
PULSE: Peeling-based Ultra-Low complexity

algorithms for Sparse signal Estimation

Sameer Pawar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-215

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-215.html

December 17, 2013

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

PULSE: Peeling-based Ultra-Low complexity algorithms for Sparse signal
Estimation

by

Sameer Anandrao Pawar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engneering-Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Kannan Ramchandran, Chair
Professor David Tse

Professor Michael Lustig
Professor John Lott

Fall 2013

PULSE: Peeling-based Ultra-Low complexity algorithms for Sparse signal
Estimation

Copyright 2013
by

Sameer Anandrao Pawar

1

Abstract

PULSE: Peeling-based Ultra-Low complexity algorithms for Sparse signal Estimation

by

Sameer Anandrao Pawar

Doctor of Philosophy in Engneering-Electrical Engineering and Computer Science

University of California, Berkeley

Professor Kannan Ramchandran, Chair

An emerging challenge in recent years for engineers, researchers, and data scientists across
the globe is to acquire, store, and analyze ever-increasing amounts of data. In the past
decade, a new paradigm in data acquisition called “compressed-sensing” has emerged to cope
with this data explosion. Compressed sensing exploits the fact that in many applications,
although the signal of interest has a large ambient dimension, the relevant information resides
in a significantly lower dimensional space. For example, the Magnetic-Resonance-Imaging
(MRI) data is sparse in the wavelet-domain. In this thesis, we consider the problem of
computing a sparse Discrete-Fourier-Transform of a high-dimensional signal from its time-
domain samples, as a representative example of compressed-sensing problems. We use this
problem to investigate the tradeoff between the number of measurements, noise robustness,
and the computational complexity of the recovery algorithm in compressed sensing problems.

We propose a new family of deterministic sparse sensing matrices, obtained by blend-
ing together diverse ideas from sparse graph codes, digital signal processing, and number-
theoretic concepts like the Chinese-remainder-theorem (CRT). The specific sparse structure
of the proposed family of measurement matrices further enables a Peeling-based Ultra-Low
complexity algorithms for Sparse signal Estimation, that are accordingly dubbed PULSE al-
gorithms. Further, using the CRT, we establish an intimate connection between the problem
of computing a sparse DFT of a signal and decoding over an appropriately designed sparse
graph code. This connection is then exploited 1) to design a sample efficient measurement
matrix and a low-complexity peeling-style iterative recovery algorithm, and 2) to perform a
rigorous analysis of the recovery algorithm by wielding powerful and well-established ana-
lytical tools like density-evolution, martingales, and expander graphs from the coding theory
literature. In particular, we show that under some mild conditions a k-sparse n-length
DFT of a signal can be computed using (nearly optimal) 4k measurements and O(k log k)
computations. As a concrete example, when k = 300, and n = 3.8 × 106, our algorithm
achieves computational savings by a factor of more than 6000, and savings in the number
of input samples by a factor of more than 3900 over the standard Fast-Fourier-Transform

2

(FFT) algorithms. This can be a significant advantage in many existing applications and
can enable new classes of applications that were not thought to be practical so far. Next,
we extend these results to the case of noise-corrupted samples, computing sparse 2D-DFTs
as well as to interpolation of multi-variate sparse polynomials over the complex field and
finite fields. We also demonstrate an application of the proposed PULSE algorithm to ac-
quire the Magnetic-Resonance-Imaging of the Brain. This provides some empirical evidence
that PULSE algorithms are applicable for acquiring more realistic signals. The proposed
sensing framework and the recovery algorithm are sample efficient and robust against obser-
vation noise. We believe that this framework provides a possible direction towards designing
efficient and low-power engineering solutions for sparse signal acquisition.

i

To my dear parents Anandrao and Sindhu,
and

my beloved wife Sushmita.

ii

Contents

1 Introduction 1

2 Compressed sensing 6
2.1 Introduction . 6
2.2 System Model and Problem Formulation . 7
2.3 Main Result . 8

2.3.1 Related work . 9
2.4 Design of Measurement matrix and associated recovery algorithm 10

2.4.1 Genie-assisted peeling decoder over a sparse bipartite graph 10
2.4.2 Measurement Matrix A . 14
2.4.3 Recovery algorithm: SWIFT . 15

2.A Proof of Theorem 2.3.1 . 16
2.A.1 Probability of success . 16
2.A.2 Sample complexity . 17
2.A.3 Computational complexity . 17

3 Computing a sparse discrete-Fourier-transform 18
3.1 Introduction . 18

3.1.1 Related Work . 21
3.2 Problem formulation, notations and preliminaries 22

3.2.1 Problem formulation . 22
3.2.2 Notation and preliminaries . 23

3.3 Main Results . 24
3.4 DFT using decoding on sparse-graphs . 26

3.4.1 Computing a sparse DFT is equivalent to decoding on a sparse-graph 28
3.4.2 FFAST peeling-decoder . 30
3.4.3 Connection to coding for packet erasure channels 31

3.5 Performance analysis of the FFAST algorithm for the very-sparse (k ∝ nδ, 0 <
δ ≤ 1/3) regime . 33
3.5.1 Randomized construction based on the “Balls-and-Bins”

model: Ck1 (F , nb) . 34

iii

3.5.2 Ensemble of bipartite graphs constructed using the Chinese-Remainder-
Theorem (CRT): Ck2 (F , n, nb) . 35

3.5.3 Performance analysis of the peeling-decoder on graphs from the en-
semble Ck1 (F , nb) . 36

3.5.4 Performance of the FFAST-decoder over graphs in Ck2 (F , n, nb) for k ∝
nδ, for (0 < δ ≤ 1/3). 40

3.6 Performance analysis of the FFAST algorithm for the less-sparse regime (k ∝
nδ, 1/3 < δ < 1) . 40
3.6.1 Less-sparse regime of δ = 2/3 . 41
3.6.2 Sketch of proof for δ = 1− 1/d, for integer d ≥ 3 45
3.6.3 Achieving the intermediate values of δ 45

3.7 Sample and computational complexity of the
FFAST algorithm . 46

3.8 Simulation Results . 47
3.8.1 The CRT based graph ensemble behaves like the balls-and-bins based

graph ensemble . 47
3.8.2 Sample and Computational Complexity 50

3.A Edge degree-distribution polynomial for balls-and-bins model 52
3.B Proof of Lemma 3.5.4 . 54
3.C Proof of Lemma 3.5.5 . 54
3.D Proof of Lemma 3.5.2 . 55
3.E Probability of Tree-like Neighborhood . 56

4 Stable recovery of approximately sparse DFT 58
4.1 Introduction . 58

4.1.1 Main idea . 59
4.2 Signal model and Problem formulation . 61
4.3 Main results . 62
4.4 Related work . 63
4.5 FFAST sampling pattern and the measurement matrix 64

4.5.1 Bin-measurement matrix . 65
4.5.2 FFAST sampling patterns . 67

4.6 Noise robust FFAST algorithm . 69
4.7 Simulations . 70

4.7.1 Sample complexity m as a function of n 72
4.7.2 Sample complexity m as a function of ρ 73

4.A Mutual incoherence bound . 75
4.B Restricted-isometry-property . 76
4.C Proof of Theorem 4.3.1 . 76

4.C.1 Reliability Analysis and sample complexity of the FFAST 76
4.C.2 Computational complexity of the FFAST algorithm 81

iv

4.D Threshold based energy-detector . 81

5 Computing a sparse 2D discrete-Fourier-transform 83
5.1 Introduction . 83

5.1.1 Related Work . 85
5.2 Problem formulation, notation and preliminaries 86
5.3 Main Result . 87
5.4 FFAST architecture for 2D signals . 88

5.4.1 2D signals with co-prime dimensions 88
5.4.2 2D signals with equal dimensions N0 = N1 89

5.5 Simulations . 95
5.5.1 Application of 2D-FFAST for signals with N0 = N1, and exactly k-

sparse 2D-DFT . 95
5.5.2 Application of 2D-FFAST for signals with exactly k-sparse 2D-DFT

but with non-uniform support . 97
5.5.3 Application of the 2D-FFAST for MR imaging 97

5.A proof of Theorem 5.3.1 . 100

6 Sparse multivariate polynomial regression 103
6.1 Introduction . 103
6.2 Problem Setup and notations . 105
6.3 Main Contributions . 106
6.4 Related work . 107
6.5 Preliminaries . 108

6.5.1 Mapping multivariate polynomial interpolation to univariate polyno-
mial interpolation. 108

6.5.2 Univariate polynomial interpolation is equivalent to computing a discrete-
Fourier-transform . 109

6.5.3 Computing a sparse DFT using the FFAST algorithm 110
6.6 Univariate sparse polynomial interpolation over the

complex field . 114
6.7 Univariate sparse polynomial interpolation over finite field 115

6.7.1 Finite field preliminaries . 115
6.7.2 FFAST-based sparse univariate polynomial interpolation algorithm for

finite fields . 115
6.A Analysis of the sparse polynomial interpolation algorithm over finite fields . 117

6.A.1 Analysis of the ratio-test for a multiton bin 119

7 Conclusion and Future Research Directions 120
7.1 Conclusion . 120
7.2 Future research directions . 121

v

7.2.1 Modeling assumptions . 121
7.2.2 Analysis . 122
7.2.3 Algorithms . 123
7.2.4 Sampling of continuous-time signals 125
7.2.5 Extensions to other transforms . 127

vi

Acknowledgments

I would like to express my heart-felt gratitude to my advisor Prof. Kannan Ramchandran
for his support and guidance that has aided this thesis in countless ways. I would also
like to thank all the professors at Berkeley for offering amazing courses that taught me the
fundamentals which helped me throughout my PhD program. I am also thankful to my
thesis committee members Prof. David Tse, Prof. Michael Lustig, and Prof. John Lott.

I would like to thank my fellow graduate students and postdoctoral colleagues in the
Wireless Foundations lab. They were an integral part of my life at Berkeley. They were
friends, family, collaborators, teachers, and even philosophers depending on what I needed
the most at that particular time. I will always cherish the time I spent with them for the
rest of my life.

I am deeply indebted to my parents for their unconditional love and support throughout
my life, for having faith in me and for encouraging me to pursue my dreams. No words can
describe the support, devotion, encouragement and love I got from my lovely and beautiful
wife Sushmita, during these last 6 years. Without my family’s support and encouragement,
it would not have been possible for me to finish this thesis.

1

Chapter 1

Introduction

An emerging challenge in recent years for engineers, researchers and data scientists across
the globe is to acquire, store and analyze ever-increasing amounts of data. The sheer volume
of data amassed by many applications, including genomics, meteorology, medical imaging,
astronomy, network monitoring, etc., is rendering infeasible the traditional paradigm of
acquiring the entire data and compressing it for subsequent storage or analysis. Fortunately,
in many applications of interest, although the ambient dimension of the data to be acquired is
large, the relevant information resides in a significantly lower dimensional space, i.e., signals
are transform-domain sparse. For example, the Magnetic-Resonance-Imaging (MRI) data
is sparse in the wavelet-domain. Researchers and engineers in the past have exploited this
information to “compress” the data after acquisition, e.g., JPEG, MPEG, MP3, etc.

In the past decade, a new paradigm in data acquisition called “compressed-sensing”
has emerged. Compressed sensing is a signal processing technique that acquires multiple
linear combinations of a signal and reconstructs the signal by finding a solution to an un-
derdetermined linear system, thus, effectively performing compression at the time of ac-
quisition. The theoretical and algorithmic advances in compressed-sensing have impacted
many real-world applications like Magnetic-Resonance-Imaging (MRI), crystallography, face-
recognition, phase retrieval, network tomography, etc. The idea of compression at acquisition,
however, is relatively old. The most simple and yet powerful way of achieving compression at
acquisition is to sample the data at rates lower than the Nyquist-Shannon sampling theorem.
In general this task is impossible if no additional structure other than bandlimitedness is
imposed on the signal. However, if the signal is known to have some additional structure,
one can acquire the data at a significantly lower rate. For example, consider a problem of
acquiring a complex single sinusoidal signal x(t) = Aeıωt+φ, of an unknown amplitude A and
an unknown frequency ω. Then, using only two samples, x(0) = Aeφ and x(T) = AeıωT+φ,
we can determine the frequency ω = (1/T)∠x(T)x†(0) and the amplitude A = |x(0)|. Para-
metric models for signal acquisition have been exploited in the field of statistical signal
processing for a long time, e.g., MUSIC [71], ESPRIT [69], etc.

In recent years, the concept of sampling has been generalized to acquire linear combina-

CHAPTER 1. INTRODUCTION 2

tion of samples of the signal, i.e., compressed-sensing. The major algorithmic and theoretical
developments in compressed-sensing can be mainly classified into 3 groups of techniques:
convex optimization based techniques, greedy-iterative algorithms and coding-theory based
techniques.

• Convex optimization based techniques: The problem of recovering a high -
dimensional signal, that has a sparse structure in some transform-domain, from linear
measurements, can be formulated as an “`0-norm” minimization problem, which is
an instance of a non-convex optimization problem. Convex optimization techniques
first relax the original combinatorial problem to a convex problem of minimizing an
“`1-norm” and then design computationally efficient algorithms to solve this relaxed
problem [22, 11, 8, 10, 9, 20, 7, 50, 25, 13, 78]. Later, these techniques identify sufficient
conditions on the measurement matrix to guarantee a high-fidelity solution to the orig-
inal problem, using the aforementioned convex relaxation. The bulk of the literature
concentrates on designing either random or deterministic measurement matrices that
satisfy some form of the so-called Restricted Isometry Property (RIP) [12], that further
provides good reconstruction guarantees for the `1 minimization techniques, e.g., see
[8, 10, 9, 20]. The RIP essentially characterizes matrices which are nearly orthonormal
or unitary, when operating on sparse vectors. The convex optimization approach is
known to provide a high level of robustness against both the measurement noise and
observation noise.

• Greedy iterative algorithms: Greedy iterative algorithms attempt to solve the orig-
inal `0-minimization problem directly using heuristics. For example, the classical Or-
thogonal Matching Pursuit (OMP) [61, 19, 75] builds a solution to the `0-minimization
problem by finding one term of the sparse vector at a time by selecting at each step
the column of the measurement matrix that correlates most strongly with the residual
signal. Examples of other greedy algorithms include[60, 18, 23].

• Coding theory based techniques: In coding theory based compressed-sensing, the
approach is to first design a sensing matrix, e.g., using expander graphs, and then
construct recovery algorithms targeted to that particular sensing matrix. Examples of
coding theory based compressed-sensing are [79, 41, 3, 44, 14, 49, 1].

The convex-optimization techniques and the greedy algorithms rely on designing measure-
ment matrices that have RIP-like properties. Although it is known that randomly generated
matrices, e.g., Gaussian random matrices and Rademacher matrices, satisfy the RIP with
high probability, there is no practical algorithm to verify if a given matrix satisfies the RIP.
Using random matrices for compressed-sensing of real-world signals is difficult due to the
physical constraints of the sensing mechanism, storage constraints of random entries as well
as the computational constraints of matrix multiplication during the recovery process.

