
Graph Structured Data Viewed Through a Fourier Lens

Venkatesan Ekambaram

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-209

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-209.html

December 16, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Graph-Structured Data Viewed Through a Fourier Lens

by

Venkatesan Nallampatti Ekambaram

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kannan Ramchandran, Chair
Professor Martin Wainwright

Professor Raja Sengupta

Fall 2013

Graph-Structured Data Viewed Through a Fourier Lens

Copyright 2013
by

Venkatesan Nallampatti Ekambaram

1

Abstract

Graph-Structured Data Viewed Through a Fourier Lens

by

Venkatesan Nallampatti Ekambaram

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kannan Ramchandran, Chair

Graph-structured data appears in many modern applications like social networks, sensor networks,
transportation networks and computer graphics. These applications are defined by an underlying
graph (e.g. a social graph) with associated nodal attributes (e.g. number of ad-clicks by an indi-
vidual). A simple model for such data is that of a graph signal—a function mapping every node to
a scalar real value. Our aim is to develop signal processing tools for analysis of such signals de-
fined over irregular graph-structured domains, analogous to classical Fourier and Wavelet analysis
defined for regular structures like discrete-time sequences and two-dimensional grids.

In this work, we start by reviewing the notion of a Graph Fourier Transform (GFT), which has been
defined in the literature for graph signals. We examine the spatial and spectral features of circulant
graphs, which accommodate linear shift-invariant operations. We describe fundamental operations
such as shifting, sampling, graph-reconnection and linear filtering for signals on circulant graphs
and derive associated sampling and graph-reconnection theorems. We also develop wavelet filter
bank structures for multi resolution analysis of large-scale graphs.

We present a method to decompose an arbitrary graph into a linear combination of circulant graphs.
This helps extend fundamental operations such as sampling, filtering and multi resolution filter
banks to general graphs. We present an application in the area of graph semi-supervised learning
where some of the existing algorithms can be viewed as suitably designed filters defined in the
GFT domain. We propose a wavelet regularized learning algorithm and evaluate the performance
on some real-world datasets.

i

To my beloved parents Kamala and Ekambaram, my dearest brothers Kumar and Sridhar, my
sweetest sisters Jayashree and Padu, my compassionate sisters-in-law Uma and Lalitha, my dear

brothers-in-law Narayanaswamy and Balaji, all my gorgeous nieces and nephews, I hereby
dedicate the fruits of my humble toil.

ii

Contents

I Background 1

1 Introduction 2

2 Discrete Signals on Graphs 6
2.1 Graphs . 6
2.2 Graph Signals . 8
2.3 The Graph Fourier Transform . 11
2.4 Chapter highlights . 16

II Signal Processing on Circulant Graphs 17

3 Fundamental signal processing operations on circulant graphs 18
3.1 Motivation . 18
3.2 Circulant graphs . 19

3.2.1 Definition . 19
3.2.2 A group theoretic viewpoint . 21

3.3 GFT for signals on a circulant graph . 22
3.4 The Uncertainty Principle . 24
3.5 Shifting signals on a circulant graph . 25

3.5.1 Shift in the graph domain . 25
3.5.2 Shift in the GFT domain . 26

3.6 Correlation . 27
3.7 Convolution . 30
3.8 Chapter highlights . 32

4 Sampling on circulant graphs 33
4.1 Sampling . 33
4.2 Aliasing in the GFT domain . 36
4.3 Reconnection strategies for a sampled graph . 37

4.3.1 Desirable properties . 37

iii

4.3.2 Kron reduction . 39
4.3.3 Circulant-preserving reconnection strategy 41
4.3.4 Examples . 43

4.4 Sampling theorems . 45
4.4.1 Alias-free Sampling . 45
4.4.2 Optimal Perfect-Reconstruction Sampling 46

4.5 Chapter highlights . 48

5 Multiscale analysis on circulant graphs 49
5.1 Linear Filters for Graph Signals . 50
5.2 Filter banks for multiscale analysis . 52
5.3 Oversampled Filter banks—The Graph Laplacian Pyramid 54
5.4 Spline-like filterbank structures . 57

5.4.1 Simple Spline-like filter banks . 57
5.4.2 Generalized weighted Spline-like filter banks 64
5.4.3 Properties of the Spline-like two-channel filter bank 67

5.5 Lattice filter bank structures . 68
5.6 Chapter highlights . 73

III Signal Processing on General Graphs 74

6 Circulant decomposition of a general graph 75
6.1 Introduction . 75
6.2 Directed Circulant Decomposition . 76
6.3 Undirected Circulant Decomposition . 80

6.3.1 Overcomplete Undirected Circulant Decomposition 80
6.3.2 Undirected Circulant Decomposition-I . 83
6.3.3 Undirected Circulant Decomposition-II 85

6.4 Properties of the circulant decompositions . 87
6.4.1 Reverse Cuthill-McKee Ordering . 88

6.5 Chapter highlights . 90

7 Sampling on general graphs 91
7.1 Sampling on general graphs . 91
7.2 Reconnection strategies . 93
7.3 Chapter highlights . 96

8 Filter bank design on general graphs 97
8.1 Shift-varying filters on general graphs . 97
8.2 The Laplacian Pyramid for general graphs . 99

iv

8.3 Shift-varying Spline-like filter bank structures . 100
8.3.1 Simple Spline-like filter banks . 100
8.3.2 Generalized weighted Spline-like filter banks 106
8.3.3 Properties of the Spline-like filter banks 111

8.4 Shift-varying Lattice filter bank structures . 111
8.5 Example multiscale decompositions . 112

8.5.1 Weather dataset . 113
8.5.2 Watts-Strogatz small world network graphs 114

8.6 Chapter highlights . 117

IV Applications 118

9 Wavelet Regularized Graph Semi-Supervised Learning 119
9.1 Machine Learning—a brief introduction . 119

9.1.1 Semi-Supervised Learning . 120
9.2 Graph Semi-Supervised Learning . 120

9.2.1 Graph Semi-Supervised Learning Algorithms 121
9.2.2 Wavelet Regularized GSSL . 123

9.3 Experimental results . 124
9.4 Chapter Highlights . 129

V Related Work and Open Research Problems 130

10 Related Work 131

11 Open research problems 134

Table of Notations 137

Bibliography 139

v

Acknowledgments

11/16/13, 4:50 PMPractical Sanskrit: how we learn and grow - आचाय%त् पादमाद+e

Page 1 of 9http://blog.practicalsanskrit.com/2009/12/how-we-learn-and-grow.html

Home BOOKS VIDEOS Selected Reading Resources

Wednesday, December 30, 2009

one fourth from the teacher, one fourth from own intelligence,
one fourth from classmates, and one fourth only with time.

AchAryAt pAdamAdatte, pAdam shiShyaH swamedhayA |
sa-brahmachAribhyaH pAdam, pAdam kAlakrameNa cha ||

आचाय%त् पादमाद+e पाद- िश0यः 2व4धया ।
स78चाiर;यः पाद- पाद- काल>4ण च ॥

this one shloka opens up many facets, related to learning
and teaching – be it regular schools or spiritual learning.
modern education system, student-teacher relationship,
undue blame on teacher or students for below expectation
results.

let us look at each of the four parts. one learns from four
sources - teacher, self, others, and with time (i.e.
experience).

this doesn't mean it is exactly one-fourth from each. that
may depend upon individual case - how good the teacher,
classmates, own intelligence or environment is.

just like to grow a tree a gardener, good seed, fertile soil and time are needed, so too to learn one
needs a teacher, own intelligence, co-students and time (patience, experience).

teacher:
it is important to have a good teacher. but the failure of a student to learn is not totally teacher's
fault. this also means having the best teacher doesn't guarantee success! similar reasoning applies
in the spiritual world as well. just by having a great guru doesn't ensure salvation, liberation,
nirvANa. it simply means that you have a good gardener at hand. but what about the seed, soil and
time?

how we learn and grow - आचाय%त् पादमाद+,

Sanskrit WORKBOOK 2

SANSKRIT MAXIMS

We are what we eat - दीपो
भCयD EवाFत-

Worthiness of men and
women - अHः शI- शाI- वीणा

Science is the only eye -
अJकस-शयोKLiद

Time of the wise and the
fool - काMयशाIiवनोOन

Five types of fathers -
अFनदाता भयPाता

Role of parents - माता शPuः
iपता वRरी

God helps them who help
themselves - न Oवा दSडमादाय

Large shoes, small footprint
- भोगा न भuVता

Human or animal, what is
the difference? - आहार-iनXा-
भय-Yथuन- च

Selected Reading

Share
View stats

Facebook Share

Practical Sanskrit on Facebook

JOIN US ON FACEBOOK

There was an error in this
gadget

powered by

CLICK to watch VIDEO

Search

More Next Blog» Create Blog Sign In

11/16/13, 4:54 PMPractical Sanskrit: how we learn and grow - आचाय%त् पादमाद+e

Page 1 of 9http://blog.practicalsanskrit.com/2009/12/how-we-learn-and-grow.html

Home BOOKS VIDEOS Selected Reading Resources

Wednesday, December 30, 2009

one fourth from the teacher, one fourth from own intelligence,
one fourth from classmates, and one fourth only with time.

AchAryAt pAdamAdatte, pAdam shiShyaH swamedhayA |
sa-brahmachAribhyaH pAdam, pAdam kAlakrameNa cha ||

आचाय%त् पादमाद+e पाद- िश0यः 2व4धया ।
स78चाiर;यः पाद- पाद- काल>4ण च ॥

this one shloka opens up many facets, related to learning
and teaching – be it regular schools or spiritual learning.
modern education system, student-teacher relationship,
undue blame on teacher or students for below expectation
results.

let us look at each of the four parts. one learns from four
sources - teacher, self, others, and with time (i.e.
experience).

this doesn't mean it is exactly one-fourth from each. that
may depend upon individual case - how good the teacher,
classmates, own intelligence or environment is.

just like to grow a tree a gardener, good seed, fertile soil and time are needed, so too to learn one
needs a teacher, own intelligence, co-students and time (patience, experience).

teacher:
it is important to have a good teacher. but the failure of a student to learn is not totally teacher's
fault. this also means having the best teacher doesn't guarantee success! similar reasoning applies
in the spiritual world as well. just by having a great guru doesn't ensure salvation, liberation,
nirvANa. it simply means that you have a good gardener at hand. but what about the seed, soil and
time?

how we learn and grow - आचाय%त् पादमाद+,

Sanskrit WORKBOOK 2

SANSKRIT MAXIMS

We are what we eat - दीपो
भCयD EवाFत-

Worthiness of men and
women - अHः शI- शाI- वीणा

Science is the only eye -
अJकस-शयोKLiद

Time of the wise and the
fool - काMयशाIiवनोOन

Five types of fathers -
अFनदाता भयPाता

Role of parents - माता शPuः
iपता वRरी

God helps them who help
themselves - न Oवा दSडमादाय

Large shoes, small footprint
- भोगा न भuVता

Human or animal, what is
the difference? - आहार-iनXा-
भय-Yथuन- च

Selected Reading

Share
View stats

Facebook Share

Practical Sanskrit on Facebook

JOIN US ON FACEBOOK

There was an error in this
gadget

powered by

CLICK to watch VIDEO

Search

More Next Blog» Create Blog Sign In

A"student"learns"a"quarter"from"his"teacher,"a"quarter"from"his"own"intelligence"
a"quarter"from"fellow"students,"and"the"rest"in"course"of"6me"

!!!Nee$%Sastra%

All of us are students no matter what stage of life we are in. It is only the gurus (teachers) who
change— be it your parents, advisors, friends, colleagues or pure experience. There are very few
occasions where you get to express your gratitude and thankfulness to all the gurus in your life
who have equipped you with the necessary tools to help reach your goals. This, I consider as one
of those few opportunities to express my sincere gratitude to everyone who has helped me reach
this significant milestone in my life.

Parents are the first and foremost gurus in ones life. There are no words that can express my thank-
fulness to my wonderful mother Kamala, and father Ekambaram, whose unconditional love and
guidance has helped me progress this far. I would like to profusely thank them for all their support.
Equally important are ones siblings, especially elder ones, who take on the roles as friends or par-
ents as the need arises. I have been fortunate to have four amazing elder siblings Kumar, Sridhar,
Jayashree and Padmavathy, who have been an immense source of support all through my life and
I would like to thank them. This thesis is dedicated to all their years of effort in nurturing me.

I have been very fortunate to have had a PhD advisor like Prof. Kannan Ramchandran. His dy-
namism and ability to connect multiple topics has always amazed me. He has a great taste for
practical problems, yet deeply rooted in theory. He is very motivational and has kept my energy
levels high throughout my PhD. I would like to thank him for letting me explore diverse research
topics of my interest. Without him, I wouldn’t have gotten the opportunity to work with researchers
on a wide range of interesting topics.

Next, I would like to thank my collaborator and thesis committee member Prof. Raja Sengupta. It
would be hard to judge whether I spent more time discussing with Raja or with Kannan. Raja, again
is a highly energized person with diverse interests. It has been due to him that I got introduced to
research areas like behavioral sciences whose importance and impact I have begun to appreciate

vi

much more than earlier. He has always been supportive of my weird ideas in his research group
meetings given my limited knowledge in these areas, though I must apologize for not having made
much progress with my ideas. I would like to thank him for his encouragement through out my
stay here.

I would next like to thank Prof. Martin Wainwright who is my other thesis committee member
and also Prof. Claire Tomlin who was on my Quals committee. The insights provided by Martin
during the early stages of my research have been very helpful particularly in the area of graphical
models. The discussions I have had with Claire and her students as part of the larger project which
was my funding source, has been very useful in connecting applications in control to my work on
location estimation that I had worked on in the early years of my PhD.

I would next like to express my sincere gratitude to Prof. P. Vijay Kumar from the Indian Institute
of Science, Bangalore, who was my masters advisor. My decision to pursue doctoral studies was
largely influenced by him. Without his guidance and encouragement, I would have never been able
to pursue my PhD in a wonderful institute like U C Berkeley.

Outside my thesis committee, there have been many others without whose collaboration my progress
would have been limited. My main collaborators for the work I have presented in this thesis are Dr.
Babak Ayazifar and Giulia Fanti. I have known Babak both as a lecturer for whose course I had
been a teaching assistant as well as a great collaborator. I don’t think I need to say much about his
teaching capabilities—any undergrad who has taken his course can vouch for his class as being the
best they would have probably taken in electrical engineering. He has an amazing style of teaching
and keeps up the energy levels in the class. As a collaborator, he is one of the few faculty who
actually sit with you and derive the nitty gritty details of proofs. I remember that for every paper
deadline he used to sit late at night editing the paper while I would probably be dozing off even
though I was on the west coast time and he on the east coast! Thanks for all your help Babak.

Giulia has been a wonderful collaborator for both my research work on location estimation as well
as the work presented here. There hasn’t been a time where I have asked her for some help and she
has refused irrespective of whether she is busy with exams or working on her own deadlines. I am
very fortunate to have had her as a collaborator.

I would also like to thank my other collaborators who have exposed me to a very diverse range
of research topics yet intrinsically connected in terms of the underlying tools being used. These
include Dr. Gerald Friedland, Jaeyoung Choi, Dr. Christian Manasseh, Adam Goodliss, Andre
Carrel, Dr Jerry Jariyasunant, Prof. Joan Walker and her students and Sameer Pawar. In partic-
ular, I would like to thank Sameer for the wonderful discussions we have had, both technical as
well as non-technical ones, especially during our lunch breaks. These were probably much more
important in shaping our career paths and widening our knowledge than any of the other research
discussions we might have had!

vii

As the slogan at the beginning of this section says, a quarter of what you learn is from your fellow
colleagues. I think the Wireless Foundations lab environment is an excellent example of this. I
have been fortunate enough to have had some of the best brains around the globe as my colleagues.
I would like to extend my sincere gratitude to all of them for having made my stay a memorable
one. These include Mark, Hao, Nihar, Rashmi, Nima, Nebojsa, Po Ling, Varun, Chang Ho, Sa-
hand, KK, Gireeja, Naveen, Kate, Kris, Pulkit, Vasuki, Kangwook, Vijay, Stephan, Sudeep, Se
Young, Salim, Sreeram and other new students and postdocs. I would also like to thank the various
faculty of WiFo some of whose courses have laid the foundations for the tools I have been using
in my research. Thanks are also due to wonderful staff like Kim Kail and Lea Barker who have
always been there when we need them.

Last but not the least, I would like to thank my present and past roommates, friends from SPIC-
MACAY and all other friends who have made my stay at Berkeley a very memorable one.

1

Part I

Background

2

Chapter 1

Introduction

Graph-structured data is present in numerous modern applications, such as social media services
(e.g. Facebook and Twitter [1]), wireless sensors (e.g. temperature measurements [2]), power net-
works [3], computer graphics [4, 5], and finite-element meshes [6]. Fig 1.1 gives some examples of
such graphs, which can have upwards of millions of nodes in practice. Most of these graphs have
attributes associated with the nodes or edges. For example, sensor nodes have measurement values
associated with each node, and social media graphics have attributes like the name, age, gender, or
number of ad clicks associated with each node in the graph. Given such data, problems of interest
include finding patterns, predicting unobserved data, or obtaining multiscale representations of the
graph and the associated data for efficient processing.

The machine learning (ML) community has spent considerable effort developing techniques to un-
derstand and process large-scale, graph-structured data. Many efficient prediction and classifica-
tion algorithms [7] have been developed for different applications of interest and these techniques
have had considerable impact in practice. However, ML algorithms suffer from certain drawbacks.
In particular, many of these algorithms are tailored for specific applications and there is no clear
understanding of when one should choose a particular approach over another. Further, each al-
gorithm has many tunable parameters and the choice of these parameters is more of an art than
design which heavily depends on the dataset of interest. Thus, there is lack of a unified theory for
processing graph-structured data encompassing various applications that provides optimal design
constructs.

The signal processing (SP) community on the other hand, has been largely successful in developing
a concrete theory for well-ordered structures such as time-lines and Cartesian grids for the analysis
of time-signals, images and videos. These regular structures in fact have a graph-theoretic view-
point and can be interpreted as functions defined over path graphs and grid graphs (see Chapter 2).
Fourier and Wavelet analysis tools have had considerable impact in many applications dealing with
time signals and images. However these existing signal processing tools do not easily carry over

3

Neuronal Networks! Social Networks!

Computer Graphics!
!"#$%&"'()'*+%#),'
''-)../+$%01)+''

!"#$%&"'()'!"#$%&"'
''-)../+$%01)+'

*+%#),'2)3"'

Vehicular Networks!

Figure 1.1: Example of some real world graph structured data. The values on the nodes could be
scalar values (e.g. Mesh Networks), time varying (e.g. Neuronal Networks, Vehicular Networks)
or abstract (e.g. Social Networks).

to arbitrary graphs and a substantially more nuanced paradigm is required to deal with general
graph-structured data.

Consequently, there has been a recent surge of interest in the SP community to develop a unified
theory for the analysis and processing of “graph signals,” which model data defined over graphs.
In the most simplest form, a graph signal (defined more formally in Chapter 2) is essentially a
function that maps each node in the graph to a scalar real value. The values associated with the
nodes are representative of the nodal attributes in different applications. Given the notion of a
graph signal, it is thus natural to ask whether one can extend Fourier and Wavelet analytical tools
defined in classical signal processing to the more abstract, irregular domains of graphs and mani-
folds. Such an exposition is of significant intellectual interest in extending classical DSP beyond
time-lines and grids. Further, it can also foster a better understanding of various ML algorithms
under this perspective and thereby lead to improved algorithms that can be provably optimal.

In order to build a theory for the analysis of graph signals, it is important to ask questions of the
following form: What functions defined on graphs can serve as a Fourier-like bases? Which graph
signals are considered to have high or low frequency content? What interesting properties, if any,
does a graph Fourier decomposition possess with respect to signal analysis or filter design? Is there
a fundamental tradeoff, such as an uncertainty principle, governing graph signals? Can we design
wavelet-like basis functions that have localized support on the graph domain as well as the spectral

4

domain?

There has been much recent interest in the SP community in addressing some of the above ques-
tions. A survey of this extensive body of literature is provided in Chapter 10. However, much work
remains in the quest for a unified, let alone comprehensive, signal processing theory for graphs.
Under this context, this thesis is a modest attempt in exploring some of the nuances of signal pro-
cessing concepts when applied to graphs.

A major challenge in defining even fundamental operations like signal shifting is the irregular struc-
ture of general graphs; graphs typically look different from different nodes. Hence, it is unclear
how to “shift” or “sample” a signal on the graph. Authors have either resorted to unconventional
definitions for these operations [8] or defined them in domains different from that of the signal [9].
Each approach has its own philosophy and comes with its own advantages and disadvantages. Our
approach is motivated by linear time-invariant (LTI) signal processing, which has had consider-
able impact in classical signal processing. We view general graphs as linear shift-varying (LSV)
systems analogous to linear time-varying (LTV) systems in the classical theory. A corpus of re-
search literature deals with LTV systems through the lens of LTI systems [10–14]. Accordingly,
we first study circulant graphs—a class of graphs amenable to linear shift-invariant (LSI) opera-
tions and then extend the developed tools to general graphs through a circulant decomposition of
these graphs.

Our main contributions can be summarized as follows:

• We explore fundamental signal processing operations on circulant graphs to a substantive
depth. In particular, we analyze the properties of the Graph Fourier Transform (GFT) as de-
fined in the literature for circulant graphs. We define basic operations like shifting, sampling
and graph reconnection strategies for circulant graphs and analyze the corresponding prop-
erties in the spectral domain. Fundamental sampling theorems and uncertainty principles are
derived. These form the basis for filter design and multi-resolution analysis.

• We design three classes of two-channel filter bank structures for signals on circulant graphs.
These are shown to satisfy different desirable properties of multi resolution filter banks.
Further they provide wavelet bases at different levels which in turn result in a multiscale
representation of the given graphical data.

• For analyzing signals on general graphs, we provide a decomposition of an arbitrary graph
into circulant graphs. In particular, we show that the adjacency matrix of a given graph can
be written as a suitable linear combination of the adjacency matrices of individual circulant
graphs. Fundamental operations such as sampling and filter design are extended to general
graphs through this decomposition.

• Two-channel filter bank structures are designed for general graphs that help obtain a multi-
scale representation of any given data on a general graph. These filter bank structures are

5

shown to satisfy desirable properties like critical-sampling and perfect-reconstruction.

• We discuss a specific application related to a class of semi-supervised ML algorithms, known
as graph semi supervised learning (GSSL) algorithms. Some of the existing GSSL algo-
rithms can be viewed as appropriate filter designs in the graph domain. A wavelet based
semi-supervised algorithm is proposed and the performance is evaluated on different datasets
in comparison to existing techniques.

This thesis is organized as follows. Chapter 2 formally introduces the concept of graph signals
and the graph Fourier transform. Chapter 3 introduces circulant graphs and associated fundamen-
tal signal processing operations for signals defined on these graphs. In Chapter 4 we discuss the
important operation of sampling for circulant graph signals and derive sampling and aliasing theo-
rems. Further, we also discuss reconnection methodologies to define the downsampled graph after
sampling. Chapter 5 discusses multi resolution filter bank design for signals on circulant graphs
and their associated properties. In Chapter 6, we introduce general graphs and provide methods
to decompose a general graphs into circulant graphs. This decomposition is exploited to extend
operations like sampling from circulant graphs to general graphs in Chapter 7. Chapter 8 discusses
design of multi resolution filter bank structures for signals on general graphs. In Chapter 9, we
provide an example application in the area of semi-supervised learning. Chapter 10 provides a lit-
erature survey of different results in this domain. We conclude with a discussion of open research
problems in Chapter 11. A table of notations is also provided at the end of the thesis.

6

Chapter 2

Discrete Signals on Graphs

2.1 Graphs
Graphs are mathematical structures that represent a set of objects which are related to each other.
The objects are represented by vertices or nodes and the relations are encoded by edges that in-
terconnect the vertices. The objects and the interconnections vary depending on the application of
interest. For example, in social network graphs, the objects correspond to different users and links
are present between users if they share a social or a professional relationship.

Formally, a graph G of size N , is an ordered pair (V,E), where V is the set of N vertices of the
graph indexed 0 to N − 1 and E is the set of all edges in the graph. In general, the edges could
be either directed or undirected. In many applications, it suffices to deal with undirected graphs.
However, there are certain applications that inherently require a directed graph representation. For
example, internet web graphs that have vertices representing webpages and edges representing hy-
perlinks from one webpage to another, are directed in nature. For the rest of this thesis, we will
only consider undirected simple graphs that have no-self loops on any vertex or multiple edges
between a pair of vertices.

Further, one could also have weights associated with each of the edges that is a measure of the
strength of the relation between the corresponding nodes. For example, in sensor network graphs,
the weights are usually a function of the distance between the sensor nodes which reflects the cor-
relation between the sensor readings at those nodes. We restrict ourselves to unweighted graphs
(i.e. all the weights are unity) while discussing different operations and theoretical results. How-
ever, many of the results apply to weighted graphs as well unless stated otherwise.

There are two matrices of interest that can be associated with a graph—the adjacency matrix A
and the Laplacian matrix L. The adjacency matrix of an unweighted graph is a N × N matrix

7

4 3 1

0

2

0&&&&&1&&&&&2&&&&3&&&&&4&

A=

0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 0 0 1 0

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

L=

2 -1 0 -1 0
-1 2 -1 0 0
0 -1 2 -1 0
-1 0 -1 3 -1
0 0 0 -1 1

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

Figure 2.1: Example of an unweighted graph and the associated adjacency and Laplacian matrices.
Note that the matrices are defined for a fixed node ordering.

defined as follows,

A(i, j) =

{
1 if (i, j) ∈ E,
0 otherwise. (2.1)

For a general weighted graph, A(i, j) can be any non-negative real number whenever there is an
edge between the two nodes. Let D be a diagonal matrix, where the diagonal entry D(i, i), is the
degree of node i for an unweighted graph, and all other entries are zero. For a weighted graph, it
is the sum of the weights of the edges incident to node i. The non-normalized Laplacian matrix of
a graph is defined as follows,

L = D−A. (2.2)

The Laplacian matrix characterizes many properties of a graph, and it plays a significant role in
our framework.

One can also defined normalized versions of the adjacency and Laplacian matrices. There are two
normalized versions of the adjacency (Laplacian) matrix that are typically used in the literature—
the symmetric normalized adjacency (Laplacian) matrix, AS(LS) and the random walk normalized
adjacency (Laplacian) matrix ARW(LRW).These are defined as follows,

AS = D−1/2AD−1/2, (2.3)
ARW = D−1A, (2.4)

LS = IN −AS, (2.5)
LRW = IN −ARW, (2.6)

where IN is the identity matrix of size N . For the rest of the thesis, we will only work with the
non-normalized adjacency and Laplacian matrices unless stated otherwise.

8

4 3 1

0

2

+1

+1

+1

�1

�1

x =

x(0)
x(1)
x(2)
x(3)
x(4)

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

+1
−1
−1
+1
+1

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

posi*ve-value-

nega*ve-value-

Figure 2.2: Example of a graph signal on a graph of five nodes. The graph signal is a function that
maps every vertex in the graph to a real-value.

Fig 2.1 shows an example of an unweighted graph and its associated adjacency and Laplacian ma-
trices. The matrices are defined for a fixed node ordering and would correspondingly change if the
nodes are renumbered.

The Laplacian matrix has many properties of interest. We state a few of them below without proof
and refer to reader to standard references like [15] for an in-depth treatment.

Proposition 1. The Laplacian matrix L of an undirected graph is a symmetric positive semi-
definite matrix.

Proposition 2. L has the eigenvalue zero corresponding to the all-ones eigenvector 1.

Proposition 3. The multiplicity of the eigenvalue zero of the Laplacian matrix L, is the number of
connected components in the graph G.

These properties will be useful in our theoretical analysis as we shall see in the later chapters.

2.2 Graph Signals
Many applications that present graph-structured data, have attributes associated with the nodes or
edges in addition to the underlying graph itself. A simple mathematical model for such nodal
attributes is that of a graph signal.

9

Definition 1. A graph signal, x = [x(0)x(1) · · ·x(N − 1)]T, is a scalar real-valued function
defined on the vertices of the graph, i.e.,

x : V → R, (2.7)
v → x(v). (2.8)

Fig 2.2 shows an example of a signal defined on a graph with five nodes. The signal is binary in
this example, with each node associated with either positive unity or negative unity.

Note that one could extend the definition of a graph signal to vector valued functions on nodes or
time-series on each node. However, we shall restrict ourselves to the simplest case of a real-valued
scalar function. Further, we will only consider graphs with a finite number of nodes.

The notion of a graph signal encompasses the signal definitions that we encounter in classical
discrete signal processing. In particular, aperiodic time-signals can be viewed as graph-signals
defined on a path graph (see Fig 2.3 (a)) and periodic time-signals correspond to graph signals on a
ring graph (see Fig 2.3 (b)). Further, images can be viewed as graph-signals on a two-dimensional
grid graph (Fig 2.3 (c)), and video signals can be viewed as graph signals on a multi-dimensional
grid graph (Fig 2.3 (d)).

Given the definition of a graph signal, a standard question that often arises is, “What does an edge
between two nodes signify?”. To answer this question, it helps to start with classical signals such
as time signals and images. Signal values on adjacent time instants or adjacent pixel values usually
tend to be highly correlated either positively as in the case of low-pass signals or negatively as in
the case of high-frequency signals. Of course, for completely random signals one cannot predict
how adjacent signal values change. In such a case, it may not even matter as to how we order
the signal values and therefore disregard the time-axis for time signals or the space-axis for image
signals.

A similar notion could be extended for general graphs, wherein the graph is provided by the ap-
plication. Consider for example social network graphs, where the signal on each node is defined
as the number of ad-clicks by that user. If the number of ad-clicks of a particular user is high, it
is likely that the friends of that user also have high ad-clicks since they share common interests.
Hence the graph signal value on a particular node in this example, is highly correlated with its
neighboring nodes than compared to other nodes in the graph. Thus the notion of adjacency on a
graph reflects certain correlation properties of typical signals defined on the graph.

10

(a)$Path$graph$+++$aperiodic$1me$signals$ (b)$Ring$graph$+++$periodic$1me$signals$

(c)$Grid$graph$+++$images$ (d)$Mul1dimensional$grid$graph$+++$video$signals$

Figure 2.3: Examples of signals in classical signal processing that can be viewed as graph signals.
(a) The path graph corresponds to aperiodic time signals. (b) The cycle graph corresponds to
periodic time-signals. (c) The grid graph corresponds to images with each pixel represented by a
node and edges are between adjacent pixels in the image. The signal value is the intensity of the
corresponding pixel. (d) The multidimensional grid graph corresponds to video-signals.

11

2.3 The Graph Fourier Transform
In the previous section, we introduced the notion of graph signals. Given different applications
which present data that can be modeled as graph signals, we are now interested in developing tools
to analyze such signals. One of the most important tools for analysis in classical signal process-
ing has been the Discrete Fourier Transform (DFT). The DFT is essentially an alternative basis
representation of signals in the time-domain. The set of basis vectors into which we decompose
the given signal is the Fourier basis, which has many interesting properties that can be exploited
for signal analysis. Much of existing signal processing techniques for both time and image signals
relies on the DFT representation of these signals. This motivates one to derive a set of basis vectors
similar to the Fourier basis for graph signals.

Clearly any set of vectors that span RN would be a valid basis for graph signals. However we are
not interested in any arbitrary basis. We want something that is analogous to the Fourier basis. In
particular, it would be desirable to have basis vectors that capture notions of “high” and “low”-
frequencies on graphs similar to that of sinusoids in time domain. A low-frequency graph signal
would be one that varies very slowly with respect to its neighbors and a high-frequency signal
would be one that varies significantly with respect to the neighboring nodes (see Fig 2.4 for some
examples). Further, the basis vectors should be invariant to the node-ordering.

There has been quite some work in the literature pursuing an ideal Fourier-like basis for signals
defined on graphs, focusing particularly on the properties of Laplacian matrix eigenvectors. In-
terestingly, these eigenvectors are analogous to sinusoids in the time domain in that they have a
natural signal-frequency interpretation. The Laplacian matrix L of an undirected graph is a sym-
metric positive semi-definite matrix. The spectral decomposition theorem guarantees the existence
of an orthonormal matrix U that diagonalizes L, i.e.,

L = UΛUH, (2.9)

where Λ is a diagonal matrix of non-negative real eigenvalues. The columns of U which are the
eigenvectors {u0,u2, ...,uN−1} corresponding to the ordered eigenvalues {0 ≤ λ0 ≤ λ1... ≤
λN−1}, constitute an orthonormal basis for RN .

