, we identify
over 1.1 million accounts suspended by Twitter for disruptive activities over the course of
seven months. In the process, we collect a dataset of 1.8 billion tweets, 80 million of which
belong to spam accounts. We use our dataset to characterize the behavior and lifetime
of spam accounts, the campaigns they execute, and the wide-spread abuse of legitimate
web services such as URL shorteners and free web hosting. We also identify an emerging
marketplace of illegitimate programs operated by criminals that include Twitter account
sellers, ad-based URL shorteners, and spam affiliate programs that help enable underground
market diversification.

Our results show that 77% of spam accounts identified by Twitter are suspended within
one day of their first tweet. Because of these pressures, less than 9% of accounts form social
relationships with regular Twitter users. Instead, 17% of accounts rely on hijacking trends,
while 52% of accounts use unsolicited mentions to reach an audience. In spite of daily
account attrition, we show how five spam campaigns controlling 145 thousand accounts
combined are able to persist for months at a time, with each campaign enacting a unique
spamming strategy. Surprisingly, three of these campaigns send spam directing visitors to
reputable store fronts, blurring the line regarding what constitutes spam on online social
networks.

CHAPTER 1. INTRODUCTION 4

1.3 Emerging Threats: Censorship and Astroturfing

As online social networks emerge as an important tool for political engagement and dissent,
services including Twitter have become regular targets of censorship. In the past, nation
states have exerted their control over Internet access to outright block connections to social
media during times of political upheaval. Parties without such capabilities may however
still desire to control political expression. A striking example of such manipulation recently
occurred on Twitter when an unknown attacker leveraged 25,860 fraudulent accounts to send
440,793 tweets in an attempt to disrupt political conversations following the announcement
of Russia’s parliamentary election results.

We undertake an in-depth analysis of the infrastructure and accounts that facilitated
the attack. We find that miscreants leveraged the same spam-as-a-service market that fuels
spam and abuse on Twitter to acquire thousands of fraudulent accounts which they used
in conjunction with compromised hosts located around the globe to flood out political mes-
sages. Our findings demonstrate how malicious parties can adapt the services and techniques
traditionally used by criminals to other forms of attack, including censorship. Despite the
complexity of the attack, we show how Twitter’s relevance-based search helped mitigate the
attack’s impact on users searching for information regarding the Russian election.

1.4 Developing Real-Time and Scalable Spam

Detection

While spam in online social networks carries a number of similarities with traditional email-
based spam, email-based spam filtering techniques generally fall short for protecting other
web services, including Twitter. To better address this need, we present Monarch, a real-time
system that crawls URLs as they are submitted to web services and determines whether the
URLs direct to spam. We evaluate the viability of Monarch and the fundamental challenges
that arise due to the diversity of web service spam. We show that Monarch can provide accu-
rate, real-time protection, but that the underlying characteristics of spam do not generalize
across web services. In particular, we find that spam targeting email qualitatively differs
in significant ways from spam campaigns targeting Twitter. We explore the distinctions
between email and Twitter spam, including the abuse of public web hosting and redirector
services. Finally, we demonstrate Monarch’s scalability, showing our system could protect
a service such as Twitter—which needs to process 15 million URLs/day—for a bit under
$800/day.

CHAPTER 1. INTRODUCTION 5

1.5 Disrupting the Underground Account

Marketplace

As web services such as Twitter, Facebook, Google, and Yahoo now dominate the daily
activities of Internet users, cyber criminals have adapted their monetization strategies to
engage users within these walled gardens. To facilitate access to these sites, an underground
market has emerged where fraudulent accounts—automatically generated credentials used
to perpetrate scams, phishing, and malware—are sold in bulk by the thousands. In order to
understand this shadowy economy, we investigate the market for fraudulent Twitter accounts
to monitor prices, availability, and fraud perpetrated by 27 merchants over the course of a
10-month period. We use our insights to develop a classifier to retroactively detect several
million fraudulent accounts sold via this marketplace. During active months, the 27 mer-
chants we monitor appeared responsible for registering 10—20% of all accounts later flagged
for spam by Twitter, generating $127—459K for their efforts.

With Twitter’s cooperation, we disable 95% of all fraudulent accounts registered by the
merchants we track, including those previously sold but not yet suspended for spamming.
Throughout the suspension process, we simultaneously monitor the underground market
for any fallout. While we do not observe an appreciable increase in pricing or delay in
merchant’s delivering new accounts, we find 90% of all purchased accounts immediately
after our actioning are suspended on arrival.

1.6 Summary

In summary, this dissertation provides a data-driven analysis of spam and abuse on Twitter.
We demonstrate that existing solutions for protecting online social networks fail to protect
the millions of users that now rely on the technology as a global communication platform,
exposing users to scams, phishing, malware, and even political censorship. To overcome these
limitations, we propose two new solutions: (1) analyzing the content that users post to social
networks to detect abusive URLs (effectively the egress point of the majority of abuse in
online social networks), and (2) infiltrating the underground economy to disrupt weak points
of its organization, in particular depleting the stockpiles of fraudulent accounts registered
by miscreants which would otherwise be sold and distributed to criminals (effectively the
ingress point for the majority of abuse in online social networks).

6

Chapter 2

Social Networks, Abuse, and the
Criminal Ecosystem

2.1 Social Network Organization and Interactions

We define online social networks as a graph consisting of users (e.g., nodes) who form
relationships (e.g., edges) with each other. These relationships reflect both trust and common
interests shared between close friends, mere acquaintances, and media outlets [79, 66]—often
delineated as strong and weak ties [40, 36]. Such social connections are the primary means
for information diffusion, the spread of information or the adoption of ideas throughout a
social network [43, 6, 5]. Users share photos, videos, stories, and links with their immediate
connections, which can then cascade to other users in the network via sharing from friends,
friends of friends, or any number of hops away from the author of the original content.

Examples of large online social networks include Twitter and Facebook, which as of
June 2013 have garnered an audience of 200 million [133] and 1.1 billion [29] active users
respectively. In addition to providing the basic functionality of a social graph, these web
services provide search capabilities, messaging applications, and other features which bypass
the requirement of sharing a connection with a user in order to communicate or share content.
Much of the research in this dissertation targets Twitter, and as such, we provide a brief
overview of the online social networks core functionality.

Account: Any and all interactions within Twitter occur through a personalized account.
Users can tailor basic properties of an account to suit their needs, such as including a profile
image, providing a short biography, or listing a URL to an external webpage. Accounts are
used to post and receive information, form relationships, and search Twitter, all of which we
describe in detail. Accounts are uniquely identified by a @username, analogous to a email
address. Accounts can be public and visible to any user within Twitter or private, where
the account’s controller maintains some privacy policy over who can access an account’s
associated content.

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 7

Tweets: A tweet is a colloquialism used by Twitter to describe a status update—analogous
to an email’s body—which is the primary means of sharing information within the web
service. Twitter restricts these updates to 140 characters or less. To facilitate the posting
of URLs in tweets, URL shortening services such as t.co and bit.ly are commonly used.
These sites act as a redirectors, proxying requests from a short hashed code to a URL of
arbitrary length.

Followers: An account’s followers are the set of users that will receive a tweet once it is
posted, akin to the To field of an email. Users must subscribe as an account’s follower before
receiving tweets; an account cannot force her messages to be viewed by other users.

Followings: Relationships in Twitter are not bidirectional, meaning a user can receive
tweets from a friend without revealing their own tweets. Followings are the set of users an
account subscribes to in order to obtain access to status updates.

Timelines: Each Twitter user is provided with a customized timeline of tweets aggregated
from accounts a user follows. When accessing a timeline via the web, a single tweet contains
the tweet text, an icon for the account that posted the tweet, the time posted, geolocation
data, and the application used to post the tweet. The mobile experience for timelines provides
the same basic information. Timelines are the primary means of receiving information from
the Twitter network, with search, recommendations, and trends being the other mechanisms.

Mentions: Mentions, or replies, are a mechanism Twitter provides to address a particular
user within the network. To mention a user, a tweet is composed that also contains the
target’s @username. Tweets that contain mentions are still publicly broadcast to all of a
user’s followers, but a notification is sent to the mentioned user (and the presence of the
username makes it easier for the recipient to identify a message is directed at her). It is
important to note that mentioning a user does not require the sender or receiver share a
relationship in common; any party on Twitter can mention another party.

Example: @justinbieber PLEASE FOLLOOWW MEEE!!! <3333

Retweets: Retweets on Twitter are a form of attribution, where RT @username or via

@username denote that the tweet text originally appeared from another account. Retweets
build on the authority of another user and are used to increase the volume of followers who
see a tweet, effectively forming an information cascade. Retweets are also used in calculating
search result ranking, where more popular information cascades receive a higher ranking.

Example: RT @JBieberCrewz: RT this if u <3 justin bieber

Hashtags: In addition to mentioning users, tweets can include tags to arbitrary topics by
including a hashtag #topic. If enough users pick up on the topic it will appear in the list of

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 8

trending topics—popular breaking stories within Twitter—allowing tweets to be syndicated
to all of Twitter. Hashtags can also be used as a seed to a search query. Hashtags are
frequently used to organize conversations that defy social boundaries. The entire Twitter
community can post to the same hashtag, allowing parties to communicate with one another
without directly sharing social relationships.

Example: Get free followers #FF #Follow Justin Bieber

Direct Messages: Direct messages are private tweets sent between two users, effectively
duplicating the functionality of email. Direct messages do not appear in a users timeline,
but instead appear in a separate, private timeline. Direct messages require that the recipient
follow the sender, in contrast to mentions which require no such relationship.

Example: Be a BELIEBER, click on this URL: http:// ... <3333

Favorites: Favorites are a way of positively ranking a tweet or bookmarking a tweet for
later use (akin to Google’s +1 or Facebook’s Like button). When a user favorites another
account’s tweet, the other account’s owner is notified. Similarly, Twitter provides recom-
mended content to users, where favorited content is used to rank what tweets and accounts
are recommended.

2.2 Components of Social Network Abuse

As web services such as Twitter and Facebook now dominate the daily activities of Internet
users [2], cyber criminals have adapted their monetization strategies to engage users within
these walled gardens. Attacks targeting online social networks require three components:
(1) access to account credentials; (2) a mechanism to engage with legitimate users within
the network (i.e. the victims that will be exploited to realize a profit); and (3) some form
of monetizable content, typically in the form of a URL that directs a victim off of Twitter
to a website that generates a profit via spamvertised products, fake software, clickfraud,
banking theft, or malware that converts a victim’s machine or assets (e.g., credentials) into
a commodity for the underground economy. With respect to Twitter, the underpinnings of
each of these components are outlined in Figure 2.1, which we use to guide discussion.

What becomes apparent from this taxonomy is that, while there are several ways to
engage with victims (and more constantly emerge as new features are added), the ingress
and egress points of abuse are much fewer. For this reason, this dissertation advocates the
development of URL-based defenses and at-registration time defenses. Strangling those two
choke points collapses all the other pain points of social network spam and abuse which are
arguably harder to solve given the diverse ways legitimate users engage one another within
social networks.

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 9

Fraudulent Accounts Compromised Accounts

Fake Followers

Favorite SpamTrend Poisoning

Retweet Spam Fake Trends Search Poisoning

DM SpamMention Spam Follow Spam

Fame/Information

Credentials
(Abuse Ingress Points)

Monetization
(Abuse Egress Points)

Engagement

1

2

3

Fake Software
Spamvertised

Products Banking TheftClickfraud
Underground
Infrastructure

External URL

External Abuse4

Figure 2.1: Components necessary to abuse an online social network. This includes creden-
tials, a mechanism to engage with legitimate users, and finally a means of monetizing traffic,
typically to some form of for-profit abuse.

2.2.1 Credentials

In order to interact with a site like Twitter, criminals must first obtain credentials for
either new or existing accounts. This has lead to a proliferation of fraudulent accounts—
automatically generated credentials used exclusively to disseminate scams, phishing, and
malware [16]—as well as compromised accounts—legitimate credentials that have fallen into
the hands of miscreants, which criminals repurpose for nefarious ends. Notable sources of
compromise on Twitter include the brute force guessing of weak passwords [134], password
reuse with compromised websites, as well as worms or phishing attacks that propagate within
the network [46].

2.2.2 Engagement

Once an attacker has access to an online social network, they need some mechanism to
engage with legitimate users. Any of the multitude of features on Twitter can be targets of
abuse in a criminal’s quest for drawing an audience. While its possible to solve one facet of
abuse, criminals are constantly evolving how they engage with users to leverage new features
added to social networks as well as to adapt to defense mechanisms employed by online social
network operators. The result is a reactive development cycle that never affords defenders
any reprieve. To illustrate this point, we list just some ways in which criminals engage with
users.

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 10

Mention Spam: Mention spam consists of sending an unsolicited mention to a victim,
bypassing any requirement of sharing a social connection with a victim. Spammers can either
initiate a conversation or join an existing conversation a victim is having with her followers.
The victim will then receive a notification she has been contacted, with the mention often
containing a spam link.

Follow Spam: Follow spam occurs when criminals leverage an account to generate hun-
dreds of relationships with legitimate users. The aim of this approach is to either have a
victim reciprocate the relationship, in which case the criminals content will be syndicated
to the victim, or at least have the victim view the criminal’s account profile which often has
a URL embedded in its biography section.

Direct Message Spam: Direct message spam (or DM spam) is identical to mention spam,
but requires that a criminal’s account be followed by a victim. As such, DM spam is typically
used when an account has become compromised due to the challenges of fraudulent accounts
obtaining relationships with legitimate users, discussed in Chapter 4.

Trending Poisoning: Rather than forming relationships with users or targeting single
users, spammers can post tweets that contain popular keywords from trending topics. We call
this form of attack trend poisoning. Trends result from spontaneous coordination between
Twitter users as well as from breaking news stories. Users that explore these trends will
receive a feed of legitimate tweets interspersed with spam.

Search Poisoning: Search poisoning is identical to trend poisoning, but instead of emerg-
ing topics typified by hashtags, spammers embed specific keywords or brands in their tweets
such as “viagra” and “ipad”. From there, users that search for information relevant to a
keyword or brand will be exposed to spam.

Fake Trends: Fake Trends leverage the availability of thousands of accounts under the
control of a single criminal to effectively generate a new trend. From there, victims looking
at emerging content will be exposed to the criminal’s message.

Favorite Spam: Favorite Spam relies on abusing functionality on Twitter which allows a
user to favorite, or recommend, a tweet. Criminals will mass-favorite tweets from victims in
the hopes they either reciprocate a relationship or view the criminal’s account profile, just
like follow spam.

Fake Followers: Fake Followers are distinct from follow spam, in that a criminal purchases
relationships from the underground economy. The goal here is to inflate the popularity of a
criminal’s account, often for improving the ranking of the account’s content in search results.

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 11

Retweet Spam: Retweet Spam entails hundreds of spam accounts all retweeting another
account’s tweet. As with fake followers, the goal is to inflate the importance of a tweet to
improve its ranking in search results.

2.2.3 Monetization

In order to monetize a victim, users are typically funneled from Twitter to another website
via a link. The landing page of this link attempts to sell victims a product, forward their
traffic, steal the victims’ credentials, or compromise the victims’ machine. The exception
to this approach is abuse that takes a more circumlocutious path towards profiting from
victims. Examples of such exceptions are celebrities who buy—or inadvertently acquire—
fake followers to inflate their popularity (thus achieving a payout from fame) [18] as well as
politically-motivated attacks such as censoring speech or controlling the message surrounding
emerging trends (where the payout is political capital or damage control) [64, 63]. While the
latter attacks are realistic threats, as we will show, the vast majority of abuse currently
targeting social networks is more criminal in nature.

2.3 Criminal Monetization of Abuse

Profit lies at the heart of the criminal abuse ecosystem. Monetization strategies form a
spectrum between selling products to a user with the user’s consent to stealing from a victim
without consent. We provide a brief overview of these techniques, paying particular attention
to the most notorious families of malware targeting each particular form of monetization.

2.3.1 Spamvertized Goods

Spam pertains to any form of bulk unsolicited messaging, including messages sent via email
and social networks. Examples of well-understood email spam botnets include Rustock [56],
Storm [65], and MegaD [15]. Monetization comes in many forms, including the sale of phar-
maceuticals, replica goods, and pirated software [69].

2.3.2 Fake Software

Fake software (as opposed to pirated software and intellectual property theft) includes any
malware that prompts a user to install or upgrade ineffectual software. The most prominent
approach here is selling rogue antivirus [100, 111]. These programs prompt users to pay a
one-time fee in order to remove non-existent malware infections, providing no protection in
return.

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 12

2.3.3 Clickfraud

Clickfraud generates revenue by using automated bots (or by redirecting traffic generated
by victims) to simulate legitimate traffic to pay-per-click advertisements [83, 113]. These
ads typically appear on pages controlled by miscreants, while the ads are syndicated from
advertising networks such as Google AdSense. Money is thus siphoned from advertisers into
the hands of criminals.

2.3.4 Banking Theft

Information stealers such as Torpig [112], Zeus, and SpyEye harvest sensitive user data
from compromised machines, including documents, passwords, and banking credentials. An
attacker can then sell access to these accounts or liquidate the account’s assets.

2.3.5 Commoditizing Compromised Hosts

Apart from directly monetizing victims or their traffic, a number of strategies have appeared
where a victim’s machine is compromised and then sold to other criminal activities.

Proxies & Hosting: For externally facing hosts, miscreants can convert compromised ma-
chines into bulletproof hosting services and proxy networks that are re-sold as tools for other
miscreants [49]. These machines can in turn host vital C&C infrastructure, act as anonymiz-
ers, or simply provide a diverse pool of IP addresses to circumvent IP-based restrictions for
sending spam or registering accounts.

Droppers: Rather than employing one of the aforementioned techniques, miscreants can
sell successful infections to other parties on the underground market [11]. In some cases, this
involves miscreants installing a dropper on a compromised host. This tool automatically
contacts a pay-per-install provider for new binaries to install in exchange for a fee. We
differentiate between staged installers where an initial infection is used to bootstrap updates
or new features, and droppers, where control of a machine is re-sold to a second or even
multiple parties.

2.4 Specialization Within the Criminal Ecosystem

At the center of the for-profit spam and malware ecosystem is an underground market that
connects Internet miscreants with parties selling a range of specialized products and services
including spam hosting [4, 49], CAPTCHA solving services [86], pay-per-install hosts [11],
and exploit kits [42]. Even simple services such as garnering favorable reviews or writing web
page content are for sale [128, 88]. Revenue generated by miscreants participating in this
market varies widely based on business strategy, with spam affiliate programs generating

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 13

$12—$92 million [75] and fake anti-virus scammers $5-116 million [111] over the course of
their operations.

Specialization within this ecosystem is the norm. Organized criminal communities include
carders that siphon credit card wealth [32]; email spam affiliate programs [69]; and browser
exploit developers and traffic generators [42]. These distinct roles allow miscreants to abstract
away certain complexities of abuse, in turn selling their specialty to the underground market
for a profit.

Within recent years a great deal of effort has been spent on studying the activities
of underground economies, and in particular, the spam marketplace. Previous research
has examined the hosting infrastructure of scams [4, 49], the organization of email spam
campaigns [65], and the economic incentives of spam and malware [57, 111]. For online social
networks, examinations of URL shorteners have focused on URL distribution [60], use for
phishing [14], and as an aid to classification of spam [68].

2.5 Combating Social Network Spam and Abuse

2.5.1 Social Network Spam Analysis Strategies

The diverse array of social network spam and its evasive nature makes it difficult to obtain a
comprehensive source of ground truth for measurement. Previous approaches include using
blacklists to identify URLs on Facebook directing to spam content [34], deploying passive
social networking accounts to act as spam traps [114, 67], and manually identifying spam
tweets in trending topics [8]. Each of these approaches introduce a unique bias and error in
the type of spam identified. For instance, blacklists preclude URLs that were not reported by
users or that failed to appear in email spam traps. False positives and negatives also remain
a flaw of social spam traps. Stringhini et al. found that passive accounts acting as spam
traps received a surprising volume of legitimate traffic, with only 4.5% of friend requests
on Facebook originating from spammers, compared to 90% on Twitter [114]. Equally prob-
lematic, samples generated from friend requests will omit spam from compromised accounts
in addition to spammers who do not form social connections. While manual analysis by
experts reduces the potential for error, it is prohibitively expensive for researchers to acquire
a large data sample. Our approach of using Twitter’s detection algorithm or blacklists is
not without its own bias, which we show in Chapter 3 and Chapter 4. As such, we remain
cautious of drawing conclusions for all spam on Twitter.

2.5.2 Detecting Scams, Phishing, and Malware Content

Detecting scams, phishing, and malware based on URL and page properties as we show in
Chapter 6 has garnered a great deal of research interest. Researchers have paid particular
attention to identifying phishing URLs, where a number of solutions rely on HTML forms,
input fields, page links, URL features, and hosting properties for detection [142, 71, 35].

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 14

Malware, specifically drive-by-downloads, has also been the target of recent study, with
most solutions relying on exposing sandboxed browsers to potentially malicious content [99,
129]. An exception is Wepawet, which relies on detecting anomalous arguments passed to
plugins to prevent attacks [19]. Our own system generalizes to all forms of scams, phishing,
and malware and allows for real-time URL submission by web services.

Of the closest works to our URL classification, Ma et al. show that one can classify spam
URLs based on lexical structure and underlying hosting infrastructure including DNS and
WHOIS information [72, 73]. We employ these same metrics in our system, but crawl URLs
to resolve redirect URLs that would otherwise obscure the final landing page and its hosting
infrastructure. A similar approach is taken by Wittaker et al. [132] for specifically classifying
phishing pages. We expand upon their research and generalize Monarch to detect all forms
of spam, adding features such as JavaScript behavior, redirect chains, and the presence of
mashup content, while developing our own classification engine and collection infrastructure
to fulfill real-time requirements.

2.5.3 Spam Filtering and Usability Challenges

Spam detection strategies tend to focus on providing accurate decisions, minimizing false
positives—legitimate content incorrectly labeled as spam—and false negatives—illegitimate
content that is incorrectly classified as benign and thus goes unfiltered. However, a second
challenge remains for web services, as they must decide how to appropriately action spam
content. Currently, Twitter and Facebook prevent messages containing known spam content
from being posted [33, 28], while bit.ly implements a warning page that users must click
past to access potentially harmful content [9]. Warnings provide users with an opportunity
to bypass false positives, but burden users with making (un)informed security decisions.

The effectiveness of warnings in the context of phishing sites was examined in several
studies [135, 25], the results of which showed that unobtrusive warning messages are inef-
fective compared to modal dialogs and active, full-screen warnings. These works lead to a
discussion of the best approach for educating users of security practices and making informed
decisions [48]. While advances in usability are orthogonal to Monarch, web services relying
on Monarch’s decisions can take heed of these studies when determining the best mechanism
for conveying the potential harm of a URL to users.

2.5.4 Social Network-specific Spam Detection

The pervasive nuisance of spam in social networks has lead to a multitude of detection strate-
gies specific to social network features. These include analyzing social graph properties of
sybil accounts [138, 21, 139], characterizing the arrival rate and distribution of posts [34], ana-
lyzing statistical properties of account profiles [114, 8], and identifying common spam redirect
paths for URLs posted in tweets [68]. While effective, all of these approaches rely on at-abuse
time metrics that target strong signals such as sending a spam URL or forming hundreds
of relationships in a short period. Consequently, at-abuse time classifiers delay detection

CHAPTER 2. SOCIAL NETWORKS, ABUSE, AND THE CRIMINAL ECOSYSTEM 15

until an attack is underway, potentially exposing legitimate users to spam activities before
enough evidence of nefarious behavior triggers detection. Furthermore, dormant accounts
registered by account merchants will go undetected until miscreants purchase the accounts
and subsequently send spam. Overcoming these shortcomings requires at-registration abuse
detection that flags fraudulent accounts during the registration process before any further
interaction with a web service can occur.

16

Chapter 3

Characterizing Social Network Spam
and Abuse

3.1 Introduction

As celebrities such as Oprah, Ashton Kutcher, and Justin Bieber attract throngs of Twitter
followers, spammers have been quick to adapt their operations to target Twitter with scams,
malware, and phishing attacks. Promising users great diets and more friends, or simply
stealing accounts, spam has become a pervasive problem.

Despite an increase in volume of unsolicited messages, Twitter, at the time of our analysis,
lacked a filtering mechanism to prevent spam, with the exception of malware, blocked using
Google’s Safebrowsing API [33]. Instead, Twitter has developed a loose set of heuristics
to quantify spamming activity, such as excessive account creation or requests to befriend
other users [122]. Using these methods along with user-generated reports of spamming and
abusive behavior, the site suspends offending accounts, withdrawing their presence from the
Twittersphere along with all of the account’s messages.

In this chapter we describe our findings from a large scale effort to characterize spam on
Twitter. After collecting a month-long sample of Twitter data, we examine over 400 million
public tweets and crawl 25 million unique URLs. Using an assortment of URL blacklists
to identify spam, we find over 2 million URLs that direct users to scams, malware, and
phishing sites—roughly 8% of all links posted to Twitter. Analyzing the content of spam
messages, we provide a breakdown of techniques employed by spammers to exhort Twitter
users to click on links. By studying the accounts involved in spamming, we find evidence
that spammers primarily abuse compromised accounts in their spamming activity, rather
than accounts generated solely for the purpose of spamming, which are significantly less
prevalent from the perspective of blacklist-identified spam.

Using clickthrough data generated from spam URLs, we examine the success of Twitter
spam at enticing over 1.6 million users into visiting spam web pages. We find that the success
of spam is directly tied to having a large audience and a variety of accounts to spam from,

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 17

while use of certain Twitter-specific features also helps increase user traffic. Overall, we find
that 0.13% of messages advertised on Twitter will be clicked, almost two orders of magnitude
higher than email spam [57].

Given the limitations of existing spam filtering on Twitter, we examine whether the use
of URL blacklists would help to significantly stem the spread of Twitter spam. By measuring
the time period between a blacklist flagging a spam URL and its appearance on Twitter, we
find that blacklists in fact lag behind Twitter, with the majority of spam messages appearing
4—20 days before the URLs embedded in the messages become flagged. In contrast, we find
over 90% of visits to spam URLs occur within the first two days of posting, indicating that
blacklist lag-time is too long to protect a significant number of users against spam. We also
examine how spammers can employ URL shortening services to completely evade blacklists,
a current problem for Twitter’s malware detection.

In summary, the contributions of this chapter are:

• We present the first in-depth look at spam on Twitter, based on a detailed analysis of
tweets containing over 2 million distinct URLs pointing to blacklisted scams, phishing
and malware.

• We analyze the clickthrough rate for spam on Twitter, finding that 0.13% of users
exposed to spam URLs click though to the spam web site.

• We identify a diversity of spam campaigns exploiting a range of Twitter features to
attract audiences, including large-scale phishing attacks and targeted scams.

• We measure the performance of blacklists as a filter for URLs posted on Twitter, finding
that blacklists are currently too slow to stop harmful links from receiving thousands
of clicks.

• We develop techniques to identify and analyze two types of spamming accounts on
twitter; fraudulent accounts created primarily for spamming and accounts compromised
by spammers.

3.2 Blacklist-based Detection of Spam Content on

Twitter

Understanding spam behavior on Twitter requires a large-scale, real-time framework for
detecting and tracking spam accounts. In this section, we describe the development of our
Twitter monitoring infrastructure and the use of URL blacklists to identify spam. Our
infrastructure focuses on analyzing the techniques employed by spammers to generate click
traffic and attract an audience, in addition to tracking the use of obfuscation and redirects
to mask potentially suspicious web pages.

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 18

Within the broad spectrum of spam, we monitor three different categories: malware,
phishing, and scams. A spam URL is classified as malware if the page hosts malicious soft-
ware or attempts to exploit a user’s browser. Phishing pages include any website attempting
to solicit a user’s account credentials, many of which specifically target Twitter credentials.
Lastly, we define a scam as any website advertising pharmaceuticals, software, adult content,
and a multitude of other solicitations.

3.2.1 Twitter monitoring

To measure the pervasiveness of spam, we develop a Twitter monitoring framework that
taps into Twitter’s Streaming API1 and collect roughly seven million tweets/day over the
course of one month. We collect data from two separate taps. One targets a random sample
of Twitter activity while the second specifically targets any tweets containing URLs. The
random sample is used to generate statistics about the fraction of URLs in tweets and general
Twitter trends, while the URL stream is used for all other measurements.

Once a tweet appears in the URL stream, we isolate the associated URL and use a
custom web crawler to follow the URL through HTTP status codes and META tag redirects
until reaching the final landing page at a rate of roughly ten landing pages per second;
currently, JavaScript and Flash are not handled due to the sheer volume of traffic that must
be processed and the complexity required to instrument these redirects. While crawling
URLs, each redirect is logged, allowing us to analyze the frequency of cross-domain and
local redirects, but more importantly, redirect resolution removes any URL obfuscation that
masks the domain of the final landing page. We record the number of redirects and the
URLs in each sequence.

3.2.2 Blacklist detection

To automatically identify spam, we use blacklists to flag known spam URLs and domains. We
regularly check every landing page’s URL in our data set against three blacklists: Google
Safebrowsing, URIBL, and Joewein [39, 126, 54]. Each landing page must be rechecked
multiple times since blacklists may be slow to update in response to new spam sites. URLs
and domains blacklisted by Google indicate the presence of phishing or malware, while
URIBL and Joewein specifically target domains present in spam email and are used by anti-
spam software to classify email messages. Once a landing page is retroactively marked as
spam, we analyze the associated spam tweets and users involved in the spam operation. We
have found that URIBL and Joewein include domains that are not exclusively hosting spam;
we created a white-list for popular domains that appear on these blacklists and verified that
the domains primarily host non-spam content.

1http://dev.twitter.com/docs/streaming-apis

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 19

3.2.3 Data summary

Our data collection spans one month of Twitter activity from January to February, 2010.
During this time we gathered over 200 million tweets from the stream and crawled 25 million
URLs. Over three million tweets were identified as spam. Of the URLs crawled, two million
were identified as spam by blacklists, 8% of all unique links. Of these blacklisted URLs,
5% were malware and phishing, while the remaining 95% directed users towards scams. To
understand blacklist performance, we manually inspected a random sample of distinct URLs
from tweets, finding that 26% of URLs pointed to spam content, with an error margin of
5% at 95% confidence. To manually classify tweets, one of the authors clicks on the URL in
a tweet and decides if the URL is spam based on the content of the web page. Compared
to the 8% detected by blacklists, a significant proportion of spam URLs are never seen in
blacklists, a challenge discussed in greater detail in Section 3.5. Over 90% of Twitter users
have public accounts [80], and we also collect the complete history for over 120,000 users
with public accounts, half of which have sent spam identified by our blacklists; the history
is an additional 150 million tweets sent by these users.

In the event bit.ly or an affiliated service is used to shorten a spam URL, we use the bit.ly
API2 to download clickthrough statistics and click stream data which allows us to identify
highly successful spam pages and the rate of traffic. Of the spam links recovered, 245,000
had associated clickthrough data, totaling over 1.6 million clicks. Using all of the links
recovered during crawling, we present an analysis of the techniques employed by spammers,
using clickthrough statistics when available, to measure effectiveness.

3.3 Social Network Spam Content, Distribution, and

Clickthrough

With over 3 million tweets posted to Twitter directing users to spam detected by popu-
lar blacklists, we present an analysis of the categories of spam appearing on Twitter and
what techniques are being employed to reach audiences. To measure the success of Twitter
spam, we analyze clickthrough statistics for spam URLs, estimating the likelihood a spam
tweet will be clicked by a follower. Finally, as spammers must coerce Twitter members into
following spam accounts, we analyze tweeting behavior to differentiate between automated
spamming bots and compromised accounts that have been used to send spam, finding the
vast majority of spammers appear to be compromised accounts or unwitting participants in
spam distribution.

3.3.1 Spam breakdown

Aggregating all of the spam tweets identified by our system, we generate a list of the most
frequent terms. We then manually classify each term into a spam category when a clear

2http://dev.bitly.com/api.html

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 20

Category Fraction of spam

Free music, games, books, downloads 29.82%
Jewelery, electronics, vehicles 22.22%
Contest, gambling, prizes 15.72%
Finance, loans, realty 13.07%
Increase Twitter following 11.18%
Diet 3.10%
Adult 2.83%
Charity, donation scams 1.65%
Pharmacutical 0.27%
Antivirus 0.14%

Table 3.1: Breakdown of spam categories for spam on Twitter, based on tweet text.

distinction is possible, in turn using the terms to classify all of our spam tweets. Roughly
50% of spam was uncategorized due to using random terms; the breakdown of the remaining
50% of tweets is shown in Table 3.1. While the typical assortment of scams present in email
carry over to Twitter, we also identify Twitter-specific advertisements that sell Twitter
followers or purport to give an account free followers. This unique category makes up over
11% of categorized Twitter spam, while the remainder of spam is dominated by financial
scams, games, sale advertisements, and free downloads.

With only 140 characters for spammers to present a message, we analyze what Twitter-
specific features appear in tweets with blacklisted URLs compared to those of regular users.
To act as a control, we select two samples of 60,000 tweets, one made up of any tweet
appearing in our stream, while the second sample is generated from only tweets containing
URLs. Each tweet is parsed for mentions, retweets, and hashtags, the results of which can
be seen in Table 3.2.

The random sample of tweets is dominated by conversations between users, as indicated
by 41% of sample tweets containing mentions. Compared to the sample of tweets containing
URLs, spam tweets are only slightly less likely to use Twitter features, with the exception
of malware and phishing tweets, where hashtags make up 70% of spam. To understand
the motivation for spammers to use these features, we present an analysis of how hashtags,
retweets, and mentions are being used by spammers.

Unsolicited Mentions: Mentions are used by spammers to personalize messages in an
attempt to increase the likelihood a victim follows a spam link. Mentions can also be used
to communicate with users that do not follow a spammer. In our data set, 3.5-10% of
spam tweets rely on mentions to personalize messages, the least popular feature compared
to hashtags and retweets.

Example: Win an iTouch AND a $150 Apple gift card @victim! http://spam.com

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 21

Source # @ RT #,@ #,RT

Google 70.1% 3.5% 1.8% 0.1% 0.3%
Joewein 5.5% 3.7% 6.5% 0.2% 0.5%
URIBL 18.2% 10.6% 11.4% 1.5% 1.3%

Tweet 13.3% 41.1% 13.6% 1.8% 2.3%
Tweet, URL 22.4% 14.1% 16.9% 1.6% 2.4%

Table 3.2: Feature frequency by blacklist for mentions (@), retweets (RT), and hashtags (#),
compared to a random sample of tweets and a random sample of tweets containing URLs.

Retweets: Of the spam tweets we observe, roughly 1.8-11.4% are retweets of blacklisted
URLs. We identify four sources of spam retweets: retweets purchased by spammers from
respected Twitter members, spam accounts retweeting other spam, hijacked retweets, and
users unwittingly retweeting spam. Of the sources, we are able to differentiate instances of
purchased tweets, discussed further in Section 3.4, and hijacked retweets which we discuss
next.

Example: RT @scammer: check out the Ipads giveaway http://spam.com

Tweet hijacking: Rather than coercing another account to retweet spam, spammers can
hijack tweets posted by other users and retweet them, prepending the tweet with spam
URLs. Currently, there are no restrictions on Twitter on who can retweet a message, allowing
spammers to take tweets posted by prominent members, modify them, and repost with spam
URLs. By hijacking tweets from prominent Twitter users, spammers can exploit user trust
in retweets. Analyzing retweets for prepended text, we find hijacking constituted 23% of
phishing and malware retweets, compared to 1% of scam retweets.