CHAPTER 1. INTRODUCTION 3

Most of the coding-theory based techniques use measurement matrices constructed via
expander-graphs with high expansion properties. There are many existential results in the
literature for constructing graphs that have high expansion properties, but very few explicit
constructions of such expanders are available. Moreover, many of these algorithms are not
robust against measurement or observation noise. In some cases, the recovery algorithm is
applicable only for positive-valued sparse signals [14, 49]. There is also another line of work
based on sketching algorithms, e.g., [15, 16, 17]. Again, these algorithms are not very noise
tolerant and in practice work only for very sparse signals.

The aforementioned drawbacks of existing techniques motivate us to address the prob-
lem of sparse signal estimation from a fundamental perspective. In the compressed sensing
problem, there seems to be a complex interplay between the measurement efficiency, noise ro-
bustness and the computational complexity of the recovery algorithm. This thesis attempts
to understand this complex relation between different metrics from a fundamental perspec-
tive, while being realistic in the system modeling. In particular, we investigate the tradeoff
between the number of measurements, noise robustness and the computational complexity of
the recovery algorithm, for a realistic sensing mechanism like partial Fourier measurements.

In this thesis, we use the problem of computing a sparse Discrete-Fourier-Transform
of a high-dimensional signal from its time-domain samples, as a representative example of
compressed-sensing problems. The reason for doing so is two-fold: 1) signals with sparse
spectrum abound in real-world applications, e.g., radar, MRI, multimedia, cognitive radio
etc. and 2) it provides a concrete problem statement to illustrate the new ideas proposed
in this thesis, which further can be applied to other compressed sensing applications. The
main contributions of this thesis are:

• We propose a new family of deterministic sparse sensing matrices, obtained by blending
together diverse ideas from sparse graph codes, a recent workhorse in coding theory, and
the Discrete Fourier Transform (DFT), an old workhorse in digital signal processing.
The resulting measurement matrices consist of a carefully chosen subset of rows of the
DFT matrix, guided by the Chinese-remainder-theorem (CRT) [4], thus making the
sensing mechanism more amenable to an actual implementation as compared to other
randomized constructions, e.g., random Gaussian matrices.

• The special sparse structure of the proposed family of measurement matrices enables
a low complexity peeling-style iterative recovery algorithms. Accordingly, we dub the
family of recovery algorithms as PULSE, which stands for Peeling-based Ultra-Low
complexity algorithms for Sparse signal Estimation.

• Using the CRT-guided sub-sampling operation, we establish an intimate connection
between the problem of computing a sparse DFT of a signal and decoding over ap-
propriately designed sparse graph codes. This connection is further harnessed to 1)
design sample-efficient measurement matrices, 2) design a low-complexity peeling-style
iterative recovery algorithm, and 3) rigorously analyze the proposed iterative recovery

CHAPTER 1. INTRODUCTION 4

algorithm using powerful and well-established analytical tools like density-evolution,
martingales, and expander graphs from the coding theory literature, to obtain nearly
tight bounds on the number of measurements required for a sparse signal estimation.
Thus further paving a way for adoption of sophisticated techniques like message-
passing, from the coding theory literature to the compressed sensing problems in a
more systematic way.

• Random measurement matrices like Gaussian matrices exhibit the RIP with optimal
sample scaling, but have limited use in practice. For example, Gaussian random mea-
surement matrices are not applicable to problems such as computing a sparse DFT
of a signal from its time-domain samples. To the best of our knowledge, the tightest
available RIP analysis (see [66]) of a matrix consisting of random subset of rows of
an n × n DFT matrix requires O(k log3 k log n) samples to stably recover a k-sparse
n-dimensional signal. In contrast, we show that a stable recovery of a k-sparse n-
dimensional signal is possible using O(k log2 k log n) samples.

To summarize, we augment the compressive-sensing literature by a family of sample-
efficient deterministic sparse measurement matrices and the associated family of low com-
plexity PULSE recovery algorithms. However, there are a few caveats that we would like
to emphasize. First, our results are for asymptotic regimes of the sparsity k and the signal
dimension n, where k is sub-linear in n. Secondly, we assume a stochastic model on the input
signal; in particular, we assume that the k-sparse signal has a uniformly random support.
Thus, our proposed PULSE algorithms trades off the sample and the computational com-
plexity for asymptotically zero probability of failure guarantees in a non-adversarial sparsity
setting.

The rest of the thesis is organized as follows:

Chapter 2 In this chapter, we consider an idealized setting of a discrete compressed-
sensing problem with no additional noise. We propose a family of sparse measurement
matrices and an associated low complexity algorithm that recovers an n-length discrete k-
sparse signal from nearly optimal 2(1+ ε)k noiseless linear observations, in an order-optimal
O(k) computational cost, with a high probability. Our proposed family of sparse measurement
matrices features a novel hybrid mix of the DFT, an old workhorse in digital signal processing,
and LDPC codes, a recent workhorse in coding theory, to generate a linear measurement
lens through which to perform compressive sensing (CS). This hybrid structure endows the
resulting family of sparse measurement matrices with several useful properties that can
be further exploited to design a fast, low complexity reconstruction algorithm that is also
provably optimal (up to small constant multiple) in the number of measurements. At a high
level, our approach combines signal processing concepts (the Discrete Fourier Transform)
with coding-theoretic concepts (LDPC codes) in a novel way to formulate a fast SWIFT
(Short-and-Wide-Iterative-Fast-Transform) algorithm, for the compressive sensing problem.

CHAPTER 1. INTRODUCTION 5

Chapter 3 In this chapter, we address the problem of computing an n-length k-sparse
DFT of a signal from its time-domain samples. We propose a novel CRT based sub-sampling
“front-end” architecture that transforms the problem of computing a sparse DFT of a signal
to that of decoding over an appropriately designed sparse graph code. This connection is
further exploited to design a low-complexity peeling-style iterative recovery algorithm called
FFAST, that stands for Fast Fourier Aliasing-based Sparse Transform. We rigorously analyze
the performance of the FFAST algorithm using powerful and well-established analytical tools
from the coding theory literature, like density-evolution, martingales, and expander graphs.
In particular, we show that an n-length k-sparse DFT can be computed using as few as 4k
carefully chosen time-domain samples, in O(k log k) arithmetic computations.

Chapter 4 In this chapter, we extend the FFAST framework proposed in Chapter 3, for
computing a k-sparse n-length DFT, to address the effects of imperfect measurements due to
additional noise at the acquisition sensors, i.e., observation noise. In particular, we show that
the FFAST framework acquires and reconstructs an n-length signal ~x, whose DFT ~X has
k non-zero coefficients, using O(k log2 k log n) noise-corrupted samples, in O(n log n log2 k)
computations. This contrasts with the best known scaling of the number of partial Fourier
measurements, i.e., O(k log3 k log n), required for the RIP [66], which further guarantees a
stable recovery of an n-length k-sparse DFT of a signal from its noise-corrupted time-domain
samples.

Chapter 5 In this chapter, we extend the results of Chapter 3 to compute the sparse 2D-
DFT’s of 2D signals. The main contribution of this chapter is a 2D-FFAST algorithm that
computes a k-sparse 2D-DFT of an N0 ×N1 signal, where the dimensions N0, N1 are either
co-prime or equal and the non-zero DFT coefficients have a uniformly random support, using
O(k) samples and in O(k log k) computations. We apply our proposed 2D-FFAST algorithm
to acquire an MRI of the ‘Brain’ from its Fourier samples. Thus, we demonstrate the appli-
cability of the FFAST architecture to acquire more realistic signals, that are approximately
sparse and have a “non-uniform” (or clustered) support of the dominant DFT coefficients.

Chapter 6 In this chapter, we show that FFAST is a more general framework and can
be applied to other applications of sparse signal recovery. In particular, we address the
problem of interpolating a multi-variate sparse polynomial, over either the complex or a
finite field, from its evaluations. The key idea is to obtain evaluations of the underlying
unknown polynomial over the roots of unity and transform the problem of sparse polynomial
interpolation to that of computing a sparse large (degree of the polynomial) dimension DFT
of the evaluation points. We can then use the algorithm proposed in Chapter 3 to compute
a sparse high-dimensional DFT.

We conclude the thesis with a summary of results and some important future research
directions in Chapter 7.

6

Chapter 2

Compressed sensing

2.1 Introduction

Compressed-sensing is a new paradigm for acquiring a sparse high-dimensional data. Recent
advances in compressed-sensing have impacted many real-world applications like Magnetic-
Resonance-Imaging (MRI), crystallography, face-recognition, phase retrieval, network to-
mography etc. In practice, many signals of interest are compressible or have sparse repre-
sentation in some transform-domain, e.g., Fourier, wavelet, etc. In such cases, a small subset
of the transform coefficients contain most or all of the signal energy, with most components
being either zero or negligibly small. The goal of compressed-sensing is to acquire or sense
and approximately reconstruct a high-dimensional sparse (or compressible) signal vector ~x
from a significantly fewer number of linear measurements or samples, in a computationally
efficient manner.

In this chapter, we propose a new family of sparse measurement matrices and an associ-
ated low complexity algorithm that recovers a high-dimensional discrete sparse signal from
a nearly-optimal number of noiseless linear observations in an order-optimal computational
cost. Our proposed family of matrices features a novel hybrid mix of the Discrete Fourier
Transform (DFT), an old workhorse in digital signal processing, and Low Density Parity
Check (LDPC) codes, a recent workhorse in coding theory, to generate a linear measurement
lens through which to perform compressive sensing (CS). This hybrid structure endows the
resulting family of sparse measurement matrices with several useful properties that can be
exploited to design a fast, low complexity reconstruction algorithm that is also provably or-
der optimal in the number of measurements. At a high level, our approach combines signal
processing concepts (the Discrete Fourier Transform) with coding-theoretic concepts (LDPC
codes) in a novel way to formulate a fast algorithm (dubbed the Short-and-Wide-Iterative-
Fast-Transform or SWIFT algorithm) for the compressive sensing problem.

Although our framework applies in more general settings, in this chapter, in the inter-
est of presentation clarity, we consider a discrete CS problem with no additional noise (or

CHAPTER 2. COMPRESSED SENSING 7

approximately sparse signal). Later in Chapter 4, we discuss how the framework and the
reconstruction algorithm can be modified to make it robust against observation noise.

In particular, we provide explicit constructions of the sparse measurement matrices and
the associated reconstruction algorithm SWIFT, to acquire a discrete n-length signal ~x that
has at most k non-zero coefficients. The SWIFT algorithm recovers the signal ~x, with high
probability, from 2k(1 + ε) number of linear measurements, for any ε > 0, in O(k) complex
operations. This is the first1 CS result that we are aware of which is order optimal both in
the number of the measurements and the computational complexity. However, we hasten to
add the caveat that this is attained by relaxing the signal sparsity model to be statistical
(uniformly random) rather than worst-case adversarial as assumed in many of CS works.

The rest of the chapter is organized as follows: In Section 2.2, we introduce the signal
model and formulate the problem. In Section 2.3, we provide a quick summary of the main
results and contrast it with the state of the art results in literature. Section 2.4 provides
explicit constructions of the family of sparse measurement matrices and a description of the
SWIFT recovery algorithm.

2.2 System Model and Problem Formulation

The goal of compressed sensing is to acquire/sense and approximately reconstruct a high-
dimensional sparse (or compressible) signal vector ~x from a significantly fewer number of
linear measurements/samples. In an ideal setup of the problem formulation, the signal vector
~x ∈ Cn, is assumed to be exactly k-sparse (k < n), i.e., has at most k non-zero entries, and
the task is to efficiently reconstruct the signal ~x from an under-determined system of linear
measurements. More formally, recover the n-length k-sparse signal ~x, from m < n linear
measurements (also see Fig. 2.1), obtained as follows:

~y = A~x, (2.1)

where A ∈ Cm×n, is the measurement matrix. Further we make the following assumptions
on the signal model

• k and n are both asymptotic.

• the support of non-zero values of ~x is uniformly random.

• amplitudes of the non-zero values of ~x are complex and drawn i.i.d from some contin-
uous distribution.

Our goal is to design both, a family of sparse measurement matrices A, and the associated
reconstruction algorithm, such that the k-sparse n-dimensional signal ~x can be recovered from
almost optimal (O(k)) number of measurements with minimal (O(k)) computational cost.

1An independently done contemporaneous work by M. Bakshi et al. [1], has some similarities, as well as
several differences with the proposed algorithm in this chapter.

CHAPTER 2. COMPRESSED SENSING 8

TexPoint)fonts)used)in)EMF.))
Read)the)TexPoint)manual)before)you)delete)this)box.:)AAA)

m

A ~x

n

~y

m ⇥ 1

n ⇥ 1

Figure 2.1: An n-dimensional k-sparse signal ~x is sensed using a sparse measurement A to get m linear measurements, as
~y = A~x.

2.3 Main Result

We propose a new family of sparse measurement matrices, constructed using a novel hybrid
mix of the DFT matrices and LDPC codes, through which to perform compressive sensing
(CS) of sparse high-dimensional discrete signals. This hybrid structure endows the resulting
family of sparse measurement matrices with several useful properties that can be exploited
to design a fast, low complexity (linear in k) iterative reconstruction algorithm which is also
provably optimal (up to small constant multiple of k) in the number of measurements. The
reconstruction algorithm is called SWIFT and stands for the Short-and-Wide-Iterative-Fast-
Transform. The main result is summarized in the following theorem:

Theorem 2.3.1. For any given sufficiently large values of k, n, we provide an explicit con-
struction of a measurement matrix A and the associated reconstruction algorithm SWIFT,
such that, given linear observations ~y = A~x, where ~x is an n-length k-sparse signal with
a uniformly random support of the non-zero coefficients, the SWIFT-algorithm perfectly re-
covers the signal ~x with probability at least 1 − O(k−3/2). The SWIFT algorithm performs
recovery using m = 2k(1 + ε) number of measurements, for any ε > 0, and O(k) complex
operations.

CHAPTER 2. COMPRESSED SENSING 9

Proof. Please see Appendix 2.A.

2.3.1 Related work

The major algorithmic and theoretical developments in the field of compressed sensing can
be broadly categorized into three major groups of techniques, convex optimization based
techniques, greedy-iterative algorithms and coding-theory based techniques.

• Convex optimization based techniques: The problem of recovering a high di-
mensional signal, that has a sparse structure in some transform-domain, from linear
measurements, can be formulated as an “`0-norm” minimization problem, which is
an instance of a non-convex optimization problem. Convex optimization techniques
first relax the original combinatorial problem to a convex problem of minimizing an
“`1-norm” and then design computationally efficient algorithms to solve this relaxed
problem [22, 11, 8, 10, 9, 20, 7, 50, 25, 13, 78]. Later, these techniques identify suffi-
cient conditions on the measurement matrix to guarantee a high-fidelity solution to the
original problem, using the aforementioned convex relaxation. The bulk of the litera-
ture concentrates on designing random measurement matrices that are characterized
by O(k log(n/k)) number of measurements and O(poly(n)) decoding complexity. The
convex optimization approach is known to provide a high level of robustness against
both the measurement noise and observation noise.

