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Abstract

A Computational Light Field Display for Correcting Visual Aberrations

by

Fu-Chung Huang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Brian Barsky, Chair

Vision problems such as near-sightedness, far-sightedness, as well as others, are due to optical aber-

rations in the human eye. These conditions are prevalent, and the population is growing rapidly.

Correcting optical aberrations is traditionally done optically using eyeglasses, contact lenses, or

refractive surgeries; these are sometime not convenient or not always available to everyone. Fur-

thermore, higher order aberrations are not correctable with eyeglasses.

In this work, we introduce a new computation based aberration-correcting light field display:

by incorporating the persons own optical aberration into the computation, we alter the content

shown on the display, such that he or she will be able to see it in sharp focus without wearing

eyewear. We analyze the image formation models; through the retinal light field projection, we

find it is possible to compensate for the optical blurring on the target image by prefiltering with the

inverse blur.

Using off-the-shelf components, we built a light field display prototype that supports our de-

sired inverse light field prefiltering. The results show a significant contrast improvement and res-

olution enhancement over prior approaches. Finally, we also demonstrate the capability to correct

for higher order aberrations.
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Chapter 1

Introduction

According to an NIH report [MedlinePlus, 2008], “Most Americans report that, of all disabilities,
loss of eyesight would have the greatest impact on their daily life, according to a recent survey by
the NIH National Eye Institute (NEI). Vision loss ranks ahead of loss of memory, speech, arm or
leg, and hearing. After all, 80 percent of the sensory information the brain receives comes from
our eyes.” Among the five sense organs, the eyes are probably the most important one; it is the

most vital for our sensory inputs and memories. Learning, recognizing faces, perceiving colors,

and appreciating the world, all depends on our vision. Among all vision related problems, the

most common are refractive errors, such as myopia (nearsightedness), hyperopia (farsightedness),

presbyopia, and astigmatism. These cause blurred vision, which is due to the shape of the eye

preventing light from focusing precisely on the retina.

To see the world, light goes into the eye, refracted by a sequence of optical elements such as

the cornea and crystalline lens. The light then lands on the retina and is converted to the electrical

signal to the brain. When the refractive elements are not perfect, blurred images are fromed and

decrease the quality of life. Although we already have eyeglasses, the technologies are improving

and newer instruments are invented to rectify blurry vision, such as contact lenses or refractive

surgeries. However, these are purely optical operation directly modifying the optics of the eye.

In this thesis, we present the first practical solution to “digitally” modify the content on a

display device, that also corrects for blurred vision. We start by understanding the blurring process

of the eye, and inversely preprocess the image content, such that the final perception is still sharp.

This cannot be achieved without changing the display optics at a hardware level; we not only show

the algorithmic operations but also build a hardware prototype using off-the-shelf components.

We not only correct for myopia or hyperopia, more complicated blur induced by higher order

aberrations are also considered.

This thesis not only presents solutions to correcting optical aberrations, but it is also the first

to discuss different models of image blurring process under the same framework using light fields.

The theoretical treatment on the image formation process provides insight to the problem of pre-

processing based vision-correction, and directions for possible future improvements.
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1.1 Background

1.1.1 Visual aberrations.

Optical aberrations are common in almost all optical systems, including the human eye. Global

surveys estimate that 153 million people are visually impaired as a result of uncorrected refractive

errors [Resnikoff et al., 2008]. According to the World Health Organization (WHO), 246 million

people have low vision (below 20/60), and 43% of them are due to simple uncorrected refractive

errors such as myopia, hyperopia, or astigmatism.

Hyperopic vision prevents the observer from focusing at near range, and is common in the

United States. About one quarter of population in the U.S. has hyperopia [Krachmer et al., 2005];

most are mild until in their late 40s and early 50s where the accommodative ability decreases and

presbyopia begins. Hyperopic vision is common for people over the age of 40, and its affected

population, about 43%, is twice as large as that of myopia; in the Baltimore eye survey [Katz et
al., 1997], the population of hyperopia is over 68% for people older than 80. This is not surpris-

ing, since the accommodation ability of the eye decreases about one diopter every ten years, thus

leading to presbyopia.

Recent studies also indicate an increasing prevalence of myopia; Vitale et al. [2009] found the

incidence of myopia increased from 25% to 41.6% in the United States between 1971-1972 and

1999-2004, and some studies also show that the myopia increases with education level [Katz et
al., 1997]. The prevalence of myopia is increasing rapidly, especially in Asian populations [Rajan

et al., 1995]. It is especially relevant since the prevalence of myopia among young people, which

varies by country and ethnic group, is approaching 60% to 90% in some Asian populations [Lin et
al., 2004][Wong et al., 2000][Takashima et al., 2001].

In addition to myopia, hyperopia and astigmatism due to lower order aberrations, there are

also higher order terms due to spherical aberrations or irregularly shaped lenses. An early study

shows that on average, most people have a non-zero amount of spherical aberration, with some

non-zero variation in the higher order terms [Thibos et al., 2002]; together with a recent large

clinical study [Hartwig and Atchison, 2012] shows that, statistically, spherical aberrations and

coma are dependent on the lower order terms, and higher order aberrations systematically happen

in the human population [Bao et al., 2009]. In the past decade, the advance in the measurement of

wavefront geometry of the eye helps people understand visual acuity better; however, to date the

correction for higher order terms is still experimental.
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Figure 1.1: The Nimrud lens (left) and early man-made reading stones (center and right).

1.1.2 Correcting for Vision-Aberrations.

Lens. The history of correcting for visual aberrations could be traced back thousands of years1.

The first commercial man-made lens was the reading stone (Fig. 1.1 (center and right)), around

9 A.D., which was discovered during the process of making glass from sand by Abbas Ibn; the

behavior of the convex shaped lens was first studied around 1021 A.D. in the “book of optics” by

Alhazen (965 to 1038 A.D.), the father of modern optics.

Eyeglasses. An Italian named Salvino D’Armato started making wearable eyeglasses (Fig. 1.2

lower left) in 1284 A.D., and this led to the modern development of correcting for optical aber-

rations. During the middle of 15th century in Florence, the city that was the center for making

eyeglasses, the convex lens for presbyopia and the concave lens for myopia were being mass-

produced. At the end of 15th century, eyeglasses were a common commodity sold on the street.

Later, around 1760, Benjamin Franklin invent the first bifocal lens (Fig. 1.2 lower right); and by

1825, George Airy was the first to design the concave astigmatism lens.

1Debatable: the first lens ever found is the Nimrud lens (left of Fig. 1.1), around 934 B.C.; according Professor

Giovanni Pettinato, Assyrian uses this to observer astronomical behavior. Another possible first lens is found on the

Mountain Ida on Crete around 5th century B.C..

Figure 1.2: The early eyeglasses (left) and bifocals (right).
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Figure 1.3: Contact lenses. Early contact lenses (left two frames) cover the entire ocular surface.

Most modern contact lenses softly cover only the cornea and are sometimes also used for cosmetic

purposes.

Contact Lens. Contact lenses also have a long history, dating back to the book “Codex of the

eye” by Leonardo DaVinci around 1508, where he had the idea to modify the power of the cornea.

DaVinci’s idea was first implemented by René Descartes using a water-filled tube in 1636; how-

ever, blinking is not possible due to the physical size of the prototype; the first working prototype

was made by Thomas Young in 1801.

In early 1880’s, the first glass contact lens that fit the anterior of the eye was made by Adolph

Eugen Fick, Eugene Kalt, and August Mueller, independently. The lens was not convenient for use

until 1949, when the first plastic contact lens was produced, and people could wear for many hours;

since then, work has been directed toward better commercial products, e.g. improved oxygen-

permeability rate, disposable contact lens, and even cosmetics contact lens (right of Fig. 1.3).

Refractive Surgery. Refractive surgery is a relatively new operation that directly modifies the

optical power of the eye; the principle is to alter the shape of the cornea. The first idea was proposed

by Lendeer Jans Lans in 1896 and was performed by Tsutomu Sato in 1930 by making cuts on the

cornea, but the result was unsuccessful. Although there are also implant based surgeries, the most

successful operation uses an excimer laser to reshape the cornea.

The early form of modern refractive surgery, called keratomileusis, was developed by Jose Bar-

raquer in 1963, that removes the cornea layer and sculpts it into the desired shape. In 1983, Stephen

Trokel and Rangaswamy Srinivasan performed the first PhotoRefractive Keratectomy (PRK) [Ku-

gler and Wang, 2010] using excimer laser; later it became commonly known as Laser-Assisted in

situ Keratomileusis (LASIK).
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Figure 1.4: Vision-correcting display. We present the first practical-vision correcting display

that does not require that observer wear eyeglasses. Our final light field based display (bottom

right) enables both high resolution and high contrast, achieving a thin form factor and light-weight

construction.

1.2 The Goal

Although the previous three options to correct optical aberrations are effective most of the time,

they can sometimes be awkward. For example, going to a theater to watch 3D movies requires

wearing double eyeglasses. Using a Head Mount Displays (HMD) to explore virtual reality re-

quires wearing eyeglasses inside a tight device. For people with presbyopia, watching mobile

devices requires another pair of glasses or bifocals. Although some of the problems can be solved

via contact lenses, it is not always convenient, especially for a extended long period of time. Re-

fractive surgery is not always an option for some people with a thinner cornea or for other reasons,

and can also cause side effects. Finally, higher order aberrations are sometimes a relevant concern

for some populations, and none of the above alternatives can correct the inherent blurriness.

Our goal in this work is to provide a fourth practical option that corrects optical aberration

for the eye. In particular, as opposed to optically modifying the refractive power of the eye, we

introduce a computational display that “presents the pre-distorted content according to the viewer’s
prescription, such that a sharp image is formed on the retina, without the need to modify the
physical optics when the prescription changes.” As opposed to the previous methods directly
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modifying the eye, the computational displays have no direct contact to the observer, and can be

made from off-the-shelf hardware components. Once the display device is built, the refractive

errors are corrected digitally; no further adjustment to the optical hardware component is required.

Figure 1.4 shows canonical cases for our computational displays; for the user having myopic

eyes, he or she sees the blurred image when there is no correction. The multilayer method (Chap-

ter 5) gives a sharp perceived image by digitally distorting the displayed images, but the contrast is

low. Pamplona et al. [2012] use a light field display (Chapter 6) such that a sharp virtual image is

shown within the focal range of the observer, but the spatial resolution of the display is low. Finally

at the end of the thesis (Chapter 7), we introduce an integrated framework, called light field pre-

filtering, that combines the advantages of the previous two methods. By designing the algorithm in

concert with the optics of the device, light field prefiltering is able to provide both high resolution

and high image contrast.

Contributions. The new framework involves understanding image formation by projecting light

rays onto the retina. The frequency domain analysis of the light field gives insights into why the

naive inversion of the point spread function on 2D images does not work, and higher dimensional

methods are required, e.g. a multilayer display involves a stack of 2D images; a light field based

methods require 4D light rays. We propose the conditioning rank analysis, which we will show

is equivalent to the modulation transfer function (MTF) zeros analysis. The rank analysis reveals

the design parameters of the hardware, and lightly modified hardware provides enough degrees

of freedom to achieve the goal of correcting vision. Physical prototype hardwares are built to

illustrate these benefits, and the light field prefiltering prototype using an iPhone 4 or iPod touch 4

corrects significant defocus blur. Finally, we also show that correcting for higher order aberrations

is made possible using this technique.

Impacts, applications, and the future. The solution to the problems of our goal has a lot of

potential, not just for correcting myopia or presbyopia. Correcting for higher order aberrations has

an important impact to some populations, especially since currently there is no practical solution;

we envision that, in the future, normal eyeglasses could correct the lower order aberrations, while

the display will correct the higher order ones.

This is also the first work to show that focusing at more than one plane is possible; while the

eye has its natural focus plane, the device plane is also capable of generating a sharp image on

the retina or the camera sensor. This is useful for heads-up-display (HUD), like projecting useful

information onto cars or objects when the windshield or Google glass is close to the observer.

The near-field display is also useful in some real world application, where wearing double

glasses are cumbersome; the vision correcting display does two things in one device. There are

some potential future directions that might give rise to interesting research, such as the vergences

and the convergences problem of the eye when accommodating 3D content.
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1.3 Overview of Thesis Organization

In Chapter 2, we describe prior work and fundamental building blocks of the theory. Chapter 3

reviews important background on image formation, especially the geometries for the imaging pro-

cess of the eye; both 2D imaging and 4D light fields projection are considered. In Chapter 4,

we first solve the problem with existing tools and methods, and then we show the fundamental

limitations with them.

In Chapter 5, the first theoretical improvement over existing tools is presented using multilayer

displays. In fact, the multilayer display is a subclass of the general light field displays; we discuss

the generalization in Chapter 6. Chapter 7 presents another solution to the problem using 4D light

field displays with significant contrast enhancement over that using multilayer displays.

Finally the measured prescription using a wavefront aberrometer replaces the thin lens model

in Chapter 8; the extension to solve for higher order aberrations is shown in Chapter 8.3. We

conclude the methodology to the problem and discuss potential future applications in Chapter 10.
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Chapter 2

Related Work

2.1 Image Restoration and Computational Photography

Deblurring. Our vision-correcting idea is similar in principle to image deblurring with different

constraints, and thus different difficulties. Image deblurring is applied to estimate an undistorted

image given a received image degraded by camera shake, defocus, or object motion. The perceived

image may be modeled as the convolution of the undistorted image by the optical point spread

function (PSF), characterizing the degradation process. Deconvolution algorithms can be applied

to approximate the undistorted image, including inverse filtering [Gonzalez and Woods, 1992],

Wiener filtering [Wiener, 1964], and the iterative Richardson-Lucy algorithm [Richardson, 1972]

[Lucy, 1974]. Recent developments in image deconvolution include exploiting natural image priors
[Levin et al., 2007], suppression of ringing artifacts [Shan et al., 2008] [Yuan et al., 2008], and

increasingly focus on blind deconvolution [Campisi and Egiazarian, 2007], wherein the PSF is not

known a priori.

Correcting Projector Defocus. Projecting onto an out-of-focus plane or a tilted wall introduces

defocus blur, and it can be compensated by deconvolving the projected image with the projec-

tor’s PSF. Brown et al. [2006] demonstrate extended depth of field projection using deconvolu-

tion. Inverse prefiltering sometimes introduces values outside the dynamic range of the projector,

Oyamada et al. [2007] compare the performance of clipping values outside the dynamic range to

normalization. Zhang and Nayar [2006] propose solving a constrained optimization problem to

minimize artifacts while utilizing only the available dynamic range. Although this work considers

unmodified projector optics, typically containing circular apertures, Grosse et al. [2010] introduce

an adaptive coded aperture to ensure that the modulation transfer function (MTF), corresponding

to the magnitude of the Fourier transform of the PSF, preserves all relevant spatial frequencies. In

Chapter 5, we similarly seek to produce an all-pass filter by introducing a second display layer for

correcting optical aberrations.
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All-Pass Filters. Recent work in computational photography has also explored the notion of

constructing all-pass optical filters, capable of preserving image information despite common dis-

tortions, including camera shake, defocus, or object motion. This work advocates modifying the

optics or the capture process to synthesize an effective MTF that preserves all spatial frequencies.

Raskar et al. [2006] rapidly modulate the aperture over the exposure to transform the PSF, due to

motion blur, such that ringing artifacts are eliminated. Agrawal et al. [2009] capture two exposures,

of slightly different durations, to accomplish a similar task. Veeraraghavan et al. [2007] introduce

a coded aperture to create an all-pass MTF, allowing deconvolution algorithms to correct camera

defocus without introducing ringing. Our development of multilayer prefiltering in Chapter 5 is

inspired by these publications, with the goal of incorporating additional layers to ensure all spatial

frequencies are preserved in the received image.

Light Field Analysis. Light fields have gained attention in computer graphics in the past two

decades. Early pioneering work by Adelson and Bergen [1991], McMillian and Bishop [1995],

Levoy and Hanrahan [1996], Gortler et al. [1996], Isaksen et al. [2000], and Chai et al. [2000]

have focused on capture, sampling, and efficient rendering. Modern imaging uses a computational

approach to capture 4D light fields. Ng [2005] demonstrates that 4D projection can be efficiently

done by slicing a 2D plane in the frequency domain. Veeraraghavan et al. [2007] acquire the

light field by inserting a coded plane inside the camera, and the idea is generalized by Liang et

al. [2008] and Marwah et al. [2013], in a compressive sense, to capture the light field at full sensor

resolution. Levin et al. [2009] show that the efficient use of the 3D manifold embedded in 4D by

using a lattice focal lens can improve deconvolution quality, achieving extended depth of field. The

rendering community also has begun to analyze the frequency domain property of light field for

efficient sampling and rendering. Durand et al. [2005] analyze transport, occlusion, and shading

effects. Kevin et al. [2009] reconstruct a sheared filter to efficiently sample the temporal domain

for motion blur. Soft shadows from complex occluders are studied by Kevin et al. [2011], but

the precomputation time outweighs the rendering time. Recently, Mehta et al. [2012] show axis-

aligned filters can be implemented for complex soft shadows to enable realtime rendering.

2.2 Displays

Glasses-Free 3D Displays. Glasses-free 3D was invented in the beginning of the 20th century.

The two dominating technologies are lenslet arrays [Lippmann, 1908] and parallax barriers [Ives,

1903]. Today, a much wider range of different 3D display technologies are available, including

volumetric displays by Cossairt et al. [2007] and by Jones et al. [2007]. Volumetric displays create

the illusion of a virtual 3D object floating inside the physical device enclosure; an observer’s

eye can accommodate within this volume. Although these devices support binocular disparity

and motion parallax, no evidence has been provided that a sufficiently high spatial and angular

resolution is provided to support accommodation or, similarly, move a virtual 2D image outside

the device and into the focal range of the observer.
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Multilayer Displays. Multilayer display is an emerging technology targeted towards autostereo-

scopic glasses-free 3D display. Such panels represent content on superimposed, semi-transparent

layers, providing a faithful reproduction of perceptual depth cues. However, to achieve an ex-

tended range of depths, multiple panels must be distributed within a thick enclosure. To preserve

thin form factors, research focuses on achieving the illusion of an extended volume with a compact

device [Urey et al., 2011]. Multilayer displays are one such family of autostereoscopic displays,

divided into those that employ stacks of light-emitting versus light-attenuating layers.

For example, Akeley et al. [2004] place a series of beamsplitters at 45 degree angles with

respect to a single LCD; viewed from in front of the stack, the eye perceives superimposed light-

emitting layers. In contrast, Wetzstein et al. [2011] and Holroyd et al. [2011] consider thin stacks

of light-attenuating films for synthesizing high dynamic range light fields and 3D scenes. Lan-

man et al. [2011] and Gotoda [2012] evaluate stacks of LCD panels; these publications describe

a mode where the virtual scene extends beyond the display enclosure. With temporal multiplex-

ing, the multilayer LCD can operate in a mode optically equivalent to a stack of layers that are

light-emitting rather than light-attenuating. Multilayer LCDs have also found applications in com-

putational photography [Zomet and Nayar, 2006].

Compressive Light Field Displays. Zwicker et al. [2006] studied the depth of field capability

of the 3D display, and showed that angular sampling resolution is the limiting factor; some later

research in 3D displays strives to increase the resolution limits. Most recently, the compressive

nature is exploited not only in photography via compressed sensing, but also in the displayed con-

tent to enhance the angular resolution of the display. Lanman et al. [2010] decompose a 3D scene

into a series of images shown on a multilayer display with high refresh rate. The decomposition is

further studied using low rank approximation by Wetzstein et al. [2012], and better image quality

is achieved by adding additional directional backlighting. By exploring the redundancy in the 3D

scene, these recent efforts show significant improvements on spatial and angular resolution.