Example: http://spam.com RT @barackobama A great battle is ahead of us

Trend setting: Hashtags are used to simplify searches for content, and if enough users
tweet the same hashtag, it becomes a trending topic. The anomaly of 70% of phishing and
malware spam containing hashtags can be explained by spammers attempting to create a
trending topic, generating over 52,000 tweets containing a single tag. Searching for hashtags
that exclusively appear in spam tweets, we identify attempts to initiate a trend. Of the total
trends we identify, roughly 14% appear to be generated exclusively by spammers.

Example: Buy more followers! http://spam.com #fwlr

Trend hijacking: Rather than generating a unique topic, spammers can append currently
trending topics to their own spam. Anyone who searches for the topic will then encounter
the spam message, interspersed with other non-spam generated by Twitter users. Using this
technique, spammers no longer need to obtain followers and instead ride on the success of
other topics. Analyzing the list of trending topics from a set of random tweets, we find that

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 22

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of clicks

F
ra

c
ti
o

n
 o

f
u

n
iq

u
e

 U
R

L
s

Figure 3.1: Clickthrough for spam URLs posted to Twitter. Only the 2.3% of URLs that
generated any traffic are shown.

roughly 86% of trends used by spammers also appear in benign tweets, with popular trends
at the time including #haiti, #iranelection, #glee, and the #olympics.

Example: Help donate to #haiti relief: http://spam.com

3.3.2 Spam Clickthrough

In the event an account spams URLs shortened with bit.ly, we can recover clickthrough
statistics for the link and analyze the linear correlation of clickthrough with other features
such as followers and tweet behavior. Of the blacklisted domains we identify, we observe the
clickthrough data for nearly 245,000 URLs. Roughly 97.7% of URLs receive no clicks, but
those that do accumulate over 1.6 million visitors, indicating that spam on Twitter is by no
means unsuccessful. Of links that generate any traffic, 50% of the URLs receive fewer than
10 clicks, as shown in Figure 3.1, while the upper 10% of URLs account for 85% of the 1.6
million clicks we observe. These highly successful URLs are dominated by phishing scams
that have pervaded Twitter in recent months [52], and we discuss this further in Section 3.4.

Using the 2.3% of URLs that receive any traffic, we calculate the linear correlation for
clicks and the number of accounts tweeting a link, the aggregate followers that could view
the link, and lastly the number of times the link was tweeted, broken down into disjoint
combinations of features (RT, @, #). Unsurprisingly, the features with the largest coefficient
of correlation (ρ > 0.7) are the number of accounts involved in spamming and the number of
followers that receive a link, both of which directly impact the overall number of potential
impressions. In addition to audience volume, we found that the use of hashtags (ρ = .74) and
retweets with hashtags (ρ = .55) is correlated with higher clickthrough rates. In practice, the
use of such features is rare, as previously shown in Table 3.2, but their dominance amongst
70% of phishing and malware tweets bolsters their correlation to successful clickthrough.

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 23

Surprisingly, the number of times spam is tweeted shows a low coefficient of correlation to
clickthrough (ρ = .28), indicating that repeatedly posting a link does little to increase traffic.

To understand the effectiveness of tweeting to entice a follower into visiting a spam URL,
we measure the ratio of clicks a link receives compared to the number of tweets sent. Given
the broadcast nature of tweeting, we measure reach as a function of both the total tweets sent
t and the followers exposed to each tweet f , where reach equals t× f . In the event multiple
accounts with potentially variable number of followers all participate in tweeting a single
URL, we measure total reach as the sum of each individual account’s reach. Averaging
the ratio of clicks to reach for each of the 245,000 URLs in our bit.ly data set, we find
roughly 0.13% of spam tweets generate a visit, orders of magnitude higher when compared
to clickthrough rates of 0.003%—0.006% reported for spam email [57].

There are a number of factors which may degrade the quality of this estimate. First,
our data set exclusively targets bit.ly URLs which may carry an inherent bias of trust as
the most popular URL shortening service [105]. Secondly, click data from bit.ly includes the
entire history of a link, while our observation of a link’s usage only account for one month
of Twitter activity. If a link is tweeted prior to our study, or all repeated tweets do not
appear in our 10% sample, reach may be underestimated. We attempt to correct for this
possibility by measuring the number of times a tweet is repeated using the entire history of
50,000 accounts, finding on average a tweet will appear 1.24 times, with 93% of tweets being
unique. This adjustment is factored into the reach of our earlier calculations, but we still
caution our estimate of tweet clickthrough as a rough prediction.

Twitter’s improved clickthrough rate compared to email has a number of explanations.
First, users are faced with only 140 characters in which to base their decision whether a URL
is spam. Paired with an implicit trust for accounts users befriend, increased clickthrough
potentially results from a mixture of naivety and lack of information. Alternatively, previous
estimates of email clickthrough implicitly expect all emails to be viewed. In practice, this
may not be the case, resulting in users never being presented the option to click on spam.
This same challenge exists in identifying whether a tweet is viewed, but the rates that users
view tweets versus emails may differ.

Regardless the underlying cause, Twitter’s clickthrough rate makes the social network an
attractive target for spammers; with only loose spam filtering in place, spammers are free to
solicit throughout the Twittersphere. Furthermore, the computational time of broadcasting
tweets is pushed off on Twitter’s servers compared to email spam which requires access to
large quantities of bots. After a spammer generates a Twitter following, messages can easily
be distributed to thousands of followers with a minimal amount of effort.

3.3.3 Spam Accounts

Without Twitter accounts, spammers are incapable of promoting their landing pages. To
understand the types of accounts involved in spamming, we define two categories for users
flagged as tweeting blacklisted links. The first is the fraudulent account created with the
express purpose of promoting spam. In contrast, a compromised account was created by a

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 24

legitimate user and at some point in time compromised through the use of phishing attacks,
malware, or simple password guessing. To differentiate between the two, we develop an array
of tests that analyze an account’s entire tweet history, finding that the majority of spam on
Twitter originates from compromised accounts, not a fraudulent account. It is important
to note these tests are not designed to detect spamming accounts and replace blacklists as
they can easily be evaded by an adversary. Instead, we rely on these classification techniques
solely to help us understand the ecosystem of spam on Twitter.

Fraudulent Accounts: We develop two tests that indicate if an account is fraudulent
and manually verifying the accuracy of each test on a random sample of both spam and
likely non-spam accounts. The first test analyzes tweet timing, based on the assumption
that legitimate account tweets overall reflect a uniform (Poisson) process. The second test
measures the entropy of an account’s tweets, identifying users that consistently tweet the
same text or link.

χ2: Test on Timestamp: Our first test examines tweet timestamps to identify patterns
in the minutes and seconds for when a tweet was posted. We represent timestamps for
an individual account using vectors corresponding to the seconds value of each hour and
seconds value of each minute. We then use a χ2 test to compute the p-value for these vectors
for their consistency with an underlying uniform distribution. For example, a p-value of less
than 0.001 indicates less than 0.1% chance that a user posting as a Poisson process generated
the sequence. For our evaluation, we treat a p-value of less than 0.001 for either vector as
evidence that the user has demonstrably failed the test. Such user tweet patterns very likely
reflect automation, leading to postings at regularized times. We deem such accounts as likely
fraudulent. Figure 3.2 shows examples of the minutes and seconds for three accounts that
fail the test. We manually assessed dozens of accounts that both passed and failed this test,
including both inspecting the contents of their tweets and their tweeting patterns over time,
finding that it is highly accurate in finding what appear to be fraudulent accounts.

Tweet text and link entropy: For each spam account, we examine the account’s tweets
history to identify instances where the text and links posted are dominated by repetition,
which we measure by calculating entropy. The test begins by binning the text and URLs
posted by an account into distinct bins and calculating the entropy of the resulting distri-
bution for the text and URL. If there is no repetition, then the entropy is equivalent to a
uniformly random set of the same size. We then calculate relative entropy as the ratio of
observed entropy to the entropy of a uniformly random set of the same size, finding that
a relative entropy value less than 0.5 indicates strong repetition. For users that do not
repeatedly post the same tweet, relative entropy is close to one.

Using the entire tweet history of a sample of 43,000 spam accounts, each with over 100
tweets per user, we find that roughly 16% of accounts tweeting at least one blacklisted link
are fraudulent. To gauge the false negative rate of our classification, we manually inspect

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 25

(a) (b)

(c)

Figure 3.2: Scatter plots of times of tweets for three users deemed to not post uniformly.
The x-axis gives the minutes value of each hour and y-axis gives seconds. In (a), the user
posts at regular intervals—approximately every five minutes. The account in (b) tends to
tweet toward the beginning of each minute, indicated by the prevalence of points low on
the y-axis. For (c), the pattern is less obvious but still caught by the χ2 test as indicating
regularized tweeting with respect to the hour (x-axis).

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 26

99 accounts that passed both the χ2 and entropy tests to determine a breakdown of the
non-fraudulent spamming accounts. Of the 99 samples, 35 are not categorized due to tweets
appearing in a foreign language and another 5 had been suspended, prohibiting our access
to the account’s tweet history and reducing our sample size to 59 accounts. Of these, 5 were
clearly fraudulent accounts that had evaded detection, roughly 8.5% of accounts, with an
error bound of 7% at 95% confidence.

To understand why the majority of spam accounts passed both tests, we perform a second
test to determine how many blacklisted URLs an average account tweets. For each account
in our sample of 43,000, we selected 10% of URLs from the account’s history and crawled
them to determine the final landing page. Using our blacklists, we identified 304,711 spam
landing pages, roughly 26% of URLs crawled. The majority of spam accounts tweeted only 2
spam messages, while the remainder of their tweets appeared to be benign URLs and purely
text tweets posted at random intervals. Given the low number of spam URLs, we believe the
vast majority of accounts tweeting blacklisted URLs are not fraudulent accounts, indicating
a potential for compromised accounts.

Compromised spamming accounts: With the majority of spamming accounts passing
both the χ2 and entropy tests used to identify automated behavior, we are left with two
possibilities for non-fraudulent accounts. First, an account could have been compromised
by means of phishing, malware, or simple password guessing, currently a major trend in
Twitter [134]. As most non-fraudulent accounts tweet a limited number of spam URLs,
the short lifetime of a compromise can result from Twitter detecting the compromise and
notifying the user involved, as occurs with phishing attacks, or the user might identify
suspicious activity within their tweet timeline and takes defensive action. Alternatively,
given the limited number of spam URLs posted, an account’s owner may have tweeted
the URLs unintentionally, unaware that they were spam. Given that we expect a non-
fraudulent spammer to tweet 20 spam URLs, it is unlikely an account mistakenly posts
spam so frequently, leading us to believe accounts are in fact compromised.

Compromised accounts present spammers with an attractive means of exploiting trust,
using a victim’s credibility to push spam out to followers. Furthermore, by taking control of
a victim’s account, spammers are relieved of the effort of coercing users into following spam
accounts. For non-fraudulent accounts that tweet malware and phishing URLs, we have
strong evidence indicating the accounts involved are likely compromised users. In particular,
we identify two major schemes to steal accounts, including phishing pages that purport to
provide followers and the Koobface botnet which spreads through URLs in tweets [31]. For
accounts identified as tweeting spam domains found in the URIBL and Joewein blacklists,
we have less direct evidence indicating accounts were compromised, though there have been
examples of such behavior reported [134].

Using a fake account to act as a spam trap, we entered our account information into one
of the most frequently spammed phishing sites that was blacklisted by Google’s Safebrowsing
blacklist. Once phished, the account was used to further advertise the same phishing scam

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 27

in addition to other spam domains. By searching for these spam URLs in our data set,
we identified over 20,000 accounts that were affected, 86% of which passed our fraudulent
account test.

Further evidence that Twitter accounts are being compromised comes from the spread
of Koobface malware which hijacks a victim’s Twitter account and tweets on his behalf.
During a concerted effort to infiltrate the Koobface botnet, we constructed search queries to
find compromised accounts on Twitter and monitored the spread on Twitter during a month
of collection. We identified 259 accounts that had tweeted a link leading to a landing page
that attempted to install Koobface malware, indicating that these accounts had already been
compromised by the botnet and were being used to infect new hosts [117].

These two cases highlight that compromises are occurring on Twitter with the explicit
purpose of spreading phishing, malware, and spam. With Twitter credentials being sold
in the underground market [78], evidence is mounting that Twitter accounts with large
followings are viewed as a commodity, giving access to a trusting audience more likely to
click on links, as indicated by our clickthrough results.

Spam Tools: To understand how spammers are communicating with Twitter, we analyze
the most popular applications amongst spam accounts used to post tweets. Using infor-
mation embedded in each tweet, we aggregate statistics on the most popular applications
employed by spammers, comparing these results to a random sample. Figure 3.3 shows that
fraudulent account application usage is dominated by automation tools such as HootSuite3

and twitterfeed4 that allow users to pre-schedule tweets at specific intervals. These tools
are not exclusive to spammers, as indicated by the presence in the random sample, though
typical users are far more likely to interface with Twitter directly through the web. Interest-
ingly, application usage amongst compromised accounts and a random sample are similar,
supporting our claim that the majority of accounts that pass both automation tests are
regular Twitter accounts that have been compromised.

Given our belief the majority of accounts are non-fraudulent spammers, we analyze
anomalous application usage to identify instances of unauthorized third party access. For
typical users, we expect tweets to originate from an array of desktop and phone applications,
while spam tweets should appear from an independent application controlled by spammers.
To identify this anomaly, we measure the frequency that an application is used to generate
spam versus non-spam tweets on a per account basis. On average, 22% of accounts contain
spam tweets that originate from applications that are never used for non-spam tweets. This
pattern of unauthorized third party access further demonstrates that stolen Twitter accounts
are being compromised and abused by spammers.

3http://hootsuite.com/
4http://twitterfeed.com/

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 28

Figure 3.3: Most frequently used applications per-account for compromised, fraudulent,
and a random sample of accounts. Fraudulent accounts use different applications than
compromised users, which are closer to the random set.

3.4 Detecting, Clustering, and Analyzing Spam

Campaigns

To aid in the propagation of products and malware, spammers manage multiple accounts
in order to garner a wider audience, withstand account suspension, and in general increase
the volume of messages sent. To understand the collusion of accounts towards advertising
a single spam website, we develop a technique that clusters accounts into campaigns based
on blacklisted landing pages advertised by each account. We define a campaign as the set of
accounts that spam at least one blacklisted landing page in common. While at least 80% of
campaigns we identify consist of a single account and landing page, we present an analysis
of the remaining campaigns including the number of websites hosting spam content for the
campaign and number of actors involved.

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 29

Cluster Statistic Google Joewein URIBL

Maximum possible campaigns 6,210 3,435 383,317
Campaigns identified 2,124 1,204 59,987
Campaigns with more than one account 14.50% 20% 11.46%
Campaigns with more than one page 13.09% 18.36% 27.18%

Table 3.3: Campaign statistics after clustering

3.4.1 Clustering URLs into campaigns

To cluster accounts into campaigns, we first define a campaign as a binary feature vector
c = {0, 1}n, where 1 indicates a landing page is present in the campaign and n is the total
number of landing pages in our data set. When generating the feature vector for a campaign,
we intentionally consider the full URL of a landing page and not its host name to allow for
distinct campaigns that operate within the same domain space, such as on free web hosting,
to remain separate.

Clustering begins by aggregating all of the blacklisted landing pages posted by an account
i and converting them into a campaign ci, where each account is initially considered part
of a unique campaign. Campaigns are clustered if for distinct accounts i, j the intersect
ci ∩ cj 6= ∅, indicating at least one link is shared by both accounts. The resulting clustered
campaign c(i,j) = ci ∪ cj. This process repeats until the intersection of all pairs of campaigns
ci, cj is empty. Once complete, clustering returns the set of landing pages for each campaign
as well as the accounts participating in each campaign.

Due to our use of Twitter exclusively to identify campaigns, there are a number of limi-
tations worth noting. First, if an account participates in multiple campaigns, the algorithm
will automatically group the campaigns into a single superset. This occurs when an account
is shared by two spammers, used for multiple campaigns over time by a single spammer,
or compromised by different services. Alternatively, if each landing page advertised by a
spammer is unique to each account, our algorithm has no means of identifying collusion and
results in partitioning the campaign into multiple disjoint subsets.

3.4.2 Clustering results

The results of running our clustering technique on the accounts flagged by each blacklist are
shown in Table 3.3. If there were an absence of accounts that tweet multiple scam pages,
our clustering technique would return the maximum possible number of campaigns, where
each landing page is considered a separate campaign. In practice this is not the case; we
are able to identify multiple instances where spam advertised by a group of accounts span a
number of distinct landing pages, and even domains.

Analyzing the membership of campaigns, we find that at least 10% of campaigns consist
of more than one account. The membership breakdown of these campaigns is shown in

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 30

0 50 100 150 200
0.9

0.92

0.94

0.96

0.98

1

Accounts in Campaign

F
ra

c
ti
o
n
 o

f
C

a
m

p
a
ig

n
s

Google

Joewein

URIBL

Figure 3.4: Number of accounts colluding in campaigns

0 50 100 150 200 250
0.8

0.85

0.9

0.95

1

Landing Pages in Campaign

F
ra

c
ti
o
n
 o

f
C

a
m

p
a
ig

n
s

Google

Joewein

URIBL

Figure 3.5: Number of landing pages targeted by campaigns

Figure 3.4. Diversity of landing pages within campaigns is slightly more frequent, as shown
in Figure 3.5, where the use of affiliate links and multiple domains results in a greater volume
of links that comprise a single campaign. While the vast majority of accounts do not collude
with other Twitter members, there are a number of interesting campaigns at the tail end of
these distributions that clustering helps to identify.

Phishing for followers: A particularly interesting phishing campaign that appeared dur-
ing our monitoring period is websites purporting to provide victims with followers if they
revealed their account credentials. In practice, these accounts are then used in a pyramid
scheme to attract new victims and advertise other services.

Clustering returned a set of a 21,284 accounts that tweeted any one of 1,210 URLs as-
sociated with the campaign. These URLs directed to 12 different domains, while the full

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 31

URL paths contained affiliate information to keep track of active participants. To under-
stand spamming behavior within the campaign, we fractured users into subcampaigns, where
a subcampaign is a set of users that share identical feature vectors, rather than the origi-
nal criteria of sharing at least one link in common. From the initial campaign, hundreds of
subcampaigns appear. Of the 12 distinct domains, each has a independent subcampaign con-
sisting of on average 1,400 participants, accounting for roughly 80% of the original campaign
members. The remaining 20% of participants fall into multiple clusters due to signing up
for multiple follower services, accounting for why the independent campaigns were initially
merged.

Defining features.: This campaign makes up a significant portion of the tweets flagged
by the Google blacklist, and shows surprisingly large user involvement and frequent tweet-
ing. Using the χ2 and entropy tests, we find that a large fraction of the users, 88% in our
set, tweeting for this campaign are compromised users, adding to the evidence that phished
accounts are used to further promote the phishing campaign. A defining feature of tweets in
this campaign is the extensive use of hashtags, 73% of the tweets sent contained a hashtag.
Hash tags are frequently reused and typically denote the subcampaign (such as #maisfol-
lowers). For the URLs being tweeted, most have a redirect chain consisting of a single hop,
from a shortened URL to the landing page, though affiliate tracking typically introduces a
second hop (shortened URL -¿ affiliate link -¿ landing page). In some cases, the landing page
itself appears in tweets. We have also observed that the phishing sites plainly advertise the
service to get more followers.

Personalized mentions: Of the campaigns we identify as spam, one particular campaign
run by http://twitprize.com uses Twitter to draw in traffic using thousands of fraudulent
accounts that exclusively generate spam telling users they had won a prize. Clustering
returns a set of 1,850 accounts and 2,552 distinct affiliate URLs that were all shortened with
tinyurl. Spam within the campaign would target victims by using mentions and crafting
URLs to include the victim’s Twitter account name to allow for personalized greetings.
Promising a prize, the spam page would take a victims address information, require a survey,
list multiple mailers to sign up for, and finally request the user either sign up for a credit
card or subscribe to a service.

Defining features.: This campaign is dominated by tweet URLs from tinyurl pointing to
unique, victim-specific, landing pages at http://twitprize.com with no intermediate redirects.
Of the tweets containing URLs in this campaign, 99% are a retweet or mention. The heavy
use of usernames in tweets is an interesting characteristic, unique to this type of campaign.
Unlike the previous phishing campaign, we find infrequent use of hashtags, with only 2%
of tweets containing a hashtag. The accounts that tweet URLs in this campaign pass the
entropy tests since each tweet contains a different username and the links point to distinct
twitprize URLs. Of the accounts participating, 25% have since been suspended by Twitter.

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 32

Buying retweets: One of the primary challenges for spammers on Twitter is to gain a
massive following in order to increase the volume of users that will see a spam tweet. To
circumvent this challenge, a number of services have appeared that sell access to followers.
One such service, retweet.it, purports to retweet a message 50 times to 2,500 Twitter followers
for $5 or 300 times to 15,000 followers for $30. The accounts used to retweet are other Twitter
members (or bots) who sign up for the retweet service, allowing their accounts to be used to
generate traffic.

Defining features.: While the service itself does not appear to be a scam, it has been
employed by spammers. Using a unique feature present in all retweet.it posts to generate
a cluster, we identify 55 accounts that retweeted a spam post soliciting both malware and
scams. The χ2 test indicate that 84% of the accounts are fraudulent.

Distributing malware: Using clustering, we identified the largest campaign pushing mal-
ware in our data set, consisting 113 accounts used to propagate 57 distinct malware URLs.
The content of the sites include programs that bring satellite channels to a computer that are
“100% adware and spyware free” and an assortment of other scams. In addition to serving
malware, some sites advertised by the campaign were reported by Google’s blacklist for drive
by downloads.

Defining features.: The top malware campaign is significantly different than other cam-
paigns, with a relatively small account base and few tweets. The accounts that tweet links in
this cluster tend to be fraudulent, indicating that the malware is not compromising Twitter
accounts in order to self propagate, a feature found among Twitter phishing URLs. One
difference from other campaigns is this use of redirects to mask the landing page. Since
both Twitter and shortening services such as bit.ly use the Google Safebrowsing API to
filter links, if a bit.ly URL is to be placed in tweets, the redirect chain must at least be two
hops (bit.ly → intermediate → malware landing site). Two hops is not enough though, as
the Safebrowsing list contains both sites that serve as well as sites that redirect to malware,
requiring at least an additional hop to be used to mask it from initial filtering.

Nested URL shortening: In addition to locating large campaigns, clustering helps to
identify instances of URL compression where multiple links posted in tweets all resolve to
the same page. One such campaign consisted of 14 accounts soliciting a financial scam.
While unremarkable for its size, the campaign stands out for its use of multiple redirector
services, totaling 8 distinct shortening domains that appear in tweets. In turn, each initial
link triggers a long chain of nested redirects that leads our crawler through is.gd → short.to
→ bit.ly before finally resolving to the scam page. While the motivation for nested redirects
is unclear, it may be a result of spam filtering done on the part of shortening services. By
nesting URLs, filtering based on domains or full URLs is rendered obsolete less the final
URL is resolved, which we discuss further in Section 3.5

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 33

Google Google
Link Statistics URIBL Joewein Malware Phishing

Flagged before posting 27.17% 3.39% 7.56% 1.71%
Flagged after posting 72.83% 96.61% 92.44% 98.29%

Avg. lead period (days) 29.40 13.41 29.58 2.57
Avg. lag period (days) -21.93 -4.28 -24.90 -9.01
Overall avg. (days) -12.70 -3.67 -20.77 -8.82

Table 3.4: Blacklist performance, measured by the number of tweets posted that lead or lag
detection. Positive numbers indicate lead, negative numbers indicate lag.

3.5 Limitations of Domain Blacklists for Social

Networks

Given the prevalence of spam throughout Twitter, we examine the degree to which black-
lists could stem the spread of unsolicited messages. Currently, Twitter relies on Google’s
SafeBrowsing API to block malicious links, but this filtering only suppresses links that are
blacklisted at the time of its posting; Twitter does not retroactively blacklist links, allowing
previously undetected malicious URLs to persist. To measure how many tweets slip through
Twitter’s defenses, and whether the same would be true for URIBL and Joewein, we ex-
amine a number of blacklist characteristics, including delay, susceptibility to evasion, and
limitations that result if we restrict filtering to considering only domains rather than the full
paths of spam websites.

3.5.1 Blacklist delay

Using historical data for the URIBL, Joewein, and Google blacklists, we can measure the
delay between a tweet’s posting and the time of its subsequent blacklisting. For cases where
a spam URL embedded in a tweet appeared on a blacklist prior to appearing on Twitter,
we say that the blacklist leads Twitter. Conversely, a blacklist lags Twitter if posted URLs
reach the public before becoming blacklisted. Lead and lag times play an important role in
determining the efficiency of blacklists. For example, for long lag periods spam filters must
maintain a large index of URLs in stale tweets to retroactively locate spam. Furthermore,
depending on the rate at which users click on spam links, long lag periods can result in little
protection unless spammers reuse links even after they appear on blacklists.

We begin measuring blacklist delay by gathering the timestamps for each tweet of a
blacklisted URL. For URLs spammed in multiple tweets, we consider each posting as a
unique, independent event. Table 3.4 shows the lead and lag times for tweets, where we see
that the majority of spam tweets appear on Twitter multiple days prior to being flagged
in blacklists, and in the case of URIBL and Google, multiple weeks. A more extensive
presentation of blacklist delay can be seen in Figure 3.6, showing the volume of tweets per

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 34

Google Google
Link Statistics URIBL Joewein Malware Phishing

Flagged before posting 50.19% 20.31% 18.89% 15.38%
Flagged after posting 49.81% 79.69% 81.11% 84.62%

Avg. lead period (days) 50.53 15.51 28.85 2.50
Avg. lag period (days) -32.10 -5.41 -21.63 -10.48
Overall avg. (days) 9.36 -1.16 -12.10 -8.49

Total domains flagged 1620 128 625 13

Table 3.5: Blacklist performance, measured by lead and lag times for unique domains posted.

lead and lag day. It is important to note that Twitter use of Google’s Safebrowsing API to
filter links prior to their posting biases our analysis towards those links that pass through
the filter, effectively masking the lead time apart from URLs that spammers obfuscated with
shorteners to avoid blacklisting.

Table 3.5 shows the same lead and lag periods but weighted by unique domains rather
than by individual tweets. While blacklisting timeliness improves from this perspective, this
also indicates that domains previously identified as spam are less likely to be re-posted,
limiting the effectiveness of blacklisting.

To understand the exposure of users due to blacklist lag, we measured the rate that clicks
arrived for spam links. Using daily clickthrough data for a random sample of 20,000 spam
links shortened with bitly, we found that 80% of clicks occur within the first day of a spam
URL appearing on Twitter, and 90% of clicks within the first two days. Thus, for blacklisting
to be effective in the context of social networks, lag time must be effectively zero in order to
prevent numerous users from clicking on harmful links.

3.5.2 Evading blacklists

The success of blacklists hinges on the reuse of spam domains; if every email or tweet con-
tained a unique domain, blacklists would be completely ineffective. While the registration
of new domains carries a potentially prohibitive cost, URL shortening services such as bitly,
tinyurl, is.gd, and ow.ly provide spam orchestrators with a convenient and free tool to ob-
fuscate their domains.

By following shortened URLs, we found over 80% of distinct links contained at least one
redirect, as shown in a breakdown in Figure 3.7. In particular, redirects pose a threat to
blacklisting services when they cross a domain boundary, causing a link to appear from a
non-blacklisted site as opposed to a blacklisted landing page. Figure 3.8 shows the cross-
domain breakdown for distinct URLs seen in links containing at least one redirect. Roughly
55% of blacklisted URLs cross a domain boundary.

The effect of shortening on Twitter’s malware defenses (filtering via Google’s Safebrows-
ing API) appears quite clearly in our data set. Disregarding blacklist delay time, 39% of

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 35

−50 0 50
0

1

2

3

4

5
x 10

4

N
u
m

b
e
r

o
f
T

w
e
e
ts

Days

(a) URIBL

−50 0 50
0

100

200

300

400

500

Days

(b) Joewein

−50 0 50
0

200

400

600

800

Days

(c) Google - Malware

−50 0 50
0

10

20

30

40

50

60

Days

Lag

Lead

(d) Google - Phishing

Figure 3.6: Volume of spam tweets encountered, categorized by either lagging or leading
blacklist detection

distinct malware and phishing URLs evade detection via use of shorteners. Despite the small
fraction, these links make up over 98% of malicious tweets identified by our system. Even in
the event a shortened URL becomes blacklisted, generating a new URL comes at effectively
no cost. Without the use of crawling to resolve shortened URLs, blacklists become much
less effective.

3.5.3 Domain blacklist limitations

For blacklists based only on domains rather than full URLs, such as URIBL and Joewein,
false positives pose a threat of blacklisting entire sites. Looking through the history of
URIBL and Joewein, we identified multiple mainstream domains that were blacklisted prior
to our study, including ow.ly, tumblr, and friendfeed. Each of these services allow users to

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 36

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Redirects per URL

F
ra

c
ti
o

n
 o

f
U

R
L

s

Google

Joewein

URIBL

Figure 3.7: Frequency of redirects and nested redirects amongst distinct spam URLs

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Domain boundries crossed during redirection

F
ra

c
ti
o

n
 o

f
U

R
L

s

Google

Joewein

URIBL

Figure 3.8: Frequency of cross-domain redirects amongst distinct spam URLs containing at
least one hop

upload content, giving rise to the potential for abuse by spammers.
The presence of user-generated content and mashup pages presents a unique challenge

for domain blacklists. For instance, while ow.ly merely acts as a redirector, the site embeds
any spam pages to which it redirects in an iFrame, causing a browser’s address bar to
always display ow.ly, not the spam domain. When faced with mashup content, individual
cross-domain components that make up a page must be blacklisted rather than the domain
hosting the composite mashup. This same challenge exists for Web 2.0 media where content
contributed by users can affect whether a domain becomes blacklisted as spam. For tumblr
and friendfeed, we identified multiple cases in our data set where the domains were used by

CHAPTER 3. CHARACTERIZING SOCIAL NETWORK SPAM AND ABUSE 37

spammers, but the majority of accounts belong to legitimate users. The appearance and
subsequent deletion of social media domains within URIBL and Joewein disguises the fact
that the domains are being abused by spammers. To address the issue of spam in social
media, individual services can either be left to tackle the sources of spam within their own
sites, or new blacklists must be developed akin to Google’s Safebrowsing API that go beyond
domains and allow for fine-grained blacklisting.

3.6 Summary of Results

This chapter presents the first study of spam on Twitter including spam behavior, click-
through, and the effectiveness of blacklists to prevent spam propagation. Using over 400
million messages and 25 million URLs from public Twitter data, we find that 8% of distinct
Twitter links point to spam. Of these links, 5% direct to malware and phishing, while the
remaining 95% target scams. Analyzing the account behavior of spammers, we find that
only 16% of spam accounts are clearly automated bots, while the remaining 84% appear
to be compromised accounts being puppeteered by spammers. Even with a partial view of
tweets sent each day, we identify coordination between thousands of accounts posting dif-
ferent obfuscated URLs that all redirect to the same spam landing page. By measuring the
clickthrough of these campaigns, we find that Twitter spam is far more successful at coercing
users into clicking on spam URLs than email, with an overall clickthrough rate of 0.13%.

Finally, by measuring the delay before blacklists mark Twitter URLs as spam, we have
shown that if blacklists were integrated into Twitter, they would protect only a minority of
users. Furthermore, the extensive use of URL shortening services masks known-bad URLs,
effectively negating any potential benefit of blacklists. We directly witness this effect on
Twitter’s malware and phishing protection, where even if URLs direct to sites known to be
hostile, URL shortening allows the link to evade Twitter’s filtering. To improve defenses for
Twitter spam, URLs posted to the site must be crawled to unravel potentially long chains
of redirects, using the final landing page for blacklisting. While blacklist delay remains an
unsolved challenge, retroactive blacklisting would allow Twitter to suspend accounts that are
used to spam for long periods, forcing spammers to obtain new accounts and new followers,
a potentially prohibitive cost.

38

Chapter 4

Social Spam: Tools, Techniques, and
Monetization

4.1 Introduction

As Twitter continues to grow in popularity, a spam marketplace has emerged that includes
services selling fraudulent accounts, affiliate programs that facilitate distributing Twitter
spam, as well as a cadre of spammers who execute large-scale spam campaigns despite
Twitter’s efforts to thwart their operations. While social network spam has garnered a
great deal of attention in the past year from researchers, most of the interest has involved
developing tools to detect spam. These approaches rely on URL blacklists [34], passive social
networking spam traps [114, 67], and even manual classification [8] to generate datasets of
Twitter spam for developing a classifier that characterizes abusive behavior. These spam
detection approaches however have not yet been used to analyze the tools and techniques of
spammers, leaving the underground marketplace that capitalizes on Twitter largely obscure.

In this chapter we characterize the illicit activities of Twitter accounts controlled by
spammers and evaluate the tools and techniques that underlie the social network spam dis-
tribution chain. This infrastructure includes automatically generated accounts created for
the explicit purpose of soliciting spam; the emergence of spam-as-a-service programs that
connect Twitter account controllers to marketers selling products; and finally the techniques
required to maintain large-scale spam campaigns despite Twitter’s counter-efforts. To per-
form the study, we aggregate over 1.8 billion messages on Twitter sent by 32.9 million
accounts during a seven month period from August 17, 2010 to March 4, 2011. Within this
period, we identify accounts suspended by Twitter for abusive behavior, including spam,
aggressive friending, and other non-spam related offenses. Manual analysis indicates that an
estimated 93% of suspended accounts were in fact spammers, with the remaining 7% sus-
pended for mimicking news services and aggressive marketing. In total, our dataset consists
of over 1.1 million suspended accounts that we show to be spammers, and 80 million spam
tweets from these accounts. In contrast to the previous chapter and previous studies [34],

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 39

only 8% of the URLs we examine were ever caught by blacklists, and the accounts within our
dataset are largely fraudulent, as opposed to compromised users. This enables us to provide
a unique perspective on a subset of Twitter spammers not previously examined.

At the heart of the of the Twitter spam craft is access to hundreds of accounts capa-
ble of reaching a wide audience. We find that 77% of accounts employed by spammers are
suspended within a day of their first post, and 92% of accounts within three days. The
countermeasures imposed by Twitter’s suspension algorithm preclude the possibility of at-
tempting to form meaningful relationships with legitimate users, with 89% of spam accounts
having fewer than 10 followers. In place of distributing messages over the social graph, we
find that 52% of spam accounts turn to unsolicited mentions, whereby a personalized mes-
sage is sent to another account despite the absence of a social relationship. Another 17% of
accounts rely on embedding hashtags in their messages, allowing spam to garner an audience
from users who view popular Twitter discussions via search and trending topics.

Beyond the characteristics of spam accounts, we explore five of the largest Twitter spam
campaigns that range from days to months in duration, weaving together fraudulent ac-
counts, diverse spam URLs, distinct distribution techniques, and a multitude of monetiza-
tion approaches. Together, these campaigns control 145 thousand account that generate 22%
of spam on Twitter. Surprisingly, three of the largest campaigns direct users to legitimate
products appearing on amazon.com via affiliate links that generate income on a purchase,
blurring the line regarding what constitutes spam. Indeed, only one of the five campaigns
we analyze advertises content generally found in email spam [69], revealing a diverse group
of miscreants in the underground space that go beyond email spammers.