• Greedy iterative algorithms: Greedy iterative algorithms attempt to solve the orig-
inal `0-minimization problem directly using heuristics. For example, the classical Or-
thogonal Matching Pursuit (OMP) [61, 19, 75] builds a solution to the `0-minimization
problem by finding one term, of the sparse vector, at a time by selecting, at each step,
the column of the measurement matrix that correlates most strongly with the residual
signal. Examples of other greedy algorithms include [60, 18, 23]. Although greedy-
algorithms are faster than the convex optimization based techniques, in order sense
they are still O(poly(n)) in decoding complexity and require O(k log(n/k)) number of
measurements.

• Coding theory based techniques: In coding theory based compressed-sensing, the
approach is to first design a sensing matrix, e.g., using expander graphs, and then
construct recovery algorithms targeted to that particular sensing matrix. Examples
of coding theory based compressed-sensing are [79, 41, 3, 44, 14, 49, 1]. While the
measurement and the computational complexity of these algorithms is sub-linear, i.e,
O(k log(n)), it is still dependent on the ambient dimension n.

Thus, none of the existing CS solutions in the literature overcome the “n-barrier” w.r.t
either the decoding complexity or the number of measurements, even for the noiseless regime.
The Finite Rate of Innovations (FRI)-based techniques for signal acquisition [76], [21] and

CHAPTER 2. COMPRESSED SENSING 10

[5], do overcome the “n-barrier” w.r.t the number of measurements for the noiseless regime,
but not w.r.t. the decoding complexity, as it relies on computationally expensive polynomial
root-finding operations, whose complexity is O(k2 log(n)) [2].

The main contribution of this chapter is to show that under no noise model i.e., when
observations have no additional noise, it is possible to overcome the “n-barrier” for both,
the number of measurements and the decoding complexity. However, we hasten to add the
caveat that this is attained by relaxing the signal sparsity model to be statistical (uniformly
random) rather than worst-case adversarial as assumed in many of CS works. Further,
by carefully designing a hybrid DFT-LDPC measurement matrix family, we provide a fast
“onion-peeling”-like SWIFT recovery algorithm that, with near-optimal number of measure-
ments, reels off the uncovered non-zero entries of the sparse vector ~x in an order optimal
O(k) complex operations.

2.4 Design of Measurement matrix and associated re-

covery algorithm

In this section, we describe the construction of the sparse measurement matrix A ∈ Cm×n,
and the associated fast iterative recovery algorithm SWIFT. Before we delve into the details
of the measurement matrix design and the recovery algorithm, it is instructive to take a
look at a “genie-assisted-peeling-decoder” (described below) over a carefully designed sparse
bipartite graph. Our genie-assisted-peeling-decoder is inspired by the decoder used in [26]
for “private stream search”.

2.4.1 Genie-assisted peeling decoder over a sparse bipartite graph

We use a simple example to illustrate the genie-assisted-decoder. Consider an n = 20 length
discrete signal ~x that has only k = 5 non-zero coefficients. Let the non-zero coefficients of
~x be x[1] = 1, x[3] = 4, x[5] = 2, x[10] = 3, x[13] = 7, while the rest of the coefficients are
zero. We construct a bi-partite graph, with n = 20 variable nodes on the left and nb = 9
parity check nodes (also referred as bins) on the right, as shown in Fig. 2.2.

Now, we assign the values of the left variable nodes in the graph of Fig. 2.2, to be
equal to the entries of the k-sparse signal vector ~x, i.e., at most k left nodes have non-zero
values. Further, the values of the parity check nodes (right nodes of the bi-partite graph) are
assigned to be equal to the complex sum of the values of its left neighbors. Since the zero-
valued variable nodes do not affect the values of the parity check nodes, it suffices to show the
graph connections only for the non-zero variable nodes (as shown in Fig. 2.2). The resulting
bi-partite graph is sparse. A parity check node that has exactly one non-zero valued variable
node, as a left neighbor, is called a ‘single-ton’ (green colored check nodes). Similarly, a
parity check node that has more than one non-zero valued variable nodes, as left neighbors,
is called a ‘multi-ton’ (red colored check nodes) and the one with all the zero-valued left

CHAPTER 2. COMPRESSED SENSING 11

~yb,0

~yb,1

~yb,2

~yb,7

~yb,8

x[1]

x[2]

x[5]

x[10]

x[3]

x[13]

x[18]

x[19]

x[0]

...

...

...

Figure 2.2: An example bipartite graph with n = 20 variable nodes on left and nb = 9 parity check nodes (or bins) on right.
The values of the variable nodes are set to be equal to the entries of the n = 20 length k = 5 sparse example signal ~x. The
value of a parity check node is equal to the complex sum of the values of its left neighbors. The observation of the parity check
node i is denoted by ~yb,i. Since the zero-valued variable nodes do not affect the values of the parity check nodes, it suffices to
show the graph connections only for the non-zero variable nodes. A parity check node that has exactly one non-zero valued
variable node, as a left neighbor, is called a ‘single-ton’ (green colored check nodes). Similarly, a parity check node that has
more than one non-zero valued variable nodes, as left neighbors, is called a ‘multi-ton’ (red colored check nodes) and the one
with all the zero-valued left neighbors is called a ‘zero-ton’ (blue colored check nodes).

neighbors is called a ‘zero-ton’ (blue colored check nodes). Consider a ‘genie’ that informs
the decoder which parity check nodes are zero-ton, single-ton and multi-ton. Further, for all
the single-ton check nodes, it also informs the support of its only non-zero valued neighbor.
Then, a decoder can identify singleton check nodes, and their support, with the help of the
genie. Also, by observing the value of a single-ton parity check node, the decoder can infer
the value of the neighboring variable node. Then, the genie-assisted-peeling decoder repeats
the following steps:

1. Select all the edges in the graph with right degree 1 (edges connected to single-tons).

2. Remove these edges from the graph as well as associated left and right nodes.

3. Remove all other edges that were connected to the left nodes removed in step-2. When

CHAPTER 2. COMPRESSED SENSING 12

a neighboring edge of any right node is removed, its contribution is subtracted from
that parity check node.

If, at the end, all the edges have been removed from the graph, the genie-assisted-peeling-
decoder would have successfully reconstructed the signal ~x. For example, a genie-assisted-
peeling decoding on graph in Fig. 2.2 results in a successful decoding, with the non-zero
coefficients of the signal ~x recovered in the order x[10], x[3], x[5], x[1] and x[13]. The prob-
ability of success of the genie-assisted-peeling decoder clearly depends on the properties of
the sparse bipartite graph used for decoding.

In [52, 53], the authors have addressed this problem of designing optimal irregular edge
degree sparse bi-partite graphs in the context of erasure correcting codes. Further, the
authors of [53] have shown, an appropriate choice of the left edge degree distribution (to a
truncated enhanced harmonic degree distribution) of the bipartite graph, the genie-assisted-
peeling-decoder described above successfully recovers the signal ~x with probability at least
1−O(k−3/2), given that the number of the check nodes nb ≥ (1 + ε)k for any ε > 0.

Thus, if the bi-partite graph is constructed using the appropriately designed LDPC matrix
H , such that the jth left variable node is connected to the ith right parity check node iff the
entry H[i][j] = 1, then the peeling-decoder successfully recovers all the non-zero values of ~x
with high probability under the following assumptions:

1. Zero-ton, single-ton and multi-ton bins are identified correctly.

2. If a bin is a single-ton, then the decoder also correctly identifies the support and the
value of the contributing non-zero neighbor.

Next, we show how these properties/assumptions can be achieved with high probability
without the help of the genie. The key idea is to have a 2-dimensional vector observation at
each parity check node rather than a scalar observation.

Getting rid of the genie Again consider our n = 20 length k = 5 sparse example
signal ~x and the bi-partite graph of Fig. 2.2. Now suppose, each variable node contributes
a 2-dimensional complex vector, rather than a scalar complex number, to all the parity
check nodes it is connected to on right. In particular, a variable node x[`] contributes
(x[`], x[`]eı2π`/n) to its neighboring check nodes. The observation vector ~yb of a bin (or a
check node) is a complex sum of all the 2-dimensional vectors from its left neighbors. For
example, the observations of bins 0, 1 and 2 in Fig. 2.2 are:

~yb,0 =

(
0
0

)

~yb,1 = x[1]

(
1

eı2π/20

)
+ x[5]

(
1

eı2π5/20

)
+ x[13]

(
1

eı2π13/20

)

~yb,2 = x[10]

(
1

eı2π10/20

)

CHAPTER 2. COMPRESSED SENSING 13

More generally, the 2-dimensional complex observation vector ~yb of a bin b is given by,

~yb =

(
1 1 1 · · · 1
1 eı2π1/n eı2π2/n · · · eı2π(n−1)/n

)
~xb, (2.2)

where ~xb ∈ Cn consists of all non-zero coefficients of ~x that are connected to bin b and rest of
the entries are zero. The 2-dimensional observation vector of a bin can be used to determined
if a bin is a zero-ton, a single-ton or a multi-ton bin as follows:

• Zero-ton: A zero-ton bin is identified trivially. For example,

~yb,0 =

(
0
0

)
.

• Single-ton: Using the observation vector ~yb,2 of bin 2, which is a singleton-bin, we
can determine the support and the value of the non-zero variable node connected to
bin 2 as follows:

– support:

10 =
20

2π
∠yb,2[1]y†b,2[0].

– value:
x[10] = yb,2[0].

Also note, for a single-ton bin |yb,2[0]| = |yb,2[1]| and the support is an integer
between 0 to 19. It is easy to verify that this property holds for all the singleton
bins. We refer to the procedure of computing the support as a ‘ratio-test’ in the
sequel.

• Multi-ton: Consider the observation vector ~yb,1 of bin 1, which is a multi-ton bin,
given as,

~yb,1 = x[1]

(
1

eı2π/20

)
+ x[5]

(
1

eı2π5/20

)
+ x[13]

(
1

eı2π13/20

)

=

(
10

−3.1634− ı3.3541

)

Now, if we perform the ‘ratio-test’ on the observation vector ~yb,1, we get the support
to be 12.59. Also, |yb,1[0]| 6= |yb,1[1]|. Since, we know that for a singleton bin the
magnitudes of both observations are identical and the support is an integer value
between 0 and 19, we conclude that the observations ~yb,1 correspond to a multi-ton
bin. In Appendix 2.A, we rigorously show that the ratio-test successfully identifies a
multi-ton bin almost surely.

Thus, using a 2-dimensional complex observation vector at each bin and the ratio-test,
the peeling-decoder can successfully identify zero-ton, single-ton, multi-ton bins without the
help of the genie, with high probability.

CHAPTER 2. COMPRESSED SENSING 14

2.4.2 Measurement Matrix A

In this section, we describe the construction of a family of sparse measurement matrices
{A(n, k)} indexed by the problem parameters n, k. For a given (n, k), the measurement
matrix A is such that the observations ~y and the signal ~x are related through a peeling-
friendly sparse bipartite graph (as shown in Fig. 2.2) and each bin has a 2-dimensional
complex observation vector as discussed in Section 2.4.1. Thus, enabling us to use a peeling-
decoder to successfully reconstruct ~x with high probability.

First, we define a matrix operator row-tensor product denoted as ‘⊗r’ (also see [33]).
Consider two matrices B and C given as,

BT =

(
1 2 3 4
1 4 9 16

)
, and CT =

1 0 1 0
0 1 0 1
1 0 0 1

 .

Then, a row-tensor product BT ⊗r CT is given by,

BT ⊗r CT =

1 0 3 0
1 0 9 0
0 2 0 4
0 4 0 16
1 0 0 4
1 0 0 16

.

In general if BT ∈ Fp×q and CT ∈ Fr×q, for some arbitrary field F, then the row-tensor
product BT ⊗r CT ∈ Fpr×q. The jth set of p rows of BT ⊗r CT is given by {(~cj ◦~bi)T , 0 ≤
i ≤ p − 1} for all 0 ≤ j ≤ r − 1, where ~cj,~bi are jth and ith rows of matrices CT and BT

respectively and ‘◦’ denotes the Hadamard product of the rows.
Now, the measurement matrix A for a given (n, k) and ε > 0 is,

A = F ⊗r H (2.3)

where,

F =

(
1 1 1 · · · 1
1 eı2π1/n eı2π2/n · · · eı2π(n−1)/n

)
, (2.4)

consists of the first two rows of an n× n DFT matrix and H ∈ C(1+ε)k×n is a binary LDPC
matrix with {0, 1} entries. Thus the total number of measurements is 2(1 + ε)k. The LDPC
matrix H is designed using an optimal irregular construction from [53].

CHAPTER 2. COMPRESSED SENSING 15

Algorithm 1 SWIFT Algorithm

1: Input: The bin observations {~yb,i}nb−1
i=0 obtained through the sparse measurement matrix

A.

2: Output: An estimate ~x of the n-length, k-sparse signal.

3: SWIFT Decoding: Set the initial estimate ~x = 0. The SWIFT decoder processes the bin
observations for a constant number of iterations, as follows:

4: for each iteration do
5: for each bin i = 0 to nb − 1 do
6: if ||~yb,i||2 == 0 then
7: bin i is a zero-ton.
8: else
9: (singleton, vp, p) = Singleton-Estimator (~yb,i).

10: if singleton = ‘true’ then
11: ~y = ~y − vpA(:, p).
12: Set, x[p] = vp.
13: else
14: bin i is a multi-ton.
15: end if
16: end if
17: end for
18: end for

2.4.3 Recovery algorithm: SWIFT

Our recovery algorithm dubbed Short-and-Wide Iterative Fast Transform or ‘SWIFT’ is
an iterative algorithm along the lines of the ‘genie-assisted-peeling-decoder’ explained in
Section 2.4.1 (see algorithm 1 for the pseudo-code). The key difference from the genie
assisted algorithm is a novel way of detecting if a bin is a single-ton or a multi-ton bin using
the function SingletonEstimator() (see algorithm 2 for the pseudo-code).

The SWIFT algorithm performs a constant number of iterations. In each iteration the
SWIFT algorithm processes all the bins. For each bin, it first computes the energy of the
observation vector to detect a zero-ton. Further, if a bin has non-zero energy, it uses the
function SingletonEstimator() to distinguish between a singleton bin and a multi-ton bin.
The function SingletonEstimator() sets the indicator flag ‘singleton’ to 1 if the processed
bin is a singleton and to 0 if the processed bin is a multi-ton. In the case of a singleton
bin the function SingletonEstimator() also provides the value and the support of the non-
zero coefficient. The SWIFT algorithm then peels of the contribution of any singleton bins
found during the current iteration, thus inducing more singletons to be processed in the next
iteration.

CHAPTER 2. COMPRESSED SENSING 16

Algorithm 2 Singleton-Estimator

1: Input: The bin observation ~yb,i.

2: Outputs: 1) An indicator flag ‘singleton’, 2) Estimate of the support p and the value vp
of the non-zero coefficient, if the bin is a singleton bin.