Adaptive Optics. The idea to compensate for the turbulence of the atmosphere to achieve bet-

ter imaging system was first discussed by Babcock [1953], but was not made practical until the

modern development of computer system [Liang et al., 1997]. Optical aberrations are compen-

sated by reflecting off a deformable mirror in astronomical telescopes or retinal imaging [Roorda

et al., 2002]. Artal et al. [2004] and Sabesan and Yoon [2010] showed patients adaptive optics

compensated images to study neural compensations and adaptations to optical blur. When com-

bined with high frequency eye tracking, adaptive optics corrected stimuli can be painted onto the

desired retinal location with accuracy of a single cone photoreceptor [Yang et al., 2010]. Adaptive

optics provides an accurate control of the retinal stimulus that allows people to track the chromatic

cone responses [Hofer et al., 2005] and the retinal limits on the acuity of spatial vision [Rossi and

Roorda, 2009]. A extensive historical survey of adaptive optics can be found in [Roorda, 2011].
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2.3 Computational Ophthalmology

Diagnosis of refractive errors. The exact aberrations of the eye can be measured using a Shack-

Hartmann wavefront sensing aberrometer [Shack and Platt, 1971] [Platt and Shack, 2001]; the

essence is to detect the normal directions of the wavefront surface using a sensor mounted with

a lenslet array, which is equivalent to a light field camera. Pamplona et al. [2010] proposed a

novel cellphone add-on device, called NETRA, to diagnose refractive errors by inversely tracing

rays from the screen to the eye; later, another device, called CATRA, was proposed to measure

the cataract map [Pamplona et al., 2011] in the human eye. These latter applications are examples

of computational ophthalmology, where interactive techniques are combined with computational

photography and display for medical applications.

Vision-Correcting Displays. Devices tailored to correct the visual aberrations of an observer

have recently been introduced. Correcting the optical aberrations of the eye requires applying a

preprocess, e.g. deconvolution, before the image is displayed, rather than after it is received by

the visual system. This discrepancy significantly impacts the quality of received images. Early

approaches attempt to prefilter a 2D image presented on a conventional screen by using the inverse

point spread function (PSF) of the observer’s eye; the preprocessed image typically includes both

negative and positive values of equal amplitude. Following Alonso and Barreto [2003], Yellott

and Yellott [2007], and Archand et al. [2011], preprocessed images must be normalized to the

dynamic range of the display. Although these methods slightly improve image sharpness, contrast

is reduced. Fundamentally, the PSF of an eye with refractive errors is a low-pass filter—high image

frequencies are irreversibly canceled out in the optical path from display to the retina.

To overcome this limitation, Pamplona et al. [2012] proposed the use of conventional light field

displays with lenslet arrays or parallax barriers to correct visual aberrations. For this application,

these devices must provide a sufficiently high angular resolution so that multiple light rays emitted

by a single lenslet enter the pupil. This resolution requirement is similar for light field displays

supporting accommodation cues [Takaki, 2006]. Whereas these displays support accommodative

depth cues in addition to binocular disparity and motion parallax, for the application of 3D image

display, vision-correcting displays present a 2D image at a distance from the physical device on

which the viewer can focus. Unfortunately, conventional light field displays as used by Pamplona

et al. [2012] are subject to a spatio-angular resolution tradeoff: an increased angular resolution

decreases the spatial resolution. Hence, the viewer sees a sharp image but at a significantly lower

resolution than that of the screen, as shown in Figure 1.4.

Computational Vision-Correcting Displays. To mitigate the effects of low contrast or low spa-

tial resolution, we will introduce two approaches using multilayer displays [Huang and Barsky,

2011][Huang et al., 2012] and light field displays [Huang et al., 2013] in Chapter 5 and 7. The ap-

proach developed in this thesis combines previous methods by employing 4D light field prefiltering



CHAPTER 2. RELATED WORK 12

with hardware designs that have previously only been used in a “direct” way; that is, where each

screen pixel corresponds to one emitted light ray.

We demonstrate that the new light field design enables significantly higher resolution as com-

pared to the “direct” method because angular resolution demands are decreased. Ultimately, we

will show that light field based inverse prefiltering is a promising, high-resolution approach that

significantly increases the resulting image contrast and the perceived resolution.
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Chapter 3

Mathematical Models of Optical Blurring

3.1 Image Blurring as Convolution

Image blurring is traditionally modeled as spatial filtering, or convolution [Gonzalez and Woods,

1992], of the image with a point spread function(PSF), which is the response of an imaging system

to a point light source in the scene. There are some limitations with this approach: Lambertian

surface assumption, linear spatially invariant (LSI) model, and single depth objects; at the end of

this chapter, we will derive image formation as convolution using a light field.

With a simple formulation, various forms of the convolution model are commonly used, and

the reader can refer to the book by Gonzalez [Gonzalez and Woods, 1992]. In this section, we will

discuss two of models: using the circle of confusion and the wavefront map to represent the point

spread functions.

plane of focus pupil retinadisplay

PSF

Figure 3.1: When a hyperopic or presbyopic eye is focused farther, the closer object is blurred by

the circle of confusion. The size of the circle is determined by the pupil size and the geometry. The

traditional model for image blurring convolves the object with the point spread function, which is

the circle of confusion here.
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3.1.1 Circle of Confusion

For simplicity, we first introduce the traditional 2D geometrical imaging model using a ray tracing

diagram, as shown in Figure 3.1. The distance df to the plane of focus can be determined by the

thin lens equation:
1

df
+

1

de
=

1

f
, (3.1)

where the eye has an internal diameter de, and the focal length f can be derived from the optical

power of the eye. When the display is close to the hyperopic or presbyopic eye, at the distance do,
the content is perceived as an image blurred by a circle of confusion, which depends on the pupil

diameter a, and the diameter r of the circle is given by r = a|df − do|/df . The retinal converging

point receives the superposition of all objects within the circle, and thus the perceived image is

blurred.

To model the blurring process, the displayed image i is convolved with the circle of confusion,

and the object space blurred image ib is given by

ib(x, y) = i(x, y) ∗ k(x, y) ⇐⇒ îb(ωx, ωy) = î(ωx, ωy) · k̂(ωx, ωy) (3.2)

where k is the kernel point spread function defined by the circle of confusion, ∗ is a convolution

operator, ·̂ denotes the Fourier transformed variables, and Equation 3.2 is the result of the convo-

lution theorem. Note that this models the blurring process in the object space; the retinal space

formulation can also be derived similarly by scaling.

Diopter and Focal Length. In Equation 3.1, the focal length f determines the diameter of the

circle, and f is given by the optical power of the eye. Consider the diagram of the eye in Figure 3.2.

A relaxed normal eye (a) has a power of 60 diopters to focus parallel rays, which yields a focal

length f = 1000/60 = 16.67, and the internal diameter de of the eye is about 17mm1. The

crystalline lens provides up to 8 additional diopters on demand for the eye to focus at near objects

(b); in this case the focal length f = 1000/68 = 14.7, and by Equation 3.1 the nearest plane of

focus is 125mm. The diagram of the focal range is depicted in Figure 3.2(e).

Myopia. For a myopic eye, as shown in Figure 3.2(c), the lens has optical power more than 60
diopters in the relaxed state, so the observer cannot focus on an object at infinity; the far plane

at the relaxed state is drawn closer to the eye. The focal range of the myopic eye is shown in

Figure 3.2(f); the overpowered lens pulls the entire range closer to the observer, and negative

powered corrections, such as with eyeglasses, are required to compensate for this effect.

1Note that actual diameter is about 22mm to 24mm, but the internal liquid refracts the light more than that in air.

http://www.blackwelleyesight.com/eye-math/reduced-schematic/
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far plane of focus = infinity retina near plane of focus = 125mm retina

+60 Diopter +68 Diopter

far plane of focus = closer retina

more than
60 Diopter

near plane of focus = farther retina

less than 
68 Diopter

(a) emmetropic eye - relaxed (b) emmetropic eye - focused

(d) hyperopic eye - focused(c) myopic eye - relaxed

(e) emmetropic eye

125mminfinity

(f) myopic eye

125mminfinity

(g) hyperopic eye

125mminfinity

Figure 3.2: Focal range of emmetropic, myopic, and hyperopic eye. The lens has optical power

between +60 to +68 diopters to focus from infinity to 125mm objects. The myopic eye is over-

powered and the focal range is pulled closer to the observer; the hyperopic eye is underpowered

and cannot focus at near range.

Hyperopia. On the other hand, a hyperopic eye (Fig. 3.2(d)) has a lens of power less than +60
diopters when relaxed, even with the addition of +8 diopter the observer still cannot focus at the

normal near range. Figure 3.2(g) illustrates the focal range of the underpowered eye, and positive

powered corrections, such as eyeglass, are need. Similar to hyperopia, the crystalline lens of a

presbyopic eye loses its ability to provide additional focusing power.
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3.1.2 Measured Wavefront Map

The previous section uses the circle of confusion to describe the point spread function; however,

this is sometimes insufficient to model the aberrations that are caused by imperfections in the

optical lens, such as astigmatism, spherical aberrations, or aberrations from even higher order

terms. In this section, more general point spread functions that are based on measured data are

derived.

Light is an electromagnetic wave and can be expressed in the form of E(x) = A(x) · eiφ(x),
where the function A(·) describes the amplitude, and the function φ(·) describes the phase. For the

2D extension to capture the light propagating into the eye, we first express the light as:

E(xa, ya) = A(xa, ya) · e−i 2π
λ
ω(xa,ya) (3.3)

where A(xa, ya) is the 2-D amplitude function defined on the pupil aperture plane, and is shaped

by the pupil; ω(xa, ya) is the phase wavefront map, which can be analytically decomposed into a

series of commonly known terms, such as defocus, astigmatism, spherical aberrations, and so on.

Wavefront. The wavefront is the surface perpendicular to all rays passing through it at the same

phase; Figure 3.3 shows 3 scenarios. The wavefront characterizes the directions of rays leaving an

optical system, and hence the optical aberrations of the lens can be described. Since the wavefront

gives a compact representation of the ray directions, it is useful to measure the wavefront using the

Hartmann-Shack wavefront sensor for the eye.

Hartmann-Shack Aberrometer. By starting from a point light source at the focal point (e.g.

by shooting a laser beam into the relaxed eye, it will be scattered by the retina, as illustrated

in Figure 3.4(a)), we measure the wavefront leaving the eye, and the configuration is called the

Hartmann-Shack wavefront aberrometer. At the pupil plane, the wavefront encodes the directions

of the rays leaving the eye, which is also the phase function. Since the directions of light rays is

given by the normals of the wavefront surface, a pinhole array or a lenslet array can be used to

measure the wavefront surface, as shown in Figure 3.4(b) and (c).

(a) planar wavefront (c) irregular wavefront(b) spherical wavefront

Figure 3.3: Wavefront coming out of the eye: (a) the planar wavefront where all rays are par-

allel and in-phase, (b) the spherical wavefront where rays are converging to a point, and (c) the

wavefront where rays are pointing irregularly, resulting a irregular perpendicular surface.
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(a) Hartmann-Shack wavefront sensor setup

retina
incoming laser

outgoing 
reflected rays

image
sensor

lenslet
array

f ff f

offset

lenslet
array

image sensor registration point

(b) registration with planar wavefront (c) measuring irregular wavefront

Figure 3.4: (a): Measuring wavefront using Hartmann-Shack wavefront sensor. After registration

with a planar wavefront (b), the irregular wavefront generates offsets from the registration points

(c), and can be used to derive the original function for the wavefront.

We first measure the planar wavefront (b), where the converging points after the lenslet array

give the registration. We then capture deviation from the registration of the converging points for

an irregular wavefront (c), and then the wavefront surface is fit with a discrete set of measurement.

The sparse fitting process involves the projection onto a finite series of frequency basis functions,

called the Zernike polynomials. With sufficient observations, we can fit a smooth surface func-

tion z = ω(xa, ya) =
∑

j Z
j(xa, ya), and this is the principle of the Hartmann-Shack wavefront

aberrometer. We will formally describe the basis functions, Zj(xa, ya), in Chapter 8. With reci-

procity, the measured outgoing wavefront can also be used to describe how parallel coherent light

rays entering the eye change their directions, and we can find the point spread functions from that

information.

Generating Point Spread Function. To infer the convergence of the light after the lens, it is

useful to consider the lens acting as a complex optical Fourier transform [Goodman, 2004]. Using

Equation 3.3 to express the light before the optical transform, the retinal cone cells perceive the

converged rays as:

k(x, y) =

∣∣∣∣∫ ∫
A(xa, ya) · e−i 2π

λ
ω(xa,ya) · e−i(xxa+yya)dxdy

∣∣∣∣2 . (3.4)
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For a perfect optical system with a planar wavefront where ω(xa, ya) = 0, the converged retinal

light rays produce a PSF that is an Airy disk function at the origin. A non-planar wavefront forms

more general point spread functions. Some examples are given in Figure 3.5; each is generated

from a single-term Zernike polynomial fitted wavefront map, and in Chapter 8 we will further

discuss the decomposition and how to utilize a wavefront map to solve our problem.

defocus coma trefoil higher order terms

Figure 3.5: Examples of non-planar wavefront generated point spread functions

It is worth noting that Equation 3.4 generates point spread functions with coherent light sources

and Airy disk; these are in the regime of wave optics. In Chapter 8, we will generate point spread

functions with geometric optics, i.e. with classical ray tracing geometry. In practice, the point

spread functions will be slightly different, especially the ripples and alternating bands due to wave

interferences are not apparent.
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3.2 Integrating Retinal Light Field

The previous sections deals with image blurring by convolving the target image with a point spread

function. However, the light field is a more general tool to model the overall process. Similar to

the wave-based formulation (Eq. 3.3), the light field also models the intensities and directions

of the light rays, but under geometric optics2. The most general light field, also known as the

plenoptic function, is a high dimensional field that characterizes the rays of light. For simplicity,

most techniques ignore wavelength and temporal variations, and assume constancy in free space;

this results in a 4 dimensional function involving positions (2D) and directions (2D).

Following the “relative” parameterization by Chai et al. [2000] using two planes, we represent

the starting light field with the plane for spatial coordinates (xd, yd) on the display, and the 1-unit

separated plane (ud, vd) for angular parameterization. For simplicity, we derive the formulation

using a 1D flatland light field. The extension to full 4D is straightforward, and can be found in
[Durand et al., 2005] and [Liang et al., 2011]; the optical setup is shown in the top of Fig. 3.6.

Light Field Imaging and Transforms. The image irradiance i on the retina can be expressed as

an integral of the retinal light field radiances le inside the eye as:

i(x) =

∫ ∞

−∞
le(x, u)A(u)du. (3.5)

We model a finite pupil of diameter r as a multiplication with the aperture function A(u), which

is modeled as a rect function: A(u) = rect(u
r
). A straightforward extension to model the circular

pupil in a 4D light field is to have the aperture as a disk function A(u, v) = 1 where
√
u2 + v2 ≤ r

2
.

To obtain the retinal light field inside the eye, the display light field l(xd, ud) first propagates

a distance do to the pupil and is then refracted by the lens of focal length f ; we illustrate the ray

tracing diagram and light field transforms in the bottom of Figure 3.6. Inside the eye, the light field

propagates another distance de to the retina, and the radiances are finally integrated on the retinal

point, as indicated by the yellow arrow and the box.

The propagation and the refraction can be represented with linear transforms3 T and R (Fig. 3.6

bottom) on the light field, and it is sometimes useful to re-parameterize the light field inside the

eye with another operator Q such that the angular plane lies on the pupil.

Note the pupil aperture is located right after the first propagation, as the top of Figure 3.6

shows. It initially blocks the light field in the spatial coordinates; for derivation simplicity (Eq. 3.5),

we include it at the “final stage” of the retina light field; it can be shown that after the second

propagation and re-parameterization, the aperture blocks the angular coordinates.

2extension to wave optics can be found in [Oh et al., 2010]
3Gaussian 1st order approximation, or paraxial approximation
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Figure 3.6: Top: Transformations of the light field. Bottom: Ray-tracing diagrams, corresponding

transformations on the light field, and the linear operators.
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The composite transform M that relates the display light field [xd, ud]T to the retinal light field

[x, u]T is: (
x
u

)
= Q(de) T(de) R(f) T(do)

(
xd

ud

)
=

(
1 0
1 −de

)(
1 de
0 1

)(
1 0
− 1

f
1

)(
1 do
0 1

)(
xd

ud

)
=

(
1− de

f
dodeΔ

1 do

)(
xd

ud

)
= M

(
xd

ud

)
(3.6)

where Δ = 1
do

+ 1
de

− 1
f

, and similarly the inverse transform:(
xd

ud

)
=

(−do
di

doΔ
1
de

1
f
− 1

de

)(
x
u

)
= M−1

(
x
u

)
(3.7)

When the object is in focus, Δ = 0 and the transform on the spatial coordinates is simply an

upside down scaling by a factor of 1 − de
f

= −de
do

, a ratio typically found in the pinhole camera

model.

Defocus Imaging. When the plane of focus is not within the focal range of the eye, the spatial

coordinates add the directional components; this causes the entire light field to be slanted, as shown

in Figure 3.7. The final angular integration in Equation 3.5 involves integrating over neighboring

pixels around the target location. The size of the integration window corresponds to the convolution

kernel width, and it depends on the pupil aperture and the slope of the sheared light field, given by

1/(deΔ).

in-focus out-of-focus zoom-in on integration

Figure 3.7: Defocus light field. When the object lies exactly on the focus plane, its retinal light

field is straight lines. When object is out of focus, the light field is sheared. Integrating the angular

coordinates requires summing up the neighboring pixels in the object, resulting a blur.
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Combining the aperture size and the light field slope, we obtain the diameter of the convolution

kernel as the following:

r =
a
1

deΔ

−do
de

= −adoΔ, (3.8)

where the ratio −do
de

accounts for the backward projection from retina to the image plane. By

substituting def
de−f

= df , the diameter r is:

r = ado

(
de − f

fde
− 1

do

)
= a

(
do
df

− 1

)
= a

|do − df |
df

, (3.9)

which is identical to the circle of confusion diameter as we have derived in Section 3.1.1. Here

we conclude this chapter by showing the connection between different mathematical models of the

image blurring.

3.3 Summary

In Chapter 4 and 5, we will develop the idea of inverse prefiltering based on 2D image operator.

The light field inverse projection will be explored as a generalization in Chapter 6 and 7. Finally

the integration with wavefront data will be presented in Chapter 8 and 8.3.
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Chapter 4

Preliminary Ideas with Deconvolution

To generate an image that appears to be sharp to the observer, inverse blurring is applied to pre-

process the image content. Following the mathematical models for image blurring in Equation 3.2

of Chapter 3, the convolution process is inversely applied, called deconvolution [Gonzalez and

Woods, 1992]. Deconvolution is well known to be ill-posed, and the inverse problem has been dis-

cussed for decades. Using the idea from the prior literature, we will first derive some mathematical

tools that preprocess images ip to be shown on a conventional display. Given the preprocessed

image, the blurring of the observer reveals a sharp retinal image:

ip(x, y) ∗ k(x, y) = i(x, y). (4.1)

At the end of this chapter, we will discuss theoretical limitations of the overall problem.

4.1 Frequency Domain Solvers

Since the convolution theorem states that the convolving operator in the spatial domain is equiva-

lent to the element-wise multiplication in the frequency domain [Gonzalez and Woods, 1992], the

inverse blurring, or preprocessing, can be easily defined.

Inverse Filter. The frequency domain solvers have evolved significantly in signal processing.

The first widely known tool for deconvolution is the inverse filter [Gonzalez and Woods, 1992].

Following Equation 3.2 where the blurred image is obtained by convolving the image with the

point spread function, the inverse filter h(·) is obtained by inverting the kernel in the frequency

domain:

ĥ(ωx, ωy) =

{
1

̂k(ωx,ωy)
for |k̂(ωx, ωy)| ≥ ε,

0 otherwise
(4.2)
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Figure 4.1: Disk point spread function and its inverse. (a): disk point spread function, (b):
the frequency domain spectrum, and (c): the inverse point spread function of (a). Due to the

zero-valued frequency response, the inverse kernel has interspersed positive and negative rings.

where | · | represents the magnitude of a complex number, and ε is a small threshold to avoid divide-

by-zero. With the inverse kernel, we “inversely prefilter1” the image such that the prefiltered

image ip is seen as a sharp retinal copy after the blurring process of the eye:

ip(x, y) ∗ k(x, y) ≡ i(x, y) ∗ [h(x, y) ∗ k(x, y)] ≈ i(x, y). (4.3)

Although the inverse filter is fundamentally simple, it does not account for the fact that higher fre-

quencies are usually weaker, and a single small threshold is not appropriate for the entire frequency

spectrum for every content source.