Given a node ordering, each element of an eigenvector can be associated with a corresponding
node in the graph (see Fig 2.4). If the node ordering changes, then the ordering of the elements in
the eigenvector would also correspondingly change. Hence the mapping between the values of the
eigenvector to the nodes is permutation invariant. The number of pairs of adjacent nodes with a
sign change represents the frequency of that eigenvector on the graph. Interestingly, eigenvectors
with larger eigenvalues have more sign changes than those with smaller eigenvalues. For example,
the eigenvector corresponding to eigenvalue zero is constant; it does not change its value across

12

Eigenvalues+ Eigenvectors+

00.2560+

00.4375+

00.2560+

0.1380+

0.8115+

Two+zero+crossings+ Five+zero+crossings+

4 3 1

0

2

00.4193+

0.7024+

00.2018+

4 3 1

0

2

0.3380+

00.4193+

Λ =

0.0000
0.8299
2.0000
2.6889
4.4812

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

U =

−0.4472 −0.2560 0.7071 0.2422 −0.4193
−0.4472 −0.4375 0.0000 −0.7031 0.3380
−0.4472 −0.2560 −0.7071 0.2422 −0.4193
−0.4472 0.1380 0.0000 0.5362 0.7024
−0.4472 0.8115 0.0000 −0.3175 −0.2018

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

u1 =

−0.2560
−0.4375
−0.2560
0.1380
0.8115

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

u4 =

−0.4193
0.3380
−0.4193
0.7024
−0.2018

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

Figure 2.4: Example illustrating the frequency interpretation of the eigenvectors of the Laplacian
matrix. Given a node-ordering, every element of each eigenvector can be mapped to the corre-
sponding node in the graph. When one considers the number of sign transitions on every edge in
the graph for different eigenvectors, then one finds that the eigenvectors corresponding to a lower
eigenvalue has lesser number of transitions as compared to that of a eigenvector corresponding to
a higher eigenvalue. In this example, the eigenvector u1 has two-zero crossings as compared to u4

that has five zero-crossings. One can similarly verify this for the other eigenvectors.

13

nodes and hence is like a DC signal on a graph. Fig 2.4 shows an example of the eigenvectors of
the Laplacian of a graph. The eigenvector u1 corresponding to λ1 has fewer zero-crossings than
u4, which corresponds to the higher eigenvalue λ4.

These ideas have been formalized by nodal domain theorems in the literature [16], which justify
the high-frequency and low-frequency interpretations of the eigenvectors on a graph. Further, the
Laplacian matrix provides a stencil approximation for the double-differential operator in continu-
ous time. The eigenfunctions of the continuous time double differential operator are the complex
exponentials that form the Fourier basis. Finally note that the basis of choice, i.e. the Laplacian
matrix eigenvectors, are only dependent on the graph and not the signal on the graph. These prop-
erties motivate the following definition of the Graph Fourier Transform (GFT).

Definition 2. The GFT XG, of a graph signal x, is the decomposition of the graph signal x with
respect to the orthonormal eigenvector basis U:

XG(k) = 〈uk,x〉, (2.10)
XG = UHx, (2.11)

where 〈a, b〉 = aHb is the inner product between the two vectors a and b.

For the cycle graph, that corresponds to periodic time-signals, the Laplacian matrix is a circulant
matrix. Hence the eigenvectors are the columns of the DFT matrix. Further, the eigenvalues are
a monotonically increasing function of the Fourier frequency and hence the GFT corresponds to
the DFT conforming to our intuition. Similarly for a grid graph, we obtain sinusoidal functions
for the eigenvectors. Fig 2.5 shows examples of some of the eigenvectors corresponding to a path
graph of 16 nodes. One can observe the similarities between the eigenvectors of the path graph to
sinusoids in the time-domain.

Mathematically, the above analogies and results in the literature justify to a certain extent the treat-
ment of the Laplacian eigenvectors as a Fourier-like basis for graph signals. However, one still
wonders as to why the Laplacian matrix has such an interesting property? Following is a heuris-
tic explanation of this behavior. One can think of the Laplacian matrix as a linear operator for
signals defined on the corresponding graph. In particular, for a graph signal x, one can analyze
the operation Lx. The output of this operation essentially retains weighted differences of sig-
nal values on each node with respect to their neighboring nodes. Thus, the operator L can be
viewed as a “high”-pass operator for signals defined on the graph. Hence we would expect that the
eigenvectors corresponding to higher eigenvalues would also reflect this property i.e. behave like

14

u11

u4

u6 u9

0 2 4 6 8 10 12 14 16 18
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16 18
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16 18
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8 10 12 14 16 18
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

u150 2 4 6 8 10 12 14 16 18
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

u1

0 2 4 6 8 10 12 14 16 18
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 2.5: Some of the eigenvectors are shown for a path graph with 16 nodes. One can observe
that the frequency of the eigenvectors increase as we move to higher eigenvalues. Further, they
strongly resemble the classical sinusoids in the time domain.

15

“high”-frequency signals as opposed to the eigenvectors corresponding to the lower eigenvalues.

For the rest of this work, we will use the above definition for the GFT. However, there are certain
caveats of the treatment of the eigenvectors of the Laplacian as a Fourier basis that one should keep
in mind which we detail below.

1. The nodal domain theorems only assert that the number of zero-crossings do not decrease
with increasing eigenvalues. It may be that the number of zero-crossings remain the same
for many eigenvectors of a given graph. Further it is unclear if zero-crossings are to be the
only metric for choice of a frequency representative basis.

2. For Laplacian matrices that have repeated eigenvalues, one needs to treat the eigenvector
subspace of the repeated eigenvalue as corresponding to a certain frequency. In this case,
the eigenvectors are also not unique and it is unclear as to which eigenvectors should one
choose. As an example, for ring graphs corresponding to periodic time-signals, we know
that the DFT is a good basis to choose in spite of repeated eigenvalues. Further we also
know the right ordering of the basis. However, it is unclear for general graphs.

3. The eigenvalues help us in ordering the eigenvectors. However, it is unclear as to what the
actual values represent in our context. Do closer eigenvalues represent relatively “closer”
frequencies? For the cycle graph, we get eigenvalues that are non-uniformly spaced and
they have a one-to-one mapping with the discrete Fourier frequencies. In our work, we will
disregard the eigenvalues, other than using them for ordering the eigenvectors. However, we
will point out certain interesting observations as we proceed with our theory and that in the
literature.

4. The frequency interpretations of the eigenvectors are not shown to carry over to directed
graphs.

Each of the above questions are important and interesting research problems in their own right.
There is some research work in the literature actively trying to address a subset of these questions.
In this thesis, we will restrict ourselves to the current definition of the GFT and proceed to analyze
its properties and propose filter designs based on this definition.

16

2.4 Chapter highlights
Following is a summary of the main points of this chapter.

• Graph signals are a mathematical model for graph-structured data wherein we have an un-
derlying graph with nodal attributes. Mathematically, a graph signal is a function that maps
every node in a graph to a scalar real value.

• The goal is to develop tools analogous to Fourier analysis to process such data.

• The eigenvectors of the Laplacian matrix satisfy many properties similar to sinusoids in
classical signal processing, thereby motivating the definition of a Graph Fourier Transform
(GFT).

• The GFT is defined as projecting the graph signal onto the eigenvectors of the Laplacian
matrix. The GFT reduces to the DFT for cycle graphs corresponding to time-signals.

17

Part II

Signal Processing on Circulant Graphs

18

Chapter 3

Fundamental signal processing operations
on circulant graphs

3.1 Motivation
In the previous chapter, we defined the basic notion of a graph signal and the associated Graph
Fourier Transform (GFT). Given this, the problem of interest is to develop tools like filter banks
and wavelets for signal analysis. Gaining insights from the well developed classical signal process-
ing theory, we shall extend some of the existing tools for analysis of graph signals. Accordingly,
before we proceed to filter design, we first need to define fundamental operations like shifting,
sampling, correlation and convolution for graph signals which are essential components of filter
design.

The first and most important signal operation that needs to be defined is shifting. In fact, this is the
first definition (after the definition of signals) that one encounters in any book on classical discrete
signal processing (e.g. see Oppenheim’s book [17] Definition 2.3). Once there is notion of a shift,
it is intuitive to visualize linear filtering as the linear combination of a signal value on a node and
its multi-hop neighbors, which is then repeated for every other node by “shifting” the filter coeffi-
cients. Thus linear filters are classically represented as polynomials in the shift-operator. Similarly,
a downsampling operation can also be interpreted as retaining signal values on every alternative
shift on a graph. The definition of a shift-operator therefore fundamentally distinguishes different
theoretical approaches for graph signal processing.

Classical signal processing has significantly benefitted from the theory of Linear Time-Invariant
(LTI) signal processing. Analogously, it would be valuable to develop a Linear Shift-Invariant
(LSI) theory for graph signal processing in order to reap similar benefits as LTI theory in the clas-
sical domain. Intuitively, LSI filters would be defined by a fixed set of filter coefficients that remain
the same for every node and its neighbors on the graph. A weighted average of the neighbors with

19

weights defined by the filter coefficients is computed. The filter coefficients are then shifted to the
subsequent node and the operation is repeated. For such an operation to be defined, it is necessary
that the neighborhood structure of every node in the graph be similar or in other words the graph
needs to exhibit certain symmetry properties. For a general graph, this is not possible since the
number of neighbors of each node could vary.

This motivates us to analyze a special class of graphs known as circulant graphs which are amenable
to LSI operations. In the sections to follow, we will define fundamental signal processing oper-
ations on these classes of graphs and provide filter bank designs. We treat general graphs as
only allowing for linear shift-varying (LSV) operations similar to linear time-varying (LTV) signal
processing. We decompose a general graph into a bank of circulant graphs and then extend the
different signal processing operations.

3.2 Circulant graphs

3.2.1 Definition
In order to introduce notions of shift-invariant processing on graphs, we need graphs that “look”
the same from any node. There exists such a class of so-called symmetric graphs [18], an important
subset of which is known as circulant graphs.

Definition 3. A graph G is circulant if there exists some ordering of nodes for which the adjacency
matrix of the graph is circulant. An alternative definition of a circulant graph arises from the way it
is constructed. A graph G is circulant with a set generating S = {s1, s2, ..., sM}, 0 < sk ≤ N − 1
whenever there is an edge between nodes (i, (i + sk)N), ∀sk ∈ S, where ()N represents the
mod N operation.

Fig. 3.1 shows examples of some circulant graphs. The generating set S determines the structure
of the graph. In particular, when all the elements of S is odd, it is easy to see that the graph is
bipartite. Note that the Laplacian matrix of a circulant graph is a circulant matrix as well.

Given a graph, it is not straightforward to determine whether it is circulant or not. A graph is
circulant if its adjacency matrix is symmetric and circulant, but this structure depends heavily on
the graph’s node ordering. There exist polynomial time algorithms [19] to determine whether a
given graph is circulant under certain constraints (e.g. prime number of nodes). However, in the
following analysis, we assume that we are given an ordering of nodes for which the adjacency
matrix is circulant.

20

S = {1} S = {1, 2} S = {1,3}

Figure 3.1: Examples of circulant graphs. The generating set S determines the structure of the
graph. Note that when all the elements of S is odd, the graph is bipartite.

For simplicity, we consider connected graphs whose sizes are integer powers of 2; that is, N = 2n

for a positive integer n. The following lemma allows for important simplifications.

Lemma 1. Suppose the set S defines a connected circulant graph G with 2n nodes. We can always
take s1 = 1 in the set S. In other words, there exists another set T = {t1, t2,, tM} such that
t1 = 1 and the circulant graph G′ defined with set T is isomorphic to G.

Proof: It is well known that a circulant graph is connected [20] iff gcd(N, s1, .., sM) = 1.
Further, it is also known [19] that if gcd(`,N) = 1 then the graph defined by the set T ′ = (`S)N ,
where the multiplication and modulation operations are applied to every element in the set S, is
isomorphic to the circulant graph defined by S. However this holds only in one direction, i.e. there
could exist isomorphic graphs without this property holding true (see Adam’s conjecture [21]).

Thus, if we are given a circulant graph with 2n nodes that is connected, then there exists s∗ ∈ S
such that s∗ is odd since gcd(s∗, 2n) = 1, for the graph to be connected. From Bezout’s identity
[22], we know that there exist integers a and b such that, s∗a + 2nb = 1, which implies that a is
odd. Taking modulus with respect to N = 2n, we get that 1 = (s∗a)N . Hence we can construct an
isomorphic graph by generating the new set T = (aS)N , since gcd(a, 2n) = 1, where the element
s∗ ∈ S maps to the element 1 in T .

This does not hold true for general circulant graphs. Consider the circulant graph with N = 6 and
S = {2, 3}. This graph is connected, and there exists a Hamiltonian cycle1, but we cannot reorder
nodes to get a circulant ordering.

1A Hamiltonian cycle [15] is a graph path that visits each vertex exactly once.

21

(a)$Ring$graph$,,,$-me$signals$ (b)$Grid$graph$,,,$images$

S = {1} S = {1, 5, 6}

(c)$Wa7s,Strogatz$model$for$$
$$$$$$small,world$networks$

Figure 3.2: Examples of circulant graphs in real-world applications. Periodic time signals and
images can be viewed as circulant graph signals as shown in (a) and (b). The Watts-Strogatz
model for small-world networks starts with a circulant graph and randomly reconnects a fraction
of the edges as shown in (c).

Circulant graphs are of interest in certain applications. Clearly periodic time signals are a subclass
of circulant graph signals where the graph of interest is the ring graph (see Fig 3.2 (a)). Images
can also be viewed as circulant graphs once we take care of the boundaries in the grid graph to
make it symmetric (see Fig 3.2 (b)). There are models for small world networks that are built
using circulant graphs. In particular, the Watts-Strogatz model [23] is constructed by starting with
a circulant graph and randomly reconnecting the edges. In particular, to generate a graph that has
certain small-world network properties with average degree 2d, one constructs a circulant graph
with the generating set {1, 2, · · · , d}. Given a flip probability β that controls the connectivity
properties, each edge is randomly reconnected with probability β. Thus the original circulant
graph exhibits strong local connectivity leading to high clustering and the parameter β controls the
connectivity across clusters leading to short average path lengths. Fig 3.2 (c) shows an example of
a small-world network graph constructed using the Watts-Strogatz model.

3.2.2 A group theoretic viewpoint
Circulant graphs also have some connections to group theory. They belong to a class of graphs
known as Cayley graphs. Cayley graphs encode the abstract structure of groups.

Definition 4. A finite group (G, ∗) is a set of elements {g0, g1, · · · , gN−1} together with an opera-
tion ∗, satisfying the following axioms,

22

• Closure : ∀(gi, gj) ∈ G, gi ∗ gj ∈ G.

• Associativity : ∀(gi, gj, gk) ∈ G, (gi ∗ gj) ∗ gk = gi ∗ (gj ∗ gk).

• Identity element: There exists an element e ∈ G such that ∀gi ∈ G, gi ∗ e = e ∗ gi = gi.

• Inverse element: ∀gi ∈ G there exists g̃i ∈ G such that gi ∗ g̃i = g̃i ∗ gi = e.

The set of all integers Z along with the usual addition operation +, i.e. (Z,+) is a group. The
interested reader is referred to [24] for an in-depth treatment of groups.

A generating set S of a group is a subset of elements {s1, s2, · · · , sM} such that every element of
the group can be represented as a linear combination of finitely many elements in the subset and
their inverses. Given a group G and a generating set S, a Cayley graph G on N vertices with vertex
set V and edge set E is defined as follows,

• Each element gi ∈ G is associated with a vertex vi ∈ V .

• Every edge in E is of the form (g, g ∗ s) for some g ∈ G and s ∈ S.

It is easy to see that circulant graphs are Cayley graphs defined by the group (Z,+). An rigorous
treatment of Cayley graphs and the associated group theory can be found in [18].

Fourier transforms over groups have been well studied [25]. Here, the transform is defined over the
elements of the group. However, note that in our case, the group structure only defines the graph.
We are interested in transforms of signals defined over the nodes of this graph and the signal could
take any value on the reals. One could restrict the signal to take values restricted to a group and this
group could be different from the underlying group that defines the graph. Even in this case, it is
unclear on how to define notions of a Fourier transform. However, a group theoretic analysis might
provide some insights while manipulating the underlying graph itself (e.g. downsampling etc). We
will not adopt this viewpoint in our work, but will point out connections wherever appropriate.

3.3 GFT for signals on a circulant graph
The GFT for signals defined on a circulant graph is greatly simplified because the Laplacian matrix
is circulant. It is well known that a valid set of eigenvectors for a circulant matrix are the columns
of the DFT matrix. The corresponding eigenvalues are in fact the DFT coefficients of the first
column of the circulant matrix. Hence it seems like the GFT and the DFT of a signal on a circulant
graph are the same. However, there is a slight difference in the ordering of the Fourier basis. The

23

High%frequency%graph%signal% Low%frequency%graph%signal%

posi5ve%value%
nega5ve%value%
zero%

0.3536%

=0.3536%

0.3536%

0.3536% 0.3536%

0.3536%
=0.3536%=0.3536%

=0.3536% =0.3536%=0.2500%=0.2500%

0.2500% 0.2500%

0.0000%0.0000%

ω4 =
2πk ×3
8

ω5 =
2πk × 4
8

λ = 4.0000λ = 5.4142

Figure 3.3: Example of Fourier sinusoids on the circulant graph. The sinusoid corresponding the
Fourier frequency ω4 is a higher frequency vector on the graph than that corresponding to ω5 since
the number of sign changes with respect to neighbors is more for ω4.

k-th highest frequency vector in the DFT matrix corresponds to the frequency ωk = 2πk/N . How-
ever this is not necessarily equal to the k-th highest frequency in the GFT. In other words, assuming
an ordered set of eigenvalues, the eigenvector corresponding to the kth highest eigenvalue does not
necessarily correspond to ωk.

To illustrate this, Fig. 3.3 shows an example of a 8-node circulant graph. The Fourier vector
corresponding to the frequency ω4 is a higher frequency vector on the graph than that corresponding
to ω5. This is because the signal values of neighboring nodes change signs more frequently for ω4

than for ω5. Hence if XG is the GFT and XF is the regular Fourier transform of a graph signal x,
then there exists a permutation σ that maps the components of XF to XG i.e.,

XG(k) = XF(σ(k)).

The permutation σ is completely defined by taking the Fourier transform of the first row of the
Laplacian matrix (which is the set of eigenvalues) and ordering them in ascending order. The
permutation that maps from the original sequence to the ordered sequence is the permutation of
interest. Note that the elements of the vector x are assumed to be ordered according to the node
ordering that gives a circulant adjacency matrix.

Fig. 3.4 shows an example of such a permutation for the circulant graph in Fig. 3.3. Note that the
multiplicity of each eigenvalue except zero and four is at least two; since the eigenvalues are de-
fined by taking the DFT of the real-valued first column of the Laplacian matrix, which renders the
transform to be symmetric. The permutation in this case is not unique, since eigenvalues repeat.
One could also define the permutation mapping from the corresponding eigenspaces of the GFT
and the DFT which would give a unique mapping. However, we just define a single permutation

24

�(0) = 0

�(1) = 1

�(2) = 6

�(3) = 4

�(4) = 3

�(5) = 5

�(6) = 7

�(7) = 2

diag(FLFH) =

2
66666666664

0.0000
2.5858
6.0000
5.4142
4.0000
5.4142
6.0000
2.5858

3
77777777775

�(2) = 6 =)
is the 6th highest GFT vector

3rd highest Fourier frequency (!2) vector

Figure 3.4: Eigenvalues and the permutation function mapping the Fourier frequencies and the
GFT frequencies for the graph shown in Fig. 3.3. F is the DFT matrix.

mapping between the eigenvalues for notational simplicity since this does not affect the results we
discuss here in general.

Note that due to the multiplicity of the eigenvalues, the eigenvectors are also not unique and the
Fourier basis is only one valid set of eigenvectors. We can always choose a real set of eigenvectors
for the Laplacian matrix. In this work, we restrict ourselves to the DFT basis due to its structure,
which will help carry over properties from the time domain to the graph domain.

Despite working with the Fourier basis, there are a couple of challenges. First, aliasing expressions
must take into account the permutation in the frequency domain. Second, the operations of “shift-
ing”, “convolution” and “sampling” need to be generalized from time domain to circulant graphs
since each node has multiple neighbors and these definitions will induce different properties in the
GFT domain. We will discuss each of these operations in detail in the chapters to follow.

3.4 The Uncertainty Principle
There is a fundamental tradeoff between sparsity of a signal’s support in the graph domain and
in the GFT domain. This tradeoff dates back to Heisenberg’s uncertainty principle, which funda-
mentally limits the locality of a signal’s support in both time and frequency domains. That is, a
signal that is sufficiently localized in time cannot be localized in frequency. Similarly, one would
expect that a signal that is highly localized on a graph cannot be localized in the GFT domain.
This property has been investigated for general graphs [26], but the derived bounds are not tight.
For circulant graphs, since the GFT is a permuted version of the DFT, one can obtain uncertainty
principle bounds that are tight.

25

Shi$%w.r.t%s%=%1% Shi$%w.r.t%s%=%2%

€

x(0)

€

x(1)

€

x(2)

€

x(3)

€

x(4)

€

x(5)

€

x(6)
€

x(7)

€

x(0)

€

x(1)

€

x(2)

€

x(3)

€

x(4)
€

x(5)

€

x(6)

€

x(7)

€

x(0)

€

x(1)

€

x(2)

€

x(3)
€

x(4)

€

x(5)

€

x(6)

€

x(7)

S = {1, 2}

Figure 3.5: Shifting by one hop with respect to different neighbors i.e. elements of the generator
set S.

Theorem 1. (UNCERTAINTY PRINCIPLE:) If a signal on a circulant graph with N nodes has NS

non-zero components in the graph domain, and its corresponding GFT has NG non-zero compo-
nents, then we have,

NSNG ≥ N. (3.1)

Proof: In classical signal processing, suppose that a N length discrete signal with NS non-
zero signal values has a DFT with NF non-zero coefficients, then it is well known that [27], the
following holds true, NSNF ≥ N . Since this result does not depend on the location of the non-
zero coefficients, the result carries over to the GFT for circulant graph signals, since the GFT
coefficients are essentially a permutation of the DFT coefficients. Note that the lower bound is
tight since it is achieved by the constant graph signal that only has a single non-zero GFT co-
efficient at the zeroth frequency.

3.5 Shifting signals on a circulant graph

3.5.1 Shift in the graph domain
In the time domain, a delay or a shift by one sample involves moving the sample at the current
time instant to the next or the previous time instant. If we consider the cycle graph that underlies
discrete-time, finite-length signals, a shift by one time step (i.e. one node) would involve cyclically
shifting all the values on the nodes in the graph by one index. For a general circulant graph, it is
intuitive to define a shift by one as moving the value on each node to the neighboring node. Since
it is possible to have more than one neighbor per node as defined by the graph set S, we can define

26

a separate shift operation for each element of that set.

Fig. 3.5 shows examples of shifting with respect to different elements of the set S. If we shift with
respect to an odd element of the set, then a shift of N corresponds to the identity shift. However, if
we shift with respect to an even set element, then a shift of less than N gives the identity shift. In
particular, if r = gcd(s,N), then a shift of N/r gives the identity shift when shifted with respect
to the element s ∈ S.

The shift operation can be formalized in terms of the matrix P defined as follows,

P =

[
0T
N−1 1

IN−1 0N−1

]
. (3.2)

Note that, given a vector x the operation Px, cyclically shifts the elements of the vector by one
step (equivalent to a delay of one in time-domain). Thus for a connected circulant graph, a shift of
a graph signal x by one node defined with respect to the element s = 1 ∈ S corresponds to the
operation Px. Following is an example of a shift by one for the graph in Fig. 3.5.




0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0







x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)




=




x(7)
x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)




. (3.3)

More generally, a shift by k corresponds to Pkx. Now consider shifting by one with respect to a
general element s ∈ S. In this case, the value at node i gets shifted to that at node (i + s)N . The
signal is therefore multiplied by a matrix Ps, which is easily shown to equal Ps. Fig. 3.5 shows
examples of shifting with respect to different s ∈ S. Thus a shift by k of a signal x on a circulant
graph G defined with respect to the element s ∈ S corresponds to the following operation,

Pk
sx = (Ps)kx. (3.4)

3.5.2 Shift in the GFT domain
A shift in the GFT domain can again be expressed as a function of the shift matrix P that we have
defined in the previous section. Consider a shift by ` in the frequency domain. The new GFT, YG,

27

is defined as follows,

YG = P`XG. (3.5)

Suppose that y is the corresponding graph-domain signal obtained after shifting the signal x in the
frequency domain, we get the following relation.

UHy = P`UHx, (3.6)
y = UP`UHx. (3.7)

Note that since P is a circulant matrix, it will be diagonalized by the Fourier matrix. Thus if F is
the DFT matrix, then

FP`FH = diag
([
e−2πk`/N

]N−1

k=0

)
, (3.8)

since P` is a delay operator for time signals as well. We know that U is a permuted version of the
DFT matrix with the permutation defined by σ. Hence we have that,

UP`UH =
[
e−j2πσ(k)`/N

]N−1

k=0
. (3.9)

Thus the following holds true,

YG = P`XG, (3.10)
y(k) = e−j2πσ(k)`/Nx(k) k = 0, · · · , N − 1. (3.11)

Shifting in the DFT domain is typically used for modulating a signal which is useful in commu-
nication applications. Similarly one could modulate multiple bandlimited signals defined over the
same graph at different graph frequencies and store the resulting signal. However, it is immediately
unclear whether such operations would be useful for graph signals. We have not explicitly used
this operation in any of our filter designs or in the examples but have provided it here for sake of
completeness.

3.6 Correlation
The correlation operation between two signals in the time domain involves shifting, multiplying,
and adding the signals. Given our definition of shifts on a circulant graph, we can define correlation
in a similar manner. Let h and x be two vectors defined on the circulant graphG. Define the matrix

28

x(0)
x(1)

x(2)

x(3)
x(4)

x(5)

x(6)

x(7)
x(0)

x(1)

x(2)

x(3)
x(4)

x(5)

x(6)

x(7)

h(0)

h(1)

h(6) 0

0

0
0

0

h(6)

h(0)

h(1)

00

0

0
0

y(0) = h(0)x(0) + h(1)x(1) + h(6)x(6) y(2) = h(0)x(2) + h(1)x(3) + h(6)x(0)

Figure 3.6: Example depicting the correlation operation. The output on two different nodes ob-
tained after correlation is shown in the figure. Note that irrespective of the shift operation (i.e. the
element of the generating set S) we choose, the output would remain the same

H containing the different shifts of h as follows,

H =




hT

(Ph)T

(P2h)T

...
(PN−1h)T



. (3.12)

The correlation between h and x is then defined as,

corr(h,x) , Hx. (3.13)

This definition holds for s = 1 ∈ S. In general for odd values of s, correlation can be defined in a
similar manner by replacing P with Ps. Fig 3.6 shows an example of a correlation operation on a
circulant graph.

When s is even, Pk
s becomes identity for k < N . This calls for a new way of shifting an element

through all the nodes. In the definition for the matrix h, let k < N be such that Pk
s = IN. Then we

modify the definition so that in the kth row, instead of the identity shift, we have the shift P. Going
further, the next set of j shifts would be Pj

sP. This holds for k steps, and then we then replace P

29

by P2 until all the elements are covered. The following matrix can be used to define this operation,

Hs =




hT

(Psh)T

(P2
sh)T

...
(Pk−1

s h)T

(P0
sPh)T

(PsPh)T

...
(Pk−1

s Ph)T

(P0
sP

2h)T

...




. (3.14)

One can see that there is a one-to-one mapping between the correlation operations defined with
respect to different shifts. The rows of Hs are just a permuted version of the rows of H1. Consider
the example of a eight node circulant graph with the set S = {1, 2} (Fig. 3.5). Following are H1

and H2 as defined for this graph.

H1 =




h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)
h(7) h(0) h(1) h(2) h(3) h(4) h(5) h(6)
h(6) h(7) h(0) h(1) h(2) h(3) h(4) h(5)
h(5) h(6) h(7) h(0) h(1) h(2) h(3) h(4)
h(4) h(5) h(6) h(7) h(0) h(1) h(2) h(3)
h(3) h(4) h(5) h(6) h(7) h(0) h(1) h(2)
h(2) h(3) h(4) h(5) h(6) h(7) h(0) h(1)
h(1) h(2) h(3) h(4) h(5) h(6) h(7) h(0)




, (3.15)

H2 =




h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7)
h(6) h(7) h(0) h(1) h(2) h(3) h(4) h(5)
h(4) h(5) h(6) h(7) h(0) h(1) h(2) h(3)
h(2) h(3) h(4) h(5) h(6) h(7) h(0) h(1)
h(7) h(0) h(1) h(2) h(3) h(4) h(5) h(6)
h(5) h(6) h(7) h(0) h(1) h(2) h(3) h(4)
h(3) h(4) h(5) h(6) h(7) h(0) h(1) h(2)
h(1) h(2) h(3) h(4) h(5) h(6) h(7) h(0)




. (3.16)

H2 is a permuted version of H1 wherein the second half of the rows of H1 is interleaved with the
first half of the rows. In general, since Pk

s = I , it holds that H1(2, :) = Hs(k + 1, :), H1(3, :) =

30

Hs(2k, :), etc. In general one can verify that

H1(r, :) = Hs(((r − 1)k + 1)N , :). (3.17)

Let the output of the correlation operation be given by ys, i.e.,

ys = Hsx. (3.18)

Note that we need to define the mapping of the elements of ys to the nodes in the graph. It is
intuitive to have the mapping consistent with the shift operation i.e. ys(0) maps to node 0, ys(1)
maps to node s, ys(2) maps to node (2s)N and so on. Once we have such a mapping it is clear that
ys = y1, irrespective of the value of s. The reasoning is as follows. The correlation operation takes
the weighted average of the signal x on the neighbors of each node where the weights are defined
by the coefficients in h. Hence it does not matter what shift we apply as long as the coefficients of
h are applied to each node. Thus we can restrict ourselves to the case of s = 1.

3.7 Convolution
Analogous to classical convolution, we can define convolution here as a correlation of the signal x
with a “graph-reversed” version of h. For the same reasons as above, we can restrict ourselves to
the case of s = 1. On a circulant graph, the natural reversed version of the signal h̃ is defined as
follows,

h̃(k) = h((N − k)N). (3.19)

Thus if H̃ is the matrix formed by the different shifts of h̃ as defined in Equation 3.12, then the
convolution operation is defined as,

conv(h,x) = H̃x. (3.20)

Following is an example of H̃ defined for the graph shown in Fig 3.5.

H̃ =




h(0) h(7) h(6) h(5) h(4) h(3) h(2) h(1)
h(1) h(0) h(7) h(6) h(5) h(4) h(3) h(2)
h(2) h(1) h(0) h(7) h(6) h(5) h(4) h(3)
h(3) h(2) h(1) h(0) h(7) h(6) h(5) h(4)
h(4) h(3) h(2) h(1) h(0) h(7) h(6) h(5)
h(5) h(4) h(3) h(2) h(1) h(0) h(7) h(6)
h(6) h(5) h(4) h(3) h(2) h(1) h(0) h(7)
h(7) h(6) h(5) h(4) h(3) h(2) h(1) h(0)




, (3.21)

31

Lemma 2. Convolution of h and x with respect to s = 1 in the graph domain corresponds to the
multiplication of the GFT of h and x, i.e.

GFT (conv(h,x)) = HG ◦XG,

where ◦ is the element-wise product of the vectors.

Proof: Let y = conv(h,x) or equivalently,

y = H̃x. (3.22)

Note that the matrix H̃ is circulant. We thus get the following,

y = H̃x, (3.23)
= Udiag([HG(k)]N−1

k=0)UHx, (3.24)
UHy = diag([HG(k)]N−1

k=0)UHx, (3.25)
YG = HG ◦XG, (3.26)

where the second equality follows due to the circulant property of the matrix H̃. The matrix
is therefore diagonalized by the GFT matrix U with the entries of the diagonal matrix given by
HG = UHh which is the GFT of h.

32

3.8 Chapter highlights

• Motivated by the impact of LTI signal processing, circulant graphs that are amenable to LSI
signal processing, are introduced. The goal is to analyze these in depth and then extend
relevant signal processing operations to general graphs through a circulant decomposition.

• The columns of the DFT matrix form a valid set of eigenvectors of the adjacency matrix of a
circulant graph. However the ordering of the eigenvectors is different, i.e. the highest Fourier
frequency basis vector is not necessarily the highest graph frequency vector. Nevertheless,
many of the DFT properties carry over.

• Basic operations such as shifting, correlation and convolution are appropriately defined for
circulant graphs and their corresponding GFT properties are derived.

• Fundamental principles such as the uncertainty principle are also shown to carry over from
time domain to graphs in the circulant case.

33

Chapter 4

Sampling on circulant graphs

4.1 Sampling
Sampling is an important operation that merits a chapter of its own. There exists some literature
on sampling graphs to retain different properties of the graph though not in this context [28]. In
order to carry out multi-resolution analysis, it is fundamental to define sampling and understand its
effect in the GFT domain. Sampling on a graph should be carefully defined since each node can
have multiple neighbors, and it is not clear a priori which subset of nodes should be kept. Further,
after sampling, the underlying graph on which the downsampled signal resides should also be de-
fined. This is easy to do in linear and planar domains (like discrete-time signals or images), since
it is natural for the underlying graph to also be defined as a line or a grid. However, this does not
necessarily hold true for general graphs. In this section, we will mostly define the downsampling
operation, i.e. given a large circulant graph, how should we sub-sample by a given factor? Any
upsampling operation will always be assumed with respect to a downsampled graph and therefore
one is assumed to know the original graph and hence can appropriately reconnect the nodes.

As with shifting, we define sampling according to different elements of the set S. Suppose we wish
to downsample a graph signal x by two with respect to the element s = 1; then we keep every
alternate value of x as shown in Fig. 4.1. In general, if we want to downsample by two with respect
to an element s ∈ S, we start at node 0 and consider nodes {s, 2s, ...}, keeping only the alternate
elements in this list. We then move to node 1 and repeat the same for the nodes {s+ 1, 2s+ 1, ...}
and so on until we exhaust all the nodes in the graph.

Fig. 4.1 shows the sampling operation with respect to different elements of the set s ∈ S. We
use the notation ↓s m, to represent the operation of downsampling by m with respect to s ∈
S. The following lemma mathematically characterizes the downsampling pattern obtained when
downsampled with respect to different elements of the set S.