3: Singleton-Estimator:
4: Set singleton = ‘false’.
5: Ratio-test: p = (n/2π)∠yb,i[1]y†b,i[0].
6: if |yb,i[0]| == |yb,i[1]| and p ∈ {0, 1, . . . , (n− 1)} then
7: singleton = ‘true’.
8: vp = yb,i[0].
9: end if

2.A Proof of Theorem 2.3.1

2.A.1 Probability of success

Following the discussion in Section 2.4, it suffices to show that the SWIFT algorithm satisfies
the following properties with probability at least 1−O(k−3/2),

1. zero-ton, single-ton and multi-ton bins are identified correctly.

2. If a bin is a singleton-bin, then the decoder also identifies the support and the value
of the non-zero coefficient connected to that bin.

It is trivial to verify that if a bin is a zero-ton or a single-ton, it is always identified
correctly. Also, in the case of a singleton bin, the estimated support and the value of the
non-zero coefficient is correct.

Next, consider a multiton-bin ` with L − 1 non-zero components where L > 2. Let
i0, i1, · · · , iL−2 be the support of the non-zero components of ~x contributing to the observation
of the multi-ton bin `. Then, we have

~yb,` =
[
~fi0

~fi1 · · · ~fiL−3
~fiL−2

]

x[i0]
x[i1]

...
x[iL−3]
x[iL−2]

, (2.5)

CHAPTER 2. COMPRESSED SENSING 17

where ~fi is the ith column of the matrix F , given in (2.4). The multi-ton bin ` is identified
as a single-ton bin with support j and value x[j] for some 0 ≤ j < n, iff,

~yb,` = ~fjx[j]

i.e.,
[
~fi0

~fi1 · · · ~fiL−3

]

x[i0]
x[i1]

...
x[iL−3]

 =

[
~fiL−2

~fj

] [−x[iL−2]
x[j]

]

~u =
[
~fiL−2

~fj

] [−x[iL−2]
x[j]

]
. (2.6)

where ~u ∈ C2, is some resultant vector. Since F is a Vandermonde matrix, equation (2.6)
has a unique solution. Since the complex coefficient x[iL−2] is drawn from a continuous dis-
tribution, the probability of satisfying equation (2.6) is essentially zero. Also, the probability
of a multi-ton bin having a zero energy is upper bounded by the probability of a multi-ton
bin being identified as a singleton, which is essentially 0. Hence a multi-ton bin is identified
correctly almost surely.

2.A.2 Sample complexity

In Section 2.4.2, we have shown that by using optimal irregular sparse graph constructions
from [53], the SWIFT algorithm can reconstruct the sparse signal ~x with probability at least
1−O(k−3/2), from 2(1 + ε)k samples for any ε > 0.

2.A.3 Computational complexity

In [53], the authors have shown that the genie-assisted-peeling decoder successfully recovers
the signal ~x in a constant number of iterations, i.e., O(k) complex computations. The SWIFT
algorithm has an additional function SingletonEstimator() whose computational complexity
is O(1). Hence, the SWIFT algorithm recovers all the non-zero coefficients of the signal ~x
in O(k) complex operations. �

18

Chapter 3

Computing a sparse
discrete-Fourier-transform

3.1 Introduction

Spectral analysis using the Discrete Fourier Transform (DFT) has been of universal impor-
tance in engineering and scientific applications for a long time. A direct computation of
the DFT ~X of an n-length signal ~x from the definition is often too slow, i.e., O(n2)1, to be
practical. As a result, researchers have developed a family of algorithms called Fast Fourier
Transform (FFT) (see [4]) to compute the same result in more computationally efficient way
i.e., O(n log n), arithmetical operations. In practice many applications of interest involve
signals, e.g. relating to audio, image, and video data, seismic signals, biomedical signals,
financial data, social graph data, cognitive radio applications, surveillance data, satellite
imagery, etc., which have a sparse Fourier spectrum. In such cases, a small subset of the
spectral components typically contains most or all of the signal energy, with most spectral
components being either zero or negligibly small. For such signals, is it possible to exploit
this additional knowledge to devise an algorithm that can compute the spectrum in a more
efficient way than FFTs?

In this chapter we address this question and answer it affirmatively. In particular, we
show that if an n-length signal ~x is known to have a k-sparse DFT, ~X, where k << n, then,
under certain additional conditions, our proposed algorithm computes the DFT using O(k)
carefully chosen input samples in O(k log k) arithmetical operations. The improvement in
speed can be enormous, especially for long signals where n may be in the order of hundreds
of thousands or millions. This can be a significant advantage in many existing applications,

1Recall that a single variable function f(x) is said to be O(g(x)), if for a sufficiently large x the function
|f(x)| is bounded above by |g(x)|, i.e., limx→∞ |f(x)| < c|g(x)| for some constant c. Similarly, f(x) = Ω(g(x))
if limx→∞ |f(x)| > c|g(x)| and f(x) = o(g(x)) if the growth rate of |f(x)| as x→∞, is negligible as compared
to that of |g(x)|, i.e. limx→∞ |f(x)|/|g(x)| = 0.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 19

as well as enable new classes of applications not thought practical so far.
We emphasize the following caveats. First, our analytical results are probabilistic, and

work asymptotically in k and n, where k is sub-linear in n, with a success probability that
approaches 1 asymptotically. This contrasts the O(n log n) FFT algorithm which works
deterministically for all values of k and n. Secondly, we assume that the support of the
non-zero DFT coefficients is uniformly random. Lastly, we require the signal length n to be
a product of a few (typically 3 to 9) distinct primes of same order2.

In effect, our algorithm trades off the sample and the computational complexity for
asymptotically zero probability of failure guarantees in a non-adversarial sparsity setting,
and is applicable whenever k is sub-linear in n (i.e. k is o(n)), but is obviously most attractive
when k is much smaller than n. As a concrete example, when k = 300, and n = 273553 ≈
3.8× 106, our algorithm achieves computational savings by a factor of more than 6000, and
savings in the number of input samples by a factor of more than 3900 over the standard
FFT (see [73] for computational complexity of a prime factor FFT algorithm).

Main idea At a high level, our algorithm uses a small and structured set of uniform
subsampling operations applied directly on the input signal. It is well known from basic
sampling theory that subsampling without anti-alias filtering creates spectral aliasing that
destroys the original signal spectrum. Our key idea is to exploit rather than avoid this
aliasing. This is done by recognizing that a carefully designed subsampling operation will
induce spectral aliasing artifacts that look like the parity constraints of good erasure-correcting
codes that additionally have a fast peeling-decoding algorithm (see Section 3.4.3 for more
details). The resulting algorithm is low in both the sample complexity and the computational
complexity. We accordingly dub our algorithm the FFAST (Fast Fourier Aliasing-based
Sparse Transform). Our main inspiration is drawn from the class of sparse graph-codes
for erasure channels studied in coding theory, e.g., Low-Density-Parity-Check (LDPC) codes
[27], fountain codes [6, 55], verification codes [56], etc. Why? These codes have two important
properties that we would like to inherit: (a) they have very low computational complexity
(iterative peeling-based) decoder; and (b) they are near-capacity achieving for the erasure
channel. The first property bestows the desired low computational complexity, while the
second property ensures that the sample complexity of the algorithm is near-optimal.

But how do we achieve this goal? We cannot induce any arbitrary code in the spectral-
domain at our will as we can control only the subsampling operation on the time-domain
signal. The key idea is to design subsampling patterns, guided by the Chinese-Remainder-
Theorem (CRT), that create the desired code-like aliasing patterns. As we will describe in
Section 3.5, the subsampling patterns are based on relatively co-prime integers for the very-
sparse regime (sparsity-index 0 < δ ≤ 1/3). When the spectrum is less-sparse (1/3 < δ <

2This is not a major restriction as in many problems of interest, the choice of n is available to the system
designer, and choosing n to be a power of 2 is often invoked only to take advantage of the readily-available
radix-2 FFT algorithms.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 20

!point'
Input'Signal'

z0

z1
n

f0

n

f0

f0

f0

DFT'

DFT'

DFT'

DFT'

fd�1

fd�1

Synthesis'
Decoder'

!point''
DFT'

Stage'(d!1)'

Stage'0'

...

CRT!guided'set'of'uniform'
sampling'periods'

n n

z0

z1

n

fd�1

n

fd�1

~X~x

FFAST front-end! FFAST back-end !

Figure 3.1: Schematic block diagram of the FFAST architecture. The n-point input signal ~x is uniformly subsampled by a
carefully chosen set of d patterns, guided by the Chinese-Remainder-Theorem, to obtain 2d sub-streams. Each of the d stages
has 2 sub-streams. A sub-stream is of length approximately equal to the sparsity k, resulting in an aggregate number of samples
m = 2

∑d−1
i=0 fi , rk, for a small constant r. Next, the (short) DFTs, of each of the resulting sub-streams are computed using

an efficient FFT algorithm of choice. The big n-point DFT ~X is then synthesized from the smaller DFTs using the peeling-like
FFAST decoder.

1), the subsampling patterns are a bit more complicated, comprising of “cyclically-shifted”
overlapping co-prime integers. See Section 3.6 for details.

Our approach is summarized in Fig. 3.1. The n-point input signal ~x is uniformly sub-
sampled through d stages. Each of the d stages, subsample the input signal and its cir-
cularly shifted version by a carefully chosen set of d patterns, guided by the Chinese-
Remainder-Theorem, to obtain 2d sub-streams of sampled data. Each sub-stream is of
length approximately equal to the sparsity k, resulting in an aggregate number of samples
m = 2

∑d−1
i=0 fi , rk, for a small constant r. Next, the (short) DFTs, of each of the resulting

sub-streams are computed using an efficient FFT algorithm of choice. The big n-point DFT
~X is then synthesized from the smaller DFTs using the peeling-like FFAST decoder. As a
concrete example, if the signal ~x is of length n ≈ 106 and its DFT ~X has k = 200 non-zero
coefficients, then the FFAST algorithm first generates 6 (d = 3) uniformly sampled sub-

streams of the input data, each of size ≈ 100 (fi ≈ 100, i = 0, 1, 2), and then synthesizes ~X

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 21

from the short DFTs of these 6 sub-streams. Due to the linear-time (in k) decoding com-
plexity of the peeling-like FFAST decoder, our main computational bottleneck is in taking
a small constant number of short (linear in k) DFTs. The precise number and the size of
the short DFTs is quantified in Section 3.3. For the entire range of practical interest of
sub-linear sparsity (i.e. k ∝ nδ where 0 < δ < 0.99), the overall sample complexity of the
FFAST algorithm is no more than 4k, and the computational complexity is O(k log k) with
small constants in the big-Oh. This is particularly gratifying because both the sample com-
plexity and the computational complexity depend only on the sparsity parameter k, which
is sub-linear in n.

In this chapter we focus on the signals that have exactly k-sparse DFT ~X and there is
no additional noise in the observations. Our motivation for this focused study is: (i) to
provide conceptual clarity of our proposed approach in a noiseless setting; (ii) to present our
deterministic subsampling front-end measurement subsystem as a viable alternative to the
class of randomized measurement matrices popular in the compressive sensing literature [20,
8]; and (iii) to explore the fundamental limits on both sample complexity and computational
complexity for an exact-sparse DFT, which is of intellectual interest. Later, in Chapter 4 we
discuss the required modifications to make the FFAST algorithm robust against observation
noise.

3.1.1 Related Work

A number of previous works [31, 32, 35, 38, 39] have addressed the problem of computing a
1-D DFT of a discrete-time signal that has a sparse Fourier spectrum, in sub-linear sample
and time complexity. Most of these algorithms achieve a sub-linear time performance by first
isolating the non-zero DFT coefficients into different bins, using specific filters or windows
that have ‘good’ (concentrated) support in both, time and frequency. The non-zero DFT
coefficients are then recovered iteratively, one at a time. The filters or windows used for the
binning operation are typically of length O(k log n). As a result, the sample and computa-
tional complexity is typically O(k log n) or more. Moreover the constants involved in the
big-Oh notation can be large, e.g., the empirical evaluation of [32] presented in [43] shows
that for n = 222 and k = 7000, the number of samples required are m ≈ 221 = 300k which
is 75 times more than the sample complexity 4k of the FFAST algorithm3. The work of [35]
provides an excellent tutorial on some of the key ideas used by most sub-linear time sparse
FFT algorithms in the literature. In [42], the author proposes a sub-linear time algorithm
with a sample complexity of O(k log4 n) or O(k2 log4 n) and computational complexity of
O(k log5 n) or O(k2 log4 n) to compute a sparse DFT, with high probability or zero-error
respectively. The algorithm in [42] exploits the Chinese-Remainder-Theorem, along with
O(poly(log n)) number of subsampling patterns to identify the locations of the non-zero

3As mentioned earlier, the FFAST algorithm requires the length of the signal n to be a product of a few
distinct primes. Hence, the comparison is for an equivalent n ≈ 222 and k = 7000.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 22

DFT coefficients. In contrast, the FFAST algorithm exploits the CRT to induce ‘good’
sparse-graph codes using a small constant number of subsampling patterns and computes
the sparse DFT with a vanishing probability of failure.

In summary, the FFAST algorithm is the first that we are aware of to compute an exactly
k-sparse n-point DFT that has all of the following features:

• it has O(k) sample complexity and O(k log k) computational complexity;

• it covers the entire sub-linear regime (k ∝ nδ, 0 < δ < 1);

• it has a probability of failure that vanishes to zero asymptotically;

• it features the novel use of the Chinese Remainder Theorem to guide the design of a
small deterministic set of uniform subsampling patterns that induce good sparse-graph
channel codes.

The rest of the chapter is organized as follows. In Section 3.2, we provide the problem
statement along with the appropriate modeling assumptions and introduce the commonly
used notations. Section 3.3 presents our main results and also provides a brief overview of
the related literature. Section 3.4 exemplifies the mapping of computing the sparse DFT
of a signal to decoding of an appropriately designed sparse-graph code. Sections 3.5 and
3.6 provide the performance analysis of the FFAST algorithm for the very-sparse and the
less-sparse regimes respectively. In Section 3.8, we provide extensive simulation results that
corroborate our theoretical findings, and validate the empirical performance of the FFAST
algorithm.

3.2 Problem formulation, notations and preliminaries

3.2.1 Problem formulation

Consider an n-length discrete-time signal ~x that is a sum of k << n complex exponentials,
i.e., its n-length discrete Fourier transform has k non-zero coefficients:

x[p] =
k−1∑

q=0

aqe
2πıωqp/n, p = 0, 1, . . . , n− 1, (3.1)

where the discrete frequencies ωq ∈ {0, 1, . . . , n − 1} and the amplitudes aq ∈ C, for q =
0, 1, . . . , k−1. We consider the problem of identifying the k unknown frequencies ωq and the
corresponding complex amplitudes aq from the time-domain samples ~x. A straightforward

solution is to compute an n-length DFT, ~X, using a standard FFT algorithm [4], and locate
the k non-zero coefficients. Such an algorithm uses n samples and O(n log n) computations.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 23

When the DFT ~X is known to be exactly k-sparse and k << n, computing all the n DFT
coefficients seems redundant.

