Delay Comparison of Different Switch Architectures

Stephan Adams
Longbo Huang
Abhay Parekh
Jean Walrand

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-204
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-204.html

December 13, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Delay Comparison of Different Switch Architectures

by Stephan Adams

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Nl Cor Rl BT . &

Professor Jean Walrand
Research Advisor

iZ/n//s

(Date)

Aecy | [urebhe

Professor Abhay Pm <
Second Reader

1215 |13
/ (ﬂate)

Delay Comparison of Different Switch Architectures

S. H. Adams, L. Huang, A. Parekh, and J. Walrand

December 12, 2013

Abstract

We compare the delays experienced by packet flows when transmitted using
different scheduling algorithms across a crossbar switch. The two scheduling algo-
rithms we consider are iterative SLIP [5] and QCSMA [3]. We first compare them
under the assumptions that all packets have the same length, and then under the
assumption that the half the packets have the maximum allowable length and half
have the minimum allowable length. Our findings suggest that the variation in
packet length has a non-negligible effect on throughput vs delay results. For long-
lived TCP connections with varying packet lengths, QCSMA derived schedulers
seem to do only marginally better than SLIP. In highly loaded core switches with
many short-lived TCP connections, we expect to see a large improvement in delay
performance of QCSMA over SLIP.

1 Introduction

Computer networks have made their way to the core of our modern lifestyles.
Almost any information can (and often must) be found on the internet.
Many of the services people use on a daily basis rely on distributed processing
of requests housed in enormous datacenters scattered across the country and
the world. All these networks require good routing technologies to be used
effectively.

What is the best way to measure the efficacy of a router? Two obvious
metrics are the throughput and delay characteristics of the switches. Tradi-
tionally routers have been evaluated based on their throughput performance.
This is an excellent metric as, in the internet routing, paths are subject to
too much uncertainty to hope that optimizing the delays in a single switch
to have a large influence on the roundtrip time of your packets.

On the other hand, in a datacenter setting, paths are no longer uncer-
tain, as the whole network is controlled by a single entity. This allows delay
to become a metric worth considering. The other reason that delay opti-
mization is a metric worth pursuing is because the distributed applications
run on datacenters are often very delay sensitive. User facing applications
often ned to return results before a given time threshold or the work must
be discarded.

Although delay is clearly a very important metric to consider in these
settings, it is not as readily analyzed as throughput, which makes it more
difficult to give a reliable design recommendation. In order to model the
effects of different switch schedulers we have built a network simulator using
assumptions meant to mimic a datacenter environment. We have compared
the performance of two relevant scheduling architectures in the hopes of
demonstrating that schedulers that are provably throughput optimal have
better delay performance when switches are subjected to high loads.

2 Switch Schedulers

We consider two different scheduling algorithms used to route packets across
a crossbar based switch. Iterative SLIP — a practical scheme design by Nick
McKeown to solve the issues of head of line delay [5], and QCSMA — a prob-
abilistic scheduling policy developed and optimized to be full throughput by
Libin Jiang [3].

Our assumptions on the hardware for both our switches is the same, the
only differentiating component is the scheduler which determines which set

of packets will be transmitted at each transmission opportunity. A good
scheduler can support an arbitrarily high load, and provides a low delay
per packet. In practice the scheduler will incur some overhead because
it takes time to generate a feasible transmission schedule. The schedulers
use an (ideally) small number of contention slots at the beginning of each
packet transmission opportunity during which the inputs and the outputs
can exchange information to determine the best schedule. The communi-
cation mechanism between the inputs and outputs can be quite powerful
in practice. We assume that each input is connected to each output by a
bidirectional one bit line. This allows each output and input to exchange 1
bit in each contention slot. For the SLIP based scheduler the packets are
broken into smaller cells so that the schedules can be generated for a given
set of cells, after which they are transmitted over the crossbar, and then
the process is repeated. The QCSMA based algorithms do not synchronize
scheduling times, rather it is constantly generating new schedules across the
unused portion of the crossbar.

2.1 SLIP

Iterative SLIP is a very intuitive and practical scheme invented by Nick
Mckeown [5]. It has been implemented in real systems and yields extremely
good performance. It is difficult to prove anything about this scheduler, but
simulations show that it performs very well in many key loading regimes.

How it works:

The motivation behind SLIP was to develop a simple protocol that avoids
the use of randomization in the scheduler. SLIP achieves this by adding a
very simple state to the switch. Each input keeps track of the output to
which it last transmitted a packet. Similarly each output keeps track of the
last input from which it received a packet. Armed with this information,
the switch follows these three phases in each contention slot:

SLIP Phases

e 1) Every unscheduled input sends requests to the outputs for which it
has at least one packet to deliver.

e 2) Every unscheduled output admits the packet request from the input
giving round robin priority from the last input it served (s'). i.e. first
admitting requests from s’ + 1 then s’ + 2 etc.

e 3) Every input schedules itself for the output that admitted it giving a

round robin priority from the last output it transmitted through (d’).
i.e. first scheduling an admission from d’ + 1 then d’ + 2 etc.