Finally, within the amalgam of spam on Twitter, we identify an emerging market of
spam-as-a-service. This marketplace includes affiliate programs that operate as middle-
men between spammers seeking to disseminate URLs and affiliates who control hundreds
of Twitter accounts. The most prominent affiliate program, called Clickbank, appeared in
over 3.1 million tweets sent from 203 affiliates participating in the program. Other services
include ad-based URL shorteners as well as account arbiters who sell the ability to tweet
from thousands of accounts under a single service’s control. Each of these services enables
a diversification in the social network spam marketplace, allowing spammers to specialize
exclusively in hosting content or acquiring Twitter accounts.

In summary, we frame our contributions as followers:

• We characterize the spamming tools and techniques of 1.1 million suspended Twitter
accounts that sent 80 million tweets.

• We examine a number of properties pertaining to fraudulent accounts, including the
formation of social relationships, account duration, and dormancy periods.

• We evaluate the wide-spread abuse of URLs, shortening services, free web hosting, and
public Twitter clients by spammers.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 40

• We provide an in-depth analysis of five of the largest spam campaigns targeting Twitter,
revealing a diverse set of strategies for reaching audiences and sustaining campaigns in
Twitter’s hostile environment.

• We identify an emerging marketplace of social network spam-as-a-service and analyze
its underlying infrastructure.

4.2 Retroactive Detection of Spam Accounts on

Twitter

In order to characterize the tools and services that Twitter spammers rely on, we aggregate
a dataset of nearly 1.8 billion tweets sent by 32.9 million Twitter accounts over a 7 month
period. Of these, we identify 1.1 million accounts suspended by Twitter for abusive behavior.
Combined, these accounts sent over 80 million tweets containing 37 million distinct URLs.
We manually verify a sample of suspended accounts and find the vast majority were sus-
pended for spamming, providing us with a rich source of ground truth for measuring spam.
In addition to our Twitter dataset, we resolve the first redirect of 15 million URLs to deob-
fuscate a layer of shortening. Finally, for 10 million URLs shortened by bit.ly, we download
multiple statistics provided by bit.ly including clickthrough and, when available, the bit.ly
account that shortened the URL. A summary of our dataset can be found in Table 4.1.

4.2.1 Twitter Dataset

Our Twitter dataset consists of over 1.8 billion tweets collected from Twitter’s streaming
API [124] during a seven month period from August 17, 2010 to March 4, 2011. We ac-
cess Twitter’s API through a privileged account, granting both increased API requests per
hour and a larger sample than would be conferred to a default account. We rely on the
statuses/filter method to collect a sample of public tweets conditioned to contain URLs.
For each tweet, we have the associated text of the tweet, the API client used to post the
tweet (e.g., web, third-party client), as well as statistics tied to the account who posted the
tweet including the account’s number of friends, followers, and previous posts. On average,
we receive 12 million tweets per day, with a ceiling imposed by Twitter capping our collection
at 150 tweets per second. We lack data for some days due to network outages, updates to
Twitter’s API, and instability of our collection infrastructure. A summary of tweets collected
each day and outage periods is shown in Figure 4.1.

In order to label spam within our dataset, we first identify accounts suspended by Twitter
for abusive behavior. This includes spam, aggressive friending, and other non-spam related
offenses. Upon suspension, all of an accounts tweets and profile data become restricted and
relationships disappear from the social graph. While this provides a clear signal to identify
suspended accounts, it also eliminates any possibility of simply downloading an account’s

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 41

Data Source Sample Size

Tweets 1,795,184,477
Accounts 32,852,752
Distinct URLs 1,073,215,755

Tweets from Suspended Accounts 80,054,991
Suspended Accounts 1,111,776
Distinct URLs from Suspended Accounts 37,652,300

Resolved URLs 15,189,365

Bit.ly URLs 10,092,013
Bit.ly Accounts 23,317

Table 4.1: Summary of data collected from Twitter, Bit.ly, and from resolving the first
redirect of URLs

Figure 4.1: Tweets containing URLs received per day. On average, we receive 12 million
tweets per day, with a ceiling imposed by Twitter.

history upon suspension. Nevertheless, we are able to reconstruct a composite of a suspended
account’s activities from all of the tweets in our sample set.

Due to delays in Twitter’s account suspension algorithm, we wait two weeks from the
last day of data collection before we determine which accounts were suspended by Twit-
ter. This process consists of a bulk query to Twitter’s API to identify accounts that no
longer have records, either due to deletion or suspension, followed by a request to access
each missing account’s Twitter profile via the web to identify requests that redirect to
http://twitter.com/suspended. Of 32.9 million accounts appearing in our sample, 1.1 mil-
lion were subsequently suspended by Twitter, roughly 3.3% of accounts. These accounts
posted over 80 million tweets, with their daily activity shown in Figure 4.2. We sample a
portion of these accounts and manually verify that the vast majority are suspended for spam

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 42

Figure 4.2: Daily tweet activity of suspended users. Peak activity preceded the holiday
season in December.

behavior. Furthermore, we provide an estimate for what fraction of each spam account’s
tweets appear in our sample, as well as provide an estimate for how many spam accounts go
uncaught by Twitter and are thus unlabeled in our data set.

Validating Suspended Accounts are Spammers: When we identify a suspended ac-
count, we retroactively label all of the account’s tweets in our sample as spam. In doing so,
we make an assumption that suspended accounts are predominantly controlled by spammers
and are not valid accounts performing unrelated abusive behaviors. To validate this assump-
tion, we draw a random sample of 100 suspended accounts and aggregate every tweet posted
by the account appearing in our dataset. We then analyze the content of each tweet to
identify common spam keywords, frequent duplicate tweets, and tweet content that appears
across multiple accounts. Additionally, we examine the landing page of each tweet’s URL,
if the URL is still accessible, and the overall posting behavior of each account to identify
automation.

Of the 100 accounts, 93 were suspended for posting scams and unsolicited product ad-
vertisements; 3 accounts were suspended for exclusively retweeting content from major news
accounts, and the remaining 4 accounts were suspended for aggressive marketing and du-
plicate posts. None of the accounts appeared to be legitimate users who were wrongfully
suspended. Presumably, any such false positives would later be resolved by the user request-
ing their account be unsuspended. From these results, we can discern that the majority
of accounts we examine are fraudulent accounts created by spammers, though the URLs
posted by some of these accounts may direct to legitimate content. We provide further
evidence that the accounts in our dataset are created explicitly for spamming rather than
compromised or legitimate when we examine the relationships and duration of suspended ac-
counts in Section 4.3.1. From here on out, we refer to suspended accounts as spam accounts
interchangeably.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 43

Validating Active Accounts are Non-spammers: False negatives from Twitter’s de-
tection algorithm result in omitting a portion of spam accounts from our analysis. To
measure what fraction of spam accounts are missed by Twitter, we randomly sample 200
active accounts and evaluate each account’s tweet history using the same criteria we applied
to validate spam accounts. Of the 200 accounts, 12 were clearly spammers, from which we
can estimate that 6% of active accounts are in fact spammers, with an error bound of ±3.3%
at 95% confidence. Consequently, many of our measurements may underestimate the total
volume of spam on Twitter and the number of accounts colluding in spam campaigns. For
the accounts we manually identified as overlooked spammers, we found no significant dis-
tinction between their behavior and that of suspended accounts, leading us to believe they
fall below some classification or heuristic threshold that bounds false positives.

Estimating the Likelihood Spammers are Caught: Using our estimates of the number
of false positives and false negatives that result from Twitter’s spam detection algorithm, we
can approximate the algorithm’s sensitivity, or the likelihood that a spam account posting
URLs will be caught. Of the 31 million accounts that were not suspended, 6% are false
negatives, amounting to roughly 1.9 million spam accounts that are overlooked. Another 1
million spam accounts were correctly identified by Twitter’s algorithm. Applying the metric
for sensitivity:

sensitivity =
true positives

true positives+ false negative

we find that only 37% of spam accounts posting URLs on Twitter are caught by the suspen-
sion algorithm during the period of our measurement. We note that this estimate is sensitive
to the error bound of the false negative rate. Despite the potential for omitting a class of
spam from our analysis, we show in Section 4.2.2 that alternative approaches such as using
blacklists to identify spam accounts net an entirely different class of spammers. As such,
while our sample may be biased, our analysis provides insights into a large population of
spam accounts that have previously been uncharacterized.

Sample Rate: As a final validation step, we measure the fraction of URLs posted to
Twitter that we receive in our sample. Our daily sample remains roughly constant at 12
million tweets even though Twitter reports exponential growth [120]. After October 12,
2010, Twitter began to impose a rate limit of 150 tweets per second regardless the actual
rate they receive tweets. To measure how this impacts our sample, we take a random sample
of 1,600 non-suspended accounts that appear in our dataset and download the entirety of
their account history. Of these accounts, 1,245 were still publicly accessible, providing a
sample of 798,762 tweets. We then filter out tweets that appear during an outage in our
collection or that do not contain URLs, leaving a sample of 32,142 tweets, with roughly 465
samples per day. The daily fraction of these tweets that appear in our sample can be seen in

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 44

Figure 4.3: Estimated percentage of all tweets containing URLs we receive per day. Due to
Twitter’s cap of 12 million tweets per day, we receive a smaller sample size as Twitter grows.

Figure 4.3 along with a fit curve. At our peak collection, we received 90% tweets containing
URLs posted to Twitter. The sample rate has since decreased to nearly 60%.

4.2.2 Spam URL Dataset

From the 80 million tweets we label as spam, we extract 37.7 million distinct URLs pointing
to 155,008 full domains (e.g.,
an.example.com) and 121,171 registered domains (e.g., example.com). Given the multitude
of shorteners that obfuscate landing pages and no public listing, we attempt to fetch each
URL and evaluate whether the HTTP response includes a server-side redirect to a new URL.
We only resolve the first such redirect, making no attempt at subsequent requests. In total,
we are able to resolve 15.2 million URLs, the remainder of which were shortened by services
that have since been deactivated, or were inaccessible due to rate limiting performed by the
shortening service.

Blacklist Overlap: In prior work, we examined millions of URLs posted to Twitter that
appeared in blacklists [41]. To determine whether the spam we identify from suspended
accounts differs significantly from spam detected by blacklists, we examine the overlap of
our spam URL dataset with blacklists. We take a sample of 100,000 URLs appearing in
tweets regardless of whether they are shortened and a second sample of 100,000 unshortened
URLs. We consult three blacklist families: SURBL and all its affiliated lists (e.g., Spam-
Cop, Joewein); Google Safebrowsing, both malware and phishing; and URIBL. If a URL was
flagged at any any point in the history of these blacklists from August, 2010 till May, 2011,
we consider the URL to be blacklisted. We find only 8% of spam tweet URLs appeared in
blacklists and only 5% of unshortened URLs. As such, we believe we present an entirely un-

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 45

explored subset of spam on social networks from both the perspective of fraudulent accounts
as well as non-blacklisted spam.

4.2.3 Bit.ly URL and Account Dataset

Of the URLs associated with spam tweets in our dataset, over 10 million direct to bit.ly ,
a popular shortening service, or one of its multiple affiliated services (e.g., j.mp, amzn.to).
From bit.ly ’s public API [124] we are able to download clickthrough statistics for a subset
of these URLs found in prominent spam campaigns, and when available, the registered
bit.ly account that shortened the URL. Roughly 47% of bit.ly URLs in our dataset had an
associated bit.ly account, of which 23,317 were unique.

4.3 Tools and Techniques of Spammers

Within the amalgam of spam activities on Twitter, we identify a diverse set of tools and
strategies that build upon access to hundreds of fraudulent accounts, an array of spam URLs
and domains, and automation tools for interacting with Twitter. We explore each of these
areas in depth and present challenges facing both spammers and Twitter in the arms race
of social network spam.

4.3.1 Accounts

At the heart of the Twitter spam craft are thousands of fraudulent accounts created for
the explicit purposes of soliciting products. 77% of these accounts are banned within a day
of their first post, and 89% acquire less than 10 followers at the height of their existence.
Yet, within Twitter’s hostile suspension environment, spammers are still capable of reaching
millions of users through the use of unsolicited mentions and trending topics. We examine
a range of properties surrounding spam accounts, including the length of their activity, the
rate they send tweets, the social relationships they form, and the stockpiling of accounts.

Active Duration: Spam accounts are regularly suspended by Twitter, but it takes time
for Twitter to build up a history of mis-activity before taking action. We measure this
window of activity for a sample of 100,000 spam accounts created after our measurement
began. We omit accounts that were created during one of our outage periods to reduce
bias, though an account appearing at the cusp of an outage period will have its activity
window underestimated. For each of these accounts, we calculate the difference between
the timestamp of an account’s first tweet and last tweet within our dataset, after which
we assume the account was immediately suspended. Figure 4.4 shows a CDF of account
activity. 77% of accounts were suspended within a day of their first tweet, with 92% of
accounts surviving only three days. The longest lasting account was active for 178 days
before finally being suspended. While a minority of accounts are able to persist, we show

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 46

Figure 4.4: Duration of account activity. 77% of accounts are suspended within a day of
their first tweet and 92% within three days.

that rapid suspension impacts both the volume of tweets spammers can disseminate and the
relationships they can form.

Tweet Rates: Given the threat of account suspension, we examine whether the rate that
spammers send tweets impacts when they are suspended. In order to calculate the total
number of tweets sent by an account, we rely on a statistical summary embedded by Twitter
in each tweet that includes the total number posts made by an account (independent of
our sampling). Using a sample of 100,000 accounts, we calculate the maximum tweet count
embedded for each account by Twitter and compare it against the account’s active duration.

The results of our calculation are shown in Figure 4.5 along with a fit curve. We identify
three clusters in the figure, outlined in ovals, that represent two distinct spamming strategies.
The first strategy (I) relies on short-lived accounts that flood as many tweets as possible
prior to being suspended, representing 34% of our sample. These accounts last a median of 3
days and send 98 tweets. In contrast, a second strategy (II) relies on longer lasting accounts
that tweet at a modest rate, representing 10% of our sample. While these accounts last a
median of 7 days, in the end, they send a nearly equal volume of tweets; a median of 97
tweets per account. The final cluster (III) consists of 56% of accounts that are suspended
within a median of 1 day and send 5 tweets on average. The reason behind these accounts’
suspension is unclear, but it is likely tied to rules beyond tweet count, such as sending
URLs duplicated from previously suspended accounts or sharing an email address or IP
address with other suspended accounts. While an individual account sending 100 tweets will
not reach a large audience, we show in Section 4.5 that actual spam campaigns coordinate
thousands of accounts yielding hundreds of thousands of tweets.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 47

Figure 4.5: Active duration vs. tweets sent for spam accounts. Two strategies appear: (I)
burst accounts and (II) long-lived, low-daily volume accounts

Relationships: The social graph is the focus of regular user interaction on Twitter, yet
we find that most spammers fail to form social connections and instead leverage other social
networking features to reach an audience. Due to the disappearance of spam accounts
from the social graph upon suspension, we are unable to retroactively perform a detailed
analysis of the accounts spammers befriended (or whether spammers befriend one another).
Nevertheless, each tweet in our dataset includes a snapshot of the number of friends and
followers an account held at the time of the tweet. For clarity, we define a friend as a second
user that an account receives content from, while a follower is a second user that receives an
account’s content. With respect to distributing spam URLs, only followers are important,
though spammers will acquire friends in the hope that the relationship will be reciprocated.

To compare relationships formed by both spam and non-spam accounts, we aggregate
friend and follower data points for a sample of 100,000 active and suspended users. Fig-
ure 4.6 shows a CDF of the maximum number of followers a spam account acquires prior to
suspension. Surprisingly, 40% of spam accounts acquire no followers, while 89% of accounts
have fewer than 10 followers. We believe this is due both to the difficulty of forming rela-
tionships with legitimate users, as well as a result of the hostile environment imposed by
Twitter, where the effort and time required to acquire followers is outpaced by the rate of
suspension.

With no followers, spam accounts are unable to distribute their content along social

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 48

Figure 4.6: Users following spam accounts. 89% of accounts have fewer than 10 followers;
40% have no followers.

connections. Instead, we find that 52% of accounts with fewer than 10 followers send unso-
licited mentions, whereby a personally tailored message is sent to an unsuspecting account
that shares no relation with the spammer. Another 17% of accounts rely on embedding
hashtags in their spam tweets, allowing spam content to appear in the stream of popular
Twitter discussions and through search queries. We examine the success of each of these
approaches in Section 4.5 for a subset of spam campaigns.

For those spam accounts that do form social relationships, their relationships are heavily
skewed towards friends rather than followers, indicating a lack of reciprocated relationships.
Figure 4.7 shows the number of friends and followers for spam accounts as well as active
accounts presumed to be non-spammers. An identity line in both plots marks equal friends
and followers, while a trend line marks the areas of highest density in the scatter plot.
Relationships of non-spam accounts center around the identity, while spam accounts are
shifted right of the identity due to the lack of reciprocated relationships. The modality
in both graphs at 2,000 friends results from Twitter imposing a limit on the number of
friends possible, after which an account must have more followers than friends to grow their
social graph. While 11% of spam accounts attempt to befriend users, either for the purpose of
acquiring followers or for obtaining the privilege to direct messages, it is clear that legitimate
Twitter users rarely respond in kind.

Dormancy: Long dormancy periods where a spam account is registered but never used un-
til a later date hint at the possibility of stockpiling accounts. To measure account dormancy,
we select a sample of 100,000 accounts created during one our active collection periods and
measure the difference between the account’s creation date (reported in each tweet) versus

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 49

(a) Spam Accounts (b) Non-spam Accounts

Figure 4.7: Friends vs. followers for spam and non-spam accounts. Spammers are skewed
towards forming relationships that are never reciprocated.

the account’s first post in our sample. The results in Figure 4.8 show that, unsurprisingly,
56% of accounts are activated within a day of their registration. This indicates most spam-
mers create accounts and immediately add them to the pool under their control. However,
12% of spam accounts remain inactive for over a week and 5% for over one month. We
highlight this phenomenon further in Section 4.5 when we present a number of campaigns
that stockpile accounts and activate them simultaneously to generate hundreds of thousands
of tweets.

4.3.2 URLs and Domains

Beyond the necessity of multiple accounts to interact with social networks, spammers also
require a diverse set of URLs to advertise. We find that individual spam accounts readily
post thousands of unique URLs and domains, simultaneously abusing URL shorteners, free
domain registrars, and free web hosting to support their endeavors. Of the 37.7 million spam
URLs in our dataset, 89.4% were tweeted once. These unique URLs account for 40.5% of
spam tweets, while the remaining 10.6% of URLs are massively popular and account for
the 59.5% of spam tweets. To understand how spammers are generating URLs, we examine
a breadth of properties from the abuse of free services, the diversity of domains, and the
overlap of spam URLs with those posted by non-suspended Twitter accounts.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 50

Figure 4.8: Dormancy duration of accounts. 56% of accounts begin tweeting within the same
day the account is created, while 12% lay dormant for over one week, allowing for account
stockpiling.

Abusing Shorteners: We find that URL shortening services, such as bit.ly, are frequently
abused by spammers despite their use of blacklists and spam detection algorithms [9]. In
general, URL shorteners simplify the process of generating a variety of unique URLs without
incurring a cost to the spammer. URL shorteners also obfuscate the destination of a URL
that might otherwise look suspicious to visitors and decrease clickthrough.

Given that any domain can operate a shortening service, we develop a heuristic to identify
shorteners used by spammers. Using the first-hop resolution data for 15 million URLs, we
identify domains that respond with a server-side redirect (HTTP status code 30x). If a single
domain redirects to at least five distinct registered domains, that domain is considered to
be a shortening service. Using this criteria, we identify 317 services that are used in 60% of
spam tweets.

The most popular shorteners abused by spammers are shown in Table 4.2; 35% of spam
tweets are shortened by bit.ly, followed in popularity by tinyurl.com and a variety of other
shorteners with low spam volumes that make up a long tail. For each shortener we compute
the bias spammers have towards using the service compared to regular users. First, we
calculate p1 = p(shortener|spam), the probability a spam tweet uses the shortener, and
p2 = p(shortener | nonspam), the probability a non-spam tweet uses the shortener. We
then compute the likelihood ratio p1/p2. This result is strictly a lower bound as our non-
spam dataset contains uncaught spam.

As Table 4.2 shows, all of the top ten shortening services are preferred by spammers, with
3.ly over 65 times more likely to be used by spammers. The likelihood ratio of a shortener
does not indicate that more spam URLs are shortened than non-spam URLs. Instead, a

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 51

Service Name % of Tweets Likelihood Ratio

bit.ly 34.86% 1.41
tinyurl.com 6.88% 2.61
is.gd 2.45% 3.01
goo.gl 2.45% 1.14
ow.ly 2.32% 1.40
dlvr.it 1.99% 1.66
tiny.cc 1.38% 12.36
tiny.ly 1.34% 5.23
3.ly 1.14% 65.55
dld.bz 1.10% 3.71

Table 4.2: Top 10 public shortening services abused by spammers. Likelihood ratio indicates
the likelihood a spammer will use the service over a regular user.

likelihood ratio greater than one simply indicates that given the choice of domains available
to both spammers and regular Twitter users, spammers are more likely to choose shorteners.
Even if popular URL shortening services deployed stronger spam filtering, the presence of
hundreds of alternative shorteners and the ease with which they are created makes it simple
for spammers to obfuscate their URLs.

Domain Names: Spammers who host their own content require access to hundreds of
domains in order to counteract attrition resulting from takedown and blacklisting. Where
traditional domain registration carries a cost, we find that Twitter spammers cleverly obtain
free hosting and subdomains through the abuse of public services.

Figure 4.9 visualizes the number of subdomains and the number of registered domains
tweeted by each of the 1.1 million spam accounts in our dataset, along with a fit curve
showing the densest regions. If an account exclusively posts unique registered domains
(e.g., greatpills.com), it will appear along the identity line, while accounts that rely on
multiple subdomains (e.g., greatpills.com, my.greatpills.com) will appear below the identity
line. Three distinct approaches to spamming are apparent, outlined in ovals.

The first approach (I) consists of 0.13% of spam accounts that abuse free subdomain
registration services and blog hosting. These accounts post over 10 subdomains tied to fewer
than 10 registered domains, with 0.04% of spam accounts tweeting over 250 subdomains. A
second spamming strategy (II) consists of using multiple unique domains; we find 1.4% of
users tweet over 10 unique registered domains with no additional subdomains, represented
by the points scattered along the identify line. The remaining 98.56% of accounts, labeled
as (III), tweet fewer than 10 domains in their entire lifetime, appearing as a dense cluster
near the origin. Of these clusters, we explore the abuse of free domain registrars and hosting
services.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 52

Figure 4.9: The number of subdomains versus the number of registered domains that URLs
posted by a spam account resolve to. Each point corresponds to a single account.

Blog Program Subdomains Unique URLs

Blogspot 18,364 249,589
LiveJournal 15,327 54,375
Wordpress 4,290 58,727

Table 4.3: Top three free blog hosting sites, the number of blogs registered, and the number
of unique URLs pointing to the blogs.

Subdomains: We identify a number of spammers that rely on free subdomains to avoid
registration costs. Services including co.cc, co.tv, uni.cc, and dot.tk all allow anyone to
register a subdomain that directs to an arbitrary IP address. In total, we find over 350,000
spam URLs directing to these services. The majority of these URLs belong to accounts
shown in Figure 4.9 that post over 250 subdomains.

One particular group of 376 spam accounts advertised over 1,087 subdomains located at
co.cc with another 1,409 accounts advertising a smaller subset of the same domains. With
no limits on subdomain registration services, this co.cc campaign displays how spammers
can easily circumvent the requirement of domain registration.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 53

Blog Hosting: Free blog pages from Blogspot, LiveJournal, and Wordpress account for
nearly 363,000 URLs; roughly 0.1% of the URLs that appear in our dataset after shortening
is resolved. While this may seem minute, Blogspot is the third most popular domain for
shortened URLs, highlighting the huge variety of domains used by spammers.

To understand how many blog accounts spammers register, we extract the blog subdo-
main from each URL and calculate the total number of unique account names that appear,
shown in Table 4.3. Over 18,000 accounts were registered on Blogspot and another 15,000 on
LiveJournal. As a whole, we identified 7,500 Twitter spam accounts that advertised one of
the three blog platforms, indicating a small collection of spammers who abuse both Twitter
and blogging services.

URL and Domain Reputation: Many of the URLs and domains used by spammers also
appear in tweets published by non-suspended users. For instance, of the 121,171 registered
domains that appear in spam tweets, 63% also appear in tweets posted by active accounts.
To understand whether this overlap is the result of a single retweet of a popular URL or a
regular occurrence, we calculate a reputation score for each domain and URL in our dataset.
Using all 1.8 billion tweets, we calculate the frequency that a domain or URL appears in
spam tweets, and repeat this process for all tweets. The fraction of these two values offers a
reputation score in the range (0, 1). A reputation of one indicates a domain or URL appears
exclusively in spam, while a reputation near zero indicates the domain or URL was rarely
found in spam tweets. We note that due to some spam accounts going unsuspended, our
reputation scores underestimate how frequently some domains are used by spammers.

Figure 4.10 shows the reputation scores for both domains and URLs. We find 53% of
domains appear more frequently in non-spam tweets than spam, compared to 2.8% of URLs.
This indicates that attempting to build a domain blacklist from URLs appearing in spam
tweets would be highly ineffective, and more so, attempting to detect unsuspended accounts
based on their posting a duplicate spam URLs requires explicit knowledge the URL, not the
account posting it, was spam. In fact, 11,573,273 active accounts posted at least one URL
also posted by spammers.

To break down this phenomenon further, we examine both the reputation of URLs as well
as the frequency that both spam accounts and non-spam accounts post them. Figure 4.11
shows the median spam reputation of all the URLs posted by an account as well as the
number URLs that an account shares in common with spammers. A trend line marks the
clusters with the highest density. Spammers are clearly identified by their rarely duplicated,
high-spam reputation scores compared to non-spam accounts that post low-spam reputation
URLs, though in low frequency. As such, both account behavior as well as the URLs posted
would be required to deploy blacklists.

4.3.3 API Clients

Along with accounts and URLs, spammers require a client to interact with Twitter’s API or
their web portal. The overall application usage of spam is shown in Table 4.4. We find 64%

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 54

(a) Domain Reputation (b) URL Reputation

Figure 4.10: Reputation of spam URLs and domains. 53% of domains appear more frequently
in non-spam tweets than spam tweets, though only 2.8% of URLs.

of spam originates from the web and mobile web interface, while the remainder of spam is
sent from over 10,544 public and custom API clients. We find spammers are nearly three
times more likely to use the web interface compared to regular users, and six times more
likely to use the mobile web interface. The remaining top 10 applications are automation
frameworks that allow scheduled tweets and connecting blog posts to Twitter. Of the API
clients we identify, we find over 6,200 are used exclusively to send spam, indicating a number
of spammers are readily developing custom clients to access their accounts.

4.4 The Evolution of Monetization Towards

Spam-as-a-Service

We find evidence of an emerging spam-as-a-service market that capitalizes on Twitter, in-
cluding affiliate programs, ad-based shortening services, and account sellers. Each of these
services allow spammers to specialize their efforts, decoupling the process of distributing
spam, registering domains and hosting content, and if necessary, product fulfillment. Each
of the services we identify reveals a targeted approach to monetizing social networks.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 55

(a) Spam Accounts (b) Non-spam Accounts

Figure 4.11: Comparison of URL reputation and the total spam URLs posted by spam and
non-spam accounts, where each point represents a distinct account.

API Name % of Tweets Likelihood Ratio

web 58.30% 2.98
twitterfeed 12.39% 1.06
Mobile Web 5.40% 6.07
dlvr.it 2.95% 2.01
hellotxt.com 1.14% 7.89
twittbot.net 1.05% 1.50
EasyBotter 0.98% 4.86
Google 0.83% 0.30
API 0.73% 1.32
www.movatwi.jp 0.72% 1.29
HootSuite 0.71% 0.41

Table 4.4: Top 10 Twitter clients used by spammers.

4.4.1 Affiliate Programs

One aspect of diversification we identify within the underground marketplace is the adop-
tion of affiliate programs, both legitimate and otherwise. From the 15 million URLs we
unshortened, we identify two prominent affiliate programs used by spammers: clickbank.com
and amazon.com. Clickbank acts as a middleman, connecting vendors seeking to distribute

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 56

Service Twitter Accounts Tweets Type

Clickbank 16,309 3,128,167 Affiliate
Amazon 8,129 1,173,446 Affiliate

Eca.sh 343 352,882 Shortener
Vur.me 72 9,339 Shortener

Spn.tw 905 87,757 Account
Assetize 815 120,421 Account

Table 4.5: Programs enabling spam-as-a-service. These include affiliate programs that con-
nect vendors to affiliate advertisers, shorteners that embed ads, as well as account arbitration
services that sell access to accounts.

URLs with affiliates willing to advertise the URLs. Clickbank affiliates are paid based on
clickthrough, while vendors are charged a fee. In contrast, Amazon’s affiliate program of-
fers up to a 15% commission on purchases made after visitors click on an affiliate’s URL.
The use of Amazon’s affiliate program by spammers blurs the line between what constitutes
legitimate advertisement and abuse.

Table 4.5 shows that over 3.1 million spam tweets directed to Clickbank and nearly 1.2
million to Amazon. While the total number of accounts involved in both affiliate programs
is a small fraction of the spam accounts we identify, the abuse of these services hint at an
emerging spam-as-a-service market that allows Twitter spammers to exclusively spend their
effort on generating accounts and tweets, leaving the task of domain registration and content
generation to other parties.

Affiliate programs provide a unique opportunity to explore how individuals are earning
a profit by sending spam on Twitter. Assuming each affiliate ID uniquely maps to one
spammer, we can group an affiliate’s Twitter accounts and the tweets the account’s send
based on the affiliate ID embedded in each tweet’s URL. The results, shown in Table 4.6,
offer a glimpse at the spam infrastructure each affiliate controls. Our analysis reveals a
heavily biased environment where a small number of affiliates account for the vast majority
of spam. We repeat this same experiment using the 47% of bit.ly URLs that contain an
associated bit.ly account ID. We find that 50% of the 23,317 bit.ly accounts control only
two or fewer Twitter accounts. Yet, one bit.ly account acquired over 5,000 Twitter accounts
and sent over 550,000 tweets, revealing again the same biased marketplace that contains
thousands of small actors alongside a few major players.

4.4.2 Ad-Based Shorteners

A second form of monetization we identify is the use of syndicated ads from existing ad
networks. Ad-based shortening services such as eca.sh and vur.me provide public URL
shortening services, but in return, embed the destination page for shortened URLs in an
IFrame and display advertisements alongside the original content. Anyone can register an

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 57

Tweets Tw. Accts
Service Affiliates Med Max Med Max

Clickbank 203 565 217,686 2 151
Amazon 919 2 324,613 1 848

Bit.ly 23,317 2 551,200 1 5318

Table 4.6: Affiliates identified for Clickbank and Amazon along with Twitter accounts they
control and the volume of spam they send. Bit.ly accounts reveal a similar result. Both show
a biased environment where a small number of spammers account for the vast majority of
spam.

Campaign Tweets Accounts URLs Hashtags Mentions Med. Followers Med. Tweets

Afraid 14,524,958 124,244 14,528,613 - 11,658,859 2 130
Clickbank 3,128,167 16,309 1,432,680 3,585 542,923 9 108
Yuklumdegga 130,652 2,242 24 11 - 3 83
Amazon 129,602 848 1 - 118,157 22 123
Speedling 118,349 1,947 89,526 4674 870 95 190

Table 4.7: Summary of major spam campaigns on Twitter. This includes the number of
tweets, accounts, unique URLs, unique hashtags, and unique mentions. In addition, we
include the median number of followers and tweets for accounts in the campaign.

account with the service and will receive a portion of the revenue generated by the addi-
tional advertisements. For ad-based URL shorteners, spammers need not control the content
they shorten; any major news outlet or popular URL can be shortened, requiring the spam-
mer only handle distribution on Twitter. Within our set of spam, there are over 362,000
tweets sent by 415 accounts using ad-based shorteners, a breakdown of which is provided in
Table 4.5.

4.4.3 Account Sellers and Arbiters

The final monetization technique we find in our spam dataset are services that sell control
of accounts as well as sell access to accounts. One particular service, called Assetize (since
disabled), allowed Twitter users to sell access to their accounts. Assetize drew in over 815
accounts, in turn composing tweets and sending them on each account’s behalf. In return, the
account’s owner would be paid. A similar service called Sponsored Tweets (http://spn.tw)
is currently in existence and allows anyone to register to have advertisements posted to their
account, with 905 such accounts appearing in our spam dataset.

A second form of spam-as-a-service includes programs that specialize in the sale of Twitter
accounts, violating Twitter’s Terms of Service [121]. A number sites including xgcmedia.com
and backlinksvault.com purport to register accounts with unique email addresses and create
accounts with custom profile images and descriptions. While we cannot directly measure the
popularity or impact of these services on Twitter, previous work has examined advertisements

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 58

for these programs and their associated costs [88]. Both account arbiters and sellers reveal
a fledgling market where spammers with content to advertise can obtain access to Twitter
accounts without requiring CAPTCHA solvers or other tools to enable automated account
creation.

4.5 Persistence of Spam Campaigns Despite

Detection

In this section, we explore five major spam campaigns executed on Twitter that highlight the
breadth of tools employed by spammers and the ingenuity of their approaches. Some cam-
paigns are executed by centralized controllers orchestrating thousands of accounts, while
others exhibit a decentralized spamming infrastructure enabled by spam-as-a-service pro-
grams. Only one of the five campaigns advertises content also found in major email spam
campaigns [69], leading us to believe some of the actors in the Twitter spam market are sep-
arate from the email marketplace dominated by botnets. A summary of each campaign can
be found in Table 4.7. Due to the multitude of obfuscation techniques used by spammers,
there is no simple mechanism to cluster tweets and accounts into campaigns. As such, we
describe our methodology for generating campaigns on a per-campaign basis.

4.5.1 Afraid

The largest campaign in our dataset consists of over 14 million tweets and 124,000 accounts.
During a period in December when we first identified the campaign, accounts were distribut-
ing Amazon affiliate URLs linking to a variety of products. All the URLs distributed by
the campaign directed to custom shorteners that have since disappeared, making further
analysis impossible. The sheer volume of spam directing to Amazon underscores the blurred
line between what constitutes legitimate content compared to traditional email pharmaceu-
ticals and replica goods. As we will show with two other campaigns, spammers are readily
capitalizing on the ability to send unsolicited tweets to large audiences on Twitters to push
legitimate goods for their own profit.

Despite regular account suspensions, the campaign sustained itself over a 6 month period,
relying on unsolicited mentions to reach out to over 11.7 million distinct Twitter users. As
Table 4.7 shows, accounts in the campaign completely ignore the social graph, acquiring a
median of two followers throughout their lifetime. Figure 4.12a shows the creation time,
activation time, and suspension time for each of the accounts in the campaign. Most dates
for activation and suspension overlap due to the short-lived nature of accounts. Accounts
are clearly registered in bulk (as indicated by the vertical lines resulting from duplicate
registration dates), sometimes months in advance of their final activation, leading us to
believe accounts were controlled in a centralized fashion.