In this chapter, we address the problem of designing an algorithm, to compute the k-
sparse n-point DFT of ~x for the asymptotic regime of k and n, when the support of the
non-zero DFT coefficients is uniformly random. We would like the algorithm to have the
following features:

• it takes as few input samples m of ~x as possible.

• it has a low computational cost that is a function of only the number of input samples
m.

• it is applicable for the entire sub-linear regime, i.e., for all 0 < δ < 1, where k = O(nδ).

• it computes the DFT ~X with a probability of failure vanishing to 0 as m becomes large.

In the next section, we setup the notations and provide definitions of the important
parameters used in the rest of the chapter.

3.2.2 Notation and preliminaries

Notation Description
n Ambient dimension of the signal ~x.

k Number of non-zero coefficients in the DFT ~X.
δ Sparsity-index: k ∝ nδ, 0 < δ < 1.

m
Sample complexity: Number of samples of ~x used by the FFAST

algorithm to compute the DFT ~X.
r = m/k Oversampling ratio: Number of samples per non-zero DFT coefficient.
d Number of stages in the “sub-sampling front end” of the FFAST architecture.

fi
Number of samples of ~x per sub-stream, in the ith stage

of the “sub-sampling front end” of the FFAST architecture; m = 2
∑d−1

i=0 fi.

Table 3.1: Glossary of important notations and definitions used in the rest of the chapter. The last three parameters are related
to the “sub-sampling front end” of the proposed FFAST architecture (see Figure 3.1 for details).

Modulo-operator: For integers a,N , we use (a)N to denote the operation, a mod N ,
i.e., (a)N , a mod N .

We now describe the Chinese-Remainder-Theorem (CRT) which plays an important role
in our proposed FFAST architecture as well as in the FFAST decoder.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 24

Theorem 3.2.1 (Chinese-Remainder-Theorem [4]). Suppose n0, n1, . . . , nd−1 are pairwise
co-prime positive integers and N =

∏d−1
i=0 ni. Then, every integer ‘a’ between 0 and N − 1

is uniquely represented by the sequence r0, r1, . . . , rd−1 of its remainders modulo n0, . . . , nd−1

respectively and vice-versa.

Further, given a sequence of remainders r0, r1, . . . , rd−1, where 0 ≤ ri < ni, Gauss’s
algorithm can be used to find an integer ‘a’, such that,

(a)ni ≡ ri for i = 0, 1, . . . , d− 1. (3.2)

For example, consider the following pairwise co-prime integers n0 = 3, n1 = 4 and n2 = 5.
Then, given a sequence of remainders r0 = 2, r1 = 2, r2 = 3, there exists a unique integer ‘a’,
such that,

2 ≡ a mod 3

2 ≡ a mod 4 (3.3)

3 ≡ a mod 5

It is easy to verify that a = 38 satisfies the congruencies in (3.3). Further, a = 38 is a unique
integer modulo N = n0n1n2 = 60 that satisfies (3.3).

3.3 Main Results

We propose a novel FFAST algorithm to compute the (exactly) k-sparse n-point DFT, ~X,

of an n-point signal ~x. The n-length input signal ~x is such that its DFT ~X has at most k
non-zero coefficients, i.e., || ~X||0 ≤ k, with arbitrary complex values and uniformly random
support in {0, 1, . . . , n−1}. The FFAST algorithm computes the k-sparse n-point DFT with
a high probability, using as few as O(k) samples of ~x and O(k log k) arithmetic computations.
The following theorem states the main result:

Theorem 3.3.1. For any given 0 < ε < 1, there exist (infinitely many) sufficiently large

n, such that the FFAST algorithm computes the k-sparse DFT ~X, where k = Ω(nδ) and
0 < δ < 1, of an n-length input signal ~x, with the following properties:

1. Sample complexity: The algorithm needs m = r(δ)k samples of the signal ~x, where
the oversampling ratio r(δ) > 1, is a small constant that depends on the sparsity index
δ;

2. Computational complexity: The computational complexity of the FFAST algorithm
is O(k log(k)), where the constant in big-Oh is small.

3. Probability of success: The FFAST algorithm successfully computes all the non-zero
DFT coefficients of the signal ~x, with probability at least 1− ε.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.5

3

3.5

4

r =
 m

/k
O

ve
rs

am
pl

in
g

ra
tio

sparsity index δ
(k ∝ nδ, for large enough n)

Figure 3.2: The plot shows the relation between the oversampling ratio r = m/k, and the sparsity index δ for 0 < δ < 0.99,

where k ∝ nδ. The FFAST algorithm successfully computes the k-sparse n-point DFT ~X of the desired n-point signal ~x
with high probability, as long as the number of samples m is above the threshold given in the plot. Note that for nearly the
entire sub-linear regime of practical interest, e.g. k < n0.99, the oversampling ratio r < 4. For asymptotic values of k, the
oversampling ratio r = 2dη, where d is the number of stages in the FFAST architecture and η is the average number of samples
per sub-stream normalized by the number of non-zero coefficients k. In Section 3.5.4, we show that the number of stages d
used in the FFAST architecture increases as δ approaches 1. The above achievable threshold plot is then obtained by using the
constructions in Section 3.5.4 and the values of dη from Table 3.4 in Section 3.5.3.

Proof. We prove the theorem in three parts. In Section 3.5, we analyze the performance
of the FFAST algorithm for the very-sparse regime (0 < δ ≤ 1/3), and in Section 3.6 we
analyze the less-sparse regime 1/3 < δ < 1. Lastly, in Section 3.7 we analyze the sample and
the computational complexity of the FFAST algorithm.

Note, that although Theorem 3.3.1 is for asymptotic values of k, it applies for any signal
that has || ~X||0 ≤ k. Hence, the regime of δ = 0 (esp. constant k) is covered by the FFAST
algorithm designed to operate for some δ > 0, at the expense of being sub-optimal in the
sample and the computational complexity.

Remark 3.3.2. [Oversampling ratio r] The minimum achievable oversampling ratio r de-
pends on the number of stages d used in the FFAST architecture. The number of stages d,
in turn, is a function of the sparsity index δ (recall k ∝ nδ), and increases as δ → 1 (i.e., as
the number of the non-zero coefficients, k, approach the linear regime in n). In Sections 3.5
and 3.6, we show how the number of stages d increase as δ approaches 1. Table 3.2 provides
some example values of r and d for different values of the sparsity index δ. In Fig. 3.2 we
plot r as a function of δ for a sparsity regime of practical interest, i.e., 0 < δ < 0.99.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 26

δ 1/3 2/3 0.99 0.999 0.9999
d 3 6 8 11 14
r 2.45 3.14 3.74 4.64 5.51

Table 3.2: The table shows the number of subsampling stages d used in the FFAST architecture, and the corresponding values
of the oversampling ratio r (for different values of the sparsity index δ).

3.4 DFT using decoding on sparse-graphs

5

4 5 � DFT

4 � DFT

z

z

5

4 5 � DFT

4 � DFT

(Zs[0], . . . , Zs[4])

(Z̃s[0], . . . , Z̃s[4])

(X̃s[0], . . . , X̃s[3])

(Xs[0], . . . , Xs[3])

(x[0], x[4], x[8], x[12], x[16])

(x[1], x[5], x[9], x[13], x[17])

(x[1], x[6], x[11], x[16])

(x[0], x[5], x[10], x[15])(x[0], x[1], . . . , x[19])

stage-0

stage-1

FFAST!
Peeling!
decoder!

~X 2 C20

FFAST front-end! FFAST !
back-end!

Figure 3.3: A toy-example of the FFAST architecture. The input to the FFAST architecture is a 20-point discrete-time signal
~x = (x[0], . . . , x[19]). The input signal and its circularly shifted version are first subsampled by 5 to obtain two sub-streams,
each of length f0 = 4. A 4-point DFT of each sub-stream is then computed to obtain the observations (Xs[.], X̃s[.]). Similarly,
downsampling by 4 followed by a 5-point DFT provides the second set of f1 = 5 observations (Zs[.], Z̃s[.]). Note that the
number of samples per sub-stream f0 and f1 in the two different stages (d = 2) are pairwise co-prime and are factors of n = 20.
In general, the number of stages and the choice of the subsampling factors depend on the sparsity index δ. For the very-sparse
regime, (0 < δ ≤ 1/3), the subsampling factors are such that the number of samples per sub-stream in the different stages of the
FFAST architecture are relatively co-prime (see Section 3.5 for details). For the less-sparse regime, (1/3 < δ < 1), the number
of samples per sub-stream in different stages have a more complicated “cyclically-shifted” overlapping co-prime structure (see
Section 3.6 for details).

In this section, we describe the FFAST sub-sampling “front-end” architecture, as shown
in Fig. 3.3, as well as the associated “back-end” FFAST peeling-decoder to compute a k-
sparse n-length DFT. Further, we also show an equivalence between computing the sparse
DFT of a signal and decoding over an appropriately designed sparse-graph. We use a simple
example to illustrate the FFAST sub-sampling front-end and the backend. Consider a 20-
point discrete-time signal ~x = (x[0], . . . , x[19]), such that its 20-point DFT ~X, is 5-sparse.
Let the 5 non-zero DFT coefficients of the signal ~x be X[1] = 1, X[3] = 4, X[5] = 2, X[10] = 3

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 27

and X[13] = 7. The FFAST sub-sampling front-end shown in Fig. 3.3, samples the input
signal and its circularly shifted version through multiple stages d = 2. Let fi denote the
number of the output samples per delay sub-stream of stage i, e.g., in Fig. 3.3, f0 = 4 and
f1 = 5. The FFAST peeling-decoder synthesizes the big DFT ~X, from the short DFTs of
each of the sub-sampled data streams.

Before we delve into the details of computing the DFT of the signal ~x using the FFAST
framework, we review some basic signal processing properties of subsampling-aliasing and
circular shifts.

• Aliasing: If a signal is subsampled in the time-domain, its frequency components
mix together, i.e., alias, in a pattern that depends on the sampling procedure. For
example, consider uniform subsampling of ~x by a factor of 5 (see Fig. 3.3) to get

~xs = (x[0], x[5], x[10], x[15]). Then, the 4-point DFT of ~xs is related to the DFT ~X as:

Xs[0] = X[0] +X[4] +X[8] +X[12] +X[16] = 0

Xs[1] = X[1] +X[5] +X[9] +X[13] +X[17] = 10

Xs[2] = X[2] +X[6] +X[10] +X[14] +X[18] = 3

Xs[3] = X[3] +X[7] +X[11] +X[15] +X[19] = 4

More generally, if the sampling period is N (we assume that N divides n) then,

Xs[i] =
∑

j≡(i)n/N

X[j], (3.4)

where the notation j ≡ (i)n/N , denotes j ≡ i mod n/N .

• Circular Shift in time: A circular shift in the time-domain results in a phase shift
in the frequency-domain. Consider a circularly shifted signal ~x(1) obtained from ~x
as x[i](1) = x[(i+ 1)n]. The DFT coefficients of the shifted signal ~x(1), are given as,
X(1)[j] = ωjnX[j], where ωn = exp(2πı/n) is an nth root of unity. In general a circular
shift of n0 results in X(n0)[j] = ωjn0

n X[j].

Using the above signal processing properties of sub-sampling and circular shift, we can
compute the relation between the DFT ~X and the output of the FFAST front-end. Next,
we group the output of the FFAST front-end into “bin-observation” as follows:

Bin observation

A bin-observation is a 2-dimensional vector formed by collecting one scalar output value
from each of the 2 delay chains in a stage. For example, ~yb,0,1 is an observation vector of bin
1 in stage 0 and is given by,

~yb,0,1 =

(
Xs[1]

X̃s[1]

)
. (3.5)

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 28

The first index of the observation vector corresponds to the stage number, while the second
index is the bin number within a stage. Note, that in the FFAST architecture of Fig. 3.3,
there are total of 4 bins in stage 0 and 5 bins in stage 1.

Using the above 20-point example signal ~x, we explain how to compute the sparse DFT
~X, via decoding over an appropriately designed sparse graph.

3.4.1 Computing a sparse DFT is equivalent to decoding on a
sparse-graph

f0 = 4

f1 = 5

X[1]

X[5]

X[10]

X[13]

X[3]

(Xs[0], X̃s[0])

(Xs[1], X̃s[1])

(Xs[2], X̃s[2])

(Xs[3], X̃s[3])

(Zs[0], Z̃s[0])

(Zs[1], Z̃s[1])

(Zs[4], Z̃s[4])

(Zs[2], Z̃s[2])

(Zs[3], Z̃s[3])

~yb,0,0 =

~yb,0,1 =

~yb,0,2 =

~yb,1,2 =

~yb,1,3 =

~yb,0,3 =

~yb,1,4 =

~yb,1,0 =

~yb,1,1 =

Figure 3.4: A 2-left regular degree bi-partite graph representing the relation between the unknown non-zero DFT coefficients
and the observations obtained through the FFAST architecture shown in Fig. 3.3, for the 20-point example signal ~x. Variable
(left) nodes correspond to the non-zero DFT coefficients and the check (right) nodes are the observations. The observation at
each check node is a 2-dimensional complex-valued vector e.g., ~yb,0,0 = (Xs[0], X̃s[0]).

Let, the input signal ~x be processed through the 2 stage FFAST architecture of Fig. 3.3,
to obtain the bin-observations (Xs[·], X̃s[·]) and (Zs[·], Z̃s[·]). Then, the relation between the

resulting bin-observations and the non-zero DFT coefficients ~X can be computed using the
signal processing properties of sub-sampling and circular shift. A graphical representation
of this relation is shown in Fig. 3.4. Left nodes of the graph in Fig. 3.4 represent the non-
zero DFT coefficients and the right nodes represent the “bins” (check nodes) with vector
observations. An edge connects a left node to a right check node iff the corresponding non-
zero DFT coefficient contributes to the observation vector of that particular check node, e.g.,
after aliasing, due to sub-sampling, the DFT coefficient X[10] contributes to the observation
vector of bin 2 of stage 0 and bin 0 of stage 1.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 29

We define the following:

• zero-ton: A bin that has no contribution from any of the non-zero DFT coefficients
of the signal, e.g., bin 0 of stage 0 or bin 2 of stage 1, as shown in Fig. 3.4. A zero-ton
bin can be trivially identified from its observations.

• single-ton: A bin that has contribution from exactly one non-zero DFT coefficient of
the signal, e.g., bin 2 of stage 0. Using the signal processing properties the observation
vector of bin 2 of stage 0 is given as,

~yb,0,2 =

(
X[10]

e2πı10/20X[10]

)
.

The observation vector of a singleton bin can be used to determine the support and
the value, of the only non-zero DFT coefficient contributing to that bin, as follows:

– support: The support of the non-zero DFT coefficient contributing to a singleton
bin can be computed as,

10 =
20

2π
∠~yb,0,2[1]y†b,0,2[0] (3.6)

– Value: The value of the non-zero DFT coefficient is given by the observation
yb,0,2[0].