After the last contention slot, the scheduled inputs and outputs trans-
mit a single packet and update their state. Once the packets have been
successfully transmitted, the cycle continues. Note that since the time it
takes to transmit a packet depends on its length, there will be a lot of idle
time in the system if packet length varies significantly. In practice this is
addressed by breaking packets up into small equal sized cells so scheduling
can be done on a cell by cell basis as opposed to a packet by packet basis.
In our simulations we consider both the case of all packets being the same
size, and the case in which there is a bimodal distribution of packet sizes.
The overhead necessary to split packets into smaller cells involves adding a
header to each cell, and using a larger number of contention slots since they
will be needed to schedule per cell size, not packet size. In our simulations
we assumed both of these contributed only a negligible amount to the total
delay.

2.2 Ideal QCSMA

QCSMA is a throughput optimal scheme inspired by Carrier Sense Multiple
Access protocols developed for scheduling nodes in a wireless environment.
Because it was designed for wireless environments it assumes a much more
restricted feedback model than that used by SLIP, which may be one of the
reasons that the practical implementations perform worse than expected.
The only feedback traditional QCSMA assumes to be available takes the
form of a broadcast to all inputs or outputs. This differs markedly from the
crossbar where it is possible to provide individual feedback to each input
and outputs.

Ideal QCSMA is guaranteed to be full throughput. Unfortunately the
delay performance of flows will depend on the backlog of the queues which
they enter, which penalizes low rate flows. The ideal QCSMA takes place in
continuous time: so it can run arbitrarily fast, as well as being immune to
collisions, and thus represents a performance bound for the other schedulers.

How it works:

At the beginning of each transmission opportunity, each input s gen-
erates an exponential timer X, for each nonempty queue destined for
output d (denoted as Qsq4). X4 is exponentially distributed with rate
Asd = (Qsa)®. Where a > 0 is a parameter to be chosen. Input s then

4

requests access to output d when timer X, 4 expires.

Ideal QCSMA:
e unscheduled input queue Q5 4 generates timer value X, 4 ~ exp(;“ 2)

e When X, ;4 expires schedule transmission from input s to output d
unless d or s is already scheduled.

e When a timer expires transmit packets.

Note the probability of a collision (two or more inputs requesting ac-
cess to the same output simultaneously) is 0 when the timer values X4
are continuous. In simulations we assume that the timer resolution period
takes no time, so this scheduling policy can act as an idealized performance
benchmark. This is impossible to implement, so it is necessary to develop a
time slotted version that works in a finite number of discrete of contention
slots.

2.3 Slotted QCSMA

In a real system it is not possible to implement continuous time counters, so
it is necessary to approximate the continuous time scheduler with a discrete
time system. The scheduling requests for a given output from a given source
are made whenever both that output and source are not transmitting any
packets and so is not limited to a fixed number of contention slots like that
of SLIP. (We can think of it as in every time slot, performing QCSMA
on the portion of the crossbar that is idle.) Slotted QCSMA approximated
exponential timers by geometric random variables determining in which time
slot the transmission requests should be made.

If each time slot is assumed to have duration (3, then the probability that
an exponential timer of rate QF ; expires within a time slot is given by:

Pha=1-¢"%~ QY (1)

We take p;, 4 to be the request probability of the input s to output d. When
queues get arbitrarily large, the collisions in the system may get excessively
frequent (and therefore block transmissions indefinitely), so we limit the
aggressiveness of the request rate in order to limit the number of collisions
by defining;:

Ds,d = min [ﬁdiapcap] (2)

Where we chose peap = .2. This then yields the following practical
scheme:

Slotted QCSMA:

e In the first contention slot for the packet transmission opportunity each
input queue calculates ps 4

o unscheduled input queue Q) 4 requests output d with probability py 4.

e Output d announces the outcome of requests to it. If there is only one
request, d reports success to that input, otherwise d reports collision.

e If the requests of input s were successful to the outputs in the set D,
s,d

s schedules itself to output d with probability % (i.e. s chooses
€ S,

among its transmission opportunities in proportion to the queue lengths)

e Unsuccessful inputs could update pg 4 according to one of the schemes
below, and re start requesting process

The performance of this algorithm is expected be quite bad when the
packets all have the same length, as it will yield a large number of queues
competing for an output at the same time, and therefore also an increased
chance of collision. One possible approach to mitigate this is to adjust the
request probabilities using an adaptive sheme. such as the one first proposed
by Hajek and van Loon [2], which was proven to be optimal in wireless en-
vironments. The base probabilities are multiplied by (1.518,1.000,.559) in
the event of (no transmission, success, collision). While this does require
a trinary broadcast at the end of each contention slot it is possible to im-
plement the feedback with a binary broadcast as well. We have shied away
from this approach, to compare just the simplest case performance of our
different algorithms.