34

Sampling)w.r.t.)s)=)1) Sampling)w.r.t.)s)=)2)

€

x(0)

€

x(1)

€

x(2)

€

x(3)

€

x(4)

€

x(5)

€

x(6)
€

x(7)

€

0

€

0

€

0€

0

€

0

€

0

€

0

€

0

€

x(2)

€

x(4)
€

x(6) €

x(0)

€

x(1)

€

x(4)

€

x(5)

y(0) = x(0)

S = {1, 2}

Figure 4.1: Downsample-upsample by 2 operation with respect to different neighbors i.e. elements
of the set S.

Lemma 3. Suppose a circulant graphG with 2n nodes is defined by set S. Sampling a graph signal
on G by a factor of two with respect to s ∈ S creates a downsampling pattern p = [1T

r 0T
r 1T

r 0T
r ...],

where 1r and 0r are vectors of all-ones and all-zeros, respectively, in Rr and r = gcd(s,N).

Proof: Let s = 2k`, where ` ≥ 1 is an odd number and k ≥ 0. Downsampling by a factor
of two keeps every alternate node in the set {0, s, 2s, ...}. The cardinality of this set, is essentially
the smallest number m such that (sm)N = 0. Since N = 2n, we have that lcm(N, s) = 2n`
which gives m = 2n−k. Thus the cardinality of the set is 2n−k and we have 2k such sets. Note that
r = gcd(s,N) = 2k. Thus after downsampling, the first r node values are retained. Now consider
node elements that are multiples of r. Consider a node with index ar = a2k. This belongs to the
set {0, s, 2s, ...}. This node is retained if its index is an even multiple of s, i.e. a2k = (2k`b)N
where b is an even number. The following holds true for some q,

Nq + a2k = 2k`b, (4.1)
2n−kq = (`b− a). (4.2)

Since b is even, a is also even as the LHS of the above equation is even. Thus every even indexed
node of the form ar is retained after sampling from the set {0, s, 2s, ...}. Similarly if b is odd, since
` is odd, a is odd and the nodes whose indices are odd multiples of r are discarded. Repeating this
for every other set, we get the sampling pattern p = [1T

r 0T
r 1T

r 0T
r ...].

Remark: This does not hold true for general circulant graphs (e.g., the circulant graph with
N = 10 and S = {1, 4}—downsampling by two with respect to s = 4 does not correspond to the
above sampling pattern). Note that downsampling with respect to an odd s ∈ S on a graph with 2n

35

#2 2

#1 4

#1 4

"1 2

"1 2

#s 2

"1 r#1 2r

#1 2r "1 r

#1 2r "1 r

#1 2r "1 r

r = gcd(s, N)

x

x

x

x

y

y

y

y

P

P

P

P

PT

PT

PT

PT

Figure 4.2: Downsampling with respect to s = 2 in the graph Fig. 4.1, shown as a function of
downsampling with respect to s = 1. The second figure shows the same for a general ↓s.

nodes would always give the same downsampling pattern.

The above downsampling pattern is reminiscent of block sampling in the time domain, which can
be represented as a bank of individual regular samplers. Fig. 4.2 shows an example of representing
downsampling with respect to a general s ∈ S in terms of downsampling by s = 1. Note that P
corresponds to the shift-matrix defined with respect to s = 1.

We have defined downsampling with respect to different elements of the set S. One wonders if
would ever be required to down sample with respect to any other element s other than say s = 1.
Further, how does one interpret downsampling with respect to different elements of the generating
set ? In order to answer these questions, let us consider the simple example of images. Images can
be associated with a rectangular grid graph with pixels representing nodes, and pixel adjacency in
the horizontal and vertical directions indicating edges. Ignoring border effects, this can be repre-
sented as a circulant graph with the set S = {1, R}, where the image is of dimension R × R (see
Fig 3.2). Intuitively, each s ∈ S can be thought of as a different dimension of the graph along
which we want to downsample. Then the usual downsampling operation on images would require
us to downsample in both dimensions, which corresponds to downsampling with respect to s = 1
initially and then with respect to s = R.

The downsampling operation can also be interpreted as sampling the cosets of the associated Cay-
ley group. Recall the group theoretic interpretation of circulant graphs (section 3.2.2). Each ele-
ment of the generating set s ∈ S, gives rise to a subgroup that is generated by the set {0, s}. For

36

the group G, given a sub-group G′, the cosets of the sub-group are defined as follows,

g ∗G′ = {g ∗ g′ : g′ ∈ G′} left coset of G′ in G, (4.3)
G′ ∗ g = {g′ ∗ g : g′ ∈ G′} right coset of G′ in G. (4.4)

Thus the cosets of the sub-group generated by the set {0, s} are of the form {0, s, 2s, · · · }, {1, s+
1, 2s + 1, · · · }, · · · , {r − 1, s + r − 1, 2s + r − 1, · · · }. Note that the left and right cosets of this
sub-group are the same since the group operation is commutative i.e. the group is abelian. Thus
sampling with respect to the element s ∈ S is equivalent to sampling the associated cosets of the
sub-group generated by this element as described above.

4.2 Aliasing in the GFT domain
Sampling in the graph domain leads to a loss of information in the general case. This loss needs to
be reflected in the GFT domain which is explained by the phenomenon of “aliasing”. In particular,
downsampling in the graph domain causes a mixing up of some of the frequency coefficients
in the GFT domain. The aliasing mixing pattern would depend on the element s according to
which the graph was sampled. The following lemmas characterize the aliasing pattern in the GFT
domain. Recall that σ(·) denotes a permutation that maps the standard ordering of DFT vectors to
an ordering that arranges the graph’s corresponding eigenvalues from smallest to largest.

Lemma 4. Downsampling and upsampling by 2 with respect to an odd s creates the following
aliasing pattern in the frequency domain:

X̃G(k) =
1

2
XG(k) +

1

2
XG(σ−1

[(
σ(k)−N/2

)
N

])
︸ ︷︷ ︸

ALIASING TERM

, (4.5)

where X̃G is the signal’s GFT after downsampling and upsampling.

Proof: Let XF denote the usual Fourier transform of the signal x. Let x̃ be the signal
obtained after the downsampling-upsampling operation. From classical Fourier transform theory,
we know that the following holds true,

X̃F(k) =
1

2

(
XF(k) +XF (k −N/2)N

)
. (4.6)

37

Further, we have that,

X̃G(k) = X̃F(σ(k)), (4.7)

=
1

2

(
XF(σ(k)) +XF ((σ(k)−N/2)N)

)
, (4.8)

=
1

2

(
XG(k) +XG (σ−1 [(σ(k)−N/2)N]

))
. (4.9)

Fig 4.3 shows an example of the aliasing pattern obtained after downsampling-upsampling by two
with respect to s = 1 for a circulant graph with 128 nodes with the generating set {1, 2}. The DFT
of the signal is also plotted for contrast. One can observe that the aliasing patterns can be very
different depending on the graph structure which determines the permutation.

The above lemma can be generalized for sampling with respect to any s ∈ S as follows:

Lemma 5. Downsampling and upsampling by 2 with respect to a general s ∈ S creates the
following aliasing pattern in the frequency domain,

X̃G(k) =
1

2r

r−1∑

m=0

2r−1∑

`=0

e−j
2π`m
2r XG

(
σ−1

(
σ(k)− `N

2r

)

N

)
, (4.10)

where r = gcd(s,N).

Proof: Follows on the similar lines as that of Lemma 4, by now considering the aliasing in
the DFT domain due to the sampling pattern p.

Fig. 4.3 shows an example of the aliasing pattern after downsampling-upsampling by two with
respect to different s ∈ S. Note that the aliasing pattern can vary significantly depending on the
element s according to which the graph is downsampled.

4.3 Reconnection strategies for a sampled graph

4.3.1 Desirable properties
After downsampling a graph signal x, it is necessary to define the new, smaller graph on which the
sampled signal resides. In time domain, it is easy to define the new time axis after downsampling.
For instance, if the even samples are kept, then the new downsampled signal x̂(k) = x(2k), k =

38

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency)index)

M
ag
ni
tu
de

)re
sp
on

se
)

Frequency)index)

M
ag
ni
tu
de

)re
sp
on

se
)

Frequency)index)

M
ag
ni
tu
de

)re
sp
on

se
)

Frequency)index)

M
ag
ni
tu
de

)re
sp
on

se
)

Frequency)index)

M
ag
ni
tu
de

)re
sp
on

se
)

Frequency)index)

M
ag
ni
tu
de

)re
sp
on

se
)

GFT of x

DFT of x

GFT after ↓1 2

DFT after ↓1 2 DFT after ↓2 2

GFT after ↓2 2

Figure 4.3: Example of a graph signal spectra (GFT) on a circulant graph with number of nodes,
N = 27 and generating set S = {1, 2, 3}. The spectra obtained after downsampling-upsampling
by two with respect to s = 1 and s = 2 is also shown in the figures. The DFT of the signal is also
shown to visually analyze the aliasing pattern.

0, 1, 2... connects the two-hop neighbors in the original line graph. Similarly for images, the two-
hop pixels along the horizontal direction are connected after downsampling the image horizontally
by a factor of two. This is then treated as a new image and the procedure can be recursed.

For general graphs, determining the connectivity pattern of subsampled nodes is more difficult than
for structures like time series and images. Researchers have considered various methods to define
the underlying graph structure after sampling [29]. Since we restrict ourselves to circulant graphs,
it makes sense to define connectivity based on the graph structure.

Before we discuss the reconnection strategies, we first need to understand the desirable properties
of the graph and the signal spectra that we might want to retain in the downsampled graph. Fol-
lowing is a list of desirable properties that one might be interested in retaining while defining the
downsampled graph.

• Closure: Suppose we start with a structured graph like circulant graphs, it would be desirable
for the downsampled graph to also retain the same property, i.e. be circulant in our case.
This would help recurse any operations that are defined on the original graph. For example,
multiscale analysis for time and images banks on the fact that the signal at every stage is
again a time or image signal. This is mostly true irrespective of whether one uses a uniform
or a non-uniform downsampling strategy in classical signal processing.

39

• Connectivity: One could always satisfy the Closure property by arbitrarily connecting the
nodes so as to retain the original graph structure. However, intuitively it is necessary to main-
tain the relation between the nodes inherited from the original graph. For example, when we
downsample a time signal (viewed as a path graph) we only connect those nodes that were
originally connected through a sequence of nodes that were removed after downsampling. A
similar property needs to be maintained for graph signals as well.

• Spectral compaction: If the original signal was low-pass in nature on the original graph,
we would want the GFT of the signal on the new underlying graph to also be low-pass. This
property could be maintained to some extent by having a good connectivity property.

• Computational Efficiency: In many large scale applications it is necessary that the recon-
nection algorithms be computationally efficient in order to have real-time processing.

Though all the above properties are desirable, it is difficult to have a single strategy satisfying all of
them. In the following sections, we propose two graph-reconnection strategies for circulant graphs
and analyze their properties.

4.3.2 Kron reduction
Kron-reduction or Schur-complementation is a popular method to reconnect a downsampled graph
[9, 29, 30]. The operation is defined as follows for a general graph. Let α be the subset of the
nodes to keep and αC be the subset of nodes to discard. If L is the Laplacian matrix, then define
the following submatrices,

L1 = L(α, α), (4.11)
L2 = L(α, αC), (4.12)
L3 = L(αC , αC), (4.13)

where L(A,B) is the submatrix of the rows of L corresponding to the nodes A and columns
corresponding to nodes B. The Kron-reduced Laplacian matrix of the downsampled graph L̂ is
defined as follows,

L̂ , L1 − L2L
−1
3 LT

2 . (4.14)

In other words, the new Laplacian is the Schur complement of L1. The Kron-reduced matrix
satisfies the following properties [29] which we state here without proof:

Proposition 4. The Laplacian matrix is closed under Kron-reduction, i.e. L̂ is a valid Laplacian.

40

Proposition 5. New edges are introduced only between the nodes in the original graph that were
connected by a sequence of nodes that were removed by the downsampling operation.

Proposition 6. The eigenvalues of the Kron-reduced Laplacian are interlaced between the eigen-
values of the original Laplacian matrix.

0 = λ0(L̂) = λ0(L) ≤ λ1(L̂) ≤ λ1(L) ≤ λ2(L̂) ≤ λ2(L) ≤ ≤ λN−1(L̂) ≤ λN−1(L). (4.15)

There are other properties of Kron-reduction that we do not detail here and refer the reader to
[29, 30] for more details.

We now analyze the properties of the Kron-reduced graph when the original graph is circulant. Let
us consider the case when we downsample with respect to odd s ∈ S. We then have the following,

Theorem 2. (CLOSURE:) A circulant graph G having Laplacian matrix L and generating set S
is Kron-reduced with respect to an odd s in S. The Laplacian matrix L̂ of the resulting graph Ĝ is
circulant.

Proof: Recall that the node ordering is chosen such that the Laplacian matrix is circulant. In
this case, when we downsample with respect to an odd s ∈ S, we have that the set α consists of
even nodes, i.e. α = {0, 2, 4, ...}. Since L1 only consists of edges between the even nodes, it is
symmetric circulant matrix with the even elements of set S. In other words L1(i, j) = 1 only when
j = (i + s/2)N/2 where s is some even element of S. Similarly L3 is also a symmetric circulant
matrix since it consists of edges between the odd nodes. L2 consists of the edges between the
even nodes and the odd nodes. Hence it is also a circulant matrix defined corresponding to the odd
elements of set S. However this is not a symmetric matrix since this contains only the edges from
α to αC and not the other way around. We are given that,

L̂ = L1 − L2L
−1
3 LT

2 . (4.16)

Since every matrix in the right hand side of the above equation is circulant, the resulting matrix L̂
is also circulant. Thus the newly constructed downsampled graph is circulant.

Remark: Unfortunately, downsampling with respect to an even s in S does not yield a circulant
Laplacian matrix. A counterexample is a circulant graph with N = 8 and S = {1, 2}. Suppose
we downsample with respect to s = 2, one can verify that we do not even end up with a vertex-
transitive graph i.e. edge weights are not symmetric across nodes. This holds true even for images

41

Original(graph(
Downsampled(graph((

w.r.t(s(=(1(
Downsampled(graph((

w.r.t(s(=(2(

New(edges(
Old(edges(

€

a

€

b

€

c

€

d

€

e

€

f

€

g
€

h

€

a

€

a

€

c

€

b

€

g

€

f

€

e

€

e

€

S= {1,2}

Figure 4.4: Graphs obtained after downsampling and reconnecting according the circulant strategy.

where Kron reduction does not maintain the closure property for different downsampling patterns
even though in classical signal processing we connect the nodes in such a way that closure is main-
tained.

The computational complexity of Kron-reduction is mainly determined by the matrix multiplica-
tion/inversion operations which is O(N2.3). Kron-reduction also works for weighted graphs and
the resultant downsampled graph is also weighted (even for unweighted graphs).

In the next section, we describe a strategy that preserves the circulant structure of the parent graph
irrespective of the downsampling strategy used.

4.3.3 Circulant-preserving reconnection strategy
Since the downsampling pattern depends on the element s ∈ S, we expect the downsampled graph
structure to depend on s, too. Let us call the edges generated by odd elements of S as odd edges,
and the rest even edges. When downsampled with respect to an odd s, it is easy to verify that
all the odd edges are removed, and the even edges connecting the downsampled nodes are re-
tained. The connectivity strategy that we adopt reconnects odd edges between two-hop neighbors.
As an example, if the original graph has the set S = {1, 3, 4} and we downsample w.r.t. s = 1,
the downsampled graph has the set S = {1, 3, 2}. We do not add double-edges to any pair of nodes.

When downsampled with respect to an even s, a subset of the odd and even edges is removed, so
it is unclear how to reconnect the nodes. To retain the circulant structure, we adopt the follow-
ing strategy. We reintroduce edges to complete the cycle corresponding to the edges that were
removed. This is best explained using the example in Fig. 4.4. We add new edges (b, e) and (a, f)
to complete the cycle with respect to s = 1. We also add edges (a, e) and (b, f), which correspond
to the two-hop neighbors along the edges generated by s = 2 in the parent graph.

42

!"#$"%&"$'!()*%+,"%$

%*#!-./01"%$!*%"-$

2$
3$

4$

5$

6$

7$

8$

9$:$
;$

32$

33$

<.(=$*>$,*!!",?@'(A$

S = {1, 3, 12}

Figure 4.5: Example of a circulant graph with N = 32 and S = {1, 3, 12}, for Theorem 3 showing
the path connecting nodes 3 and 10 that were newly connected in the downsampled graph, through
a set of nodes that were removed in the original graph after downsampling with respect to s = 12.

The following theorem illustrates certain connectivity properties of this reconnection strategy.

Theorem 3. (CONNECTIVITY:) The circulant-preserving reconnection strategy has the following
property: Every pair of newly reconnected nodes was originally connected by a path whose nodes
were all removed by downsampling.

Proof: Without loss of generality we assume that s = 1 ∈ S since the graph is connected.
Suppose we are downsampling with respect to s∗ ∈ S and r∗ = gcd(s∗, N). Due to the down-
sampling by s∗, we will be keeping the nodes (0 to r∗ − 1), (2r∗ to 3r∗ − 1) and so on based on
Lemma 3. Consider the edges in the original graph generated by element s ∈ S. If all such edges
were removed (i.e. gcd(s,N) = r∗), then we would be connecting the two-hop neighbors, which
by definition were previously connected by a path consisting of the removed nodes and the edges
generated by s. Hence we need to consider only those elements s for which a subset of the edges
were removed.

Let s < r∗. Thus we must introduce new edges between nodes in adjacent pairs of sets that we are
keeping, e.g. nodes in (0 to r∗ − 1) and (2r∗ to 3r∗ − 1). It is easy to see that the nodes between
which we are introducing new edges are connected through the nodes that were removed i.e. (r∗ to
2r∗ − 1); this holds because each of the nodes in the removed set are connected by the edges due
to s = 1. The following example illustrates this argument.

Consider a circulant graph with S = {1, 3, 12} and N = 32 (see Fig. 4.5). Let us downsample

43

with respect to s = 12. Since gcd(12, 32) = 4, we would keep the nodes,

{(0, 1, 2, 3), (8, 9, 10, 11), (16, 17, 18, 19)....}.

In this case, some fraction of the edges corresponding to s = 3 are lost. In the new graph where
(8, 9, 10, 11) would be renumbered as (4, 5, 6, 7), we have an edge between 0 and 3. Hence to
make the new graph circulant, we introduce edges between 3 and 10 (new node 6). Clearly 3 and
10 were connected in the original graph through the path (3, 6, 7, 10) where 6 and 7 are discarded
after downsampling.

A similar argument can be carried out for s > r∗. In this case, we just need to choose a path that
goes through multiple subsets that were removed before reaching the node to which a new edge
was introduced. Such a path can always be found by hopping over edges generated by s and 1.

Remark : Kron reduction connects every pair of nodes that were originally connected through a
sequence of removed nodes [29, 30], while our circulant-preserving reconnection strategy connects
only a subset thereof. Further the Kron strategy usually results in a weighted Laplacian matrix,
whereas the circulant strategy gives an unweighted Laplacian matrix by construction.

4.3.4 Examples
Fig 4.6 shows an example of downsampling and reconnection using the proposed strategies on a
circulant graph with 128 nodes and S = {1, 3}. The downsampling is carried out with respect
to s = 1, i.e. the sampling is carried out along the outer rings in the graph shown in the figure.
Since we are downsampling with respect to an odd element of the generating set, Kron reduc-
tion gives a circulant graph that is also shown in the figure. Edges are only shown between the
nodes when the weights exceed a threshold. The graph obtained after circulant reconnection is
shown as well. A low-pass graph signal is associated with the original graph. In this example, the
Kron reduced graph seems to better capture the spectral characteristics of the original graph signal.

Fig 4.7 shows an example of downsampling and reconnection using the proposed strategies on a
circulant graph with 128 nodes and S = {1, 3, 4}. The downsampling is carried out with respect
to s = 4. The Kron-reduced graph, though symmetric is not circulant in this case. The spectral
properties of the original graph signal are not that well captured by either of the reconnection
strategies in this case. This is an important property that needs further exploration.

44

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Original(graph(Kron-reduced(graph(Circulant(downsampled(graph(

GFT(of(signal(on(
original(graph(

GFT(of(signal(on(
(Kron-reduced(graph(

GFT(of(signal(on((
circulant(downsampled(graph(

Frequency(index(

M
ag
ni
tu
de

(re
sp
on

se
(

Frequency(index(

M
ag
ni
tu
de

(re
sp
on

se
(

Frequency(index(

M
ag
ni
tu
de

(re
sp
on

se
(

Figure 4.6: Example illustrating the downsampled graphs obtained after Kron-reduction and cir-
culant reconnection. The original graph circulant graph has 128 nodes with the generating set
S = {1, 3}. In this example, since we are downsampling by odd s ∈ S, the Kron reduction also
gives a circulant graph. A low-pass graph signal is associated with the original graph and the corre-
sponding spectra in the downsampled graphs is plotted. For this example, Kron reduction seems to
retain the spectral characteristics of the signal on the downsampled graph better than the circulant
preserving strategy.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency index

M
a
g
n
i
t
u
d
e

r
e
s
p
o
n
s
e

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency index

M
a
g
n
i
t
u
d
e

r
e
s
p
o
n
s
e

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency index

M
a
g
n
i
t
u
d
e

r
e
s
p
o
n
s
e

Original(graph(Kron(reduced(graph(Circulant(downsampled((graph(

GFT(of(signal(on(
original(graph(

GFT(of(signal(on(
Kron:reduced(graph(

GFT(of(signal(on(
circulant(downsampled(graph(

Figure 4.7: Example illustrating the downsampled graphs obtained after Kron-reduction and cir-
culant reconnection. The original graph circulant graph has 128 nodes with the generating set
S = {1, 3, 4}. The downsampling is carried out with respect to s = 4. The Kron-reduced graph
even though looks symmetric is not circulant. A low-pass graph signal is associated with the
original graph and the corresponding spectra in the downsampled graphs is plotted.

45

4.4 Sampling theorems

4.4.1 Alias-free Sampling

Definition 5. The GFT bandwidth of a graph signal is defined as the maximum spectral spread in
the GFT domain—that is, the maximum k such that XG(k) 6= 0.

The following theorems provide sufficient Nyquist-like conditions for alias-free downsampling.

Theorem 4. (SAMPLING: ODD s) A signal having GFT bandwidth B can be downsampled by 2
with respect to an odd s, without aliasing, if B ≤ max

k̃∈{0,··· ,N−1}
k̃ such that

k̃ < min
k∈{0,··· ,k̃}

σ−1[(σ(k)−N/2)N]. (4.17)

Proof: The proof is based on the observation that the k̃th GFT coefficient is guaranteed to not
be aliased by any of the frequencies less than k̃ after downsampling, if Inequality (4.17) is satisfied
as seen from Lemma 4.

Corollary 1. If S only has odd elements, then we have alias-free recovery provided thatB < N/2.

Proof: If S only contains odd elements, then the graph is bipartite and the proof follows from
using the result in [31].

The next theorem shows that we can define a Nyquist bandwidth for sampling with respect to the
even elements of the generating set S.

Theorem 5. (SAMPLING: EVEN s) A signal having GFT bandwidth B can be downsampled by 2
with respect to an even s, without aliasing, as long as we have that B ≤ max

k̃∈{0,··· ,N−1}
k̃ such that

k̃ < min
k∈{0,··· ,k̃}

min
`∈{1,...,2r−1}

(
σ−1

[(
σ(k)− `N

2r

)

N

])
, (4.18)

46

where r = gcd(s,N).

Proof: Similar to Theorem 4, the proof follows from Lemma 5.

Theorems 4 and 5 can be quite conservative depending on the graphs. For bipartite graphs, the
results are tight. Tighter bounds for general circulant graphs could be obtained from multi-band
sampling theory, which we discuss in the next section.

4.4.2 Optimal Perfect-Reconstruction Sampling
Restricting oneself to alias-free sampling can result in retaining more number of samples than
is actually needed to losslessly represent the signal. We discuss tighter results here wherein for
graph-signal with k-nonzero GFT coefficients, one only needs to retain k appropriately chosen
graph-signal components.

Theorem 6. A graph signal x defined on a circulant graph with N nodes, having a GFT XG that
has k non-zero coefficients at known locations, can be exactly recovered from any k sized subset of
x when N is prime.

Proof: Recall that x = UXG, where U is the eigenvector matrix of the Laplacian matrix L,
the columns of which are the permuted columns of the DFT matrix. We are given that XG has only
k non-zero coefficients at known locations. Let α be the index set of the coefficients of XG that
are non-zero. Let β be any k sized index set. We then have the relation, x(β) = U(β, α)XG(α),
where U(β, α) is a k × k sub-matrix of U with row indices corresponding to the set β and the
column indices corresponding to α. From Chebotarëv’s theorem [32], we know that any square
sub-matrix of a DFT matrix is full-rank when N is prime. Thus XG can be recovered from x(β)
since U(β, α) is invertible, as long as |β| = k.

Theorem 7. A graph signal x defined on a circulant graph with N nodes, having a GFT XG that
has k non-zero coefficients at known locations, can be exactly recovered by retaining signal values
on any consecutive k nodes. Note that the choice of node indices assumes that the node ordering
is chosen such that the adjacency matrix is circulant.

Proof: Any k × k sub-matrix of the DFT matrix consisting of either k consecutive rows or
columns is full rank [33]. Thus the linear transformation from the XG to the retained consecutive

47

k elements of x is invertible giving us the desired result.

Remark: There are various other subsets of rows of the DFT matrix which yield a full-rank
matrix [33]. By keeping signal values corresponding to these node indices, one can again recover
the original signal. In practice, the choice of the subset to keep depends on the application. In
many a cases we might want to keep nodes that are well spread out and choose a sampling pattern
that might be amenable to a simpler underlying sampled graph description. Further, there are also
many other results in the literature corresponding to blind sampling wherein, one does not need
to know the support of the non-zero coefficients of XG to sample [34]. We do not discuss these
results here.

48

4.5 Chapter highlights

• The sampling operation for circulant graph signals is defined based on different elements of
the generating set of the circulant graph.

• For graph signals, it is important to define the new graph on which the downsampled signal
resides. The desirable properties such as closure, connectivity, spectral compaction and com-
putation efficiency of a reconnection strategy are listed and two graph reconnection strategies
are described—Kron reconnection and Circulant-preserving reconnection strategy.

• Kron reconnection satisfies nice connectivity properties and results in a circulant graph under
certain conditions.

• Circulant reconnection strategy always results in a circulant graph and has some restricted
connectivity properties.

• Sampling in the graph domain leads to aliasing in the GFT domain. Aliasing expressions are
derived for the signal after sampling under the proposed sampling strategies.

• Nyquist-like bandwidth conditions for alias-free sampling are derived, which are shown to
be conservative in general. For bipartite circulant graphs, these are shown to be tight.

• Optimal perfect-reconstruction sampling is discussed and conditions are derived, under
which a k-GFT sparse graph signal can be recovered from k-signal components.

49

Chapter 5

Multiscale analysis on circulant graphs

Multirate signal processing in time domain allows for compression and efficient processing of sig-
nals. Analogously in the graph domain, representations of graph signals at different resolutions can
facilitate computationally heavy operations and reduce storage costs, while still giving detailed lo-
calized information. For instance, we might want a set of basis vectors that capture localized signal
variations on the graph and also localized variations in the GFT domain. This concept corresponds
to time domain wavelets; wavelets provide time-frequency tilings wherein bases range from being
localized in time but spread out in frequency to localized in frequency but not in time. These are
useful for representing natural signals comprised of slowly varying time content with interspersed
high frequency events. In particular, they help characterize the location of high frequency events
while simultaneously characterizing the frequency components of the slowly varying part.

As in time domain, it would be of interest to obtain bases that are localized in the graph domain
to capture local signal variations. For example, consider a large Facebook social graph with the
signal defined as number of ad clicks per user. Given this data, one might wish to understand which
groups of users are most responsive to the ad and whether these users are strongly localized on the
graph. Similarly, neural stimulation could result in localized brain activity, with the location cor-
responding to a subsection of the brain connectivity graph. For example, we might want to know
the strength of the neuron activity in the thalamus. This information is contained in the energy of
the wavelet components localized in the ‘thalamus’ region of the graph. Thus obtaining wavelet
functions on graphs has been a topic of significant research interest.

In this section we will discuss the basic notions of linear filtering of graph signals and associ-
ated filter bank designs for multiscale analysis. The proposed filter banks generate wavelet-like
functions on graphs that satisfy many properties of interest.

50

5.1 Linear Filters for Graph Signals
Filters form one of the basic tools of signal processing. In the most general form, a filter is a
function that maps an input graph signal of length N to an output signal of length N . We will
focus on linear filters where the function of interest is linear. Thus if x is the input signal and y
the output signal, then we have that,

y = Hx, (5.1)

where H is a matrix that represents the linear filter. In general, the filter H could be arbitrary.
However we would be interested in imposing a structure on H for both ease of design and com-
putational efficiency. For example, in the case of time signals, finite impulse response (FIR) filters
constitute an important category of filters. We want an analogous definition of filters for graph
signals.

A k-tap FIR filter takes weighted averages of signal values up to k-time instants. Similarly, we
can define the notion of a k-hop filter on a graph as follows. Let IA denote the modified indicator
matrix for A defined as follows,

IA(i, j) =





1 A(i, j) 6= 0, i 6= j,
0 A(i, j) = 0, i 6= j,
0 i = j.

(5.2)

The diagonal entries are defined to be zero for simplicity, which will be useful when we consider
higher powers of the adjacency matrix.

Definition 6. (A 1-Hop Linear Filter): We say H is a 1-hop linear filter on a graph G if H =
H ◦ (IA + I), where I is the identity matrix.

Thus we want the non-zero off-diagonal entries of H coincide with those of the graph’s adjacency
matrix A. The symbol ◦ denotes the standard Hadamard (element-wise) product. It is known that
the number of walks of length k from node i to node j is given by the entry (i, j) of (IA)k [35].
So, a k-hop linear filter is characterized by the k-hop indicator matrix I(IA)k , which is the same as
IAk since A has no negative entries.

The primary reason for discussing circulant graphs has been that they are amenable to shift-
invariant processing. Therefore it is of interest to formally define the notion of linear shift-invariant
(LSI) filters.

Definition 7. (Linear Shift-Invariant Filtering on Graphs): A filter H is LSI if P Hx = H Px for
every graph signal x.

51

Here P is the shift-matrix as defined earlier. Note that it is sufficient to consider the shift matrix
corresponding to s = 1 for reasons mentioned while defining correlation and convolution (see
Section 3.6). Irrespective of the shift chosen, the intuition is that the filter weights remain the same
for different nodes in the graph.

Proposition 8. A filter H is LSI if and only if it can be written in the form, H =
N−1∑

j=0

h(j)Pj, where

h = [h(0), · · · , h(N − 1)]T. Thus H is a circulant matrix.

Proof: From the definition of shift-invariance, we need H and P to commute, which requires
H to be a polynomial in P [36]. By choosing x as Pj[1 0T

N−1]T, for j = 0, · · · , N − 1, the above
theorem can be verified.

Proposition 9. For a LSI filter H on a circulant graph, if y = Hx, then we have that YG =
HG ◦XG, where YG,HG and XG are the GFTs of y,h and x respectively.

Proof: Since H is circulant, we know that it is diagonalizable by the GFT basis and hence
the proof follows.

HG denotes the graph-frequency response of the LSI filter H, i.e.HG = UTh.

Definition 8. (Orthogonal filters): A filter H is said to be orthogonal if HTH = I.

Definition 9. (Graph Independence): A filter H is said to be graph-independent if the form of the
filters does not change with the graph.

For example, consider the filter H = A + 2A2, where A is the adjacency matrix of the graph.
Note that the form of the filter i.e. the coefficients of A and A2 are independent of the graph and
only the matrix A changes with the graph.
As in classical signal processing, filters can be designed either in the signal (graph) domain or in
the transform (GFT) domain. This corresponds to designing the filters either in the graph domain
or in the GFT domain. A filter designed in the GFT domain would have the following structure,

H =
N−1∑

k=0

HG(k)uku
H
k , (5.3)

where one can choose the coefficients HG to obtain a desired response. This is analogous to de-
signing standard filters such as Chebyshev and Butterworth filters in classical signal processing.
However, if care is not taken, the graph domain response might have undesired artifacts.

52

€

HLP

€

HHP

€

↓RHP

€

↓RLP

€

x

€

˜ y LP

€

˜ y HP€

yLP

€

yHP

x̂

ANALYSIS'STAGE'

SYNTHESIS'STAGE'

€

x(0)

€

x(1)

€

x(2)

€

x(3)

€

x(5)

€

x(4)

€

x(6)

€

x(7)

1/ 2
1/ 6

€

0

€

0

€

0

€

0

€

0

€

0

€

0

€

0€

S = {1,4}

yLP (0) =
1
2 x(0) +

1
6 (x(1) + x(4) + x(7))

€

˜ y LP (2)

€

˜ y LP (4)

€

˜ y LP (6)

€

˜ y HP (3)

€

˜ y HP (5)

€

˜ y HP (7)

Input'graph'signal''

Filter'taps'
Downsampled'graph'signal'

€

HINV

yHP (1) =
1
2 x(1) −

1
6 (x(0) + x(2) + x(5))

1/ 6

1/ 6

1/ 2
−1/ 6 −1/ 6

−1/ 6

Figure 5.1: Two-channel linear filter bank for graph signals with an example of a 8-node circu-
lant graph. The input signal is passed through two-filters—LP and HP separately in each of the
branches and then downsampled. This forms the analysis stage. In the synthesis stage, the inverse
filter obtains an estimate of the input signal based on the output of these two branches.