Wiener filter. By assuming orthogonality between signal and noise, zero mean noise, and lin-

earity, it can be shown [Gonzalez and Woods, 1992] that the Wiener filter [Wiener, 1964] is a

minimum mean square error estimator and has a similar form to Equation 4.2:

ĥ(ωx, ωy) =
1

k̂(ωx, ωy)
·
[

|k̂(ωx, ωy)|2
|k̂(ωx, ωy)|2 + 1

snr(ωx,ωy)

]
(4.4)

where 1
snr(ωx,ωy)

is the inverse signal-to-noise-ratio (SNR) acting as the new regularization term.

For spatial frequencies where the SNR is high, Equation 4.4 quickly reduces to the inverse filter;

when the SNR is small, the denominator becomes large and suppresses the overall value to zero.

Although Wiener filter is fundamentally more powerful than an inverse filter, the signal-to-noise

ratio for the entire spectrum is usually unknown or hard to obtain in advance, and thus a user

specified constant is applied.

Figure 4.1 illustrates the point spread function kernel k(x, y) and its inverse h(x, y) for a defo-

cus point spread function based on the circle of confusion. Notice that the magnitude plot (MTF)

1in the later text, for brevity we will omit the “inverse” and simply use “prefilter”
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of the frequency domain spectrum has several zero-valued frequency responses; this is because the

response oscillates between the real and the imaginary part. The threshold ε in Equation 4.2 or

the SNR in Equation 4.4 avoids inverting responses at these locations. While the kernel has the

relative simple structure of a disk function, its inverse h(x, y) has infinitely vanishing concentric

rings, as shown on the right of Figure 4.1.

One particularly interesting structure in the inverse kernel is the alternating positive and neg-

ative rings: prefiltering images by convolving with the inverse kernel, as used in the papers by

Yellott and Yellott [2007] and Adrien [2008], produces images with negative intensities. The

approaches using wavefront based point spread function (Eq 3.4) adopted by Alonso and Bar-

reto [2003], Legras et al.[2004], and Mohammadpour et al.[2012] share similar problems. Since

physical display pixels can only be set to positive states, the overall prefiltered image is shifted

by a constant bias to compensate for the negative pixels and is normalized by the maximum pixel

value:

ipnormalized =
i ∗ h−min(i ∗ h)

max(i ∗ h)−min(i ∗ h) . (4.5)

The darkest pixel in the final perceived image is also shifted. For human observers, image contrast

is largely determined by the darkest pixel dividing the brightest pixel, and it is significantly lost in

this case.

Figure 4.2 shows examples using the inverse filter and the Wiener filter at various defocus

levels: the first row shows the normalized prefiltered images (Eq. 4.5), and the second row shows

the perceived images, with and without the renormalization step. As the defocus level increases, the

prefiltering distorts the structure more significantly. We show both versions “without” and “with”

the normalization for the perceived image. For the image without the normalization (assuming

negative light in the simulation2), we can clearly see the ringing artifacts, and this is because the

number of zero-valued responses in Figure 4.1(b) grows as the diameter of the PSF increases. For

an image with normalization that corresponds to real human perception, the contrast is significantly

reduced due to the negative rings in the inverse point spread function (Fig. 4.1(c)) or inverting the

“weak” frequency responses3, and the contrast loss worsens as the defocus level increases.

The small threshold ε in Equation 4.2 for the inverse filter corresponds to an infinite signal-

to-noise ratio. For the Wiener filter, the SNR can be treated as a user specified regularization

control knob: a higher SNR respects the original signal but the contrast loss is severe; a lower

value regularizes the process so contrast is higher, but the original content is distorted and is not as

sharp. In both cases, the artifacts prohibit the readability of the original content.

2Note that negative light can be achieved using coherent light, and the wave effect provides the negative radiances.

This type of display is, however, impractical for a real life scenario; but we still provide the simulation as a reference.
3Since each spatial frequency is a sinusoidal function oscillating between positive and negative, inverting a weak

signal creates a strong one that also magnifies the negative part; we will discuss the behavior in the end of this chapter
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Figure 4.2: Frequency domain prefiltering solutions using the inverse filter and the Wiener
filter. This type of solvers generally have contrast loss problem. Depending on the regularization,

the ringing artifacts can be attenuated and the contrast can be enhanced, but the image can also

become more blurry.
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4.2 Spatial Domain Solvers

Instead of operating in the frequency domain, spatial domain solvers provide the option to incor-

porate desired properties to the system or solution, such as non-negativity, gradient distribution, or

even subpixel rendering. Adding constraints to the convolution is non-trivial in the spatial domain,

and it usually requires an iterative solver.

Richardson-Lucy Solver. Applying Bayes’s theorem, Richardson [1972] and Lucy [1974] meth-

ods iteratively solve for the most probable hidden prefiltered image. By defining the pixel prob-

ability P
(
ip(x)

)
=

∑
s P

(
ip(x) ∩ i(s)

)
=

∑
s P

(
ip(x) | i(s)

)
P
(
i(s)

)
, we can use the Bayes

posterior probability to evaluate the right hand side:

P
(
ip(x)

)
=

∑
s

P
(
i(s) | ip(x)

)
P
(
ip(x)

)
∑

t P
(
i(s) | ip(t)

)
P
(
ip(t)

) · P
(
i(s)

)
. (4.6)

Since the probability distribution P
(
ip(x)

)
appears on both side of Equation 4.6, we solve it with

an iterative strategy so that the right hand side evaluates to be the next iteration probability. By

substituting the conditional probability distribution P
(
i(s) | ip(x)

)
with the point spread function

kernel density P
(
k(s− x)

)
, we obtain the following iterative expression:

Pt+1

(
ip(x)

)
= Pt

(
ip(x)

)∑
s

P
(
k(s− x)

)
P
(
i(s)

)
∑

t P
(
k(s− t)

)
Pt

(
ip(t)

) ⇒ ip(t+1) = ipt ·
i

ipt ∗ k
∗ k′, (4.7)

where ipt is the t-th iteration solution to the inverse problem, k′ is the flipped point spread function,

and the multiplication and division are element-wise operations. One disadvantage for the iterative

method is the number of the iterations it takes. Furthermore, it is generally hard to prove the

convergence condition; the solution can sometimes oscillate between good and poor solutions.

Because the convolution with the kernel k always produces positive values, the Richardson-Lucy

method is a non-negative solver, and there is no contrast loss4; due to the non-negative property,

the solution space is not exploited, and additional artifacts are presented, as shown in Figure 4.3.

As the figure shows, the Richardson-Lucy method generally produces a fairly good perceived

image contrast, but artifacts make the image barely recognizable as the diameter of the PSF in-

creases. We also show different iteration numbers, and sometimes the solution improves the image

with sharper features as we increase the computation time; however, there is no clear stopping con-

dition giving the best result, and the user has to visually judge between the high frequency details

and the ringing artifacts.

4It can becomes darker due to the expanded dynamic range.
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Figure 4.3: Spatial domain prefiltering solutions using Richardson-Lucy method. Although

the Richardson-Lucy solver gives non-negative solution, perceived images are generally more

blurry and have more ringing. More iterations can potentially reduce the artifacts, but there is

no obvious stopping criteria, and the user has to determine it empirically.
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Sparse Gradients Natural Image Statistics. Recent tools for image deblurring employ addi-

tional regularizations such as natural image statistics [Fergus et al., 2006] or sparse gradients [Ol-

shausen and Field, 1996] constraints; specifically, the gradient distribution of a natural image is

quite different from white noise, and is either heavy-tailed or sparse in the image.

Following the derivation by Levin et al.[2007], we assume Gaussian noise distribution and have

argmin
ip

‖i− k ∗ ip‖2 +
∑

ρ(∇ip), (4.8)

where the function ρ is either a smooth prior or a sparse estimate on the gradient of the hidden

image, and the smooth prior where ρ(x) = ‖x‖2 gives us better results5.

Figure 4.4 shows the results obtained using the solver provided by Levein et al.[2007], and

the results are slightly better than that from Richardson-Lucy solver. Note that even artifacts are

suppressed, the perceived images are also more blurry as a consequence. We also compare with

the frequency domain Wiener filter solution by showing both the simulated negative light and real

perception.
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Figure 4.4: Prefiltering solution obtained using Levin et al. deconvolution. By employing the

smooth gradient distribution prior, the perceived image is slightly sharper, but without nonnegative

constraints, the image contrast is lost similar to that of the frequency domain solver.

5Levin et al.[2007] use 0.8 for sparse prior. In their paper, the second order derivative is also constrained; alterna-

tively we can constrain the gradient of the perceived image, i.e. ‖∇(ip ∗ k)‖0.8.
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Super Resolution Techniques. Higher resolution images can be obtained by interleaving lower

resolution ones. The technique is called “wobulation” [Allen and Ulichney, 2005], and as shown

in Figure 4.5 left. Although the technique receives lots of attention such as the super resolution

projector proposed by Damera-venkata and Chang [2007] [2009] and optical pixel sharing by

Sajadi et al. [2012], the results appear as if there is a high resolution display.

Didyk et al. [Didyk et al., 2010] and Berthouzoz and Fattal [Berthouzoz and Fattal, 2012]

extend these methods by manipulating the way eye moves, and their methods directly form a high

resolution retinal image using just a single low resolution display, as shown on the right of Fig-

ure 4.5. Based on “alias-cancellation”, these techniques encode the higher frequency information

in the low frequencies; however, the human eye has finite integration time and the high display

refresh-rate decodes the hidden higher frequency.

Although the technique is made relatively simple by inverting the sub-frame integration (Fig. 4.5

center), the fundamental limitation is still how the frequency information passes through the lens
[Damera-Venkata and Chang, 2009]; as shown in Figure 4.1, some of the spatial frequencies will

not be transfered to the retina and thus irrecoverable.

sub-frame 1

sub-frame 2

super-imposed high resolution

low resolution

wobulation technique

low resolution
sub-frames

high resolution
perception

Figure 4.5: Prefiltering using super-resolution technique. Super-resolution uses the “wobula-

tion” concept (left) where the sub-frames are integrated and are perceived as having higher reso-

lution. The resolution enhancement exploits human eye perception and encodes high frequencies

into low frequencies through “alias-cancellation”. The decoding is done by using a display with

high refresh-rate.
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4.3 Theoretical Analysis

Generalized Linear Solver Without loss of generality, we can unroll the 2D image into a 1D

vector, and express the convolved pixels as linearly weighted neighboring pixels from the original

images; this leads to the following expression:

i = W · ip. (4.9)

Then the solution to the inverse problem simply requires inverting the weight matrix W. It is also

possible to include additional constraints and make it an overall optimization problem:

argmin
ip

‖W · ip − i‖2, s.t. constraints C are satisfied. (4.10)

Typical least square solutions to the inverse problem require finding the pseudo-inverse of the

weight matrix W via singular value decomposition (SVD). Additional constraints such as non-

negativity, sparse gradients, and desired distributions can also be incorporated into a unified con-

strained linear solver system. However, inspecting the singular values of W reveals some impor-

tant structure of the inverse problem: when the display object is in focus, the point spread function

is a delta function and the weight matrix is a diagonal identity matrix, as shown in Figure 4.6(a);

when the display is out of focus, the circle of confusion PSF expands and the weight matrix be-

comes banded(b), thus making an ill-posed problem.

Here we simulate a 1D case scenario where the eye has 4mm pupil, the distance to the display

is 30cm, and the observer requires +7.67Diopter hyperopic eyeglasses, resulting in a near plane at

3m distance. The singular values of banded matrix is shown in Figure 4.6(c): since the observer

has large blurring kernel, the singular value quickly drops significantly and becomes nearly zero

around the 500-th singular value, and the rank of the system is thus reduced.

 

 

 

 

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0. 2

0. 4

0. 6

0. 8

1

(a) weight matrix in-focus (b) weight matrix out-of-focus (c) singular values of the matrix in (b)

si
ng

ul
ar

 v
al

ue
s

singular value indices

Figure 4.6: Convolution weight matrices and their singular values. A focused optical system

has pure diagonal identity matrix. A defocused system is banded, causing its singular values to

degenerate, and it is thus harder to invert.
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Frequency Domain Analysis. Another interesting perspective from which to consider the prob-

lem is in the frequency domain; following the definition of a disk function:

k(x, y) =

{
4/πr2 for

√
x2 + y2 < r/2,

0 otherwise;
(4.11)

the frequency domain response is given by the jinc function [Goodman, 2004]:

k̂(ωx, ωy) = 2jinc(πr
√
ω2
x + ω2

y) ≡
2J1

(
πr

√
ω2
x + ω2

y

)
πr

√
ω2
x + ω2

y

, (4.12)

where J1 is the Bessel function of the first kind, and there are zeros in the function, as shown in

Figure 4.7.

Since the Fourier transform is linear, the modulation transfer function is the unsorted singular
values, and the zero-valued spatial frequencies match the zero-valued singular values, and the

inverse filter and the Wiener filter are like the pseudo-inverse approximation: inverting at the lost

frequencies is undefined and different regularization strategies are employed.

These zero-valued spatial frequencies lead to the first theoretical limitation of ringing artifacts

and slight blurriness. The lost frequencies or singular-values cannot be recovered since the blur-
ring kernel is applied at the last step of the process; generally, this information loss causes blurri-

ness. The lack of certain frequencies at sharp edges generates some ringing artifacts, as shown in

Figure 4.2.

The second problem with inverting the blurring kernel is the extremely expanded dynamic

range. Due to the heavily attenuated frequency responses that are close to zero, their inversion is

close to infinity, causing these frequencies to exhibit dominating sinusoidal structures in the spatial

domain images, and generating negative and overwhelmingly positive pixel states; intensity re-

normalization is required to show the prefiltered image on the display, but it also introduces the

contrast loss.
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Figure 4.7: Modulation transfer function for the disk PSF. The frequency domain responses of

a disk PSF is a jinc function and has zeros. These zeros transfer no frequency content to the retina,

and the weak responses introduce the image contrast loss.
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4.4 Summary

In the beginning of this chapter, we formally introduced the formulation of the problem (Eq. 4.1)

in the context of image convolution (Sec. 3.1). Using the circle of confusion assumptions(similarly

the wavefront based PSF) and a traditional display devices, we show that prior solutions obtained

under different assumptions and spatial/frequency domains can roughly achieve the goal with some

artifacts.

At the end of the previous section, we revealed two fundamental limitations of the prefiltering

method using a traditional display:

• Frequency loss: cause slight blurriness and ringing artifacts.

• Contrast loss: the expanded dynamic range and the negative pixel values require intensity

re-normalization.

While these drawbacks are lightly documented in the paper by Alonso and Barreto [2003], no

theoretical improvement has been proposed in the following years. With the theoretical analysis for

the prefiltering method on a traditional display, we conclude that modification to the assumption

has to be introduced, and new hardware has to be built. In the next chapter, we will introduce the

prefiltering method with “multilayer” type of displays that addresses the fundamental limitations.
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Chapter 5

Multilayer Displays

In this chapter, we develop inverse prefiltering for emerging multilayer displays. Following the

limitations on image prefiltering using the conventional display, as discussed in the previous chap-

ter, the multilayer display enables an “all-pass kernel”: there will be no zero-valued frequency

responses [Huang and Barsky, 2011]. We will first discuss the observations and intuitions behind

the idea, and then develop the theory of multilayer prefiltering [Huang et al., 2012]; a contrast

optimization will be introduced, and finally we will discuss the hardware design alternatives and

our prototypes.

5.1 Frequency Preservation via Multilayer Prefiltering

For the case of image prefiltering using a conventional display, we now call it “single-layer pre-

filtering” when only one display panel is used. Following Section 3.1.1, the point spread function

is a disk function of diameter r, and it is a function of the distance from the eye to the focus plane.

On the left of Figure 5.1 are two cases of defocus blur: for the display (blue) closer to the plane

of focus, its point spread function is smaller. On the right of Figure 5.1, we plot the modulation

transfer functions (MTFs) of the two PSFs. Since their MTFs are both jinc functions with periods

determined by the diameter of their PSFs, they both inevitably have the zero-valued problem.
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Figure 5.1: Observation of multilayer PSFs and their MTFs.
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However, one interesting observation is that these zero-valued frequencies generally do not

align. With a carefully chosen separation between the two layers, we can say that the coincident

frequency will not happen within human perceivable frequencies (around 60 cycles per degree).

So the engineering question is how to make both layers visible to the eye, and the two layers still

maintain the property of different point spread functions. Fortunately, nowadays there are transpar-

ent display panels, and they are capable of refreshing at high speed (120Hz panel are commercially

available). By utilizing the critical flickering rate (around 40Hz) limiting the temporal integration

of the eye, we quickly interchange contents on the two displays, and the eye will fuse the two

images on the retina; this is the fundamental idea of our multilayer inverse prefiltering.

Multilayer image convolution. Let’s now consider the eye integrates N layers of display panels,

each separated from the eye by the distance d1, d2, ..., dn; we can formulate a fused image blurring

operation:

i(x, y) =
N∑

n=1

īpn

(
dn
d1

x,
dn
d1

y

)
∗ k̄n

(
dn
d1

x,
dn
d1

y

)
. (5.1)

Here, x and y are defined on the first layer display plane. We first assume that the n-th layer

“original” prefiltered image īpn is given; the actual derivations for prefiltering will be presented

in the next section. To account for perspective viewing, we scale the images by dn/d1 according

to the separation; in this way, the n-th layer image and point spread function are respectively

projected onto the first layer. To simplify the notation, the scaled prefiltered images and point

spread functions are redefined as:

ipn(x, y) = īpn

(
dn
d1

x,
dn
d1

y

)
and kn(x, y) = k̄n

(
dn
d1

x.
dn
d1

y

)
. (5.2)

We substitute the image formation at the first layer, and the perceived image can be expressed as

the following:

i(x, y) =
N∑

n=1

ipn(x, y) ∗ kn(x, y). (5.3)

Equation 5.3 reveals the first important benefit of a multilayer display for correcting optical aber-

rations: this expression is equivalent to N collocated independent single-layer displays, and they

are all separated by a distance d1 to the eye. What makes the idea different from a single-layer

prefiltering problem is that, even the conceptual display panels are all located at the same distance,

the effective point spread function kn(x, y) applied to each layer differs, opening the door to an

“all-pass kernel” prefiltering algorithm.

Multilayer All-pass kernel. Consider the case where layer images are all identical, such that

ipn(x, y) = ip(x, y), Equation 5.3 reduced to the following:

i(x, y) = ip(x, y) ∗ k′(x, y), where k′(x, y) =
N∑

n=1

kn(x, y). (5.4)
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This demonstrates that the multilayer prefiltering can operate in a mode similar to the single-layer

prefiltering, but the effective point spread function is now a linear superposition of all circle of

confusions for each layer. By Equation 4.12, the frequency spectrum of the circle of confusion is

given by1

k̂n(x, y) = 2jinc(πrn

√
ω2
x + ω2

y) where rn =

(
d1
dn

|df − dn|
df

)
a. (5.5)

As shown on the right of Figure 5.1, with carefully chosen layer separations, the zero-valued

frequencies of the MTFs differ; all spatial frequencies are preserved in the multilayer fashion, and

the effective point spread function is thus an “all-pass” filter. Applying this operation can eliminate

artifacts in single-layer prefiltering.

Frequency domain analysis of multilayer kernel. The multilayer display can also operate in a

mode with dissimilar layer images, while maintaining the same perceived image. By understanding

the frequency domain property of the multilayer display, we show the second benefit: the perceived

image contrast can exceed that achievable with single-layer prefiltering.