We refer to this procedure as a “ratio-test”, in the sequel. Thus, a simple ratio-test
on the observations of a singleton bin correctly identifies the support and the value of
the only non-zero DFT coefficient connected to that bin. It is easy to verify that this
property holds for all the singleton bins.

• multi-ton: A bin that has a contribution from more than one non-zero DFT coeffi-
cients of the signal, e.g., bin 1 of stage 0. The observation vector of bin 1 of stage 0
is,

~yb,0,1 = X[1]

(
1

eı2π/20

)
+X[5]

(
1

eı2π5/20

)
+X[13]

(
1

eı2π13/20

)

=

(
10

−3.1634− ı3.3541

)

Now, if we perform the “ratio-test” on these observations, we get, the support to be
12.59. Since, we know that the support has to be an integer value between 0 to 19, we
conclude that the observations do not correspond to a singleton bin. In Section 2.A,
we rigorously show that the ratio-test identifies a multi ton bin almost surely.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 30

Hence, using the “ratio-test” on the bin-observations, the FFAST decoder can determine
if a bin is a zero-ton, a single-ton or a multi-ton, almost surely. Also, when a bin is singleton
the ratio-test provides the support as well as the value of the non-zero DFT coefficient
connected to that bin. We use the following peeling-decoder on the graph in Fig. 3.4, to
compute the support and the values of the non-zero DFT coefficients of ~x.

3.4.2 FFAST peeling-decoder

Algorithm 3 FFAST Algorithm

1: Inputs:
- A discrete time signal ~x of length n, whose n-point DFT ~X has at most k non-zero
coefficients.
- The subsampling parameters of the FFAST architecture (see Fig. 3.1): 1) number
of stages d. and 2) number of samples per sub-stream in each of the d stages F =
{f0, f1, . . . , fd−1}, chosen as per discussion in Sections 3.5 and 3.6.

2: Output: An estimate of the k-sparse n-point DFT ~X.

3: FFAST Decoding: Set the initial estimate of the n-point DFT ~X = 0. Let ` denote the
number of iterations performed by the FFAST decoder.

4: for each iteration do
5: for each stage i = 0 to d− 1 do
6: for each bin j = 0 to fi − 1 do
7: if ||~yb,i,j||2 == 0 then
8: bin j of stage i is a zero-ton.
9: else

10: (singleton, vp, p) = Singleton-Estimator (~yb,i,j).
11: if singleton = ‘true’ then

12: Peeling: ~yb,s,q = ~yb,s,q− vp

(
1

eı2πp/n

)
, for all stages s and bins q ≡ p mod fq.

13: Set, X[p] = vp.
14: else
15: bin j of stage i is a multi-ton.
16: end if
17: end if
18: end for
19: end for
20: end for

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 31

The FFAST decoder repeats the following steps (also see pseudocode in Algorithm 3 and
Algorithm 4):

1. Select all the edges in the graph with right degree 1 (edges connected to single-tons).

2. Remove these edges from the graph as well as the associated left and right nodes.

3. Remove all the other edges that were connected to the left nodes removed in step-2.
When a neighboring edge of any right node is removed, its contribution is subtracted
from that check node.

Decoding is successful if, at the end, all the edges have been removed from the graph. It is
easy to verify that performing the peeling procedure on the example graph of Fig. 3.4 results
in successful decoding, with the coefficients being uncovered in the following possible order:
X[10], X[3], X[1], X[5], X[13].

Algorithm 4 Singleton-Estimator

1: Input: The bin observation ~yb,i,j.

2: Outputs: 1) A boolean flag ‘singleton’, 2) Estimated value vp of the non-zero DFT
coefficient at position p.

3: Singleton-Estimator: Set the singleton = ‘false’.
4: if |yb,i,j[0]| == |yb,i,j[1]| and (n/2π)∠yb,i,j[1]yb,i,j[0]† ∈ {0, 1, . . . , (n− 1)} then
5: singleton = ‘true’.
6: vp = yb,i,j[0].

7: p = (n/2π)∠yb,i,j[1]yb,i,j[0]†.
8: end if

Thus, the FFAST architecture has transformed the problem of computing the DFT of
~x into that of decoding over a sparse bi-partite graph of Fig. 3.4. Clearly the success the
FFAST decoder depends on the properties of the sparse bi-partite graph resulting from the
sub-sampling operation of FFAST front-end.

3.4.3 Connection to coding for packet erasure channels

The problem of decoding over sparse bi-partite graphs has been well studied in the coding
theory literature. In this section we draw an analogy between decoding over sparse-graph
codes for a packet erasure channel and decoding over bi-partite graphs induced by the FFAST
architecture.

Consider an (n, n−nb) packet erasure code. Each n-length codeword consists of (n−nb)
information packets and nb parity packets. Suppose that the code is used over an erasure

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 32

Erased''
symbols/packets'

Parity'''
Checks'

...
...

k � 1

0

1

nb � 1

0

1

(a) Bi-partite graph, after subtracting
the contribution of the correctly re-
ceived n − k packets, corresponding to
a parity check matrix of a sparse-graph
code designed for an erasure channel.

...
...

k � 1

0

1

nb � 1

0

1

Non$zero(
DFT(coefficients(

Aliased(((
Frequency(bins(

(b) Bi-partite graph representing the
connections (aliasing) among the non-
zero DFT coefficients due to subsam-
pling, and the observations obtained by
the FFAST decoder.

Figure 3.5: Comparison between the bi-partite graphs corresponding to the parity check matrix of a sparse-graph code for an
erasure channel and a graph induced by the FFAST architecture.

channel that uniformly at random drops some k number of packets. A bi-partite graph
representation of the parity check matrix of the code, after subtracting the contribution of
the correctly received packets, is shown in Fig. 3.5(a). In Table 3.3 we provide comparison
between decoding over bi-partite graphs of Fig. 3.5(a) and Fig. 3.5(b).

Thus, the problem of decoding over bi-partite graphs induced by the FFAST architec-
ture is closely related to the decoding of sparse-graph codes for an erasure-channel. We
use this analogy: a) to design a set of uniform sub-sampling patterns that induce ‘good’
left-regular degree sparse-graph codes; and b) to formally connect our proposed Chinese-
Remainder-Theorem based aliasing framework to random sparse-graph codes constructed
using a balls-and-bins model, and analyze the convergence behavior of our algorithm using
density evolution techniques.

Next, we address the question of how to carefully design the sub-sampling parameters of
the FFAST front-end architecture so as to get “good-graphs”.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 33

Erasure Channel Sparse DFT
1. Explicitly designed sparse-graph
code.

1. Implicitly designed sparse-graph code
induced by sub-sampling.

2. n− k correctly received packets. 2. n− k zero DFT coefficients.
3. k-erased packets. 3. k unknown non-zero DFT coefficients
4. Peeling-decoder recovers the values
of the erased packets using ‘singleton’
check nodes. The locations of which
packets are erased are known.

4. Peeling-decoder recovers both the
values and the locations of the non-zero
DFT coefficients using ‘singleton’ check
nodes. The locations of the non-zero
DFT coefficients are not known. This
results in a 2× cost in the sample
complexity.

5. Codes based on regular-degree
bipartite graphs are
near-capacity-achieving. More
efficient, capacity-achieving
irregular-degree bipartite graph codes
can be designed.

5. The FFAST architecture based on
uniform subsampling can induce only
left-regular degree bi-partite graphs.

Table 3.3: Comparison between decoding over a sparse-graph code for a packet erasure channel and computing a sparse DFT
using the FFAST architecture.

3.5 Performance analysis of the FFAST algorithm for

the very-sparse (k ∝ nδ, 0 < δ ≤ 1/3) regime

In the previous section, we showed that the problem of computing a k-sparse n-point DFT of
a signal can be transformed into a problem of decoding over sparse bipartite graphs using the
FFAST architecture. In this section, we describe how to choose a set of uniform sub-sampling
patterns, guided by the CRT, to induce a good sparse-graph code. As shown in Section 3.4.3,
the FFAST decoding process is closely related to the decoding procedure on sparse-graph
codes designed for erasure channels. From the coding theory literature, we know that there
exist several sparse-graph code constructions that are low-complexity and capacity-achieving
for the erasure channels. The catch for us is that we are not at liberty to use any arbitrary
bi-partite graph, but can choose only those graphs that can be induced through our proposed
subsampling. Next, we show that a deterministic bi-partite graph construction based on the
Chinese-Remainder-Theorem (CRT), in conjunction with a uniformly random support of the
non-zero DFT coefficients, creates sparse-graph codes that: a) have all the good properties
that are sufficient for reliable decoding; and b) can be induced using the FFAST subsampling
architecture.

We describe two ensembles of bi-partite graphs, the first based on a “balls-and-bins”

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 34

model, and the second using a deterministic construction based on the CRT. Later, in
Lemma 3.5.1, we show that the two ensembles are equivalent.

Let F = {f0, . . . , fd−1}, be a set of pairwise co-prime integers and nb ,
∑d−1

i=0 fi. As
explained in Table 3.1, the integers fi’s are the number of samples per sub-stream in the d
stages of the FFAST architecture (see Fig. 3.1). The integers fi’s are approximately equal
and we use F to denote this value. More precisely, fi = F + O(1) for i = 0, . . . , d − 1,
where F is an asymptotically large number. The O(1) perturbation term in each fi is used
to obtain a set of co-prime integers4 approximately equal to F. Note, that the total number
of samples used by the FFAST algorithm is m = 2dF + O(1) (see Fig. 3.1). In this section,
we use F = ηk, for some constant η, which results in an order optimal sample complexity
m = O(k), but the constructions and results trivially extend to the case when m > Ω(k).

3.5.1 Randomized construction based on the “Balls-and-Bins”
model: Ck1 (F , nb)

We construct a bi-partite graph with k variable nodes on the left and nb check nodes on
the right. The bipartite graphs that we consider in this chapter have each variable node v
connected to exactly d check nodes, while the edge degree of the check nodes is variable,
i.e., left-regular degree bi-partite graphs. An example graph from an ensemble Ck1 (F , nb), for
F = {4, 5}, d = 2, k = 5 and nb = 9 is provided in Fig. 3.4. More generally, the ensemble
Ck1 (F , nb) of d-left regular degree bipartite graphs constructed using a “balls-and-bins” model
is defined as follows. Set nb =

∑d−1
i=0 fi, where F = {fi}d−1

i=0 . Partition the set of nb check
nodes into d subsets with the ith subset having fi check nodes. For each variable node, choose
one neighboring check node in each of the d subsets, uniformly at random. The corresponding
d-left regular degree bipartite graph is then defined by connecting the variable nodes with
their neighboring check nodes by an undirected edge.

An edge e in the graph is represented as a pair of nodes e = {v, c}, where v and c are
the variable and check nodes incident on the edge e. By a directed edge ~e we mean an
ordered pair (v, c) or (c, v) corresponding to the edge e = {v, c}. A path in the graph is a
directed sequence of directed edges ~e1, . . . , ~et such that, if ~ei = (ui, u

′
i), then the u′i = ui+1

for i = 1, . . . , t− 1. The length of the path is the number of directed edges in it, and we say
that the path connecting u1 to ut starts from u1 and ends at ut.

Directed Neighborhood

The directed neighborhood of depth ` of ~e = (v, c), denoted by N `
~e , is defined as the induced

subgraph containing all the edges and nodes on paths ~e1, . . . , ~e` starting at node v such that
~e1 6= ~e. An example of a directed neighborhood of depth ` = 2 is given in Fig. 3.6. If the

4An example construction of an approximately equal sized 3 co-prime integers can be obtained as follows.
Let F = 2r03r15r2 for any integers r0, r1, r2 greater than 1. Then, f0 = F+ 2, f1 = F+ 3 and f2 = F+ 5 are
co-prime integers.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 35

induced sub-graph corresponding to the directed neighborhood N `
~e is a tree then we say that

the neighborhood of the edge ~e is tree-like.

3.5.2 Ensemble of bipartite graphs constructed using the Chinese-
Remainder-Theorem (CRT): Ck2 (F , n, nb)

First set n =
∏d−1

i=0 fi and nb =
∑d−1

i=0 fi, where F = {fi}d−1
i=0 . The ensemble Ck2 (F , n, nb) of

d-left regular degree bipartite graphs, with k variable nodes and nb check nodes, is defined
as follows. Partition the set of nb check nodes into d subsets with the ith subset having fi
check nodes (see Fig. 3.4 for an example). Consider a set I of k integers, where each element
of the set I is chosen uniformly at random, with replacement, between 0 and n− 1. Assign
the k integers from the set I to the k variable nodes in an arbitrary order. Label the check
nodes in the set i from 0 to fi − 1 for all i = 0, . . . , d− 1. A d-left regular degree bi-partite
graph with k variable nodes and nb check nodes, is then obtained by connecting a variable
node with an associated integer v to a check node (v)fi in the set i, for i = 0, . . . , d− 1. The
ensemble Ck2 (F , n, nb) is a collection of all the d-left regular degree bipartite graphs induced
by all possible sets I. A uniformly random choice of integers in the set I, implies that all
the graphs in the ensemble Ck2 (F , n, nb) occur with equal probability.

Note that the modulo rule used to generate a graph in the ensemble Ck2 (F , n, nb) is
same as the one used in equation (3.4) of Section 3.4. Thus, the FFAST architecture of
Fig. 3.3 described in Section 3.4, generates graphs from the CRT ensemble Ck2 (F , n, nb),
where the indices I of the k variable nodes are the locations (or support) of the non-zero
DFT coefficients5 of the signal ~x.

Lemma 3.5.1. The ensemble of bipartite graphs Ck1 (F , nb) is identical to the ensemble
Ck2 (F , n, nb).

Proof. It is trivial to see that Ck2 (F , n, nb) ⊂ Ck1 (F , nb). Next we show the reverse. Consider
a graph G1 ∈ Ck1 (F , nb). Suppose, a variable node v ∈ G1 is connected to the check nodes
numbered {ri}k−1

i=0 . Then, using the CRT, one can find a unique integer q between 0 and n−1
such that (q)fi = ri ∀i = 0, . . . , d − 1. Thus, for every graph G1 ∈ Ck1 (F , nb), there exists a
set I of k integers, that will result in an identical graph using the CRT based construction.
Hence, Ck1 (F , nb) = Ck2 (F , n, nb).

Next, we analyze the performance of the peeling-decoder over a random choice of a
graph from the ensemble Ck1 (F , nb), which, using the Lemma 3.5.1, along with the fact that
all the graphs in both the ensembles occur with equal probability, provides a lower bound
on the probability of successful decoding of the FFAST decoder over graphs in the ensemble
Ck2 (F , n, nb).