The other option is to design filters in the graph domain by restricting the number of hops of the
response which would also limit the range of frequency responses that one might obtain in the
frequency domain. The choice of the design methodology largely depends on the application at
hand. We shall mainly focus on graph-domain designs.

5.2 Filter banks for multiscale analysis
Multiscale analysis using filter banks typically proceeds as follows. The input signal is appropri-
ately filtered into low-pass (LP) and high-pass (HP) components using two filters and the outputs
are downsampled. The reason for using LP and HP filters is that, the LP signal output typically
captures a large fraction of the energy of the original signal and the HP captures the detailed coef-
ficients. Hence if one wants to work on a downsampled version of the signal, then the LP branch
would provide a reasonable approximation. This corresponds to level one. The same procedure is
iterated on the LP branches in the successive levels to get representations at each of the different
levels which correspond to multiple scales. Thus once we define filters for the first level, the same
can potentially be iterated at the different levels. Hence the reason to consider two-channel filter
banks.

53

Definition 10. A two-channel linear filterbank for the graph signal x is a collection of filters HLP,
HHP, and HINV, where HLP and HHP retain the low-frequency and high-frequency content of the
input signal, respectively, and HINV is an inverse filter that obtains an estimate of the input signal
x̂ from yLP and yHP, the downsampled versions of ỹLP and ỹHP, the LP and HP filter outputs,
respectively.

The filters HLP and HHP are collectively called as the analysis filters and the filter HINV is called
as the synthesis filter. Fig. 5.1, is a block-diagram depiction of a two-channel linear filterbank with
an example of a 8-node circulant graph.

We have different classes of filter banks depending upon various properties that are satisfied. Fol-
lowing is a list of desirable properties for a two-channel filter bank.

• Perfect-reconstruction: The filter bank is said to satisfy the perfect reconstruction property
if it is lossless i.e., using the outputs of the analysis stage one can exactly reconstruct the
original graph signal using the synthesis filter.

• Critical-sampling: The number of components retained at the output of the filter bank is
equal to the length of the input signal. For example, in Fig. 5.1, the filter bank is said to be
critically sampled if the downsampling rates RLP and RHP are such that N/RLP +N/RHP =
N . Critical sampling helps control the problem dimensionality without explosion at multiple
levels.

• Localization: The filters should be able to capture the properties of the graph signal, local-
ized in the graph domain as well as the frequency domain at multiple scales. This is one of
the major goals of multiscale analysis—obtain a good graph domain and graph frequency
domain tiling.

• Localized reconstruction: It would be desirable for the inverse filter HINV to also be lo-
calized, since this leads to an efficient implementation. However, this is not fundamentally
necessary for analyzing the signal properties.

• Orthogonality: The filter bank is said to be orthogonal if each of the filters in the filter bank
are orthogonal.

• Graph Independence: The filter bank is said to be graph-independent, if each of the fil-
ters are graph-independent. This is a desirable property particularly for multiscale analysis,
since the downsampled graphs obtained at each stage may have a different structure than the
original graph we started with (e.g. in Fig. 5.1). In such a case, we might want to retain the
same filter structure without having to redesign the filters at every stage.

• Diagonalizability: The filters should be diagonalizable by the eigenvectors of the Laplacian
matrix. For circulant graphs, all LSI filters satisfy this property. However, for general graphs
we shall later see that not all filter designs necessarily satisfy this property.

54

The above set of properties are desirable, but not mandatory for all filter bank designs. The choice
depends on the application. It might be advantageous to compromise on certain properties to gain
in others. In the sections to follow, we will discuss three different classes of filter banks that satisfy
different properties.

5.3 Oversampled Filter banks—The Graph Laplacian Pyra-
mid

The Laplacian pyramid [37] is one of the most popular filter bank structures in classical signal
processing with an oversampled representation. It provides significant design flexibility at the loss
of the critical sampling property. The filter bank is defined as follows1. For the LP stage, any
suitable LP filter can be chosen and the output is downsampled to get the LP coefficients. The HP
output is obtained by subtracting the LP filtered signal from the original signal. Formally, we have
the following,

ỹLP = HLPx, (5.4)
yLP = (ỹLP) ↓2, (5.5)
yHP = x− ỹLP, (5.6)

Note that the LP filter response is chosen so that it can be downsampled by two without loss of
information. The reconstruction filter is very simplistic. One needs to upsample the downsampled
LP signal and pass it through a LP filter to get ỹLP. This is then added to the HP output, yHP to
exactly reconstruct the original signal.

The Laplacian pyramid filter bank structure satisfies the following set of properties.

• The filter bank is perfect reconstruction by construction as long as the LP signal can be
reconstructed from the downsampled output.

• The number of coefficients retained at each stage is N +N/2 = 3N/2 for an input signal of
size N . Thus it is not critically sampled.

• One has considerable flexibility in designing the LP filter as long as the signal obtained after
LP filtering can be recovered from its downsampled version. Thus the filter can be designed
to satisfy most of the other desired properties detailed in Section 5.2.

1Similar filter bank structures have been proposed in the existing literature [38].

55

€

x(0)

€

x(1)

€

x(2)

€

x(3)

€

x(5)

€

x(4)

€

x(6)

€

x(7)

€

HLP

€

x

€

˜ y LP

yLP (0)

yLP (1)

yLP (2)

yLP (3)yLP (4)
yLP (5)

yLP (6)

yLP (7)

+"
#"

y
1

HP (0) = x(0) − yLP (0)
y
1

HP (1)

y
1

HP (2)

y
1

HP (3)
y
1

HP (4)
y
1

HP (5)

y
1

HP (6)

y
1

HP (7)

↓s 2 y1LP

€

˜ y LP (4)

€

˜ y LP (6)

€

˜ y LP (2)

yLP (0)

!HLP

+"
#"

↓ "s 2

y1HP

ANALYSIS"STAGE"I" ANALYSIS"STAGE"II"

y2LP

y2HP

Figure 5.2: Block diagram description of the analysis stage of the Graph Laplacian Pyramid filter
bank. Note that the downsampling operations are chosen with respect to some element s ∈ S which
would depend on the graph. Further the filters at different stages could be different depending on
the graph. They could also be graph-independent depending on the design of the LP filter.

y
1

HP (0) = x(0) − yLP (0)
y
1

HP (1)

y
1

HP (2)

y
1

HP (3)
y
1

HP (4)
y
1

HP (5)

y
1

HP (6)

y
1

HP (7)

↑s 2
y1LP

y1HP

GLP

yLP (0)

yLP (1)

yLP (2)

yLP (3)yLP (4)
yLP (5)

yLP (6)

yLP (7)

+"
+" €

x(0)

€

x(1)

€

x(2)

€

x(3)

€

x(5)

€

x(4)

€

x(6)

€

x(7)

€

x

SYNTHESIS"STAGE"II"

!GLP
↑ "s 2

y2LP y2HP

+"
+"

SYNTHESIS"STAGE"I"

Figure 5.3: Block diagram description of the synthesis stage for the analysis filters shown in Fig
5.2. Note that the upsampling operations are fixed once the downsampling pattern is fixed in the
analysis stage. The synthesis filters are chosen such that the LP filtered signal can be reconstructed
from their downsampled versions.

56

0
20

40
60

80
10
0

12
0

14
0

0123456

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 O
rig

in
al

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

N
=
12
8

S
=
{1
,7
}

Lo
w
$p
as
s$

Lo
w
$p
as
s$

Hi
gh
$p
as
s$

Hi
gh
$p
as
s$

−1
0

−5
0

5
10

−8−6−4−202468

La
pl
ac
ia
n$
Py
ra
m
id
$F
ilt
er
ba
nk
$ −1

0
−5

0
5

10
−8−6−4−202468

−1
0

−5
0

5
10

−8−6−4−202468

−5
0

5
10

−6−4−20246

−1
0

−5
0

5
10

−8−6−4−202468

0
20

40
60

80
10
0

12
0

14
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

h−
pa

ss
 s

ig
na

l f
re

qu
en

cy
 re

sp
on

se

0
10

20
30

40
50

60
70

0

0.
51

1.
52

2.
53

3.
54

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow
−p

as
s

si
gn

al
 fr

eq
ue

nc
y

re
sp

on
se

0
5

10
15

20
25

30
35

0

0.
51

1.
52

2.
53

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow
−p

as
s

si
gn

al
 fr

eq
ue

nc
y

re
sp

on
se

0
10

20
30

40
50

60
70

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

h−
pa

ss
 s

ig
na

l f
re

qu
en

cy
 re

sp
on

se

Fi
gu

re
5.

4:
Tw

o-
st

ag
e

m
ul

tis
ca

le
de

co
m

po
si

tio
n

of
a

ci
rc

ul
an

tg
ra

ph
si

gn
al

us
in

g
th

e
G

ra
ph

L
ap

la
ci

an
py

ra
m

id
.T

he
ci

rc
u-

la
nt

gr
ap

h
ch

os
en

he
re

ha
s

th
e

pa
ra

m
et

er
s
N

=
12

8
an

d
S

=
{1
,7
}.

T
he

si
gn

al
is

bi
na

ry
w

ith
al

lo
ne

s
on

on
e

ha
lf

of
th

e
no

de
s

an
d

ze
ro

s
on

th
e

ot
he

rs
.

T
he

L
P

fil
te

r
us

ed
in

bo
th

th
e

st
ag

es
is

an
id

ea
lL

P
fil

te
r

w
ith

cu
to

ff
fr

eq
ue

nc
y

eq
ua

lt
o

th
e

al
ia

s-
fr

ee
sa

m
pl

in
g

ba
nd

w
id

th
fo

rt
hi

s
gr

ap
h

w
he

n
do

w
ns

am
pl

ed
w

ith
re

sp
ec

tt
o

th
e

fir
st

el
em

en
ti

n
th

e
se

tS
.N

ot
e

th
at

th
e

al
ia

s-
fr

ee
ba

nd
w

id
th

he
re

is
N
/2

si
nc

e
th

e
gr

ap
h

is
al

so
bi

pa
rt

ite
.T

he
H

P
ou

tp
ut

is
ob

ta
in

ed
af

te
rs

ub
tr

ac
tin

g
th

e
L

P
ou

tp
ut

fr
om

th
e

or
ig

in
al

si
gn

al
an

d
th

e
ef

fe
ct

of
th

is
ca

n
be

ob
se

rv
ed

in
th

e
fr

eq
ue

nc
y

re
sp

on
se

.

57

Fig 5.2 and Fig 5.3 are block diagram descriptions of the analysis and synthesis stages of a two-
stage Graph Laplacian pyramid filter bank with an example of a 8-node circulant graph. There
are a few points to be noted here. The downsampling operation depends on the element of the
generator set S which can be chosen according to the application of interest. The LP filter is to be
chosen such that the LP filtered signal can be reconstructed after downsampling. For example, it
could be chosen such that the output signal bandwidth is less than the bandwidth required for alias
free sampling on the given graph for the chosen downsampling pattern. The filter design could
be such that the filters are graph-independent and could be reused in the subsequent stages. The
synthesis stage shown in Fig 5.3 is fixed once the design choices in the analysis stage have been
made.

Fig 5.4 shows an example multiscale decomposition of a synthetic circulant graph signal. The
circulant graph shown here has 128 nodes and the generating set is given by S = {1, 7}. The
signal on this graph is binary with all ones on one half of the nodes (top half) and zeros otherwise.
The LP filter in both the stages has an ideal response with cutoff at the Nyquist bandwidth for
signals on this graph (see Theorem 4) when downsampled with respect to the element s = 1
since the downsampling is carried out with respect to this element in both the stages. Note that the
Nyquist bandwidth in this case isN/2 since the graphs are also bipartite. The downsampled graphs
are obtained through Kron-reduction and are circulant since we are downsampling with respect to
an odd element of the generating set.

5.4 Spline-like filterbank structures
Oversampled filter bank representations provide certain flexibility in design. However, the primary
disadvantage is that the dimensionality increases with every subsequent stage which is undesirable
especially when we are dealing with large scale graph datasets spanning millions of nodes where
the dimensionality needs to be kept under control. This motivates us to look for alternative designs
that are critically sampled. In this section we will discuss a class of filter banks inspired by the
classical first order spline-filters [39]. The first class of filters we discuss have a fixed structure
which we later generalize to provide some flexibility in design.

5.4.1 Simple Spline-like filter banks
The simplest set of filters that one can think of for graph signals would be those that take weighted
averages with neighboring nodes for the LP filter and weighted differences for HP. The natural
choice of weights is to take them to be uniform for all the neighbors. This is the basic underlying
idea for the simple Spline-like filter banks. Formally, the filter bank outputs can be defined as

58

follows,

ỹLP(k) =
1

2


x(k) +

1

d

∑

j∈N (k)

x(j)


 , (5.7)

ỹHP(k) =
1

2


x(k)− 1

d

∑

j∈N (k)

x(j)


 , (5.8)

where x is the input signal, ỹLP and ỹHP are the filtered LP and HP signals, d is the degree of each
node in the circulant graph, and N (k) = {m | A(k,m) 6= 0} is the one-hop neighborhood of
node k. We can express the LP and HP filters succinctly as follows:

HLP =
1

2

(
IN +

1

d
A

)
, (5.9)

=
1

2d
(D + A), (5.10)

=
1

2d
(2D− L), (5.11)

=

(
IN −

1

2d
L

)
. (5.12)

HHP =
1

2

(
IN −

1

d
A

)
, (5.13)

=
1

2d
(D−A), (5.14)

=
1

2d
L, (5.15)

where IN is the identity matrix. Thus we also have that,

HLP = IN −HHP. (5.16)

The example shown in Fig 5.1 is an example of a simple Spline-like filter bank on an 8-node circu-
lant graph. The LP and HP filters defined above are graph generalizations of three-tap FIR filters
FLP and FHP in classical discrete-time signal processing, which have impulse responses character-
ized by fLP(`) = 0.25 δ(`+ 1) + 0.5 δ(`) + 0.25 δ(`− 1) and fHP(`) = −0.25 δ(`+ 1) + 0.5 δ(`)−
0.25 δ(`−1), respectively, where δ(·) is the Kronecker impulse. Filters FLP and FHP are first-order
discrete-time spline wavelets which motivates the Spline terminology we use here.

The simple Spline-like filter banks are clearly shift-invariant by definition for circulant graphs. It is
straightforward to see that the filters HLP and HHP are circulant and hence commute with the shift

59

0 20 40 60 80 100 120 140
0

0.5

1

1.5

 Frequency index

 M
ag

ni
tu

de
 o

f t
he

 fr
eq

ue
nc

y
re

sp
on

se
 Simple Spline−like filter frequency response

 LP response
 HP response

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

 Eigenvalues

 M
ag

ni
tu

de
 o

f t
he

 fr
eq

ue
nc

y
re

sp
on

se

 Simple Spline−like filter frequency response

 LP response
 HP response

Figure 5.5: Example of a simple spline-like filter response for a circulant graph with N = 128
and S = {1, 7}. The LP and HP filter responses are shown in the figures. Fig (a) shows the
response plotted as a function of the frequency index. The LP and HP responses are complementary
as expected. However, the shape of the filters is quite non-intuitive. On the other hand, if one
observes the frequency response plotted as a function of the eigenvalues as in Fig (b), then we get
an intuitively pleasing response.

matrix P. Given the forms of the filters in Equation 5.12 and Equation 5.15, the filter response can
be easily derived as follows,

HHP =
1

2d
L, (5.17)

=
1

2d
UΛUH. (5.18)

HLP = IN −HHP, (5.19)

= U

(
IN −

1

2d
Λ

)
UH. (5.20)

Thus the corresponding filter responses are given as follows,

HG
LP(k) = 1− λk

2d
, (5.21)

HG
HP(k) =

λk
2d
. (5.22)

Fig 5.5 shows an example of a simple spline-like filter response for a circulant graph withN = 128
and S = {1, 7}. The LP and HP filter responses are shown in the figures. Fig (a) shows the re-

60

sponse plotted as a function of the frequency index. The LP and HP responses are complementary
as expected. However, the shape of the filters is quite non-intuitive. On the other hand, if one
observes the frequency response plotted as a function of the eigenvalues as in Fig (b), then we get
an intuitively pleasing response. There are some works in the literature that treat the eigenvalues
as the frequencies [9]. However, it is unclear as to how the eigenvalues need to be interpreted (see
Section 2.3 for a discussion on this). But in this specific case, given the structure of the filters, one
obtains a linear response when the x-axis is taken to be the eigenvalues.

Fig 5.6 shows an example of a multistage decomposition of a circulant graph using the simple
Spline filter bank. The HP signal does have some LP signal content given that the frequency
response of the filters is not that sharp as compared to an ideal filter that was employed in the
Laplacian pyramid case (see Fig 5.4). However, visually the LP signal still retains most of the
information of the original signal and the advantage we gain over the Laplacian pyramid is that we
need to only keep N components at any stage to recover the original signal.

Theorem 10. For a connected circulant graph, the spline filters defined in Eqns. 5.12 and 5.15
form a critically-sampled perfect-reconstruction LSI filterbank for any downsampling pattern as
long as at least one LP component is retained and the complementary set of nodes retain the HP
component.

Proof: The key step here is to show that the linear transformation from the input to the output
is invertible i.e. the synthesis filter provides an exact reconstruction of the input signal. Let K be
a diagonal matrix with K(i, i) = 1 if node i has the LP output after sampling, and −1 otherwise.
The output y of the two-channel filterbank after downsampling can be written as follows:

y =
1

2

(
IN +

1

d
KA

)
x, (5.23)

where y consists of an interleaving of vectors yLP and yHP obtained after downsampling ỹLP and
ỹHP, respectively, as illustrated in Fig. 5.1. For the filterbank to be invertible,

(
IN + 1

d
KA

)
must

be full-rank. We prove this by showing that the null space of this matrix is trivial.

Consider the spectral factorization 1
d
A = VΓVH. Suppose that z = Vr lies in the null space of(

IN + 1
d
KA

)
, where r is just the representation of z in the basis set comprised of the columns of

61

0
20

40
60

80
10
0

12
0

14
0

0123456

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 O
rig

in
al

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

0
10

20
30

40
50

60
70

0

0.
51

1.
52

2.
53

3.
54

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow
−p

as
s

si
gn

al
 fr

eq
ue

nc
y

re
sp

on
se

0
10

20
30

40
50

60
70

0

0.
050.
1

0.
150.
2

0.
25

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

h−
pa

ss
 s

ig
na

l f
re

qu
en

cy
 re

sp
on

se

0
5

10
15

20
25

30
35

0

0.
51

1.
52

2.
53

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow
−p

as
s

si
gn

al
 fr

eq
ue

nc
y

re
sp

on
se

0
5

10
15

20
25

30
35

0

0.
050.
1

0.
150.
2

0.
25

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

h−
pa

ss
 s

ig
na

l f
re

qu
en

cy
 re

sp
on

se

N
=
12
8

S
=
{1
,7
}

Lo
w
$p
as
s$

Lo
w
$p
as
s$

Hi
gh
$p
as
s$

Hi
gh
$p
as
s$

−1
0

−5
0

5
10

−6−4−202468
−1
0

−5
0

5
10

−8−6−4−202468

−1
0

−5
0

5
10

−8−6−4−202468

−5
0

5
10

−6−4−20246

−1
0

−5
0

5
10

−8−6−4−202468

Si
m
pl
e$
Sp
lin
e$
Fi
lte

rb
an
k$

Fi
gu

re
5.

6:
Tw

o
st

ag
e

de
co

m
po

si
tio

n
of

a
ci

rc
ul

an
tg

ra
ph

w
ith

N
=

12
8

an
d
S

=
{1
,7
}.

T
he

si
m

pl
e

Sp
lin

e-
lik

e
fil

te
rs

ar
e

us
ed

fo
r

th
e

L
P

an
d

H
P

an
al

ys
is

fil
te

rs
.

T
he

do
w

ns
am

pl
in

g
is

ca
rr

ie
d

ou
tw

ith
re

sp
ec

tt
o
s

=
1

an
d

th
e

K
ro

n-
re

co
nn

ec
tio

n
st

ra
te

gy
is

em
pl

oy
ed

to
de

te
rm

in
e

th
e

do
w

ns
am

pl
ed

gr
ap

hs
.

62

V. We then have the following,
(

IN +
1

d
KA

)
Vr = 0, (5.24)

(
IN + KVΓVH)Vr = 0, (5.25)

Vr = −KVΓr, (5.26)
||Vr||2 = ||KVΓr||2, (5.27)

N−1∑

i=0

(1− γ2
i)r(i)

2 = 0, (5.28)

where γi is the ith eigenvalue of 1
d
A. Gershgorin’s Circle Theorem [40] stipulates that |γi| ≤ 1,

so it must be that |r(i)| > 0 only if |γi| = 1, and r(i) = 0 otherwise. Thus, z takes the form
z = r(0)√

N
1N + Ṽr̃, where Ṽ is the set of eigenvectors corresponding to the eigenvalue −1 of the

adjacency matrix.

We now consider two cases—one where the graph is bipartite and the other where the graph is
non-bipartite. Let us start with the non-bipartite case which is easier.

Case (a) Non-bipartite graphs:
It is known that γ > −1 for non-bipartite graphs [41]. Thus z takes the form z = r(0)√

N
1N . This

gives us the following,
(

IN +
1

d
KA

)
z = 0N , (5.29)

(
IN +

1

d
KA

)
r(0)√
N

1N = 0N , (5.30)

r(0)√
N

(1N + K1N) = 0N . (5.31)

As long as at least one of the diagonal entries of K is positive (i.e. at least one LP component is
retained), we get that r(0) = 0 and hence z = 0.

Case (b) Bipartite graphs:
In this case, it is known that if γ is an eigenvalue of A, then −γ is also an eigenvalue [41]. Let B
be the indices of the nodes in one set of the bipartite graph. Then if [vB; vBC] is the eigenvector
of γ, one can verify that [vB;−vBC] is the eigenvector of −γ. Thus for a connected graph, since
the multiplicity of γ = 1 is one, the multiplicity of γ = −1 is also one and the corresponding

63

eigenvectors are 1N and
[
1N

2
| −1N

2

]
. Using these properties we get that,

r(0)√
N

(IN + K) 1N + r(1) (IN −K)
[
1N

2
| −1N

2

]
= 0N ,

where we are choosing r(1) to be the coefficient associated with the eigenvector corresponding to
γ = −1 without loss of generality. Note that (IN + K) has zeros on the diagonals for all those
elements that are discarded after sampling and (IN −K) has zeros on the complementary set. Thus
the above equation would require that r(0) = 0 and r(1) = 0, which again implies that z = 0,
completing the proof.

Remark: Note that the proof does not depend on any particular downsampling pattern and thus
would work irrespective of the subset of nodes we choose for the low pass representation. The
aliasing pattern however depends on the downsampling pattern.

The analysis LP and HP filters defined above are 1-hop filters. However synthesis filters are not
necessarily one-hop. One can generalize these to k-hop filters by differencing and averaging over
all neighbors up to k hops. The above proof holds since the adjacency matrix from before would
instead consist of k-hop neighbors obtained by taking the kth power of the adjacency matrix. These
powers of the adjacency matrix are also circulant. By increasing the number of hops, the spread
of the filter in graph domain grows, and the spread in the frequency domain shrinks. The k-hop
simple Spline filters can be described as follows,

HLP,k =
1

2

(
IN +

1

dk
Ak

)
, (5.32)

HHP,k =
1

2

(
IN −

1

dk
Ak

)
, (5.33)

where Ak is the adjacency matrix of the k-hop graph given by Ak = IAk , where the modified
indicator operator I is defined in Eqn 5.2.

Corollary 11. For a connected circulant graph, the spline filters defined in Eqns. 5.32 and 5.33
form a critically-sampled perfect-reconstruction LSI filterbank for any downsampling pattern as
long as at least one low-pass component is retained and the complementary set of nodes retain the
high-pass component.

Proof: The proof follows from that of Theorem 10 since the new matrix Ak is also a circulant
adjacency matrix.

64

5.4.2 Generalized weighted Spline-like filter banks
To achieve greater control over the frequency response, one option is to vary the filter’s averaging
weights. It is well known that a circulant matrix A can be expressed as,

A =
N−1∑

`=0

a(`) P`, (5.34)

where a = [a(0), a(1), ..., a(N − 1)]T is the first column of A (see Proposition 8). Define a new
matrix Ã as follows,

Ã =
N−1∑

`=0

w(`)a(`) P`, (5.35)

where w = [w(0), w(1), ..., w(N − 1)]T is a set of weights with w(`) ≥ 0 and d̃ =
N−1∑

`=0

w(`) > 0.

Note that Ã is not symmetric in general, but it is circulant. The LP and HP filters are now defined
by replacing the adjacency matrix 1

d
A in Eqns. 5.12 and 5.15 with 1

d̃
Ã.

H̃LP =
1

2

(
IN +

1

d̃
Ã

)
, (5.36)

H̃HP =
1

2

(
IN −

1

d̃
Ã

)
. (5.37)

Note that since Ã is a circulant matrix, it is diagonalizable by the GFT matrix. Hence we can
compute the filter responses as follows.

H̃LP =
1

2
U

(
IN +

1

d̃
diag

(
W′G

))
UH, (5.38)

H̃HP =
1

2
U

(
IN −

1

d̃
diag

(
W′G

))
UH, (5.39)

H̃G
LP(k) =

1

2

(
1 +

1

d̃
W ′G(k)

)
, (5.40)

H̃G
HP(k) =

1

2

(
1− 1

d̃
W ′G(k)

)
, (5.41)

where W′G is the GFT of the vector w′ = (w ◦ a). The weights can be suitably optimized to
approximate a desired frequency response depending on the application of interest. For example,
one could minimize a least squares cost function to approximate a desired response HG

LP des as

65

follows,

min
w

∣∣∣
∣∣∣HG

LP des − H̃G
LP

∣∣∣
∣∣∣
2

, (5.42)

s.t wT1N > 0, (5.43)
w(i) ≥ 0, ∀i = 0, · · · , N − 1. (5.44)

Note that the optimization problem is convex once we impose the structure of a in the problem
and null out the coefficients of w corresponding to the zero values of a.

Theorem 12. For a connected circulant graph, the generalized spline filters defined in Eqns 5.36
and 5.37 form a critically-sampled, perfect-reconstruction, LSI filterbank for every downsampling
pattern that retains an equal number of low-pass and high-pass components in complementary
node sets.

Proof: By Gershgorin circle theorem, the magnitude of the eigenvalues of 1

d̃
Ã are bounded

by unity. Hence the proof is similar to that of Theorem 10. Although the matrix Ã need not be
symmetric, it is circulant and therefore diagonalized by the Fourier matrix. Abusing the notation
for simplicity, let 1

d̃
Ã = VΓVH. Following along the same lines of the proof of Theorem 10, we

get that |r(i)| ≥ 0 if and only if |γi| = 1. Let z = Vr lie in the null space of
(
IN + 1

d̃
KÃ

)
. Then

z takes the form,

z = V̂r̂ + Ṽr̃, (5.45)

where V̂ are the eigenvectors corresponding to the eigenvalue unity, Ṽ are the eigenvectors cor-
responding to the eigenvalue −1. Further, r̂ and r̃ are the non-zero entries of r corresponding to
V̂ and Ṽ respectively. Note that the multiplicity of the eigenvalue 1 need not be unity since the
matrix Ã is not the adjacency matrix of an undirected graph.

Using this we get the following,
(

IN +
1

d̃
KÃ

)(
V̂r̂ + Ṽr̃

)
= 0, (5.46)

(IN + K) V̂r̂ + (IN −K) Ṽr̃ = 0. (5.47)

Note that (IN + K) has zeros on the diagonals for all those elements that are discarded after sam-
pling and (IN −K) has zeros on the complementary set. Let α be the set of nodes that are retained
and αC be the complementary node set. We then get the following,

V̂αr̂ = 0, (5.48)
ṼαC r̃ = 0, (5.49)

66

0 1 2 3 4 5 6 7 80.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 Eigenvalues

 M
ag
ni
tu
de
 o
f
th
e
fr
eq
ue
nc
y
re
sp
on
se

 Generalized Spline−like filter frequency response

 LP response
 HP response

S = {1,3}
N = 128 nodes
7 hop filter

0 20 40 60 80 100 120 1400.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 Frequency index

 M
ag
ni
tu
de
 o
f
th
e
fr
eq
ue
nc
y
re
sp
on
se

 Generalized Spline−like filter frequency response

 LP response
 HP response

S = {1,3}
N = 128 nodes
7 hop filter

(a)$ (b)$

Figure 5.7: Example of a generalized spline-like filter bank response for a circulant graph with
N = 128 and S = {1, 3}. The LP and HP filter responses are shown in the figures. Fig (a)
shows the response plotted as a function of the frequency index. The response is obtained for a
7 hop filter where the coefficients are optimized to approximate an ideal LP response with cutoff
frequency N/2. One observes considerable ripples in the transition band. This could be reduced
by introducing a penalty function in the optimization routine.The frequency response plotted as a
function of the eigenvalues as in Fig (b), seems to exhibit a sharper cutoff.

67

where V̂α and ṼαC are the sub-matrices of V̂ and Ṽ with the rows retained corresponding to the
sets α and αC respectively. Note that |α| = |αC | = N/2 from the assumption in the theorem.
In order to have non-trivial solutions for r̂ and r̃, the column dimension of V̂α or ṼαC needs to
be greater than N/2. This is because, V is a Vandermonde matrix and any sub-matrix of V has
full-rank. Thus, for this condition to hold, the multiplicity of γ = 1 or γ = −1 need to be greater
than N/2. However, this is not possible since the trace of Ã = 0 which is equal to the sum of the
eigenvalues and we know that the magnitude of the eigenvalues are bounded by unity.

Thus we have r̂ = 0 and r̃ = 0 and hence z = 0.

Remark: Compared to the unweighted Spline filters, here we need to keep N/2 components of
the lowpass and the high pass filter responses. Note that this is only a sufficient condition.

Fig 5.7 shows an example of the frequency responses for a circulant graph with N = 128 and
S = {1, 3}. The filter designed is a 7 hop filter, with the weights optimized to approximate an ideal
LP response with cutoff frequency N/2. One observes considerable ripples in the transition band.
This could be reduced by introducing a penalty function in the optimization routine if required. As
before, one again observes that the response plotted as a function of the eigenvalues is intuitively
pleasing and seems to exhibit a sharper cutoff.

5.4.3 Properties of the Spline-like two-channel filter bank
The Spline-like filter banks defined in the previous two sections satisfy some of the desirable
properties that we had listed out for filter banks. These are detailed below,

• The filter banks satisfy the critical-sampling and perfect reconstruction properties as asserted
in Theorems 10 and 12.

• The filters are localized in the graph domain given their explicit representation as a function
of the adjacency matrix. As we move to higher hops of the adjacency matrix, we would get
a better localization in the GFT domain as opposed to that in the graph domain.

• The filters are LSI on circulant graphs by design.

• The filters are graph-independent since the form of the filter is the same for all graphs. The
generalized filters are not graph-independent since the weights need to be optimized for the
given graph. However for fixed weights, they are graph-independent.

• The inverse filters are not necessarily localized in nature.

• The filters are not orthogonal in general. Note that one could use the modified orthogonal-
ization procedure proposed in [42] that retains the local support of the filters. However, the
theoretical guarantees on the perfect reconstruction would no longer be valid.

68

(shi%&w.r.t&s&=&2)&

(sample&w.r.t&s&=&1)&

(shi%&w.r.t&s&=&1)&

€

↓s 2

€

↓s 2

€

Ps

€

Ps"

€

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)

"

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'

€

x(0)
x(2)
x(4)
x(6)

"

$
$
$
$

%

&

'
'
'
'

€

x(1)
x(3)
x(5)
x(7)

"

$
$
$
$

%

&

'
'
'
'

α1(1)x(0)+α1(2)x(1)
α1(1)x(2)+α1(2)x(3)
α1(1)x(4)+α1(2)x(5)
α1(1)x(6)+α1(2)x(7)

!

"

#
#
#
#
#

$

%

&
&
&
&
&

€

˜ w (0)
˜ w (1)
˜ w (2)
˜ w (3)

"

$
$
$
$

%

&

'
'
'
'

€

˜ w (2)
˜ w (3)
˜ w (0)
˜ w (1)

"

$
$
$
$

%

&

'
'
'
'

↵ 1
(2
)

↵1(1)

↵1(1)

↵
1 (3)

↵
2 (3)

↵ 2
(2
)

↵2(1)

↵2(1)

€

S = {1,4}

€

S = {1,2}

x yLP

yHP

Figure 5.8: Lattice structure based perfect reconstruction filter banks for circulant graphs with
an example. The coefficients at each stage are chosen such that the transform is invertible and
optimized to approximate a desired frequency response. The shift and sampling operators depend
on the graph and can be chosen accordingly.

5.5 Lattice filter bank structures
Lattice structures in classical filter bank theory are a class of two-channel filter bank structures that
are popular due to their simple implementation structure and a host of other advantages such as
linear-phase [37]. The structure of the filter bank guarantees critical sampling as well as perfect
reconstruction. For time-signals, the design involves dividing the signal into even and odd compo-
nents and taking invertible linear combinations of the values across the two branches. We adopt a
similar design philosophy for designing Lattice filter banks for circulant graph signals.

Fig. 5.8 shows the lattice structure framework for circulant graphs with an example. The down-
sample and shift operators are as defined on the circulant graph and depend on the element s ∈ S.
The two branches of the filter in the first stage keep complementary copies of the input signal
depending on the element s in S, according to which the shifts and downsampling operations are
defined. After the downsampling operation in the first stage, the shifts in the subsequent stages are
defined on the downsampled graph.