Taking the two-dimensional Fourier transform of Equation 5.3 yields the following expression:

î(ωx, ωy) =
N∑

n=1

îpn(ωx, ωy) · k̂n(ωx, ωy) (5.6)

In Equation 5.4, we obtain for each layer the prefiltered image îpn(ωx, ωy) = i(ωx, ωy)·k̂−1
n (ωx, ωy),

such that the perceived image is simply the summation of the identical filtered layer images. How-

ever, as described in the previous paragraph, this operation mode assumes equally distributed im-

age content; since the zero-valued frequencies differ in each layer, a more flexible formulation is

required.

In the general form, we allow the prefiltered layer image spectrum to be expressed as:

îpn(ωx, ωy) = î(ωx, ωy) ·
[
Ψn(ωx, ωy) · k̂−1

n (ωx, ωy)
]
, (5.7)

where Ψn(ωx, ωy) is the partition function determining the relative contribution of each layer to

each spatial frequency component. Note that the partition function must satisfy the unity constraint:

N∑
n=1

Ψn(ωx, ωy) = 1, where 0 ≤ Ψn(ωx, ωy) ≤ 1. (5.8)

Finally to ensure the prefiltered images are real-valued, we further impose the partition function

must be odd-symmetry such that Ψ(ωx, ωy) = Ψ(−ωx,−ωy).

1Equation 14 in the multilayer paper is Pn instead of pn!!!
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5.2 Partition Function and Contrast Optimization

In this section, we will describe different partition function strategies. Consider the prefiltered

multilayer image perception model:

î(ωx, ωy) =
N∑

n=1

(̂
i(ωx, ωy) ·

[
Ψn(ωx, ωy) · k̂−1

n (ωx, ωy)
])

· k̂n(ωx, ωy), (5.9)

Here we model the whole effect as a linear superposition in the frequency domain. As discussed

in the previous chapter on the property of the point spread function in the frequency domain, zero-

valued frequencies introduce undefined inversion; the partition function Ψn(ωx, ωy) helps us avoid

such cases, and the simplest inverse filter can be used. In practice we require the hard constraint

that

Ψn(ωx, ωy) = 0, when the corresponding |k̂n(ωx, ωy)| = 0, (5.10)

and this way the spatial frequency will be zero for the prefiltered image at that layer: îpn(ωx, ωy) =
0; information presented in that frequency must be preserved in other layers.

Winner-Take-All Strategy To avoid the zero-valued frequency assignment, we define a simple

rule that the contribution is always given to the layer with the maximum response at the specific

spatial frequency:

Ψwta
n (ωx, ωy) =

{
1 for n = argmaxm |k̂m(ωx, ωy)| ,
0 otherwise

(5.11)

and we call it the “Winner-Take-All” strategy; graphical illustration is shown in Figure 5.2. In

simple words, the combined effective kernel is the envelope of kernels from all layers, as shown in

the red dashed line, and the assignment of spatial frequency to layers is shown on the bottom.
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Figure 5.2: Winner-Take-All MTF and frequency assignment.
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Figure 5.3: Winner-Take-All binary frequency partitioning. First attempt to solve the inverse

prefiltering problem using Winner-Take-All frequency assignment strategy. Although we are able

to preserve all spatial frequencies and avoid the extreme attenuations, the contrast is, however,

not better than that of the single-layer prefiltering, and this is due to the isolated sinusoidal wave

structure induced by the binary frequency assignment, as shown on the right.

The essence of the Winner-Take-All strategy is that the layer with the maximum effective MTF

|k̂n(ωx, ωy)|, for a given spatial frequency (ωx, ωy), is always assigned with the full dominance, and

the remaining layers makes no contribution to this component. Under this choice of the partition

function, one can optimize the layer distances {d1; d2; . . . dN} such that the minimum value of the

overall MTF (i.e., the envelope of the effective MTFs) is maximized, and this corresponds to the

solution to the following optimization problem:

argmax
{d2,...,dN}

[
min

(
N∑
n

|k̂n(ωx, ωy; dn)| ·Ψwta
n (ωx, ωy; dn)

)]
. (5.12)

This is equivalent to finding the max-min value in a high dimensional tensor, and can be imple-

mented efficiently with a brute force search when the number of layers (dimensions) is small.

Figure 5.3 shows the first comparison of the Winner-Take-All strategy with the single-layer pre-

filtering (second column). The third column is an example of the perceived two-layer prefiltering

result using the Winner-Take-All partition function, which is the fourth column. Although the en-

tire spatial frequency spectrum is preserved, the contrast is, however, only slightly improved from

the result obtained using the single-layer prefiltering. The binary frequency assignment strategy

might not be always the optimal choice of partition function.

Optimal contrast optimization. It is interesting to see why the contrast in Figure 5.3 is not much

improved given that the zero-valued and weak frequencies are avoided. In fact, as we separate

spatial frequencies into different layers, the sinusoidal wave structure also becomes apparent. As
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shown in Figure 5.2, the DC term (the lowest spatial frequency) is always assigned to the the

rear layer, so the front layer image inevitably has negative values due to the negative part of the

wave. Ideally, by carefully assigning fractional DC term contribution, the negative values can be

maximized for all layers.

Without lose of generality, the partition function Ψopt
n (ωx, ωy) allowing fractional values for all

spatial frequencies can potentially improve the image contrast and can allow for a more general

formulation. Below we show a generalized optimization that maximizes the final image contrast

by maximizing the minimum value of the prefiltered images:

argmax
{d2,...,dN ,Ψ1,...,Ψn}

[
min

(
iFT {̂i(ωx, ωy) ·Ψopt

n (ωx, ωy; dn) · k̂−1
n (ωx, ωy; dn)}, ∀n

)]
, (5.13)

where the iFT{·} is the inverse Fourier transform and gives the prefiltered image. While we want

to maximize the minimum negative intensities, the objective function has a nested dependency

inside a Fourier transform, which makes the problem intricate; some relaxation is needed to make

the optimization tractable.

Greedy Optimization Optimizing both partition functions and the separations between layers,

with them depending on each other, is hard. There are two important observations that lead to our

greedy optimization: the natural image spectrum usually has stronger low frequency energy, and

the optimization depends more on the separations of the layers.

These observations lead to a two-step greedy strategy. First, we find the separations between

layers following the Winner-Take-All optimization, that maximizes the minimum response of the

envelope; this strategy gives the best potential optimization space for fractional assignment. Sec-

ond, we assign the spatial frequencies following a monotonically decreasing order that the larger

normalized energy of a spatial frequency will be processed first. The normalized energy is defined

as the following:

|̂inorm(ωx, ωy)| =
N∑

n=1

|̂i(ωx, ωy)|
|k̂n(ωx, ωy)|

. (5.14)

In Equation 4.2, we find the prefiltered image using the inverse of the kernel, and we also use the

reciprocal here; the kernel response in the denominator encourages zero-valued spatial frequencies

to be processed first, and the magnitude of image spectrum in the numerator prioritizes the stronger

lower frequencies.

We define the following iterative assignment optimization for the spatial frequency (ωx, ωy)

with each step where |̂inorm(ωx, ωy)| is the strongest among all other unassigned spatial frequen-

cies:

ΨGR
{1∼N}(ωx, ωy) ← argmax

Ψ∗
{1∼N}(ωx,ωy)

[
min

(
ip1(x, y), . . . , i

p
n(x, y)

)]
. (5.15)

In the spatial domain, the frequency (ωx, ωy) is a sinusoid wave, and the min is a nonlinear func-

tion, we implement the optimization using a line search; at each step on the line, we add the
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Figure 5.4: Contrast optimization via greedy partition function. Compared with the single-

layer prefiltering and the Winner-Take-All strategy, the greedy optimization strategy not only pre-

serve all spatial frequencies, but it also provides better image contrast. The greedy strategy allows

fractional frequency assignment to different layers.

“fractional” sinusoidal waves, from the original image i(ωx, ωy), to the N determined prefiltered

images among which we then find the minimum intensity value. Note that under this scheme, the

DC term is optimized in the end, since there is no sinusoidal wave structure.

In Figure 5.4 we compare the Winner-Take-All strategy with the greedy strategy using two

layers. The image contrast is improved as we allow for fractional partition weights, as shown on

the right. Notice the solid concentric lines in the partition function; this is because the zero-valued

spatial frequency occurs in the opposite layer, and thus the corresponding layer is assigned with full

dominance. In Figure 5.5, we compare the prefiltering results using the eye chart example, and their

corresponding prefiltered image is shown on the right; notice that the greedy strategy multilayer

prefiltering can provide much better image contrast than that of the single-layer prefiltering.

without correction single-layer prefiltering
two-layer prefiltered layer imagessingle-layer prefiltered image

two-layer prefiltering prefiltered front layer prefiltered rear layer

Figure 5.5: Comparing the perceived images from prefiltering algorithms using the eye chart
example. We compare the single-layer prefiltering with our multilayer prefiltering, and their cor-

responding prefiltered images are shown on the right.
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5.3 Requirement and Construction

After describing the principle of multilayer prefiltering, the requirement for hardware construc-

tion will be discussed in this section. The only requirement for the desired display is the optical

equivalence to a Lambertian multilayer display.

5.3.1 Design alternatives

Any practical multilayer display must meet four design criteria. It should: (1) be optically equiv-

alent to a stack of semi-transparent, lighting-emitting layers, (2) be thin, (3) support binocular

correction, since refractive errors may differ between eyes, and (4) support a wide field of view. In

addition, the display should ideally support HDR modes, due to the expansion in dynamic range.

In this section, we assess the ability of various display technologies to meet these constraints.

We observe that most of these constraints are shared by autostereoscopic displays. We propose

adapting these emerging architectures to the task of optical aberration correction.

Multilayer OLEDs OLEDs contain an organic film enclosed between electrode arrays that emit

light proportional to the applied voltage. Transparent OLEDs incorporate semi-transparent con-

tacts [Görrn et al., 2006] providing an ideal architecture for multilayer prefiltering. However, such

displays do not support binocular correction. To address this limitation, we propose placing a par-

allax barrier or a lenslet array in front of an OLED stack; such elements ensure each eye views

different pixels on each layer, enabling binocular correction at the cost of reduced resolution.

Beam-splitter Trees LCDs dominate consumer applications, with OLEDs restricted to smaller

form factors. Large-format OLEDs are poised for introduction, yet a multilayer display incor-

porating LCDs currently possesses greater commercial potential. An LCD contains two primary

components: a backlight and a spatial light modulator (SLM). The SLM comprises a liquid crys-

tal layer enclosed between electrode arrays and surrounded by a pair of crossed linear polarizers.

The SLM acts as a light-attenuating layer, with opacity varying depending on the applied voltage.

Layering multiple SLMs implements a stack of semi-transparent, light-attenuating layers [Bell et
al., 2008].

Viewing multiple LCDs through a set of half-silvered mirrors (i.e., beamsplitters) is optically

equivalent to a stack of semi-transparent, light-emitting layers [Akeley et al., 2004]. Although

providing a practical embodiment for multilayer prefiltering, such a design falls short of our design

criteria by requiring a large enclosure, prohibiting binocular correction, and restricting viewer

movement.
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Multilayer LCDs We observe that multilayer LCDs can be operated in another manner that is op-

tically equivalent to a stack of light-emitting layers, while achieving a thin form factor. High-speed

LCDs allow stereoscopic viewing with shutter glasses [Urey et al., 2011]. For this application, the

panels are refreshed at 120 Hz, with the left-eye and right-eye images sequentially displayed while

a shutter is opened over the corresponding eye. We propose a similar time-multiplexed display

mode, wherein the prefiltered images are sequentially displayed on each layer, while the other lay-

ers are rendered transparent. Assuming a flicker fusion threshold of 60 Hz [Kaufman and Alm,

2002], a viewer will perceive an N-layer display, composed of semi-transparent, emissive layers,

if the refresh rate of the panels is 60 ∗N Hz. In Section 5.3.2, we analyze a two-layer LCD proto-

type. Similar to multilayer OLEDs, additional optical elements are required to support binocular

correction. We propose incorporating directional backlighting to ensure that each eye perceives

a different image. As described by Urey et al. [2011], directional backlighting consists of a

rear-illuminating light guide capable of directing illumination independently to each eye in a time

sequential manner. As a result, we conclude that viewer tracking will be required to ensure that the

layer images are compensated for changes in perspective.

Light Field display Practical multilayer displays require increasing the display thickness, limit-

ing mobile applications. By Equation 5.13, the optimal layer separation depends on the viewer’s

refractive error and position. Although a fixed separation can be employed, dynamic adjustment

is preferred. Rather than constructing multiple physical display layers, we observe that emerging

light field displays can synthesize virtual layers at arbitrary distances from the display surface.

Furthermore, since such displays are optimized for autostereoscopic viewing, binocular correction

is naturally supported; we will formally analyze the operation mode in Chapter 6

A light field display can control the radiance of emitted light rays as a function of both position

and direction [Urey et al., 2011]. For autostereoscopic modes, the light field replicates that pro-

duced by a 3D scene. To date, commercial light field displays primarily rely on two technologies:

parallax barriers [Ives, 1903] and integral imaging [Lippmann, 1908]. Each pixel of the light field

display is capable of emitting light rays within a field of view of degrees, creating a multi-view

display.

We propose a new operation mode for light field displays; rather than replicating a 3D scene, we

propose emitting a light field that replicates a virtual stack of semi-transparent, light-emitting lay-

ers. Such virtual layers can be displaced dynamically to account for viewer movement. Yet, light

field displays suffer from two limitations. First, increasing angular resolution requires decreasing

the spatial resolution; the underlying display requires a greater resolution than an equivalent mul-

tilayer display constructed with physical panels. Second, light field displays exhibit a finite depth

of field, limiting the range over which virtual layers can be synthesized. In the next chapter, we

will discuss the theoretical light field analysis, the implementations of the light field displays, and

the comparison with contemporary light field distortion based “Tailored Display” [Pamplona et al.,
2012].
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5.3.2 Prototype construction

Hardware. We built an early prototype using a beam-splitter tree similar to the construction by

Akeley et al. [2004], but its form factor and field of view was not satisfying. Here we will show

a more sophisticated construction using multilayer LCDs. As described in Chapter 2, PureDepth,

Inc. markets two-layer LCDs [Bell et al., 2008]. However, the separation between panels cannot be

altered and additional layers are not available. As a result, we employ a multilayer LCD following

the design of Lanman et al. [2011].

As shown in Figure 5.6, the prototype comprises four modified 40.8cm-by-30.6cm Barco E-

2320 PA LCD panels, supporting 8-bit grayscale display with a resolution of 1600-by-1200 pixels

and a refresh rate of 60 Hz. Each panel was disassembled and mounted on an aluminum frame.

The panels are arranged on a stand and suspended from a set of four rails, allowing their separation

to be continuously adjusted. The front and rear polarizing films are removed from each panel

and replaced with American Polarizers AP38-006T linear polarizers; a pair of crossed polarizers

enclose the rear layer, with successively-crossed polarizers affixed to the front of the remaining

layers. The stack is illuminated using a single backlight. With this configuration, each LCD

behaves as an unmodified panel when the other panels are rendered transparent. As described in

Section 5.3.1, the stack is operated in a time-multiplexed manner such that only one panel displays

content at any given time. With a sufficiently long exposure (i.e., ≥ N/60 seconds when N layers

are used), the prototype appears as a semitransparent stack of light-emitting layers. A 2.8 GHz

Intel Core i7 workstation with 8 GB of RAM controls the prototype, and a four-head NVIDIA

Quadro NVS 450 graphics card synchronizes the panels.

Figure 5.6: Prototype multilayer display, front view and side view.



CHAPTER 5. MULTILAYER DISPLAYS 44

We briefly outline the limitations of the proof-of-concept prototype, relative to a preferred com-

mercial embodiment. First, the panels only support a 60 Hz refresh rate; for two-layer prefiltering,

the effective refresh rate is reduced to 30 Hz, falling below the 60 Hz human flicker fusion thresh-

old. As a result, our ability to conduct user studies is hindered, due to flicker being perceived when

using multiple layers. Yet a long camera exposure allows multilayer prefiltering experiments. Sec-

ond, the panels only support grayscale modes. This has the benefit of mitigating moire’s patterns

resulting from layering LCDs [Bell et al., 2008] and increasing the brightness by eliminating atten-

uation across multiple color filter arrays. We record color images by simulating a field sequential

color (FSC) backlight (i.e., a strobed backlight that illuminates the stack with time-varying color

sources); for the results in Figure 5.9, we combine three separate photographs, each recorded while

displaying a different color channel of the prefiltered images.

Software We implemented the single-layer and multilayer prefiltering algorithms described in

Section 5.1 using a combination of Matlab scripts and compiled C/C++ routines. The FFTW dis-

crete Fourier transform library is used to accelerate prefiltering. For color images, each channel is

processed independently in a separate thread. For a 256-by-256 color image, single-layer prefilter-

ing requires an average of 1 second for processing; two-layer prefiltering takes 5 seconds, when

using the Winner-Take-All partition function, and 150 seconds when using the greedy partition

function. All run times are reported using the same workstation used to control the prototype.
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5.4 Results

Simulated results. We first show some simulated corrections using both single-layer prefiltering

and two-layer prefiltering. The results shown in Figure 5.7 are simulated with a 50mm f/1.8 lens

with object at a distance 100cm, and the camera focuses at 84cm; the separation between layers

is 3.4cm. By comparing with the blurred images, clearly the perceived images preprocessed with

the prefiltering algorithms are sharper. For the first two examples, we show both the negative

light simulation and the real perceived images. The negative light simulation enables us to see

more clearly how the ringing artifacts are successfully removed with multilayer prefiltering. In

the meantime, the image contrast are greatly improved, as shown in the third row. On the right of

Figure 5.7, the corresponding prefiltered layer images are shown.

original image without
correction

perceived image
single-layer

perceived image
two-layer

two-layer prefiltered images
layer 1 layer 2

Figure 5.7: Comparing simulated single-layer prefiltering results with multilayer prefiltering
results. For the first two rows, we also show the comparison with negative light assumed to

delineate the ringing artifacts due to the lost frequencies.
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Comparisons with equal brightness. As one might argue that the brightness setting (dynamic

range) of the multilayer display may be different from a conventional display used for single-layer

prefiltering, in Figure 5.8 we also show direct comparisons when the brightnesses are equalized to

match each other. With the Michaelson contrast, which is defined as (Imax − Imin)/(Imax + Imin),
as our evaluation metric, the perceived image contrast is thus “independent” of display brightness.

In both examples, the multilayer prefiltering results are still better than the single-layer prefiltering

results in the image contrast, and as discussed in Section 5.1 and Section 5.2, this is achieved

by avoiding the zero-valued/weak spatial frequencies and greedy contrast optimization. On the

bottom left of Figure 5.8, we also show the ringing artifacts in the single-layer prefiltering due to

the zero-valued spatial frequencies and the weak frequencies affected by the regularization. These

problems are eliminated by inverting the “all-pass-kernel” of the multilayer prefiltering algorithm.

direct output from the algorithms

brightness equalized to match single-layer prefiltering

brightness equalized to match multilayer prefilteringsingle-layer with negative light

without correction

original image

single-layer prefiltering two-layer prefiltering

direct output from the algorithms

brightness equalized to match single-layer prefiltering

brightness equalized to match multilayer prefilteringsingle-layer with negative light

without correction

original image

single-layer prefiltering two-layer prefiltering

Figure 5.8: Comparing simulated results when brightness are equalized. For a fair comparison,

the brightness of the results from single-layer and multilayer prefiltering are equalized to match

with each other. On the bottom left of each example, we manifest the ringing artifacts from single-

layer prefiltering with negative light assumed.
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Camera photographs Using the same parameters as the previous simulation, a Canon EOS

Rebel T3 digital camera, with a Canon EF 50mm f/1.8 II lens, was separated by 100 cm from

the front layer of the prototype. The camera is focused at 16cm in front of the display, with the

minimum f-number setting of f/1.8, resulting in an aperture diameter of 2.8cm.