Every tweet of the campaign included at least one unique URL along with a random
amalgamation of tweet content stolen from other users’ tweets, making text-based clustering

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 59

(a) Afraid Campaign

(b) Clickbank Campaign

(c) Yuklumdegga Campaign

(d) Amazon Campaign

(e) Speedling Campaign

Figure 4.12: Prominent spam campaigns on Twitter

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 60

difficult. Tweets belonging to the Afraid campaign share no textual similarity other than
a rare artifact that multiple retweets are included in a single tweet, violating the definition
and functionality of a retweet (i.e. exposing a tweet to an account’s audience while main-
taining attribution). Additionally, many tweets share the same full domain, though domains
alone are not enough to capture all tweets belonging to the campaign. We employ a regular
expression to identify tweets with numerous embedded retweets and then group them by
the domain advertised. Domain clusters with fewer than tens of thousands of tweets are
omitted. The subclusters are finally merged, revealing the full scope of the Afraid campaign.
A sample of the campaign’s tweets are provided below.

@Aguirre 5030 Haha yes for u RT nikivic i love him and i care lol RT dhegracia: I

don’t love you http://ciqf.t6h.ru/HENGK

@mahi58 RT PoiintGod11: Didn’t you just tweet about bad english? Lol

RT ashLeyGaneshx3: I didnt get no text http://boo.lol.vc/3GbPH

In total, we find over 178 unique domains used exclusively by the campaign, 140 of which
rely on afraid.org for nameservers. Those domains still being hosted can be resolved, but do
not forward traffic to the original campaign landing page.

4.5.2 Clickbank

Clickbank is one of the highest volume spam-as-a-service programs we identify within our
dataset, consisting of over 16,000 Twitter accounts each operating in a decentralized fashion
controlled by over 200 affiliates. Nearly 13% of bit.ly URLs redirect to Clickbank, making
Clickbank the most frequent spam domain directed to by the shortener. Figure 4.12b shows
the prevalence of accounts tweeting Clickbank throughout time. Clickbank URLs appear
consistently from the onset of our collection window to its completion, despite accounts
being suspended at regular intervals.

Due to the multiple actors within the campaign, a variety of spamming approaches ap-
pear, including the use of unsolicited mentions as well as popular trends. To understand the
effectiveness of Clickbank spammers, we take a sample of 20,000 bit.ly URLs that direct to
the affiliate program and examine their clickthrough. Over 90% of URLs received no clicks
at all, though a total of 4,351 clicks were generated for all 20,000 URLs.

We identify tweets belonging to Clickbank participants based on whether the URLs ad-
vertised direct to cbfeed.com or clickbank.com, which serve as intermediate hops for all URLs
associated with the service. Our criteria matches both the raw URL appearing in a tweet as
well as resolved URLs, provided first-hop data is available.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 61

4.5.3 Yuklemdegga

The Yuklumdegga campaign consists of over 2,200 accounts that pushed pharmacy goods
from one of the largest email spam affiliate programs called Eva Pharmacy [61]. Each of the
URLs in the campaign resolved to yuklumdegga.com, where we identified the HTML store
front associated with the Eva Pharmacy program, previously documented by Levchenko et
al. [69]. The presence of well-known pharmacy scams on Twitter indicates that some email
spam programs are being carried over to Twitter, though we still identify a variety of Twitter
spam that does not have a prominent email equivalent.

The Yuklumdegga campaign relies exclusively on hijacking trending topics to reach an
audience with its tweets, embedding one of eleven trends that existed on the single day of
the campaign’s operation. We find 6 of the campaigns 24 URLs directed to bit.ly , with an
aggregate clickthrough of 1,982 visitors. Assuming the number of visitors was identical for
all 24 URLs of the campaign, we can estimate a total of 8,000 users accessed the pharmacy
site, all from reading popular trends.

The preparation of the Yuklumdegga campaign provides a stark comparison to other
Twitter campaigns. Figure 4.12c shows the creation times of the campaigns’ accounts, with
activation and suspension times overlapped for the single day of the campaign’s existence.
The bulk of accounts were created nearly a year in advance of the campaign’s onset. This
can result either from the campaign purchasing accounts from a service, or simply creating
accounts in a serial fashion until their final activation.

Given that many of the campaign’s accounts were created prior to our collection window,
we may incorrectly estimate when an account was activated. We determine this is in fact
not the case. We calculate the number of posts sent prior to an account’s first tweet in
our dataset using statistics embedded in each tweet (described in Section 4.3.1). We find
accounts posted a median of 4 posts prior to the campaign’s onset, indicating thousands of
accounts were stockpiled and then used to send hundreds of tweets.

4.5.4 Amazon

Like the Afraid campaign, a second Amazon affiliate spam campaign appeared simultane-
ously during the holiday season. With only 848 accounts, the campaign relied on unsolicited
mentions to reach out to over 118,000 Twitter users, each pushing a single URL shortened
by bit.ly. Bit.ly reports the URL received an astounding 107,380 clicks during the course
of the URL’s existence. Using our estimate of our sample size for that day (derived in
Section 4.2.1), we can generate an estimate for how many unsolicited mentions result in
a visit. Given we received 70% of URLs posted to Twitter in December, roughly 185,000
tweets would have been sent by the campaign. This would indicate over 58% of users clicked
on their unsolicited mention, assuming that no other channels advertised the URL and the
absence of automated crawlers visiting the URL.

With respect to the accounts participating in the campaign, Figure 4.12d shows the
majority of accounts were created in bulk prior to the holiday and activated in rolling fashion

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 62

around December 18th. As Twitter banned the active accounts, dormant accounts were then
deployed to keep the total accounts active at any point roughly constant. This technique
highlights how stockpiled accounts can sustain a campaign through a high-value period.

4.5.5 Speedling

Speedling (http://www.speedlings.com/) is a software program used to generate thousands
of blogs that embed advertisements as well as Amazon affiliate URLs generated from a prod-
uct theme such as cookbooks, games, or any arbitrary keyword. Due to the decentralized
nature of the Speedling product, where anyone can purchase the software program, multiple
approaches to spamming appear. As a result, text-based clustering is impossible. Never-
theless, many Speedling participants rely on a Twitter application provided by the software
that is uniquely identified through the Twitter API in the source field as Go Speedling or
Speedlings depending the software version. Other participants do not rely on these APIs,
but instead use a shortener that only appears in our spam dataset from Speedling partici-
pants. Tweets that satisfy any of these criteria are included in the cluster. We note that
this provides a strict lower bound on the presence of Speedling spam as some tweets may
not match any of these criteria. A more sophisticated approach would be to cluster based
on the HTML template of Speedling-generated blogs. However, as we lack HTML due to
the retroactive nature of our analysis and link rot, this is impossible in the context of our
current study. In total, we find over 89,526 URLs directing to 1,971 domains, all registered
to speedeenames.com.

As with Clickbank, Speedling represents a decentralized spam campaign consisting of
multiple users of the Speedling software. Figure 4.12e shows the creation and activation time
of accounts within the campaign. The vertical lines of final posts indicate mass suspensions
on the part of Twitter, yet new accounts are registered, sustaining Speedling’s presence on
Twitter from the start of our collection period till mid-January.

The monetization approach of Speedling is one of the most interesting compared to the
other Twitter campaigns we examine. Visitors are directed to template blog pages listing
thousands of Amazon products catering to a specific interest, in addition to a live stream
of recommendations from Twitter users that are in fact Twitter accounts controlled by the
Speedling operator. Visitors that click on an ad or purchase an Amazon product directly
translate into profit, allowing Speedling participants to operate purely through legitimate
advertisements. As with the other Amazon affiliate spam we identified, this approach high-
lights the semi-legitimate nature of some spam campaigns on Twitter, where the distribution
approach rather than the landing page or products sold are what distinguish spam from le-
gitimate advertisements.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 63

4.6 Improving Spam Detection in Social Networks

In this section, we discuss the implications of our analysis and how our results compare to
previous work on social network spam. We also present potential directions for new spam
defenses based on our results, describing both in-network solutions as well as addressing the
services that facilitate spamming.

Compromised vs. Fraudulent Accounts: Earlier studies of social networks found that
97% of accounts sending spam on Facebook were compromised [34], compared to 84% of
accounts on Twitter (discussed in Chapter 3). In contrast, we find a majority of suspended
accounts in our dataset were fraudulent and created for the explicit purpose of spamming.
We believe this disparity results from how the datasets for each study were generated. As
we showed in Section 4.2.2, only 8% of the URLs posted by fraudulent accounts appeared
in blacklists. These same blacklists served as the source of identifying social network spam
in the previous studies, with an apparent bias towards compromised accounts. Our results
should thus be viewed in conjunction with these previous studies, offering a wider perspective
of the multitude of spamming strategies in social networks.

Blacklists and Spam Traps: With Twitter catching an estimated 37% of spam accounts,
a number of studies have examined how to improve this accuracy. These approaches include
account heuristics that identify newly created accounts and the lack of social relationships
and the identification of unsolicited mentions based on the social graph [114, 67, 8, 109].
Each of these approaches hinges on access to accurate training data, which in practice is
often difficult to acquire.

One potential solution for aggregating training data and improving spam detection is to
develop Twitter-specific blacklists and spam traps. As previous research has shown, existing
blacklists are too slow at identifying threats appearing on social networks, as well as often
inaccurate with respect to both false positives and negatives [101, 107]. Even though only
10.6% of URLs in our dataset appear in multiple spam tweets, they account for 59.5% of
spam. To capture this re-use, as soon as an account is suspended, the URLs it posted and
their associated final landing pages could be added to a blacklist along with the frequency
they appeared. If Twitter consulted this blacklist prior to posting a URL, services such as
Clickbank would be taken offline, while campaigns that persist despite account suspension
would be forced to diversify the URLs they post.

Additionally, rather than suspended accounts outright, Twitter could quarantine tweets
from known spam accounts, obtaining access to a steady stream of spam URLs for both
classification and blacklisting. While such quarantine is standard practice for email, Twitter
has the added difficulty that spammers can easily observe the system to confirm the delivery
of their tweets. They can do so by either forming relationships between their accounts to
monitor tweet delivery (though this risks Sybil detection [139, 21]), or, alternatively, polling
the search API confirm whether their spam tweets were indexed. These approaches however
incur an additional burden to operating fraudulent accounts.

CHAPTER 4. SOCIAL SPAM: TOOLS, TECHNIQUES, AND MONETIZATION 64

Beyond Social Networks: The Twitter spam marketplace relies on a multitude of ser-
vices that include popular URL shorteners, free web hosting, legitimate affiliate programs like
Amazon, and illegitimate programs such as Clickbank, Assetiz, and account sellers. While
the vast majority of research efforts have targeted spam as it appears on social networks,
solutions that disincentivize the abuse of these individual programs would be equally viable.
Shortening services, including bit.ly and HootSuite, already employ blacklists before URLs
are shortened [51, 9]. By monitoring which services underpin the spam ecosystem on Twitter
as we do in this study, we can deploy customized countermeasures for each service, reducing
the support infrastructure available to spammers.

4.7 Summary of Results

This chapter presents a unique look at the behaviors of spammers on Twitter by analyzing
the tweets sent by suspended users in retrospect. We found that the current marketplace for
Twitter spam uses a diverse set of spamming techniques, including a variety of strategies for
creating Twitter accounts, generating spam URLs, and distributing spam. We highlighted
how these features are woven together to form five of the largest spam campaigns on Twitter
accounting for nearly 20% of the spam in our dataset. Furthermore, we found an emerging
spam-as-a-service market that includes reputable and not-so-reputable affiliate programs,
ad-based shorteners, and Twitter account sellers.

In particular, we found that 89% of fraudulent accounts created by spammers forgo
participation in the social graph, instead relying on unsolicited mentions and trending topics
to attract clicks. Surprisingly, 77% of accounts belonging to spammers were suspended within
one day, yet despite this attrition rate, new fraudulent accounts are created to take their
place, sustaining Twitter spam throughout the course of our seven month measurement. By
examining the accounts controlled by individual spammers as revealed by affiliate programs,
we find a handful of actors controlling thousands of Twitter accounts, each pushing a diverse
strategy for monetizing Twitter. As a whole, our measurements expose a thriving spam
ecosystem on Twitter that is unperturbed by current defenses. Our findings highlight the
necessity of better spam controls targeting both abusive accounts as well as the services that
support the spam marketplace.

65

Chapter 5

Emerging Threats: Censorship and
Astroturfing

5.1 Introduction

Social networks have emerged as a significant tool for both political discussion and dissent.
Salient examples include the use of Twitter, Facebook, and Google+ as a medium for con-
necting United States government officials with citizens to drive public discourse [98, 93, 27].
The Arab Spring that swept over the Middle-East also embraced Twitter and Facebook as a
tool for organization [108], while Mexicans have adopted social media as a means to commu-
nicate about violence at the hands of drug cartels in the absence of official news reports [38].
Yet, the response to the growing importance of social networks in some countries has been
chilling, with the United Kingdom threatening to ban users from Facebook and Twitter in
response to rioting in London [45] and Egypt blacking out Internet and cell phone coverage
during its political upheaval [103].

While nation states can exert their control over Internet access to outright block con-
nections to social media [130], parties without such capabilities may still desire to control
political expression. An example of this recently occurred on Twitter during protests tied to
Russia’s parliamentary elections [26]. The protests began in Moscow’s Triumfalnaya Square
and quickly moved online as both pro-Kremlin and anti-Kremlin parties posted to Twitter
to express their opinions on Russia’s election outcome. In response to these discussions, a
wave of bots swarmed the hashtags that legitimate users were using to communicate in an
attempt to control the conversation and stifle search results related to the election [63]. This
attack highlights the possibility of manipulating social networks for partisan goals through
the nefarious use of sybil accounts, sidestepping any requirement for controlling Internet
access.

In this chapter we present an in-depth analysis of how unknown parties attempted to
control the political conversations surrounding Russia’s disputed election. We examine the
accounts and infrastructure the attackers relied upon, as well as the impact of their efforts

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 66

on Twitter users searching for information pertaining to the election and protests. While
previous researchers have explored the potential of using posts from sybil accounts to skew
product ratings and to generate fake content [53, 89, 128], we show that the attackers specifi-
cally adapted spam infrastructure to manipulate political speech. These events demonstrate
that malicious parties are now using the spam-as-a-service marketplace that has emerged
for social networks for multiple ends beyond spam.

The attack consisted of 25,860 fraudulent Twitter accounts used to inject 440,793 tweets
into legitimate conversations about the election. We find evidence that these accounts origi-
nated from a pool of 975,283 fraudulent accounts, 80% of which remain dormant in prepara-
tion for use in future spam campaigns. We contrast the geolocation of logins for legitimate
users and those of bots, finding that 56% of logins tied to users discussing the Russian elec-
tion were located in Russia, compared to just 1% of spam accounts. Equally striking, the
attack relied on machines distributed across the globe, 39% of which appear in IP blacklists,
a strong indicator that the miscreants involved relied on compromised hosts.

Despite the volume of traffic generated by the attack, its impact was partially mitigated
by relevance rankings integrated in search results that aim to filter out spam tweets. On
average, search results that used relevance metrics returned 53% fewer bot-generated tweets.
These techniques highlight how personalized search results can defend against censorship-
based attacks, even in the presence of thousands of fake accounts.

In summary, we frame our contribution as follows:

• We present an in-depth analysis of the profiles, tweets, login behavior, and social graph
of accounts attempting to censor political discussion.

• We explore the infrastructure required to carry out such an attack, finding that spam
services were re-purposed to enable censorship.

• We characterize the impact of the attack on legitimate users searching for information
regarding the election and protests.

5.2 Detecting Political Attacks on Twitter

Before analyzing the attack, we discuss our technique for identifying automated accounts that
posted to twenty distinct topics pertaining to the Russian election between December 5—6,
2011. In total, 46,846 accounts participated in discussions of the disputed election results,
25,860 of which we identify as bots. Although these accounts do not fit with traditional
views of spam where an account advertises a product or scam, we refer to these accounts as
spam accounts in this chapter. The other accounts were legitimate users on both sides of
the political spectrum.

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 67

Hashtag Translation Accounts

чп Catastrophe 23,301
6дек December 6th 18,174
5дек December 5th 15,943
выборы Election 15,082
митинг Rally 13,479
триумфальная Triumphal 10,816
победазанами Victory will be ours 10,380
5dec December 5th 8,743
навальный Alexey Navalny 1 8,256
ridus Ridus 2 6,116

Table 5.1: Top 10 hashtags related to the Russian election used between December 5—6.

Statistic Spam Nonspam

Accounts 25,860 20,986
Tweets (Dec 5—6, 2011) 440,793 876,774
Tweets (May, 2011—Jan, 2012) 2,445,382 - -

Table 5.2: Summary of accounts who participated in hashtags pertaining to the Russian
election (December 5—6) and the activities of spam accounts outside of the election period.

5.2.1 Attacked Hashtags

To characterize the attack, we begin by identifying all of the accounts that posted a tweet
containing the hashtag #триумфальная between December 5—6, 2011. This hashtag cor-
responds with the protests at Moscow’s Triumfalnaya Square and was previously reported
to be a target of spam accounts [118]. Due to the possibility that the attack targeted mul-
tiple hashtags, we take the set of users who tweeted #триумфальная and aggregate all the
other hashtags they tweeted with during the attack window, filtering out hashtags with fewer
than 1,500 participants. In total, we identify twenty hashtags posted by 46,846 accounts.
Table 5.1 shows the top ten of these hashtags and their translation.

In order to identify which accounts were bots, we rely on Twitter’s internal spam de-
tection algorithm that monitors abusive behavior including accounts that excessively post
to multiple hashtags. At the time of our analysis, the algorithm had suspended 24,203 of
the accounts that posted to at least one of the twenty hashtags. In addition to suspended
accounts, we include 1,657 accounts that were not suspended but exhibit patterns akin to the
bots including similar-looking automatically generated email addresses and creation times
correlated with a burst in spam account creation. We discuss the details of how we generate
these criteria further in Section 5.3.

1Prominent blogger arrested during protest in Moscow
2Russian media outlet

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 68

5.2.2 Dataset

After identifying all of the accounts that tweeted with hashtags pertaining to the Russian
election and labeling them as spam or nonspam, we aggregate all of the tweets sent by both
spam and legitimate accounts during December 5—6, 2011. Furthermore, we aggregate all
of the tweets sent by spam accounts between May, 2011 when attackers registered their first
account until January, 2012 when we started our analysis. In summary, our dataset consists
of over 2.4 million spam tweets, 440,793 of which were posted during the attack, as shown
in Table 5.2.

In addition to the posting activity of accounts, we build our analysis on registration data
and periodic logging tied to each account. This data includes an account’s email address,
the IP address used to register the account, and all subsequent IP addresses used to access
the account between November, 2011—January, 2012. This information allows us to analyze
how attackers registered thousands of accounts and the hosts they used to access Twitter.

Finally, in order to gauge the impact of the attack on users searching for information
related to the Russian election, we aggregate all of the tweets returned by search queries
conducted between December 5—6 that correspond with one of the twenty hashtags attacked.
We subsequently identify all of the tweets tied to bots and label them as spam, allowing us to
measure the attack’s success at diluting search results. We provide a more detailed summary
of the search queries performed in Section 5.4.

5.3 Overlap of Attack Infrastructure with

Spam-as-a-Service Assets

We deconstruct the attack into three components: the tweets sent prior to and during the
attack; the registration data tied to the accounts involved; and the IP addresses that attackers
used to access Twitter. We find that the accounts used in the attack generated politically-
motivated tweets long before December 5—6, 2011. In order to spread these messages, the
attackers acquired thousands of accounts from spam-as-a-service markets that controlled
nearly a million fraudulent accounts. Similarly, the attack relied on tens of thousands of
compromised machines located around the globe, 39% of which were blacklisted for email
spam and malware distribution.

5.3.1 Tweets

In order to control the information users’ found when they accessed hashtags pertaining to the
Russian election, the attackers posted 440,793 tweets that targeted 20 hashtags organically
adopted by users. At its height, the attack generated 1,846 tweets per minute, as shown in
Figure 5.1. The entire attack consisted of a short burst in traffic on the first day, followed
by a sustained flow of incomprehensible tweets interspersed with partisan jeers the following

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 69

Figure 5.1: Number of tweets sent per minute during the attack on December 5—6. Tweets
generated by bots appear in two large spikes beginning around 8PM the first day and 3PM
the second day.

day, effectively diluting the content available to Twitter users who were following the election
discussions.

For the month prior to the attack, the majority of spam accounts that existed at the
time remained dormant, in contrast to legitimate users, per Figure 5.2. However, over the
entire course of May, 2011 up until the attack, the bots generated nearly 1.8 million tweets
during sporadic periods of activity. The first salvo of coordinated tweets appeared in May,
when 4,215 accounts tweeted for the first time with content deriding a prominent Russian
anti-corruption blogger. Similar examples occur throughout the dataset when thousands of
accounts activate to promote one-sided political opinions interspersed with unrelated news
headlines, as determined by Google Translate. Yet, with no legitimate followers or hashtags
tied to the early tweets, there was no one to see the content. The uniformity in the types of
spam tweets sent, even months before the December 5—6 attack, implies that the accounts
were under the sole control of miscreants rather than leased at different intervals. Otherwise,
we would expect to observe mismatching messages from competing spammers renting access
to the accounts.

5.3.2 Accounts

Registration & Profile

Manipulating Twitter search results using bots requires the acquisition of thousands of ac-
counts that are either fraudulent or compromised. In order to understand where the bot

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 70

Days active

P
(d

ay
s

ac
tiv

e>
=

 X
)

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30

nonspam

spam

Figure 5.2: Total number of days in November, just prior to the attack, that an account
tweets at least once. Nonspam users were frequently active, while spam accounts remained
dormant.

accounts originated from, we begin by analyzing the profiles and registration data tied to
each suspended account. We find that 99.5% of the accounts were registered with a distinct
mail.ru email address. 95% of these mail.ru email accounts were valid and belonged to the at-
tacker, as indicated by the account’s controller clicking on a URL sent to the email addresses
after registration. The remaining 5% of mail.ru email addresses were awaiting verification
before the account tied to the email was suspended.

Looking into account registration further, we examine the naming conventions used for
the screennames, real names, and email addresses of each spam account. We identify a
number of patterns tied to bot accounts with mail.ru emails that regularly repeat, but are
absent from legitimate users with mail.ru email addresses. Due to the adversarial nature of
identifying spam accounts, we do not reveal the patterns, but discuss their accuracy and
importance. In total, we identify four distinct patterns of account registrations which we
codify into regular expressions which we denote Type-1 through Type-4.

In order to evaluate the accuracy of our expressions at identifying spam accounts, we ap-
ply each regex to the 46,846 accounts in our December 5—6 dataset. While this classification
approach is simple, our expressions identify an additional 1,657 spam accounts posting to
election-based hashtags that were uncaught by Twitter’s suspension algorithm. We manu-
ally validate the labels for 150 of the newly labeled spam accounts and find only 2% are false
positives. Even more impressive, when we apply the expressions to all mail.ru registrations
in the past year, we identify 975,283 spam accounts, only 20% of which Twitter’s algorithm
had suspended at the time of our analysis. Furthermore, 80% of these accounts have no
friends, followers, or tweets despite existing for months. We repeat our manual validation

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 71

Date

M
ai

l.r
u

ac
co

un
ts

 r
eg

is
te

re
d

0

500

1000

1500

2000

2500

3000

03/11 04/11 05/11 06/11 07/11 08/11 09/11 10/11 11/11 12/11 01/12

Nonspam

Type−1

Type−2

Type−3

Type−4

(a) Registration times of spam accounts used in the attack. Miscreants registered accounts with four
distinct profile conventions in noticeable bursts.

Date

M
ai

l.r
u

ac
co

un
ts

 r
eg

is
te

re
d

0

5000

10000

15000

20000

25000

30000

03/11 04/11 05/11 06/11 07/11 08/11 09/11 10/11 11/11 12/11 01/12

Nonspam

Type−1

Type−2

Type−3

Type−4

(b) Registration times of all mail.ru accounts (note that the scale is 10x of that in the previous plot).
Due to a lack of diversity in account profiles, we can readily detect other fraudulent accounts based on
the same account signatures as those used in the attack.

Figure 5.3: Pattern of registrations for accounts used in the attack and other accounts
registered by the same spam-as-a-service programs where the attackers purchased accounts
from.

for 150 of the flagged mail.ru accounts and find only 4% are false positives. Due to the false
positive rate, the number of accounts we identify should be treated as a rough estimate of
the number of spam accounts registered with mail.ru emails that mirror the accounts used in
the attack.

We further validate our classification approach both on accounts within the attack and
for all accounts tied to mail.ru email addresses. Figure 5.3a shows the registration dates of
bots from March 2011 up until the date of the attack. Miscreants registered accounts in
bulk, with account types rarely overlapping during the same period. In contrast, legitimate
account registrations are uniformly distributed during the entire period. The registration
times for the accounts used in the attack overlap with an abnormal volume of Twitter
accounts registered to mail.ru email addresses, shown in Figure 5.3b. The registration spikes
in June, August, and January are labeled exclusively as spam, while legitimate registrations
remain roughly stable throughout the entire period.

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 72

(a) Nonspam (b) Spam

Figure 5.4: Geolocation of user logins. Higher density regions are shown in black. Over 56%
of logins tied to legitimate users originate from Russia, compared to only 1% of logins for
spam accounts.

In total, the accounts used in the attack represent only 3% of all the mail.ru accounts that
our expressions flag as Type 1—4. This indicates the accounts were likely purchased from
a spam-as-a-service marketplace that registers and sells accounts in bulk, such as buyaccs.
com. These markets have an incredible negative impact on Twitter. For instance, the
software registering these Type 1—4 accounts is responsible for over 80% of fraudulent
accounts tied to mail.ru email addresses suspended by Twitter within the last year. With
accounts readily available to any party willing to pay, spam-as-a-service shops simplify the
re-purposing of spam infrastructure to whatever end, be it traditional scams or politically
motivated censorship.

Social Graph

While most automatically generated accounts rarely engage in forming relationships with
other Twitter accounts [116], the spam accounts involved in the attack attempted to simulate
a social graph. A median account had 121 following—or outbound relationship—76% of
which terminated at other bots. Similarly, a median account had 122 follower—or inbound
relationship—85% of which originated from accounts involved in the attack. Even though
the attackers acquired accounts registered across multiple months, all of the accounts were
used to form a complete sybil network. As a result, all spam accounts involved in the attack
that were not singletons were reachable via only spam relationships in an average of 3 hops.
The motivation for an attacker to interconnect spam accounts is unclear, but may be a result
of assumptions that the presence of social connections will make accounts less susceptible to
suspension or improve the relevance ranking of content posted by spam accounts, discussed
in Section 5.4.

The presence of a sybil graph is interesting for two reasons. First, it indicates that a
single party controlled all of the accounts used in the attack. Relationships between the

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 73

accounts were formed as far back as May, 2011, requiring coordination between the accounts
long before the attack. Furthermore, 80% of the nearly 1 million fraudulent mail.ru accounts
we identify have 0 friends and followers and remain dormant. It does not appear that
building social relationships is the responsibility of the account creator, providing further
evidence that control of the accounts changed hands at some point. We conclude that the
miscreants who launched the attack adapted the accounts to their needs and generated
social connections, while the party registering the accounts provided them without tweets or
relationships.

5.3.3 IP Addresses

Diversity and Lifetime

In addition to acquiring thousands of spam accounts, the attack relied on a diverse body of IP
addresses to circumvent Twitter’s IP-based restrictions. We find that miscreants registered
84% of the bots with unique IP addresses. After sign up, this diversity decreases; only 49%
of 110,189 IP addresses used to access spam accounts between November, 2011—January,
2012 were unique across accounts.

To translate this into the number of machines under the attacker’s control, we first
examine the lifetime of IP addresses used to access accounts. We find that 80% of the IP
addresses tied to the spam accounts were present in our logs from November—January for
only a single day. This same phenomenon is true for the 20,986 legitimate accounts, where
84% of IP addresses used to access the accounts persist for one day. We performed a reverse
DNS lookup on all the IPs tied to the bots and find that each of the IP addresses belongs to
ISP address pools. The hosts tied to these IP addresses are likely residential, as indicated by
the presence of dsl, cable, dynamic and a number of other heuristics in the reverse lookup’s
naming convention.

Due to heavy churn in IP addresses over time, it is difficult to estimate the number of
unique hosts ever used by attackers. Instead, we limit our analysis to a single day. At the
height of the attack on December 6th, 11,356 unique IP addresses were used to access spam
accounts. If we assume that IP addresses are stable for at least a day, then tens of thousands
of hosts were available to the attackers.

Geolocation and Origin

In order to understand where the hosts controlled by the attackers originate from and how
they compare to legitimate users, we examine the geolocation of IP addresses used by both
types of parties. To start, we generate a list of the unique IP addresses used to access each of
the 46,846 accounts between November, 2011—January, 2012. We then map these to their
country of origin using the MaxMind database [74] and aggregate the totals across spam and
legitimate accounts.

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 74

Figure 5.4 shows our results. 56% of all legitimate logins originate from Russia, compared
to only 1% of logins tied to spam accounts. The IPs used by the attack are located around
the globe, with Japan accounting for the largest set of logins (14%). These results imply
that the bots are using compromised machines or proxy services to access Twitter.

Blacklist Membership

If attackers relied on compromised machines, there is a possibility that the hosts used to
access Twitter were also used by other parties—or the same party—for other malicious
behavior such as distributing email spam [11]. To this end, we used a list of 47 million
suspicious IP addresses taken from the CBL blacklist [12], which contains IPs flagged for
email spam and spreading malware. We then tested whether an IP addresses used to access
any of the 25,860 accounts employed in the attack ever appears in the blacklist between
October 2011—January 2012. When we perform our analysis, we ignore the timestamp for
when an IP address is listed and unlisted to account for any delay between an attacker using
an IP address and its subsequent blacklisting. However, this approach may also overestimate
the number of malicious hosts.

We find that the CBL blacklist contains 39% of the IP addresses tied to bots. This
indicates that hosts used to attack Twitter are also used by a malicious party to generate
spam or distribute malware. However, in order to judge the accuracy of the blacklists, we
repeat the same experiment using a list of IP addresses used to access legitimate accounts. We
find that 21% of benign IP addresses are also listed. While we cannot definitively determine
why blacklists are flagging IPs tied to legitimate users, it may result from blacklists biasing
their classification of Russian IPs, or arise due to DHCP churn causing aliasing with other
infected hosts. The imprecision we detect in blacklists reiterates previous research on the
limitations of blacklists [107], especially in the context of social networks as we discussed in
Chapter 3 and Chapter 4. Nevertheless, because IPs used in the attack are more likely to
be listed, we can infer that some of the attack’s hosting infrastructure was simultaneously
used for more traditional spam/malware activities.

5.4 Impact of Political Attacks on Free Access to

Information

The attack on Twitter is a compelling example of how miscreants can adapt spam infras-
tructure to censor legitimate access to relevant information surrounding controversial events.
However, even with control of thousands of fraudulent accounts and compromised machines,
the attack was partly mitigated by Twitter’s relevance ranking of tweets, which personalizes
search results and emphasizes popular content. We provide a brief overview on the different
search mechanisms available to Twitter users before evaluating the fraction of search results
that were affected by politically-slanted spam.

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 75

Search Mode Tweets Returned

Real-time 2,923,022
Relevance 17,276,281
Relevance (top 5 most recent) 3,743,919

Table 5.3: Number of tweets returned to users searching for hashtags related to the Russian
election.

5.4.1 Search: Relevance vs. Real-time

Twitter search offers two modes of operation: real-time and relevance mode. Real-time mode
returns tweets in order of most recently posted first. This type of indexing is susceptible
to message dilution attacks as spammers merely need to outproduce legitimate content that
users post to hashtags. In contrast, the relevance search mode incorporates signals that
capture the popularity of a tweet while at the same time surfacing content from accounts
whose social graph and interests overlap those of the account submitting a search query [125].
As a result, the algorithm ranks content by its importance, reducing the impact of mass
producing tweets on a single topic. However, to add some dynamism to search results
to prevent popular content from being locked at the top, the freshness of a tweet is also
considered in the ordering of the most relevant tweets. By default, Twitter returns relevance-
ranked searches.

5.4.2 Search Pollution

To measure the frequency of spam in search results, we aggregate all of the tweets returned
by queries performed between December 5—6, 2011 related to one of the attacked hashtags.
If a bot posted a tweet that appears in the search results, we assume that tweet was spam.
We assume all other accounts and tweets are legitimate. On average, searches return 15
tweets per query. We consider all of these tweets in our analysis even though users may
only view a fraction when searching. Consequently, our analysis may overestimate a user’s
perception of spam in search results.

Table 5.3 shows a summary of the data used in our analysis. Twitter users generated over
233,000 real-time search queries related to the election. In aggregate, these search results
contained 2.9 million tweets. Users relied on the default relevance-ranked search far more
frequently. In total, users performed 1.1 million relevance searches which returned 17 million
tweets. Analyzing the fraction of spam in each search query, we find that relevance-based
searches returned 53% fewer spam tweets compared to real-time searches, a testament to the
volume of tweets produced by bots in the real-time feed. If we restrict our analysis to the
five most recent relevance-ranked tweets that were returned in search—those that appear at
the top of the page and are most likely to be seen—we find that relevance-mode returned
64% fewer spam tweets. These results highlight that integrating a user’s social graph and

CHAPTER 5. EMERGING THREATS: CENSORSHIP AND ASTROTURFING 76

interests into the tweets returned by searches can to a degree mitigate the impact of message
dilution attacks.

5.5 Summary of Results

We have analyzed how attackers adapted fraudulent accounts and compromised host—
traditionally tied to spamming—in order to control political speech on Twitter. In particular,
we examined an attack launched by unknown miscreants that leveraged 25,860 accounts to
send 440,793 tweets in order to disrupt conversations about the Russian election, protests,
and purported fraud. We showed that the accounts used in the attack were likely purchased
from a spam-as-a-service program that controlled at least 975,283 Twitter accounts and
mail.ru email addresses. In contrast to legitimate Russian users participating in discussions
of the election, only 1% of the IP addresses used by attackers originated in Russia. Instead,
the attackers controlled hosts located around the globe, over 39% of which were blacklisted
for involvement in more classic spam activities. Despite the large volume of malicious tweets,
Twitter’s search relevance algorithm, which personalizes search results and weights popu-
lar content, eliminated 53% of the tweets sent during the attack compared to the real-time
search results with no protections, offering a promising approach for defending against future
censorship attacks.

77

Chapter 6

Developing Real-Time and Scalable
Spam Detection

6.1 Introduction

Following on the heels of the massive proliferation of web services—including social networks,
video sharing sites, blogs, and consumer review pages that draw in hundreds of millions of
viewers— phishing, malware, and scams have become a regular threat [17, 84, 55]. Bypassing
protection mechanisms put in place by service operators, scammers are able to distribute
harmful content through the use of compromised and fraudulent accounts. As spam evolves
beyond email and becomes a regular nuisance of web services, new defenses must be devised
to safeguard what is currently a largely unprotected space.

While email spam has been extensively researched, many of the solutions fail to apply to
web services. In particular, recent work as well as our findings in Chapter 3 have shown that
domain and IP blacklists currently in use by social network operators and by URL shortening
services [59, 110, 51, 9] perform too slowly (high latency for listing) and inaccurately for use
in web services [101, 107]. Alternative solutions, such as account-based heuristics that are
specifically designed to identify automated and suspicious behavior in web services [8, 67,
114], focus on identifying accounts generated by spammers, and thus have limited utility in
detecting misuse of compromised accounts. They also can incur delays between a fraudulent
account’s creation and its subsequent detection due to the need to build a history of abuse.
Given these limitations, we seek to design a system that operates in real-time to limit the
period users are exposed to spam content; provides fine-grained decisions that allow services
to filter individual messages posted by users; but functions in a manner generalizable to
many forms of web services.