5The integers in the set I are chosen uniformly at random, with replacement, between 0 and n − 1. A
set I with repeated elements then corresponds to a signal with fewer than k non-zero DFT coefficients.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 36

3.5.3 Performance analysis of the peeling-decoder on graphs from
the ensemble Ck1 (F , nb)

In this section we analyze the probability of success of the peeling-decoder, over a randomly
chosen graph from the ensemble Ck1 (F , nb), after a fixed number of iterations `. Our analysis
follows exactly the arguments in [54] and [67]. Thus, one may be tempted to take the
results from [54] “off-the-shelf”. However, we choose here to provide a detailed analysis for
two reasons. First, our graph construction in the ensemble Ck1 (F , nb) is different from that
used in [54], which results in some fairly important differences in the analysis, such as the
expansion properties of the graphs, thus warranting an independent analysis. Secondly we
want to make this thesis more self-contained and complete.

We now provide a brief outline of the proof elements highlighting the main technical
components needed to show that the peeling-decoder successfully decodes all the non-zero
DFT coefficients with high probability.

• Density evolution: We analyze the performance of the message-passing algorithm, over
a typical graph from the ensemble, for ` iterations. First, we assume that a local
neighborhood of depth 2` of every edge in a typical graph in the ensemble is tree-like,
i.e., cycle-free. Under this assumption, all the messages between variable nodes and
the check nodes, in the first ` rounds of the algorithm, are independent. Using this
independence assumption, we derive a recursive equation that represents the expected
evolution of the number of singletons uncovered at each round for this typical graph.

• Convergence to the cycle-free, case: Using a Doob martingale as in [54], we show that
a random graph from the ensemble, chosen as per nature’s choice of the non-zero DFT
coefficients, behaves like a “typical” graph, i.e., 2`-depth neighborhood of most of the
edges in the graph is cycle-free, with high probability. This proves that for a random
graph in Ck1 (F , nb), the peeling-decoder decodes all but an arbitrarily small fraction of
the variable nodes with high probability in a constant number of iterations, `.

• Completing the decoding using the graph expansion property: We first show that if a
graph is an “expander” (as will be defined later in Section 3.5.3), and the peeling-
decoder successfully decodes all but a small fraction of the non-zero DFT coefficients,
then it decodes all the non-zero DFT coefficients successfully. Next, we show that a
random graph from the ensemble Ck1 (F , nb) is an expander with high probability.

Density evolution for local tree-like view

In this section we assume that a local neighborhood of depth 2` of every edge in a typical
graph from the ensemble is tree-like. Next, we define the edge-degree distribution polynomi-
als of the bipartite graphs as λ(α) ,

∑∞
i=1 λiα

i−1 and ρ(α) ,
∑∞

i=1 ρiα
i−1, where λi (resp.

ρi) denotes the probability that an edge of the graph is connected to a left (resp. right)

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 37

Figure 3.6: Directed neighborhood of depth 2 of an edge ~e = (v, c). The dashed lines correspond to nodes/edges removed at
the end of iteration j. The edge between v and c can be potentially removed at iteration j + 1 as one of the check nodes c′ is a
singleton (it has no more variable nodes remaining at the end of iteration j).

node of degree i. Thus for the ensemble Ck1 (F , nb), constructed using the balls-and-bins pro-
cedure, λ(α) = αd−1 by construction. Further, as shown in Appendix 3.A, the edge degree
distribution ρ(α) = exp(−(1− α)/η).

Let pj denote the probability that an edge is present after round j of the peeling-decoder,
then p0 = 1. Under the tree-like assumption, the probability pj+1, is given as,

pj+1 = λ(1− ρ(1− pj)) j = 0, 1, . . . , `− 1. (3.7)

Equation (3.7) can be understood as follows (also see Fig. 3.6): the tree-like assumption
implies that, up to iteration `, messages on different edges are independent. Thus, the total
probability, that at iteration j+1, a variable node v is decoded due to a particular check node
is given by ρ(1−pj) =

∑∞
i=1 ρi(1−pj)i−1 and similarly the total probability that none of the

neighboring check nodes decode the variable node v is pj+1 = λ(1− ρ(1− pi)). Specializing
equation (3.7) for the edge degree distributions of Ck1 (F , nb) we get,

pj+1 =
(

1− e−
pj
η

)d−1

, ∀ j = 0, 1, . . . , `− 1 (3.8)

where p0 = 1. The evolution process of (3.8) asymptotically (in the number of iterations `)
converges to 0 for appropriate choice of the parameter η, e.g., see Table 3.4.

d 2 3 4 5 6 7 8 9
η 1.0000 0.4073 0.3237 0.2850 0.2616 0.2456 0.2336 0.2244
dη 2.0000 1.2219 1.2948 1.4250 1.5696 1.7192 1.8688 2.0196

Table 3.4: Minimum value of η, the average number of bins or check nodes per stage per variable node, required for the density
evolution of (3.8) to converge asymptotically. The threshold η depends on the number of stages d. Although, the minimum
threshold of η decreases with increasing d, the total number (≈ dηk) of bins or check nodes required for the convergence of
(3.8) is a not a monotonic function in d.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 38

Convergence to cycle-free case

In Lemma 3.5.2 we show that: a) the expected behavior over all the graphs in the ensemble
Ck1 (F , nb) converges to that of a cycle-free case, and b) with exponentially high probability,
almost all the edges in a random graph in the ensemble have a tree-like neighborhood and
the proportion of the edges that are not decoded after ` iterations of the peeling-decoder is
tightly concentrated around p`, as defined in (3.8).

Lemma 3.5.2 (Convergence to Cycle-free case). Over the probability space of all graphs
Ck1 (F , nb), let Z be the total number of edges that are not decoded after ` (an arbitrarily large
but fixed) iterations of the peeling-decoder over a randomly chosen graph. Further let p` be
as given in the recursion (3.8). Then there exist constants β and γ such that for any ε1 > 0
and sufficiently large k we have

(a) E[Z] < kdp` +
dγ

η
; (3.9)

(b) Pr (|Z − kdp`| > kdε) < 2e−βε
2
1k, (3.10)

where γ > 0 is a constant.

Proof. Please see Appendix 3.D.

Successful Decoding using Expansion

In the previous section we showed that with high probability, i.e., with probability approach-
ing 1 exponentially in k, the peeling-decoder decodes all but an arbitrarily small fraction
of variable nodes. In this section, we show how to complete the decoding if the graph is
a “good-expander”. Our problem requires the following definition of an “expander-graph”,
which is somewhat different from conventional notions of an expander-graph in literature,
e.g., edge expander, vertex expander or spectral expander graphs.

Definition 3.5.3 (Expander graph). A d-left regular degree bipartite graph constructed as
described in Section 3.5.1 is called an (α, β, d) expander, if for all subsets S, of variable
nodes, of size at most αk, there exists a right neighborhood of S, i.e., Ni(S), that satisfies
|Ni(S)| > β|S| for some i = 0, . . . , d− 1.

In the following lemma, we show that if a graph is an expander, and if the peeling-decoder
successfully decodes all but a small fraction of the non-zero DFT coefficients, then it decodes
all the non-zero DFT coefficients successfully.

Lemma 3.5.4. Consider a graph from the ensemble Ck1 (F , nb), with |F| = d, that is an
(α, 1/2, d) expander for some α > 0. If the peeling-decoder over this graph succeeds in
decoding all but at most αk variable nodes, then it decodes all the variable nodes.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 39

Proof. See Appendix 3.B

In Lemma 3.5.5, we show that most of the graphs in the ensemble Ck1 (F , nb) are expanders.

Lemma 3.5.5. Consider a random graph from the ensemble Ck1 (F , nb), where d ≥ 3. Then,
all the subsets S of the variable nodes, of the graph, satisfy max{|Ni(S)|}d−1

i=0 > |S|/2,

a) with probability at least 1 − e−εk log(nb/k), for sets of size |S| = αk, for small enough
α > 0 and some ε > 0.

b) with probability at least 1−O(1/nb), for sets of size |S| = o(k).

Proof. See Appendix 3.C

The condition d ≥ 3 is a necessary condition for part (b) of Lemma 3.5.5. This can be
seen as follows. Consider a random graph from the ensemble Ck1 (F , nb), where |F| = d. If
any two variable nodes in the graph have the same set of d neighboring check nodes, then the
expander condition, for the set S consisting of these two variable nodes, will not be satisfied.
In a bi-partite graph from the ensemble Ck1 (F , nb), there are a total of O(Fd) distinct sets
of d check nodes. Each of the k variable nodes chooses a set of d check nodes, uniformly
at random and with replacement, from the total of O(Fd) sets. If we assign p people a
uniformly at random birthday between 0 to N − 1, the probability Pr(p;N) that at least
two people have same birthday is given by,

Pr(p;N) ≈ 1− e−p2/2N . (3.11)

This is also known as the birthday paradox or the birthday problem in literature [59]. For
a graph from the ensemble Ck1 (F , nb), we have N = O(Fd) and p = k, where F = ηk for
some constant η > 0. Hence, if the number of stages d ≤ 2, there is a constant probability
of birthday clash, i.e., there exists a pair of variable nodes that share the same neighboring
check nodes, in both stages, thus violating the expander condition.

Theorem 3.5.6. The peeling-decoder over a random graph from the ensemble Ck1 (F , nb),
where d ≥ 3 and F = ηk:

a) successfully uncovers all the variable nodes with probability at least 1−O(1/nb);

b) successfully uncovers all but a vanishingly small fraction, i.e., o(k), of the variable
nodes with probability at least 1− e−εk log(nb/k), for some ε > 0,

for an appropriate choice of the constant η as per Table 3.4.

Proof. Let Z be the number of edges not decoded by the peeling-decoder in ` (large but fixed
constant) iterations. Then, from recursion (3.8) and Lemma 3.5.2, for an appropriate choice
of the constant η (as per Table 3.4), Z ≤ αk, for an arbitrarily small constant α > 0, with
probability at least 1− e−βε21k. The result then follows from Lemmas 3.5.5 and 3.5.4.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 40

3.5.4 Performance of the FFAST-decoder over graphs in Ck2 (F , n, nb)
for k ∝ nδ, for (0 < δ ≤ 1/3).

In Section 3.5.3 we analyzed the performance of a simple iterative peeling decoder over graphs
chosen randomly from the ensemble Ck1 (F , nb), constructed using a balls-and-bins model. In
this section we connect this discussion to the problem of computing a k-sparse n-point DFT
of a signal, where k ∝ nδ, and (0 < δ ≤ 1/3).

Consider an ensemble Ck2 (F , ñ, nb) generated by a d = 3 stage FFAST architecture. Let
F = {f0, f1, f2} be a set of co-prime integers such that each fi = F + O(1) and F = ηk,
where η is chosen as per Table 3.4 for d = 3. Also, note that ñ =

∏2
i=0 fi and nb =

∑2
i=0 fi.

Consider a signal ~x of length n = ñP, for some integer P ≥ 1, that has k-sparse DFT
~X. For P = 1 the sparsity k = O(n1/3) and as P increases the sparsity index δ approaches
0, i.e., k ∝ nδ, and 0 < δ ≤ 1/3.

For P = 1, the CRT guarantees that every integer j between 0 and n − 1 is uniquely
represented by a triplet ((j)f0 , (j)f1 , (j)f2). However, for P > 1, this is not true. For example,
when P = 2, for every triplet (r0, r1, r2) there are exactly two numbers between 0 and n− 1
that have (r0, r1, r2) as remainders modulo fi, i = 0, 1, 2. Hence, the only difference between
P = 1 and P > 1 in terms of the resulting bi-partite graph is whether or not multiple
variable nodes (the non-zero DFT coefficients) have identical neighboring check nodes in all
the 3 stages. Recall, in the balls-and-bins ensemble Ck1 (F , nb) described in Section 3.5.1,
we did not constrain multiple variable nodes to have distinct set of check nodes (although
it was a high probability event when neighbors are chosen uniformly at random). Despite
this, we showed in Theorem 3.5.6 that the peeling-decoder successfully decodes the values
of all variable nodes with high probability. As a result, the proof of Theorem 3.3.1 for the
very-sparse regime follows from Lemma 3.5.1 and Theorem 3.5.6. �

3.6 Performance analysis of the FFAST algorithm for

the less-sparse regime (k ∝ nδ, 1/3 < δ < 1)

In the previous section, we analyzed the performance of the FFAST algorithm for the very-
sparse regime (k ∝ nδ, 0 < δ ≤ 1/3). Recall that for the very-sparse regime, the integers
in the set F = {f0, . . . , fd−1}, i.e., the number of samples per sub-stream in the d different
stages, were pairwise co-prime. For the less-sparse regime (k ∝ nδ, 1/3 < δ < 1) the relation
between the integers fi’s is bit more involved. So, for ease of exposition in this section, we
describe the achievable FFAST construction for a special case of k ∝ n2/3, i.e., δ = 2/3, which
generalizes to the regimes δ = 1 − 1/d, for integer values of d ≥ 3, through an induction
argument. Later in Section 3.6.3 we show how to achieve the intermediate values of δ. To
summarize, our approach for the less-sparse regime is as follows.

• First we analyze the performance of the FFAST algorithm for δ = 2/3. Then, in

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 41

Section 3.6.2, we provide a brief sketch of how to generalize the FFAST architecture
to any δ = 1 − 1/d, for integer values of d ≥ 3. This covers the range of values of
δ = 2/3, 3/4,

• In Section 3.6.3, we show how to achieve the intermediate values of δ, thus covering
the entire range of the sparsity index 1/3 < δ < 1.

f0 = P0P1

f1 = P1P2

f2 = P2P0

(r0, r1)

(r1, r2)

(r2, r0)

(r0, r1, r2)

P0

P1

P2

Figure 3.7: A bi-partite graph with k variable nodes and nb =
∑2
i=0 fi check nodes, constructed using a balls-and-bins model.

The check nodes in each of the 3 sets are arranged in a matrix format, e.g., the f0 check nodes in the set 0 are arranged in P0

rows and P1 columns. A check node in a row r0 and column r1 in the set 0, is indexed by a pair (r0, r1) and so on and so forth.
Each variable node chooses a triplet (r0, r1, r2), where ri is between 0 and Pi − 1 uniformly at random. A 3-regular degree
bi-partite graph is then constructed by connecting a variable node with a triplet (r0, r1, r2) to the check nodes (r0, r1), (r1, r2)
and (r2, r0) in the three sets of the check nodes respectively.

3.6.1 Less-sparse regime of δ = 2/3

Let {P0,P1,P2} be a set of pairwise co-prime integers such that Pi = F +O(1), i = 0, 1, 2,
for some large integer F chosen as follows. Let n =

∏2
i=0Pi and k ∝ F2, i.e., k ∝ n2/3. Now,

set f0 = P0P1, f1 = P1P2 and f2 = P2P3.

Balls-and-Bins construction

We construct a bi-partite graph with k variable nodes on the left and nb =
∑2

i=0 fi, check
nodes on the right (see Fig. 3.7) using balls-and-bins model as follows. Partition the nb

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 42

check nodes into 3 sets/stages containing f0, f1 and f2 check nodes respectively. The check
nodes in each of the 3 sets are arranged in a matrix format as shown in Fig. 3.7, e.g., f0

check nodes in the set 0 are arranged in P0 rows and P1 columns. A check node in row r0

and column r1 in the set 0, is indexed by a pair (r0, r1) and so on and so forth for all the
other check nodes. Each variable node chooses a triplet (r0, r1, r2), where ri is between 0 and
Pi − 1 uniformly at random. The triplets are chosen with replacement and independently
across all k variable nodes. A 3-regular degree bi-partite graph with k variable nodes and
nb check nodes is then constructed by connecting a variable node with a triplet (r0, r1, r2)
to the check nodes (r0, r1), (r1, r2) and (r2, r0) in the three sets of check nodes respectively,
e.g., see Fig. 3.7.