Figure 5.9 summarizes experimental results achieved with the multilayer LCD prototype. The

same three sample images are evaluated. As described in Section 5.3.2, three exposures are com-

bined to synthesize color images using the grayscale panels. Comparing Figure 5.9 with Figure 5.7

confirms the predicted contrast enhancement and elimination of ringing artifacts. For example, the

inset region of the bird appears brighter and with higher contrast using multilayer prefiltering,

rather than the prior single-layer prefiltering algorithm. Also note that the outline of the eye and

the black stripes appear with less distortion using multilayer prefiltering. Ringing artifacts, visible

on the left-hand side of the face of the blue toy, are eliminated with multilayer prefiltering.

target image without
correction

single-layer
pre-filtering

multilayer
pre-filtering

without correction
(inset) 

single-layer
(inset) 

multilayer
(inset)
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Michelson contrast = 0.08
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DRC = 6.98:1
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DRC = 4.16:1
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Figure 5.9: Camera photographs of prefiltering results. With the same parameters as the simu-

lated experiments, the multilayer (two-layer) prefiltering has better image contrast and has no ob-

vious ringings. The additional ringing artifacts are due to spatially varying point spread functions,

spherical aberrations, non-circular camera aperture, and residuals due to the non-linear gamma

correction and diffraction.
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Experimental results also reveal limitations of the linear spatially invariant (LSI) model in-

troduced in Section 3.1. First, the medical display panels used in the prototype do not produce

a linear radiometric response; gamma compression was applied to the displayed images, with a

calibrated gamma value 2.2, to approximate a radiometrically linear display. Remaining radio-

metric non-linearities contribute to ringing artifacts in the experimental imagery. Second, the lens

produces a spatially-varying PSF, as analyzed by Kee et al. [2011]; as seen in the bottom left of

the currency image, differences between the modeled and experimental PSFs result in ringing arti-

facts in the periphery. However, the central region is well approximated by the defocused camera

model introduced in Section 3.1.1. The camera lens aperture, consisting of several blades, used in

the experiment does not produce a circular symmetric point spread function, and thus the optical

transfer functions are different. Finally, the Canon EF 50mm f/1.8 lens has some spherical aberra-

tions, which is not modeled in the current experiments; we will have more discussions about the

modeling of higher order aberrations in Chapter 8.3.

We quantitatively assess the received image using the Michelson contrast metric, given by the

ratio of the difference of the maximum and minimum values, divided by their sum. Michelson

contrast is increased by an average of 44% using multilayer prefiltering rather than single-layer

prefiltering. Following Section 4.1, prefiltering expands the dynamic range both above and below

the range of radiance values that are physically supported by the display. We quantify this effect by

evaluating the dynamic range compression (DRC) of the prefiltered images, given by the difference

of the maximum and minimum values before normalization using Equation 4.5. By convention,

the displayed normalized images always have a dynamic range of unity. For these examples, the

dynamic range is reduced by an average of 42%, enabling contrast to be enhanced with multilayer

prefiltering, despite normalization.

Video Data Prefiltering can also apply to video sequences. Without modifications, processing

each frame independently produces videos with rapid intensity variations, as shown in Figure 5.10.

We attribute this to the fact that normalization changes the mean received image value, due to

variations in the minimum and maximum values of the prefiltering images. For a pre-recorded se-

quence, perceived flashing can be removed by normalizing each frame by the global minimum and

maximum values of the prefiltered sequence, as shown in Figure5.11. For interactive or stream-

ing content, we propose applying an adaptive filter to recursively estimate a temporally smoothed

estimate of the necessary normalization range.

3

7

9
single-layer prefiltering

multilayer prefiltering

5

Figure 5.10: Dynamic range variations of prefiltering in a video sequence.
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Figure 5.11: Dynamic range normalization in video example.
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5.5 Evaluations

5.5.1 Error in refractive error and calibration

Slight prescription errors are common, and the precise distance to the display is hard to obtain

without external monitoring devices; knowing how sensitive the prefiltering methods are is impor-

tant. Both existing single-layer and the proposed multilayer prefiltering algorithms are sensitive to

perturbations in the viewer’s refractive error. As shown on the left of Figure 5.12, if the corrective

power differs from the viewer’s eye refractive error, then the received image will be degraded; this

is because the wrong optical transfer function is used in the kernel inversion. In general, there are

only small changes in the lower frequencies due to the differences, but the higher frequencies will,

as shown in Figure 5.1.

Both single-layer and multilayer prefiltering require tracking the viewer. With single-layer pre-

filtering, the distance to the viewer must be estimated to model the PSF in the plane of the display;

however, unlike single-layer prefiltering, multilayer prefiltering also requires tracking lateral mo-

tion to ensure that the multiple layers are rendered with the correct perspective. The sensitivity

to lateral tracking error is depicted on the right of Figure 5.12. Although the features are sharper

when compared with the prescription error, the ringing artifacts coming from the misalignment are

not canceled out.

single-layer prefiltering multilayer prefiltering multilayer prefiltering
error in viewer prescription error in viewer position

Figure 5.12: Sensitivity analysis due to refractive errors and imprecise calibrations. Both

single-layer prefiltering and multilayer prefiltering require precise prescriptions and calibrations.

The multilayer also requires an additional dimension on lateral motion to account for perspective

projection.
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5.5.2 Performance over different levels of blurring

Increasing contrast in the received image lies at the heart of enabling practical applications of

single-layer and multilayer prefiltering. The prototype results demonstrate moderate improvements

over single-layer prefiltering, while achieving the goal of eliminating ringing artifacts. Similar

to the strong dependence on depth of field for light field pre-distortion [Pamplona et al., 2012],

Figure 5.13 assesses the dependence of contrast enhancement on the required corrective power.

From this analysis, we identify a key limitation of the proposed multilayer prefiltering algo-

rithm: the received image contrast is significantly reduced for large amounts of defocus, as shown

on the left of Figure 5.13. Note that this assesses the required diopters “in addition” to the supplied

modulation of the crystalline lens, and in practice, we find out that for small amount of blur, single-

layer prefiltering may just be good enough; however, the performance of single-layer prefiltering

decreases rapidly, and the multilayer prefiltering has about 44% better contrast on average. On

the right of Figure 5.13, we show that the required dynamic range of the multilayer prefiltering is

about 42% less than single-layer prefiltering, and this is manifested in the video sequence example.
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Figure 5.13: Contrast over different levels of blurring.

5.5.3 Comparison with prior methods

We also assess the performance of single-layer prefiltering, relative to multilayer prefiltering, with

different choices for the underlying deconvolution method. Figure 5.14 tabulates the perceived

images, again assuming a “negative light enabled” display emitting rays with both positive and

negative radiance to manifest the differences in terms of frequency preservation. The first col-

umn tabulates the results obtained using Richardson-Lucy deconvolution. Note the severe ringing

artifacts . The second column tabulates the results obtained using the deconvolution method in-

troduced by Levin et al. [2007]. While ringing is reduced, sharp features appear blurred (e.g.,

the coin and the figures on the bills). Given knowledge of the precise point spread function, the
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Wiener filter is capable of preserving such features, as shown in the third column. However, with

single-layer prefiltering, certain frequencies cannot be preserved, resulting in ringing artifacts. As

shown in the fourth column, multilayer prefiltering, employing Wiener deconvolution, eliminates

ringing and preserves sharp features.

Richardson-Lucy Levin et al.[2007] single-layer prefiltering multilayer prefiltering

Figure 5.14: Comparison of single-layer deconvolution. We assess the relative benefits and

limitations of the Wiener filter, the iterative Richardson-Lucy algorithm, and the method introduced

by Levin et al. [2007].
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5.6 Discussion

As established by theory and experiment, multilayer prefiltering achieves our primary goal: miti-

gating contrast loss and eliminating ringing artifacts observed with single-layer prefiltering. Yet,

multilayer prefiltering comes at a cost of added components, increased computational complexity,

and expanded display thickness. However, to our knowledge, our introduction of the multilayer

partition function is the first avenue to allow demonstrable increases in the contrast of images pre-

sented with prefiltered displays. A promising direction for future work is to explore the potential

for three or more layers to achieve further increases in contrast; in addition, our greedy partition

function is but one choice for enhancing contrast. We anticipate that further research may reveal

computationally efficient alternatives that achieve greater contrast, through refined optimization

algorithms, than our iterative approach.

In this work, we have optimized the Michaelson contrast and the dynamic range of the received

image, as measured in a linear radiometric domain. A promising direction for future work is to

explore alternative, possibly non-linear, perceptual optimization metrics. Following Grosse et al.
[2010], incorporating the human contrast sensitivity function (CSF) [Kaufman and Alm, 2002]

may allow further perceived gains in contrast.

As described in Section 5.3.1, emerging light field displays are a compelling platform for

achieving practical applications of multilayer prefiltering. By utilizing synthetic, rather than phys-

ical, layers, display thicknesses can be reduced and layers can be virtually displaced to account for

viewer movement. We will start immediately in the next Chapter to discuss this viable option.
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Chapter 6

Light Field Analysis

In this chapter, we will extend the analysis of the light field introduced in Chapter 3. First, we will

present the construction of the light field display and the analysis of the depth of field, which is

crucial to the multilayer prefiltering and the light field predistortion [Pamplona et al., 2012] meth-

ods when using the virtual layers emitted from light field displays. We will show analytically and

qualitatively how the multilayer prefiltering outperforms the light field predistortion by Pamplona

et al.[Pamplona et al., 2012].

Inspired by the prefiltered virtual layer methods, we hypothesize that image quality can be

further improved with better use of the light field display. We will formally analyze image inverse

blurring in the frequency domain of the light field; the insight will lead us to a better understanding

of the problem. In the next chapter, we will describe a generalized algorithm, called the “light field

prefiltering”, that significantly improves the results.

6.1 Light Field Displays

Light field displays are traditionally considered as autostereoscopic multi-view 3D displays. We

will briefly describe the principles of the integral based and parallax barrier based constructions.

The frequency domain analysis of the depth of field helps us understand the virtual layer in com-

parison with the conventional display, and the limitation of it.

6.1.1 Principles and Constructions

Light field display can be considered as a virtual window to a 3D scene, and the display is capable

of emitting the corresponding light field as a function of both position and direction [Urey et al.,
2011]. This type of display does not require tracking and glasses to emulate a 3D scene to the

viewer; at different viewing directions, the eye receives different images. Each pixel of the display

is capable of emitting different light rays toward different directions; we consider two common

constructions, namely parallax barrier [Ives, 1903] and integral imaging [Lippmann, 1908]. We
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also follow the relative two-plane parameterization [Chai et al., 2000], as discussed in Section 3.2,

where the x-plane denotes the spatial coordinates, and the u-plane, 1-unit separated from the x-

plane, denotes the angular directions.

On the left of Figure 6.1, a parallax barrier based light field display is shown. This type of dis-

play requires a thin pinhole array laying on top of the high resolution display panel. The pinholes

are separated by Δx that determines the macro pixel pitch. Underlying the pinhole, the high reso-

lution panel has pixel pitch p; this gives a spatial-angular trade-off ratio Δx/p, and this light field

display has Δx/p views. One important design parameter is the field of view θ, and is determined

by the separation distance fl between the pinhole mask and the high resolution panel:

θ = 2atan

(
Δx

2fl

)
. (6.1)

Thus, the construction transforms the high spatial resolution conventional display panel with small

pixel pitch p into a low spatial resolution light field display with pixel pitch Δx, but the device

is capable of emitting different Δx/p rays/views across θ degree viewing zone. Note the angular

sampling rate Δu on the angular u-plane also determines the capability of the field of view of the

display, as we will discuss in the next section. The construction using integral imaging is shown

on the right of Figure 6.1, where the pinhole array is replaced by the lenslet array enabling brighter

images. Instead of specifying the separation from the display, the field of view is directly encoded

into the specification of the lenslet array.

6.1.2 Depth of Field Analysis

Similar to a camera and human eye, objects lying outside the range of depth of field are also

blurred. The supported depth of field of the light field display is of great interest to us: it tells how

the image quality degrades as a function of separation from the display [Wetzstein et al., 2012];

Perwass and Wietzke [2012] also derived similar results for the light field camera, Raytrix.

high resolution
display panel

parallax barrier
pinhole array

lenslet array

Figure 6.1: Construction of light field displays. The light field display can be constructed with

a parallax barrier (left) or an integral imaging (right). Both use a high resolution display panel,

and a pinhole mask or lenslet array converts the spatial pixels into angular rays by trading spatial

resolution for angular views at the ratio of Δx/p. The light field display has a field of view θ
degrees and depth of field Δx/Δu.
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We consider again the light field display as shown in Figure 6.1, where the spatial sampling

interval is Δx and the angular sampling interval is Δu. Following the definition of Nyquist rate
[Gonzalez and Woods, 1992], the maximum bandwidth of the display in the spatial frequency

is |ωd
x| ≤ 1/(2Δx), and the maximum bandwidth of the display in the angular frequency is

|ωd
u| ≤ 1/(2Δu). The frequencies that can be shown on this light field display are bounded by

a rectangular region, as shown on Figure 6.2(a); frequencies outside the region cause aliasing arti-

facts [Zwicker et al., 2006]. The maximum spatial frequency of a virtual plane floating outside the

display enclosure can be derived as a function of separation d from the display.

First, for a virtual object in the center depth of the display (d = 0), its corresponding light

field, as we have discussed in Section 3.2, is a set of vertical lines as shown on Figure 6.2(b).

When the object is separated by a non-zero distance d from the display, its light field is sheared

by the transport matrix T(d) defined in Figure 3.6; now these lines have a slope 1/d, as shown in

Figure 6.2(c). In the frequency domain, the light field is a straight line, of slope −d, orthogonal to

the spatial domain representation.

Since the display cannot reproduce frequencies outside the bounding rectangular region, the

perceived virtual object has the maximum spatial frequency determined by the intersections of

the rectangle and the line of the light field in the frequency domain. Consider two cases where

transition is happening when the line passes the corners of the bounding rectangle: (1) When the

separation d is smaller than the ratio Δx/Δu, the maximum spatial frequency of the virtual object

is always bounded by the left and right edges of the rectangular box, and the bandwidth is given by

1/(2Δx), as shown in Figure 6.2(c). (2) When the separation is larger than the threshold ratio, its

maximum spatial frequency is clipped by the top and bottom edges, as shown in Figure 6.2(d), and

is smaller than that in (c). The bandwidth is now given by the clipped spatial frequency 1/(2dΔu),
and it degrades as the reciprocal of the separation distance.

(b) virtual object at the display (c) virtual object at a distance “d” outside the display.(a) light field display with spatial 
sampling rate at and
angular sampling rate at 

(d) virtual object far from 
      the display

Figure 6.2: Deriving image quality as a function of the depth of field. The light field displays

have fixed spatial and angular bandwidth (a). For a virtual object shown exactly on the display,

its light field is straight lines (b). When it is set apart from the display surface, its light field is

sheared, and so is its frequency domain representation (c). Intersection of the frequency domain

representation with the bandwidth gives the perceived maximum spatial frequency of the virtual

image (c) and (d).
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Now we can formally describe the maximum spatial frequency of the virtual object: when it is

placed at distance dn other than the light field display location do, the bandwidth is a function of

separation |dn − do| from the display as the following:

ωd
x−max =

⎧⎨⎩
dn
de

1
2Δx

for |dn − do| ≤ Δx
Δu

(within the field of view),

dn
de

1
2|dn−do|Δu

otherwise
(6.2)

The ratio dn/de accounts for the scaled projection onto the retina, and the function is shown by the

red curve in Figure 6.3. This is a crucial analysis of the depth of field of the light field display;

it depicts the principal capability on how far the object can be virtually shown outside the display

enclosure without sacrificing image quality. Equation 6.2 suggests that the maximum spatial fre-

quency is a nearly constant line for virtual objects within a threshold Δx/Δu separation from the

center depth of the display. As the virtual object moves far from the display enclosure, it becomes

blurred with a rapidly decreased spatial bandwidth, similar to the out-of-focus objects found in

traditional photographs.

6.1.3 Vision-Correcting Light Field Displays

In Chapter 5, we described the multilayer prefiltering algorithm using two physical LCD panels as

the prototype construction; we now observe the physical LCDs could be substituted with virtual

layers simulated by the light field display. Rather than constructing multiple physical display

layers, we observe that light field displays can synthesize virtual layers at “arbitrary distances”

from the display surface. The optimal layer separation, as given by Equation 5.13, depends on

the viewer’s refractive error and position, and using the light field display allows for the dynamic

separation in the optimization. We propose a new operation mode for light field displays: rather

than replicating a 3D scene, the display emits a light field that replicates a virtual stack of semi-

transparent, light-emitting layers.

In this section, we assess the capability of a light field display to correct for defocus blur. We

compare two operation modes: light field pre-distortion and synthetic multilayer pre-filtering. As

recently introduced by Pamplona et al. [2012], given a light field display of sufficient resolution,

the former operation mode involves emitting a predistorted light field such that, when viewed by the

optics of the eye, an undistorted image is formed on the retina. This mode of operation is similar

to existing wavefront correction methods [Kaufman and Alm, 2002]. For example, defocus is

corrected by displaying a virtual layer at the closest plane of focus to the light field display surface.

Depending on the magnitude of defocus, this virtual layer may be located far from the surface and

the image quality degrades, as we have shown in Equation 6.2. In contrast, synthetic multilayer

prefiltering requires synthesizing two or more virtual layers, generally in close proximity to the

display; when the virtual layers are within the field of view, they can fully utilize the maximum

bandwidth without degradation.
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We formally assess these modes by comparing the depth of field expressions describing con-

ventional displays and light field displays. As a baseline point of comparison, we consider the

depth of field for a conventional display (e.g., an LCD) located a distance do from the viewer.

Similar to Equation 5.5, the diameter of the circle of confusion for a defocused camera, projected

onto the retina, is given by r = (de/do)(|df − do|/df )a. Thus, the maximum spatial frequency in

a defocused image of a conventional display is:

ωd
x−max = min

(
do
de

1

2p
,
do
de

df
2|df − do|a

)
, (6.3)

where the two arguments denote the sampling rate given by half the reciprocal of the projected

display pixel width and the circle of confusion diameter, respectively.

Substituting df for dn, the ratio of Equation 6.2 to Equation 6.3 provides an analytic expression

for the maximum resolution enhancement rmax that can be achieved by depicting a virtual layer

using a light field display, rather than a conventional display; this expression characterizes the

benefit of affixing a lenslet array or parallax barrier to the underlying display. When the virtual

layer is significantly separated from the display surface (i.e., |do − df | ≥ Δx/Δu ), this ratio is

given by:

rmax =
a

doΔu
(6.4)

We observe that rmax is equal to the number of light rays entering the pupil aperture from a sin-

gle lenslet or pinhole. This provides formal intuition into the primary limitation of light field

pre-distortion: a high angular resolution light field display is required when virtual planes are

significantly separated from the surface.
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Figure 6.3: Depth of field analysis of light field displays. We plot the bandwidth degradation

of different displays, and the bandwidth is relatively flat within the depth of field of the light field

display. The predistortion based algorithm simulated a virtual layer at the plane of focus far from

the display surface, so the degradation is severe. The virtual multilayer method prefilters two

virtual planes within the depth of field, thus the spatial bandwidth is higher.
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In Figure 6.4, we consider a specific example using current-generation LCDs and lenslet arrays.

Note that even with a state-of-the-art LCD with 264 pixels per inch (PPI), affixing a lenslet array

slightly decreases the received image resolution, relative to an unmodified display. This is because,

using light field pre-distortion, the virtual layer must be displaced well beyond the high-resolution

region of the depth of field. In contrast, multilayer pre-filtering only requires virtual layers within

the high-resolution region, enabling a high resolution image to be received, albeit with decreased

contrast.

We conclude that light field displays present a compelling platform that meets our design con-

straints. As observed by Pamplona et al. [2012], light field pre-distortion will be feasible only

once resolutions significantly exceed current commercial panels (approaching 1900 PPI). While

reducing contrast, multilayer pre-filtering can be implemented using current-generation displays

with 264 PPI.