To this end we design Monarch, a real-time system that crawls URLs as they are sub-
mitted to web services and determines whether the URLs direct to spam content. For our
study, we define spam to include scams advertising pharmaceuticals, adult content, and other
solicitations, phishing that attempts to capture account credentials, and pages attempting

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 78

to distribute malware. By restricting our analysis to URLs, Monarch can provide spam
protection regardless of the context in which a URL appears, or the account from which it
originates. This gives rise to the notion of spam URL filtering as a service. Monarch frees
other web services from the overhead of reinventing spam classifiers and the accompanying
infrastructure components.

The architecture of Monarch consists of three core elements: a front-end that accepts
URLs submitted by web services seeking a classification decision, a pool of browsers hosted
on cloud infrastructure that visits URLs to extract salient features, and a distributed classi-
fication engine designed to scale to tens of millions of features that rapidly returns a decision
for whether a URL leads to spam content. Classification builds upon a large foundation of
spam characteristics [71, 77, 127, 4, 96, 30, 137, 72, 73, 132] and includes features drawn
from the lexical properties of URLs, hosting infrastructure, and page content (HTML and
links). We also collect new features including HTTP header content, page frames, dynam-
ically loaded content, page behavior such as JavaScript events, plugin usage, and a page’s
redirection behavior. Feature collection and URL classification occur at the time a URL
is submitted to our service, with the overall architecture of Monarch scaling to millions of
URLs to satisfy the throughput expected of large social networks and web mail providers.

In this chapter, we evaluate the viability of Monarch as a real-time filtering service and
the fundamental challenges that arise from the diversity of web service spam. We show that
Monarch can provide accurate, real-time protection, but that the underlying characteristics
of spam do not generalize across web services. In particular, we leverage Monarch’s feature
collection infrastructure to study distinctions between 11 million URLs drawn from email and
Twitter. We find that spam targeting email is qualitatively different from Twitter spam,
requiring classifiers to learn two distinct sets of rules to ensure accuracy. A basic reason
for this distinction is that email spam occurs in short-lived campaigns that quickly churn
through spam domains, while spam on Twitter consists of long lasting campaigns that often
abuse public web hosting, generic redirectors, and URL shortening services.

Our evaluation also includes an analysis of which URL features serve as the strongest
indicators of spam and their persistence as spam evolves. We find that classification requires
access to every URL used to construct a landing page, HTML content, and HTTP headers
to ensure the best accuracy. In contrast, relying solely on DNS entries or the IP address of
spam infrastructure achieves much less accuracy. Furthermore, without regular retraining
and access to new labeled spam samples, accuracy quickly degrades due to the ephemeral
nature of spam campaigns and their hosting infrastructure.

We deploy a full-fledged implementation of Monarch to demonstrate its scalability, accu-
racy, and run-time performance at classifying tweet and email spam URLs. Using a modest
collection of cloud machinery, we process 638,000 URLs per day. Distributed classification
achieves an accuracy of 91% (0.87% false positives) when trained on a data set of nearly 50
million distinct features drawn from 1.7 million spam URLs and 9 million non-spam URLs,
taking only one hour to produce a model. While the current false positive rate is not optimal,
we discuss several techniques that can either lower or ameliorate their impact in Section ??.
During live classification, each URL takes on average 5.54 sec to process from start to finish.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 79

This delay is unavoidable and arises from network requests made by the browser, which is
difficult to speed up; only 1% of overhead comes from instrumenting the browser for feature
collection. The cloud infrastructure required to run Monarch at this capacity costs $1,587
for a single month. We estimate that scaling to 15 million URLs per day would cost $22,751
per month, and requires no changes to Monarch’s architecture.

In summary, we frame our contributions as:

• We develop and evaluate a real-time, scalable system for detecting spam content in
web services.

• We expose fundamental differences between email and Twitter spam, showing that
spam targeting one web service does not generalize to other web services.

• We present a novel feature collection and classification architecture that employs an
instrumented browser and a new distributed classifier that scales to tens of millions of
features.

• We present an analysis of new spam properties illuminated by our system, including
abused free hosting services and redirects used to mask spam web content.

• We examine the salience of each feature used for detecting spam and evaluate their
performance over time.

6.2 Design Goals for Browser-based Spam Detection

In this work we present the design and implementation of Monarch, a system for filtering
spam URLs in real-time as they are posted to web applications. Classification operates
independently of the context where a URL appears (e.g., blog comment, tweet, or email),
giving rise to the possibility of spam URL filtering as a service. We intend the system to
act as a first layer of defense against spam content targeting web services, including social
networks, URL shorteners, and email.

We show the overall intended operation of Monarch in Figure 6.1. Monarch runs as an
independent service to which any web service can provide URLs to scan and classify. During
the period it takes for Monarch’s classification to complete, these services can either delay
the distribution of a URL, distribute the URL and retroactively block visitors if the URL is
flagged as spam (risking a small window of exposure), or employ a heavier-weight verifica-
tion process to enforce even stricter requirements on false positives than are guaranteed by
classification.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 80

Figure 6.1: Intended operation of Monarch. Web services provide URLs posted to their sites
for Monarch to classify. The decision for whether each URL is spam is returned in real-time.

Figure 6.2: System flow of Monarch. URLs appearing in web services are fed into Monarch’s
cloud infrastructure. The system visits each URL to collect features and stores them in a
database for extraction during both training and live decision-making.

6.2.1 Design Goals

To provide URL spam filtering as a service, we adopt six design goals targeting both efficiency
and accuracy:

1. Real-time results. Social networks and email operate as near-interactive, real-time
services. Thus, significant delays in filtering decisions degrade the protected service.

2. Readily scalable to required throughput. We aim to provide viable classification for
services such as Twitter that receive over 15 million URLs a day.

3. Accurate decisions. We want the capability to emphasize low false positives in order
to minimize mistaking non-spam URLs as spam.

4. Fine-grained classification. The system should be capable of distinguishing between
spam hosted on public services alongside non-spam content (i.e., classification of indi-
vidual URLs rather than coarser-grained domain names).

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 81

5. Tolerant to feature evolution. The arms-race nature of spam leads to ongoing innovation
on the part of spammers’ efforts to evade detection. Thus, we require the ability to
easily retrain to adapt to new features.

6. Context-independent classification. If possible, decisions should not hinge on features
specific to a particular service, allowing use of the classifier for different types of web
services.

6.2.2 System Flow

Figure 6.2 shows Monarch’s overall internal system flow. URLs posted to web services
are fed into a dispatch queue for classification. The system visits each URL to collect its
associated raw data, including page content, page behavior, and hosting infrastructure. It
then transforms these raw features into meaningful boolean and real-valued features and
provides these results to the classifier for both training and live decision-making. During live
classification, Monarch’s final decision is returned to the party that submitted the URL; they
can then take appropriate action based on their application, such as displaying a warning
that users can click through, or deleting the content that contained the URL entirely. We
now give an overview of each component in this workflow.

URL Aggregation: Our current architecture aggregates URLs from two sources for train-
ing and testing purposes: links emailed to spam traps operated by a number of major email
providers and links appearing in Twitter’s streaming API. In the case of Twitter, we also
have contextual information about the account and tweet associated with a URL. However,
we hold to our design goal of remaining agnostic to the source of a URL and omit this in-
formation during classification. We examine how removing Twitter-specific features affects
accuracy in Section 6.6.

Feature Collection: During feature collection, the system visits a URL with an instru-
mented version of the Firefox web browser to collect page content including HTML and
page links, monitor page behavior such as pop-up windows and JavaScript activity, and
discover hosting infrastructure. We explore the motivation behind each of these features in
Section 6.3. To ensure responsiveness and adhere to our goal of real-time, scalable execution,
we design each process used for feature collection to be self-contained and parallelizable. In
our current architecture, we implement feature collection using cloud machinery, allowing us
to spin up an arbitrary number of collectors to handle the system’s current workload.

Feature Extraction: Before classification, we transform the raw data generated during
feature collection into a sparse feature vector understood by the classification engine. Data
transformations include tokenizing URLs into binary features and converting HTML content
into a bag of words. We permanently store the raw data, which allows us to evaluate new
transformations against it over time.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 82

Classification: The final phase of the system flow produces a classification decision. Train-
ing of the classifier occurs off-line and independent of the main system pipeline, leaving the
live decision as a simple summation of classifier weights. During training, we generate a
labeled data set by taking URLs found during the feature collection phase that also appear
in spam traps or blacklists. We label these samples as spam, and all other samples as non-
spam. Finally, in order to handle the millions of features that result and re-train daily to
keep pace with feature evolution, we develop a distributed logistic regression, as discussed
in Section 6.4.

6.3 Content and Hosting Feature Collection

Classification hinges on having access to a robust set of features derived from URLs to dis-
cern between spam and non-spam. Previous work has shown that lexical properties of URLs,
page content, and hosting properties of domains are all effective routes for classification [72,
73, 132, 77, 71]. We expand upon these ideas, adding our own sources of features collected by
one of three components: a web browser, a DNS resolver, and IP address analysis. A com-
prehensive list of features and the component that collects them can be found in Table 6.1.
A single monitor oversees multiple copies of each component to aggregate results and restart
failed processes. In turn, the monitor and feature collection components are bundled into a
crawling instance and replicated in the cloud.

6.3.1 Web Browser

Within a crawling instance, a web browser provides the primary means for collecting features
for classification. Due to real-time requirements, a trade-off arises between expedited load
times and fidelity to web standards. Given the adversarial nature of spam, which can exploit
poor HTML parsing or the lack of JavaScript and plugins in a lightweight browser [13, 37],
our system employs an instrumented version of Firefox with JavaScript enabled and plugin
applications installed including Flash and Java. As a URL loads in the browser, we monitor
a multitude of details, including redirects, domains contacted while constructing a page,
HTML content, pop-up windows, HTTP headers, and JavaScript and plugin execution. We
now explain the motivation behind each of these raw features and the particulars of how we
collect them.

Initial URL and Landing URL: As identified by earlier research [73, 77], the lexical
features surrounding a URL provide insight into whether it reflects spam. The length of a
URL, the number of subdomains, and terms that appear in a URL all allow a classifier to
discern between get.cheap.greatpills.com and google.com. However, given the potential for
nested URLs and the frequent use of shortening services, simply analyzing a URL presented
to our service does not suffice. Instead, we fetch each URL provided to the browser, allowing

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 83

Source Features Collected By

Initial URL,
Final URL

Domain tokens, path tokens, query parameters,
is obfuscated?, number of subdomains, length of
domain, length of path, length of URL (From here
on out, we denote this list as URL features)

Web browser

Redirects URL features for each redirect, number of redi-
rects, type of redirect

Web browser

Frame URLs URL features for each embedded IFrame Web browser
Source URLs URL features for every outgoing network request;

includes scripts, redirects, and embedded content
Web browser

HTML Content Tokens of main HTML, frame HTML, and script
content

Web browser

Page Links URL features for each link, number of links, ratio
of internal domains to external domains

Web browser

JavaScript Events Number of user prompts, tokens of prompts, on-
beforeunload event present?

Web browser

Pop-up Windows URL features for each window URL, number of
windows, behavior that caused new window

Web browser

Plugins URL features for each plugin URL, number of plu-
gins, application type of plugin

Web browser

HTTP Headers Tokens of all field names and values; time-based
fields are ignored

Web browser

DNS IP of each host, mailserver domains and IPs,
nameserver domains and IPs, reverse IP to host
match?

DNS resolver

Geolocation Country code, city code (if available) for each IP
encountered

IP analysis

Routing Data ASN/BGP prefix for each IP encountered IP analysis

Table 6.1: List of features collected by Monarch

the browser to log both the initial URL provided as well as the URL of the final landing
page that results after executing any redirects.

Redirects: Beyond the initial and final landing URL, the redirect chain that occurs in
between can provide insight into whether a final page is spam. Suspiciously long redirect
chains, redirects that travel through previously known spam domains, and redirects gen-
erated by JavaScript and plugins that would otherwise prevent a lightweight browser from
proceeding all offer insight into whether the final landing page reflects spam. To capture
each of these behaviors, the web browser monitors each redirect that occurs from an initial

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 84

URL to its final landing page. This monitoring also includes identifying the root cause of
each redirect; whether it was generated by a server 30X HTTP response, meta refresh tag,
JavaScript event, or plugin (e.g., Flash).

Sources and Frames: In the case of mashup pages with spam content embedded within
a non-spam page, the URL of a final page masks the presence of spam content. This is
particularly a problem with URL shortening services, including ht.ly and ow.ly, which em-
bed shortened URLs as IFrames. To recover information about embedded content, the web
browser monitors and logs all frames, images, and ad URLs it contacts during the construc-
tion of a page. The browser also collects a list of all outgoing network requests for URLs,
regardless whether the URL is for a top level window or frame, and applies a generic label
called sources.

HTML Content: Beyond features associated with URLs, the content of a page often
proves indicative of the presence of spam [92, 142, 132]. This includes the terms appearing
on a page and similar layout across spam webpages. To capture page content, the web
browser saves a final landing page’s HTML in addition to the HTML of all subframes on
the page. Naturally, we cannot collect HTML features for image-based spam or for media
content such as PDFs.

Page Links: The links appearing on a final landing page offer some insight into spam.
While the web browser only follows URLs that automatically load (it does not crawl embed-
ded links such as HREFs), if a page contains a URL to a known spam page, then that can
help to classify the final landing page. Similarly, search engine optimization techniques where
a page comes stuffed with thousands of URLs to an external domain also suggests misbe-
havior. To capture both of these features, the web browser parses all links on a final landing
page. Each link is subjected to the same analysis as frames and redirects. Afterwards, we
compute the ratio of links pointing at internal pages versus external domains.

JavaScript Events: In addition to the content of a page, observing an attempt to force
the user to interact with a page—such as pop-up boxes and prompts that launch before a
user navigates away from a page—strongly indicates spam. To identify this behavior, the
web browser instruments all dialog messages that would normally require some user action to
dismiss, including alerts, input boxes, and onbeforeunload events. When a dialog box occurs,
the browser silently returns from the event, logging the text embedded in the dialog. If a
return value is expected such as with an input box, the browser provides a random string as
a response. The browser saves as features the number of dialogs that occur, the text of the
dialogs, and the presence of an onbeforeunload event.

Pop-up Windows: As with pop-up dialogs, pop-up windows are a common feature of
spam. Whenever a pop-up window occurs, the browser allows the window to open, instru-

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 85

menting the new page to collect all the same features as if the URL had originated from the
dispatch queue. It records the parent URL that spawned the pop-up window, along with
whether the page was launched via JavaScript or a plugin. After all windows have finished
loading (or upon a timeout), the browser saves the total number of pop-up windows spawned
and the features of each window and associates them with the parent URL.

Plugins: Previous reports have shown that spammers abuse plugins as a means to redirect
victims to a final landing page [117, 37]. To capture such plugin behavior, our browser
monitors all plugins instantiated by a page, the application type of each plugin (e.g., Java,
Flash), and finally whether a plugin makes any request to the browser that leads to an
outgoing HTTP request, causes a page to redirect, or launches a new window.

HTTP Headers: The HTTP headers that result as the browser loads a landing page
provide a final source of information. Header data offers insight into the servers, languages,
and versions of spam hosts, in addition to cookie values and custom header fields. We ignore
HTTP fields and values associated with timestamps to remove any bias that results from
crawling at particular times.

6.3.2 DNS Resolver

While spammers rapidly work through individual domain names during the course of a
campaign, they often reuse their underlying hosting infrastructure for significant periods [30,
4, 127, 73]. To capture this information, once the web browser finishes processing a page, the
crawler instance manager forwards the initial, final, and redirect URLs to a DNS resolver.
For each URL, the resolver collects hostnames, nameservers, mailservers, and IP addresses
associated with each domain. In addition, we examine whether a reverse lookup of the IP
addresses reported match the domain they originated from. Each of these features provides
a means for potentially identifying common hosting infrastructure across spam.

6.3.3 IP Address Analysis

Geolocation and routing information can provide a means for identifying portions of the
Internet with a higher prevalence of spam [127]. To extract these features, we subject each
IP address identified by the DNS resolver to further analysis in order to extract geolocation
and routing data. This includes identifying the city, country, ASN, and BGP prefix associated
with each address.

6.3.4 Proxy and Whitelist

To reduce network delay, Monarch proxies all outgoing network requests from a crawling
instance through a single cache containing previous HTTP and DNS results. In addition,
we employ a whitelist of known good domains and refrain from crawling them further if

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 86

they appear during a redirect chain as a top-level window; their presence in IFrames or
pop-up windows does not halt the surrounding collection process. Whitelists require man-
ual construction and include trusted, high-frequency domains that do not support arbitrary
user content. Our current whitelist contains 200 domains, examples of which include ny-
times.com, flickr.com, and youtube.com. Whitelisted content accounts for 32% of URLs
visited by our crawlers. The remaining content falls into a long tail distribution of random
hostnames, 67% of which appear once and 95% of which appear at most 10 times in our sys-
tem. While we could expand the whitelist, in practice this proves unnecessary and provides
little performance improvement.

6.3.5 Feature Extraction

In preparation for classification, we transform the unprocessed features gathered during
feature collection into a meaningful feature vector. We first canonicalize URLs to remove
obfuscation, domain capitalization, and text encoding. Obfuscation includes presenting IP
addresses in hex or octet format, or embedding path-traversal operations in the URL path.
By reducing URLs to a canonical form, we can assure that common URL features match
consistently across occurrences and cannot be masked by lexical transformations that would
otherwise result in the same browser behavior. To compensate for potential lost information,
we also include a boolean feature reflecting the presence of an obfuscated URL.

Once canonicalized, we split a URL into its basic components of domain, path, and
query parameters, each of which we tokenize by splitting on non-alphanumeric characters.
We apply a similar process to HTML and any text strings such as HTTP headers, where we
tokenize the text corpus into individual terms and treat them as an unsorted bag of words.
We then convert the results of tokenization into a binary feature vector, with a flag set for
each term present. Rather than obscuring the origin of each token, we construct separate
feature groups to indicate that a feature appeared in a redirect versus HTML content. Given
the potential for millions of features, we represent feature vectors as sparse hash maps, which
only indicate the presence of a feature. Finally, we provide these sparse maps to the classifier
for training and decision making.

6.4 Parallelizing Classification as a Distributed

Logistic Regression

For Monarch, we want a classifier that we can train quickly over large sets of data. Our first
design decision along these lines was to use linear classification, where the output classifica-
tion model is a weight vector ~w that describes a hyperplane that separates data points placed
in a high-dimensional space. We choose linear classification because of its simplicity, scalabil-
ity and interpretability—for these reasons, linear classifiers have become common-place for
web service providers interested in large-scale anti-phishing and anti-spam classification [132,
131].

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 87

In addition to quick training, we want the classifier to fit in memory. With these goals
in mind, we design our training algorithm as a parallel online learner with regularization to
yield a sparse weight vector. In particular, we combine the strategies of iterative parameter
mixing [76] and subgradient L1-regularization [22]. Although more sophisticated algorithms
exist that could yield higher accuracy classifiers at the expense of more training time, we
favor a design that can yield favorable classification accuracies with less training time.

6.4.1 Notation

The problem of identifying spam URLs is an instance of binary classification. For a given
URL, the data point ~x ∈ Rd represents its feature vector in a high-dimensional space with
d features. Because ~x is sparse (typically 1,000—1,500 nonzero entries out of an extremely
large feature space of d > 107), we represent the feature vector as a hash map. We label the
data point with an accompanying class label y ∈ {−1,+1}. y = −1 represents a non-spam
site, and a y = +1 represents a malicious site.

To predict the class label of a previously unseen example ~x (representing the URL’s
feature vector), we train a linear classifier characterized by weight vector ~w trained offline on
a labeled set of training data. During testing or deployment, we compute a predicted label
as the sign of the dot product between the weight vector and the example: ŷ = sign(~x · ~w).
If the predicted label ŷ = +1 but the actual label y = −1, then the error is a false positive.
If ŷ = −1 but y = +1, then the error is a false negative.

6.4.2 Logistic Regression with L1-regularization

For training the weight vector ~w, we use logistic regression (LR) with L1-regularization [47].
Given a set of n labeled training points {(~xi, yi)}ni=1, the goal of the training process is to
find ~w that minimizes the following objective function:

f(~w) =
n∑
i=1

log(1 + exp[−yi(~xi · ~wi)]) + λ‖~w‖1. (6.1)

The first component of the objective constitutes the log-likelihood of the training data as
a function of the weight vector—it is an upper bound on the number of mistakes made during
training, and solving this proxy objective is a tractable alternative to directly minimizing
the training error. For a single example (~xi, yi), we can minimize the value of log(1 +
exp[−yi(~xi · ~wi)]) if the classification margin yi(~xi · ~wi) is a large positive value. (The margin
is proportional to the distance between ~xi and the classifier’s decision boundary—a positive
value means it is on the correct side of the boundary, and a negative value means it is on
the incorrect side.) Thus, a solution that minimizes f(~w) would ideally yield a positive
classification margin for as many examples as possible.

The second component is the regularization—it adds a penalty to the objective function
for values where the L1 norm of ~w is large (‖~w‖1 =

∑d
j=1wj). L1-regularization tends to

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 88

Algorithm 1 Distributed LR with L1-regularization

Input: Data D with m shards
Parameters: λ (regularization factor), I (no. of iterations)
Initialize: ~w = ~0
for i = 1 to I do

(gradient) ~g(j) = LRsgd(~w,Dj) for j = 1..m
(average) ~w = ~w − 1

m

∑m
j=1 ~g

(j)

(shrink) wα = sign(wα) ·max(0, |wα| − λ) for α = 1..d
end for

Algorithm 2 Stochastic gradient descent for LR (LRsgd)

Input: ~w (weight vector), Dj (data shard)
Parameters: η (learning rate)
Initialize: ~g0 = ~w
for t = 1 to |Dj| do

Get data point (xt, yt) from Dj

Compute margin z = yt(~xt · (~w − ~gt−1))
Compute partial gradient ~h = yt([1 + e−z]−1 − 1)~xt
~gt = ~gt−1 + η~h

end for
Return: ~g|Dj |

yield sparse weight vector—where there are relatively few nonzero feature weights. This is
useful for applications that may be memory-constrained and require sparse solutions. (By
contrast, using the L2 norm, another popular form of regularization, would yield solutions
whose weights have small magnitudes but that tend to be non-sparse.) The parameter λ
governs the amount of regularization: a higher λ gives the second component of Equation 6.1
more weight relative to the first component and will yield a more sparse solution.

Many optimization strategies exist for minimizing the objective in Equation 6.1. We had
particular interest in a strategy amenable to learning over large-scale data sets in a short
amount of time. We settled on a combination of recently-developed distributed learning and
regularization techniques, which we describe in the next section.

6.4.3 Training Algorithm

We first divide the training data into m shards (which occurs by default storing data on
certain distributed file systems such as the Hadoop Distributed File System [44]). Then,
we distribute the initial model weight vector ~w to the m shards for training by stochastic
gradient descent (Algorithm 1, “gradient” step).

Within each shard, we update the weight vector using a stochastic gradient descent for

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 89

logistic regression (Algorithm 2). We update the weight vector one example at a time as we
read through the shard’s data (this is also known as online learning). Under the constraint
where we can only read each data item once within a shard, updating the model incre-
mentally after every example typically has good convergence properties. As a performance
optimization, we return the sum of the partial gradients rather than the updated weight
vector itself.

After the m shards update their version of the weight vector, we collect the partial
gradients ~g(1)..~g(m) and average them (Algorithm 1, “average” steps). Then, we perform L1-
regularization (Algorithm 1, “shrink” step) on the averaged weight vector using a truncation
function with threshold λ —this only applies to feature weights corresponding to binary
features. In particular, all feature weights wi with magnitude less than or equal to λ are
set to 0, and all other weights have their magnitudes reduced by λ. This procedure reduces
the number of nonzero weight vector entries, allowing the resulting weight vector to occupy
less memory. Because there are fewer real-valued features (about 100) than binary features
(about 107), we do not regularize the feature weights corresponding to real-valued features.

After the shrinkage step, we distribute the new weight vector ~w to the m shards again
to continue the training process. The process repeats itself for I iterations.

A number of practical issues arise in getting the distributed logistic regression to scale
to large-scale data. We describe how we implement our classifier in Section 6.5.4.

6.4.4 Data Set and Ground Truth

Our data set for training and testing the classifier consists of three sources: URLs captured by
spam traps operated by major email providers, blacklisted URLs appearing on Twitter, and
non-spam URLs appearing on Twitter that are used to represent a non-spam data sample.
In total, we use Monarch’s feature collection infrastructure over the course of two months to
crawl 1.25 million spam email URLs, roughly 567,000 blacklisted Twitter URLs, and over 9
million non-spam Twitter URLs. Due to blacklist delay, generating our spam set of Twitter
URLs requires retroactively checking all our Twitter URLs against 5 blacklists: Google
Safebrowsing, SURBL, URIBL, Anti-Phishing Work Group (APWG), and Phishtank. If at
any point after a URL is posted to Twitter its landing page, any of its redirects, frame URLs,
or any of its source URLs become blacklisted, we treat the sample as spam. A breakdown
of the categories of spam identified on Twitter can be seen in Table 6.2; 36% of blacklisted
URLs were flagged as scams, 60% as phishing, and 4% as malware. A breakdown for email
categories is not available, but the sample is known to contain scams, phishing, and malware.

In general, we lack comprehensive ground truth, which complicates our overall assess-
ment of Monarch’s performance. We may misclassify some true spam URLs as nonspam
given absence of the URL in our spam-trap and blacklist feeds. Thus, we may somewhat
underestimate false negatives (spam that slips through) seen in live operation, and overesti-
mate false positives (legitimate URLs tagged as spam). In practice, building a training set of
spam and non-spam samples remains a challenge for Monarch, requiring either user reports
or spam traps operated by the web services seeking protection. However, for the purposes

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 90

Blacklist Detected URLs

Anti-Phishing Work Group 350,577
Google Safebrowsing (Phishing)1 12
Google Safebrowsing (Malware)1 22,600
Phishtank 46,203
SURBL (Scams) 51,263
SURBL (Malware, Phishing) 7,658
URIBL (Scams) 189,047

Total Samples 667,360
Total Unique 567,784

Table 6.2: Blacklist results for URLs appearing on Twitter that were flagged as spam.

of evaluating Monarch’s effectiveness at identifying spam, blacklists and email spam traps
provide a suitable source of ground truth.

6.5 Implementation Details

We implement each of the four components of Monarch as independent systems operating on
Amazon Web Services (AWS) cloud infrastructure. For exact specifications of the hardware
used for our system, we refer readers to the AWS EC2 instance documentation [3].

6.5.1 URL Aggregation

URL aggregation and parsing is written in Scala and executes on a single EC2 Extra Large
instance running Ubuntu Linux 10.04. The aggregation phase for Twitter URLs parses
tweets from the Twitter Streaming API [124] and extracts URLs from the tweet text. The
email spam URLs we process are provided to us post processing, and require no additional
parsing. We place incoming URLs into a Kestrel queue [119] that keeps the most recent
300,000 URLs from the Twitter stream and email URLs to supply feature collection with a
steady workload of fresh URLs. A full-fledged implementation of our system would require
that the queue keeps every submitted URL, but for the purposes of evaluating Monarch, we
only need enough URLs to scale to the system’s throughput and to generate large data sets
for classification.

1Twitter uses Google’s Safebrowsing API to filter URLs appearing in tweets. URLs in our data set were
either obfuscated to prevent detection, or were not present in the blacklist at the time of posting.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 91

6.5.2 Feature Collection

As previously framed, feature collection consists of four components: a web browser, DNS
resolver, IP address analysis, and a monitor to handle message passing and aggregate results.
Feature collection runs in parallel on 20 EC2 High-CPU instances each running Ubuntu Linux
10.04 and executing 6 browsers, DNS resolvers, and IP analyzers each. For web browsing we
rely on Firefox 4.0b4 augmented with a custom extension written in a combination of XML
and JavaScript to tap into Firefox’s API [90] which exposes browser-based events. We collect
plugin-related events not exposed to the API by instrumenting Firefox’s NPAPI [91] with
hooks to interpose on all message passing between plugins and the browser. If a URL takes
more than 30 seconds to load, we enforce a timeout to prevent delaying classification for
other URLs. DNS resolution occurs over Linux’s native host command, while geolocation
and route lookups use the MaxMind GeoIP library [74] and Route Views [1] data respectively.
A monitor written in Python aggregates the results from each of these services, generating
its output as JSON text files stored in AWS S3.

6.5.3 Feature Extraction

Feature extraction is tightly coupled with the classification and training phase and does not
run on separate hardware. Until the extraction phase, we store features in raw JSON format
as key-value pairs. During extraction, we load the JSON content into a Scala framework,
transform each into meaningful binary and real-valued features, and produce a sparse hash
map stored in memory.

6.5.4 Classifier

Before training begins, we copy the raw feature data from Amazon S3 to a Hadoop Dis-
tributed File System (HDFS) [44] residing on the 50-node cluster of Amazon EC2 Double-
Extra Large instances. Files in HDFS are automatically stored in shards of 128 MB, and we
use this pre-existing partitioning (as required in the “Input” line of Algorithm 1). Within
each shard, we randomize the order of the positive and negative example—this gives the
stochastic gradient descent in Algorithm 2 (which incrementally computes its partial gra-
dient) better convergence rates compared to the situation of processing a long, contiguous
block of positive examples followed by a long, contiguous block of negative examples.

We implement Algorithms 1 and 2 using Spark, a distributed computation framework that
provides fault-tolerant distributed collections [141]. Spark provides map-reduce and shuffle
operations, allow us to cache the data in memory across the cluster between iterations. We
take advantage of these capabilities to construct an efficient distributed learner.

The first step of the training implementation is to normalize the real-valued features.
In particular, we project real values to the [0, 1] interval—doing so ensures that real-valued
features do not dominate binary features unduly (a common practice in classification). We
perform a map-reduce operation to compute the ranges (max/min values) of each real-valued

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 92

feature. Then, we broadcast the ranges to the slave nodes. The slaves read the raw JSON
data from HDFS, perform feature extraction to convert JSON strings into feature hash maps,
and use the ranges to complete the normalization of the data vectors. At this point, the
data is ready for training.

For the “gradient” step in Algorithm 1, we distribute m tasks to the slaves, whose job is
to map the m shards to partial gradients. The slaves then compute the partial gradients for
their respective shards using Algorithm 2.

Because the number of features is quite large, we want to avoid running Algorithm 1’s
“average” and “shrink” steps entirely on the master—the amount of master memory available
for storing the weight vector ~w constitutes a resource bottleneck we must tend to.2 Thus,
we must avoid aggregating all of the partial gradients at the master at once and find an
alternate implementation that exploits the cluster’s parallelism.

To achieve this, we partition and shuffle the partial gradients across the cluster so that
each slave is responsible for a computing the “average” and “shrink” steps on a disjoint subset
of the feature space. We split each gradient into P partitions (not to be confused with the
initial m data shards). Specifically, we hash each feature to an integer key value from 1 to P .
Then, we shuffle the data across the cluster to allow the slave node responsible for feature
partition p ∈ {1..P} to collect its partial gradients. At this point the slave responsible for
partition p performs the “average” and “shrink” steps. When these computations finish,
the master collects the P partitions of the weight vector (which will have a smaller memory
footprint than before shrinking) and joins them into the final weight vector ~w for that
iteration.

6.6 Accuracy, Run-time Performance, and Cost

In this section we evaluate the accuracy of our classifier and its run-time performance. Our
results show that we can identify web service spam with 90.78% accuracy (0.87% false posi-
tives), with a median feature collection and classification time of 5.54 seconds. Surprisingly,
we find little overlap between email and tweet spam features, requiring our classifier to learn
two distinct sets of rules. We explore the underlying distinctions between email and tweet
spam and observe that email is marked by short lived campaigns with quickly changing do-
mains, while Twitter spam is relatively static during our two month-long analysis. Lastly,
we examine our data set to illuminate properties of spam infrastructure including the abuse
of popular web hosting and URL shorteners.

2In our application, the slaves are able to compute the partial gradient over their respective shards
without memory exhaustion. However, if the partial gradient computation were to bottleneck the slave in
the future, we would have to add a regularization step directly to Algorithm 2.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 93

Training Ratio Accuracy FP FN

1:1 94.14% 4.23% 7.50%
4:1 90.78% 0.87% 17.60%

10:1 86.61% 0.29% 26.54%

Table 6.3: Results for training on data with different non-spam to spam ratios. We adopt a
4:1 ratio for classification because of its low false positives and reasonable false negatives.

6.6.1 Classifier Performance

We train our classifier using data sampled from 1.2 million email spam URLs, 567,000 black-
listed tweet URLs, and 9 million non-spam URLs. In all experiments, we use the following
parameters for training: we set the number of iterations to I = 100, the learning rate to
η = 1, and the regularization factor to λ = 10η

m
(where m is the number of data shards).

Overall Accuracy: In order to avoid mistaking benign URLs as spam, we tune our clas-
sifier to emphasize low false positives and maintain a reasonable detection rate. We use a
technique from Zadrozny et al. [140] to adjust the ratio of non-spam to spam samples in
training to tailor false positive rates. We consider non-spam to spam ratios of 1:1, 4:1, and
10:1, where a larger ratio indicates a stronger penalty for false positives. Using 500,000 spam
and non-spam samples each, we perform 5-fold validation and randomly subsample within
a fold to achieve the required training ratio (removing spam examples to increase a fold’s
non-spam ratio), while testing always occurs on a sample made up of equal parts spam and
non-spam. To ensure that experiments over different ratios use the same amount of training
data, we constrain the training set size to 400,000 examples.

Table 6.3 shows the results of our tuning. We achieve lower levels of false positives as we
apply stronger penalties, but at the cost of increased false negatives. We ultimately chose a
4:1 ratio in training our classifier to achieve 0.87% false positives and 90.78% overall accuracy.
This choice strikes a balance between preventing benign URLs from being blocked, but at
the same time limits the amount of spam that slips past classification. For the remainder of
this evaluation, we execute all of our experiments at a 4:1 ratio.

To put Monarch’s false positive rate in perspective, we provide a comparison to the per-
formance of mainstream blacklists. Previous studies have shown that blacklist false positives
range between 0.5—26.9%, while the rate of false negatives ranges between 40.2—98.1% [107].
Errors result from a lack of comprehensive spam traps and from low volumes of duplicate
spam across all traps [106]. These same performance flaws affect the quality of our ground
truth, which may skew our estimated false positive rate.

For web services with strict requirements on false positives beyond what Monarch can
guarantee, a second tier of heavier-weight verification can be employed for URLs flagged by
Monarch as spam. Operation can amortize the expense of this verification by the relative
infrequency of false positives. Development of such a tool remains for future work.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 94

Feature Type Unfiltered Filtered Non-spam Spam

HTML terms 20,394,604 50,288 22,083 28,205
Source URLs 9,017,785 15,372 6,782 8,590
Page Links 5,793,359 10,659 4,884 5,775
HTTP Headers 8,850,217 9,019 3,597 5,422
DNS records 1,152,334 5,375 2,534 2,841
Redirects 2,040,576 4,240 2,097 2,143
Frame URLs 1,667,946 2,458 1,107 1,351
Initial/Final URL 1,032,125 872 409 463
Geolocation 5,022 265 116 149
AS/Routing 6,723 352 169 183

All feature types 49,960,691 98,900 43,778 55,122

Table 6.4: Breakdown of features used for classification before and after regularization.