3 Simulator

To compare the delay performance of the different schedulers we built an
event driven simulator in C++4. Simulation time is discrete with the mini-
mum time step assumed to be the length of one of the bit transmissions of
one of the schedulers. The packet lengths are given in lengths of these time
steps. Because modern crossbars transmit packets in parallel we assume that
it takes 5 clock ticks to transmit a 64 byte packet, and 120 clock ticks to
transmit a 1500 byte packet. For all the SLIP simulations we assumed there

were 6 contention slots used to generate the crossbar schedules, but that
these calculations were pipelined in such a way as to make the net schedul-
ing negligible compared to the packet transmission time. Simulation inputs
were flow patterns passing through the switch, which were identical for all
switches. We chose to simulate a switch with 32 inputs and 32 outputs as it
models a realistically sized switch, which would not take inordinant amounts
of time to simulate.

The simulations fall into two categories: an open loop version meant to
measure switch throughput, and a closed loop version meant to mimic TCP
operation over the switch.

3.1 Modeling Challenges

We encountered several modeling challenges that guided our design deci-
sions. We chose the event driven paradigm to address the modeling limita-
tions of an earlier time driven simulator. The time driven simulator allowed
for a simple calculation of state evolution, but required a tradeoff between
efficiency of the simulation and accuracy of our model. A time driven simula-
tor updates the state by iterating over time steps representing some duration
of real time. The major limitation of this model is that the smallest time
between any two state changes is limited by the duration represented by a
time step. Choosing to have each time step represent the smallest relevant
time interval in the system is problematic, since the switches we are mod-
eling function on two vastly different time scales: that of contention slots
and that of packet transmission times. Because packet transmissions last
significantly longer than contention slots, after a crossbar schedule has been
generated there are long stretches of time in which no meaningful changes
in state occur. During this time the simulation would be needlessly recalcu-
lating the system’s state at every time step.

To avoid this wasted computation, we initially approximated the behav-
ior of the schedulers and assumed that all packets had a uniform length.
We quickly realized that this was not capturing the significant effects we
were modeling, and so decided to use an event driven simulation. Instead
of iterating over time, each iteration in an event driven simulator calculates
the next event (change in system state) and the time at which it will occur.
This allows us to keep the number of iterations proportional to the number
of events without sacrificing the accuracy of our model. The main difficulty
with this design choice is that the calculation of the next event can be quite
complex.

Usually the bookkeeping in event driven simulation uses an event queue

which stores all generated events that have yet to be applied to the system
state. This can be difficult to implement if an event added to the queue
could modify the events already in the queue (e.g. arrivals to the switch
would affect the next scheduled transmission). To avoid these issues, we
only kept track of the next event. We assumed that all random events were
geometrically distributed (and thereby memoryless) as a function of the
current state. All the deterministic events could be recalculated from the
state resulting after the application of the next event. This greatly simplified
the bookkeeping.

One unforeseen consequence of this approach is that only keeping the
next event discarded any concurrent events. (Concurrent events occur with
nonzero probability since the system we are simulating operates in discrete
time.) This was remedied by creating a function to merge two events, which
either discarded the later of the two events or created an event that included
both state updates if the two events coincided. This change was extremely
important as it significantly changed the outputs of the simulator.

3.2 Organizational Challenges

In addition to modeling challenges, there were some organizational chal-
lenges to ensuring the simulator would be versatile and easy to use.

We tried to enforce a modular structure on the different functions used
by the simulator. A key to successfully doing this was the definition of the
Event class. The state of the simulator could only be modified by a well
defined Event object. Event objects then provided a common interface for
all functions that simulated components switch. Every existing component
modeled by the simulator takes as an input the current state and outputs
an Event object. New components can be easily added by creating a func-
tion that outputs an appropriate Event given the simulators current state.
This is an especially apt abstraction, because the Event class contains the
merge function, which allows any two Event objects to be combined in such
a way as to produce a single valid Event that incorporates the necessary
state updates. Additional functionality can be easily added to the modeled
switch by creating the appropriate functions and merging them with the
most recently calculated event.

In addition to trying to modularize all the components of the simulator
and giving functions a common interface, there were some organizational
functions that made modifying simulation scenarios and generating new sets
of data easier. One was the creation of a single format for recording all
the data: the Data_Collector class. Collecting new statistics of different

kinds was greatly simplified as the Data_Collection class has a standardized
interface for adding data and does all the difficult storage bookkeeping (i.e.
creating new arrays and maintaining them). The other huge advantage of
creating this class is that it is outfitted with a function that aggregates and
writes all the collected data to an output file with a standardized format.
This greatly decreased the overhead of adjusting which statistics should be
collected and adjusting what is written to the output files.

We created three extremely functions designed to easily set up and run
simulation scenarios. The function init_sim() sets up the initial parameters,
the function reset_sim() reset the state to the appropriate initial conditions,
and the function run_sim() progress the system state through a specified
number events. To run a new simulation it is then only necessary to call
these three functions, which allows for extremely simple semantics to run a
series of simulations.

As any giant coding project, there were a lot of bugs that had to be
tracked down. The use of a log which wrote error messages to a file rather
than generating print statements was quite useful as it was possible to look
into the operation of loops without having an unmanageable dump to the
terminal.