6.1.4 Summary

The light field display has proven to be able to correct for visual aberrations using either virtual

multilayer prefiltering or light field predistortion algorithms. However, the optical blur can be

corrected at the cost of contrast loss or at the expense of a high density panel. One question left

unanswered is: “Can can the prefiltering method be combined with the full 4D light field, instead of

just layers, such that higher contrast will be achieved, and a lower resolution panel will be required

?” In the next section, we will formally describe all the prior work in the light field domain; the

analysis provides insights that redundant information can be avoided and the unexploited area in

the frequency domain can be utilized.

without correction light field predistortion synthetic multilayer prefiltering
vision correcting light field display

Figure 6.4: Example of vision-correcting algorithms using light field displays. The predistor-

tion based methods produce lower spatial resolution than without correction; a higher resolution

panel is required to correct for aberrations. On the other hand, the prefiltering based method simu-

lates virtual layers within the depth of field of the light field display; thus the bandwidth is higher.
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6.2 Image Formation in the Frequency Domain Light Field

Following Section 3.2 on the spatial domain light field image formation, in this section, we will

derive the frequency domain interpretation. Under the frequency domain representation, the prior

work on inverse blurring preprocessing can be explained using the same framework, and this leads

to the next chapter on light field prefiltering.

6.2.1 Light field image formation

Frequency analyses have become standard tools to generate an intuitive understanding of perfor-

mance bounds of computational cameras and displays (e.g., [Durand et al., 2005; Levin et al.,
2009; Wetzstein et al., 2011]); we follow this approach. First, we note that the coordinate trans-

form in Equation 3.6 between the display and the retina can be used to model the coordinate

transform in the frequency domain as(
ωx

ωu

)
= Q−T (de) T−T (de) R−T (f) T−T (do)

(
ωd
x

ωd
u

)
=

(
1 1

de

0 − 1
de

) (
1 0

−de 1

) (
1 1

f

0 1

) (
1 0

−do 1

)(
ωd
x

ωd
u

)
=

(−do
de

1
de

doΔ
1
f
− 1

de

)(
ωd
x

ωd
u

)
(6.5)

where ωx and ωu are the spatial and angular frequencies of the light field inside the eye; the corre-

sponding frequencies of the display are ωd
x and ωd

u.

One of the most interesting results of the frequency analysis is the effect of the pupil outlined

in Equation 3.5. The multiplication with the pupil function in the spatial domain becomes a con-

volution in the frequency domain:

î(ωx) =
(
l̂e ∗ Â

)
(ωx, 0). (6.6)

Based on the Fourier photography slice theorem [Ng, 2005], the angular projection in the spatial

domain becomes a slicing along ωu = 0 in the frequency domain.

Lambertian surfaces. Embedded within a 4D light field, a Lambertian plane has no angular

variation, and its frequency domain representation is a 2D plane embedded in 4D; in a flatland

light field, it is a line, as shown in Figure 6.5(a). For an object in focus, its spatial light field is a

set of vertical lines; thus, its frequency representation is a horizontal line. The convolution with

the aperture response Â is reduced to a vertical spreading. In this case, all spatial frequencies are

preserved at ωu = 0, and the final axis slicing captures all information.
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(a) conventional display
(in-focus)

(b) conventional display
(out-of-focus)

(c) multilayer display
(out-of-focus)

(d) light field display
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Figure 6.5: Light field projection in the frequency domain. The image formation in the fre-

quency domain is a slicing on the axis to which light field spectrum are duplicated by convolving

with the aperture response.

6.2.2 Single-layer inverse prefiltering

For the purpose of vision-correcting displays, the observer is interested in seeing a 2D image within

his or her focal range. For a defocused object, its light field is sheared and so is its frequency rep-

resentation, as illustrated by Figure 6.5(b); 1D images at different depths correspond to differently

sheared lines.

By combining Equations 6.5 and 6.6 with the Lambertian surface assumption, the Fourier trans-

form of the retinal light field projection can be modeled as

î(ωx) = l̂

(
−de
do
ωx

)
sinc (rsωx) , (6.7)

where s = −deΔ is the slope of the emitted light field in the frequency domain as defined by

the defocus of the eye. Conceptually, this is a spreading centered at the sheared light field, as

shown on the bottom of Figure 6.5(b); the perceived image spectrum is now the replica of the

scaled light field spectrum at ωu = 0. Inverse prefiltering requires solving for the corresponding

light field contents with respect to the scaled aperture spectrum. Note the replica obtained on the

slicing axis by the aperture spreading is exactly the scaled modulation transfer function as we have

described in Figure 4.7. Unfortunately, sinc functions contain a lot of zero-valued positions, which

makes the solution of an inverse problem ill-posed. This is the case for correcting aberrations with

conventional (Lambertian based) 2D screens.
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6.2.3 Multilayer inverse prefiltering

The earlier multilayer method discussed in Chapter 5 proposed to remedy this ill-posedness by

adding additional layers to the display, or by simulating virtual layers using a light field display.

As illustrated in Figure 6.5(c), the image formation is changed to summing two differently-sheared

lines in the frequency domain.

Generalizing Eq. 6.7 to multiple display layers results in the following frequency representation

of the retinal projection:

î(ωx) =
N∑

n=1

l̂n

(
−de
dn

ωx

)
sinc (rsnωx) , (6.8)

where sn is the shear of display layer n and l̂n is the light field emitted by each of the layers.

The offsets between display layers are chosen so that the envelope of the differently sheared sinc
functions has no zeros.

Conceptually, the position with zero-valued spreading is now covered by the other layers, as

shown on the bottom of Figure 6.5(c); the spectrum of the target image is obtained without infor-

mation loss, and light field spectrum at each layer is inversely redistributed by a contrast optimiza-

tion algorithm. While this is conceptually effective, physical constraints of the display, including

nonnegative pixel states and the limited dynamic range, still result in a severe loss of contrast in

practice.

6.2.4 Light field predistortion

Pamplona et al. [2012] present a ray tracing solution to solve the inverse solution to Equation 3.5;

each ray emitted from a retinal pixel maps to exactly one angular view of one spatial pixel on

the light field display. This ray tracing method virtually presents a 2D image outside the physical

device enclosure but within the focal range of the observer.

In the frequency analysis (Section 6.1.2), the method simulates a conventional in-focus display

(see Fig. 6.3). Due to the practical limitations of currently available light field displays, showing

a 2D image at a distance to the device enclosure requires an increased angular resolution of the

display, as we have derived in Equation 6.4. Construction of light field displays, however, are

subject to the spatio-angular resolution tradeoff: angular resolution can only be achieved by trading

off spatial resolution. Hence, an in-focus object can be shown but at a significantly lower resolution

than that of the display panels.

Frequency analysis in the light field domain reveals a more versatile formulation than what can

be achieved with a naive ray tracing approach. As outlined by Equation 6.6, the underlying image

formation from the emitted light field to the retinal projection can now be extended to prefiltering
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using an infinite number of layers. Effectively, a light field display has the capability to display

many different 2D planes at varying depths simultaneously, and interpreting Equation 6.6 under

this aspect shows that a light field display generalizes Equation 6.8 as

î(ωx) =

∫
Ωs

l̂ (ωx, sωx) sinc (rsωx) ds. (6.9)

While the above formulation generalizes multilayer prefiltering, the slopes occupy a double-wedge

shaped space in the frequency domain; there are still some lower frequencies that are left unused,

and a better utilization can improve both the perceived spatial resolution and the image contrast.

6.3 Summary

In summary, the presented frequency analysis reveals that a conventional display cannot present

sharp imagery to an observer who cannot focus on the screen—the inversion problem is ill-posed

due to zeros in the frequency domain.

While a multilayer approach is theoretically capable of converting this into a well-posed inver-

sion problem, physical limitations in dynamic range and nonnegativity constraints of pixel states

result in a significant loss of image contrast in practice. Pamplona et al.’s approach employs light

field displays but uses a direct ray-traced solution, which does not exploit all available degrees of

freedom in computation and, therefore, must make tradeoffs in the image resolution. Light field

displays offer significantly more degrees of freedom compared to simple multilayer displays, but

these are unlocked by solving the inverse light field projection problem, which we call “light field

prefiltering”.

With full generality, we apply prefiltering directly to the 4D light field, rather than a subset of

possible light fields (i.e., those produced by synthetic multilayer displays). With added degrees

of freedom, inverse prefiltering (or deconvolution) yields further benefits in image contrast and

reduces the demand in resolution, as we will show in the next chapter.
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Chapter 7

Light Field Based Inverse Prefiltering

Combining Equation 3.5 and 3.7, we obtain the projection of the retinal image in the spatial domain

as the following:

i(x) =

∫ ∞

−∞
le(x, u)A(u)du

=

∫ ∞

−∞
l
(
M−1(x, u)

)
A(u)du, (7.1)

where the retinal light field le is inversely transformed to the display side light field l. Discretizing

the integral in Equation 7.1 results in a linear forward model:

i = Pl (7.2)

where P is the projection from a 4D display light field l onto a 2D retinal image i.

The objective of an aberration-correcting display is to present a 4D light field to the observer

that results in a desired 2D retinal projection. Assuming that viewing distance, pupil size, and other

parameters are known, the emitted light field can be found by optimizing the following objective

function:

argminl ‖i−Pl‖2
subject to 0 ≤ l ≤ 1,

(7.3)

Here, i is the target image and the constraints of the objective account for physically feasible pixel

states of the screen. Equation 7.3 can be solved using standard non-negative linear solvers, we

employ LBFGSB [Byrd et al., 1995].

While Equation 7.3 allows for optimal display pixels states to be determined, natural questions

that remain are ”Which display type is best suited for aberration-correction? And what trade-off
do we have to make?” We attempt to answer these questions with an analysis of the conditioning

of the projection matrix P and contrast optimization.
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7.1 Analysis of Projection Matrix

Figure 7.1 shows an example of a prefiltered light field with 3-by-3 views for an example scene.

In this example, the different views contain overlapping parts of the target image, allowing for in-

creased degrees of freedom for aberration compensation. Within each view, the image frequencies

are amplified, which is the typical structure of single-layer prefiltering. When the views are opti-

cally projected onto the retina of an observer, all views are integrated, which results in a perceived

image that has significantly improved sharpness, shown in Figure 7.1(c), as compared to an image

observed on a conventional 2D display, shown in Figure 7.1(b).

We illustrate the concept by the flatland light field in Figure 7.1(d) and (e). In (d), the angu-

lar sampling resolution is too low and the overlapping regions cannot cover the entire image, and

the uncovered regions suffer from single-layer prefiltering: singularities due to the zero-valued

frequencies cause low contrast and frequency loss. In (e), with higher angular sampling, the over-

lapping regions occupy the entire image such that every single pixel receives more than one view;

the singularities are remedied with added degree of freedom. The plot reveals one important fact to

achieve better conditioning: “At least more than one view entering the pupil aperture is required.”

(a) 3x3 prefiltered light field

(b) no correction

(c) with correction

right 
view

left
view

central
view

single-layer
prefiltering

(d) 3 views light field

displayed image received image

(e) 5 views light field

every pixel receiveses
more than 1 view

Figure 7.1: Light field prefiltering with naive parameter setup. The proposed prefiltering ap-

proach computes a light field (here with 3-by-3 views) that results in a desired 2D projection on the

retina of an observer. The yellow box overlapping region is the primary benefit of the method. In

the flatland light field example, the yellow boxes illustrate why 4D light field prefiltering is more

powerful than single-layer image prefiltering: a single region of the target image receives contri-

butions from different views (e), which removes singularities present in conventional single-layer

prefiltering (d) approaches and improves perceived image quality.
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Figure 7.2: Conditioning analysis. The light field projection matrix corresponding to a defocused

eye is ill-conditioned. With more angular resolution available in the emitted light field, more

degrees of freedom are added to the system, resulting in lower condition numbers (lower is better).

The condition number of the projection matrix is plotted for a varying defocus distance (kernel

size) and angular resolution (number of light field views). We observe that even as few as 1.5

angular light field samples entering the pupil of an observer significantly decrease the condition

number.

Conditioning Analysis. Given the minimum requirement on the light field angular sampling

rate, it is worth noting the rank behavior of the projection matrix P in Equation 7.2. Consider the

degenerate case of Lambertian surfaces where angular resolution is just one. For images shown

on a 2D display outside the focal range of the observer, Equation 7.2 quickly reduced to an image

filtering operation: the target pixel is given by weighted neighboring pixels. Solving for the pre-

filtered light field simply requires the banded projection matrix P be inverted, which is similar to

inverting the frequency domain spectrum of a point spread function; this is a rank deficient system,

as we have discussed in Section 4.3. From Figure 4.6, most singular values are quite small, and

the system is ill-conditioned. Inverting the corresponding linear system will not help the observer

to see a sharper image.

Employing a 4D light field display instead adds degrees of freedom that become visible by

plotting the condition number of the projection matrix P. Figure 7.2 shows the matrix condition-

ing for varying amounts of defocus and angular light field resolution (lower condition number is

better). Increasing the angular resolution of the light field passing through the observer’s pupil

significantly decreases the condition number of the projection matrix for all amounts of defocus.

This results in an interesting observation: “increasing the blur kernel size increases the condition
number1, but increasing the angular sampling rate does the opposite.”

1There are some slight fluctuations in the plot due to aliasing caused by the DFT discretization
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The condition number drops significantly after it passes the 1.1 and 1.3 marks where the angular

sampling enables more than one view to enter the pupil, effectively using available angular light

field variation; this is expected from the previous observation that more than one view has to enter

the pupil. As more than 1.7 and 1.9 light field views pass through the pupil, the condition number

keeps decreasing but at a much slower rate. With an extreme number of views around 7 to 9, the

system becomes the setup of light field predistortion: each ray hits exactly one retinal pixel, and

the system becomes a diagonal identity matrix. However, as we have discussed in the previous

chapter, the spatial-angular trade-off reduces the image resolution, and the trade-off might not be

desirable. Our light field prefiltering method is located in between these two extremes. Usually,

fewer than 2 views are required to maintain a sufficiently low condition number.

The conditioning analysis is a generalized insight into the effective modulation transfer func-

tion (Fig. 5.2) as in the winner-take-all multilayer display, where the minimum of the envelope

response is maximized. As we mentioned in Section 4.3 where the frequency response of the MTF

and the singular values are equivalent, the condition number is simply the inverse of the minimum

response, and “lowering the condition number is equivalent to maximizing the minimum envelope
response.” In the convolution based image modeling, maximizing envelope response is restricted

to a few layers by brute-force searching the minimum in a high dimensional tensor; the condition

number analysis of the light field reveals only marginal benefits by increasing angular sampling

rate passing the 1.7 mark.

Contrast optimization trade-off. In multilayer prefiltering, we developed a greedy contrast op-

timization (Sec. 5.2), which is non-intuitive and computationally expensive. A critical insight into

the contrast optimization is how we handle the negative pixel values. In Equation 7.3 we can avoid

such problems via non-negative least square solvers. At the defocus level shown in Figure 7.3 (a),

naively applying the nonnegative constraint results in additional artifacts as shown in (b, top), and

this is similar to the artifacts found in the Richardson-Lucy solver in Section 4.2.
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40dB / 74%

35dB / 100%original image
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(a) (b) (c)
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Figure 7.3: Tradeoff between angular light field resolution and image contrast.
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Solution to the inverse problem of Equation 7.2 can be done by using standard SVD solver (in

Sec. 4.2, we show that this is equivalent to inverting the optical transfer function), which produces

negative pixel values: we shift and renormalize the intensity afterward. Alternatively, we can shift

and scale the target image before solving the system, effectively scaling the target image into the

target range space of the projection matrix. Although this is a user-defined process, observed image

quality can be enhanced. In particular, Equation 7.3 can be modified as:

argmin l ‖(i+ b)/(1 + b)−Pl‖2
subject to 0 ≤ l ≤ 1,

(7.4)

where b is a user specified bias term that reduces the image contrast to 1/(b+ 1).

Similar to the conditioning analysis, we plot achieved image quality measured in PSNR for all

contrast levels at various angular sampling rates on the left of Figure 7.3. We reconstruct a test

image with different combinations of angular resolution and image contrast. With a conventional

display that emits a light field with no angular variation, shown in Figure 7.3(b), we either obtain a

low quality but high contrast image (b, top) or a high quality but low contrast image (Figure 7.3(b),

bottom). At the same angular sampling rate, higher image contrast can be obtained with a lower

quality or vice versa. With 1.5 or more views entering the pupil, shown in Figure 7.3(c), similar

trade-offs are observed but overall reconstruction quality is significantly increased.
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7.2 Prototype, Experiments and Results

The proposed aberration-correcting display can be implemented using most light field display

technologies, including lenslet arrays [Lippmann, 1908] and multilayer designs [Wetzstein et al.,
2012]. For the purpose of this paper, we demonstrate the feasibility of our techniques with a par-

allax barrier display [Ives, 1903] because the required hardware is readily available. Nevertheless,

the proposed displays are not limited to this particular architecture.

Prototype hardware. The prototype device is shown in Figure 7.4. A pinhole based parallax

barrier mask is printed, with high contrast at a resolution of 5080 DPI, on a transparency with a

Heidelberg Herkules imagesetter (www.pageworks.com). To optimize light throughput and avoid

diffraction, the pinholes have a size of 75 microns each. This mask is mounted at an offset of

5.4 mm in front of a conventional 2D screen using a clear acrylic spacer. The screen is an Apple

iPod touch 4th generation display with a pixel pitch of 78 microns (326 PPI). The dimensions of

our prototype allow 1.66 light field views to enter a human pupil with a diameter of 6 mm at a

distance of 25 cm. Higher-resolution panels are commercially available and could improve spatial

and angular resolution of our prototype and facilitate larger viewing distances.

Figure 7.4: Prototype parallax barrier light field display. The barrier mask contains a pinhole

array (left) that is mounted at a slight offset in front of an Apple iPod touch 4 screen (lower right).

The display emits a light field with a high-enough angular resolution so that at least two viewing

zones enter the pupil of a human observer. This effect is illustrated on the top right: multiple

Arabic numerals are emitted in different viewing directions; the finite pupil size then creates an

average of multiple different views on the retina (here simulated with a camera).
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Software. The light field prefiltering algorithm is implemented in Matlab on a PC with a 2.7GHz

2-core CPU and 8GB of RAM. The light field projection matrix is precomputed in about 3 minutes

with radiances sampling the pupil at 25 rays/mm, resulting in approximately 7800 effective rays

per retinal pixel. We use the non-negative least squares solver package LBFGSB [Byrd et al.,
1995] to solve Equation 7.4 in about 20 seconds for each image shown on the prototype. The

projection matrix only needs to be computed once for each viewing distance and we believe that

an optimized GPU implementation of the solver could achieve real-time frame rates in the future.

Photographs of Prototype. We show a variety of results captured from our prototype display

using the optical setup in Figure 7.5. Photographs are captured with a DSLR camera equipped

with a 50mm lens at f/8, simulating a 6mm human pupil. The display is placed at a cellphone

reading distance of 25cm to the camera. The camera is focused at 45 cm, placing the screen 25 cm

away from the focal plane. This setup closely resembles a 6.75D hyperopic eye requiring a +1.78D

glasses to focus 20cm closer.

250 m
m focus   450 m

m

f = 50 mm
a = 6 mm

(a)experiment setup

-6D corrected

(b)capture of blurred scene (c)comparison: without correction and ours

(d)prefiltered light field for examples shown in (b) and (c)

Figure 7.5: Optical experiment setup. In (a), we perform an experiment closely simulating a

6.75D hyperopic eye viewing a cellphone at 25cm away, where he need an +1.78D glasses focus. In

(b), we include a battery in the scene to show how blurred it is in comparison with the sharp image

in the display. The color banding is due to aliasing and can be removed using a transparent diffuser

(e.g. diffuse screen protecting film). (c) is a comparison of the bunny without any correction and

with our light field prefiltering correction. The corresponding prefiltered light field sources are

shown in (d).
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Figure 7.6: Photographs of results from prototype display. The hyperopic camera simulates a

human pupil with a diameter of 6 mm at a distance of 25cm to the screen, while the camera is

45cm to the focus plane.
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In Figure 7.6, we illustrate the effectiveness of the light field prefiltering method using two

groups of examples: natural images and art work. Within each group, we first show the simulated

correction shown on the first row, which is significantly sharper than that without correction shown

on the second row. On the third row, we also compare with the “ray-traced” method proposed

Pamplona et al. [2012] for the same display resolution and spatio-angular tradeoff. Our light

field prefiltering on the fourth row allows for significantly increased resolutions without requiring

the observer to wear glasses, and closely resembles simulations; the minor artifacts are due to

imperfect display screen calibration.