Accuracy of Individual Components: Classification relies on a broad range of feature
categories that each affect the overall accuracy of our system. A breakdown of the features
used for classification before and after regularization can be found in Table 6.4. From nearly
50 million features we regularize down to 98,900 features, roughly half of which are each
biased towards spam and non-spam. We do not include JavaScript pop-ups or plugin related
events, as we found these on a negligible number of pages.

To understand the most influential features in our system, we train a classifier exclusively
on each feature category. For this experiment, we use the data set from the previous section,
applying 10-fold validation with training data at a 4:1 non-spam to spam ratio and the testing
set again at a 1:1 ratio. Any feature category with an accuracy above 50% is considered
better than a classifier that naively guesses the majority population. The results of per-
feature category training are shown in Table 6.5. Source URLs, which is an amalgamation
of every URL requested by the browser as a page is constructed, provides the best overall
performance. Had our classifier relied exclusively on initial URLs or final landing page URLs,
accuracy would be 7% lower and false negatives 10% higher. Surprisingly, DNS and redirect
features do not perform well on their own, each achieving approximately 72% accuracy. The
combination of all of these features lowers the false positive rate while maintaining high
accuracy.

Accuracy Over Time: Because criminals introduce new malicious websites on a continual
basis, we want to determine how often we need to retrain our classifier and how long it takes
for the classifier to become out of date. To answer these questions, we evaluate the accuracy
of our classifier over a 20 day period where we had continuous spam and non-spam samples.
We train using two different training regimens: (1) training the classifier once over four days’
worth of data, then keeping the same classification model for the rest of the experiment;
(2) retraining the classifier every four days, then testing the model on the subsequent four

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 95

Feature Type Accuracy FP FN

Source URLs 89.74% 1.17% 19.38%
HTTP Headers 85.37% 1.23% 28.07%
HTML Content 85.32% 1.36% 28.04%
Initial URL 84.01% 1.14% 30.88%
Final URL 83.59% 2.34% 30.53%
IP (Geo/ASN) 81.52% 2.33% 34.66%
Page Links 75.72% 15.46% 37.68%
Redirects 71.93% 0.85% 55.37%
DNS 72.40% 25.77% 29.44%
Frame URLs 60.17% 0.33% 79.45%

Table 6.5: Accuracy of classifier when trained on a single type of feature. Sources, headers,
and HTML content provide the best individual performance, while frame URLs and DNS
data perform the worst.

days of data. The data for each four-day window consists of 100,000 examples sampled at
a 4:1 non-spam to spam ratio. We repeat this experiment four times by resampling each
window’s data, and take the average result.

Figure 6.3 shows the results for our time-sensitive evaluations. The error of the stati-
cally trained classifier gradually increases over time, whereas the classifier retrained daily
maintains roughly constant accuracy. This indicates that in a deployment of Monarch, we
will need to retrain the classifier on a continual basis. We explore the temporal nature of
features that cause this behavior further in Section 6.6.3.

Training Across Input Sources: One of the primary challenges of training a classifier
is obtaining labeled spam samples. Consequently, if a single labeled data set generalized to
all web services, it would alleviate the problem of each web service being required to obtain
their own spam samples. For instance, a great deal of time and effort could be saved if spam
caught by passive email spam traps were applicable to Twitter where we currently are forced
to crawl every link and retroactively blacklist spam URLs. However, spam targeting one web
service is not guaranteed to be representative of spam targeting all web services. To this end
we ask: how well can an email-trained classifier perform on Twitter data? How well can a
Twitter-trained classifier perform on email data?

Table 6.6 displays the results of an experiment where we train our classifier on matching
and mismatched data sources. We construct a 5-fold data set containing 400,000 non-spam
samples and 100,000 tweet spam samples. Then, we copy the 5 folds but replace the 100,000
tweet spam samples with 100,000 email spam examples. We perform 5-fold cross validation
to obtain classification rates. For a given testing fold, we test on both the tweet spam and
email spam version of the fold (the non-spam samples remain the same in both version to
ensure comparable results with respect to false positives).

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 96

Figure 6.3: Performance of classifier over time. Regular retraining is required to guarantee
the best accuracy, else error slowly increases.

Using a mixture of Twitter spam and non-spam samples, we are able to achieve 94%
accuracy, but let 22% of spam tweets slip past our classifier. This same training regimen
utterly fails on email, resulting in 88% of email spam going uncaught. These results are
mirrored on a mixed data set of email spam and non-spam samples. We can achieve an
accuracy of 98.64% with 4.47% false negatives when we train a classifier to exclusively find
email spam. When we apply this same classifier to a testing set of Twitter spam, 98% of
spam samples go uncaught.

These results highlight a fundamental challenge of spam filtering. Within the spam
ecosystem, there are a variety of actors that each execute campaigns unique to individual
web services. While Monarch’s infrastructure generalizes to any web service, training data
is not guaranteed to do the same. We require individual labeled data sets from each service
in order to provide the best performance. A second unexpected result is the difficulty of
identifying tweet spam compared to email spam. On matched training and testing sets, email
spam classification achieves half the false negatives of tweet spam classification and a fifth
of the false positives. We explore the underlying reason for this discrepancy in Section 6.6.3.

Context vs. Context Free Training: Because spam URLs can appear on different web
services such as email, social networks, blogs, and forums, the question arises whether using
context-aware features can improve classification accuracy at the cost of generalizability. To
investigate this issue, we compare the error rate of classifying Twitter spam URLs (we ex-
clude email spam) with and without account-based features. These features include account
creation time, a tokenized version of tweet text, a tokenized version of an account’s profile

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 97

Training Set Testing Set Accuracy FP FN

Tweet spam Tweet spam 94.01% 1.92% 22.25%
Tweet spam Email spam 80.78% 1.92% 88.14%
Email spam Tweet spam 79.78% 0.55% 98.89%
Email spam Email spam 98.64% 0.58% 4.47%

Table 6.6: Effects of training and testing on matching and mismatching data sets. Email
and tweet spam are largely independent in their underlying features, resulting in low cross
classification accuracy.

Training Method Accuracy FP FN

With Tweet Features 94.15% 1.81% 22.11%
Without Tweet Features 94.16% 1.95% 21.38%

Table 6.7: Effects of including contextual Twitter information. Omitting account and tweet
properties from classification has no statistically significant effect on accuracy (the error
rates are within one standard deviation of each another).

description, the number of friends and followers an account has, the number of posts made
by an account, a tokenized screen name, the account’s unique Twitter ID, the application
used to access Twitter (e.g., web, Twitter’s API, or a third-party application), hashtags
present in the tweet, and “mentions” present in the tweet. Comprehensive historical data
such as the ratio of URLs to posts is unavailable.

We perform 5-fold cross validation over a data set containing 400,000 non-spam samples
and 100,000 tweet spam samples. The results of the experiment are shown in Table 6.7.
Even if Twitter account features are included, accuracy is statistically identical to training
without these features. This contrasts with previous results that rely on account-based
features to identify (fraudulent) spam accounts [8, 67, 114], but agrees with recent studies
that have shown compromised accounts are the major distributors of spam [41, 107] which
would render account-based features obsolete.

While this result is not guaranteed to generalize to all web services, we have demonstrated
that strong performance for filtering email and Twitter spam is achievable without any re-
quirement of revealing personally identifiable information. Omitting contextual information
also holds promise for identifying web spam campaigns that cross web service boundaries
without significant loss of accuracy due to disparate contextual information.

6.6.2 Run Time Performance

In addition to Monarch’s accuracy, its overall performance and cost to execute are important
metrics. In this section we measure the latency, throughput, and the cost of Monarch, finding

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 98

Component Median Run Time (seconds)

URL aggregation 0.005
Feature collection 5.46
Feature extraction 0.074
Classification 0.002

Total 5.54

Table 6.8: Breakdown of the time spent processing a single URL.

a modest deployment of our system can classify URLs with a median time of 5.54 seconds
and a throughput of 638,000 URLs per day, at a monthly cost of $1,600 on cloud machinery.

Latency: We measure latency as the time delta from when we receive a tweet or email
URL until Monarch returns a final decision. Table 6.8 shows a breakdown of processing time
for a sample of 5,000 URLs. URL aggregation takes 5 ms to parse a URL from Twitter’s API
format (email requires no parsing) and to enqueue the URL. Feature collection represents
the largest overhead in Monarch, accounting for a median run time 5.46 seconds. Within
feature collection, crawling a URL in Firefox consumes 3.13 seconds, while queries for DNS,
geolocation and routing require 2.33 seconds. The majority of the processing time in both
cases occurs due to network delay, not execution overhead. The remaining 70ms are spent
extracting features and summing weight vectors for a classification decision.

Given that Firefox browsing incurs the largest delay, we investigate whether our instru-
mentation of Firefox for feature collection negatively impacts load times. We compare our
instrumented Firefox against an uninstrumented copy using a sample of 5,000 URLs on a
system running Fedora Core 13 machine with a four core 2.8GHz Xeon processor with 8GB
of memory. We find instrumentation adds 1.02% overhead, insignificant to the median time
it takes Firefox to execute all outgoing network requests which cannot be reduced. Instru-
mentation overhead results from interposing on browser events and message passing between
the browser and monitoring service, accounting on average 110KB of log files.

Throughput: We measure the throughput of Monarch for a small deployment consisting
of 20 instances on Amazon’s EC2 infrastructure for crawling and feature collection. The
crawling and feature extraction execute on a high-CPU medium instance that has 1.7GB of
memory and two cores (5 EC2 compute units), running a 32-bit version of Ubuntu Linux
10.04. Each instance runs 6 copies of the crawling and feature collection code. We determined
that the high-CPU medium instances have the lowest dollar per crawler cost, which make
them the most efficient choice for crawling. The number of crawlers that each instance can
support depends on the memory and CPU the machine. Using this small deployment, we
can process 638,000 URLs per day.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 99

Component AWS Infrastructure Monthly Cost

URL aggregation 1 Extra Large $178
Feature collection 20 High-CPU Medium $882
Feature extraction — $0
Classification 50 Double Extra Large $527
Storage 700GB on EBS $70

Total $1,587

Table 6.9: Breakdown for the cost spent for Monarch infrastructure. Feature extraction runs
on the same infrastructure as classification.

Training Time: For the experiments in Section ??, we trained over data sets of 400,000
examples (80 GB in JSON format). The training time for 100 iterations of the distributed
logistic regression took 45 minutes. Although we do not fully explore the effects of different
data sizes or algorithm parameters on training time, we note that the following factors can
increase the training time: a higher number of iterations, a larger training set (both with
respect to number of examples and total number of nonzero features), a smaller regulariza-
tion factor λ (which increases the amount of data communicated throughout the cluster by
decreasing the sparsity of the partial gradients and weight vectors), and a smaller number
of cluster machines.

For example, if we wanted to train on a larger number of examples, we could lower the
number of iterations and increase the regularization factor to limit the training time. Being
aware of these tradeoffs can help practitioners who want to retrain the classifier daily.

Cost: Using our deployment of Monarch as a model, we provide a breakdown of the costs
associated with running Monarch on AWS for a month long period, shown in Table 6.9.
Each of our components executes on EC2 spot instances that have variable prices per hour
according to demand, while storage has a fixed price. URL aggregation requires a single
instance to execute, costing $178 per month. For a throughput of 638,000 URLs per day,
20 machines are required to constantly crawl URLs and collect features, costing $882 per
month. Besides computing, we require storage as feature data accumulates from crawlers.
During a one month period, we collected 1TB worth of feature data, with a cost of $.10
per GB. However, for live execution of Monarch that excludes the requirement of log files
for experimentation, we estimate only 700GB is necessary to accommodate daily re-training
at a monthly cost of $70. We can discard all other data from the system after it makes a
classification decision. Finally, daily classifier retraining requires a single hour of access to 50
Double-Extra Large instances, for a total of $527 per month. In summary, we estimate the
costs of running a URL filtering service using Monarch with a throughput of 638,000 URLs
per day to be approximately $1,600 per month. We can reduce this cost by limiting our use
of cloud storage (switching from JSON to a compressed format), as well as by reducing the
processing time per URL by means of better parallelism and code optimizations.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 100

We estimate the cost of scaling Monarch to a large web service, using Twitter as an
example. Twitter users send 90 million tweets per day, 25% (22.5 million) of which contain
URLs [102]. After whitelisting, deploying Monarch at that scale requires a throughput of 15.3
million URLs per day. The URL aggregation component is already capable of processing
incoming URLs at this capacity and requires no additional cost. The crawlers and storage
scale linearly, requiring 470 instances for feature collection and approximately 15 TB of
storage for a week’s worth of data, costing $20,760 and $1,464 per month respectively. The
classifier training cost remains $527 per month so long as we use the same size of training
sample. Alternatively, we could reduce the number of training iterations or increase the
regularization factor λ to train on more data, but keep training within one hour. This brings
the total cost for filtering 15.3 million URLs per day to $22,751 per month.

6.6.3 Comparing Email and Tweet Spam

We compare email and tweet spam features used for classification and find little overlap
between the two. Email spam consists of a diverse ecosystem of short-lived hosting infras-
tructure and campaigns, while Twitter is marked by longer lasting campaigns that push
quite different content. We capture these distinctions by evaluating two properties: feature
overlap between email and tweet spam and the persistence of features over time for both
categories. Each experiment uses 900,000 samples aggregated from email spam, tweet spam,
and non-spam, where we use non-spam as a baseline.

Overlap: We measure feature overlap as the log odds ratio that a feature appears in one
population versus a second population. Specifically, we compute |log(p1q2/p2q1)|, where pi
is the likelihood of appearing in population i and qi = 1− pi. A log odds ratio of 0 indicates
a feature is equally likely to be found in two populations, while an infinite ratio indicates
a feature is exclusive to one population. Figure 6.4 shows the results of the log odds test
(with infinite ratios omitted). Surprisingly, 90% of email and tweet features never overlap.
The lack of correlation between the two indicates that email spammers are entirely separate
actors from Twitter spammers, each pushing their own campaigns on distinct infrastructure.
Consequently, the classifier must learn two separate sets of rules to identify both spam types.

Equally problematic, we find 32% of tweet spam features are shared with non-spam,
highlighting the challenge of classifying Twitter spam. In particular, 41% of IP features
associated with tweet spam are also found in nonspam, a result of shared redirects and
hosting infrastructure. In contrast, only 16% of email spam IP features are found in non-
spam, allowing a clearer distinction to be drawn between the two populations.

Persistence: We measure feature persistence as the time delta between the first and last
date a feature appears in our data set, shown in Figure 6.5. Email spam is marked by much
shorter lived features compared to tweet spam and non-spam samples. Notably, 77% of
initial URL features appearing in email disappear after 15 days. The same is true for 60% of

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 101

Figure 6.4: Overlap of features. Email and Twitter spam share only 10% of features in
common, indicating that email spammers and Twitter spammers are entirely separate actors.

email DNS features, compared to just 30% of IP features associated with email spam hosting.
Each of these results highlights the quick churn of domains used by email campaigns and
the long lasting IP infrastructure controlled by email spammers. This same sophistication
is unnecessary in Twitter, where there is no pressure to evade blacklists or spam filtering.

6.6.4 Spam Infrastructure

Email spam has seen much study towards understanding the infrastructure used to host
spam content [4, 49]. From our feature collection, we identify two new properties of interest
that help to understand spam infrastructure: redirect behavior used to lead victims to spam
sites, and embedding spam content on benign pages.

Redirecting to Spam: Both Twitter and email spammers use redirects to deliver victims
to spam content. This mechanism is dominated by tweet spam where 67% of spam URLs in
our data set use redirects, with a median path length of 3. In contrast, only 20% of email
spam URLs contain redirects, with a median path length of 2. Further distinctions between
email and tweet spam behavior can be found in the abuse of public URL shorteners. Table
6.10 shows the top ten URL shortening services used for both email and tweet spam. The
majority of email spam in our data set redirects through customized infrastructure hosted
on arbitrary domains, while Twitter spammers readily abuse shortening services provided by
bit.ly , Twitter, Google, and Facebook. Despite efforts by URL shorteners to block spam [51,
9], we find that widespread abuse remains prevalent.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 102

Figure 6.5: Persistence of URL features. Email spam features are shorter lived compared to
tweet spam, a result of short-lived campaigns and domain churn.

Apart from the use of redirectors to mask initial URLs, we also examine domains that
are commonly traversed as shortened URLs resolve to their final landing page. The top
two destinations of URLs shortened by bit.ly are publicly available services provided by
google.com and blogspot.com. Together, these two domains account for 24% of the spam
first shortened by bit.ly . In the case of google.com, spam URLs embed their final landing
page behind an arbitrary redirector operated by Google. This masks the final spam landing
site from bit.ly , rendering blacklisting performed by the service obsolete. The second most
common service, blogspot.com, is abused for free spam hosting rather than as a redirector.
Each blog contains scam advertisements and other solicitations. By relying on Blogspot,
spammers can evade domain-based blacklists that lack the necessary precision to block spam
hosted alongside benign content.

Each of these are prime examples of web services currently being abused by spammers
and serve as a strong motivation for the need of a system like Monarch.

Page Content: Another phenomenon we frequently observe in Twitter spam is the black-
listing of content within a page. For the majority of sites, this is a web advertisement from
a questionable source. We have observed popular news sites with non-spam content display-
ing ads that cause a variety of spam popups, sounds, and video to play. Table 6.11 shows a
breakdown of the locations containing blacklisted URLs specifically for Twitter. The column
labeled exclusive indicates the percent of URLs that can be blacklisted exclusively based on
a URL in that location. For example, 0.05% of Twitter spam can be blacklisted using only
an initial URL posted to the site. Since the category source URLs is a superset of all other
URLs, 100% of pages can be blacklisted; however, looking exclusively at URLs which are not

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 103

Domain Email spam Twitter spam

bit.ly 1% 41%
t.co 0% 4%
tinyurl.com 3% 4%
ow.ly 0% 4%
goo.gl 0% 3%
su.pr 0% 3%
fb.me 0% 2%
dlvr.it 0% 2%
os7.biz 0% 1%
is.gd 0% 1%

Table 6.10: Top 10 URL shortening services abused by spammers.

Feature Category % Blacklisted % Exclusive

Initial URL 16.60% 0.05%
Final URL 23.33% 2.62%
Top-level Window Redirect URL 34.25% 4.41%
Content Redirect URL 3.99% 1.35%
Frame Content URL 14.85% 6.87%
Link URLs 28.28% 7.03%
Source URLs 100% 42.51%

Table 6.11: Breakdown of the locations of blacklisted URLs. We mark a page as spam if it
makes any outgoing request to a blacklisted URL.

part of other categories, we find that 42.51% of source URLs lead to blacklisting. This indi-
cates a page included an image, stylesheet, plugin, script, or dynamically retrieved content
via JavaScript or a plugin that was blacklisted. These scenarios highlight the requirement
of analyzing all of a webpages content to not overlook spam with dynamic page behavior or
mash-up content that includes known spam domains.

6.7 Evading Browser-based Spam Detection

In this section we discuss potential evasive attacks against Monarch that result from running
a centralized service. While we can train our system to identify spam and have shown the
features we extract are applicable over time, classification exists in an adversarial environ-
ment. Attackers can tune features to fall below the spam classification threshold, modify
content after classification, and block our crawler. We do not propose solutions to these
attacks; instead, we leave to future work an in depth study of each attack and potential

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 104

solutions.

Feature Evasion: When Monarch provides a web service with a classification decision, it
also provides attackers with immediate feedback for whether their URLs are blocked. An
attacker can use this feedback to tune URLs and content in an attempt to evade spam
classification, as discussed in previous studies [20, 70, 7], but not without consequences and
limitations. The simplest changes an attacker can make are modifications to page content:
HTML, links, and plugins. Known spam terms can be transformed into linguistically similar,
but lexically distinct permutations to avoid detection, while links and plugins can be modi-
fied to imitate non-spam pages. Page behavior poses a more difficult challenge; by removing
pop-up windows and alert prompts, a spammer potentially reduces the effectiveness of elic-
iting a response from victims. Finally, hosting infrastructure, redirects, and domains, while
mutable, require a monetary expense for dynamism. We leave evaluating how susceptible
our classification system is to evasion to future work, but note that email spam classifica-
tion and intrusion prevention systems both exist in adversarial environments and maintain
wide-spread adoption.

Time-based Evasion: In Monarch’s current implementation, feature collection occurs at
the time a URL is submitted to our system; URLs are not re-crawled over time unless they
are resubmitted. This raises the potential for an attacker to change either page content
or redirect to new content after a URL has been classified. For this attack to succeed, a
URL’s redirects and hosting infrastructure must appear benign during classification and allow
subsequent modification. An attacker that simply masks his final landing page, but re-uses
known hostile redirect infrastructure may still be identified by the classifier. Furthermore,
static shorteners such as bit.ly cannot be used because the landing page cannot be changed
after shortening. To circumvent both of these limitations, an attacker can rely on mutable
content hosted on public infrastructure typically associated with non-spam pages, such as
Blogspot, LiveJournal, and free web hosting. In this scenario, an attacker’s blog contains
non-spam content during classification and is subsequently modified to include spam content
or a JavaScript redirect to a new hostile landing page.

Crawler Evasion: Rather than an attacker modifying content to evade classification, an
adversary can alter HTTP and DNS behavior to prevent our crawler from ever reaching spam
pages. Potential attacks include relying on browser user-agent detection or other forms of
browser fingerprinting [24] to forward our crawler to non-hostile content and regular users
to a hostile copies. Alternatively, the IP addresses of Monarch’s crawlers can be learned by
an attacker repeatedly posting URLs to our service and tracking the IPs of visitors. A list
of crawler IP addresses can then be distributed as a blacklist, with attackers either blocking
access or redirecting our crawlers to non-spam content.

CHAPTER 6. DEVELOPING REAL-TIME AND SCALABLE SPAM DETECTION 105

6.8 Summary of Results

Monarch is a real-time system for filtering scam, phishing, and malware URLs as they are
submitted to web services. We showed that while Monarch’s architecture generalizes to
many web services being targeted by URL spam, accurate classification hinges on having an
intimate understanding of the spam campaigns abusing a service. In particular, we showed
that email spam provides little insight into the properties of Twitter spammers, while the
reverse is also true. We explored the distinctions between email and Twitter spam, including
the overlap of spam features, the persistence of features over time, and the abuse of generic
redirectors and public web hosting. We have demonstrated that a modest deployment of
Monarch on cloud infrastructure can achieve a throughput of 638,000 URLs per day with
an overall accuracy of 91% with 0.87% false positives. Each component of Monarch readily
scales to the requirements of large web services. We estimated it would cost $22,751 a month
to run a deployment of Monarch capable of processing 15 million URLs per day.

106

Chapter 7

Disrupting the Underground Account
Marketplace

7.1 Introduction

As web services such as Twitter, Facebook, Google, and Yahoo now dominate the daily
activities of Internet users [2], cyber criminals have adapted their monetization strategies
to engage users within these walled gardens. This has lead to a proliferation of fraudulent
accounts—automatically generated credentials used to disseminate scams, phishing, and
malware. Our own work in Chapter 4 estimates at least 3% of active Twitter accounts
are fraudulent. Facebook estimates its own fraudulent account population at 1.5% of its
active user base [58], and the problem extends to major web services beyond just social
networks [62].

The complexities required to circumvent registration barriers such as CAPTCHAs, email
confirmation, and IP blacklists have lead to the emergence of an underground market that
specializes in selling fraudulent accounts in bulk. Account merchants operating in this space
brazenly advertise: a simple search query for “buy twitter accounts” yields a multitude of
offers for fraudulent Twitter credentials with prices ranging from $10—200 per thousand.
Once purchased, accounts serve as stepping stones to more profitable spam enterprises that
degrade the quality of web services, such as pharmaceutical spam [75] or fake anti-virus
campaigns [111].

In this chapter we describe our investigation of the underground market profiting from
Twitter credentials to study how it operates, the impact the market has on Twitter spam
levels, and exactly how merchants circumvent automated registration barriers.1 In total, we
identified and monitored 27 account merchants that advertise via web storefronts, blackhat
forums, and freelance labor sites. With the express permission of Twitter, we conducted a
longitudinal study of these merchants and purchased a total of 121,027 fraudulent Twitter ac-

1Our study is limited to Twitter, as we were unable to acquire permission to conduct our research from
other companies we saw being abused.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 107

counts on a bi-weekly basis over ten months from June, 2012—April, 2013. Throughout this
process, we tracked account prices, availability, and fraud in the marketplace. Our findings
show that merchants thoroughly understand Twitter’s existing defenses against automated
registration, and as a result can generate thousands of accounts with little disruption in
availability or instability in pricing.

In order to fulfill orders for fraudulent Twitter accounts, we find that merchants rely on
CAPTCHA solving services; fraudulent email credentials from Hotmail, Yahoo, and mail.ru;
and tens of thousands of hosts located around the globe to provide a diverse pool of IP
addresses to evade blacklisting and throttling. In turn, merchants stockpile accounts months
in advance of their sale, where “pre-aged” accounts have become a selling point in the
underground market. We identify which registration barriers effectively increase the price of
accounts and summarize our observations into a set of recommendations for how web services
can improve existing automation barriers to increase the cost of fraudulent credentials.

Finally, to estimate the overall impact the underground market has on Twitter spam
we leveraged our understanding of how merchants abuse the registration process in order to
develop a classifier that retroactively detects fraudulent accounts. We applied our classifier to
all accounts registered on Twitter in the last 10 months and identify several million suspected
fraudulent accounts generated and sold via the underground market. During active months,
the 27 merchants we monitor appeared responsible for registering 10—20% of all accounts
later flagged by Twitter as spam. For their efforts, the merchants generated an estimated
total revenue between $127,000—$459,000 from the sale of accounts.

With Twitter’s cooperation, we disable 95% of all fraudulent accounts registered by the
merchants we track, including those previously sold but not yet suspended for spamming.
Throughout the suspension process, we simultaneously monitor the underground market for
any fallout. While we do not observe an appreciable increase in pricing or delay in mer-
chants delivering new accounts, we find 90% of all purchased accounts immediately after our
actioning are suspended on arrival. We are now actively working with Twitter to integrate
our defense into their real-time detection framework to help prevent abusive signups.

In summary, we frame our contributions as follows:

• We perform a 10 month longitudinal study of 27 merchants profiting from the sale of
Twitter accounts.

• We develop a classifier based on registration signals that detects several million fraud-
ulent accounts that merchants sold to generate $127,000—$459,000 in revenue.

• We investigate the impact that the underground market has on Twitter spam levels
and find 10—20% all spam accounts originate from the merchants we study.

• We investigate the failures of existing automated registration barriers and provide a
set of recommendations to increase the cost of generating fraudulent accounts.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 108

7.2 Legal and Ethical Guidelines

To minimize the risk posed to Twitter or its users by our investigation of the account market,
we follow a set of policies set down by our institutions and Twitter, reproduced here to serve
as a note of caution to other researchers conducting similar research.

Twitter & Users: Some of the account merchants we deal with work in an on-demand
fashion, where purchases we place directly result in abusive registrations on Twitter (e.g.,
harm) in violation of the site’s Terms of Services. Even purchases from existing stockpiles
might be misconstrued as galvanizing further abuse of Twitter. As such, we directly con-
tacted Twitter to receive permission to conduct our study. In the process, we determined
that any interactions with the underground market should not result in harm to Twitter’s
user base. In particular, accounts we purchased should never be used to tweet or form re-
lationships while under our control. Furthermore, we take no special action to guarantee
our accounts are not suspended (e.g disabled) by Twitter; our goal is to observe the natural
registration process, not to interact with or impede Twitter’s service in any way.

Account Merchants: We do not interact with merchants anymore than necessary to
perform transactions. To this end, we only purchased from merchants that advertise their
goods publicly and never contact merchants outside the web sites or forums they provide to
conduct a sale (or to request replacement accounts in the event of a bad batch). Our goal is
not to study the merchants themselves or to collect personal information on them; only to
analyze the algorithms they use to generate accounts.

Sensitive User Data: Personal data logged by Twitter is subject to a multitude of con-
trols, while user names and passwords sold by merchants also carry controls to prevent fraud,
abuse, and unauthorized access. First, we never log into accounts; instead, we rely on Twit-
ter to verify the authenticity of credentials we purchase. Furthermore, all personal data
such as IP addresses or activities tied to an account are never accessed outside of Twitter’s
infrastructure, requiring researchers involved in this study to work on site at Twitter and to
follow all relevant Twitter security practices. This also serves to remove any risk in the event
an account is compromised rather than registered by an account merchant, as no personal
data ever leaves Twitter. To our knowledge, we never obtained credentials for compromised
accounts.

7.3 Infiltrating the Marketplace for Twitter Accounts

We infiltrate the market for Twitter accounts to understand its organization, pricing struc-
ture, and the availability of accounts over time. Through the course of our study, we identify
27 account merchants (or sellers) whom we purchase from on a bi-weekly basis from June,

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 109

2012 —April, 2013. We determine that merchants can provide thousands of accounts within
24 hours at a price of $0.10—$0.02 per account.

7.3.1 Identifying Merchants

With no central operation of the underground market, we resort to investigating common
haunts: advertisements via search engines, blackhat forums such as blackhatworld.com, and
freelance labor pages including Fiverr and Freelancer [87, 88]. In total, we identify a dis-
parate group of 27 merchants. Of these, 10 operate their own websites and allow purchases
via automated forms, 5 solicit via blackhat forums, and 12 advertise via freelance sites that
take a cut from sales. Advertisements for Twitter accounts range in offerings from creden-
tials for accounts with no profile or picture, to “pre-aged” accounts2 that are months old
with unique biographies and profile data. Merchants even offer 48 hours of support, during
which miscreants can request replacements for accounts that are dysfunctional. We provide
a detailed breakdown of the merchants we identify and their source of solicitation in Ta-
ble 7.1. We make no claim our search for merchants is exhaustive; nevertheless, the sellers
we identify provide an insightful cross-section of the varying levels of sophistication required
to circumvent automated account registration barriers, outlined in detail in Section 7.4.

7.3.2 Purchasing from Merchants

Once we identify a merchant, we place an initial test purchase to determine the authenticity
of the accounts being sold. If genuine, we then determine whether to repeatedly purchase
from the merchant based on the quality of accounts provided (discussed in Section 7.4) and
the overall impact the seller has on Twitter spam (discussed in Section 7.6). As such, our
purchasing is an iterative process where each new set of accounts improves our understanding
of the market and subsequently directs our investigation.

Once we vet a merchant, we conduct purchases on a bi-weekly basis beginning in June,
2012 (at the earliest) up to the time of our analysis in April, 2013, detailed in Table 7.1. We
note that purchasing at regular intervals is not always feasible due to logistical issues such
as merchants delaying delivery or failing to respond to requests for accounts. In summary,
we place 144 orders (140 of which merchants successfully respond to and fulfill) for a total
of 120,019 accounts. Purchases typically consist of a bulk order for 1,000 accounts, though
sellers on Fiverr operate in far less volume.

Throughout this process, we protect our identity from merchants by using a number
of email and Skype pseudonyms. We conduct payments through multiple identities tied to
PayPal, WebMoney, and pre-paid credit cards. Finally, we access all web content on a virtual
machine through a network proxy.

2Pre-aged accounts allow miscreants to evade heuristics that disable newly minted accounts based upon
weak, early signs of misbehavior. In contrast, much more robust signals of maleficence must be satisfied to
action older accounts to limit the impact on legitimate users.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 110

Merchant Period # Accts Price

alexissmalley† 06/12—03/13 14 13,000 $4
naveedakhtar† 01/13—03/13 4 2,044 $5
truepals† 02/13—03/13 3 820 $8
victoryservices† 06/12—03/13 15 15,819 $6
webmentors2009† 10/12—03/13 9 9,006 $3—4

buumanq 10/12—10/12 1 75 $7
danyelgalluq 10/12—10/12 1 74 $7
denial93q 10/12—10/12 1 255 $20
formeforq 09/12—11/12 3 408 $2—10
ghetumarianq 09/12—10/12 3 320 $4—5
jackhack08q 09/12—09/12 2 755 $1
kathlynq 10/12—10/12 1 74 $7
smokinblueladyq 08/12—08/12 1 275 $2
twitfollowersq 10/12—10/12 1 80 $6
twitter007q 10/12—10/12 1 75 $7

kamalkishover� 06/12—03/13 14 12,094 $4—7
shivnagsudhakar� 06/12—06/12 1 1,002 $4

accs.biz‡ 05/12—03/13 15 17,984 $2—3
buyaccountsnow.com‡ 06/12—11/12 8 7,999 $5—8
buyaccs.com‡ 06/12—03/13 14 13,794 $1—3
buytwitteraccounts.biz‡ 09/12—10/12 3 2,875 $5
buytwitteraccounts.info‡ 10/12—03/13 9 9,200 $3—4
dataentryassistant.com‡ 10/12—03/13 9 5,498 $10
getbulkaccounts.com‡ 09/12—09/12 1 1,000 $2
quickaccounts.bigcartel.com‡ 11/12—11/12 2 1,501 $3
spamvilla.com‡ 06/12—10/12 3 2,992 $4
xlinternetmarketing.com‡ 10/12—10/12 1 1,000 $7

Total 05/12—03/13 140 120,019 $1—20

Table 7.1: List of the merchants we track, the months monitored, total purchases performed
(#), accounts purchased, and the price per 100 accounts. Source of solicitations include
blackhat forums†, Fiverrq, and Freelancer� and web storefronts‡.

7.3.3 Account Pricing & Availability

Prices through the course of our analysis range from $0.01 to $0.20 per Twitter account,
with a median cost of $0.04 for all merchants. Despite the large overall span, prices charged
by individual merchants remain roughly stable. Table 7.1 shows the variation in prices for
six merchants we tracked over the longest period of time. Price hikes are a rare occurrence
and no increase is more than $0.03 per account. So long as miscreants have money on hand,

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 111

● ● ● ●

● ● ● ● ● ● ● ● ●

● ●0.02

0.04

0.06

Jul Oct Jan Apr

Date of Purchase

P
ric

e

● accs.biz

alexissmalley

buyaccs.com

kamalkishover

victoryservices

webmentors2009

Figure 7.1: Variation in prices over time for six merchants we track over the longest period
of time.

availability of accounts is a non-issue. Of the orders we placed, merchants fulfilled 70%
in a day and 90% within 3 days. We believe the stable pricing and ready availability of
fraudulent accounts is a direct result of minimal adversarial pressures on account merchants,
a hypothesis we explore further in Section 7.4.

7.3.4 Other Credentials For Sale

Our permission to purchase accounts is limited to Twitter credentials, but many of the
merchants we interact with also sell accounts for Facebook, Google, Hotmail, and Yahoo. We
compare prices between web services, but note that as we cannot vet non-Twitter credentials,
some prices may represent scams.

Facebook: Prices for Facebook accounts range from $0.45—1.50 per phone verified account
(PVA) and $0.10 for non-PVA accounts. Phone verification requires that miscreants tie a
SIM card to a newly minted Facebook account and verify the receipt of a text message, the
complexities of which vastly increase the price of an account.3 For those sellers that advertise
their registration process, SIM cards originate from Estonia or Ukraine.

Google: Prices for Google PVA accounts range from $0.03—0.50 per account.

3Advertisements that we encountered for phone verification services ranged in price from $.10—$.15 per
verification for bulk orders of 100,000 verifications and $.25 per verification for smaller orders.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 112

Hotmail: Prices for Hotmail accounts cost $0.004—0.03 per account, a steep reduction
over social networking or PVA credentials. We see similar prices for a multitude of web mail
providers, indicating that email accounts are in demand and cheaper to create.