The choice of simulator language was based on a tradeoff between the
desired performance and the ease of writing the code. The main simulation
loop was written in C++ as it is very efficient at performing a large number
of loop iterations. Once the data is generated, efficiency is not as great a
concern, so we can feed the data into a Matlab script, since the graphics
tools are good and simple to use.

For more specific details on the simulator design please see appendix A.

4 Open Loop Simulations

We explored the capacity of the different schedulers by injecting a stream of
packets at a given rate into the switch. For the QCSMA algorithms we also
had to do a search for good parameters, and settled on the values in table
1. Once the appropriate parameters had been chosen we generated figures
1 and 2 by performing multiple simulations by increasing the fraction f of
switch capacity from .1 to .95. The load was generated by having flows from
every input s to every output d. In each time step, each flow received a new
packet with an i.i.d. probability p = f/32.

In figure 1, all the packets were generated to have one size. In this sce-
nario SLIP performs very well, on par with ideal QCSMA. Slotted QCSMA

Table 1: QCSMA Parameters
Algorithm 8 «
QCSMA 2.9
ideal QCSMA - 1

incurs the largest delays.

In order to test whether this poor performance was due to the higher
collision rate caused by all the packet transmissions beginning and ending
almost simultaneously, we performed a second experiment in which we had
a bimodal packet distribution over packet lengths. In this alternate scenario
(depicted in figure 2) we generated packets with an iid probability of being
the maximum size (1500 bytes) with probability 1/2 and the minimum size
(64 bytes) with probability 1/2. The rationale behind this distribution was
to observe that data packets in TCP flows are generally transferring chunks
of some larger file (so may as well send the maximum bytes). For every data
packet which makes it through the system, there is a control message, such
as an ACK that do not need to be very large so can be modeled as being
the minimum data packets. As shown in figure 2 all the schedulers perform
comparably until we reach higher loads. Above loads of 60% the switch
capacity, SLIP starts to perform considerably worse than slotted QCSMA.
Interestingly the performance of the slotted QCSMA follows the performance
of the ideal version more closely than in the single packet length scenario.

5 Closed Loop (TCP) Simulations

Switches are not generally subjected to an unmodulated stream of packet
flows. Rather, the flows between applications are generally regulated via
TCP or some other congestion/flow control mechanism. This results in a
different environment under which the differences highlighted by the open
loop simulations might only play a negligible role. To explore this idea, we
have added a layer to our simulator which models TCP. The only differ-
ence between our version of TCP and the traditional TCP is that we use
Explicit Congestion Notification instead of packet dropping to respond to
congestion. Aside from simplifying the structure of the simulator, this choice
reduces the long timeout delays, (or the need to fine tune the estimate of
the roundtrip time to avoid this), which result whenever the routers buffers
become overwhelmed. The ECN bit is set with probability pecn if the switch

10

iid load vs delay

ideal gcsma /

16 — time slotted qcsma

i /

delay in avg pkt lengths

load

Figure 1: Delay vs throughput graphs for loads in a scenario in which all
packet have the same length. SLIP performs comparably to the ideal QC-
SMA scheduler, and outperforms the realistic implementation of QCSMA.
The parameters for the QCSMA based schedulers are taken from table 1.

queues exceed some threshold Tee,. The TCP window is then reduced after
it receives an ACK with the ECN bit set. This is only one of the many
proposed changes to adapt TCP to a datacenter setting.

We performed a variety of experiments meant to simulate different ap-
plication communication patterns in datacenters.

As the throughput supported by the different switches seems compa-
rable, we focus on the delay performance of the switches under TCP con-
nections. TCP Inputs to the simulator can be represented as a flow type
matrix such as the one visualized in figure 7. The entry s, d represents the
type of flow from input s to output d. We consider two main types of flows,
high throughput flows that are relatively insensitive to delay (type 1 flows)
and low throughput flows that are sensitive to delays (type 2 flows). The
packets generated for TCP are generated according to Markov ON OFF
processes much as in the open loop simulations with one producing a very
low throughput set of packets and the other being generating a much higher
throughput, in order to simulate the different types of datacenter lows. The
type 1 process has transitions from ON to OFF transition with probability
.3 and from OFF to ON with probability .7. The type 2 process transitions
from ON to OFF with probability 0.0781 and from OFF to ON with proba-

11

iid load vs delay
35 T T

ideal gcsma
time slotted qcsma
slip

30

n n
o o1
T T

o
T

delay in avg pkt lengths

.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
load

Figure 2: Delay vs throughput graphs for loads in a scenario in which every
packet has a probability of 1/2 of being the minimum size and 1/2 of being
the maximum size. With the variable sized packets SLIP no longer outper-
forms the practical version of QCSMA. QCSMA still performs similarly to
the single length scenario. (Note that the x axis in this graph is different
from that in figure 1.) The parameters for the QCSMA based schedulers
are taken from table 1.

12

bility 0.9219. When the process is ON it generates packets, and it does not
when it is OFF. State transitions occur at each time step.