As long as each of the blocks in the lattice structure is invertible, the overall filter bank is invertible.
The block diagram of the filter bank including the analysis and synthesis stages are shown in Fig
5.9. One way to guarantee invertibility is to fix αj(1) = 1 and αj(3) = −αj(2) at stage j. This
reduces the number of parameters to be optimized, and the filters are now orthogonal; the filter

69

€

↓s 2

€

↓s 2

€

Ps

€

Ps"

x yLP

yHP

Analysis(Stage(

yLP

yHP Ps!
T

↑s 2

↑s 2

Ps
T

+(
x

Synthesis(Stage(

R1 R2 R2
−1 R1

−1

Figure 5.9: Block diagram description of the analysis and synthesis stages for the Lattice filter.
Each of the stages in the filter bank is chosen to be invertible and hence the synthesis stage mimics
the analysis stage.

is shift invariant for a fixed choice of coefficients. The number of stages used would define the
number of hops for the filter.

The filter coefficients for the Lattice structure can be calculated in closed form once the number of
stages and the shifts are fixed. For example, the filter responses using a 8-node circulant graph in
Fig 5.8 can be calculated to be the following assuming the shifts and sampling are with respect to
s = 1,

hLP =




α1(1)α2(1)
α1(2)α2(1)

0
0
0
0

α1(3)α2(2)
α1(1)α2(2)




, (5.50)

hHP =




α1(1)α2(3)
α1(2)α2(3)

0
0
0
0

α1(3)α2(1)
α1(1)α2(1)




. (5.51)

The filter responses can now be optimized over the coefficients α() to approximate a desired re-
sponse. Note that we need to add a constraint in the optimization such that the matrices are in-
vertible for perfect reconstruction to hold (see Fig 5.9). Further, the optimization is not convex

70

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Frequency index

 M
ag
ni
tu
de
 o
f
th
e
fr
eq
ue
nc
y
re
sp
on
se

 Lattice filter frequency response

 LP response
 HPresponse

S = {1,3}
N = 128 nodes
10 stage filter

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

 Eigenvalues

 M
ag

ni
tu

de
 o

f
th

e
fr

eq
ue

nc
y

re
sp

on
se

 Lattice filter frequency response

 LP response
 HP response

S = {1,3}
N = 128 nodes
10 stage filter

Figure 5.10: Example response of a 10-stage lattice filter designed over a circulant graph with 128
nodes generated by the set S = {1, 3}. The downsampling and shifting in all the stages is taken
with respect to s = 1.

given the form of the filter responses. Hence approximation techniques are needed to solve for the
coefficients.

Fig. 5.10 shows an example filter response for a circulant graph defined by N = 128 and S =
{1, 3}. The number of stages in the filter is taken to be 10. The coefficients are optimized to ap-
proximate an ideal LP filter response. A least squares cost function is optimized using a gradient-
descent algorithm and the solution so obtained is one of the local minima. The response is shown
as a function of both frequency indices and graph eigenvalues. Downsampling and shifting in all
stages is taken with respect to s = 1. The LP and HP responses appear to be complementary in
this case. However, note that this need not be the case in general. Depending on the choice of
the coefficients one can obtain different sets of responses for LP and HP. Hence the optimization
problem needs to be carefully formulated. We do not explore this here.

Fig 5.11 shows an example of a multiscale decomposition of a circulant graph signal into two
stages using Lattice filters. The filter coefficients are optimized to approximate ideal LP and HP
responses. Qualitatively the LP branch captures the information in the original signal of interest.
The HP output captures the signal variations at the boundary of transition where the signal value
changes from unity to zero. The downsampling is carried out with respect to s = 1 and Kron
reduction is employed to define the downsampled graph.

Following are some interesting properties of the Lattice filter banks.

• The filter bank satisfies the critical-sampling and perfect-reconstruction properties by design.
However, note that the optimization of the filter coefficients is tricky.

71

0
20

40
60

80
10
0

12
0

14
0

0123456

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 O
rig

in
al

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

N
=
12
8

S
=
{1
,7
}

Lo
w
$p
as
s$

Lo
w
$p
as
s$

Hi
gh
$p
as
s$

Hi
gh
$p
as
s$

−1
0

−5
0

5
10

−8−6−4−202468

La
,
ce
$S
tr
uc
tu
re
$F
ilt
er
ba
nk
$

−1
0

−5
0

5
10

−8−6−4−202468

−1
0

−5
0

5
10

−6−4−202468
−5

0
5

10
−6−4−20246

−1
0

−5
0

5
10

−8−6−4−202468

0
10

20
30

40
50

60
70

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

h−
pa

ss
 s

ig
na

l f
re

qu
en

cy
 re

sp
on

se

0
5

10
15

20
25

30
35

0123456789

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow
−p

as
s

si
gn

al
 fr

eq
ue

nc
y

re
sp

on
se

0
10

20
30

40
50

60
70

01234567

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow
−p

as
s

si
gn

al
 fr

eq
ue

nc
y

re
sp

on
se

0
5

10
15

20
25

30
35

0

0.
51

1.
52

2.
53

3.
54

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

h−
pa

ss
 s

ig
na

l f
re

qu
en

cy
 re

sp
on

se

Fi
gu

re
5.

11
:

Tw
o

st
ag

e
de

co
m

po
si

tio
n

of
a

ci
rc

ul
an

tg
ra

ph
si

gn
al

w
ith

N
=

12
8

an
d
S

=
{1
,7
}

us
in

g
a

10
-s

ta
ge

L
at

tic
e

fil
te

r.
T

he
do

w
ns

am
pl

in
g

is
ca

rr
ie

d
ou

tw
ith

re
sp

ec
tt

o
s

=
1

an
d

K
ro

n-
re

du
ct

io
n

is
em

pl
oy

ed
to

de
fin

e
th

e
do

w
ns

am
pl

ed
gr

ap
h.

T
he

fil
te

rc
oe

ffi
ci

en
ts

ar
e

op
tim

iz
ed

to
ap

pr
ox

im
at

e
id

ea
lr

es
po

ns
es

.

72

• The filter banks are localized in the graph domain. The number of stages used defines the
spread of the filter response in the graph domain.

• The filters are also LSI for circulant graphs once the coefficients are fixed since these remain
the same for every shift.

• The filters are not necessarily graph-independent. The downsampling and shift matrices need
to be defined depending on the graph and the weights have to be accordingly optimized.

• The inverse filters are localized by design.

• The filters can be chosen to be orthogonal by placing further restrictions on the coefficients
α() at each stage.

73

5.6 Chapter highlights

Following is a summary of the main points of this chapter.

• Two channel graph filter banks lay the foundations for multi resolution analysis by succes-
sively decomposing the input graph signal into different frequency bands.

• The important desirable properties of filter banks are critical sampling, perfect reconstruc-
tion, graph-domain GFT-domain localization, orthogonality, local reconstruction and graph-
invariance.

• Three filter bank structures with varying properties are discussed—The Graph Laplacian
Pyramid, Spline-like filter banks, Lattice structure filter banks.

• The Graph Laplacian Pyramid offers considerable flexibility in the filter design at the cost of
oversampling.

• Spline-like filter banks are critically sampled and perfect reconstruction filter banks that also
offer some flexibility in the design and satisfy most of the desirable properties except local-
reconstruction.

• Lattice filter structure are also critically-sampled perfect-reconstruction filter banks that also
offer flexibility in their design. However the optimization of the filter coefficients is tricky
and they are not graph-independent.

74

Part III

Signal Processing on General Graphs

75

Chapter 6

Circulant decomposition of a general graph

6.1 Introduction
In the previous chapters, we discussed circulant graphs at length with emphasis on fundamental
signal processing operations and filter bank designs. One of the major advantages of circulant
graphs is that the graph is symmetric with respect to different nodes. Hence it is possible to define
fundamental operations like shifting, convolution, and sampling. This enables design of LSI filters
on these graphs analogous to LTI filters in the time domain.

Some real-world network models such as small-world networks (Watts-Strogatz model [23]) are
inspired by circulant graphs. However, for most other real-world applications we usually encounter
graphs that might not have as much structure as circulant graphs. Thus we need to extend our sig-
nal analysis and filter design tools to general graphs. General graphs being asymmetric, one cannot
have LSI filters as defined in Section 5.1. They are only amenable to Linear Shift Varying (LSV)
signal processing. Linear Time Varying (LTV) filters in classical signal processing are designed by
decomposition into a bank of LTI filters [14]. Analogously, our approach is to decompose a gen-
eral graph into a bank of circulant graphs and extend the filtering and sampling operations from
circulant graphs to general graphs.

In this chapter, we discuss various decompositions of a general graph into circulant graphs. In
particular, we shall represent the Laplacian matrix of a general graph as a suitable sum of the
Laplacian matrices of circulant graphs. The decomposition is motivated by the following fact that
a circulant matrix C can be expressed as follows,

C =
N−1∑

j=0

c(j)Pj, (6.1)

where c = [c(0), c(1), ..., c(N − 1)]T is the first column of C, and P is the shift matrix defined in

76

Original(graph(

€

0

€

1

€

2

€

3
€

4

€

0

€

1

€

2

€

3€

4

€

0

€

1

€

2

€

3€

4

€

0

€

1

€

2

€

3€

4

€

0

€

1

€

2

€

3€

4

Directed(circulant(decomposi4on((DCD)(

A =

2
66664

0 a01 a02 a03 a04

a01 0 a12 a13 a14

a02 a12 0 a23 a24

a03 a13 a23 0 a34

a04 a14 a24 a34 0

3
77775

2
66664

a04

a01

a12

a23

a34

3
77775

2
66664

a03

a14

a02

a13

a24

3
77775

2
66664

a02

a13

a24

a03

a14

3
77775

2
66664

a01

a12

a23

a34

a04

3
77775

Diagonal(matrix(entries(

Figure 6.1: Example of the directed circulant decomposition (DCD) of a given graph. Each of
the directed circulant graphs correspond to different powers of the shift matrix P. The diagonal
matrices correspond to each of the rows of the original Laplacian matrix.

Equation 3.2:

P =

[
0T
N−1 1

IN−1 0N−1

]
. (6.2)

P can also be viewed as the adjacency matrix of a directed cycle graph. Thus, in essence, we are
“decomposing” a circulant graph into many directed cycle graphs. Analogously one can ask if the
Laplacian matrix of a general graph has such a decomposition into circulant Laplacian matrices1.
We show that such a decomposition is feasible with the scalar factors replaced by diagonal matri-
ces. Such a decomposition is not unique unless other restrictions are imposed. We show three such
decompositions in the sections to follow.

6.2 Directed Circulant Decomposition
Here we will express the Laplacian matrix of a general graph as an appropriately defined sum of
Laplacian matrices of directed circulant graphs. The following theorem illustrates this decomposi-
tion.

1The terminology, graph decomposition, is also classically used in the graph theory literature to refer to the problem
of partitioning the edges of a given graph into different sets such that the edges in each set correspond to a graph that
is isomorphic to a given graph. For example, each set could be isomorphic to a given circulant graph. However this is
known to be a NP-complete problem [43].

77

Theorem 13. (Directed Circulant Decomposition (DCD):) The Laplacian matrix L of the given
graph can be written as,

L =
N−1∑

k=1

QkLk, (6.3)

where Lk = I−PN−k and Qk = −diag(LPk) = diag(APk).

Proof: We will start by analyzing the adjacency matrix and then extend the analysis to the
Laplacian matrix. Let us look for a decomposition of the following form for the adjacency matrix
of a given graph:

A =
N−1∑

k=0

DkAk, (6.4)

where Dk’s are diagonal matrices of the form,

Dk = diag ([dk(0), dk(1), ..., dk(N − 1)]) = diag
(
dT
k

)
, (6.5)

and Ak’s are circulant adjacency matrices of the form,

Ak = circ ([ak,0(0), ak,0(1), ..., ak,0(N − 1)]) = circ
(
aT
k,0

)
, (6.6)

where aT
k,0 is the first row of the circulant matrix Ak and the mth row of Ak is aT

k,0P
m−1T. We

deviate from the convention of using the columns to represent the circulant matrix and use the rows
since that simplifies the argument for the proof. Each row of the adjacency matrix can be expressed
as follows.

aT
0 = [d0(0) d1(0) , ..., dN−1(0)]




aT
0,0

aT
1,0

...
aT
N−1,0


 , (6.7)

= d(0)TÃ, (6.8)

where Ã =




aT
0,0

aT
1,0

...
aT
N−1,0


, is the collection of the first rows of all the circulant adjacency matrices

78

in the decomposition. Similarly it is easy to see that the mth row is given by,

aT
m−1 = d(m− 1)T Ã Pm−1T

, (6.9)

aT
m−1P

m−1 = d(m− 1)TÃ, (6.10)

where d(m − 1) is a vector of the mth diagonal elements of each of the diagonal matrices in the
decomposition. The above set of m− 1 equations can be written in a matrix form as follows,




aT
0

aT
1P
...

aT
N−1P

N−1


 =




d(0)T

d(1)T

...
d(N − 1)T


 Ã. (6.11)

As long as we have an invertible Ã, we can get a valid solution for the diagonal matrices. The
simplest choice for Ã is the identity matrix i.e., Ã = IN . We then have,

d(m− 1)T = aT
m−1P

m−1. (6.12)

One can easily verify that these equations can be rearranged to get,

Dk = diag(APk). (6.13)

Since the diagonals of the adjacency matrix are zero, we have that d0(m) = 0, ∀ m. Hence the
first term in the summation has d0 = 0. Let us now consider the kth term in the summation. Here
Ak is a circulant matrix with the first row equal to the kth row of Ã = I. Hence, we have that
Ak = PN−k which is a valid adjacency matrix. Note that since the first term is zero, we need not
bother about A0 not being a valid adjacency matrix.

It is now easy to extend this to the Laplacian matrix. Note that we have L = D −A, where D is
the diagonal matrix of the degrees of each of then nodes. Also note that we have,

N−1∑

m=1

d(m) = D(m,m). (6.14)

79

Thus we get that,

L = D−A, (6.15)

= D−
N−1∑

k=1

DkP
N−k, (6.16)

=
N−1∑

k=1

Dk(I−PN−k), (6.17)

=
N−1∑

k=1

QkLk. (6.18)

Fig. 6.1 shows an example of this decomposition with each of the circulant graphs and the associ-
ated diagonal matrices. One of the advantages of this decomposition is that each of the individual
circulant graphs are independent of the given graph and hence can be precomputed and stored.The
drawback of the above decomposition is that each of the circulant graphs in the decomposition is a
directed graph. Unfortunately, the theory we have developed so far has been for undirected graphs.
It is not yet clear on how to deal with directed graphs, which poses additional challenges.

It is thus natural to ask whether we can have a decomposition with undirected circulant graphs.
If we restrict ourselves to decompositions where the summations contain a pre-multiplication by
a diagonal matrix and a Laplacian matrix, we can show that it is never possible to decompose a
general Laplacian matrix in terms of undirected circulant Laplacians.

Corollary 2. If we restrict the decomposition of the Laplacian to the form

L =
M−1∑

k=1

QkLk, (6.19)

where Qk are diagonal matrices and Lk are circulant Laplacian matrices, then Lk cannot be
symmetric (and hence undirected), even when M ≥ N .

Proof: The proof follows from our derivation in the above theorem. Consider the following
key step (Eqn 6.11) where we had the flexibility of choosing a circulant graph.




aT
0

aT
1P
...

aT
N−1P

N−1


 =




d(0)T

d(1)T

...
d(N − 1)T


 Ã. (6.20)

80

Note that this equation is fundamental for any decomposition with a pre-diagonal matrix and cir-
culant matrix in the summations. For a valid decomposition, we needed an invertible Ã. Now
suppose we restrict ourselves to undirected circulants, then each row of the matrix Ã only has N/2
free entries, since the circulant matrices Ak need to be symmetric. Thus the rank of the matrix Ã
is at most N/2 and hence cannot be inverted. This is true irrespective of the number of terms we
take in the summation as this would only increase the number of columns of the matrix Ã while
the rank is governed by the flexibility in the rows.

6.3 Undirected Circulant Decomposition
In order to have a decomposition in terms of undirected circulant graphs, we need to have additional
flexibility in the form of the summation we have considered. Let us now introduce diagonal ma-
trices that pre and post multiply every term in the summation. Under this decomposition structure,
we consider different representations. In particular, we could have an over-complete representa-
tion with more than N terms in the summation or we can have a representation with N terms. The
following sections illustrate these representations.

6.3.1 Overcomplete Undirected Circulant Decomposition
In this decomposition, we will consider more than N terms in the decomposition. The flexibility
we gain would be that the circulant graphs so obtained are independent of the original graph and
hence can be pre-computed. The following theorem illustrates the decomposition.

Theorem 14. (Overcomplete Undirected Circulant Decomposition (OUCD):) The Laplacian ma-
trix L of the given graph can be written as,

L = D +

=−A︷ ︸︸ ︷
N−1∑

k=0

N/2−1∑

m=1

QkLmQ̃k,m, (6.21)

where Lm = 2I−
(
Pm + (Pm)T

)
, Qk is a diagonal matrix with Qk(k, k) = 1, and the rest of the

entries are zeros. D = diag(L). Q̃k,m is also a diagonal matrix with,

Q̃k,m((k +m)N , (k +m)N) = L(k, (k +m)N), (6.22)

Q̃k,m((k −m)N , (k −m)N) = L(k, (k −m)N). (6.23)

Proof: It is straightforward to see that by pre and post multiplying a matrix by a diagonal
matrix, we can pick every entry of the matrix. For example, if the first diagonal entry of the pre
diagonal matrix is unity then the first row is picked. Similarly a column is picked by the post
diagonal matrix. Thus all the N2 entries of L can be individually picked by having N2 terms in

81

Original(graph(

€

0

€

1

€

2

€

3
€

4

A =

2
66664

0 a01 a02 a03 a04

a01 0 a12 a13 a14

a02 a12 0 a23 a24

a03 a13 a23 0 a34

a04 a14 a24 a34 0

3
77775

€

0

€

1

€

2

€

3
€

4

€

0

€

1

€

2

€

3
€

4

Overcomplete(undirected(circulant(decomposi4on(

Q̃0,1 =

2
66664

0 0 0 0 0
0 a01 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 a04

3
77775
Q̃0,2 =

2
66664

0 0 0 0 0
0 0 0 0 0
0 0 a02 0 0
0 0 0 a03 0
0 0 0 0 0

3
77775

Figure 6.2: Example showing the different component graphs in the Oversampled Undirected
Circulant Decomposition of the given graph. Even though there can potentially be a large number
of component graphs, only few of the terms in the summation are active if the original graph is
sparse.

the summation. The number of terms can be reduced by recognizing that each row of the circulant
graphs are symmetric since they are undirected.

Let us begin by choosing,

Lm = 2IN − (Pm + (Pm)T). (6.24)

By construction Lm(0,m) = Lm(0, N −m) = 1 and the rest of the entries are zeros. By choosing,

Q̃0(0,m) = L0(0,m),

Q̃0(0, N −m) = L0(0, N −m),

and Q0(0, 0) = 1, the terms in the summation for k = 0, would essentially reconstruct the first
row of L, barring the diagonal entry. Similarly every other term in the summation reconstructs the
corresponding row of L. D is chosen to fill in the diagonal entries of the given Laplacian matrix.

Remark: Each of the Lm’s are undirected circulant graphs of degree two. Further these graphs
are independent of the given graph that needs to be decomposed. The number of circulant graphs
in this decomposition grows quadratically with the size of the graph. However note that if the
original graph is sparse, we would only have O(Nd) non-zero terms in the summation where d is
the average degree of the nodes in the graph.

82

€

0

€

1

€

2

€

3

€

4
€

0

€

1

€

2

€

3
€

4a01

a12a13
a03

a04

L =

d0 −a01 0 −a03 −a04
−a01 d1 −a12 −a13 0
0 −a12 d2 0 0

−a03 −a13 0 d3 0
−a04 0 0 0 d4

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

L0 =

4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

Q0 =

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

Q̂0 =

0 0 0 0 0
0 a01 0 0 0
0 0 0 0 0
0 0 0 a03 0
0 0 0 0 a04

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

Circulant*Extension*of*
the*Neighborhood*of*

Node*0*

Replicate*Off;
Diagonal*Entries*for*a*
Symmetric*Laplacian*

Matrix*

Figure 6.3: Example of a circulant graph in the decomposition of the given graph. The circulant
graph can be viewed as a circulant extension of the Node 0 in this graph. The diagonal matrices
that pre and post multiply the circulant Laplacian matrix is also shown here.

Fig 6.2 shows an example of the OUCD decomposition for the given graph. In this example, one
can see that all the component graphs belong to one of the two categories shown in the figure.
Further, not all terms in the summation are active. The number of active terms is proportional to
the number of edges in the graph and hence if the graph is sparse the decomposition is also sparse.
Thus we see that even though there are potentially O(N2) terms in the summation only O(Nd)
are active for any given graph where d is the average degree of the graph. The natural question
of interest is whether there exists a decomposition with only O(N) terms? It turns out that this is
possible, but the resulting circulant graphs are constructed depending on the given graph.

The key observation is that we can choose the circulant graphs in the summation. Each circulant
graph offers N/2 degrees of freedom, which we are not fully exploiting in the OUCD represen-
tation. The degrees of freedom are calculated based on the fact that the first row of the circulant
matrix completely defines the matrix. Since this matrix must be symmetric for the graph to be
undirected, it is easy to see that the ith and (N − i)th entries have to be equal for i = 1, 2, ..., N −1.
In the sections to follow, we will discuss two decompositions. One that contains N + 1 terms
and the other with 2N + 1 terms. The decomposition with a larger number of terms helps extend
arbitrary filtering operations from circulant graphs to general graphs.

83

Original(graph(

€

0

€

1

€

2

€

3
€

4
€

0

€

1

€

2

€

3€

4

€

0

€

1

€

2

€

3€

4

€

0

€

1

€

2

€

3€

4

Undirected(circulant(decomposi4on((UCD)(9(I(

€

0

€

1

€

2

€

3€

4

€

0

€

1

€

2

€

3€

4

Circ.(extn(of(node(0(Circ.(extn(of(node(1(Circ.(extn(of(node(2(

Circ.(extn(of(node(3(Circ.(extn(of(node(4(

Figure 6.4: Example showing the different component graphs in the Undirected Circulant Decom-
position I of the given graph. Each of the component circulant graphs can be viewed as circulant
extensions of the neighborhood of each node.

6.3.2 Undirected Circulant Decomposition-I
In this section, we will consider a decomposition with N + 1 terms. Each of the N + 1 circulant
graphs in the decomposition will be derived based on the structure of the given graph.

Theorem 15. (Undirected Circulant Decomposition-I (UCD-I):) Consider a graphGwhose Lapla-
cian and adjacency matrices are L and A, respectively. Then L can be written as,

L = D +

=−A︷ ︸︸ ︷
N−1∑

k=0

Qk Lk Q̂k, (6.25)

where D is the degree matrix of G; each Qk is a matrix whose only nonzero entry is Qk(k, k) = 1;
and Q̂k is a diagonal matrix constructed from the kth row of L, i.e. Q̂k(i, i) = L(k, i), i =
0, · · · , N − 1. The Laplacian matrix Lk represents a simple, unweighted, and undirected circulant
graph defined by the set Sk characterized below:

Sk =
{
i
∣∣∣ i ∈ {1, . . . , N − 1} ∧ L(k, (k + i)N) 6= 0

}
(6.26)

Proof: The proof builds on the idea for OUCD. In OUCD, the circulant graphs are fixed
and the entries of Q̂k,m are chosen to match the entries of L(k, :) wherever Lm(k, :) has non-zero
entries. This can now be modified to choose the entries of the kth row of Lk in such a way that it
matches the non-zero entries of L(k, :). The only constraint is that the first row of Lk has to be

84

symmetrical and this can be imposed in the construction. This construction is best illustrated using
a simple example. Consider the graph in 6.4. The Laplacian matrix of this graph is given by,

L =




3 −1 0 −1 −1
−1 3 −1 −1 0
0 −1 1 0 0
−1 −1 0 2 0
−1 0 0 0 1



. (6.27)

Consider the first row. In order to reconstruct the off-diagonal entries of this row, we need that

L0(0, 1) = L0(0, 3) = L0(0, 4) = −1. (6.28)

However this would not be an undirected circulant matrix unless L0(0, 2) = −1. Hence setting
this to be −1, we get that

L0 =




4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4



. (6.29)

Now choose Q0 and Q̂0 as follows to reconstruct the first row,

Q0 =




1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



, (6.30)

Q̂0 =




0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1



. (6.31)

Fig 6.3 shows an example of the matrices in the decomposition for Node 0 in the graph. Let
us consider another row of L to make this concrete, say L(2, :). In order to reconstruct the off-
diagonal entries, we need that L2(2, 1) = −1, which in turn requires that L2(0, 4) = −1. In order

85

to make this undirected, we need L2(0, 1) = −1. Thus we have

L2 =




2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2



, (6.32)

Q2 =




0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0



, (6.33)

Q̂2 =




0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



. (6.34)

The degree matrix D reconstructs the diagonal entries of L. Fig 6.4 illustrates the rest of the graphs
in this decomposition.

Remark: This decomposition is better than OUCD in that the number of terms is smaller. How-
ever, we lose the flexibility of having predetermined circulant graphs, and each of the circulant
graphs depends on the original given graph. Conceptually, the circulant graphs can be thought of
as circulant extensions of the neighborhood of each node in the original graph as shown in Fig 6.4.
Note that we can interchange the roles of Qk and Q̂k by symmetrizing the columns. Since L and
Lk are symmetric, we have that,

L =
N−1∑

k=0

QkLkQ̂k + D, (6.35)

=
N−1∑

k=0

Q̂kLkQk + D. (6.36)

6.3.3 Undirected Circulant Decomposition-II
In UCD-I, we assumed that the input Laplacian is undirected, which has been our assumption
throughout. However, as we will see later, when we want to define filters on the graph, the above
decomposition restricts them to be symmetric for each node. In order to overcome this restriction,
we slightly modify UCD-I, to get a 2N+1 term decomposition that allows the flexibility of defining

86

€

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 a03 0
0 0 0 0 a04

"

$
$
$
$
$
$

%

&

'
'
'
'
'
'

€

d0 −a01 0 −a03 −a04
−a01 d1 −a12 −a13 0
0 −a12 d2 0 0

−a03 −a13 0 d3 0
−a04 0 0 0 d4

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

€

4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

€

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

"

$
$
$
$
$
$

%

&

'
'
'
'
'
'

€

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

€

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

"

$
$
$
$
$
$

%

&

'
'
'
'
'
'

€

0 0 0 0 0
0 a01 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

"

$
$
$
$
$
$

%

&

'
'
'
'
'
'

Replicate)Off,Diagonal)Entries))
for)a)Symmetric)Laplacian)Matrix.)

)

€

0

€

1

€

2

€

3
€

4
€

0

€

1

€

2

€

3
€

4

€

0

€

1

€

2

€

3
€

4

Circulant))Extensions)in)the)
Neighborhood)of)Node)0)

€

d0 0 0 0 0
0 d1 0 0 0
0 0 d2 0 0
0 0 0 d3 0
0 0 0 0 d4

"

$
$
$
$
$
$

%

&

'
'
'
'
'
'

eG0
bG0

€

a01

€

a12

€

a13

€

a03
€

a04
G

L L̂0 L0Q0 Q0Q̂0
Q0 D

Figure 6.5: Example of the circulant graphs in the UCD-II decomposition of the given graph. The
circulant graphs can be viewed as a circulant extensions of the Node 0 in this graph. Each of the
circulant graphs reconstruct one half of Row 0 of the original Laplacian matrix.

general filters. The following theorem illustrates this decomposition.

Theorem 16. (Undirected Circulant Decomposition-II (UCD-II):) Consider a graph G whose
Laplacian and adjacency matrices are L and A, respectively. Then L can be written as

L = D +

=−A︷ ︸︸ ︷
N−1∑

k=0

(Qk L̂k Q̂k + Qk L̃k Q̃k), (6.37)

where D is the degree matrix ofG; each Qk is a matrix whose only non-zero entry isQk(k, k) = 1;
and each Q̂k and Q̃k is a diagonal matrix whose non-zero entries we now describe in their most
general form. For i = 1, . . . , bN/2c,

Q̂k((k + i)N , (k + i)N) = −L(k, (k + i)N) = A(k, (k + i)N). (6.38)

For i = 1 + bN/2c, . . . , N − 1,

Q̃k((k + i)N , (k + i)N) = −L(k, (k + i)N) = A(k, (k + i)N). (6.39)

The Laplacian matrices L̂k and L̃k represent simple, unweighted, and undirected circulant graphs
defined by the sets Ŝk and S̃k, respectively, characterized below:

Ŝk =
{
i
∣∣∣ i ∈ {1, . . . , bN/2c} ∧ L(k, (k + i)N) 6= 0

}
, (6.40)

S̃k =
{
i
∣∣∣ i ∈

{
1 + bN/2c, . . . , N − 1

}
∧ L(k, (k + i)N) 6= 0

}
. (6.41)

Proof: The proof follows on the lines of UCD-I. Instead of symmetrizing each of the rows

87

completely for UCD-I, in this decomposition, we split the row into two halves and symmetrize
them individually. This would give us two circulant graphs for every node and its neighbors. We
will again outline the proof through an example. Fig. 6.5 depicts a circulant decomposition of the
five-node graph G.

To illustrate the method, we reconstruct row 0 of L. Each of the matrices L̂0 and L̃0 in Fig. 6.5
inherits half of the off-diagonal entries of row 0 of L. We want L̂0 and L̃0 to be the Laplacian
matrices of undirected circulant graphs, labeled Ĝ0 and G̃0 in Fig. 6.5, respectively. The graphs
Ĝ0 and G̃0 can be viewed as circulant extensions of the neighborhood of node 0 of G. Per force,
half of the row entries of L̂0 and L̃0 completely specify each full matrix. For example, once we
fix L̂0(0, 1) and L̂0(0, 2), it must be that L̂0(0, 3) = L̂0(0, 2) and L̂0(0, 4) = L̂0(0, 1). The last
two entries of row 0 in L̃0, too, must be mirror images of the corresponding first two off-diagonal
entries.

Each successive row of L̂0 and L̃0 is obtained by a right circular shift of its preceding row. The
matrix Q0 selects row 0 of L̂0 and L̃0. The matrices Q̂0 and Q̃0 select the corresponding entries of
row 0 of L̂0 and L̃0, respectively—which match the corresponding off-diagonal entries in L. Since
Q0 L̂0Q̂0 + Q0 L̃0Q̃0 does not reproduce L(0, 0), we add D(0, 0) to the appropriate entry of D.

6.4 Properties of the circulant decompositions
Each of the circulant decompositions have their own advantages and disadvantages. We will now
list a set of desirable properties of a circulant graph decomposition and analyze each of the decom-
positions from this perspective. We only focus on the undirected decompositions.

• Minimality: The number of terms in the decomposition should be minimal. For the OUCD
decomposition, we had O(N2) terms in the decomposition. However, if the graph is sparse
with each node having an average degree d, then the number of terms is O(Nd). UCD-I and
UCD-II have O(N) terms in the decomposition. This can still be prohibitively high for large
graph datasets with millions of nodes. In such a case, it might be infeasible to decompose
the graph into a million terms.

• Sparsity: If the given graph is sparse, then we might want each of the component graphs
in the decomposition to be sparse as well. Note that in OUCD, all the component graphs
are fixed a priori and also sparse since each node only has degree 2. The component graphs
in UCD-I and UCD-II closely follow the structure of the original graph. Hence if the node
degree in the original graph is small then the decomposed graphs too have a small node
degree. Note that one could always decompose a given graph into fully connected graphs
(replace the graphs in each of the decompositions by fully connected graphs and verify that

88

the decomposition still holds). But then this would not inherit any meaningful structure from
the original graph.

• Graph independence: It might be desirable for certain applications if the component graphs
in the decomposition are independent of the given graph (i.e. this would in some sense be-
have as a standard basis). This would be helpful when we are processing graph structured
data in real-time when the decomposition itself can be a bottleneck in terms of the compu-
tational cost. Note that the OUCD satisfies this property while the other decompositions do
not.

• Amenable to filter designs: One of the main goals of the graph decompositions is to be
able to extend filter designs from circulant graphs to general graphs. The decompositions
should be able to help us generalize the filter operations. As we shall see in the next chapter,
UCD-II will help us decompose a general LSV filter on a general graph to component LSI
filters on each of the circulant graphs. The other two decompositions place restrictions on
the filters that can be generalized.

• Permutation Invariance: It would be highly desirable for the decomposition to be invari-
ant to the node ordering, i.e. we should get the same component graphs irrespective of the
node ordering we choose. Classically, in the graph theory literature, decomposition of a
given graph G with respect to a graph H , is defined to be a partitioning of the edges of G,
with each partition corresponding to a graph that is isomorphic to H . By definition this de-
composition is invariant to node ordering. However, it is well known that this problem is
NP-complete [43].

Unfortunately, the decompositions we have presented here are not invariant to the node or-
dering. Any heuristic algorithm for graph decomposition would likely give a decomposition
that is dependent on the initial state which is the node ordering here. Hence, one can hope
to obtain a reasonably good decomposition by starting with a good initial point. In the next
section, we will discuss an algorithm that obtains a particular node ordering which we will
heuristically argue that is good for our decompositions. We use this algorithm in all our
simulation and application examples.