Video results. Similar to the the multilayer display results in Section 5.4, we also show a se-

quence of animation to compare the prototype results. Unlike what we did in the multilayer pre-

filtering, the contrast value b in Equation 7.4 is chosen to be a constant zero so that the contrast is

100%, and there is no need for temporal normalization.

Figure 7.7 shows a comparison of results without post-processing to remove the color banding

artifacts2. The first column shows the direct capture without any correction. Results obtained from

Pamplona et al. [2012] are shown on the second column; as we have discussed earlier, there is

not much improvement without enough angular resolution sampling. The third column shows the

results obtained using light field prefiltering, and the images are much sharper than the previous

methods. Note that since the prefiltering algorithm also reduces the dynamic range, the image

appears dimmer; however, the contrast is not lost, and this dimmed image can be compensated by

a brighter display panel.

Finally the corresponding source images are shown on the last two columns. The light field

predistortion by Pamplona et al. [2012] is simply a resampling of the sheared light field; without

enough angular resolution, the predistorted light field image (fourth column) looks very similar to

a blurred image. On the other hand, the prefiltered light field image (fifth column) contains the

amplified frequency information. Note that due to printing resolution constraints, we are only able

to make 5-by-5 spatial angular trade-off; our method only requires 3-by-3, and the rest are left

unused and the prefiltered image looks much darker.

2The color banding is due to the aliasing, and can be removed by placing a diffuser on top of the panel.
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Figure 7.7: Video examples comparing light field prefiltering.
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7.3 Evaluation

7.3.1 Visual Performance

We evaluate the quality achieved with the proposed approach using the four simulated examples

shown in Figure 7.8. Similar to the prototype, we simulate a 10 inch tablet with a 300 PPI panel and

a pinhole parallax barrier with 6.5 mm offset. The tablet is held at a distance of 30 cm and viewed

with the eye requiring +6.75D hyperopic glasses; images are shown on the center of the display in a

10.8cm-by-10.8cm area. For each example, we compare our approach with multilayer prefiltering

and the light field predistortion approach [Pamplona et al., 2012]. The first two columns show the

target images and the perceived images on a conventional display, respectively, when the physical

location is outside the focal range of the eye.

Michaelson contrast metric. Prefiltering involves modulating the image content by enhancing

weaker frequencies. Without utilizing the full degrees of freedom in the light field sense, the

results obtained using multilayer prefiltering suffer from extreme contrast loss, here measured in

Michelson contrast. Light field predistortion does not depend on content modifications but on

resampling of the light field, so the contrast is not sacrificed.

By efficiently using all views, the proposed light field prefiltering approach restores contrast

by a factor of 3 to 5 higher than that of the multilayer prefiltering. We note that the contrast from

light field prefiltering is not quite as good as the predistortion algorithm, which always gives full

contrast. However, when closely inspecting the image content, the light field predistortion always

gives blurred images, which is due to insufficient resolution. Using the same hardware setup,

prefiltering the light field enables sharper perceived images at the cost of slight contrast loss.

Perceptual Metric. To assess both contrast and sharpness, we resort to HDR-VDP2 [Mantiuk et
al., 2011], a perceptually-based image metric. The quality mean opinion score (QMOS) gives an

evaluation of overall perceived image quality, and in most examples we score 2 to 3 times higher

than light field predistortion.

The images in the third row are a particular difficult example for prefiltering based algorithms,

because performance depends on the frequency content of the image which in this case does not

allow prefiltering to achieve a higher quality. Lots of high frequencies in the example tend to

reduce image contrast so that even our light field prefiltering scores slightly lower. Visually our

result still looks sharp. In the last row of Figure 7.8, we show a probabilistic map on whether a

human can detect per pixel differences for the fourth example. Clearly our result has a much lower

detection rate.
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target image without correction multilayer prefiltering [Pamplona et al. 2012] light field prefiltering

Contrast 83% QMOS 82.8

Contrast 55% QMOS 22.8

Contrast 81% QMOS 78.6

Contrast 68% QMOS 58.4

Contrast 100% QMOS 24.6

Contrast 100% QMOS 27.1

Contrast 100% QMOS 36.8

Contrast 100% QMOS 36.0

Contrast 15% QMOS 5.6

Contrast 17% QMOS 2.3

Contrast 15% QMOS 5.0

Contrast 13% QMOS 3.4

Contrast 100% QMOS 21.8

Contrast 100% QMOS 23.7

Contrast 100% QMOS 33.7

Contrast 100% QMOS 33.1

25%

50%

75%

100%

0%

probability of
 detection

Figure 7.8: Evaluation and comparison to previous work. We compare simulations of con-

ventional and vision-correcting image displays qualitatively and quantitatively using contrast and

quality-mean-opinion-square (QMOS) error metrics. A conventional out-of-focus display always

appears blurred (second column). Multilayer displays with prefiltering improve image sharpness

but at a much lower contrast (third column). Light field displays without prefiltering require high

angular resolutions, hence have a low spatial resolution (fourth column). The proposed method

combines prefiltering and light field display to optimize image contrast and sharpness (right col-

umn). The QMOS error metric is a perceptually linear metric, predicting perceived quality for

a human observer. We also plot maps that illustrate the probability of an observer detecting the

difference of a displayed image to the target image (bottom row). Our method performs best in

most cases.
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7.3.2 Kernel Size Performance

We also assess performance under different sizes of the blur kernel by moving the display further

away from the focal range of the eye. Similar to the previous subsection, image contrast and the

perceptual score are treated separately.

With the perceived image contrast, we only compare the prefiltering based framework, since

light field predistortion always produces an image with full contrast. On the left of Figure 7.9, our

light field prefiltering generates the same sharpness as multilayer prefiltering, but the contrast is

always higher; we also include the single-layer prefiltering as a base reference. As the kernel size

increases, the prefiltered image contrast degrades for both methods; at a distance where the PSF

diameter is 11 pixels over a 256 pixels wide image, the remaining contrast is less than 20% for

both image based prefiltering methods. Our light field based framework generates on average two

to three times better contrast across all different sized kernels.

When making comparisons using the perceptual metric HDR-VDP2, we omit the image based

methods since the metric significantly penalizes the contrast loss in the multilayer prefiltering. On

the right of Figure 7.9, we compare with light field predistortion. Even with slight contrast loss,

our method has higher score than that of the light field predistortion across all levels of blurring. To

improve light field predistortion, even when we use a higher resolution panel with higher angular

sampling (7-to-1 spatial-angular trade-off on a 456 PPI panel), the perceptual score only increases

slightly.
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Figure 7.9: Comparing with prefiltering and light field based framework over a range. Left:

Image based prefiltering methods have poor contrast. At the same sharpness as multilayer pre-

filtering, the light field prefiltering generates significantly higher image contrast. Right: the light

field prefiltering also produces image with higher perceptual scores. The performance of light field

predistortion only increases slowly over increased resolution on a higher density display panel.
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7.3.3 Error in Calibrations.

Extending depth of field. One advantage of our approach is its ability to incorporate additional

constraints, such as to provide extended depth of field. One of the concerns of precorrection for

optical aberrations is that the algorithms are traditionally considered only for a fixed blur kernel or,

equivalently, viewer distance. Although this can be dynamically tracked and incorporated into the

inverse problem, we can alternatively account for a range of viewing distances simultaneously.

We account for variable viewing distances by stacking multiple light field projection matri-

ces into Equation 7.4 with incremental defocus distances. The resulting system becomes over-

constrained, so the solution tries to satisfy all viewing distances equally well, which results in

slight image degradations as compared to a single viewing distance. Nevertheless, image quality

for all other viewing distances within the predefined range is significantly increased as shown in

Figure 7.10.
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Figure 7.10: Accounting for a range of viewing distances. Top row: when considering a fixed

viewing distance, defocus errors are compensated at that distance (top center) but image quality

degrades when the observer moves (top left and right). The proposed method can account for a

range of viewing distances (second row).
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Off-axis movement. Another dimension is lateral movement off the axis; in this case, the head

can move in a plane parallel to the display. The second row of Figure 7.11 shows that, without

off-axis optimization, the perceived image is distorted due to the uncalibrated viewing condition.

Similar to variable viewing distance optimization, we also stack several off-axis movement projec-

tion matrices, and obtain stable perceived images, as show on the bottom row of Figure 7.11.

We formally assess the performance of the off-axis viewing condition using the PSNR plot

(top row of Figure 7.11). The performance of the perceived image without constraining the off-

axis behavior is shown in blue, which peaks at zero movement; the PSNR degrades rapidly and

significantly as the head moves just a bit, and reaches the minimum at 9.5mm. Since light field

displays have repeated viewing zones, the PSNR curve is able to reach another peak at the 19mm

mark; the difference between the maximum and minimum PSNR is 30dB, introducing an unaccept-

able viewing condition. When the display is optimized for off-axis viewing, the peak performance

drops about 4dB, but the overall variation is small and smooth. Although the minimum also occurs

at 9.5mm, it still achieves 27dB, as opposed to 5dB compared to that without optimization.
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Figure 7.11: Similar to the extended depth of field, we can optimize for off-axis viewing.
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7.4 Summary

In this chapter, we present a computational light field display approach to correcting for visual

aberrations of a human observer. Our display architecture employs off-the shelf hardware compo-

nents, such as printed masks or lenslet arrays, combined with computational light field prefiltering

techniques.

Benefits and Limitations The proposed techniques offer significantly increased resolution and

contrast compared to previously proposed aberration-correcting displays. Intuitively, light field

pre-filtering minimizes demands on angular light field resolution, which directly results in higher

spatial resolutions. For device implementations with lenslet arrays, the reduced angular resolution,

compared to Pamplona et al.[2012], allows for shorter focal lengths of the employed lenslets,

resulting in thinner form factors and easier fabrication. For implementations with parallax barriers,

pinhole spacings are reduced, allowing for increased image brightness.

However, the proposed system requires modifications to conventional display hardware and

increased computational resources. Our current implementation does not allow real-time frame

rates. Although the proposed approach provides increased resolution and contrast as compared

to previous approaches, achieving the full target image resolution and contrast is not currently

possible. We evaluate all system parameters and demonstrate prototype results under conditions

that realistically simulate a human pupil; however, we do not perform a user study. Slight artifacts

are visible on the prototype, these are mainly due to imprecise device calibration. Finally, we only

demonstrated successful compensation for defocus, and we will discuss correcting for higher-order

aberrations in the next chapter.
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Chapter 8

Light Field Wavefront Aberrometry

In the previous chapter, we have shown that a prefiltered light field can successfully compensate for

the defocus aberrations in the observer’s eye. It is interesting to see how the vision-correcting dis-

play behaves when higher-order aberrations are presented. We will formally introduce the standard

decomposition of wavefront geometry into Zernike polynomials, and the ray tracing mechanism to

support all optical aberrations.

8.1 Frequency Decomposition of Wavefront Geometry

Following Section 3.1.2, the wavefront map describes the phase of rays leaving the eye’s pupil,

and gives the new directions of propagation.

The wavefront map is simply a height field defined on a circular plane where z = ω(xa, ya) =
ω(rcos(θ), rsin(θ)). Similar to the Fourier decomposition of a spherical function using spherical

harmonics, the wavefront phase map ω() can be decomposed into a series of mutually orthogo-

nal circular basis functions. Among many indexing variants, one that is similar to the spherical

harmonic is called Fringe labeling and is used by [Wyant and Creath, 1992] [Ruoff and Totzeck,

2009] with the following:

ω(xa, ya) = c00Z
0
0(x

a, ya)

+ c01Z
0
1(x

a, ya) + c−1
1 Z−1

1 (xa, ya) + c+1
1 Z+1

1 (xa, ya)

+ c02Z
0
2(x

a, ya) + c−1
2 Z−1

2 (xa, ya) + c+1
2 Z+1

2 (xa, ya) + c−2
2 Z−2

2 (xa, ya) + c+2
2 Z+2

2 (xa, ya)

+ · · · · · ·
=

∞∑
n=0

+n∑
m=−n

cmn Z
m
n (xa, ya) (8.1)
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where n is the radial index, m is the azimuth index, cmn are the scaling weights, and Zm
n (xa, ya)

are the Zernike polynomials, named after Nobel prize laureate Frits Zernike for his contribution

in phase contrast microscope imaging. These Zernike polynomial basis functions are mutually

orthogonal, and the frequencies increases with the radial index, as shown in Figure 8.1.

n m polynomial name

0 defocus

1 +1 tilt

-1 tilt

0 spherical

+1 coma

2 -1 coma

+2 astigmatism

-2 astigmatism

Figure 8.1: Wyant’s ordering of Zerike polynomial.

Since the normalized series of the basis functions forms an orthonormal basis family, the cor-

responding scaling coefficients can be obtained by projecting the original wavefront map onto the

Zernike polynomials and vice versa.

Standardized Ordering and Naming. Early Zernike polynomials have many indexing and or-

dering schemes, and from 1999 to 2004, the VSIA task force [Thibos et al., 2000] from the Optical

Society of America (OSA) and ANSI made a standard Z80.28 to describe the ordering and mean-

ingful naming for each term, such as defocus and astigmatism, as shown in Figure 8.2.

Under the standard scheme, the Zernike polynomials are defined as:

Zm
n (r, θ) =

{
+Nm

n R
|m|
n (r)cos(mθ) for m ≥ 0,

−Nm
n R

|m|
n (r)sin(mθ) for m < 0

(8.2)

In this definition, Nm
n is a normalization scaling constant, and is given by the following:

Nm
n =

{ √
(n+ 1) for m = 0,√
2(n+ 1) for m �= 0.

(8.3)

The radial polynomial function R
|m|
n (r) is given by

R|m|
n =

(n−|m|)/2∑
s=0

(−1)s(n− s)!

s!( (n+m)
2

− s)!( (n−m)
2

− s)!
rn−2s =

(n−|m|)/2∑
s=0

(−1)s
(
n− s

s

)(
n− 2s

(n−m)
2

− s

)
rn−2s

(8.4)
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j n m polynomial name

0 0 0 1 piston

1 1 -1 2 tilt

2 +1 tilt

3 2 -2 astigmatism

4 0 defocus

5 +2 astigmatism

6 3 -3 trefoil

7 -1 coma

8 +1 coma

9 +3 trefoil

10 4 -4 tetrafoil

11 -2 2nd astigmatism

12 0 spherical aberration

13 +2 2nd astigmatism

14 +4 tetrafoil

Figure 8.2: ANSI standard Zernike ordering.

Single Indexing. It is sometimes useful to refer to a specific Zernike polynomial using just a sin-

gle index, or describe the expansion coefficients as a vector. Without a specific standard, ordering

can be arbitrary and introduce confusion. The standard [Thibos et al., 2000] also defines the single

indexing scheme by using the double indices n and m to be:

j =
n(n+ 2) +m

2
. (8.5)

The single indexing scheme follows the top to down and left to right ordering of the pyramid in

Figure 8.2.

Function Representation. Given the Zernike basis family, it is often desired to succinctly rep-

resent the original circular function by a few coefficients; this can be written as

ω(xa, ya) ≈
N∑
j=1

cjZj(x
a, ya). (8.6)

With sufficiently a large number of terms, N , the original wavefront phase map can be represented

faithfully. In fact, since the measurement of the wavefront using a lenslet based sensor has finite

resolution, the wavefront map is usually fitted using Zernike polynomials directly; in addition, the

projection onto the basis functions also allows us to write the analytic expressions of the measured

wavefront, which is useful, as we will discuss in the next section.
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8.2 Ray-tracing Wavefront Geometry.

So far in the thesis, we have only considered the thin lens model of the eye, which limits the ability

to model more complicated blurs, such as astigmatism or spherical aberration; those are tradition-

ally treated analytically or through convolution using wavefront generated point spread function,

as discussed in Section 3.1.2. Since we want to correct for higher order terms, it is essential to

integrate the wavefront geometry into the light field prefiltering architecture. In Section 3.2, we

describe the transformations of the light field as a propagation, followed by a refraction due to

the eye. To model the wavefront geometry, the only part that is modified is the refraction; now

replaced with the wavefront geometry.

The wavefront surface describes the directions of rays leaving the pupil at the same phase, and

we only need to propagate these rays back to the display and determine the intersections. Figure 8.3

illustrates the simplified two-step processes: (a) generate rays whose directions are obtained using

the wavefront surface, and then (b) propagate to the display. When the directions are normal to

the pupil plane, they focus at infinity; when the directions are normal to a spherical wavefront,

they focus at the center. However, generating directions due to an irregular wavefront surface is

not straightforward, and a numerical solution is time consuming and subject to limited resolution.

Fortunately, each term of the Zernike polynomials is a differentiable smooth function, and we

can leverage the decomposable nature to obtain the directions at sampled locations, and combine

normals for the entire expansion series.

For each Zernike polynomial function, we calculate the normal directions by using tangents at

the sampled locations. We first uniformly sample locations (xa, ya) at the pupil plane; this directly

generates the positions part of the light field coming out of the pupil (Fig. 8.3 (c)). The normal is

obtained by forming the cross product of the tangent Tx
j along the x-direction with Ty

j along the

y-direction:

Nj(x
a, ya) = Tx

j (x
a, ya)×Ty

j (x
a, ya) =

⎡⎣ 1
0
dx

⎤⎦×
⎡⎣ 0
1
dy

⎤⎦ =

⎡⎣−dx
−dy
1

⎤⎦ . (8.7)

(a) generate the
out-of-pupil light field

(b) propagate back to display (c) tracing irregular wavefront requires analytical solution

Figure 8.3: Ray-tracing wavefront
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The analytic forms of the tangent functions are calculated by directly differentiating the Zernike

polynomials in Cartesian coordinates. Some terms are shown in Figure 8.4. Figure 8.5 shows the

3D surfaces of tilt, astigmatism, trefoil, and their corresponding derivative functions.

j n m in Cartesian coordinate

0 0 0 1 0 0

1 1 -1 0

2 +1 0

3 2 -2

4 0

5 +2 -

6 3 -3

7 -1

8 +1

9 +3

10 4 -4

11 -2

12 0

13 +2

14 +4

Figure 8.4: Derivatives

The normal direction on the original wavefront surface is the sum of the normals from all

Zernike terms, and the expression is given by:

N(xa, ya) =
N∑
j=1

cjNj(x
a, ya), (8.8)

Finally, we can combine the positions with directions to find the 4D light field coming out of the

pupil: (xa, ya,N1,N2)
T .

Limitations Although we have introduced wavefront based light field prefiltering, it is just an-

other tool when compared to the traditional Fourier transformed point spread function (Sec. 3.1.2).

Light field modeling is usually done in the regime of geometric optics, i.e. the particle nature of

the light; wave effects like diffraction and interference are not modeled. The point spread functions

generated from ray-tracing based and Fourier optics based are visually different; the user has to

select a usage scenario such as coherent/incoherent light source and diffraction due to small pupil.

Extensions to include wave optics have been briefly studied in [Oh et al., 2008] [Raskar et al.,
2009] [Oh et al., 2010], and we anticipate future research to unify the architecture.
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derivatives - with respective to x derivatives - with respective to yoriginal Zernike polynomials

X
Y

X
Y

X
Y

Figure 8.5: Derivative of Zernike polynomials

The required computation is another factor to consider; sampling a 4D function is much more

expensive than transforming a 2D complex image. The quality of the ray-traced solution depends

on the sampling rate; while there are many variance reduction techniques in the rendering literature,

the application to wavefront aberrations is still unclear, and a large number of angular samples are

still required.
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8.3 Correcting Zernike Polynomials Aberrations

In this section, we formally use light field prefiltering to correct for aberrations other than purely

the defocus term. As we have shown in Section 3.1.2, higher-order terms cause the point spread

function to have a non-circular shape; in fact, the shape of the point spread function is also depth-

dependent, and traditional single-layer image prefiltering is not very suitable for this application.