The TCP window size is updated by additive increase multiplicative de-
crease, with feedback coming in the form of acks that are generated whenever
a packet successfully traverses the switch. The acks in our simulation are
not actually packets sent through our network, but rather simply notify our
TCP simulator after an artificially determined delay. After an ack notifies
the TCP flow it adjusts its send window statistics accordingly. The ack is
delayed by a factor of 10 times the delay it took the packet to traverse the
switch in order to simulate the round trip time in a datacenter that has five
switches between the input and its intended output.

5.1 Parameter Search

TCP should be optimized for its environment so we conducted a param-
eter search to determine good values for each of the switches. While the
QCSMA was tuned to perform well for a worst case scenario, for TCP we
are interested in improving average performance. The search for the two
parameters pec, and Tiey, is conducted over what we consider an average set
of average flow statistics for a datacenter, as suggested in [1] and [4] and
shown in figure 7.

Please see table 2 for the choices we settled on. Once we settled on the
parameters for TCP we can compare how the different architectures compare
with each other for a variety of trial flows.

We present 4 simulations in which we simulated different flow patterns
to our schedulers and observed the average delay per flow. The flow patterns
we investigated were:

e all to all

e spread and aggregate

e typical

e typical and spread and aggregate

5.1.1 All to all (core switch)

An all to all pattern can be seen in figure 3. The type of each flow (from s to
d) was drawn from an iid distribution that yielded type 1 with probability
1/2 and type 2 with probability 1/2. This flow pattern was meant to mimic
a possible load on a core switch, which has to aggregate the traffic from
across the network. Results suggest that the performance of the switches

13

was very similar. The throughput for all the switches is about the same, and
in terms of delay the difference is not significant. Ideal QCSMA performs
mildly better than the other switches. See figure 4 for a comparison.

Notably the gain of the unimplementable ideal QCSMA performs by far
the best. Time slotted QCSMA in this scenario also outperforms SLIP,
having both a lower average, and lower extremes than SLIP. While this does
match our intuition that the throughput optimal scheme should perform
better, it is not nearly as spectacular a result as our open loop simulations
would have lead us to expect.

Table 2: TCP Parameters
Switch Teecn Pecn
SLIP 10 5
QCSMA 12 5
ideal QCSMA 10 .9

5.1.2 Spread and Aggregate (MapReduce)

One of the most famous (if not most popular) applications in modern data-
centers is certainly MapReduce. The communication pattern of MapReduce
often involves a large transfer of data to and from a single node between the
different phases of computation. In order to mimic this type of operation
we developed a spread and aggregate flow pattern in which a given server
sends data to all other servers using high throughput delay insensitve flows
(type 1), since the volume of data exchanged between the master and worker
servers is often quite large. An example in which the source of the pattern
is on input 1 is shown in figure 5

This does not accurately model a MapReduce job for several reasons.
The biggest departure from a typical MapReduce job is that our type 1
flows do not have similar synchronization or burstiness properties due to
the similar completion times of computations in a real MapReduce job.
Furthermore the large delays imposed by the artificial 10 hop distance for
the acks is responsible for another difference in our model. Still we hope that
it suffices to give an impression of how a spread and aggregate application
might behave.

The performance for the different schedulers can be seen in figure 6.
Interestingly, in this scenario the worst performing flow of SLIP does much
better than the extreme flows of both the QCSMA schedulers. Despite this

14

core flowe palttern

10

15 .

20 :

25

a0 .
) 10 15 20 25 a0

Figure 3: This graph shows the flows experienced by a core router with all
to all traffic the red flows are type 2 while the blue flows are type 1.

w

higher variation, both QCSMA schedulers perform better on average than
the SLIP scheduler. The performance difference is not significant in the
case of the practical time slotted QCSMA, while the ideal implementation
of QCSMA does about 4 times better. Depending on how close the practical
QCSMA implementations can be pushed towards the ideal scheduler, this
might be significant.

5.1.3 ‘Typical’ datacenter flows

The statistics in [1] and [4] suggest that it is normal to have a relatively
low utilization of the networks in modern datacenters. In their findings they
observed that only 10% of the servers communicate. They observed that
80% of the flows had very short durations, while 20% flows were really long
lived and responsible for the majority of transmitted bits. To model the
bimodal behavior they observed we choose to use the two types of flows
mentioned above. A sample corresponding flow pattern for our simulations
can be seen in figure 7.

In our simulations for this scenario (see figure 8) QCSMA on average
performs better than SLIP as usual, but also in the extremes. The overall
delays are also much less than in the other scenarios (an order of magnitude
less in fact). This is most likely due to the lower rate of competition between

15

ideal gcsma time slotted gcsma iterative slip

2500 2500 2500

« 2000 2000 2000
<
e

2 1500 1500 1500
x
[}
c

"2, 1000 1000 1000
&
S

500 500 500

0 1 2 0 1 2 0 1 2

Figure 4: This graph shows the delays experienced by a core router with all
to all traffic.

spread aggregate fow pattern

Figure 5: This graph shows a typical spread aggregate pattern. In this case
the blue flows indicate the absence of a flow..