6.4.1 Reverse Cuthill-McKee Ordering
We saw that the initial node ordering is important for the proposed circulant decompositions. Intu-
itively, if the local neighborhoods of the nodes in the given graph are approximately circulant, then
it is likely that the component graphs in the decomposition well-capture the local properties of the
original graph. By this, we mean that if we look at nodes neighboring one other, then their local
neighborhoods should look similar. It might be reasonable to expect this of many graphs, since

89

0 50 100 150 200

0

50

100

150

200

nz = 4336

Adjancency matrix before RCM ordering

0 50 100 150 200

0

50

100

150

200

nz = 4336

Adjacency matrix after RCM ordering

RCM ordering of the Adjacency matrix of the temperature dataset

Figure 6.6: RCM ordering of the adjacency matrix of a United States temperature dataset [2](more
details of the dataset in Section 8.5.1). The original matrix and the RCM ordered matrices are
shown. The shaded entries are the non-zero entries of the matrix.

local structures tend to be similar. For example, in the Watts-Strogatz model [23] for small world
networks, it is quite likely that nodes that are neighboring to each other see the same or similar
neighborhoods. In other words, if we look at the circulant decomposition, then the circulant graphs
that we get for neighboring nodes is likely to be the same. Thus we could design filters that slowly
vary across the neighborhoods.

One of the major challenges in this approach is that even though a given graph might have such a
property of local similarity, the node ordering might not reflect it. Finding the best node ordering
to fit the model is likely to be a very hard problem. In order to capture some of these properties, we
resort to a node ordering called as the Reverse-Cuthill-McKee (RCM) ordering [44]. This ordering
tries to obtain a permutation of the rows and columns such that the entries are concentrated towards
the diagonal i.e. reduce the bandwidth of the matrix. The bandwidth of a matrix is the smallest
number of adjacent diagonals to which all the non-zero entries of the matrix are confined to. In
other words, the ordering tries to make the matrix as close as possible to a banded matrix. The
RCM algorithm is a heuristic that obtains a matrix with small bandwidth.

Notice that a matrix with b bands, having all the band entries to be non-zero corresponds to a
circulant graph with generator set S = {1, 2, · · · , b − 1}. Thus intuitively, an approximately
banded matrix such as the one obtained by the RCM ordering, is likely to have locally circulant
structures that can be captured by the decomposition. Fig 6.6 shows an example of the RCM
ordering of a given adjacency matrix.

90

6.5 Chapter highlights

• We consider different decompositions of a general graph into circulant components where
the decomposition is defined as expressing the Laplacian matrix of the original graph as a
linear summation of the Laplacian matrices of circulant graphs, where each Laplacian matrix
term in the summation is pre and post multiplied by diagonal matrices.

• If one restricts the decompositions to only have either pre multiplying diagonal matrices or
post multiplying diagonal matrices but not both, then we can show that the circulant graphs
so obtained have to be directed in nature.

• For decompositions into undirected circulant graphs, we propose three decompositions,

– Overcomplete Undirected Circulant Decomposition (OUCD)

– Undirected Circulant Decomposition- I (UCD-I)

– Undirected Circulant Decomposition-II (UCD-II)

• The OUCD has the advantage that the component graphs are invariant to the original graph,
but is overcomplete in nature. There are O(Nd) terms in the decomposition where d is the
average degree of the nodes.

• UCD-I hasN+1 terms in the decomposition, but the component graphs depend on the given
graph.

• UCD-II has 2N + 1 terms in the decomposition and the component graphs depend on the
given graph. The advantage over UCD-I is that in LSV filter design, we will see in the
next chapter that UCD-II allows to decompose arbitrary LSV filters into LSI filters over the
component graphs.

• All the decompositions have the primary drawback that they depend on the node ordering.
In general, obtaining an ordering independent decomposition is known to be a hard problem.
The initial node ordering plays an important role in the decomposition. In order to have a
good initial point, we use a heuristic algorithm called the Reverse-CutHill-McKee (RCM)
ordering algorithm, that seems to provide reasonably good results in terms of capturing the
local neighborhoods of the graph in the decomposition.

91

Chapter 7

Sampling on general graphs

In this chapter we discuss sampling and the associated reconnection strategies for general graphs.
These are essential tools required for multi resolution analysis on graphs. We have defined these
operations for circulant graphs in Chapter 4 and wish to extend these to general graphs based on
the circulant decompositions.

7.1 Sampling on general graphs
There are various graph sampling algorithms defined in the literature for different applications [28].
For example, the second eigenvector or the Fiedler vector provides a partition of the graph into two
disjoint components which is used in applications like segmentation [45]. Here we define sampling
on a noncirculant graph, using the circulant decompositions from Chapter 6.

Consider the UCD-I decomposition 6.3.2 for simplicity. Let {G0, ..., GN−1} be the set of circulant
graphs into which a noncirculant graph G has been decomposed, and let {S0,, SN−1} be their
corresponding generating sets. The key idea is to downsample on each of the circulant graphs,
which corresponds to a downsampling pattern on the parent graph. For this, it is important to en-
sure that the downsampling pattern is consistent across the individual circulant graphs.

We have defined sampling with respect to every element s in Sk for a circulant graph Gk. Let
Rk = gcd(Sk, N), where the gcd acts on every element of Sk. The elements of Rk determine the
sampling pattern (Lemma 3). Let R∗ =

⋂
Rk 6= ∅. We choose the sampling pattern defined by

any r∗ ∈ R∗. This corresponds to sampling the circulant graph Gk with respect to s∗k ∈ Sk such
that gcd(s∗k, N) = r∗. Note that for some graphs, R∗ might be the empty set. In that case, we
choose the downsampling pattern that is consistent with the largest subset of the circulant graphs.

Given the downsampling strategy, one can now obtain conditions for the lossless recovery of the
original signal. Define the signals xk = Q̂kx that are made to reside on the individual circulant

92

graphs in the decomposition (we will see why this is the case when we discuss filtering in the next
chapter). Assume that the edge weights are unity. Note that xk consists of the signal values at node
k and its neighbors. Based on the spectral properties of the signals xk, we can obtain a condition
for the lossless recovery of the original signal after downsampling.

Theorem 17. (ALIAS-FREE RECOVERY) A signal x on a graphG can be downsampled according
to the sampling pattern defined by r∗, and recovered without loss, if each signal xk defined on
the circulant graph Gk, for all k that are retained, can be downsampled with respect to s∗k and
subsequently recovered.

Proof: Let y = x ◦ p and yk = xk ◦ p, where ◦ represents element-wise multiplication
and p is the downsampling pattern vector as defined in Lemma 3. We are given that xk’s can be
recovered from yk ∀ k such that p(k) 6= 0. We are interested in recovering x from y. Note that we
can get all the yk’s from y since x is a superset of the xk’s. Thus ∀ k such that p(k) 6= 0, we can
recover xk from yk and hence x(k). Now we need to see how to recover x(k) such that p(k) = 0.
We will show this by considering two different cases.

Case 1: r∗ = s∗ ∈ Sk.
If p(k) = 0, we know that p(k + s∗) 6= 0 by definition. From the construction of the circulant
graphs and the associated signals, we have that x(k) ∈ xk+s∗ since k is a neighbor of the node
(k + s∗). Hence x(k) can be recovered from xk+s∗ which is in turn recoverable from yk+s∗ .

Case 2: r∗ 6= s∗ ∈ Sk.
We need to show that whenever p(k) = 0 there exists k′ such that p(k′) 6= 0 and (k−k′) mod N ∈
Sk′ , i.e. k is a neighbor of k′. In this case we are done using the same argument as in Case 1. Let
s∗k ∈ Sk be such that gcd(s∗k, N) = r∗. Consider nodes k1 = (k + s∗k)N and k2 = (k − s∗k)N . Then
we have that,

• p(k1) 6= 0 and p(k2) 6= 0.
This follows from the sampling strategy since we are sampling with respect to s∗k.

• Either s∗k ∈ Sk1 or s∗k ∈ Sk2 or both.
For s∗k to belong to Sk, we need at least one of the nodes k1 or k2 to be a neighbor of node k
in the original graph. Correspondingly at least one of the sets Sk1 or Sk2 will have s∗k due to
the node k being a neighbor (note that we are dealing with undirected graphs).

Thus x(k) ∈ xk1 or x(k) ∈ xk2 or both and hence is recoverable from yk1 or yk2 .

Remark: A sufficient condition for perfect signal recovery after sampling is that the GFT band-
width of each of the signals xk, satisfies the maximum sampling bandwidth with respect to s∗k on
the graph Gk, as defined in Theorems 4 and 5. This alias-free recovery condition is conservative,
since the signals must be recoverable onN/2 separate circulant graphs. Nevertheless, this might be
useful for general graphs having local neighborhoods with a circulant structure (e.g., small-world
networks based on the Watts-Strogatz model [23]).

93

7.2 Reconnection strategies
As before, after downsampling, the new underlying graph on which the sampled signal resides
needs to be defined. In the circulant case, we defined two strategies for reconnection—one based
on Kron-reduction and the other a circulant preserving reconnection strategy. One of the major
goals in the circulant case was to retain the circulant structure of the graph. For an arbitrary gen-
eral graph there is no explicit structure that can be carried over to the component graphs. Hence
there is no closure property (Section 4.3.1) that one can hope to retain. However, the other proper-
ties such as connectivity, spectral compaction and computational efficiency are still desirable of a
reconnection algorithm.

Kron-reduction as defined in Section 4.3.2 is generic and can be applied to any graph. Thus, given
the Laplacian matrix L of a graph and α the subset of nodes retained after downsampling based on
any strategy, the Laplacian matrix of the new graph L̂ is defined as follows,

L̂ = L(α, α)− L(α, αC)L(αC , αC)−1L(αC , α)T. (7.1)

The properties of Kron-reduction detailed in Section 4.3.2 hold for any general graph i.e. connec-
tivity, spectral interlacing and the closure of the Laplacian matrix.

The circulant-preserving strategy was defined in order to retain the circulant structure of the graphs
after downsampling. However, such a property is not defined for arbitrary graphs. Nevertheless
we can extend the strategy to general graphs using the circulant decomposition in the following
manner. For each circulant graph Gk in the decomposition, we know how to get the downsampled
Laplacian matrix L̂k from Section 4.3.3. Since the circulant graphs in the decomposition essentially
reflect the neighborhood structure of each node, we can retain this in the new Laplacian L̂ as
follows,

L̂(k, :) = L̂k(k, :), (7.2)

i.e., the kth row of the new Laplacian matrix is the kth row of the Laplacian matrix of the corre-
sponding circulant graph. Note that this construction gives a valid Laplacian matrix. However, the
drawback of this approach is that the new Laplacian need not be symmetric and hence we might
end up with a directed graph, which we currently do not know how to deal with. A naive method
to overcome this would be to symmetrize the Laplacian matrix by making each of the edges undi-
rected. However, the connectivity properties are not satisfied under this strategy. Hence we use the
Kron-reconnection strategy in our simulations and example applications.

Fig 7.1 shows an example mesh graph [46] of a Tapir1. A synthetic LP signal is associated with

1A tapir is a large browsing mammal, similar in shape to a pig, with a short, prehensile snout

94

0 200 400 600 800 1000 1200
100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200
100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency Index

M
a
g
n
i
t
u
d
e

r
e
s
p
o
n
s
e

GFT of the Tapir mesh graph signal

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvalues

M
a
g
n
i
t
u
d
e

r
e
s
p
o
n
s
e

GFT of the Tapir mesh graph signal

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency Index

M
a
g
n
i
t
u
d
e

r
e
s
p
o
n
s
e

GFT of the downsampled Tapir mesh graph signal

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Eigenvalues

M
a
g
n
i
t
u
d
e

r
e
s
p
o
n
s
e

GFT of the downsampled Tapir mesh graph signal

Original(Tapir(graph(Downsampled(Tapir(graph(

Figure 7.1: Example of a mesh graph of a Tapir. A synthetic LP signal is associated with the graph.
The original graph is downsampled by two and reconnected using the Kron-reconnection strategy.
The GFT of the signals before and after downsampling are shown in the figure.

95

the graph. The GFT of the signal is shown both as a function of the frequency index and the eigen-
values. The graph is downsampled by two after an RCM ordering of the nodes and reconnected
using the Kron-reconnection strategy. Note that Kron-reconnection introduces edge weights which
we explicitly do not shown in the figure. Edges are drawn between nodes whenever the edge
weight is above a threshold. One can observe that the LP nature of the graph signal is retained
in the downsampled graph and the downsampled graph is also visually representative of the origi-
nal graph. The circulant reconnection strategy on the other hand does not provide any reasonable
reconnections and hence we do not plot the graphs here.

96

7.3 Chapter highlights

• Sampling strategies for general graphs are defined based on the circulant decomposition. In
particular, the generating set for each circulant graph is calculated and the sampling is chosen
with respect to that element of the generating set for each graph which results in a consistent
downsampling pattern for all the component graphs.

• Alias-free sampling is obtained as long as the signal bandwidth on each of the component cir-
culant graphs is small enough for alias-free sampling on the corresponding circulant graph.

• Kron-reconnection can be used for general graphs and many of the properties carry over. The
circulant preserving reconnection strategy does not retain many of the interesting properties
and can result in a directed graph.

97

Chapter 8

Filter bank design on general graphs

Filtering is one of the important tools required for signal analysis. So far we discussed the basic
operations required to define and design filters and filter banks for signals on general graphs. In
particular, we discussed decompositions of general graphs into circulant graphs and extensions of
the sampling and reconnection strategies. In this chapter, we will use the derived tools to define
Linear Shift Varying (LSV) filters on general graphs and then transition to filter bank design for
multi resolution signal analysis.

8.1 Shift-varying filters on general graphs
In this section, we derive the relation between filters on general graphs and the associated filters
on the circulant graphs in the decomposition. Recall the definitions of a k-hop localized filter on
a general graph from Section 5.1. We are aware that filters on general graphs are shift-varying
(LSV) and we need the relation to LSI filters on the circulant graphs. The following lemma gives
this relationship.

Theorem 18. If H is a 1-hop LSV filter on G, then we get,

H = DH +
N−1∑

k=0

(
Qk

(
IL̂k ◦ Ĥk

)
Q̂k + Qk

(
IL̃k ◦ H̃k

)
Q̃k

)
, (8.1)

where each of the Ĥk’s and H̃k’s are LSI filters on the circulant graphs, constructed from H
in exactly the same way as the matrices L̂k’s and L̃k’s are constructed from L in the UCD-II
decomposition (Theorem 16). I() is the modified indicator function defined in Equation 5.2 and
DH = diag(H).

Proof: The proof follows by decomposing the filter matrix H as a linear combination of
circulants in exactly the same way we decomposed the Laplacian of a general graph in the UCD-

98

Q̂0

Q0

Q̂N-1

QN-1

Q0

Q0

QN-1

QN-1

ĤN-1

HN-1

Ĥ0

H0

Figure 8.1: Decomposition of a LSV filter on a general graph as a bank of LSI filters on individual
circulant graphs.

II decomposition (see Theorem 16). Note that the UCD-II decomposition is useful here since in
general the filter H need not be symmetric.

Fig. 8.1 shows a block diagram description of this decomposition. Each of the filters Ĥk and
H̃k act on the signals Q̂kx and Q̃kx defined on the corresponding circulant graph. This definition
extends to a k-hop filter by considering the circulant decomposition of the k-hop adjacency matrix.

Given a decomposition of the LSV filters into LSI filters, one approach is to design each of the LSI
filters to have a desired filter response on each of the individual circulant graphs. This is similar
to LTV filter banks where the individual LTI filters are designed to have a particular response for
a fixed time duration and then the response changes. Similarly, suppose that the given graph have
approximately circulant neighborhoods, then one can design filters whose response slowly varies
across the graph.

Analogous to our discussion on filter banks for multi resolution analysis for circulant graphs, we
shall design filter banks for general graphs satisfying some of the desirable properties we have
listed in Section 5.2. The definition of a two-channel filter bank is similar to that we have for
circulant graphs, with the analysis stage defined by the filters HLP and HHP and the synthesis stage
defined by the filter HINV. Fig 8.2 shows the filter bank structure. The downsampling operation are
now carried out based on the circulant decomposition as we have discussed in Chapter 6. However
one could use any other downsampling and reconnection strategy. We are interested in design-
ing filter banks having the following desirable properties (Section 5.2)—perfect-reconstruction,
critical-sampling, localization, localized reconstruction, orthogonality, graph-invariance and diag-
onalizability.

99

€

HLP

€

HHP

€

↓RHP

€

↓RLP

€

x

€

˜ y LP

€

˜ y HP€

yLP

€

yHP

x̂

ANALYSIS'STAGE'

SYNTHESIS'STAGE'

€

x(0)

€

x(1)

€

x(2)

€

x(3)

€

x(4)
€

˜ y LP (2)

€

˜ y LP (4)

€

˜ y HP (3)

Input'graph'signal''

Downsampled'graph'signal'

€

HINV

yHP (1)

yLP (0)

LSV'filters'

Figure 8.2: Example of a two-channel filter bank for signals defined on general graphs. The down-
sampling operation is carried out using the circulant decomposition. In this example, the down-
sampling factors in the high-pass and low-pass branches is chosen so as to have critical sampling.
The filters HLP and HHP are LSV filters appropriately designed.

We would like to explicitly point out that the Laplacian Pyramid filter bank structure and the
Spline-like filter bank structure that we discuss in the following sections are not dependent on the
circulant decomposition of general graphs.

8.2 The Laplacian Pyramid for general graphs
The Laplacian pyramid, as defined in Section 5.3, is a generic oversampled filter bank structure
that can be used for arbitrary graphs. The LP and HP outputs are generated as follows,

ỹLP = HLPx, (8.2)
yLP = (ỹLP) ↓2, (8.3)
yHP = x− ỹLP, (8.4)

As before, we have considerable flexibility in designing the LP filter, HLP. However, note that one
should be able to reconstruct the signal ỹLP from its downsampled version yLP. We do not have
sharp aliasing and recovery results for general graphs. One conservative option is to design the
filter in such a way that the alias-free sampling condition is met as derived in Theorem 17. Thus
the LSI filters on each of the component circulant graphs will be designed to satisfy the alias-free
recovery condition on these graphs.

100

One could also generalize the filters to allow aliasing and yet obtain perfect recovery. This follows
from ideas in compressive sensing where enough linear combinations of the data is obtained for
successful recovery given that it is known the data is sparse in some domain [47]. However, we
might also want to maintain the underlying structure of the data in the downsampled signal which
will help in multi resolution. Hence one might need to choose the sensing matrices (related to the
filters in our context) carefully to allow for this. We do not explore this aspect in any further detail.

As discussed before, the Laplacian pyramid structure satisfies the perfect reconstruction property
but is oversampled. The LP filter can be designed to meet the other desirable properties. For ex-
ample, in order to satisfy the diagonalizability property, the filter needs to be a polynomial in the
adjacency matrix which would also render it to be localizable on the graph domain. Further, if the
coefficients of the polynomial are fixed, we would also satisfy the graph-invariance property.

Fig 8.3 shows an example of a Laplacian pyramid decomposition for a Tapir mesh graph. The
LP filter is chosen to have an ideal filter response with cut-off frequency N/2. The Reverse-
Cuthill-McKee algorithm is used to choose the node ordering. The downsampling and reconnec-
tion methodologies are carried out according to the methods described for general graphs. Note
that in this example, the LP is not optimized for perfect-reconstruction and is only chosen for
illustrative purposes.

8.3 Shift-varying Spline-like filter bank structures
The Laplacian pyramid structure offers flexibility in design at the loss of the critical-sampling
property. Critical-sampling is necessary while dealing with very large scale datasets. In this sec-
tion we will focus on critically-sampled filter banks motivated by Spline filters in classical signal
processing.

8.3.1 Simple Spline-like filter banks
These are similar to the spline filters on circulant graphs wherein we take a normalized average
of the neighboring nodes. Since each node can have different number of neighbors, we need a
normalized adjacency matrix. The symmetric normalized AS

n and random-walk normalized ARW
n

adjacency matrices and the corresponding Laplacian matrices have been defined in Section 2.1.

The LP and HP filters are now defined by replacing the adjacency matrix 1
d
A in Eqn. 5.12 and

101

Lo
w
$p
as
s$

Lo
w
$p
as
s$

Hi
gh
$p
as
s$

Hi
gh
$p
as
s$

La
pl
ac
ia
n$
Py
ra
m
id
$F
ilt
er
$b
an
k$

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
20
0

40
0

60
0

80
0

10
00

12
00

0123456789

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 O
rig

in
al

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

N
=
10
24

Ta
pi
r$d

at
as
et
$

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
10
0

20
0

30
0

40
0

50
0

60
0

0123456

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow

pa
ss

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

0
20
0

40
0

60
0

80
0

10
00

12
00

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

hp
as

s
si

gn
al

 fr
eq

ue
nc

y
re

sp
on

se

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
50

10
0

15
0

20
0

25
0

30
0

0

0.
51

1.
52

2.
53

3.
54

4.
5

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow

pa
ss

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

0
10
0

20
0

30
0

40
0

50
0

60
0

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

hp
as

s
si

gn
al

 fr
eq

ue
nc

y
re

sp
on

se

Fi
gu

re
8.

3:
M

ul
tis

ca
le

de
co

m
po

si
tio

n
of

a
Ta

pi
r

m
es

h
gr

ap
h

us
in

g
th

e
L

ap
la

ci
an

py
ra

m
id

.
T

he
L

P
fil

te
r

is
ch

os
en

to
ha

ve
an

id
ea

lr
es

po
ns

e.
T

he
gr

ap
h

si
gn

al
is

bi
na

ry
w

ith
on

e
fo

ur
th

of
th

e
no

de
s

ha
vi

ng
th

e
va

lu
e

on
e

an
d

th
e

re
st

ar
e

ze
ro

.T
he

R
ev

er
se

-C
ut

hi
ll-

M
cK

ee
al

go
ri

th
m

is
us

ed
to

ch
oo

se
th

e
no

de
or

de
ri

ng
.T

he
do

w
ns

am
pl

in
g

an
d

re
co

nn
ec

tio
n

m
et

ho
do

lo
gi

es
ar

e
ca

rr
ie

d
ou

ta
cc

or
di

ng
to

th
e

m
et

ho
ds

de
sc

ri
be

d
fo

rg
en

er
al

gr
ap

hs
.

102

Eqn. 5.15 by AS
n or ARW

n . For example,

HLP =
1

2

(
IN + AS

n

)
, (8.5)

=
1

2

(
2IN − LS

n

)
, (8.6)

=

(
IN −

1

2
LS
n

)
. (8.7)

HHP =
1

2

(
IN −AS

n

)
, (8.8)

=
1

2
LS
n, (8.9)

Theorem 19. For a noncirculant graph, the spline filters defined in Eqn 8.7 and Eqn 8.9 form a
critically-sampled perfect-reconstruction filterbank for any downsampling pattern, as long as at
least one of the nodes retains a low-pass output.

Proof: We will first prove this for the filters designed using the symmetric-normalized ad-
jacency matrix and then consider the random-walk normalized adjacency matrix. Note that the
proof of Theorem 10 did not explicitly make use of the fact that the graphs are circulant in nature.
The proof relied on the following important properties of the eigenvalues of the adjacency matrix
which hold true for the symmetric-normalized adjacency matrix as well [41].

• The eigenvalues of the normalized adjacency matrix λi, satisfy the property −1 ≤ λi ≤ 1.

• For a connected graph, the multiplicity of λi = 1 is unity.

• λi > −1 for non-bipartite graphs and λi = −1 with unit multiplicity for connected bipartite
graphs.

Hence the same proof of Theorem 10 can be used to assert the claim in this Theorem for symmetric
normalized matrices.

Let us now consider the case of the random-walk normalized adjacency matrix. Recall that the
output of the two-channel filter bank y can be written as follows,

y =
1

2

(
IN + KARW

n

)
x, (8.10)

where K is a diagonal matrix with K(i, i) = 1 if node i has the LP output after sampling, −1
otherwise. We want to show that (IN+KARW

n) is invertible for the perfect-reconstruction property

103

to hold. We have the following,

IN + KARW
n = IN + KD−1A, (8.11)

= IN + KD−1/2D−1/2AD−1/2D1/2, (8.12)
= IN + D−1/2KD−1/2AD−1/2D1/2, (8.13)
= D−1/2

(
IN + KD−1/2AD−1/2

)
D1/2, (8.14)

= D−1/2
(
I + KAS

n

)
D1/2, (8.15)

where the the third equality follows from the fact that K and D are diagonal matrices. Thus
(IN + KARW

n) is invertible since we showed that (IN + KAS
n) is invertible.

Remark: The Spline-like filters have the following properties: perfect-reconstruction, critical-
sampling and graph-invariance. Note that these filters are not diagonalizable by the eigenvectors
of the Laplacian matrix L as in the case of circulant graphs. However they are diagonalized by the
eigenvectors of the corresponding normalized Laplacian matrices (i.e. LRW

n and LS
n). The eigen-

vectors of the normalized Laplacian matrix too have properties similar to those of the Laplacian
matrix. Hence, to get a sense for the filter response properties, one can plot the response obtained
by diagonalization with the eigenvectors of the normalized Laplacian matrix. Further, note that
the Spline-like filters obtained as a function of the random walk normalized Laplacian matrix are
not symmetric in nature since the random-walk normalized adjacency matrix is not symmetric and
therefore the eigenvectors are not orthonormal.

Fig 8.4 shows the response of the LP and HP filters for the Tapir mesh graph (see Fig. 8.5). The
nature of the filters renders them to be linear as a function of the eigenvalues of the normalized
Laplacian matrix.

Fig 8.5 shows an example of a mesh graph of a Tapir with 1024 nodes [46]. The figure illustrates
spline wavelets at three different scales on the Tapir graph, localized on different regions. The
basis functions are obtained by combining the filters at different stages in the decomposition. As
the scale increases, the spread of the basis functions increases in the graph domain while remaining
increasingly localized in the frequency domain.

Fig 8.6 shows a multiscale decomposition of a Tapir mesh graph with 1024 nodes. The graph signal
is binary with ones on one fourth of the nodes and zeros otherwise. The RCM node ordering is
used before carrying out the circulant decomposition. Downsampling and reconnection is carried
out using the methods discussed in Chapter 7.

104

100 200 300 400 500 600 700 800 900 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frequency index

M
ag

ni
tu

de
 o

f t
he

 fr
eq

ue
nc

y
re

sp
on

se

Haar frequency response for the Tapir mesh graph

Lowpass filter response
Highpass filter response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eigenvalues
M

ag
ni

tu
de

 o
f t

he
 fr

eq
ue

nc
y

re
sp

on
se

Haar filter frequency response for the Tapir mesh data

Lowpass filter response
Highpass filter response

M
ag
ni
tu
de

*o
f*t
he

*F
re
qu

en
cy
*re

sp
on

se
*

Spline*filter*frequency*response*for*the*Tapir*mesh*data*Spline*filter*frequency*response*for*the*Tapir*mesh*data*

(a)* (b)*
Frequency*Index*

Figure 8.4: Response of the simple Spline-like filters shown for the Tapir mesh graph. Note that the
response is obtained by diagonalization with the eigenvectors of the normalized Laplacian matrix.
Hence the eigenvalues in the x-axis too are the eigenvalues of the normalized Laplacian matrix.
The response is linear as a function of the eigenvalues given the structure of the filters.

0 200 400 600 800 1000 1200
100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200
100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200
100

200

300

400

500

600

700

800

900

Scale&2& Scale&3& Scale&4&

Figure 8.5: Spline wavelets at three different scales illustrated on the Tapir dataset. These are
localized at different regions and the spread in the graph domain changes with the scale.

105

Lo
w
$p
as
s$

Lo
w
$p
as
s$

Hi
gh
$p
as
s$

Hi
gh
$p
as
s$

Si
m
pl
e$
Sp
lin
e$
Fi
lte

rb
an
k$

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
20
0

40
0

60
0

80
0

10
00

12
00

0123456789

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 O
rig

in
al

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0 0

20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
20
0

40
0

60
0

80
0

10
00

12
00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

0
10
0

20
0

30
0

40
0

50
0

60
0

01234567

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow

pa
ss

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

0
10
0

20
0

30
0

40
0

50
0

60
0

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

hp
as

s
si

gn
al

 fr
eq

ue
nc

y
re

sp
on

se

0
50

10
0

15
0

20
0

25
0

30
0

0

0.
51

1.
52

2.
53

3.
54

4.
5

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 L
ow

pa
ss

 s
ig

na
l f

re
qu

en
cy

 re
sp

on
se

0
50

10
0

15
0

20
0

25
0

30
0

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
35

 F
re

qu
en

cy
 In

de
x

 Magnitude of the frequency response

 H
ig

hp
as

s
si

gn
al

 fr
eq

ue
nc

y
re

sp
on

se

N
=
10
24

Ta
pi
r$d

at
as
et
$

Fi
gu

re
8.

6:
M

ul
tis

ca
le

de
co

m
po

si
tio

n
of

th
e

Ta
pi

rm
es

h
gr

ap
h

us
in

g
si

m
pl

e
Sp

lin
e-

lik
e

w
av

el
et

s.
T

he
gr

ap
h

si
gn

al
is

bi
na

ry
w

ith
on

e
fo

ur
th

of
th

e
no

de
s

ha
vi

ng
th

e
va

lu
e

on
e

an
d

th
e

re
st

ar
e

ze
ro

.
O

ne
ca

n
ob

se
rv

e
th

at
th

e
H

P
ou

tp
ut

ca
pt

ur
es

th
e

tr
an

si
tio

n
of

th
e

si
gn

al
va

lu
e

fr
om

un
ity

to
ze

ro
w

hi
le

th
e

L
P

is
qu

al
ita

tiv
el

y
re

pr
es

en
ta

tiv
e

of
th

e
or

ig
in

al
si

gn
al

.

106

8.3.2 Generalized weighted Spline-like filter banks
As before, the simple Spline-like filters have the disadvantage that the filter coefficients are fixed.
In order to have flexibility in filter design, we shall introduce weights in the filter matrices that
can be optimized over. Depending on the form of the filters, we have two versions of the general-
ized Spline-like filters—Generalized Weighted Spline-like filter banks- I (GWS-I) and Generalized
Weighted Spline-like filter banks- II (GWS-II).

Generalized Weighted Spline-like filter banks- I (GWS-I)

Define the matrix Ãn as Ãn(i, j) = W (i, j)A(i, j), where W (i, j) ∈ [0, 1] and
N−1∑

j=0

W (i, j) = 1.

The LP and HP filters are now defined as follows,

H̃LP =
1

2

(
IN + Ãn

)
, (8.16)

H̃HP =
1

2

(
IN − Ãn

)
. (8.17)

Theorem 20. The generalized spline filters defined above form a critically-sampled perfect recon-
struction LSI filterbank for any downsampling pattern, as long as at least one of the nodes retains
a low-pass output and the weights are symmetric—that is, W (i, j) = W (j, i).

Proof: Note that Ãn can be treated as the adjacency matrix of a weighted graph. The normal-
ized adjacency matrix Ãn has the same properties as that of the normalized adjacency matrix of an
unweighted graph [48] (Proposition 2.8). The eigenvalues are therefore bounded between −1 and
1. The minimum eigenvalue is −1 only for a bipartite graph. Thus the same proof of Theorem 19
can be used to prove the invertibility of these filters.

Remark: The only difference between the generalized Spline-like filters defined for circulant
graphs in Section 5.4.2 and the ones above, is that we only allow for symmetric weights here. Note
that we do not have any restriction on the number of components to be retained in the LP and HP
branches as in Theorem 12. If suppose we restrict the weights to be symmetric in the generalized
filters for circulant graphs as well then we would not have any restriction on the number of com-
ponents to be retained in the two branches of the filter bank.

Note that the GWS-I filters are not diagonalizable in general by the eigenvectors of the Laplacian
matrix (normalized or un-normalized). In the circulant graph case, since the filter banks were cir-
culant, the diagonalizing matrices were the DFT matrices irrespective of the weights. The main
disadvantage this poses is that it is unclear on how to optimize the weights since there is no notion
of a global frequency response for these classes of filters. One option is to obtain the LSI decom-
position of these filters as discussed in Section 8.1. The weights can then be optimized to obtain

107

desirable frequency responses on the component circulant graphs. This can be computationally
intensive as the size of the graphs increase. In the next section, we shall discuss a different version
of the filter banks which allow for easier weight optimization at the loss of some flexibility in the
design.

Generalized Weighted Spline-like filter banks- II (GWS-II)

From our previous discussion, it seems like the generalized filter bank problem design is more
tractable if only the filters could be diagonalized by the eigenvectors of the Laplacian matrix. This
can be achieved by restricting the form of the filters to be a polynomial in the adjacency matrix.
Consider the following polynomial form of the filters for the LP and HP filter banks,

HLP =
1

2

(
IN +

J∑

`=1

w`(A
S
n)`

)
, (8.18)

HHP =
1

2

(
IN −

J∑

`=1

w`(A
S
n)`

)
, (8.19)

where [w1, · · · , wJ] are the weights to be optimized for a desired filter response. One can similarly
define filters using the random-walk normalized adjacency matrix. Let the eigen decomposition of
AS
n be given as follows,

AS
n = USΓSUH

S. (8.20)

Note that the eigenvectors of the normalized adjacency matrix and the normalized Laplacian matrix
coincide. The filters can now be expressed as follows,

HLP =
1

2

(
IN +

J∑

`=1

w`USΓ`
SUH

S

)
, (8.21)

=
1

2

(
US

(
IN +

J∑

`=1

w`Γ
`
S

)
UH

S

)
. (8.22)

The eigenvalues of HLP are thus given by

(
1 +

J∑

`=1

w`γ
`
S

)
. Similarly we have that,

HHP =
1

2

(
US

(
IN −

J∑

`=1

w`Γ
`
S

)
UH

S

)
. (8.23)

Theorem 21. The generalized Spline-like filters defined in Eqn. 8.22 and Eqn. 8.23 form a critically-

108

sampled perfect reconstruction LSI filter bank for any downsampling pattern as long as the weights
satisfy one of the following properties,

w` ≥ 0 and
J∑

`=1

w` = 1, (8.24)

or (8.25)
(

J∑

`=1

w`γ
`
S,i

)2

> 1 , ∀i = 0, · · · , N − 1, (8.26)

where {γS,i}N−1
i=0 , are the eigenvalues of the normalized adjacency matrix, AS

n.