We will first show cases by using astigmatism to describe what causes the problem. The depth-

dependency is solved using the concept from the extended depth of field concept in Section 7.3.3,

and then we will further show results for other aberrations.

8.3.1 Astigmatism

Astigmatism in an optical system refers to the case where the two axes have different focusing

power. In the Zernike polynomial, astigmatism is denoted by Z−2
2 and Z+2

2 , as shown in Figure 8.2,

where the two axes are 90 degrees to each other. A graphical illustrations of the optical arrangement

is shown in Figure 8.6 for Z+2
2 ; in this example, the vertical focusing plane is farther away than

that of the horizontal axis, and objects are always blurred as there is no zero distortion spot. As

we further investigate this case, objects at the near plane have a vertical blur, and it becomes a

horizontal blur at the far plane in Figure 8.6. The perceived images for Z−2
2 , a 45 degrees rotation

from Z+2
2 , are illustrated in Figure 8.7, where the focus plane sweeps from one end to another.

When an object is closer to the observer, the point spread function is squashed and oriented 45
degree, as shown in the top left corner on the first row. As the object moves further away, the point

spread function is restored to a circular shape, and then squashed into an ellipsoid oriented in the

other direction.

lens with
astigmatism

near
focusing plane
(vertical blur)

far focusing plane

Z 2
2

Figure 8.6: Optical arrangement to illustrate astigmatism. Astigmatism has two different focus

planes that cause a depth-dependent point spread function, which is an ellipsoid when objects sit

away from the center between focus planes.
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Z 2
-2sweeping focus plane with astigmatism

Figure 8.7: Examples showing astigmatism has depth-dependent blur. The PSF is an ellipsoid

at one end on the optical axis; it gradually changes to a circle, and then deforms into another

ellipsoid on the other end. The image is thus blurred non-uniformly depending on the location

where it is shown.

Correcting for Depth-dependent Blur. The depth-dependent nature, like astigmatism, intro-

duces non-uniform point spread functions, and is generally hard to correct with traditional single-

layer prefiltering methods. Similar to what we have introduced in Section 7.3.3 to support extended

depth of field, we can optimize for an extended range to support the depth-dependent distortion.

In the center of Figure 8.8, we show a matrix of images at the locations where we optimized

for versus at locations from which images are viewed. It is not surprising that the performance of

the prefiltering excels when the locations we optimized for match where the images are viewed;

the perceived images for this case are shown in the diagonal red boxes. However, the off-diagonal

cases perform badly; even when we choose to optimize for the compromised center location, the

circular point spread function cannot account for ellipsoid kernel (as shown Fig. 8.7) occurring at

either end of the focus plane.

Without losing image quality and using the same hardware component, we can optimize for

extended depth of field with depth-dependent non-uniform point spread functions. Similar to what

we have introduced in Section 7.3.3, multiple projection matrices for different focusing planes

are stacked into a giant set of linear equations, and we solve the over-constrained system in a

consistent way as we solve for a single location. We generate projection matrices starting from the

center location with a circular kernel, and expand to both ends with differently oriented ellipsoids.
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Figure 8.8: Correcting for astigmatism. Direct optimization at a single location does not scale

well for all other locations, and the depth-dependent blur badly distorts the artifacts. Applying the

same principle for the extended depth of field, the perceived images are much more stable across

different viewing locations.

In the right column of Figure 8.8, we show the perceived images viewed from different loca-

tions, so that the display sits at different locations on the the optical axis. The direct comparison

to the naive optimization without extended depth of field shows slight degradation and blur around

the edges (take the last row for example), but the overall quality is maintained. This concludes how

we deal with general depth-dependent point spread functions with extended depth of field.
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8.3.2 Higher Order Terms
Correcting higher order aberrations is like what we have introduced before, but the sampling can

be more expensive. Due to the non-uniform shape of the Zernike polynomials wavefront, higher

sampling of rays and time are required. However, once the precomputed sampling is done, pre-

filtering the light field can be computed in a few seconds. We will show two categories of blur

using Zernike polynomials.

The first category uses only a single term of the Zernikes, such as spherical, coma, trefoil, and

tetrafoil, as shown in Figure 8.9. In the first column, the defocus blur based on circle of confusion is

shown as a reference. The spherical aberration (2nd column) shows a different blurring structure,

with a stronger contour around the edges. Coma (3rd column) displays a significant “smear”

downward, and image details are lost due to strong spreading. The trefoil term produces rounded

triangles, such as the eyes and the trumpet; tetrafoil, on the other hand, gives a very different blur

around the eye even though they differ by just one additional leg.

Correcting these kinds of blur with traditional single-layer prefiltering methods is hard, as

shown in the second row of Figure 8.9. We found it particularly difficult to invert point spread

functions with strong spreading, like spherical aberration and coma. However, not all higher order

terms are difficult; correcting for trefoil and tetrafoil aberrations is much more successful. The

results is not surprising, since the latter preserves more high frequency information in the direction

orthogonal to the legs. Finally, the light field based architecture generates results with much better

quality, even for the very difficult coma case.

Finally in Figure 8.10, we show results for randomly generated higher order aberrations. These

are in general quite impossible for single-layer prefiltering (red box), but the light field prefiltering

(blue box) still excels at these cases.

defocus (disk) spherical aberration coma trefoil tetrafoil
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Figure 8.9: Examples of single term Zernike polynomial point spread functions. Here we show

comparisons of spherical, coma, trefoil, and tetrafoil with the defocus term.
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Figure 8.10: Correcting for randomly generated higher order aberrations.
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8.3.3 Future Work for Higher Order Aberrations

Importance sampling and closed form solution. For the current software implementation, we

did a brute force ray tracing, which is computationally intensive; for each retinal pixel, we sample

around 22000 rays across the pupil aperture on a regular grid, and the computation requires many

hours on our Matlab implementation. This is not a smart strategy; even the simplest stratified

sampling can improve the variances. However, the deeper insight we look for is how rays actually

converge or diverge through the wavefront geometry. Fortunately, the Zernike frequency decom-

position of the wavefront geometry is a set of well-known polynomial functions, and we believe a

smarter importance sampling strategy can be developed.

Another way to accelerate the computation is to derive the wave propagation. Since the Zernike

wavefront basis functions are mathematically well defined, their propagations to the display could

be derived in a closed form solution as opposed to the expensive ray tracing; the angular varia-

tion on the display is simply the derivative of the propagated wavefront function. Applying the

Huygens-Fresnel principle, the propagation could be derived using Fresnel diffraction at far field.

Since the Fresnel diffraction only considers up to quadratic terms and we need to deal with the

high frequency waves, the validity in these approximations should be re-examinated.

Experiments with higher order terms. In simulation, we have shown that higher order aberra-

tions are possible to correct with light field prefiltering. However, physical experiments still need

to be implemented in a way that the lens generates higher order terms, and this is a challenging

optical setup. The main challenge comes from the optical lens with the desired higher order aber-

rations. The current technology generates higher order aberrations through deformable mirrors or

phase plates, but they are not easy to integrate into our optical setup. Also, since an aspherical lens

is required to generate a pure defocus term to focus at the display, a commercial camera lens usu-

ally consists of several lenses, which obscure the optical center to augment the desired higher order

terms. To the author’s knowledge, there is no lens that comes with known higher order aberrations,

thus custom lenses have to be built.

Ideally, we could still construct a lens with higher order aberrations with a phase plate. One

possible solution is placing the phase plate in front of the lens, and we back propagate the wavefront

from the phase plate to the hypothetical optical center, which involves some trials and errors. After

finding the propagated wavefront Zernike polynomial coefficients C ′
j , the defocus term can be

added to the new coefficients as one ”hypothetical” lens with higher order aberrations. It is still

unclear how to find the back propagation and reconstruct the coefficients; the Fresnel diffraction

gives only approximated solutions, and the ray tracing is subject to the sampling and resolution

problems.

The other possible optical setup is shown in Figure 8.11, where multiple lenses are used to

replicate the virtual phase plate at the main lens. In this particular setup, the rays from the display

follow the green paths to the image sensor or the eye. Rays starting from the the phase plate follow
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light field
display

phase plate image
sensor

f f f f f f

replicate higher order aberra�on

f

Figure 8.11: Physical setup to generate higher order aberrations. The phase plate (in blue)

used to create higher order aberrations is placed in the center that generates a virtual phase plate

on the main lens in front of the image sensor.

the blue paths that converge on the main lens in front of the sensor. Since every point forms a

virtual correspondence on the main lens, we can say it creates the exact wavefront we require to

verify the correction for higher order aberrations; this optical setup provides future directions to

implement physical experiments.
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Chapter 9

Future Work

In this thesis, we demonstrate the possibility of correcting optical aberrations through computa-

tional light field displays. This is an emerging field of research, not just for computational light

field displays, but also for correcting optical aberrations through computation. Although we show

that the introduction of computation for optical correction potentially offers many promises, there

are also challenges. We will discuss the future work with respect to different criteria: practical-

ity, application, and computational optics. The discussions will give the reader ideas on what

challenges are faced by the vision-correcting displays, what are the potential applications that use

similar principles, and what is the future of correcting aberrations using algorithmic solutions.

9.1 Practicality.

Resolution enhancement. The major challenge for vision correcting displays is to exceed the

performance of optical solutions. Since there is a sacrifice of the spatial resolution in favor of the

angular resolution for the light field display, we also want to ask: “Is the spatial-angular resolution

trade-off reasonable and acceptable?” We have reduced the requirement of high angular resolution

by Pamplona et al. [2012], but a reduction by half or a third is still considered a high loss in the

resolution, where the resolution is reduced from a “4K resolution” display to a “Full-HD” or just

“HD” display. An angular sampling rate of 1.5 and above is now still considered very high for

commercial 3D TVs or light field displays, where each view spans a few degrees; in our prototype,

each view spans less than 1 degree.

The high angular sampling rate, in fact, favors the correction for hyperopia and presbyopia,

where people want to be able to read the devices at a close distance. Myopic patients would like to

be able to see objects at a further distance, and high pupil angular sampling rate is harder to achieve

when the light field display is further away. Wetzstein et al. [2012] demonstrate the possibility of

constructing a high resolution light field display using the compressive nature of the light field

content, but it is unknown how well that can be applied to vision correcting displays.
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However, perhaps the most important part is the spatial acuity of the eye; we are limited by the

spatial resolution of the display, which is much lower than the capability of the human eye. The

retinal sampling is able to discriminate about 60 cycles per degree, and to achieve such high spatial

resolution on the light field display would be an incredible engineering challenge. Pamplona et

al. [2012] use a high density panel, around 2000 pixel per inch, to generate high angular resolution,

but optical challenges such as diffraction and other wave effects also arise.

Sensitivity to the parameter space. Many of our results are based on the assumption that perfect

calibrations are achieved; however in practice, the viewer’s head can move, and the distance to the

display can change. There is also the high frequency scanning and movement of the eye, called

saccades, that will cause the retinal light field and image to be unstable. The human eye is a

wonderful optical device for imaging, and it responds to the environment, such as illumination

changes and accommodation changes. Overall, this parameter space has many dimensions, and

even though we introduce the idea of using an over-constrained solver to incorporate an extended

depth of field, developing a lab prototype to commercial products would still require a significant

effort.

Correcting for Binocular Vision Although the primary context discussed in this thesis is mainly

for correcting aberrations with the same prescription for both eye, the light field based solution is a

perfect candidate for this binocular purpose, as it was used for stereoscopic display. The binocular

architecture requires sending different images to different eyes, thus the constrained optimization

shown in Section. 7.3.3 now solves the light fields for two projection locations: the left eye and the

right eye. The added constraints require doubling the underlying panel resolution of the light field

display; the resolution requirement is now from two pixels to four pixels. However, it could be

further reduced to three by compacting the two views with shared pixels if two eyes have similar

prescription. Unfortunately, correcting for binocular vision complicates the parameter spaces as it

makes the solution space highly nonlinear, and further investigation to make it a practical product

should consider the intersection of both problems.

Mobile computing platform. Ultimately, our ideal target platform would be the mobile device

with close reading distance. The computational challenges are in two parts: the sampling of pro-

jection matrices and the computation of the non-negative solutions. Even though in most cases, the

sampling of projection matrices can be precomputed, the parameter space is huge, and real-time

matrix sampling is preferred. The computation for non-negative solutions involves non-convex

optimization, but in practice, our prototype results are generated in a few seconds. The required

time and space increase with higher spatial resolution, but recent advances in parallel computing

(e.g. using GPU) show promising directions.



CHAPTER 9. FUTURE WORK 95

9.2 Applications

HMD, HUD, Augmented Reality. For many cases, a head-mount-display requires users to wear

their own eyeglasses, which can be cumbersome and uncomfortable. Pre-correcting for such a

display can improve the willingness to use such devices. We also found applications where the

user needs to focus at more than one place can benefit from this research, and applications like

heads-up-displays are a potentially rich field in which many appliances can use the method to

increase user experiences, such as projecting information on windshields or helmets. Another

concrete example is augmented-reality eye-glasses, where information is always projected onto a

fixed virtual plane; the prefiltering can take the plane to whichever depth the user is focusing, and

the world is always “augmented” with the information.

Light field displays. There are some human psychophysical factors that are also important, es-

pecially with the common 3D TVs/theaters that show two separate images to the eyes; prolonged

viewing can cause dizziness due to the differences in accommodation and vergence cues. We feel

that combining the true light field with real depth of field to support accommodation and image

prefiltering techniques should be able to enhance the viewing experiences. In the long run, we be-

lieve that flexible display architectures will allow for multiple different modes, such as glasses-free

3D image display, vision corrected 2D image display, and combinations of vision-corrected and

3D image display.

Optical lithography. Lithography is the process of printing, and optical lithography is now

widely used to print circuits. With advances in semiconductors, the features become extremely

tiny and the diffraction effect comes into play. Research in photo-lithography often finds printing

patterns that will become the desired image after the diffraction, and this is exactly the inverse

prefiltering problem we have discussed earlier.

Health care. Quality of life is an important indicator of civilization, but unfortunately the loss of

vision is an inevitable process as we age. In fact, elder people with presbyopic eye are the biggest

potential market for handheld vision-correcting mobile display, since the eye cannot focus at near

range, and the displays tend to be small. We hope that, in the future, the vision-correcting display

can help people with uncorrected eyes to see sharp images; they either use this as an alternative

besides eyeglasses, or for people with higher order aberrations can start to see display in sharp

focus. In the study by Katz et al. [1997], it is shown that myopia has a positive correlation with

education level, and this may be due to prolonged near range viewing; perhaps by showing virtual

content at further distances thus may relax the eye for the “long range reading” experience, but

this has yet to be proven to work even with psychophysical experiments; We feel that “vision

rectification” might be another interesting direction.
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Cryptography Hiding information by convolving an image with a complex point spread func-

tion is another interesting direction to explore, where the viewer is required to wear the inverse

decrypting lens to decipher the information. As opposed to initial goal of the thesis, we want

to design a complex point spread function composed of arbitrary higher order aberrations, and

decrypting requires a specifically designed phase plate to inversely cancel the prefiltering of the

image; this forms a secret key paradigm for data encryption. The encryption can be made stronger

by enforcing the point spread function to be the composition of the person’s aberrations and the

phase plate.

9.3 Computational Optical Correction.

Correcting optical aberrations through computation is a new research area that has not been ex-

plored, and we have shown that it is possible to compensate for the aberrations by sacrificing some

contrast. This capability is also content dependent: for a constant image nothing will be sacrificed.

But the prefiltering might struggle with a white noise image; comprehensive theoretical analysis is

an interesting direction. Although there is a plethora of research in computational optics stemming

from electrical engineering or optical engineering, little of this research is from computer science

and uses computation to solve similar problems. One immediate direction is to explore wave ef-

fects, and the pioneering work by Ou et al. [2010] shows promising results, although applying their

principles on prototypes or products will still require significant effort.
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Chapter 10

Conclusion

A large number of people have eye problems, and most of them are due to uncorrected refractive

error. Studies show some refractive errors like myopia are correlated with higher levels of educa-

tion, and presbyopia increases with age. Higher order aberrations are traditionally very difficult

to correct since aspherical lenses are required. The need to correct for optical aberrations has a

long history, and has been primarily addressed purely by optical means. Although refined optical

elements give better image quality, this is fixed hardware directly changing the optics of the eye,

and can sometimes be intrusive/invasive. In this thesis, we introduce a “computation-based” dis-

play that corrects the optical aberrations using computer programs; this is done by reversing the

projection process in our eye, and showing the preprocessed contents on a computer display, such

as a multilayer display or a light field display.

In a multilayer display, we analyze the frequency domain behavior of the convolution kernel,

and show that the zero and extremely attenuated frequencies are covered by another layer; image

contrast can also be further optimized via fractional frequency assignment. We have built a mul-

tilayer LCDs prototype to show the effectiveness of the multilayer prefiltering idea, and we have

demonstrated the removal of ringing artifacts and the enhancement in image contrast. We also have

shown that a traditional light field display can be used to emulate a virtual multilayer display, and

with frequency analysis, our virtual multilayer prefiltering outperforms prior work using the same

light field display.

To account for better light field display utilization, we found that directly prefiltering the full

4D light field gives better results. We analyze the image formation in the light field domain, and

demonstrate a light field prefiltering framework. When compared with prior work, the hardware

to achieve the required angular sampling rate is shown to be much simpler, and the image contrast

is also improved significantly by using a non-negative linear solver with the light field architec-

ture. We have demonstrated the construction of the light field display prototype using off-the-shelf

components such as an iPod Touch and a printed pinhole mask, and with a thin form factor, we

can successfully correct the defocus blur. Evaluations are done using Michaelson contrast and a

perceptual metric, called HDR-VDP2, and light field prefiltering finds a good balance between

image contrast and perceptual quality.
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Traditional image based methods are unable to compensate for higher order aberrations; we

have shown that higher order terms can be corrected in the same way as defocus. The sampling

of the projection matrix is done by inverse ray tracing, with the directions of the rays given by

forming the cross product of the tangents of the Zernike polynomials. The result shows that not all

higher order terms are difficult to correct; e.g. trefoil and tetrafoil preserve more high frequency

information, making the overall prefiltering easier. Randomly generated point spread functions

with higher order aberrations are also corrected with our method in simulation, and the results are

promising.

Finally, we discussed several future directions to enhance the vision-correcting display, several

potential applications that share similar ideas as the “deconvolution” idea, and also possible topics

to further extend the capability of the generalized prefiltering architecture.
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Freeman. 4D frequency analysis of computational cameras for depth of field extension. ACM
Trans. Graph., 28(3), 2009.

[Levoy and Hanrahan, 1996] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings
of the 23rd annual conference on Computer graphics and interactive techniques, SIGGRAPH

’96, pages 31–42, New York, NY, USA, 1996. ACM.

[Liang et al., 1997] J. Liang, D.R. Williams, and D.T. Miller. Supernormal vision and high-

resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis,

14(11):2884–92, 1997.

[Liang et al., 2008] Chia-Kai Liang, Tai-Hsu Lin, Bing-Yi Wong, Chi Liu, and Homer H. Chen.

Programmable aperture photography: multiplexed light field acquisition. ACM Trans. Graph.,
27(3):55:1–55:10, August 2008.

[Liang et al., 2011] Chia-Kai Liang, Yi-Chang Shih, and H.H. Chen. Light field analysis for mod-

eling image formation. Image Processing, IEEE Transactions on, 20(2):446 –460, feb. 2011.

[Lin et al., 2004] L.L.K. Lin, Y.F. Shih, C.K. Hsiao, and C.J. Chen. Prevalence of myopia in

taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore, 33(1):27–33, 2004.
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