16

ideal gcsma time slotted gcsma iterative slip

3000 3000 3000
© 2500 2500 2500
5
& 2000 2000 2000
ke
21500 1500 1500
>
21000 1000 1000
©

500 500 500

0 1 2 0 1 2 0 1 2

Figure 6: This graph shows the delay spread of type 1 flows under a simu-
lated spread and aggregate pattern. Note the difference in average perfor-
mance (as represented by the red dot).

typical dakacenter flows

40.8

Figure 7: This graph represents the flow matrix of a ‘typical’ datacenter
load. Where 80% of the flows (type 2) generate a low volume of traffic and
are sensitive to delays. The other 20% of flows (type 1) generate a large
volume of traffic and are require a high throughput but not necessarily low
delays. The color in the s, dth position signifies the type of flow going from
input s to output d. Flows of type 0 do not generate any packets.

17

ideal gcsma time slotted gcsma iterative slip

200 200 200
2150 150 150
(@)
c
@
5100 100 100
c
>
©
3 50 50 50

0 1 2 0 1 2 0 1 2

Figure 8: This graph shows the delays experienced by a typical set of data-

center flows.

4000 4000 4000
2
S)
& 3000 3000 3000
x
S
-£ 2000 2000 2000
g
3

1000 1000 1000

0 1 2 0 1 2 0 1 2

ideal gcsma

time slotted gcsma

iterative slip

Figure 9: This graph shows the delays experienced by a typical set of data-
center flows with variable packet sizes and two spread aggregate jobs.

18

typical datacenter loads with spread aggregate jobs

Figure 10: This graph represents the mix of a ‘typical’ load and two spread
and aggregate jobs.

flows in this scenario. This is one of the best flow patterns for both the time
slotted QCSMA, which can be seen by the fact that it almost matches the
performance of it’s unimplementable ideal version.

5.1.4 ‘Typical’ Flows and spread and aggregate

Finally to explore switch performance in a datacenter setting that supports
both ‘typical’ datacenter loads and some MapReduce like jobs, we subjected
the switch to a superposition of the datacenter load and two spread and
aggregate loads on servers 2 and 9 as seen in figure 10. The performance of
the crossbar based switches is again comparable (see figure 9).

The long delays seen here are due to the spread and aggregate flows for
all the switches. Note that since it is the spread and aggregate flows (all type
1 flows) that suffer, figure 9 shows type 1 as being particularly slow. This
is only true because the spread and aggregate flows are heavily delayed as
opposed to the spread and aggregate flows slowing down other type 1 flows.
While there are some extreme outliers of type 2, the average performance is
comparable to the typical data center performance.

As was to be expected, SLIP once again performed slightly worse, but
not significantly.

19

6 Conclusions

Our open loop experiments (§4) confirmed our intuition that there is some-
thing to be gained from using the provably optimal QCSMA scheduling
algorithm over iterative SLIP, although this effect has the most pronounced
effect under highly loaded open loop control scenarios. The open loop simu-
lations also underscored the need for bookkeeping the length of the packets,
as opposed to simulating a simpler scenario with equal length packets. This
is because the QCSMA algorithm works best when fewer inputs are compet-
ing for the available outputs, which is aided by a large variation in packets
lengths.

In contrast, the closed loop simulations (§5) we considered suggest that
although there is a differentiation of performance between QQCSMA and
SLIP, it does not seem to play a large role in many common practical sce-
narios. This is partly because the congestion levels (i.e. the loads) are
adequately regulated using TCP or a similar congestion control mechanism,
and partly because of the low level of intercommunication loads observed in
real datacenters.

While in many scenarios the choice of scheduler seems to have a negligible
effect, there is one key loading regime in which there is a significant gain from
using QCSMA. The open loop simulations correspond more closely to core
and bottleneck switches, which receive lots of traffic from a large number
of short-lived TCP connections. In this scenario the tcp regulation will not
have as large an impact since short-lived connections will close before their
flow patterns can be significantly altered, lending a more open loop flavor to
the packets flows. For switches expected to operate in this loading regime
there is much to be gained by choosing QCSMA over SLIP as a scheduling
algorithm.

References

[1] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic
characteristics of data centers in the wild. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement, IMC 10, pages
267-280, New York, NY, USA, 2010. ACM.

[2] B. Hajek and T. van Loon. Decentralized dynamic control of a multi-
access broadcast channel. Automatic Control, IEEE Transactions on,
27(3):559-569, 1982.

20

[3] Libin Jiang and Jean C. Walrand. Scheduling and Congestion Control
for Wireless and Processing Networks. Synthesis Lectures on Communi-
cation Networks. Morgan & Claypool Publishers, 2010.

[4] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel,
and Ronnie Chaiken. The nature of data center traffic: measurements
& analysis. In Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement conference, IMC ’09, pages 202—208, New York,
NY, USA, 2009. ACM.

[5] Nick McKeown. The islip scheduling algorithm for input-queued
switches. IEEE/ACM Trans. Netw., 7(2):188-201, April 1999.