Yahoo: Yahoo accounts, like Hotmail, are widely available, with prices ranging from
$0.006—0.015 per account.

7.3.5 Merchant Fraud

Operating in the underground market is not without risk of fraud and dishonesty on the
part of account merchants. For instance, eight of the merchants we contacted attempted
to sell us a total of 3,317 duplicate accounts. One merchant even schemed to resell us the
same 1,000 accounts three times. For those merchants willing to honor their “48 hours of
support”, we requested replacement accounts for duplicates, bringing our account total up
to 121,027 unique credentials.

Apart from duplicate credentials, some merchants were quick to resell accounts we pur-
chased to third parties. In order to detect resales, we coordinate with Twitter to monitor
all successful logins to accounts we purchase after they come under our control. We denote
these accounts reaccessed. We repeat this same process to detect new tweets or the forma-
tion of relationships. Such behaviors should only occur when an account changes hands to
a spammer, so we denote these accounts as resold. Such surreptitious behavior is possible
because we make a decision not to change the passwords of accounts we purchase.

Table 7.2 shows the fraction of purchased accounts per seller that merchants reaccessed
and resold. A total of 10% of accounts in our dataset were logged into (either by the seller
or a third party; it is not possible to distinguish the two) within a median of 3 days from
our purchase. We find that 6% of all accounts go on to be resold in a median of 5 days
from our purchase. This serves to highlight that some merchants are by no means shy about
scamming potential customers.

7.4 Characterizing How Criminals Automate

Fraudulent Account Creation

Account merchants readily evade existing abuse safeguards to register thousands of accounts
on a recurring basis. To understand these failings, we delve into the tools and techniques
required to operate in the account marketplace. We find that merchants leverage thousands of
compromised hosts, CAPTCHA solvers, and access to fraudulent email accounts. We identify
what registration barriers increase the price of accounts and summarize our observations into
a set of recommendations for how web services can improve existing automation barriers to
increase the cost of fraudulent credentials in the future.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 113

Merchant Reaccessed Resold

getbulkaccounts.com 100% 100%
formefor 100% 99%
denial93 100% 97%
shivnagsudhakar 98% 98%
quickaccounts.bigcartel.com 67% 64%
buytwitteraccounts.info 39% 31%
ghetumarian 30% 28%
buytwitteraccounts.biz 20% 18%
jackhack08 12% 11%
buyaccountsnow.com 10% 1%
kamalkishover 8% 0%
buyaccs.com 7% 4%
alexissmalley 6% 0%
victoryservices 3% 2%

Total 10% 6%

Table 7.2: List of dishonest merchants that reaccessed and resold credentials we purchased
to other parties.

7.4.1 Dataset Summary

To carry out our analysis, we combine intelligence gathered from the underground market
with private data provided through a collaboration with Twitter. Due to the sensitivity
of this data, we strictly adhere to a data policy set down by Twitter, documented in Ap-
pendix 7.2. In total, we have the credentials for 121,027 purchased accounts, each of which
we annotate with the seller and source of solicitation. Furthermore, we obtain access to
each account’s associated email address; login history going back one year including IP ad-
dresses and timestamps; signup information including the IP and user agent used to register
the account; the history of each account’s activities including tweeting or the formation
of social connections, if any; and finally whether Twitter has flagged the account as spam
(independent of our analysis).

7.4.2 Circumventing IP Defenses

Unique IP addresses are a fundamental resource for registering accounts in bulk. Without a
diverse IP pool, fraudulent accounts would fall easy prey to network-based blacklisting and
throttling [82, 143, 50]. Our analysis leads us to believe that account merchants either own
or rent access to thousands of compromised hosts to evade IP defenses.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 114

Registration Origin Unique IPs Popularity

India 6,029 8.50%
Ukraine 6,671 7.23%
Turkey 5,984 5.93%
Thailand 5,836 5.40%
Mexico 4,547 4.61%
Viet Nam 4,470 4.20%
Indonesia 4,014 4.10%
Pakistan 4,476 4.05%
Japan 3,185 3.73%
Belarus 3,901 3.72%

Other 46,850 48.52%

Table 7.3: Top 10 most popular geolocations of IP addresses used to register fraudulent
accounts.

IP Address Diversity & Geolocation: As a whole, miscreants registered 79% of the
accounts we purchase from unique IP addresses located across the globe. No single subnet
captures the majority of abused IPs; the top ten /24 subnets account for only 3% of signup
IPs, while the top ten /16 subnets account for only 8% of registrations. We provide a
breakdown of geolocations tied to addresses under the control of merchants in Table 7.3.
India is the most popular origin of registration, accounting for 8.5% of all fraudulent accounts
in our dataset. Other ‘low-quality’ IP addresses (e.g., inexpensive hosts from the perspective
of the underground market [11]) follow in popularity. In summary, registrations come from
164 countries, the majority of which serve as the origin of fewer than 1% of accounts in our
dataset. However, in aggregate, these small contributors account for 48.5% of all registered
accounts.

Merchants that advertise on blackhat forums or operate their own web storefronts have
the most resources at their disposal, registering all but 15% of their accounts via unique IPs
from hundreds of countries. Conversely, merchants operating on Fiverr and Freelancer tend
to operate solely out of the United States or India and reuse IPs for at least 30% of the
accounts they register.

Long-term IP Abuse: To understand the long-term abuse of IP addresses, we analyze
data provided by Twitter that includes all registered accounts (not just our purchases)
from June, 2012—April, 2013. From this, we select a random sample of 100,000 unique
IPs belonging to accounts that Twitter has disabled for spamming (e.g., suspended) and an
equally sized sample of IPs used to register legitimate Twitter accounts. We add a third
category to our sample that includes all the unique IP addresses used by merchants to register
the accounts we purchased. For each of these IPs, we calculate the total number of Twitter
accounts registered from the same IP.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 115

●

●●●●●

●

●●

●

●

●

●

●

0.25

0.50

0.75

1.00

10 1,000 100,000

Registrations from IP

F
ra

ct
io

n
of

 IP
s

● legitimate

purchased

suspended

Figure 7.2: CDF of registrations per IP tied to purchased accounts, legitimate accounts, and
suspended (spam) accounts.

A CDF of our results, shown in Figure 7.2, indicates merchants use the IP addresses
under their control to register an abnormal number of accounts. Furthermore, the merchants
we track are more cautious than other Twitter spammers who register a larger volume
of accounts from a single IP address, making the merchants harder to detect. In total,
merchants use 50% of the IP addresses under their control to register fewer than 10 accounts,
compared to 73% of IPs tied to legitimate users and only 26% for other spammers. We note
that the small fraction of legitimate IP addresses used to register thousands of accounts
likely belong to mobile providers or other middleboxes.

IP Churn & Pool Size: In order to sustain demand for new accounts without overex-
tending the abuse of a single IP address, merchants obtain access to tens of thousands of
IP addresses that change over time. Figure 7.3 shows the fraction of accounts we purchase
that appear from a unique IP address4 as a function of time. We restrict our analysis to the
six merchants we track over the longest period. Despite successive purchases of 1,000 ac-
counts, all but one seller maintains IP uniqueness above roughly 80% of registered accounts,
indicating that the IPs available to merchants change over time.

We calculate the number of IP addresses under each merchant’s control by treating
IP reuse as a closed capture-recapture problem. Closed capture-recapture measurements—
used to estimate an unknown population size— require (1) the availability of independent
samples and (2) that the population size under study remains fixed. To begin, we assume
each purchase we make is an independent sample of the IP addresses under a merchant’s
control, satisfying the first requirement. The second requirement is more restrictive. If
we assume that merchants use IP addresses tied to compromised hosts, then there is an
inherent instability in the population size of IPs due to hosts becoming uninfected, new
hosts becoming infected, and ISPs reallocating dynamic IPs. As such, comparisons over

4We calculate uniqueness over the IP addresses in our dataset, not over all IPs used to register accounts
on Twitter.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 116

● ●

●
● ● ● ● ●

●
● ●

●
●

● ●

0.7

0.8

0.9

1.0

Jul Oct Jan Apr

Date of Purchase

F
ra

ct
io

n
U

ni
qu

e
IP

s

● accs.biz

alexissmalley

buyaccs.com

kamalkishover

victoryservices

webmentors2009

Figure 7.3: Availability of unique IPs over time for the six merchants we track over the
longest period. All but one seller we repeatedly purchase from are able to acquire new IP
address to register accounts from over time.

long periods are not possible. Nevertheless, if we restrict our analysis to batches of accounts
from a single seller that were all registered within 24 hours, we can minimize the imprecision
introduced by IP churn.

To this end, we select clusters of over 300 accounts registered by merchants within a
24 hour window. We split each cluster in half by time, with the first half m acting as the
set of marked IPs and the second set c as the captured IPs, where there are r overlapping,
or recaptured, IPs between both sets. We can then estimate the entire population size N̂
(e.g., the number of unique IPs available to a merchant) according to the Chapman-Petersen
method [104]:

N̂ =
(m+ 1)(c+ 1)

(r + 1)
− 1

And standard error according to:

SE =

√
N̂2(c− r)

(c+ 1)(r + 2)

For 95% confidence intervals, we calculate the error of N̂ as ±1.96 × SE. We detail
our results in Table 7.4. We find that sellers like accs.biz and victoryservices have tens of
thousands of IPs at their disposal on any given day, while even the smallest web storefront
merchants have thousands of IPs on hand to avoid network-based blacklisting and throttling.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 117

Merchant N̂ Estimate ± Error

accs.biz 21,798 4,783
victoryservices 17,029 2,264
dataentryassistant.com 16,887 4,508
alexissmalley 16,568 3,749
webmentors2009 10,019 2,052
buyaccs.com 9,770 3,344
buytwitteraccounts.info 6,082 1,661
buyaccountsnow.com 5,438 1,843
spamvilla.com 4,646 1,337
kamalkishover 4,416 1,170

Table 7.4: Top 10 merchants with the largest estimated pool of IP addresses under their
control on a single day.

7.4.3 CAPTCHAs & Email Confirmation

Web services frequently inhibit automated account creation by requiring new users to solve
a CAPTCHA or confirm an email address. Unsurprisingly, we find neither of these barriers
are insurmountable, but they do impact the pricing and rate of generation of accounts,
warranting their continued use.

Email Confirmation: All but 5 of the merchants we purchase from readily comply with
requirements to confirm email addresses through the receipt of a secret token. In total,
merchants email confirm 77% of accounts we acquire, all of which they seeded with a unique
email. The failure of email confirmation as a barrier directly stems from pervasive account
abuse tied to web mail providers. Table 7.5 details a list of the email services frequently
tied to fraudulent Twitter accounts. Merchants abuse Hotmail addresses to confirm 60% of
Twitter accounts, followed in popularity by Yahoo and mail.ru. This highlights the inter-
connected nature of account abuse, where credentials from one service can serve as keys to
abusing yet another.

While the ability of merchants to verify email addresses may raise questions of the pro-
cesses validity, we find that email confirmation positively impacts the price of accounts.
Anecdotally, Hotmail and Yahoo accounts are available on blackhatworld.com for $6 per
thousand, while Twitter accounts from the same forum are $40 per thousand. This is also
true of web storefront such as buyaccs.com where mail.ru and Hotmail accounts are $5 per
thousand, compared to $20 per thousand for Twitter accounts. Within our own dataset, we
find that Twitter accounts purchased without email confirmation cost on average $30 per
thousand compared to $47 per thousand for accounts with a confirmed email address. This
difference likely includes the base cost of an email address and any related overhead due to
the complexity of responding to a confirmation email.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 118

Email Provider Accounts Popularity

hotmail.com 64,050 60.08%
yahoo.com 12,339 11.57%
mail.ru 12,189 11.43%
gmail.com 2,013 1.89%
nokiamail.com 996 0.93%

Other 2,157 0.14%

Table 7.5: Top 5 email providers used to confirm fraudulent Twitter accounts.

●
●
●
●
●
●
●
●

●
●

●
●

●
●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Captcha Solution Accuracy

F
ra

ct
io

n
of

 IP
s

● All merchants

buuman

buyaccs.com

smokinbluelady

victoryservices

webmentors2009

Figure 7.4: CAPTCHA solution rates per each IP address abused by a variety of merchants
as well as the rates for all merchants combined.

CAPTCHA Solving: Twitter throttles multiple registrations originating from a single IP
address by requiring a CAPTCHA solution. Merchants solved a CAPTCHA for 35% of the
accounts we purchase; the remaining accounts were registered from fresh IPs that did not
trigger throttling. While there are a variety of CAPTCHA solving services available in the
underground market [86], none are free and thus requiring a CAPTCHA slightly increases
the cost of creating fraudulent accounts.

A second aspect of CAPTCHAs is the success rate of automated or human solvers. By
virtue of only buying successfully registered accounts, we cannot exactly measure CAPTCHA

failure rates (unless account sellers fail and re-try a CAPTCHA during the same registration
session, something we find rare in practice). However, we can examine registration attempts
that occur from the same IPs as the accounts we purchase to estimate the rate of failure.
To carry out this analysis, we examine all registrations within the previous year, calculating
the fraction of registrations that fail due to incorrect CAPTCHA solutions per IP address.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 119

We show a CDF of CAPTCHA solution rates for a sample of merchants in Figure 7.4.
The median CAPTCHA solution rate for all sellers is 7%, well below estimates for automated
CAPTCHA solving software of 18—30% [86], a discrepancy we currently have no explanation
for. For two of the Fiverr sellers, buuman and smokinbluelady, the median CAPTCHA

solution rate per IP is 100% and 67% respectively, which would indicate a human solver.
In total, 92% of all throttled registration attempts from merchants fail. Despite this fact,
account sellers are still able to register thousands accounts over the course of time, simply
playing a game of odds.

7.4.4 Stockpiling & Suspension

Without effective defenses against fraudulent account registration, merchants are free to
stockpile accounts and sell them at a whim. For many solicitations, merchants consider
“pre-aged” accounts a selling point, not a detraction. To highlight this problem, we examine
the failure of at-abuse time metrics for detecting dormant accounts and the resulting account
stockpiles that occur.

Account Suspension: Twitter suspends (e.g., disables) spam accounts due to at-abuse
time metrics such as sending spam URLs or generating too many relationships, as outlined
in Twitter’s rules [123]. In our case, we are interested in whether fraudulent accounts that do
not perform visible spam actions (e.g., are dormant) nevertheless become suspended. While
for miscreants this should ideally be impossible, there are multiple avenues for guilt by
association, such as clustering accounts based on registration IP addresses or other features.
As such, when Twitter suspends a large volume of active fraudulent accounts for spamming,
it is possible for Twitter to catch dormant accounts in the same net.

Of the dormant accounts we purchase, only 8% are eventually detected and suspended.
We exclude accounts that were resold and used to send spam (outlined in Section 7.3.5) from
this metric in order to not skew our results. Of the merchants we track, Fiverr sellers take the
least caution in registering unlinkable accounts, resulting in 57% of our purchases becoming
suspended by the time of our analysis. In contrast, web storefronts leverage the vast resources
at their disposal to create unlinkable accounts, where only 5% of our purchased accounts
are eventually detected as fraudulent. These poor detection rates highlight the limitation of
at-abuse time metrics against automated account registration. Without more sophisticated
at-registration abuse signals, merchants are free to create thousands of accounts with minimal
risk of Twitter suspending back stock.

Account Aging & Stockpiling: We examine the age of accounts, measured as the time
between their registration and subsequent date of purchase, and find that accounts are
commonly stockpiled for a median of 31 days. While most merchants deal exclusively in back
stock, some merchants operate in an on-demand fashion. At the far end of this spectrum is
a merchant spamvilla.com that sold us accounts registered a median of 323 days ago—nearly

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 120

a year in advance of our purchase. In contrast, webstores such as buyaccs.com and Fiverr
merchants including smokinbluelady sell accounts less than a day old. Even though these
merchants operate purely on-demand, they are still able to fulfill large requests in short order
(within a day in our experience). Both modes of operation illustrate the ease that merchants
circumvent existing defenses and the need for at-registration time abuse detection.

7.4.5 Recommendations

Web services that rely on automation barriers must strike a tenuous balance between promot-
ing user growth and preventing the proliferation of fraudulent accounts and spam behavior.
We summarize our findings in this section with a number of potential improvements to
existing barriers that should not impede legitimate users. While we draw many of our ob-
servations from the Twitter account abuse problem, we believe our recommendations should
generalize across web services.

Email Confirmation: While account merchants have cheap, disposable emails on hand to
perform email confirmation, confirmation helps to increase the cost of fraudulent accounts.
In the case of Twitter, email confirmation raises the cost of accounts by 56%. Furthermore,
in the absence of clear abuse signals, services can use email reconfirmation as a soft action
against automation, similar to requiring a CAPTCHA before sending an email or tweet.
Of the Twitter accounts we purchased, only 47% included the email address and password
used to confirm the account. Merchants will sometimes re-appropriate these email addresses
and sell them as “second-hand” at a discount of 20%. Without the original credentials,
miscreants will be unable to perform email reconfirmation. Even if merchants adapt and
begin to provide email credentials as part of their sale, the possibility of reselling email
addresses disappears, cutting into a merchant’s revenue.

CAPTCHAs CAPTCHA:s serve to both increase the cost of accounts due to the require-
ment of a CAPTCHA solving service as well as to throttle the rate of account creation. In our
experience, when required, CAPTCHAs prevent merchants from registering 92% of fraudu-
lent accounts. Services could also leverage this failure rate as a signal for blacklisting an
IP address in real-time, cutting into the number of accounts merchants can register from a
single IP.

IP Blacklisting: While miscreants have thousands of IP addresses at their disposal that
rapidly change, IP blacklisting is not without merit. Our results show that merchants use a
small fraction of IPs to register tens of thousands of accounts, which services could curb with
real-time blacklisting. While public and commercial IP blacklists exist such as CBL [12], pre-
vious work has shown these generate too many false positives in the case of social spam [115],
requiring service providers to generate and maintain their own blacklists.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 121

Phone Verification: While Twitter does not require phone verification, we observe the
positive impact phone verification has on increasing the cost of fraudulent accounts for other
services. Facebook and GMail accounts that are phone verified cost up to 150x more than
their Twitter, non-PVA counterpart. As with CAPTCHAs or email reconfirmation, phone
verification can serve as a soft action against spammers who do not clearly fall into the set
of accounts that should be automatically disabled.

7.5 Developing a Classifier to Detect Fraudulent

Registrations

To understand the impact account merchants have on Twitter spam, we develop a classifier
trained on purchased accounts to retroactively identify abusive registrations. Our technique
relies on identifying patterns in the naming conventions and registration process used by
merchants to automatically generate accounts. We apply our classifier to all Twitter ac-
counts registered in the last year (overlapping with our investigation) and identify several
million accounts which appear to be fraudulent. We note this approach is not meant to
sustain accuracy in an adversarial setting; we only apply it to historical registrations where
adaptation to our signals is impossible.

7.5.1 Automatic Pattern Recognition

Our detection framework begins by leveraging the limited variability in naming patterns used
by account generation algorithms which enables us to automatically construct regular expres-
sions that fingerprint fraudulent accounts. Our approach for generating these expressions is
similar to previous techniques for identifying spam emails based on URL patterns [136] or
spam text templates [95, 97]. However, these previous approaches fail on small text corpuses
(e.g., screennames), especially when samples cannot be linked by repeating substrings. For
this reason, we develop a technique explicitly for account naming patterns. Algorithm 3
shows a sketch of our approach which we use to guide our discussion.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 122

Algorithm 3 Generate Merchant Pattern

Input: List of accounts for a single merchant
Parameters: τ (minimum cluster size)

clusters ← GROUP accounts BY
(Σ-Seq, repeatedNames, emailDomain)

for all cluster ∈ clusters do
if cluster.size() > τ then

patterns ← MinMaxΣ-Seq(cluster)
OutputRegex(patterns, repeatedNames)

end if
end for

Common Character Classes: To capture accounts that all share the same naming struc-
ture, we begin by defining a set of character classes:

Σ = {p{Lu}, p{Ll}, p{Lo}, d, . . . }

composed of disjoint sets of characters including uppercase Unicode letters, lowercase Uni-
code letters, non-cased Unicode letters (e.g., Arabic). and digits.5 We treat all other charac-
ters as distinct classes (e.g., +, -,). We chose these character classes based on the naming
patterns of accounts we purchase, a sample of which we show in Table 7.6. We must support
Unicode as registration algorithms draw account names from English, Cyrillic, and Arabic.

From these classes we define a function Σ-Seq that captures transitions between character
classes and produces an ordered set σ1σ2 . . . σn of arbitrary length, where σi represents the
i-th character class in a string. For example, we interpret the account Wendy Hunt from
accs.biz as a sequence p{Lu}p{Ll} p{Lu}p{Ll}. We repeat this process for the name,
screenname, and email of each account. We note that for emails, we strip the email domain
(e.g., @hotmail.com) prior to processing and use this as a separate feature in the process for
pattern generation.

Repeated Substrings: While repeated text stems between multiple accounts are uncom-
mon due to randomly selected dictionary names, we find the algorithms used to generate
accounts often reuse portions of text for names, screennames, and emails. For instance, all of
the accounts in Table 7.6 from victoryservices have repeated substrings between an account’s
first name and screenname.

To codify these patterns, we define a function repeatedNames that canonicalizes text from
an account’s fields, brute forces a search of repeated substrings, and then codifies the resulting
patterns as invariants. Canonicalization entails segmenting a string into multiple substrings
based on Σ-Seq transitions. We preserve full names by ignoring transitions between upper
and lowercase letters; spaces are also omitted from canonicalization. We then convert all

5We use Java character class notation, where p{*} indicates a class of letters and Lu indicates uppercase,
Ll lowercase, and Lo non-case.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 123

substrings to their lowercase equivalent, when applicable. To illustrate this process, consider
the screenname WendyHunt5. Canonicalization produces an ordered list [wendy,hunt,5], while
the name Wendy Hunt is converted to [wendy,hunt].

The function repeatedNames proceeds by performing a brute force search for repeated
substrings between all canonicalized fields of an account. For our previous example of
WendyHunt5, one successful match exists between name[1] and screenname[1], where [i] indi-
cates the i-th position of a fields substring list; this same pattern also holds for the name and
screenname for Kristina Levy. We use this positional search to construct invariants that
hold across accounts from a single merchant. Without canonicalization, we could not spec-
ify what relationship exists between Wendy and Kristina due to differing text and lengths.
When searching, we employ both exact pattern matching as well as partial matches (e.g.,
neff found in brindagtgneff for buyaccs.com). We use the search results to construct in-
variants for both strings that must repeat as well as strings that never repeat.

Clustering Similar Accounts: Once we know the Σ-Seq, repeatedNames, and email
domain of every account from a merchant, we cluster accounts into non-overlapping groups
with identical patterns, as described in Algorithm 3. We do this on a per-merchant basis
rather than for every merchant simultaneously to distinguish which merchant an account
originates from. We prune small clusters based on a empirically determined τ to reduce false
positives, with our current implementation dropping clusters with fewer than 10 associated
accounts.

Bounding Character Lengths: The final phase of our algorithm strengthens the invari-
ants tied to Σ-Seq transitions by determining a minimum length min(σi) and maximum
length max(σi) of each character class σi. We use these to define a bound {lmin, lmax} that
captures all accounts with the same Σ-Seq. Returning to our examples in Table 7.6, we
group the account names from accs.biz and produce an expression:

p{Lu}{1, 1}p{Ll}{5, 8} {1, 1}p{Lu}{1, 1}p{Ll}{4, 4}

We combine these patterns with the invariants produced by repeatedNames to construct
a regular expression that fingerprints a cluster. We refer to these patterns for the rest of this
chapter as merchant patterns.

7.5.2 Pattern Refinement

We refine our merchant patterns by including abuse-orientated signals that detect automated
signup behavior based on the registration process, user-agent data, and timing events.

Signup Flow Events: We begin our refinement of merchant patterns by analyzing the
activities of purchased accounts during and immediately after the signup work flow. These
activities include events such as a user importing contacts and accessing a new user tutorial.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 124

Seller Popularity Name Screenname Email

victoryservices 57%
Trstram Aiken Trstramsse912 KareyKay34251@hotmail.com

Millicent Comolli Millicentrpq645 DanHald46927@hotmail.com

accs.biz 46%
Wendy Hunt WendyHunt5 imawzgaf7083@hotmail.com

Kristina Levy KristinaLevy6 exraytj8143@hotmail.com

formefor 43%
ola dingess olawhdingess TimeffTicnisha@hotmail.com

brinda neff brindagtgneff ScujheShananan@hotmail.com

spamvilla.com 38%
Kiera Barbo Kierayvydb LinJose344@hotmail.com

Jeannine Allegrini Jeanninewoqzg OpheliaStar461@hotmail.com

Table 7.6: Obfuscated sample of names, screennames, and emails of purchased accounts used
to automatically generate seller patterns. Popularity denotes the fraction of accounts that
match the pattern for an individual merchant.

The complete list of these events is sensitive information and is omitted from discussion.
Many of these events go untriggered by the automated algorithms used by account sellers,
allowing us to distinguish automated registrations from legitimate users.

Given a cluster of accounts belonging to a single merchant, we generate a binary feature
vector esig = {0, 1}n of the n possible events triggered during signup. A value of 1 indicates
that at least ρ accounts in the cluster triggered the event e. For our experiments, we specify
a cutoff ρ = 5% based on reducing false positives. Subsequently, we determine whether a
new account with event vector e matches a seller’s signup flow signature esig by computing
whether e ⊆ esig holds. The majority of legitimate accounts have |e| � |esig|, so we reject
the possibility they are automated even though their naming conventions may match a
merchant’s.

User Agents: A second component of signups is the user agent associated with a form
submission. Direct matching of user agents used by a seller with new subsequent signups is
infeasible due to sellers randomizing user agents. For instance, buytwitteraccounts.info uses
a unique (faked) agent for every account in our purchased dataset. Nevertheless, we can
identify uniformity in the naming conventions of user agents just as we did with account
names and screennames.

Given a cluster of accounts from a single seller, we generate a prefix tree containing every
account’s user agent. A node in the tree represents a single character from a user agent
string while the node’s depth mirrors the character’s position in the user agent string. Each
node also contains the fraction of agents that match the substring terminated at the given
node. Rather than find the longest common substring between all accounts, we prune the
tree so that every substring terminating at a node has a fraction of at least φ accounts
in the cluster (in practice, 5%). We then generate the set of all substrings in the prefix
tree and use them to match against the agents of newly registered accounts. The resulting
substrings include pattens such as Mozilla/5.0 (X11; Linux i686 which, if not truncated,
would include multiple spurious browser toolbars and plugins and be distinct from subsequent
signups. While in theory the resulting user agent substrings can be broad, in practice we
find they capture browser variants and operating systems before being truncated.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 125

Form Submission Timing: The final feature from the signup process we use measures
the time between Twitter serving a signup form to the time the form is submitted. We then
compute a bound {mints,maxts} for each seller to determine how quickly a seller’s algorithm
completes a form. To counter outliers, we opt for the 99% for both minimum and maximum
time. For instance, the Fiverr merchant kathlyn registers accounts within {0, 1} seconds. A
newly minted account can match a seller’s algorithm if its form completion time is within
the sellers bound.

7.5.3 Alternative Signals

There were a number of alternative signals we considered, but ultimately rejected as features
for classification. We omitted the delay between an account’s registration and subsequent
activation as we lacked training data to measure this period; all our accounts remain dormant
after purchase (minus the small fraction that were resold). We also analyzed both the
timing of registrations as well as the interarrival times between successive registrations. We
found that merchants sell accounts in blocks that sometimes span months, preventing any
interarrival analysis. Furthermore, merchants register accounts at uniformly random hours
and minutes. Finally, as merchants create accounts from IP addresses around the globe, no
subnet or country accurately captures a substantive portion of abusive registrations.

7.5.4 Evaluation

To demonstrate the efficacy of our model, we retroactively apply our classifier to all Twitter
accounts registered in the last year. In total, we identify several million6 distinct accounts
that match one of our merchant patterns and thus are potentially fraudulent. We validate
these findings by analyzing both the precision and recall of our model as well measuring the
impact of time on the model’s overall accuracy.

Precision & Recall: Precision measures the fraction of identified accounts that are in
fact fraudulent (e.g., not misclassified, legitimate users), while recall measures the fraction
of all possible fraudulent accounts that we identify, limited to the merchants that we study.
To estimate the precision of each merchant pattern, we select a random sample of 200
accounts matching each of our 26 merchant patterns,7 for a total of 4,800 samples. We then
manually analyze the login history, geographic distribution of IPs, activities, and registration
process tied to each of these accounts and label them as spam or benign. From this process,
we estimate our overall precision at 99.99%, with the breakdown of the 10 most popular
merchant pattern precisions shown in Table 7.7. In a similar vein, we estimate recall by

6Due to operational concerns, we are unable to provide exact numbers on the volume of spam accounts
registered. As such, we reference merchants and the impact they have on Twitter as a relative volume of all
several million accounts that we detect.

7We omit accounts purchased from the Freelancer merchant shivnagsudhakar as these were registered
over a year ago and thus lay outside the range of data to which we had access.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 126

Service Rel. Volume P R

buuman 0.00% 100.00% 70.67%
smokinbluelady 0.08% 100.00% 98.91%
danyelgallu 0.12% 100.00% 100.00%
twitter007 0.13% 100.00% 97.33%
kathlyn 0.13% 100.00% 93.24%
jackhack08 0.41% 100.00% 100.00%
twitfollowers 0.72% 100.00% 92.50%
denial93 2.18% 100.00% 100.00%
ghetumarian 3.05% 100.00% 85.94%
formefor 4.75% 100.00% 100.00%

shivnagsudhakar — — —
kamalkishover 29.90% 99.60% 92.73%

naveedakhtar 0.24% 100.00% 98.40%
webmentors2009 0.85% 100.00% 99.64%
truepals 1.02% 100.00% 93.08%
alexissmalley 1.68% 100.00% 98.62%
victoryservices 6.33% 99.70% 99.03%

spamvilla.com 0.71% 99.00% 98.70%
getbulkaccounts.com 2.97% 100.00% 100.00%
xlinternetmarketing.com 3.12% 100.00% 95.13%
accs.biz 4.48% 100.00% 97.62%
buytwitteraccounts.biz 6.10% 100.00% 84.27%
quickaccounts.bigcartel 10.91% 100.00% 99.73%
buytwitteraccounts.info 20.45% 99.60% 81.85%
dataentryassistant.com 24.01% 100.00% 96.57%
buyaccountsnow.com 30.75% 99.10% 95.10%
buyaccs.com 58.39% 100.00% 91.66%

Total 100.00% 99.99% 95.08%

Table 7.7: Breakdown of the merchants, the relative volume of all detected accounts in the
last year that match their pattern, precision (P) and recall (R).

calculating the fraction of all accounts we purchase that match our classifier. In total, we
correctly identify 95% of all purchased accounts; the remaining 5% of missed accounts did
not form large enough clusters to be included in a merchant’s pattern, and as a result, we
incorrectly classified them as legitimate.

Performance Over Time: The performance of our model is directly tied to accurately
tracking adaptations in the algorithms used by merchants to register accounts. To under-

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 127

●
●

●

● ● ● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

Jul Oct Jan Apr

Date of Purchase

F
ra

ct
io

n
m

at
ch

in
g

ac
co

un
ts

● accs.biz

alexissmalley

buyaccs.com

kamalkishover.freelancer

victoryservices

webmentors2009

Figure 7.5: Recall of generated merchant patterns for all purchased accounts as a function
of training the classifier on data only prior to time t.

stand how frequently these adaptations occur, we evaluate the performance of our classifier
as a function of time. Figure 7.5 shows the overall recall of each of our merchant patterns for
the sellers we track over the longest period of time. For each merchant, we train a classifier
on accounts acquired up to time t and evaluate it on all accounts from the merchant, re-
gardless of when we purchased the account. We find that some sellers such as alexissmalley
rarely alter their registration algorithm throughout our study, allowing only two purchase to
enable accurate detection. In contrast, we see a shift in registration algorithms for a number
of merchants around October and January, but otherwise patterns remain stable for long
periods. The several million accounts we identify as fraudulent should thus be viewed as a
lower bound in the event we missed an adaptation.

Pattern Overlap & Resale: The simultaneous adaptation of merchant patterns in Fig-
ure 7.5 around October and other periods leads us to believe that a multitude of merchants
are using the same software to register accounts and that an update was distributed. Alter-
natively, the account marketplace may have multiple levels of resale (or even arbitrage) where
accounts from one merchant are resold by another for an increased cost, leading to correlated
adaptations. Further evidence of correlated patterns appears in the merchant patterns we
construct, where a classifier for one merchant will accurately detect accounts sold to us by a
second merchant. For instance, the accounts sold by kamalkishover from Freelancer overlap
with the patterns of 9 other merchants, the most popular of which is buyaccountsnow.com.
We find most Fiverr sellers are independent with the exception of denial93, ghetumarian,
and formefor, whose patterns overlap with the major account web storefronts. This would
explain why these three Fiverr sellers appear to be much larger (from the perspective of
Table 7.7) compared to other Fiverr merchants. As a result, our estimates for the number

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 128

of accounts registered by each merchant may be inflated, though our final total counts only
unique matches and is thus globally accurate.

7.6 Impact of the Underground Market

We analyze the several million accounts we flag as registered by merchants operating in the
underground market and estimate the fraction that have been sold and used to generate
Twitter spam. We find that, during active months, the underground market was responsible
for registering 10—20% of all accounts that Twitter later flagged as spam. For their efforts,
we estimate that merchants generated a combined revenue between $127,000—$459,000.

7.6.1 Impact on Twitter Spam

From our seed set of 121,027 accounts purchased from 27 merchants, we are able to identify
several million fraudulent accounts that were registered by the same merchants. Of these,
73% were sold and actively tweeting or forming relationships at one point in time, while the
remaining 37% remained dormant and were yet to be purchased. Only 40% of the accounts
identified were suspended by Twitter at the time of our analysis.

In cooperation with Twitter, we analyzed the total fraction of all suspended accounts
that appear to originate from the merchants we track, shown in Figure 7.6. At its peak, the
underground marketplace was responsible for registering 60% of all accounts that would go
on to be suspended for spamming. During more typical periods of activity, the merchants
we track contribute 10—20% of all spam accounts. We note that the drop off around April
does not indicate a lack of recent activity; rather, as accounts are stockpiled for months at
a time, they have yet to be released into the hands of spammers, which would lead to their
suspension. The most damaging merchants from our impact analysis operate out of blackhat
forums and web storefronts, while Fiverr and Freelancer sellers generate orders of magnitude
fewer accounts.8 We are now actively working with Twitter to disable the accounts we
detected as fraudulent and to disrupt the future efforts of these merchants.

7.6.2 Estimating Revenue

We estimate the revenue generated by the underground market based on the total accounts
sold and the prices charged during their sale. We distinguish accounts that have been sold
from those that lay dormant and await sale based on whether an account has sent tweets
or formed relationships. For sold accounts, we identify which merchant created the account
and determine the minimum and maximum price the merchant would have charged for

8The exception to this is a Freelancer merchant kamalkishover, but based on their merchant pattern
overlapping with 9 other merchants, we believe they are simply reselling accounts.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 129

0.0

0.2

0.4

0.6

Apr 2012 Jul 2012 Oct 2012 Jan 2013 Apr 2013

Registration Date

F
ra

ct
io

n
of

 A
cc

ou
nt

s

Figure 7.6: Fraction of all suspended accounts over time that originate from the underground
market.

that account based on our historical pricing data.9 In the event multiple merchants could
have generated the account (due to overlapping registration patterns), we simply take the
minimum and maximum price of the set of matching merchants.