Proof: The proof steps are similar to that of Theorem 10. The output of the two-channel
filter bank y can be written as follows,

y =
1

2

(
IN + KBS

n

)
x, (8.27)

where K is a diagonal matrix with K(i, i) = 1 if node i has the LP output after sampling, −1

otherwise and BS
n =

J∑

`=1

w`(A
S
n)`. We need to show that

(
IN + KBS

n

)
is invertible. From Eqn 8.20

we have that,

BS
n = US

(
J∑

`=1

w`Γ
`
S

)
UH

S. (8.28)

Suppose z = USr lies in the null space of
(
IN + KBS

n

)
. We then have the following,

(
IN + KBS

n

)
z = 0, (8.29)

(
IN + KUS

(
J∑

`=1

w`Γ
`
S

)
UH

S

)
USr = 0, (8.30)

USr = −KUS

(
J∑

`=1

w`Γ
`
S

)
r, (8.31)

109

Taking the norm on both the sides of the equation we get that,

N−1∑

i=0


1−

(
J∑

`=1

w`γ
`
S,i

)2

 r(i)2 = 0, (8.32)

N−1∑

i=0

(
1− ψ2

i

)
r(i)2 = 0, (8.33)

where ψi =
J∑

`=1

w`γ
`
S,i are the eigenvalues of BS

n and γS,i is the ith eigenvalue of AS
n. Suppose

that

(
J∑

`=1

w`γ
`
S,i

)2

> 1, then clearly r = 0 and the proof follows. Else if the weights satisfy the

other condition, i.e., w` ≥ 0 and
J∑

`=1

w` = 1, then we can show that the same proof of Theorem 10

carries over by showing that the eigenvalues of BS
n satisfy the following required properties.

• The eigenvalues ψi are bounded between −1 and 1. This follows from the fact that −1 ≤

γS,i ≤ 1 since w` > 0 and
J∑

`=1

w` = 1.

• The multiplicity of ψi = 1 is unity for connected graphs. This follows by substituting the
value of γS,i = 1 whose multiplicity is unity in the case of connected graphs.

• For bipartite graphs the multiplicity of ψi = −1 is at most unity. We know that the multi-
plicity of γS,i = −1 is unity for bipartite graphs. Thus we have,

J∑

`=1

w`(−1)` =
∑

` even
w` −

∑

` odd
w` ≤ 1. (8.34)

We also know that the eigenvectors of BS
n and AS

n are the same. Hence the proof of Theorem 10
goes through in this case and the filter banks satisfy the perfect reconstruction property.

Remark: Note that for the second condition on the weights to hold (Eqn 8.26), the adjacency
matrix of the original graph should not have any zero eigenvalues. Such graphs are known as non-
singular graphs [40]. The filters HLP and HHP are diagonalizable by the eigenvectors of the graph

110

0 200 400 600 800 1000 1200
−0.5

0

0.5

1

1.5

2

2.5

3 x 1015

 Frequency index

 M
ag

ni
tu

de
 o

f t
he

 fr
eq

ue
nc

y
re

sp
on

se

 Generalized Weighted Spline−like Filter Bank − II frequency response

0 200 400 600 800 1000 1200
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5x 1015

 Lowpass filter response
 Highpass filter response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.5

0

0.5

1

1.5

2

2.5

3 x 1015

 EigenValues

 M
ag

ni
tu

de
 o

f t
he

 fr
eq

ue
nc

y
re

sp
on

se

 Generalized Weighted Spline−like Filter Bank − II frequency response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5x 1015

 Lowpass filter response
 Highpass filter response

(a)$ (b)$

Figure 8.7: Example LP and HP GWS-II responses for the Tapir dataset plotted as a function of
the frequency index (Fig (a)) and the eigenvalues (Fig (b)). The number of hops is taken to be 10
and the filter coefficients are optimized to approximate an ideal LP response. In this example, the
constraints on the weights in the optimization forced the filter response at the zero-frequency to be
zero. Additional constraints could be imposed to obtain desirable responses.

Laplacian matrix and their responses are given as follows,

HG
LP(k) =

1

2

(
1 +

J∑

`=1

w`γ
`
S,N−1−k

)
, (8.35)

HG
HP(k) =

1

2

(
1−

J∑

`=1

w`γ
`
S,N−1−k

)
. (8.36)

A least-squares formulation or a similar optimization technique could be used to determine the
weights in order to approximate a desired frequency response. Fig 8.7 shows an example of the
LP and HP responses obtained after suitably optimizing the weights to approximate a desired
ideal LP response. The number of hops in the filter is taken to be 10. One can observe that the
response has a sharper cutoff in the transition band as compared to the simple Spline-like filters
(Fig 8.4). However, the response at the lower frequencies, especially nearer to the zero-frequency
is not good. Constraints could possibly be introduced in the optimization problem to have a better
response depending on the application of interest.

111

Stage&1& Stage&2&

R1 R2

Stage&1& Stage&2&

R1(v) R2(v)

Coefficients&are&changed&based&on&the&node&(shi56varying)&&

LSI&La<ce&filter&structure&for&circulant&graphs& LSV&La<ce&filter&structure&for&general&graphs&

€

x yLP

yHP

yLP

yHP

€

Ps
€

↓s 2

€

↓s 2

€

Ps"

↓2

↓2

P

€

x

Pv

Figure 8.8: Lattice structure for filters on general graphs. The structure is similar to that of circulant
graphs. The coefficients change for each node in the graph which can be optimized for every
circulant graph in the decomposition. The shift P̄ is introduced to represent the fact that we keep
the complementary set of nodes in the second branch after downsampling by two in the first branch.
Pv is the shift on the corresponding circulant graph.

8.3.3 Properties of the Spline-like filter banks
• The filters satisfy the critical-sampling and perfect-reconstruction properties.

• They are localized in the graph domain given their explicit representation in terms of the
adjacency matrix. Notice however that the reconstruction filter is not necessarily localized.

• The simple spline-like filters and GWS-II are diagonalizable by the eigenvectors of the nor-
malized Laplacian matrix. GWS-I in general does not satisfy this property.

• The spline-like and GWS-II filters are graph-independent. However, GWS-I in general re-
quires optimization of the coefficients for every node depending on the circulant decompo-
sition which is dependent on the graph.

8.4 Shift-varying Lattice filter bank structures
The Lattice filter structures defined for circulant graphs in Section 5.5 can be extended to general
graphs by varying the coefficients of the filter for different shifts. This is analogous to the design
of lattice filters in the time domain to obtain time-varying frequency responses [49]. As long as
each of the stages are invertible, we get perfect reconstruction by carefully applying the inverse
filters at the right time instants. The coefficients of the filters are suitably optimized to get the
desired frequency response at the corresponding time instants. Analogously, we design the filter
coefficients to get the desired response for each of the component circulant graphs at the specified
shift.

112

Fig. 8.8 shows the design of shift-varying lattice filters for circulant and general graphs. For LSI
filters on circulant graphs, the coefficients of the different stages in the lattice(R1,R2 here) do not
change with the different signal shifts. For LSV filters, the coefficients are a function of the node
being shifted to, i.e. R(v). The shifts in each of these filters depends on the circulant graph associ-
ated with that node. As long as each of these filters are invertible, the signal can be reconstructed.
At the synthesis stage, care should be taken to apply the inverting filters in proper order. The shift
P̄ is introduced to represent the fact that we keep the complementary set of nodes in the second
branch after downsampling by two in the first branch.

The lattice structure we saw earlier guarantees perfect reconstruction. The question is how to
design such filters. Note that, as in the case of the GWS-I, the filters here are not necessarily di-
agonalizable by the eigenvectors of the Laplacian matrix. Hence optimizing the coefficients is not
easy. In the time domain, LTV filters are used to obtain different time-frequency tilings at different
instants. Similarly, we might be interested in obtaining different spectral responses in different
sections of the graph. Let us assume that locally the graph has the same circulant structure and
this slowly varies in different sections of the graph. For each of these local circulant graphs, filter
coefficients could be designed to give a desired frequency response in that part of the graph. Tran-
sitioning to a different part of the graph (with a different circulant structure), the coefficients can
be changed to get the desired frequency response in that section of the graph.

There is a lot of work in the literature for designing time-varying lattice filters; one of the key
issues is the design of boundary filters that smoothen the transition from one frequency response
to another. These issues are present for general graphs as well. If the graph has no structure and ar-
bitrarily varies at each shift, then it is hard to get a good overall filter response. We are hoping that
graphs in real-world applications will have some sort of a “smooth” transition in local structures
so that we can design graph-frequency tilings for different sections of the graph. More detailed
analysis in this direction are future research directions.

The shift-varying Lattice filters are critically-sampled perfect-reconstruction filters by construc-
tion and are localized in both the analysis and synthesis stages. However they do not satisfy the
diagonalizability property in general and are not graph-independent.

8.5 Example multiscale decompositions
In this section, we consider some more examples of general graph datasets including a real-
world temperature dataset. In these examples, we use the Reverse-Cuthill-Mckee algorithm (sec-
tion 6.4.1) to obtain an ordering of the nodes and then apply the multi scale decomposition tech-
niques using the circulant decomposition of the resulting Laplacian matrix. The circulant de-
composition is useful for two operations: First, the sampling set of the nodes for HP and LP is
defined based on the individual circulant graphs in the decomposition. Second, the lattice filters

113

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

Low$pass$

High$pass$

Low$pass$

High$pass$

Simple1hop$Haar$filters$with$Kron$reconnec7on$
foratemperature$dataset$graph$

Figure 8.9: Multiscale decomposition of a US temperature dataset graph circulant graph using
Spline-like filters and the Kron-reconnection scheme.

are obtained by optimizing the coefficients of the filter for each of the circulant graphs. Note that
the simple Spline-like filter definition does not depend on the circulant decomposition except for
determining the sampling set.

8.5.1 Weather dataset
In this example for a general graph, we consider a weather dataset. We extracted average tem-
perature measurements at various locations across the United States during March 2012 from the
Federal Climate Complex’s weather dataset [2]. However, there is no predefined underlying graph
structure for this dataset. We generated a Euclidean-distance-based underlying graph with nodes at
each weather station (347 nodes) and edges between any two stations closer than a threshold dis-
tance. This graph structure captures the temperature correlation across physically close locations.
In our framework, we assumed that the underlying graph is given and do not consider generating
the graph from the data.

Fig. 8.9 shows the dataset plotted on a map of the US with its multiscale decomposition. The tem-
perature signal is plotted on the graph by intensity—lighter coloration indicates higher temperature—
and the signal undergoes two rounds of filtering and sampling. A simple one-hop Spline-like filter
is used for the decomposition with a Kron-reduction scheme for the reconnection of the down-
sampled graph. The simple Spline-like filters are based on the random-walk-normalized adjacency
matrix. The sampling strategy seems to provide a visually good approximation of the original
graph. Further, the LP and HP filters naturally capture signal variations.

114

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

Low$pass$

High$pass$

Low$pass$

High$pass$

Four$stage$La1ce$filters$with$Kron$reconnec7on$
foratemperature$dataset$graph$

Figure 8.10: Multiscale decomposition of a US temperature dataset graph using 4-stage Lattice
filters and the Kron-reconnection scheme.

Fig. 8.10 shows a multiscale decomposition of the temperature dataset using 4-stage lattice filters.
The first stage is a visually reasonable representation of the original graph data. However, the filter
design for the second stage does not give a good output. This is possibly due to not optimizing the
shifts in the different stages of the Lattice filter.

8.5.2 Watts-Strogatz small world network graphs
In this section, we look at synthetic graphs generated using the Watts-Strogatz model [23] for
small world networks. The model takes as input the average degree of each node and a parameter
β. First, a circulant graph with the set S = {1, 2, ..., davg/2} is generated. For each node in the
graph, every edge incident to the node is randomly rewired with a probability β. Here we consider
a graph generated according to this model with 64 nodes, mean degree 4 and β = 0.1.

Fig. 8.11 shows a multiscale decomposition of a synthetic Watts-Strogatz graph using Spline-like
filters and the Kron-reduction scheme. Half of the nodes in this graph have the signal value unity
and the other half have zero. Lighter coloration indicates a larger value. Fig. 8.12 shows a recon-
nection scheme with Spline-like filters and the reconnection scheme now replaced by the circulant
reconnection strategy.

Clearly the output of the filters depends on the reconnection scheme being used. A good reconnec-

115

Figure 8.11: Multiscale decomposition of a synthetic Watts-Strogatz graph with N = 64, mean
degree 4 and β = 0.1, using one-hop Spline-like filters and the Kron-reconnection scheme.

Figure 8.12: Multiscale decomposition of a synthetic Watts-Strogatz graph with N = 64, mean
degree 4 and β = 0.1, using one-hop Spline-like filters and the circulant reconnection scheme.

116

Figure 8.13: Multiscale decomposition of a synthetic Watts-Strogatz graph with N = 64, mean
degree 4 and β = 0.1, using 4-stage Lattice filters and the Kron-reconnection scheme.

tion scheme should qualitatively retain the structure of the graph. For example, if the graph signal
is sparse in the GFT domain of the original graph, then we might also expect it to be sparse in the
GFT basis defined by the downsampled graph. A deeper study of the reconnection strategies and
their effects on the GFT basis is warranted.

Fig. 8.13 shows the decomposition with the filters now replaced by Lattice filters. The first stage of
the decomposition seems to be relatively better than the second stage. The low-pass output in the
second stage is not as good a representation of the signal as that obtained with Spline-like filters.
The original graph is closer to a circulant graph than the downsampled graph in the first stage.
Thus the Lattice filters in the first stage are better designed than those in the second stage since, we
have not optimized our Lattice filters for different shifts.

117

8.6 Chapter highlights

• Linear Shift-Varying filters on general graphs can be decomposed into a bank of shift-
invariant filters on the individual circulant graphs in the circulant decomposition of the given
graph.

• Multiresolution filter bank structures such as the Laplacian pyramid, Spline-like filter banks
and Lattice structures can be extended to general graphs retaining some of the properties like
perfect-reconstruction and critical-sampling.

• The main drawback of the filter banks compared to their circulant analogues is that some of
these filters (GWS-I and Lattice structures) are not necessarily diagonalizable by the eigen-
vectors of the Laplacian matrix which poses difficulties in the filter design while optimizing
for the filter coefficients.

• The simple Spline-like filters and GWS-II are amenable to tractable design. The filter co-
efficients can be optimized to approximate desired responses. These are graph-independent
designs.

118

Part IV

Applications

119

Chapter 9

Wavelet Regularized Graph
Semi-Supervised Learning

9.1 Machine Learning—a brief introduction
In this era of Big Data, there is a surge of research interest in developing efficient and accurate
algorithms for machine learning (ML) tasks like classification and prediction. In the most ab-
stract form, a classical ML algorithm aims to estimate the labels {yi} of a given set of data {ai}.
If the labels are discrete, then the problem is known as classification; for instance, if the task is
guessing the genre of a novel, then the labels {yi} would represent different genres, like mys-
tery and romance, while the data points {ai} would represent different novels (concretely ai is a
feature vector extracted for novel i) in the dataset. In the continuous case, this problem is called
regression. Depending on the prior information on the data, we have different classes of problems.
Semi-supervised learning (SSL) is a class of ML problems wherein we are given limited labeled
data, {ai, yi} and a potentially large set of unlabeled data, {ai}. The goal is to predict the label
of new incoming data a. Numerous algorithms such as support vector machines, regularized least
squares, etc. have been proposed, and the reader is referred to [50] for a comprehensive overview
of the existing research work.

Meanwhile, since long before the onset of modern ML, the signal processing community has been
tackling the problems of estimation and prediction as applied to classical domains such as speech
and images. Many ML algorithms (e.g. expectation-maximization [51]) have their roots in signal
processing. Numerous ML algorithms have been proposed to tackle graph-structured data, and it
is not surprising to expect some overlap between ML and the methods presented here. A signal
processing interpretation of ML algorithms can help foster new methods and algorithms, while
providing insight as to when certain algorithms work better than others.

120

9.1.1 Semi-Supervised Learning
Many algorithms have been proposed for SSL. We present some of the techniques here and refer
the reader to existing literature [50] for a more comprehensive overview of the field. The naive ap-
proach to SSL would be to discard the unlabeled data and determine a classification function based
only on the labeled dataset; this is known as supervised learning. However, when the amount
of labeled data is very limited, this approach can lead to significant accuracy losses. One of the
earliest proposed approaches for SSL is self-training or bootstrapping. This technique starts by
estimating a classifier using only the labeled dataset. The unlabeled dataset is then classified using
the designed classifier. The classified data points with higher confidence are taken as part of the
labeled dataset and the process is iterated. Other popular approaches include transductive support
vector machines [52], co-training [53], expectation-maximization [51].

An important class of SSL algorithms known as graph-based SSL (GSSL) has received much at-
tention in the recent ML literature [50]. These algorithms base predictions on underlying graph
structures, which emerge naturally in some applications, and are data-generated in others. Many
of the GSSL algorithms can be interpreted from a graph signal processing viewpoint. In particular,
many of these algorithms use regularizer terms to impose constraints of label smoothness over the
graph; these terms can be viewed as instances of LP and HP filters defined in the GFT domain [54].

Further, many of the existing application domains such as social networks, present graph datasets
spanning millions of nodes and it is imperative to have algorithms that achieve substantial order
reduction. Multiresolution analytical tools such as wavelets present an important approach towards
this end. In particular, critically sampled wavelet designs are necessary to keep the dimensionality
under control. In the context of GSSL, wavelet based regularizers can be used for datasets that have
a better representation in the wavelet basis than a Fourier basis. The focus of this chapter is the
development of a GSSL algorithm using a regularizer based on the critically-sampled wavelets we
have discussed in Chapter 8. We explore datasets for which wavelet-based regularizers work better
than Fourier-based regularizers and compare the performance of our algorithm with some standard
GSSL algorithms on synthetic and real-world datasets. The datasets are chosen to exemplify the
performance gains of graph wavelets over Fourier and vice-versa.

9.2 Graph Semi-Supervised Learning
GSSL algorithms are a class of ML algorithms that start with an underlying graph on the data
points. Each datapoint (whether labeled or not) corresponds to a node of this graph. Weighted
edges reflect the degree of similarity between the connected data points. The assumption is that
the labels vary smoothly over the graph. The structure of the underlying graph depends on the
application. In some applications, the structure is pre-determined. For example, in the case of
labeling blog data [55], one could use the underlying blogroll network—two blogs are connected

121

if they refer to one another either in the blogroll or via hyperlinks embedded in the blog itself. In
many other cases, the underlying graph is built using a suitable distance measure on the features
of the data.

Different distance measures are used in different applications. For example, gaussian kernels [56]
assign a weight e−β||ai−aj ||2 to the edge between nodes i and j. Cosine distance based on tf-idf
vectors are typically used in document classification [57]. Other graph constructions include k-
nearest neighbor graphs, exponential weighted graphs etc.

There is no clear consensus on how to obtain the graph, and it is largely application-dependent.
Most existing algorithms build a graph using a suitable distance measure and then design the clas-
sification algorithm using the defined graph. We do not address the graph design question and
assume that an underlying graph is given or we build it using one of the distance measures suitably
chosen depending on the application of interest.

9.2.1 Graph Semi-Supervised Learning Algorithms
A GSSL algorithm can be formulated as a solution to an optimization problem. The goal is to
find an optimal classification (label-prediction) function that minimizes a suitably chosen penalty
function. Thus, if {ai, yi} ∈ (A,Y) are the data points and corresponding labels, then classifier f
is a function that maps the data points to the labels, i.e.,

f : A → Y , (9.1)
f(ai) = yi. (9.2)

We will use f(i) to denote f(ai). For algorithmic purposes, f can also be thought of as a matrix
with rows indexed by the data points and columns indexed by the labels. The (i, j)th entry is 1 if
the ith datapoint is labeled j and is 0 otherwise.

The objective function in the optimization contains two terms. The first term is a loss function that
penalizes deviation of the classification function’s prediction from observed node labels. Typically,
the loss function is defined by a standard classifier. For example, a least-squares cost function is
used in the case of Regularized Least-Squares (RLS) algorithms; hinge loss is used for Support
Vector Machine (SVM) classifiers [50]; and so on. The second term is a regularizer that penal-
izes non-smoothness of the function over the underlying graph. Different regularizers give rise
to different GSSL algorithms. In the following section, we review some of the GSSL algorithms
proposed in the literature.

122

Graph Mincut based learning

One of the earliest GSSL algorithms is based on Graph Mincut learning, proposed by Blum et
al. [58]. The algorithm searches for a label-prediction function f that minimizes the objective
function,

∞
∑

i∈Ξ

(f(i)− yi)2

︸ ︷︷ ︸
loss function

+ γ

=fTLf︷ ︸︸ ︷∑

i,j

wij(f(i)− f(j))2

︸ ︷︷ ︸
regularizer

, (9.3)

where wij are the weights on the edges of the underlying graph, γ is the regularizer tradeoff pa-
rameter and Ξ is the labeled dataset. The loss function with the∞ pre-factor forces the predicted
labels to exactly match the observed nodes and penalizes deviation of labels on adjacent nodes.
One could use a softer penalty by removing the∞ pre-factor.

Local Global Consistency (LGC)

The objective function here is given as follows [59]:
∑

i∈Ξ

(f(i)− yi)2 + γfTLS
nf , (9.4)

where LS
n is the symmetric normalized Laplacian matrix.

Tikhonov Regularization

Here the regularization is based on different powers of the Laplacian matrix [60]. The objective
function is given as follows:

1

|Ξ|
∑

i∈Ξ

(f(i)− yi)2 + γfTLpf , (9.5)

Manifold Regularization using Laplacian

This approach was proposed by Belkin et al. [61] and can be viewed as a generalized form of the
above approaches. It employs two regularization terms:

1

|Ξ|
∑

i∈Ξ

V (ai, yi, f(i)) + γA||f ||2K + γI ||f ||2I , (9.6)

123

where V is an arbitrary loss function, K is a ‘base kernel’, e.g. linear or radial basis function and
I is the regularization term imposed by the manifold such as the Laplacian.

The regularizer terms, as in Graph Mincut based learning, can alternatively be written as fTLf
where L is the Laplacian of the underlying graph. This can be expanded as follows:

fTLf = fTUΛUTf =
N∑

k=1

λkF
G(k)2, (9.7)

which is essentially the energy in the frequency domain of the signal f after suitably filtering it.

More generally, we can use a regularizer of the form
N∑

k=1

g(λk)F
G(k)2, where g(·) is a suitably-

defined HP/LP filter depending on the polarity of the regularizer term in the objective function. For
Graph Mincut learning, the filter is HP with g(λ) = λ. The Local Global Consistency (LGC) algo-
rithm uses a normalized Laplacian regularizer [59]. The Tikhonov regularizer [60] uses g(λ) = λp

for some p ≥ 1; the Diffusion Kernel classifier [62] uses the filter g(λ) = e−λ/β; and the Regular-
ized Gaussian Process Kernel [56] uses the filter 1/(λ+β). A extensive overview of this literature
is available in [50].

Based on this observation, using the tools developed for graph signal processing, we can imagine
designing filters systematically so they are tuned to different datasets. This requires that we identify
and study the filter characteristics that must be optimized for a given application—an interesting
research direction in its own right. On the other hand, it is well known in classical signal processing
that certain signals are captured better by wavelets than by the Fourier basis. Hence, a natural
question is whether a regularizer based on graph wavelets would capture the characteristics of
certain graph datasets better. This is the focus of the remainder of this chapter.

9.2.2 Wavelet Regularized GSSL
So far, the algorithms we have discussed impose regularization in the GFT domain. We know
in classical signal processing that for certain kinds of signals, wavelets provide a more compact
representation. Hence it might be interesting to replace the Fourier basis by a wavelet basis in the
regularizer. In that event, we might want the label prediction function to be sparse with respect to
a suitably defined wavelet basis on the graph. This could be useful for datasets where the labels do
not smoothly transition over the graph, but might have drastic boundaries of change. Intuitively,
wavelets are good at capturing these kinds of patchy, localized transitions, while standard Fourier
decompositions (for instance) are not.

A Wavelet-Regularized Least-Squares (WLRS) algorithm imposes a sparsity regularizer constraint
on the wavelet decomposition of the label-prediction function f—the underlying graph signal in

124

this case. If f̃ is the wavelet basis representation of f , then a WRLS algorithm with a L1-penalty
to impose sparsity in the wavelet domain has the following optimization formulation,

min
f

∑

i∈Ξ

(f(i)− yi)2 + γ||f̃ ||1. (9.8)

The wavelets we use in our experiments will be the simple Spline-like wavelets described in Sec-
tion 8.3.1 and therefore we shall term the proposed algorithm as spline-like WRLS. The proposed
formulation is similar in spirit to the regression-based formulation used in [63]. The main dis-
tinction of our work is that the wavelets we use are critically sampled, whereas those in [63]
are oversampled representations. Additionally, we also provide simulation results on real world
datasets.

9.3 Experimental results
In this section we explore the performance of the proposed spline-like-WRLS GSSL algorithm
on some synthetic and real-world datasets. All the graph datasets are unweighted. A four-level
wavelet decomposition with equal weights is used. We compare the performance to two standard
GSSL algorithms: Local Global Consistency [61] and Diffusion Kernel based classifier [62]. The
value of β in the diffusion operator g(λ) = e−λ/β is taken to be 2. The regularizer tradeoff param-
eter γ is taken to be 0.01, unless specified otherwise.

We also compare the performance to two existing graph wavelet designs proposed in the literature:
Diffusion Wavelet Transform (DWT) [42] and Spectral Graph Wavelet Transform (SGWT) [64].
We use the default parameters in the toolboxes provided for each transform. The number of scales
(levels) is taken to be five for each of the wavelet designs. We solve the L1-regularized optimiza-
tion problem using an iterative hard-thresholding algorithm [65], with a sparsity threshold of 20
for all the algorithms.

The key observation in our experiments is that wavelet-regularized algorithms work well when,
rather than globally smooth, the dataset is locally smooth with potentially sharp transitions. The
Laplacian imposes global smoothness constraints and performs better on datasets where label tran-
sitions are gradual. This is often the case when the underlying graph is constructed from data using
a similarity metric. However, some graph datasets have an underlying graph provided by the ap-
plication. In these cases, it is likely that the labels will be similar in local neighborhoods, but they
can vary sharply (e.g., in electoral datasets). We expect a wavelet basis to capture these variations
better, and this intuition is confirmed in our experiments.

We start with a synthetic dataset designed to illustrate our reasoning explicitly. The dataset is a
collection of 747 major cities in the continental United States grouped with respect to the individ-

125

Original(Synthe.c(Data(LGC(Predic.on(Spline8WRLS(Predic.on(
−120 −110 −100 −90 −80 −70

25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

−120 −110 −100 −90 −80 −70
25

30

35

40

45

Figure 9.1: Label prediction of the spline-like WRLS algorithm as compared to the LGC semi-
supervised classifier in one of the extreme cases. The LGC tends to diffuse to a larger extent than
the spline-like WRLS since it only has a local view of the data as compared to the spline-like which
has multiscale views of the data.

Tr. LGC (%) Diff. Ker RLS (%) spline-like WRLS (%)
10 63.52 58.1 66.32
30 69.11 58.52 74.22
50 72.48 57.75 78.82
70 74.30 58.96 81.16
90 74.62 58.09 80.82

110 75.93 58.63 81.24
130 76.35 59.59 84.96

Table 9.1: Accuracy in prediction for the Synthetic data set. Each of the rows are obtained after
averaging over 100 realizations of randomly chosen training points. One can observe that the
spline-like WRLS consistently performs better.

ual states they belong to. The underlying graph is built by connecting cities that are less than a
particular distance apart. All the cities in two states - Colorado and Indiana, are assigned a label 0
and the rest of the cities are assigned a label 1. The training data is created by choosing, randomly,
an equal number of data points for each label.

Fig. 9.1 shows the original dataset and the predicted dataset for a training set of 32 points. LGC
tends to diffuse to a much larger extent than the spline-like WRLS in certain cases like the one
shown in the figure. Hence it cannot capture localized changes well. The spline-like basis in turn
seems to capture the localized variations better.

Table 9.1 shows the prediction accuracies (percentage of the labels predicted correctly) as a func-
tion of the number of training data points for the different algorithms. The spline-like-WRLS

126

−90 −85 −80 −75
24

26

28

30

32

34

36

−90 −85 −80 −75
24

26

28

30

32

34

36

−90 −85 −80 −75
24

26

28

30

32

34

36

−90 −85 −80 −75
24

26

28

30

32

34

36

−90 −85 −80 −75
24

26

28

30

32

34

36

−90 −85 −80 −75
24

26

28

30

32

34

36

Original(Dataset(LGC(predic3on(Diffusion(kernel((
RLS(predic3on(

Spline:WRLS(
predic3on(

SGWT:RLS(
predic3on(

DWT:RLS(
predic3on(

Figure 9.2: Label prediction for the Florida electoral dataset.

Tr. LGC (%) Diff. Ker RLS (%) spline-like WRLS (%) SGWT RLS (%) DWT RLS (%)
10 52.52 52.60 55.01 52.73 51.70
30 56.52 57.12 61.01 56.79 55.15
50 59.60 60.38 64.83 60.29 57.65
70 64.64 64.31 70.17 64.66 63.27
90 67.48 68.41 77.10 68.54 64.38

Table 9.2: Accuracy in prediction for the Florida electoral data set. Each of the rows is obtained
after averaging over 100 realizations of randomly chosen training points. The spline-like RLS
consistently performs better.

seems to perform consistently better than the other algorithms. We did not apply the DWT and
SGWT-RLS to this dataset since the run-time is prohibitively slow.

We also carried out experiments with a real-world electoral dataset from the counties in Florida,
Georgia, and South Carolina. The graph is built by joining two counties if they share a com-
mon border. A set of 272 data points is available. Table 9.2 shows the prediction accuracies for
this dataset. Fig. 9.2 shows the label prediction for this dataset. As before, the Laplacian-based
approaches tend to impose a global smoothness on the labels. The spline-like wavelets seem to
capture the localized variations. The performances of DWT and SGWT are similar to those of the
Laplacian-based approaches for this dataset.

127

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Original(Two,Moons(data(Laplacian(RLS(predic7on(Haar(RLS(predic7on(

Figure 9.3: Label prediction for the Two-Moons synthetic dataset with 10 training samples, that
exemplifies the inaccuracy of the wavelet basis in capturing the global smoothness. The wavelet
regularizer imposes local smoothness with sharp boundary changes as we observe in the dataset.

Tr Lap RLS (%) spline-like WRLS (%) SGWT RLS (%) DWT RLS (%)
10 98.45 60.63 95.88 53.32
20 99.86 61.60 97.52 54.32
30 99.98 63.09 97.84 57.72
40 100.00 67.31 98.06 59.76
50 100.00 68.05 98.13 62.06

Table 9.3: Accuracy in prediction for the Two-Moons dataset. Each of the rows is obtained after
averaging over 100 realizations of randomly chosen training points. The spline-like wavelet does
not fare well in this case. The SGWT however seems to be better, but is outperformed by the
Laplacian regularizer.

Let us now look at a dataset that is globally smooth to begin with and compare the performance
of the algorithms. The ‘Two-Moons’ dataset [54] is a 200 node standard synthetic dataset that is
globally smooth as observed in Fig. 9.3. The Laplacian regularizer captures the global smoothness
of the graph and is able to have a good prediction accuracy for minimal training set as well. Ta-
ble 9.3, shows the error performance for the different algorithms. Clearly spline-like WRLS and
DWT-RLS perform worse than Laplacian RLS. SGWT-RLS performs very closely to Laplacian
RLS.

We also compare the algorithms on a blog dataset—AGBlog [66]. This is a two-class classification
problem where the blogs are labeled either liberal or conservative. For faster execution, we chose
only a subset of the nodes in the blog. Table 9.4 shows the performance of the various algorithms.
The diffusion kernel-based RLS performs the best. The wavelet-based approaches do not provide
any advantage over the Laplacian methods in this case, possibly due to the global smoothness of

128

the data.

Tr. LGC Diff. Ker RLS spline-like RLS SGWT RLS DWT RLS
10 72.19 87.73 79.73 82.00 78.89
25 78.50 90.27 85.16 84.02 85.18
40 87.32 91.29 87.74 86.25 87.89
55 89.89 92.28 89.49 87.91 89.58
70 92.36 93.40 91.33 89.56 91.08

Table 9.4: Accuracy in prediction for the AGBlog dataset with 160 randomly-chosen connected
nodes from the original dataset. Each of the rows is obtained after averaging over 100 realizations
of randomly-chosen training points. The Diffusion Kernel RLS performs the best in this case.

Our experiments are not comprehensive, but the main aim of this work was to understand datasets
for which a wavelet based regularizer works better than a Laplacian based regularizer. The ex-
perimental results suggest that the regularizer to be used largely depends on the characteristics of
the dataset. In particular, wavelet regularized algorithms work better for datasets that are locally
smooth with sharp boundary transitions.