21

A Simulator Design

Because the simulation tracked events on two very different time scales (that
of packet transmissions and that of schedulers clock ticks) we chose to use an
event driven simulator. This means that we had a mechanism for calculating
the next event (and time at which it occurred) given the current state of the
system, instead of calculating the new state at each time step.

A.1 Main components

To accommodate this simulation model, the heart of the code was split
into essentially two logical pieces: State variables, and state transitions.
Logically, the heart of the simulator looks like this:

while (num_events<tot_num_events)

{
event = next_event()
update_state(event)
num_events=num_events+1
}

The update_state() function, takes a state transition (in the form of an
instantiation of the Event class) and calculates the new state of the system.
Similarly, the next_event() function calculates the next state transition based
on the current state of the system. Of course there are sanity checks built in,
machinery to setup the initial state, and machinery used to record the results
of the calculation, but at the most basal level, this is what the simulator is
doing. To understand this function I will talk briefly about what constitutes
the state, what an event is, and how the next event is calculated.

A.1.1 State

The state with a few minor exceptions mainly of different queues of packets
which contain the crucial information about where to route the packets and
when they arrived into the system. Generally each state is regulated by a
particular kind of event.

e Current Time
— This variable determined the time elapsed in scheduler clock ticks
since the start of the simulation.

22

Packet Generation State
— For the simulations which generated packets as Markov chains as
inputs each flow had an associated state (ON or OFF)

Flow Queues
— Upon generation each packets are placed in flow queues, which repre-
sent queues of different application flows within a computer. Depending
on the simulation, packets would stay in here until released by the TCP
flow regulator.

NIC state

— This state keeps track of which flows are being transferred from the
“computer” and transferred to the network. In the closed loop simula-
tions this is regulated by the TCP state.

Switch Queues

— Once a packet is transferred out of the flow queues, it is placed into
the switch queues, which in conjunction with the crossbar state is used
to calculate the next scheduler events.

Crossbar State
— The crossbar state keeps track of which inputs and outputs are cur-
rently transmitting packets and how much longer it will take to finish
the transmission.

Event Heap (ACKs)
— Upon exit of the system, and ACK along with an appropriate arrival
time is generated and placed onto the event heap.

A.1.2 Events

All changes to the state occur through the application of an Event object
to the state through the update_state() function. So essentially, an Event
object consists of three things: the change to be applied to the state, the
time at which it occurs, and a merge() function, to calculate a new Event
from two candidate Events. Of these three things, the merge() is the only
one which is the least straightforward:

Event merge(event)

if (event occurs before this)

{

return event

23

if (event occurs after this)

{
return this

b
if (event occurs simultaneously with this)
{

include both state changes

return this
X

Given this structure the next_event() function is philosophically struc-
tured as follows:

Event next_event()

{
event = next_pkt_gen()
event .merge (next_nic_update())
event .merge (next_crossbar_update())
event .merge (event_heap.next_ack())
return event

}

Notice that there is no effort to save the events that the merge() function
discards. This is because the stochastic events are generated in a memoryless
fashion parametrized by the state (i.e. either occur or do not with the same
probability at each time step). The deterministic events are all a function
of the state and can be recalculated from the new state that results after
the application of an earlier event. The ACKs are stored in the event_heap,
but could in theory also have their own state variable. Other deterministic
events could also be stored in the event_heap depending on the preference
of the coder.

So to add a component of a simulator it would be necessary to do the
following things:

e Create additional state variable

— This is to facilitate any bookeeping necessary for events generated
by this new component

e Update the Event class to include updates to the new state.

— This consists of two important parts: a modification of variables in
the Event class, and an update to the merge() function, so two events
modifying your new state can successfully be merged into one.

24

e The creation of a new function to be placed into the next_event() func-
tion.
— This new function would have the form of a next_new_component_event()
and would calculate the next event that would occur given the current
state.

e Ideally there would also be a control variable allowing for an easy way
to remove the component if it is not needed in a simulation.

A.2 Auxiliary structures

In addition to the simulation mechanisms there are a few code structures
meant to improve the ease of use. Data is collected by entering it into an ob-
ject of the Data_Collector class which provides a convenient dump_to_file()
function, which dumps the data into a csv file. Once all the data is recorded
in a file, you can easily graph the data using a Matlab script.

Because of the size of the simulator, there are many sets of variables float-
ing around which may make it difficult to follow what is relevant to what.
In order to combat this, the simulator has collected the different variables
parametrizing the different components in structs such as the TCP_State
or the Scheduler_Parameters struct, defined at the beginning of the code so
that it is easy to follow what values need to be defined in order to make the
simulator function.

Another issue with understanding the simulator code is that it contains
components that can be added or removed (such as the TCP layer or the cur-
rent choice of scheduler). What simulator components are currently active
is parametrized by the Simulation_Parameters struct, and at the relevant
places in the code, there is a switch statement or a an if statement which
switches between the relevant components. Searching for the variables col-
lected in Simulation_Parameters should quickly reveal any places that have
been modified or need to modified by the particular component.