We estimate that the total revenue generated by the underground account market through
the sale of Twitter credentials is between the range of $127,000—$459,000 over the course
of 10 months. We note that many of the merchants we track simultaneously sell accounts
for a variety of web services, so this value likely represents only a fraction of their overall
revenue. Nevertheless, our estimated income is far less than the revenue generated from
actually sending spam [75] or selling fake anti-virus [111], where revenue is estimated in the
tens of millions. As such, account merchants are merely stepping stones for larger criminal
enterprises, which in turn disseminate scams, phishing, and malware throughout Twitter.

7.7 Disrupting the Underground Market for

Fraudulent Accounts

With Twitter’s cooperation, we disable 95% of all fraudulent accounts registered by the 27
merchants we track, including those previously sold but not yet suspended for spamming.
Throughout this process, we simultaneously monitor the underground market to track fall-
out and recovery. While we do not observe an appreciable increase in pricing or delay in
merchant’s delivering new accounts, we find 90% of all purchased accounts immediately after

9Determining the exact time of sale for an account is not possible due to the potential of miscreants
stockpiling their purchases; as such, we calculate revenue for both the minimum and maximum possible
price.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 130

our actioning are suspended on arrival. While we successfully deplete merchant stockpiles
containing fraudulent accounts, we find that within two weeks merchants were able to create
fresh accounts and resume selling working credentials.

7.7.1 Suspending Identified Accounts

In order to disrupt the abusive activities of account merchants, we worked with Twitter’s
Anti-spam, SpamOps, and Trust and Safety teams to manually validate the accuracy of our
classifier and tune parameters to set an acceptable bounds on false positives (legitimate users
incorrectly identified as fraudulent accounts). Once tuned, we applied the classifier outlined
in Section 7.5 to every account registered on Twitter going back to March, 2012, filtering
out accounts that were already suspended for abusive behavior.

From the set of accounts we identified10, Twitter iteratively suspended accounts in batches
of ten thousand and a hundred thousand before finally suspending all the remaining iden-
tified accounts. At each step we monitored the rate of users that requested their accounts
be unsuspended as a metric for false positives, where unsuspension requests require a valid
CAPTCHA solution. Of the accounts we suspended, only 0.08% requested to be unsus-
pended. However, 93% of these requests were performed by fraudulent accounts abusing the
unsuspend process, as determined by manual analysis performed by Twitter. Filtering these
requests out, we estimate the final precision of our classifier to be 99.9942%. The tuned
classifier has a recall of 95%, the evaluation of which is identical to the method presented in
Section 7.5. Assuming our purchases are a random sample of the accounts controlled by the
underground market, we estimate that 95% of all fraudulent accounts registered by the 27
merchants we track were disabled by our actioning.

7.7.2 Marketplace Fallout and Recovery

Immediately after Twitter suspended the last of the underground market’s accounts, we
placed 16 new orders for accounts from the 10 merchants we suspected of controlling the
largest stockpiles. Of 14,067 accounts we purchased, 90% were suspended on arrival due to
Twitter’s previous intervention. When we requested working replacements, one merchant
responded with:

All of the stock got suspended ... Not just mine .. It happened with all of the sellers
.. Don’t know what twitter has done ...

Similarly, immediately after suspension, buyaccs.com put up a notice on their website stating
“Временно не продаем аккаунты Twitter.com”, translating via Google roughly to “Tem-
porarily not selling Twitter.com accounts”.

10Due to operational concerns, we cannot specify the exact volume of accounts we detect that were not
previously suspended by Twitter’s existing defenses.

CHAPTER 7. DISRUPTING THE UNDERGROUND ACCOUNT MARKETPLACE 131

While Twitter’s initial intervention was a success, the market has begun to recover. Of
6,879 accounts we purchased two weeks after Twitter’s intervention, only 54% were suspended
on arrival. As such, long term disruption of the account marketplace requires both increasing
the cost of account registration (as outlined in Section 7.4) and integrating at-signup time
abuse classification into the account registration process (similar to the classifier outlined
in Section 7.5). We are now working with Twitter to integrate our findings and existing
classifier into their abuse detection infrastructure.

7.8 Summary of Results

We have presented a longitudinal investigation of the underground market tied to fraudulent
Twitter credentials, monitoring pricing, availability, and fraud perpetrated by 27 account
merchants. These merchants specialize in circumventing automated registration barriers by
leveraging thousands of compromised hosts, CAPTCHA solvers, and access to fraudulent
Hotmail, Yahoo, and mail.ru credentials. We identified which registration barriers positively
influenced the price of accounts and distilled our observations into a set of recommenda-
tions for how web services can improve existing barriers to bulk signups. Furthermore, we
developed a classifier based on at-registration abuse patterns to successfully detect several
million fraudulent accounts generated by the underground market. During active months,
the 27 merchants we monitor appeared responsible for registering 10—20% of all accounts
later flagged by Twitter as spam. For their efforts, these merchants generated an estimated
revenue between $127,000—$459,000. With Twitter’s help, we successfully suspended 95%
of all accounts registered by the 27 merchants we track, depleting the account stockpiles of
numerous criminals. We are now working with Twitter to integrate our findings and existing
classifier into their abuse detection infrastructure.

132

Chapter 8

Conclusion

As users increasingly turn to online social networks to share information and fuel political
discourse, they are exposed to scams, phishing, and malware which social network operators
currently lack adequate defenses to prevent. Such attacks exploit the trust users place in
their relationships and the integrity of information found in online social networks.

To address these challenges, we analyzed the range of threats currently targeting online
social networks through the lens of Twitter. We mapped out the support infrastructure
that is critical to online social network abuse, characterized the tools and techniques used to
disseminate malignant content, and evaluated how such attacks ultimately realize a profit for
the attackers involved. In the process, we argue that the for-profit infrastructure provided
by the underground economy in the form of fake accounts and affiliate programs has become
a fundamental weak point of abuse.

To this end, we developed two new strategies for preventing abuse in social networks.
Our first defense identifies abusive links in online social networks before they are distributed
to recipients. Our second defense identifies fraudulent accounts at the time of their regis-
tration, preventing criminals from ever interacting with the legitimate users of online so-
cial networks. Combined, these two strategies effectively defend both the ingress points of
abuse—fraudulent and compromised account—and the egress points of abuse—spam links
that direct victims to spamvertised products, fake software, clickfraud, banking theft, and
malware that converts a victim’s machine into a commodity for the underground economy.

8.1 Impact

The core value of conducting data-driven security research is exposing flaws in existing as-
sumptions about how to address spam and abuse as well as fueling the adoption of meaning-
ful, long-term solutions. Such solutions must avoid the reactive development cycle typified
by industry-lead security and overcome the ease with which criminals adapt to new defenses.
We highlight some of our most important findings and the implications they have for the
social network research community and industry.

CHAPTER 8. CONCLUSION 133

8.1.1 Failure of Existing Defenses

Our results in Chapter 3, Chapter 4, and Chapter 5 demonstrate that existing technologies
such as blacklists or abuse-related heuristics are failing to prevent spam and abuse. Blacklist
updates are too slow to operate in the real-time environment of social networks, where the
majority of victims are exposed to harmful content before existing blacklists even become
aware of the threat. Furthermore, if social network operators do not crawl linked content
to unravel redirect chains, simple evasive techniques such as URL shortening completely
undermine any effectiveness blacklists might have. Similarly, even though abuse-related
heuristics are able to identify fraudulent accounts within a day of when criminals engage
with victims, the ease by which criminals can generate new accounts leads to a constant
stream of abuse.

Contrary to research that advocates identifying fraudulent accounts via their social graph,
we demonstrate that spammers rarely form relationships with legitimate users. Instead, they
rely on features provided by social networks to reach a global audience such as mentions and
hashtags. Even so, targeting these individual features with abuse-related heuristics is a
poor solution. Spammers are constantly adapting how they engage with victims. As such,
the signals that heuristics rely upon are easily evaded by criminals. At the same time, the
perpetual development cycle of new social networking features means that defenders must
enact new spam heuristics for each product change, leaving defenders in a purely reactive
position. The components we believe are fundamental to abuse (and thus more difficult
to evade) are the ingress points of spam—compromised and fraudulent account—and the
egress points of spam—spam links that direct victims off of social networks to a web page
that generates a profit. For this reason, we advocate that defenders should concentrate on
these two points rather than fighting the intermediate, multifaceted abuse conducted through
multiple engagement vectors.

8.1.2 Adopting New Defenses

In Chapter 6 and Chapter 7, we advocate two new strategies for preventing abuse in social
networks. Our first defense identifies abusive links in online social networks (or any web
service) before they are distributed to recipients. Our second defense relies on directly en-
gaging with the underground economy that fuels online social network abuse to understand
how millions of fake accounts are registered in an automated fashion. We leverage this un-
derstanding to detect abusive accounts at the time of their registration, preventing criminals
from ever interacting with the legitimate users of online social networks.

With respect to industry adoption, we know that bit.ly is using a similar technique to
the one we presented in Chapter 6 and that Twitter is also using URL-based features for
detecting abuse. Furthermore, we are actively working with Twitter, Google, and other
major social networking companies to adapt our strategy for detecting fraudulent accounts
(presented in Chapter 7) to their networks.

CHAPTER 8. CONCLUSION 134

8.2 Parting Words

The challenge of securing social networks never ends. So long as legal and technical solutions
lag in preventing criminals from generating a profit from abuse, a threat will always exist
to users engaging in online social networks. When researchers develop strategies to address
this challenge, they should move beyond simple metrics such as the accuracy of a classifier
or false positives to measure success. Instead, more meaningful metrics that treat abuse
as an economic problem can be adopted. These include reaction time to new threats; the
user perception of spam throughout a social network and its impact on engagement; or
whether defenses increase the cost incurred by criminals. Such metrics capture the economic
value derived by criminals or the value lost to companies targeted with spam, both of which
ultimately fuel the abuse landscape. Finally, solutions to online social network abuse should
be data-driven, combining domain expertise, machine learning, and distributed computation
to identify what threats are most pressing. This dissertation is an example of the value
derived from empirical security research.

135

Bibliography

[1] Advanced Network Technology Center. Univeristy of Oregon Route Views Project.
http://www.routeviews.org/. 2010.

[2] Alexa. Alexa Top 500 Global Sites. http://www.alexa.com/topsites. 2012.

[3] Amazon Web Services. Amazon EC2 Instance Types. http://aws.amazon.com/ec2/
instance-types/. 2009.

[4] D.S. Anderson, C. Fleizach, S. Savage, and G.M. Voelker. “Spamscatter: Character-
izing internet scam hosting infrastructure”. In: USENIX Security. 2007.

[5] E. Bakshy, B. Karrer, and L. Adamic. “Social influence and the diffusion of user-
created content”. In: Proceedings of the 10th ACM conference on Electronic commerce.
ACM. 2009, pp. 325–334.

[6] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. “The role of social networks in
information diffusion”. In: Proceedings of the 21st international conference on World
Wide Web. ACM. 2012, pp. 519–528.

[7] M. Barreno, B. Nelson, R. Sears, A.D. Joseph, and J. Tygar. “Can machine learning
be secure?” In: Proceedings of the ACM Symposium on Information, Computer and
Communications Security. 2006.

[8] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. “Detecting Spammers on
Twitter”. In: Proceedings of the Conference on Email and Anti-Spam (CEAS). 2010.

[9] bit.ly. Spam and Malware Protection. http://blog.bit.ly/post/138381844/spam-
and-malware-protection. 2009.

[10] C. Buenviaje. Fake Facebook Toolbar Makes Rounds. http://blog.trendmicro.com/
trendlabs-security-intelligence/fake-facebook-toolbar-makes-rounds/.
2013.

[11] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. “Measuring pay-per-install: The
commoditization of malware distribution”. In: USENIX Security Symposium. 2011.

[12] CBL. Composite Blocking List. http://cbl.abuseat.org/. 2012.

[13] K. Chellapilla and A. Maykov. “A taxonomy of JavaScript redirection spam”. In:
Proceedings of the 3rd International Workshop on Adversarial Information Retrieval
on the Web. 2007.

BIBLIOGRAPHY 136

[14] S. Chhabra, A. Aggarwal, F. Benevenuto, and P. Kumaraguru. “Phi.sh/$oCiaL: The
Phishing Landscape Through Short URLs”. In: Proceedings of the 8th Annual Col-
laboration, Electronic messaging, Anti-Abuse and Spam Conference. 2011.

[15] C. Y. Cho, J. Caballero, C. Grier, V. Paxson, and D. Song. “Insights from the Inside:
A View of Botnet Management from Infiltration”. In: Proceedings of the USENIX
Workshop on Large-Scale Exploits and Emergent Threats. 2010.

[16] A. Chowdhury. State of Twitter spam. http://blog.twitter.com/2010/03/state-
of-twitter-spam.html. Mar. 2010.

[17] G. Cluley. This you????: Phishing attack hits Twitter users. http://www.sophos.
com/blogs/gc/g/2010/02/24/phishing-attack-hits-twitter-users/. 2010.

[18] D. Coldewey. Romney Twitter account gets upsurge in fake followers, but from where?
http://www.nbcnews.com/technology/romney-twitter-account-gets-upsurge-

fake-followers-where-928605. 2012.

[19] M. Cova, C. Kruegel, and G. Vigna. “Detection and analysis of drive-by-download
attacks and malicious JavaScript code”. In: Proceedings of the 19th International
Conference on World Wide Web. 2010.

[20] N. Dalvi, P. Domingos, S.S. Mausam, and D. Verma. “Adversarial classification”.
In: Proceedings of the International Conference on Knowledge Discovery and Data
Mining. 2004.

[21] G. Danezis and P. Mittal. “Sybilinfer: Detecting sybil nodes using social networks”.
In: Proceedings of the Network and Distributed System Security Symposium (NDSS).
2009.

[22] J. Duchi and Y. Singer. “Efficient Online and Batch Learning Using Forward Back-
ward Splitting”. In: Journal of Machine Learning Research 10 (Dec. 2009), pp. 2899–
2934.

[23] M. Duggan and J. Brenner. The Demographics of Social Media Users. http : / /

pewinternet.org/Commentary/2012/March/Pew-Internet-Social-Networking-

full-detail.aspx. 2013.

[24] P. Eckersley. “How Unique Is Your Web Browser?” In: Privacy Enhancing Technolo-
gies (PET). 2010.

[25] S. Egelman, L.F. Cranor, and J. Hong. “You’ve been warned: an empirical study of
the effectiveness of web browser phishing warnings”. In: Proceeding of the Conference
on Human Factors in Computing Systems. 2008.

[26] W. Englund and K. Lally. In Protests, Two Russias Face Off. http://wapo.st/
wiVnV8. 2011.

[27] J. Epstein. President Obama Google+ Chat Gets Personal. http://politi.co/

zTvgQO. 2012.

BIBLIOGRAPHY 137

[28] Facebook. Explaining Facebook’s Spam Prevention Systems. http://blog.facebook.
com/blog.php?post=403200567130. 2010.

[29] Facebook. Newsroom. https://newsroom.fb.com/Key-Facts. 2013.

[30] M. Felegyhazi, C. Kreibich, and V. Paxson. “On the potential of proactive domain
blacklisting”. In: Proceedings of the USENIX Conference on Large-scale Exploits and
Emergent Threats. Apr. 2010.

[31] R. Flores. The real face of Koobface. http://blog.trendmicro.com/the-real-
face-of-koobface/. Aug. 2009.

[32] J. Franklin, V. Paxson, A. Perrig, and S. Savage. “An Inquiry into the Nature and
Causes of the Wealth of Internet Miscreants”. In: Proceedings of ACM Conference on
Computer and Communications Security. Oct. 2007, pp. 375–388.

[33] F–Secure. Twitter now filtering malicious URLs. http : / / www . f - secure . com /

weblog/archives/00001745.html. 2009.

[34] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B.Y. Zhao. “Detecting and characteriz-
ing social spam campaigns”. In: Proceedings of the Internet Measurement Conference
(IMC). 2010.

[35] S. Garera, N. Provos, M. Chew, and A.D. Rubin. “A framework for detection and
measurement of phishing attacks”. In: Proceedings of the 2007 ACM Workshop on
Recurring Malcode. 2007.

[36] E. Gilbert and K. Karahalios. “Predicting tie strength with social media”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM.
2009, pp. 211–220.

[37] D. Goodin. “Scammers skirt spam shields with help from Adobe Flash”. In: The
Register (2010). http://www.theregister.co.uk/2008/09/04/spammers_using_
adobe_flash/.

[38] J. D. Goodman. In Mexico, Social Media Become a Battleground in the Drug War.
http://nyti.ms/wgWUZb. 2011.

[39] Google. Google Safebrowsing API. http://code.google.com/apis/safebrowsing/.
2010.

[40] M. Granovetter. “The strength of weak ties”. In: American journal of sociology (1973),
pp. 1360–1380.

[41] C. Grier, K. Thomas, V. Paxson, and M. Zhang. “@spam: the underground on 140
characters or less”. In: Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS). 2010.

[42] C. Grier, L. Ballard, J. Caballero, N. Chachra, C.J. Dietrich, K. Levchenko, P.
Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, et al. “Manufacturing Compro-
mise: The Emergence of Exploit-as-a-Service”. In: Proceedings of the ACM Conference
on Computer and Communications Security (CCS). 2012.

BIBLIOGRAPHY 138

[43] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. “Information diffusion through
blogspace”. In: Proceedings of the 13th international conference on World Wide Web.
ACM. 2004, pp. 491–501.

[44] Hadoop. Hadoop Distributed File system. http://hadoop.apache.org/hdfs/. 2010.

[45] J. Halliday. David Cameron Considers Banning Suspected Rioters from Social Media.
http://bit.ly/xI8MJs. 2011.

[46] D. Harvey. Trust and Safety. http://blog.twitter.com/2010/03/trust-and-
safety.html. Mar. 2010.

[47] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. New York, NY: Springer, 2009.

[48] C. Herley. “So long, and no thanks for the externalities: The rational rejection of
security advice by users”. In: Proceedings of the 2009 Workshop on New Security
Paradigms Workshop. 2009.

[49] T. Holz, C. Gorecki, F. Freiling, and K. Rieck. “Detection and mitigation of fast-flux
service networks”. In: Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS). 2008.

[50] C.Y. Hong, F. Yu, and Y. Xie. “Populated IP Addresses—Classification and Appli-
cations”. In: Proceedings of the 19th ACM Conference on Computer and Communi-
cations Security. 2012.

[51] HootSuite. Kapow! HootSuite Fights the Evils of Phishing, Malware, and Spam. http:
//blog.hootsuite.com/hootsuite-fights-malware-phishing/. 2010.

[52] D. Ionescu. Twitter Warns of New Phishing Scam. http://www.pcworld.com/

article/174660/twitter_warns_of_new_phishing_scam.html. Oct. 2009.

[53] N. Jindal and B. Liu. “Opinion Spam and Analysis”. In: Proceedings of the Interna-
tional Conference on Web Search and Web Data Mining. 2008.

[54] Joewein. Joewein.de LLC – fighting spam and scams on the Internet. http://www.
joewein.net/.

[55] John E. Dunn. “Zlob Malware Hijacks YouTube”. In: (2007). http://www.pcworld.
com/article/133232/zlob_malware_hijacks_youtube.html.

[56] J.P. John, A. Moshchuk, S.D. Gribble, and A. Krishnamurthy. “Studying spamming
botnets using Botlab”. In: Usenix Symposium on Networked Systems Design and
Implementation (NSDI). 2009.

[57] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G.M. Voelker, V. Paxson, and
S. Savage. “Spamalytics: An empirical analysis of spam marketing conversion”. In:
Proceedings of the 15th ACM Conference on Computer and Communications Security.
2008.

BIBLIOGRAPHY 139

[58] H. Kelley. 83 million Facebook accounts are fakes and dupes. http://www.cnn.com/
2012/08/02/tech/social-media/facebook-fake-accounts/index.html. 2012.

[59] Kim Zetter. “Trick or Tweet? Malware Abundant in Twitter URLs”. In: Wired (2009).

[60] F. Klien and M. Strohmaier. “Short Links Under Attack: Geographical Analysis of
Spam in a URL Shortener Network”. In: Proceedings of the Conference on Hypertext
and Social Media. 2012.

[61] B. Krebs. Battling the Zombie Web Site Armies. https://krebsonsecurity.com/
2011/01/battling-the-zombie-web-site-armies. 2011.

[62] B. Krebs. Spam Volumes: Past & Present, Global & Local. http://krebsonsecurity.
com/2013/01/spam-volumes-past-present-global-local/. 2012.

[63] B. Krebs. Twitter Bots Drown Out Anti-Kremlin Tweets. http://bit.ly/w9Gnaz.
2011.

[64] B. Krebs. Twitter Bots Target Tibetan Protests. http://krebsonsecurity.com/
2012/03/twitter-bots-target-tibetan-protests/. 2012.

[65] C. Kreibich, C. Kanich, K. Levchenko, B. Enright, G.M. Voelker, V. Paxson, and S.
Savage. “Spamcraft: An inside look at spam campaign orchestration”. In: USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET). 2009.

[66] H. Kwak, C. Lee, H. Park, and S. Moon. “What is Twitter, a Social Network or
a News Media?” In: Proceedings of the International World Wide Web Conference.
2010.

[67] K. Lee, J. Caverlee, and S. Webb. “Uncovering social spammers: social honeypots+
machine learning”. In: Proceeding of the International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2010.

[68] S. Lee and J. Kim. “Warningbird: Detecting Suspicious URLs in Twitter Stream”.
In: Symposium on Network and Distributed System Security (NDSS). 2012.

[69] K. Levchenko, A. Pitsillidis, N. Chachra, Br, o. Enright, M. Felegyhazi, C. Grier, T.
Halvorson, C. Kanich, C. Kreibich, H. Liu, D. McCoy, N. Weaver, V. Paxson, G. M.
Voelker, and S. Savage. “Click Trajectories: End-to-End Analysis of the Spam Value
Chain”. In: Proceedings of the IEEE Symposium on Security and Privacy. May 2011.

[70] D. Lowd and C. Meek. “Adversarial learning”. In: Proceedings of the International
Conference on Knowledge Discovery in Data Mining. 2005.

[71] C. Ludl, S. McAllister, E. Kirda, and C. Kruegel. “On the effectiveness of techniques
to detect phishing sites”. In: Detection of Intrusions and Malware, and Vulnerability
Assessment (2007).

[72] J. Ma, L.K. Saul, S. Savage, and G.M. Voelker. “Beyond blacklists: learning to detect
malicious web sites from suspicious urls”. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 2009.

BIBLIOGRAPHY 140

[73] J. Ma, L.K. Saul, S. Savage, and G.M. Voelker. “Identifying suspicious URLs: an
application of large-scale online learning”. In: Proceedings of the 26th Annual Inter-
national Conference on Machine Learning. 2009.

[74] MaxMind. Resources for Developers. http://www.maxmind.com/app/api. 2010.

[75] D. McCoy, A. Pitsillidis, G. Jordan, N. Weaver, C. Kreibich, B. Krebs, G.M. Voelker,
S. Savage, and K. Levchenko. “Pharmaleaks: Understanding the business of online
pharmaceutical affiliate programs”. In: Proceedings of the 21st USENIX conference
on Security symposium. USENIX Association. 2012.

[76] R. McDonald, K. Hall, and G. Mann. “Distributed Training Strategies for the Struc-
tured Perceptron”. In: Proceedings of the North American Association for Computing
Linguistics (NAACL). Los Angeles, CA, June 2010.

[77] D.K. McGrath and M. Gupta. “Behind phishing: an examination of phisher modi
operandi”. In: Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats. 2008.

[78] R. McMillan. Stolen Twitter accounts can fetch $1,000. http://www.computerworld.
com/s/article/9150001/Stolen_Twitter_accounts_can_fetch_1_000. 2010.

[79] M. McPherson, L. Smith-Lovin, and J. Cook. “Birds of a feather: Homophily in social
networks”. In: Annual review of sociology (2001), pp. 415–444.

[80] B. Meeder, J. Tam, P. G. Kelley, and L. F. Cranor. “RT @IWantPrivacy: Widespread
Violation of Privacy Settings in the Twitter Social Network”. In: Web 2.0 Security
and Privacy. 2010.

[81] M. Memmott. AP Twitter Account Hacked, Tweet About Obama Shakes Market.
http://www.npr.org/blogs/thetwo-way/2013/04/23/178620410/ap-twitter-

account-hacked-tweet-about-obama-shakes-market. 2013.

[82] A. Metwally and M. Paduano. “Estimating the number of users behind ip addresses for
combating abusive traffic”. In: Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2011.

[83] B. Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson. “What’s Clicking What?
Techniques and Innovations of Today’s Clickbots”. In: Detection of Intrusions and
Malware, and Vulnerability Assessment (2011), pp. 164–183.

[84] E. Mills. Facebook hit by phishing attacks for a second day. http://news.cnet.com/
8301-1009_3-10230980-83.html. 2009.

[85] A. Monroy-Hernández, E. Kiciman, M. De Choudhury, S. Counts, et al. “The new war
correspondents: the rise of civic media curation in urban warfare”. In: Proceedings of
the 2013 conference on Computer supported cooperative work. ACM. 2013, pp. 1443–
1452.

BIBLIOGRAPHY 141

[86] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G.M. Voelker, and S. Savage.
“Re: Captchas–understanding captcha-solving services in an economic context”. In:
USENIX Security Symposium. Vol. 10. 2010.

[87] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G.M. Voelker. “An analysis
of underground forums”. In: Proceedings of the Internet Measurement Conference
(IMC). 2011.

[88] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G.M. Voelker. “Dirty Jobs:
The Role of Freelance Labor in Web Service Abuse”. In: Proceedings of the 20th
USENIX Security Symposium. 2011.

[89] M. Motoyama, D. McCoy, K. Levchenko, Geoffrey M. Voelker, and S. Savage. “Dirty
Jobs: The Role of Freelance Labor in Web Service Abuse”. In: Proceedings of the
USENIX Security Symposium. San Francisco, CA, Aug. 2011.

[90] Mozilla. API & Language References. https : / / addons . mozilla . org / en - US /

developers/docs/reference. 2010.

[91] Mozilla. Netscape Plugin API. http://www.mozilla.org/projects/plugins/.
2004.

[92] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. “Detecting spam web pages
through content analysis”. In: Proceedings of the 15th International Conference on
World Wide Web. 2006.

[93] Office of the Press Secretary. White House to Host Twitter @TOWNHALL. http:
//1.usa.gov/zplVBV. 2011.

[94] Pew Research Center. Social Networking Popular Across Globe. http://www.pewglobal.
org/2012/12/12/social-networking-popular-across-globe/. 2012.

[95] A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M. Voelker, V. Paxson, N.
Weaver, and S. Savage. “Botnet Judo: Fighting Spam with Itself”. In: (2010).

[96] A. Pitsillidis, K. Levchenko, C. Kreibich, C. Kanich, G.M. Voelker, V. Paxson, N.
Weaver, and S. Savage. “Botnet Judo: Fighting spam with itself”. In: Proceedings of
the Network and Distributed System Security Symposium (NDSS). 2010.

[97] P. Prasse, C. Sawade, L, N. wehr, and T. Scheffer. “Learning to Identify Regular Ex-
pressions that Describe Email Campaigns”. In: International Conference on Machine
Learning. 2012.

[98] J. Preston. What Does 40 Mean to You? http://nyti.ms/zfMuQ2. 2011.

[99] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. “All Your iFRAMEs Point
to Us”. In: Proceedings of the 17th Usenix Security Symposium. July 2008, pp. 1–15.

[100] M.A. Rajab, L. Ballard, P. Mavrommatis, N. Provos, and X. Zhao. “The Nocebo
Effect on the Web: An Analysis of Fake Anti-Virus Distribution”. In: USENIX Work-
shop on Large-Scale Exploits and Emergent Threats (LEET). 2010.

BIBLIOGRAPHY 142

[101] Ramach, A. ran, N. Feamster, and S. Vempala. “Filtering spam with behavioral black-
listing”. In: Proceedings of the 14th ACM Conference on Computer and Communica-
tions Security. 2007.

[102] L. Rao. Twitter Seeing 90 Million Tweets Per Day, 25 Percent Contain Links. http:
//techcrunch.com/2010/09/14/twitter-seeing-90-million-tweets-per-day/.
Sept. 2010.

[103] M. Richtel. Egypt Cuts Off Most Internet and Cell Service. http://nyti.ms/z44cWc.
2011.

[104] W.E. Ricker. Computation and interpretation of biological statistics of fish popula-
tions. Vol. 191. Department of the Environment, Fisheries and Marine Service Ottawa,
1975.

[105] E. Schonfeld. When it comes to URL Shoteners, bit.ly is now the biggest. http:

//techcrunch.com/2009/05/07/when-it-comes-to-url-shorteners-bitly-is-

now-the-biggest/. May 2009.

[106] S. Sinha, M. Bailey, and F. Jahanian. “Improving spam blacklisting through dynamic
thresholding and speculative aggregation”. In: Proceedings of the 17th Annual Net-
work & Distributed System Security Symposium. 2010.

[107] S. Sinha, M. Bailey, and F. Jahanian. “Shades of grey: On the effectiveness of reputation-
based blacklists”. In: 3rd International Conference on Malicious and Unwanted Soft-
ware. 2008.

[108] socialcapital. Twitter, Facebook and YouTube’s Role in Arab Spring. http://bit.
ly/xxBNmo. 2011.

[109] J. Song, S. Lee, and J. Kim. “Spam Filtering in Twitter using Sender-Receiver Rela-
tionship”. In: Proceedings of International Symposium on Recent Advances in Intru-
sion Detection (RAID). 2011.

[110] B. Stone. “Facebook Joins With McAfee to Clean Spam From Site”. In: New York
Times (2010).

[111] B. Stone-Gross, R. Abman, R. Kemmerer, C. Kruegel, D. Steigerwald, and G. Vi-
gna. “The Underground Economy of Fake Antivirus Software”. In: Proceedings of the
Workshop on Economics of Information Security (WEIS). 2011.

[112] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer, C.
Kruegel, and G. Vigna. “Your Botnet is My Botnet: Analysis of a Botnet Takeover”.
In: Proceedings of the 16th ACM conference on Computer and communications secu-
rity. 2009, pp. 635–647.

[113] B. Stone-Gross, R. Stevens, A. Zarras, R. Kemmerer, C. Kruegel, and G. Vigna.
“Understanding Fraudulent Activities in Online Ad Exchanges”. In: Proceedings of
the Internet Measurement Conference (IMC). 2011.

BIBLIOGRAPHY 143

[114] G. Stringhini, C. Kruegel, and G. Vigna. “Detecting Spammers on Social Networks”.
In: Proceedings of the Annual Computer Security Applications Conference (ACSAC).
2010.

[115] K. Thomas, C. Grier, and V. Paxson. “Adapting social spam infrastructure for politi-
cal censorship”. In: Proceedings of the 5th USENIX conference on Large-Scale Exploits
and Emergent Threats. USENIX Association. 2012.

[116] K. Thomas, C. Grier, V. Paxson, and D. Song. “Suspended Accounts In Retrospect:
An Analysis of Twitter Spam”. In: Proceedings of the Internet Measurement Confer-
ence. Nov. 2011.

[117] K. Thomas and D. M. Nicol. “The Koobface Botnet and the Rise of Social Malware”.
In: Proceedings of The 5th International Conference on Malicious and Unwanted Soft-
ware (Malware 2010). 2010.

[118] TrendMicro. The Dark Side of Social Media. http://http://bit.ly/zn217U. 2011.

[119] Twitter. Building on Open Source. http://blog.twitter.com/2009/01/building-
on-open-source.html. 2010.

[120] Twitter. Numbers. http://blog.twitter.com/2011/03/numbers.html. Mar. 2011.

[121] Twitter. Terms of service. http://twitter.com/tos. May 2011.

[122] Twitter. The Twitter Rules. http://help.twitter.com/forums/26257/entries/
18311. 2009.

[123] Twitter. The Twitter Rules. http://support.twitter.com/entries/18311-the-
twitter-rules. 2010.

[124] Twitter. Twitter API Wiki. http://dev.twitter.com/doc. 2010.

[125] Twitter Engineering. The Engineering Behind Twitter’s New Search Experience. http:
//bit.ly/iuRwp8. 2011.

[126] URIBL. URIBL.COM – Realtime URI blacklist. http://uribl.com/. 2010.

[127] S. Venkataraman, S. Sen, O. Spatscheck, P. Haffner, and D. Song. “Exploiting network
structure for proactive spam mitigation”. In: Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium. 2007.

[128] Gang Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu, Manish Mohanlal, Haitao
Zheng, and Ben Y. Zhao. “Serf and Turf: Crowdturfing for Fun and Profit”. In:
Proceedings of the International World Wide Web Conference. 2011.

[129] Y. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King. “Au-
tomated Web patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit
Browser Vulnerabilities”. In: Proceedings of the 2006 Network and Distributed System
Security Symposium (NDSS). Feb. 2006.

[130] R. Wauters. China Blocks Access To Twitter, Facebook After Riots. http://tcrn.
ch/yaxKjP. 2009.

BIBLIOGRAPHY 144

[131] K.Q. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. “Feature
Hashing for Large Scale Multitask Learning”. In: Proceedings of the International
Conference on Machine Learning (ICML). 2009.

[132] C. Whittaker, B. Ryner, and M. Nazif. “Large-Scale Automatic Classification of
Phishing Pages”. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS). 2010.

[133] K. Wickre. Celebrating Twitter7. https://blog.twitter.com/2013/celebrating-
twitter7. 2013.

[134] C. Wisniewski. Twitter hack demonstrates the power of weak passwords. http://www.
sophos.com/blogs/chetw/g/2010/03/07/twitter-hack-demonstrates-power-

weak-passwords/. Mar. 2010.

[135] M. Wu, R.C. Miller, and S.L. Garfinkel. “Do security toolbars actually prevent phish-
ing attacks?” In: Proceedings of the SIGCHI conference on Human Factors in com-
puting systems. 2006.

[136] Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov. “Spamming
botnets: Signatures and characteristics”. In: Proceedings of ACM SIGCOMM (2008).

[137] S. Yadav, A.K.K. Reddy, A.L.N. Reddy, and S. Ranjan. “Detecting Algorithmically
Generated Malicious Domain Names”. In: Proceedings of the Internet Measurement
Conference (IMC). 2010.

[138] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu. “Analyzing Spammers’ Social
Networks for Fun and Profit: a Case Study of Cyber Criminal Ecosystem on Twitter”.
In: Proceedings of the 21st International Conference on World Wide Web. 2012.

[139] H. Yu, M. Kaminsky, P.B. Gibbons, and A. Flaxman. “Sybilguard: defending against
sybil attacks via social networks”. In: ACM SIGCOMM Computer Communication
Review (2006).

[140] B. Zadrozny, J. Langford, and N. Abe. “Cost-Sensitive Learning by Cost-Proportionate
Example Weighting”. In: Proceedings of the IEEE International Conference on Data
Mining (ICDM). 2003.

[141] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. “Spark: Cluster
Computing with Working Sets”. In: Proceedings of the 2nd USENIX Conference on
Hot topics in Cloud Computing. 2010.

[142] Y. Zhang, J.I. Hong, and L.F. Cranor. “Cantina: a content-based approach to detect-
ing phishing web sites”. In: Proceedings of the 16th international conference on World
Wide Web. 2007.

[143] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and E. Gillum. “Botgraph: Large
scale spamming botnet detection”. In: Proceedings of the 6th Symposium on Network
System Design and Implementation (NSDI). 2009.