However one should treat the results with some caution. Unfortunately there are many parameters
to be optimized for each of the algorithms (e.g. regularizer tradeoff parameter, number of wavelet
scales to use, sparsity assumption, etc.) and we do not have a systematic way of optimizing them
at this stage. Further we also observed that the coefficients with respect to those wavelets whose
support is contained on unlabeled nodes is always zero as noted in [63]. This requires us to go to
higher scales with a larger spread or have a larger training set. However we know that wavelets
also capture consistent data characteristics at different scales that can be used to alleviate this is-
sue. The authors in [63] propose a regularizer that attempts to impose consistency across different
scales. This needs further exploration.

Our datasets are also limited in size mainly due to the computational inefficiency of the algorithms.
For large datasets, computing the different wavelet transforms, in particular the DWT and SGWT,
is practically restrictive at this stage. We have chosen real world datasets that allow us to execute
the different algorithms in a reasonable time frame. Developing computationally efficient wavelet
transforms is an important topic which needs to be addressed.

129

9.4 Chapter Highlights

• Machine Learning algorithms typically consider the problem of predicting labels for datasets
given features for each data point and some training data.

• Graph Semi-Supervised Learning (GSSL) algorithms are a class of machine learning al-
gorithms that impose a graph structure on the data (or inherently imposed by the applica-
tion). They can be formulated as an optimization problem whose objective function has two
parts—a loss function that imposes consistency of predicted labels on the training set and a
regularizer that imposes smoothness of the label prediction function on the graph.

• GSSL algorithms have an interpretation in the graph signal processing domain. In particular,
the regularizers used in different GSSL algorithms can be viewed as different filters designed
in the GFT domain.

• The Fourier based regularizers are now replaced with a wavelet based regularizer. Sparsity
is imposed in the wavelet domain representation of the label prediction function.

• Experiments seem to suggest that wavelet-based regularizers are better suited for datasets
that are locally smooth as opposed to Fourier based regularizers that work for globally
smooth datasets.

• Wavelet based regularizers inherently have the issue that coefficients of wavelets whose sup-
port is contained on unlabeled nodes is always zero. Regularizers that capture the dependen-
cies across multiple scales need to be designed to alleviate this issue.

130

Part V

Related Work and Open Research Problems

131

Chapter 10

Related Work

In this chapter, we outline the literature on graph signal processing that have either emerged under
the same topic or in related areas dealing with similar problem formulations. The foundation for
much of the research in this area stems from the interesting spectral properties of the Laplacian,
which have been well studied in the literature [41, 67, 68]. Earlier work in computer graphics [4–6]
used mesh processing to analyze 3-D object structures and exploited Laplacian matrix properties
to define graph-dependent filters for smoothing. Courant’s nodal domain theorems [16] bring out
the frequency interpretation of the eigenvectors of the Laplacian and are one of the motivations for
defining the notion of a GFT. The formal definition and analysis of the GFT appear in more recent
works [64, 69, 70] that are motivated by the deluge of graph-structured data seen in modern day
applications.

Most of the recent work in this direction has focused on defining basic operations on graph signals
(e.g., shifting, sampling, and filtering) and understanding the properties of the GFT in relation to
these operations. As we have mentioned in Chapter 3, a major challenge in defining fundamental
operations like signal shifting is a general graph’s irregular structure; typically, the graph looks
different from different nodes. Hence, it is unclear how to “shift” or “sample” a signal on the
graph. Hammond et al. [64] resort to defining these operations in the spectral domain, motivated
by the relation between these operations in time domain and the corresponding Fourier domain.
For example, convolution of two signals on the graph is defined as the point-wise multiplication
of the corresponding GFT’s. Similarly, shifting is defined as a convolution with a delta signal and
so on. Sandryhaila and Moura [8] on the other hand define these operations using the adjacency
matrix. In particular, shifting is defined as multiplying the input signal with the adjacency matrix
and filtering operations are defined as polynomials in the adjacency matrix. Shifting being a basic
operation, this definition affects other basic operations like filtering. Further, [8] uses a slightly
different definition of the GFT by considering the Jordan normalized form of the adjacency matrix
rather than the Laplacian.

Many of these works have also focused on defining and understanding the effect of sampling sig-

132

nals on graphs and in some cases, defining the underlying graph after sampling. Hammond et
al. [64] define sampling based on the eigenvector corresponding to the largest eigenvalue. The
underlying downsampled graph is defined based on the Kron-reduction strategy. Narang et al. [69]
focus on bipartite graphs and show that sampling on a bipartite graph by retaining the set of nodes
in one group of the bipartite graph, creates an aliasing in the GFT domain similar to that in regular
time domain. They exploit this property to design critically sampled perfect reconstruction filter-
banks on bipartite graphs. There have also been fundamental results by Issac Pesenson and Meyer
Pesenson [71] and Jorgensen et al. [72] on sampling theorems for signals on arbitrary graphs. In
particular, they characterize the bandwidth of a signal that can be supported on a graph given a
subset of nodes that are removed. However these results are quite conservative and we find that
for circulant graphs, the bandwidth provided by our theorems for the defined sampling patterns are
much larger than that given by their results.

Multiscale representation of graph signals and wavelet design for graph signals has received sig-
nificant attention in the recent literature on graph signal processing. Agaskar and Lu [26] have
derived uncertainty principles for general graphs that describe the tradeoff between the signal sup-
port in the graph domain and the spectral domain. However, these results are not sufficiently tight
for all graphs. Wang and Ramchandran [73], define localized filters for sensor networks that allow
for a multiscale representation as well as perfect reconstruction. Crovella and Kolaczyk [74] define
wavelet-like functions that are scaled and dilated versions of a single generating function. Spec-
tral graph wavelets proposed by Hammond et al. [64], have a similar flavor where the functions
are defined in the spectral domain. There is related work in the computer graphics community on
multi resolution signal processing for meshes [75–77]. These largely deal with triangulated meshes
which have additional structure since they have been defined based on an underlying smooth sur-
face with an euclidean embedding and the structure is used to define multi resolution operations.
However, optimality properties in relation to the GFT basis have not been studied in depth.

Diffusion wavelets developed by Coifman and Maggioni [42, 78] consist of locally supported
functions on graphs that are obtained by suitably modifying powers of a diffusion operator like
the adjacency matrix. All these methods provide an oversampled multi-scale representation of
the graph signal. The result of Narang et al. [79], for bipartite graphs can be extended to general
graphs [31] by having a bipartite decomposition of the original graph which provides a critically
sampled multi-scale representation. However, they do not have a clear way to extend their analysis
to multiple scales, since the underlying graph after sampling is not defined. They resolve this by
using heuristics to reconnect the graph. There are also other works using lifting-based construc-
tions [80, 81] and tree-based constructions [82] for multiscale analysis. A summary of some of the
literature in this area can be found in [9, 38].

There has also been quite some interest in applying these graph signal processing techniques to
real world applications. The earliest work by Taubin et al. [4] focussed on using Laplacian-based
methods for mesh signal processing. The work by Coifman and Maggioni [64] used diffusions

133

wavelets for text classification and was subsequently explored by Wang and Mahadevan [83] for
document classification. Crovella and Kolaczyk [74] used wavelets for network traffic analysis.
Narang et al. [80], used lifting-based constructions and bipartite constructions for image and video
processing. Aliaksei and Moura [8], used their theory to develop filters for prediction over cellular
networks.

The mathematical biology community has related work in dealing with “fitness landscapes” that
visualize the relationship between genotypes and reproductive successes [84]. Fourier functions
based on the Laplacian have been defined for these landscapes and there has been quite some work
analyzing the properties of these basis and design of computationally efficient algorithms [85–87].
These are mostly in the context of optimization wherein the problem of interest is to optimize over
these landscapes which are highly non-convex. A Fourier-theoretic analysis of these landscapes
provides some insights in understanding the behavior of heuristic algorithms.

There is also quite a lot of work on Fourier analysis for regular domains like groups. In partic-
ular, there is some literature on Cayley groups [25] that are closely related to Cayley graphs of
which circulant graphs are a subset of. However, the group structure here is related to the node
connectivity and not the signals defined on the nodes as such (see Section 3.2.2 for a more detailed
discussion). A more detailed exploration in this direction with a group theoretic approach to our
problem might provide some insights. There is also some related work on Fourier and wavelet
analysis for regular manifolds like spheres [88, 89].

Recent progress notwithstanding, much work remains in the quest for a unified and comprehensive
signal processing theory for graphs. Our approach has been motivated by LTI signal processing,
which has had considerable impact in classical signal processing. We view general graphs as LSV
systems analogous to LTV systems in the classical theory.

A corpus of research literature deals with LTV systems through the lens of LTI systems [10–
14]. Accordingly, we first study circulant graphs—a class of graphs amenable to LSI operations.
Existing work [90] that discusses the shift-invariant nature of circulant graphs does not explore
the properties in substantive depth. We have shown that even certain fundamental shift-varying
operations, such as sampling, are natural on these graphs. We define these shifting and sampling
formally and derive the properties of the GFT in relation to these operations. We then decompose
general graphs into a bank of circulant graphs analogous to decomposing a LTV filter as a bank
of LTI filters. Perfect reconstruction filter banks leading to multiscale representations are designed
using the developed concepts. The following papers contain parts of work that have appeared in
this thesis [91–94].

134

Chapter 11

Open research problems

The area of graph signal processing is relatively new and there are many open research problems.
Most of the research work in the recent past, including this thesis, has taken the approach of de-
veloping signal processing tools for graphs by drawing analogies with classical signal processing.
Applications are now being explored to see where these tools fit. On the other hand, a lot of re-
search work in the early past have been motivated by applications such as in computer graphics [5],
sensor networks [73], network analysis [74] and mathematical biology [84]. A lot of the tools in
these areas have been independently developed and have not been explored in-depth. The current
research work in this area, including the work presented here, has focused on developing a unified
theory for the underlying problem facing all these applications. Given this perspective, it is now
important to get back to understanding challenges posed by different applications—old as well as
new, that can guide the development of tools required to solve these specific problems and further
provide us with a metric to evaluate these tools.

Many of the recent applications such as social networks, pose challenges of scale dealing with mil-
lions of nodes. Complexity reduction is imperative for these applications wherein multi resolution
analysis can be a powerful tool. Intuitively, we need to obtain summaries of large graph datasets
at multiple scales so that, depending on the application, queries could be evaluated on the summa-
rized dataset. We would expect that each scale be “representative” of the original dataset—both
the graph and the signal associated with it. Given that the queries would be evaluated on the sum-
mary graph at a lower scale, it is necessary that the graph signal at the lower scale be optimized
to provide a good approximation with respect to the metrics that are relevant to the query of interest.

So far the work on multi resolution analysis in this literature, has focussed on metrics borrowed
from classical signal processing. For example, emphasis on perfect-reconstruction might not be
required. Mean-squared error might not be the right evaluation metric to be optimized for in these
applications. Thus it is important to take a re-look at the multiscale filter designs from an appli-
cation perspective. This will also help evaluate algorithms arising from this new perspective by
comparing them with existing machine-learning algorithms for some of these tasks.

135

There are many applications where prediction is important i.e. data available in one part of the
graph would need to be extrapolated to the rest of the graph. The learning application discussed in
Chapter 9 can be viewed in this category. The natural question to ask here is, “Could one design
prediction filters analogous to least-mean-squared (LMS) filters and Wiener filters as defined in
classical signal processing?” To enable this, it is important to define random variables on graphs
(a related notion is that of graphical models) and develop a statistical signal processing theory for
random signals on graphs. The random models developed should reflect real-world applications.

There are various other obvious generalizations that can be considered such as vector-valued sig-
nals on each node, time-varying signals associated with each node and so on. Further, the graph
structure itself could vary over time. These problems can be pretty challenging to address and
newer analysis methods are warranted. However, there is still quite a lot of open research prob-
lems even in the case of scalar signals defined over graphs which we discuss below.

The basic notion of a GFT has been defined with respect to the eigenvectors of the Laplacian
matrix of a graph. The eigenvalues are used to order the eigenvectors from low-frequency to high-
frequency. Many existing works in the literature treat the eigenvalues themselves as frequencies
while we do not make this assumption. It is important to understand the physical significance of
the eigenvalues in this context. From the double-differential operator analogy of the Laplacian
matrix, the eigenvalues seem to be more related to the squares of the frequencies. Further, for a
ring graph, the eigenvalues are a non-linear function of the classical discrete Fourier frequencies.
The treatment of the eigenvalues as frequencies would also impact filter design. Secondly, when
we consider operations like sampling, we would like to know how the spectrum of the downsam-
pled signal on the smaller graph relates to that on the bigger graph which would also help evaluate
different reconnection strategies. This might be related to the behavior of the eigenvalues on the
original and downsampled graphs. Hence an in-depth study of eigenvalues is warranted in the
context of graph signal processing.

For many graphs, we have repeated eigenvalues, in which case the eigenvectors themselves are
not unique. This is true in the case of circulant graphs itself. We saw that a particular choice of
eigenvectors simplified analysis while deriving many of the properties. Thus a question of interest
is, “How does one define a unique basis set for the GFT?”. Further most of the theory has been de-
veloped for undirected graphs. It is important to extend the concepts to directed graphs. Weighted
graphs also need to be studied in depth.

In the case of circulant graphs, it would be interesting to develop a group-theoretic analysis given
the connection between Cayley graphs and Cayley groups. We have discussed the basic principles
underlying filter design for circulant graphs. Interesting topics include extending specific classes
of filters from classical signal processing. One should however keep the applications in mind while
designing these filters. We have discussed analogues of first-order spline filter banks for graphs.

136

One could now think of generalizing higher order spline filter designs that offer more flexibility in
terms of their response.

Our treatment of general graphs is not as extensive as that of circulant graphs. The primary ap-
proach has been to decompose general graphs into a bank of circulant graphs. However, the main
issue with the decomposition is that it is not invariant to the node ordering. Obtaining invariant de-
compositions in general can be a hard problem. There are some algorithms for approximate cycle
decompositions of graphs. It is unclear whether one should consider decomposition of graphs or
deal with the original graph directly. Classical image processing has largely focussed on separable
processing which is analogous to decomposing a grid graph into multiple path graphs. We believe
in a similar philosophy for general graphs as well since it is difficult to directly work with irregular
structures.

Most of the work in the literature has so far considered fundamental operations and filter designs
for graphs. There is very little work tackling with complexity issues which has been a primary
reason why these techniques have not been applied to very large scale datasets, the norm in mod-
ern day applications. Hence it is very important to develop algorithms and filter designs that are
computationally efficient and amenable to large scale processing.

Overall this is an exciting and emerging field with many open research problems. There is much
to be done both on the theoretical as well as the application front. We envision that in the future,
signal processing theory would be taught from the perspective of graphs.

137

Table of notations

Notation Meaning
G graph
V vertex set of the graph
E edge set of the graph
N number of nodes in the graph
A graph adjacency matrix
L graph Laplacian matrix
D diagonal matrix of node degrees
AS symmetric normalized adjacency matrix
ARW random-walk normalized adjacency matrix
LS symmetric normalized Laplacian matrix
LRW random-walk normalized Laplacian matrix
x,y signals on graphs
Λ diagonal matrix containing the non-negative real eigenvalues of L
λk kTH eigenvalue of the Laplacian matrix L
U matrix of orthonormal eigenvectors of the Laplacian matrix
US matrix of eigenvectors of the symmetric normalized Laplacian matrix
URW matrix of eigenvectors of the random-walk normalized Laplacian matrix
uk eigenvector corresponding to the kTH eigenvalue, λk
XG graph Fourier transform of the graph signal x
XF discrete Fourier transform of the graph signal x
GFT Graph Fourier Transform
DFT Discrete Fourier Transform
S generating set of the circulant graph
sk kth element of the generating set S
()N mod N
G group
F DFT matrix
P shift matrix defined with respect to the element s = 1 ∈ S
Ps shift matrix defined with respect to the element s ∈ S
h graph filter coefficients

138

H filter matrix corresponding to h
HG GFT of filter h
LTI Linear Time Invariant
LTV Linear Time Varying
LSI Linear Shift Invariant
LSV Linear Shift Varying
0N N -length vector of all-zeros
1N N -length vector of all-ones
IN identity matrix of size N
↓s m downsample by a factor of m with respect to the element s ∈ S
σ(·) permutation mapping from the DFT to GFT for circulant graphs
a ◦ b Hadamard product or element-wise for product between vectors a and b
IA() indicator matrix of A with zero-diagonal entries
LP low-pass
HP high-pass
HLP analysis LP filter of a two-channel filter bank
HHP analysis HP filter of a two-channel filter bank
HINV synthesis filter of a two-channel filter bank
Qk, Q̂k, Q̃k diagonal matrices in the circulant decompositions
diag() diagonal matrix of the elements inside the argument.

If the argument is a matrix, then this represents a diagonal matrix with the elements
being the diagonal entries of the input matrix

Table 11.1: Table of notations

139

Bibliography

[1] B Krishnamurthy, P Gill, and M Arlitt. A few chirps about twitter. In Proceedings of the first
workshop on Online social networks, pages 19–24. ACM, 2008.

[2] Gsod : Global surface summary of day. http://www.ncdc.noaa.gov/cgi-bin/res40.pl.

[3] Å J Holmgren. Using graph models to analyze the vulnerability of electric power networks.
Risk analysis, 26(4):955–969, 2006.

[4] G Taubin, T Zhang, and G Golub. Optimal surface smoothing as filter design. Computer
VisionECCV’96, pages 283–292, 1996.

[5] G Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd
annual conference on Computer graphics and interactive techniques, pages 351–358. ACM,
1995.

[6] H Zhang, O Van Kaick, and R Dyer. Spectral mesh processing. In Computer graphics forum,
volume 29, pages 1865–1894. Wiley Online Library, 2010.

[7] K P Murphy. Machine learning: a probabilistic perspective. The MIT Press, 2012.

[8] A Sandryhaila and J Moura. Discrete signal processing on graphs. 2012.

[9] D I Shuman, S K Narang, P Frossard, A Ortega, and P Vandergheynst. The emerging field
of signal processing on graphs: Extending high-dimensional data analysis to networks and
other irregular domains. Signal Processing Magazine, IEEE, 30(3):83–98, 2013.

[10] G Lohar and A G Wacker. Matrix theory approach to the canonical representation of a class
of linear discrete-time time-variant systems. Circuits and Systems, IEEE Transactions on,
37(2):303–306, 1990.

[11] G Lohar, D P Mukherjee, and D Dutta Majumder. On a decomposition of 2-d circular con-
volution. Pattern recognition letters, 13(10):701–706, 1992.

[12] C Herley and M Vetterli. Orthogonal time-varying filter banks and wavelet packets. Signal
Processing, IEEE Transactions on, 42(10):2650–2663, 1994.

140

[13] R Meyer and C S Burrus. A unified analysis of multirate and periodically time-varying digital
filters. Circuits and Systems, IEEE Transactions on, 22(3):162–168, 1975.

[14] S M Phoong and P P Vaidyanathan. A polyphase approach to time-varying filter banks. In
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996
IEEE International Conference on, volume 3, pages 1554–1557. IEEE, 1996.

[15] Béla Bollobás. Modern graph theory, volume 184. Springer, 1998.

[16] E B Davies, G M L Gladwell, J Leydold, and P F Stadler. Discrete nodal domain theorems.
Linear Algebra and its Applications, 336(1):51–60, 2001.

[17] A V Oppenheim. Discrete-Time Signal Processing, 2/E. Pearson Education India, 2006.

[18] C D Godsil and G Royle. Algebraic graph theory, volume 8. Springer New York, 2001.

[19] M E Muzychuk and G Tinhofer. Recognizing circulant graphs in polynomial time: An appli-
cation of association schemes. Journal of Combinatorics, 8(1):26–26, 2001.

[20] F Boesch and R Tindell. Circulants and their connectivities. Journal of Graph Theory,
8(4):487–499, 1984.

[21] S Toida. A note on ádám’s conjecture. Journal of Combinatorial Theory, Series B, 23(2):239–
246, 1977.

[22] G A Jones and J M Jones. Elementary number theory. Springer, 1998.

[23] D J Watts and S H Strogatz. Collective dynamics of small-worldnetworks. nature,
393(6684):440–442, 1998.

[24] N Jacobson. Lectures in abstract algebra, volume 1. van Nostrand New York, 1951.

[25] A Terras. Fourier analysis on finite groups and applications, volume 43. Cambridge Univer-
sity Press, 1999.

[26] A Agaskar and Y M Lu. An uncertainty principle for functions defined on graphs. In SPIE
Optical Engineering+ Applications, pages 81380T–81380T. International Society for Optics
and Photonics, 2011.

[27] J Kovacevic, V K Goyal, and M Vetterli. Fourier and wavelet signal processing. 2013.

[28] J Leskovec and C Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 631–636.
ACM, 2006.

141

[29] F Dorfler and F Bullo. Kron reduction of graphs with applications to electrical networks.
Circuits and Systems I: Regular Papers, IEEE Transactions on, 60(1):150–163, 2013.

[30] B Ayazifar. Graph spectra and modal dynamics of oscillatory networks. PhD thesis, MIT,
2002.

[31] S K Narang and A Ortega. Perfect reconstruction two-channel wavelet filter banks for graph
structured data. Signal Processing, IEEE Transactions on, 60(6):2786–2799, 2012.

[32] P Stevenhagen and H W Lenstra. Chebotarëv and his density theorem. The Mathematical
Intelligencer, 18(2):26–37, 1996.

[33] B Alexeev, J Cahill, and D G Mixon. Full spark frames. Journal of Fourier Analysis and
Applications, 18(6):1167–1194, 2012.

[34] M Mishali and Y C Eldar. Blind multiband signal reconstruction: Compressed sensing for
analog signals. Signal Processing, IEEE Transactions on, 57(3):993–1009, 2009.

[35] N Biggs. Algebraic graph theory. Cambridge University Press, 1993.

[36] P Lancaster and M Tismenetsky. Theory of matrices, volume 2. Academic press New York,
1969.

[37] P P Vaidyanathan. Multirate digital filters, filter banks, polyphase networks, and applications:
A tutorial. Proceedings of the IEEE, 78(1):56–93, 1990.

[38] D I Shuman, M Javad Faraji, and P Vandergheynst. A framework for multiscale transforms
on graphs. arXiv preprint arXiv:1308.4942, 2013.

[39] G Strang. Wavelets and filter banks. Wellesley Cambridge Press, 1996.

[40] G H Golub and Van Loan C F. Matrix computations, volume 3. JHU Press, 2012.

[41] F R K Chung. Lectures on spectral graph theory. CBMS Lectures, Fresno, 1996.

[42] R R Coifman and M Maggioni. Diffusion wavelets. Applied and Computational Harmonic
Analysis, 21(1):53–94, 2006.

[43] D Dor and M Tarsi. Graph decomposition is np-complete: A complete proof of holyer’s
conjecture. SIAM Journal on Computing, 26(4):1166–1187, 1997.

[44] E Cuthill and J McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceed-
ings of the 1969 24th national conference, pages 157–172. ACM, 1969.

[45] J Shi and J Malik. Normalized cuts and image segmentation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

142

[46] D Gleich. gaimc: Graph algorithms in matlab code. In Matlab Toolbox. Matlab, 2009.

[47] E J Candès and M B Wakin. An introduction to compressive sampling. Signal Processing
Magazine, IEEE, 25(2):21–30, 2008.

[48] B Mohar. Some applications of Laplace eigenvalues of graphs. Springer, 1997.

[49] J L Arrowood Jr and M J T Smith. Exact reconstruction analysis/synthesis filter banks with
time-varying filters. In Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993
IEEE International Conference on, volume 3, pages 233–236. IEEE, 1993.

[50] X Zhu. Semi-supervised learning literature survey. Computer Sciences TR, 1530, 2008.

[51] R A Redner and H F Walker. Mixture densities, maximum likelihood and the em algorithm.
SIAM review, 26(2):195–239, 1984.

[52] T Joachims. Learning to classify text using support vector machines: Methods, theory and
algorithms. Kluwer Academic Publishers, 2002.

[53] Zhi-Hua Zhou and M Li. Semi-supervised regression with co-training. In International Joint
Conference on Artificial Intelligence (IJCAI), volume 1, pages 2–2, 2005.

[54] X Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon University,
School of Computer Science, 2005.

[55] J Leskovec, M McGlohon, C Faloutsos, N Glance, and M Hurst. Cascading behavior in large
blog graphs. arXiv preprint arXiv:0704.2803, 2007.

[56] X Zhu, Z Ghahramani, and J Lafferty. Semi-supervised learning using gaussian fields and
harmonic functions. In ICML, volume 20, page 912, 2003.

[57] L D Baker and A K McCallum. Distributional clustering of words for text classification.
In Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 96–103. ACM, 1998.

[58] A Blum and S Chawla. Learning from labeled and unlabeled data using graph mincuts. 2001.

[59] D Zhou, O Bousquet, T N Lal, J Weston, and B Schölkopf. Learning with local and global
consistency. Advances in neural information processing systems, 16(753760):284, 2004.

[60] M Belkin, I Matveeva, and P Niyogi. Regularization and semi-supervised learning on large
graphs. In Learning theory, pages 624–638. Springer, 2004.

[61] M Belkin, P Niyogi, and V Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. The Journal of Machine Learning Research,
7:2399–2434, 2006.

143

[62] R I Kondor and J Lafferty. Diffusion kernels on graphs and other discrete input spaces. In
ICML, 2002.

[63] D I Shuman, M J Faraji, and P Vandergheynst. Semi-supervised learning with spectral graph
wavelets. SAMPTA 2011.

[64] D K Hammond, P Vandergheynst, and R Gribonval. Wavelets on graphs via spectral graph
theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

[65] T Blumensath. Accelerated iterative hard thresholding. Signal Processing, 2012.

[66] F Lin and W W Cohen. Semi-supervised classification of network data using very few labels.
In ASONAM 2010, pages 192–199. IEEE.

[67] R Merris. Laplacian matrices of graphs: a survey. Linear algebra and its applications,
197:143–176, 1994.

[68] B Mohar. The laplacian spectrum of graphs. Graph theory, combinatorics, and applications,
2:871–898, 1991.

[69] S K Narang and A Ortega. Downsampling graphs using spectral theory. In Acoustics, Speech
and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 4208–4211.
IEEE, 2011.

[70] X Zhu and M Rabbat. Approximating signals supported on graphs. In Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Conference on, pages 3921–3924.
IEEE, 2012.

[71] I Z Pesenson and M Z Pesenson. Sampling, filtering and sparse approximations on combina-
torial graphs. Journal of Fourier Analysis and Applications, 16(6):921–942, 2010.

[72] P E T Jorgensen. A sampling theory for infinite weighted graphs. Opuscula Mathematica,
31(2):209–236, 2011.

[73] W Wang and K Ramchandran. Random distributed multiresolution representations with sig-
nificance querying. In Proceedings of the 5th international conference on Information pro-
cessing in sensor networks, pages 102–108. ACM, 2006.

[74] M Crovella and E Kolaczyk. Graph wavelets for spatial traffic analysis. In INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE
Societies, volume 3, pages 1848–1857. IEEE, 2003.

[75] I Guskov, W Sweldens, and P Schröder. Multiresolution signal processing for meshes. In
Proceedings of the 26th annual conference on Computer graphics and interactive techniques,
pages 325–334. ACM Press/Addison-Wesley Publishing Co., 1999.

144

[76] P S Heckbert and M Garland. Survey of polygonal surface simplification algorithms. Tech-
nical report, DTIC Document, 1997.

[77] M Jansen, R Baraniuk, and S Lavu. Multiscale approximation of piecewise smooth two-
dimensional functions using normal triangulated meshes. Applied and Computational Har-
monic Analysis, 19(1):92–130, 2005.

[78] M Maggioni, J C Bremer Jr, R R Coifman, and A D Szlam. Biorthogonal diffusion wavelets
for multiscale representations on manifolds and graphs. In Optics & Photonics 2005, pages
59141M–59141M. International Society for Optics and Photonics, 2005.

[79] S K Narang and A Ortega. Local two-channel critically sampled filter-banks on graphs. In
Proc. IEEE International Conference on Image Processing (ICIP), pages 333–336, 2010.

[80] S K Narang and A Ortega. Lifting based wavelet transforms on graphs. In Proceedings: AP-
SIPA ASC 2009: Asia-Pacific Signal and Information Processing Association, 2009 Annual
Summit and Conference, pages 441–444. Asia-Pacific Signal and Information Processing As-
sociation, 2009 Annual Summit and Conference, International Organizing Committee, 2009.

[81] M Jansen, G P Nason, and B W Silverman. Multiscale methods for data on graphs and irregu-
lar multidimensional situations. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 71(1):97–125, 2009.

[82] M Gavish, B Nadler, and R R Coifman. Multiscale wavelets on trees, graphs and high di-
mensional data: Theory and applications to semi supervised learning. In Proc. International
Conference on Machine Learning, Haifa, Israel, 2010.

[83] C Wang and S Mahadevan. Multiscale analysis of document corpora based on diffusion mod-
els. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 1592–1597, 2009.

[84] N Beerenwinkel, L Pachter, and B Sturmfels. Epistasis and shapes of fitness landscapes.
arXiv preprint q-bio/0603034, 2006.

[85] E D Weinberger. Fourier and taylor series on fitness landscapes. Biological Cybernetics,
65(5):321–330, 1991.

[86] D Rockmore, P Kostelec, W Hordijk, and P F Stadler. Fast fourier transform for fitness
landscapes. Applied and Computational Harmonic Analysis, 12(1):57–76, 2002.

[87] M D Vose and A H Wright. The simple genetic algorithm and the walsh transform: Part i,
theory. Evolutionary Computation, 6(3):253–273, 1998.

[88] J R Driscoll and D M Healy. Computing fourier transforms and convolutions on the 2-sphere.
Advances in applied mathematics, 15(2):202–250, 1994.

145

[89] J-P Antoine and P Vandergheynst. Wavelets on the n-sphere and related manifolds. Journal
of mathematical physics, 39:3987, 1998.

[90] L J Grady and J R Polimeni. Discrete Calculus: Applied Analysis on Graphs for Computa-
tional Science. Springer, 2010.

[91] V N Ekambaram, G C Fanti, B Ayazifar, and K Ramchandran. Critically-sampled perfect-
reconstruction spline-wavelet filterbanks for graph signals. In IEEE GlobalSip 2013, Austin,
Tx.

[92] V N Ekambaram, G C Fanti, B Ayazifar, and K Ramchandran. Multiresolution graph signal
processing via circulant structures. In IEEE DSP/SPE Worskhop 2013, Napa Valley, Califor-
nia. IEEE, 2013.

[93] V N Ekambaram, G C Fanti, B Ayazifar, and K Ramchandran. Wavelet regularized graph
semi-supervised learning. In IEEE GlobalSip 2013, Austin, Tx.

[94] V N Ekambaram, G C Fanti, B Ayazifar, and K Ramchandran. Circulant structures and graph
signal processing,. In Proc. Int. Conf. Image Process., Melbourne, Australia, 2013.

	I Background
	Introduction
	Discrete Signals on Graphs
	Graphs
	Graph Signals
	The Graph Fourier Transform
	Chapter highlights

	II Signal Processing on Circulant Graphs
	Fundamental signal processing operations on circulant graphs
	Motivation
	Circulant graphs
	Definition
	A group theoretic viewpoint

	GFT for signals on a circulant graph
	The Uncertainty Principle
	Shifting signals on a circulant graph
	Shift in the graph domain
	Shift in the GFT domain

	Correlation
	Convolution
	Chapter highlights

	Sampling on circulant graphs
	Sampling
	Aliasing in the GFT domain
	Reconnection strategies for a sampled graph
	Desirable properties
	Kron reduction
	Circulant-preserving reconnection strategy
	Examples

	Sampling theorems
	Alias-free Sampling
	Optimal Perfect-Reconstruction Sampling

	Chapter highlights

	Multiscale analysis on circulant graphs
	Linear Filters for Graph Signals
	Filter banks for multiscale analysis
	Oversampled Filter banks—The Graph Laplacian Pyramid
	Spline-like filterbank structures
	Simple Spline-like filter banks
	Generalized weighted Spline-like filter banks
	Properties of the Spline-like two-channel filter bank

	Lattice filter bank structures
	Chapter highlights

	III Signal Processing on General Graphs
	Circulant decomposition of a general graph
	Introduction
	Directed Circulant Decomposition
	Undirected Circulant Decomposition
	Overcomplete Undirected Circulant Decomposition
	Undirected Circulant Decomposition-I
	Undirected Circulant Decomposition-II

	Properties of the circulant decompositions
	Reverse Cuthill-McKee Ordering

	Chapter highlights

	Sampling on general graphs
	Sampling on general graphs
	Reconnection strategies
	Chapter highlights

	Filter bank design on general graphs
	Shift-varying filters on general graphs
	The Laplacian Pyramid for general graphs
	Shift-varying Spline-like filter bank structures
	Simple Spline-like filter banks
	Generalized weighted Spline-like filter banks
	Properties of the Spline-like filter banks

	Shift-varying Lattice filter bank structures
	Example multiscale decompositions
	Weather dataset
	Watts-Strogatz small world network graphs

	Chapter highlights

	IV Applications
	Wavelet Regularized Graph Semi-Supervised Learning
	Machine Learning—a brief introduction
	Semi-Supervised Learning

	Graph Semi-Supervised Learning
	Graph Semi-Supervised Learning Algorithms
	Wavelet Regularized GSSL

	Experimental results
	Chapter Highlights

	V Related Work and Open Research Problems
	Related Work
	Open research problems
	Table of Notations
	Bibliography