A.3 Function Descriptions

A.3.1 Data_Collector

This class was designed to make data collection intuitive and easy. Essen-
tially when you initialize a data collector object you can index the type of
statistic you would like to collect and add labels and types of data. Then

25

at the appropriate parts of the code you can easily add the value to the
appropriate statistic. Finally the Data Collector comes with a convenient
dump to file function which allows the statistics collected be written to a
csv file which is easy to load into a Matlab script.

e Initialization:
To initialize a data collection object, call its constructor with the num-
ber of statistics types to be collected. The function for specifying a
specific stat is a little more complicated:

initialize_stat(int stat_index,string name,int type,
int num_rows,int num_cols,bool user_defines_count)

This functions allows you to specify the index by which to call the stat,
specify a name, a type (average, max, or variance), the number of rows
and columns that the stat will have, and whether or not the user will
specify the divisor for dumping to a file. If the count is not specified
by the user, the data collected (if it is not a max) is divided by the
number of data added.

e Record
Once the stats have been initialized a new piece of data can be added
easily using the function:

enter_data(int stat_index,int stat_row,int stat_col,int new_data)

Where all you need to specify is the index of the stat to be modified,
and which row and column is affected as well as the new piece of data
to be recorded. If the count is specified by the user as the final time
of the simulation you often want to multiply the relevant data by the
time elapsed since the last time the data was recorded.

e Output
Printing the data to an output file uses the function:

dump_to_file(string file_name,int specified_count)

In this case the specified_count is applied to all the statistics which had
the user_defines_count flag set to true. The output is then printed in
the format of having each stat printed consecutively:

row, col
stat [0] [0] ,stat[0] [1],stat[0][2],....stat[0] [col-1]

26

stat[row-1]1[0] ,..., stat[row-1] [col-1]

followed by the next stat.

A.3.2 Control and State Variables

The simulation state and control variables are contained in the following
structs:

e Slip_State slip_state
o TCP _State tcp_state
e Scheduler_Parameters sched_par
e Simulation_Parameters sim_par

The variables contained in these structs are mostly self explanatory. If they
are not a part of an active state, but rather a parameter the variables are
limited to being used to activate ‘switch’ statements or ‘if’ statements at
the appropriate places in the code, so understanding their effects should be
relatively simple.

A.3.3 Simulation Functions

Different simulations can now be run by changing the appropriate parame-
ters and resetting the state to zero. The basic functions for doing this are
the following:
e init_sim
Sets all the initial parameters including the hardwired choice of sched-
uler parameters.

e reset_sim
Leaves all the parameters alone but resets the state. (e.g. empties the
event queues, and flushes any packets from the system.)

e run_sim
This function runs the simulation forward for the specified number of
events using the set of parameters set by other functions. In particular
enters the ‘while’ loop described in A.1.

e tcp_load_sim
Uses a combination of init_sim and reset_sim as well as some more
specialized flow patterns and specific adjustments to parameters to run
the tcp simulations.

e iid_load_sim
Similar to tcp_load_sim this function runs the open loop tests.

27

A.3.4 Event Sim Mechanics

These functions are needed to update the various states and handle events
properly:
e update_state
See A.1.

e next_event

Also see A.1.

e geo_exp
This function generates an outcome corresponding to the first expi-
rations of a set of geometric random variables. Many of the other
functions are built on this.

A.3.5 Flow patterns

This is just the set of functions that generate the different flow patterns with
the exception of separate dump_flows_to_file which allows you to easily print
out the flows to a csv file in a similar format to the Data_Collector object:

e dump_flows_to_file
e dc_flow_pattern

e spread_pattern

all_2_all_pattern

A.3.6 Scheduler Machinery

Of course the heart of the scheduler needs to simulate the scheduling algo-
rithms:

e idle_c_bar

e basic_slotted_qcsma
e islip

e pkt_to_cells

A helper function to break large packets into smaller packets when slip
is used.

A.3.7 TCP Functions

Finally TCP has a collection of helper functions to properly update the state
when TCP is being used:

28

e tcp_update
Update the tcp_state struct, which keeps track of the TCP window, the
packets sent, round trip time estimates etc.

e should_tcp_send
Determines whether the packet should be sent to the switch base on
the TCP window and the currently sent packets.

e gen_ack
Generates an ack and places it on the event queue whenever a packet
exits the system.

29

	Introduction
	Switch Schedulers
	SLIP
	Ideal QCSMA
	Slotted QCSMA

	Simulator
	Modeling Challenges
	Organizational Challenges

	Open Loop Simulations
	Closed Loop (TCP) Simulations
	Parameter Search
	All to all (core switch)
	Spread and Aggregate (MapReduce)
	`Typical' datacenter flows
	`Typical' Flows and spread and aggregate

	Conclusions
	Simulator Design
	Main components
	State
	Events

	Auxiliary structures
	Function Descriptions
	Data_Collector
	Control and State Variables
	Simulation Functions
	Event Sim Mechanics
	Flow patterns
	Scheduler Machinery
	TCP Functions