Connection to the CRT based bi-partite graphs induced by the FFAST architec-
ture

Each variable node is associated with an integer v between 0 and n − 1 (location of the
DFT coefficient). As a result of the subsampling and computing a smaller DFTs in the
FFAST architecture (see Fig 3.1), a variable node with an index v is connected to the check
nodes (v)f0 , (v)f1 and (v)f2 in the 3 stages, in the resulting aliased bi-partite graph. The
CRT implies that v is uniquely represented by a triplet (r0, r1, r2), where ri = (v)Pi . Also,
((v)fi)Pi = (v)Pi = ri, for all i = 0, 1, 2. Thus, the FFAST architecture induces a 3-regular
degree bi-partite graph with k variable nodes and nb check nodes, where a variable node with
an associated triplet (r0, r1, r2) is connected to the check nodes (r0, r1), (r1, r2) and (r2, r0) in
the three sets respectively. Further, a uniformly random model for the support v of a non-
zero DFT coefficient, corresponds to choosing the triplet (r0, r1, r2) uniformly at random.
Thus, the CRT based construction, induced by the FFAST architecture, is equivalent to the
balls-and-bins construction discussed in the Section 3.6.1.

Following the outline of the proof of Theorem 3.3.1 (provided in Section 3.5), one can
show the following, for the balls-and-bins construction of Section 3.6.1:

1. Density evolution for the cycle-free case: Assuming a local tree-like neighborhood de-
rive a recursive equation (similar to equation 3.8) representing the expected evolution
of the number of singletons uncovered at each round for a “typical” graph from the
ensemble.

2. Convergence to the cycle-free case: Using a Doob martingale show an equivalent of
Lemma 3.5.2 for the less-sparse regime, where the number of check nodes in the 3
different stages f0, f1 and f2 are not pairwise co-prime.

3. Completing the decoding using the graph expansion property: A random graph from
the ensemble is a good expander with high probability. Hence, if the FFAST decoder
successfully decodes all but a constant fraction of variable nodes, it decodes all the
variable nodes.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 43

The analysis of the first two items for the less-sparse regime is similar in spirit to the
one in Section 3.5, and will be skipped here. However, the analysis of the third item will
be described here as there are some key differences, mainly arising from the nature of the
overlapping co-prime number of check nodes in the bi-partite graphs for the less-sparse
regime in contrast to the very-sparse regime. In Section 3.5, for the very-sparse regime we
showed (in Lemma 3.5.5) that the bottleneck failure event is not being able to decode all
the DFT coefficients. In this section, we analyze this bottleneck failure event for the case of
the less-sparse regime. In particular, we show that if the FFAST decoder has successfully
decoded all but a small constant number of DFT coefficients, then it decodes all the DFT
coefficients successfully with high probability.

Decoding all the variable nodes using the expansion properties of the CRT con-
struction

R0

R1
R2

P0

P1

P2

b1

b2

Figure 3.8: A 3D visualization of a bipartite graph from the ensemble Ck2 (F , n, nb) corresponding to the less-sparse regime of
δ = 2/3. Consider a 3D cartesian coordinate space with axes as R0, R1, R2. Recall that for δ = 2/3, {Pj}2j=0 are pairwise

co-prime integers, such that Pi ≈ F, i = 0, 1, 2, where F is a large integer. The set F = {f0, f1, f2}, where f0 = P0P1,
f1 = P1P2 and f2 = P2P0. The parameters k ∝ F2 and n =

∏2
i=0 Pi, i.e., k ∝ n2/3. A variable node with an associated

triplet (r0, r1, r2) is represented by a ‘ball’ at the position (r0, r1, r2). The f0 check nodes in stage 1 of the bi-partite graph
are represented by ‘blue’ squares and likewise the ones in f1 are ‘green’ and the check nodes in stage f2 are ‘red’. All the
neighboring check nodes of a variable node, e.g., b1, are multi-ton iff there is at least one more variable node along each of the
three directions R0, R1 and R2. The green and red neighboring check nodes connected to the ball b2 are multi-tons, while the
blue neighboring check node is a singleton since there are no other variable nodes along the R2 direction of b2.

Consider an alternative 3D cube visualization of a random bi-partite graph from the

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 44

ensemble Ck2 (F , n, nb), for the less-sparse regime, as shown in Fig. 3.8. Consider a 3D
cartesian coordinate space with axes as R0, R1, R2. A variable node associated with a triplet
(r0, r1, r2) is represented by a ball at the position (r0, r1, r2). The plane R0-R1 corresponds
to the check nodes in stage 0, in a sense that all the variable nodes that have identical (r0, r1)
but distinct r2 are connected to the check node (r0, r1) and so on. Similarly the planes R1-R2

and R2-R0 correspond to the check nodes in stages 1 and 2 respectively. Thus, a variable
node with co-ordinates (r0, r1, r2) is connected to a multi-ton check nodes in all the 3 stages,
if and only if there exist variable nodes with co-ordinates (r0, r1, r

′
2), (r′0, r1, r2) and (r0, r

′
1, r2)

(see Fig. 3.8), i.e., one neighbor in each axis. The FFAST decoder stops decoding if there is
no more single-ton check node in any stage, i.e., all the check nodes are either zero-ton or
multi-ton. Next, we find an upper bound on the probability of this ‘bad’ event.

Consider a set S of variable nodes such that |S| = s, where s is a small constant. Let
ES be an event that all the neighboring check nodes of all the variable nodes in the set S
are multi-tons, i.e., if all the variable nodes except the ones in the set S are decoded, then,
the FFAST decoder would fail to decode the set S. Also, let E be an event that there exists
such a set. We first compute an upper bound on the probability of the event ES, and then
apply a union bound over all

(
k
s

)
sets to get an upper bound on the probability of the event

E.
Each variable node in the set S chooses an integer triplet (r0, r1, r2) uniformly at random

in a cube of size P0×P1×P2. Let pmax denote the maximum number of distinct values taken
by these s variable nodes on any of the Ri axis. The FFAST decoder would stop decoding
if and only if all the variable nodes have at least one neighbor along each of the 3 axes
R0, R1, R2 (see Fig. 3.8). This implies that s ≥ 4pmax. Also, pmax > 1, hence s ≥ 8, as by
the CRT all the variable nodes s (with distinct associated integers) cannot have an identical
triplet (r0, r1, r2). An upper bound on the probability of the event ES is then obtained as
follows:

Pr(ES) <
2∏

i=0

(
s

4Pi

)s(Pi
s/4

)
(3.12)

≈
(s

4F

)3s
(

F

s/4

)3

(a)
<

(s

4F

)3s
(

4Fe

s

)3s/4

=

(
se1/3

4F

)9s/4

, (3.13)

where in (a) we used
(
p
q

)
≤ (pe/q)q. Then, using a union bound over all possible

(
k
s

)
sets,

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 45

we get:

Pr(E) < Pr(ES)

(
k

s

)

<

(
se1/3

4F

)9s/4(
ke

s

)s

= O(1/nb), (3.14)

where in the last inequality, we used s ≥ 8, k ∝ F2 and nb = O(F2).
Thus, the FFAST decoder decodes all the variable nodes with probability at least 1 −

O(1/nb).

3.6.2 Sketch of proof for δ = 1− 1/d, for integer d ≥ 3

Consider a d-stage FFAST architecture with the following parameters. Let {Pi}d−1
i=0 , be a set

of pairwise co-prime integers such that Pi = F + O(1), i = 0, 1, . . . , d − 1, for some large

integer F. Set k ∝ Fd−1 and n =
∏d−1

i=0 Pi, i.e., k ∝ n(d−1)/d. Also, let fi =
∏i+(d−2)

j=i P(j)d ,
for i = 0, . . . , d− 1. The “expander-graph” property, of this construction for any value of d
can be shown as follows:

• Decoding all the variable nodes: For d = 3, the worst case event is, the FFAST decoder
fails to decode a set of size |S| = 23 = 8. For a general d, using an induction, one can
show that the worst case failure event is when the FFAST decoder fails to decode a
set of size |S| = 2d. The probability of this event is upper bounded by 1/F2d−2d.

3.6.3 Achieving the intermediate values of δ

In this section we show how to extend the scheme in Section 3.5, that was designed for
k ∝ n1/3, to achieve a sparsity regime of k ∝ n(1+a)/(3+a) for a > 0. This extension technique
can be essentially used in conjunction with any of the operating points described earlier.
Thus covering the full range of sparsity index 0 < δ < 1.

Choose a set of integer factors {Pi}3
i=0 that are pairwise co-prime and Pi = F+O(1), i =

0, 1, 2, while P3 = Fa + O(1) for some a > 0. Let k ∝ F1+a and n =
∏3

i=0Pi, i.e.,
k ∝ n(1+a)/(3+a), and f0 = P0P3, f1 = P1P3 and f2 = P2P3.

Union of Disjoint problems

The check nodes in each of the 3 sets are arranged so that a jth check node in the set i,
belongs to the row (j)Pi and the column (j)P3 (see Fig. 3.9). This is always possible using
the CRT since {Pi}3

i=0 are pairwise co-prime and fi = PiP3, i = 0, 1, 2.
A variable node with an associated integer v is uniquely represented by a quadruplet

(r0, r1, r2, r3) where ri = (v)Pi , i = 0, 1, 2, 3 and is connected to the check node (ri, r3) in set

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 46

P0

P1

P2

(r0, r1, r2, r3)

(r0, r3)

(r1, r3)

(r2, r3)

P3

f0 = P0P3

f1 = P1P3

f2 = P2P3

Figure 3.9: Let {Pi}3i=0 be a set of pairwise co-prime integers, such that Pi ≈ F, i = 0, 1, 2, and P3 ≈ Fa for some a > 0. Also,

let k ∝ F1+a, n =
∏3
i=0 Pi and f0 = P0P3, f1 = P1P3 and f2 = P2P3. The check nodes in each of the 3 sets are arranged so

that a jth check node in the set i belongs to the row (j)Pi
and the column (j)P3 . A variable node with an associated integer

v is uniquely represented by a quadruplet (r0, r1, r2, r3) where ri = (v)Pi
, i = 0, 1, 2, 3, and is connected to the check node

(ri, r3) in set i. Thus, the resulting bipartite graph is a union of P3 disjoint bi-partite graphs as shown in the figure.

i. Thus, the resulting bipartite graph is a union of P3 disjoint bi-partite graphs, where each
bi-partite subgraph behaves as an instance of the 3-stage perfect co-prime case discussed
in Section 3.5. Then, using a union bound over these disjoint graphs one can compute the
probability of the FFAST decoder successfully decoding all but o(k) and all the variable
nodes for asymptotic values of k, n.

3.7 Sample and computational complexity of the

FFAST algorithm

The FFAST algorithm performs the following operations in order to compute the n point
DFT of an n-point discrete-time signal ~x (see Algorithm 3 in Section 3.4)

1. Sub-sampling: A FFAST architecture (see Fig. 3.1 in Section 3.1) with d stages, has
d distinct subsampling patterns chosen as per the discussions in Sections 3.5 and 3.6.
These patterns are deterministic and are pre-computed. We assume the presence of
random-access-memory, with unit cost per I/O operation, for reading the subsamples.
For the very-sparse regime (k ∝ nδ, 0 < δ ≤ 1/3) as shown in Section 3.5, the FFAST

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 47

architecture has d = 3 stages and 2 sub-streams per stage. Each sub-stream has
approximately F = ηk number of input samples. Hence, the total number of samples
used for the very-sparse regime is m = 6ηk = 2.44k (see Section 3.5 Table 3.4).
For the less-sparse regime, choice of the FFAST architecture parameters is bit more
involved and depends on the sparsity index δ. A d ≤ 8 stage FFAST architecture, in
conjunction with discussion of Section 3.6.3, is sufficient to achieve the sparsity index
of 1/3 < δ < 0.99. Thus, again using the values from Table 3.4 of Section 3.5 for d = 8,
for the less-sparse regime of 1/3 < δ < 0.99 the number of samples m ≤ 3.74k. In
general for any fixed 0 < δ < 1, the sample complexity m can be as small as rk, where
r is a constant that depends on the sparsity index δ.

2. DFT: The FFAST algorithm computes 2d number of DFT’s, each of length approxi-
mately equal to F = ηk, of the subsampled input data corresponding to 2 sub-streams
in each of the d stages. Using a standard FFT algorithm, e.g., prime-factor FFT
or Winograd FFT algorithm [4], one can compute each of these DFT’s in O(k log k)
computations. Thus, the total computational cost of this step is O(k log k).

3. Peeling-decoder over sparse graph codes: It is well known [53], that the com-
putational complexity of the peeling-decoder over sparse graph codes is linear in the
dimension of the graph, i.e., O(k).

Thus, the FFAST algorithm computes a k-sparse n-point DFT with O(k) samples using
no more than O(k log k) arithmetic operations for all 0 < δ < 1.

Note, that the FFAST architecture and the associated peeling-decoder operations are
highly parallelizable, which can provide significant speed improvement in terms of real time
performance.

3.8 Simulation Results

In this section we validate the empirical performance of our FFAST algorithm for a wide
variety of signals having an exactly sparse Fourier spectrum. We show the performance of the
FFAST algorithm for two sparsity regimes, what we call the very-sparse regime and the less-
sparse regime. We contrast the observed empirical performance, in terms of various metrics
like threshold behavior of density evolution, iterations, sample complexity and computational
complexity, with the theoretical claims of Theorem 3.3.1.

3.8.1 The CRT based graph ensemble behaves like the balls-and-
bins based graph ensemble

In this section we empirically show that the CRT based constructions show a very sharp
threshold behavior which is in close agreement with the theoretical claims in this chapter.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 48

Regimes
Signal dimension Sparsity k = nδ, stages m ≈ 2dηk

` failures
n k δ d m η

Very-sparse
511*512*513

900 0.363

3

3072 0.569 6 1
1000 0.369 3072 0.512 9 0

≈ 134× 106 1100 0.374 3072 0.465 13 1
1200 0.378 3072 0.427 18 99

Less-sparse
16*17*19*21

13000 0.81

4

48094 0.462 6 0
15000 0.83 48094 0.401 8 0

≈ 0.1× 106 17000 0.84 48094 0.354 13 2
19000 0.85 48094 0.316 29 10000

Table 3.5: Shows the performance of the FFAST algorithm for two different sparsity regimes: 1) Very-sparse regime: k ∝ n1/3.
For this regime, a d = 3 stage FFAST architecture is chosen. The number of samples per sub-stream in each of the 3 stages
are perfectly co-prime: f0 = 511, f1 = 512 and f2 = 513 respectively, and 2) Less-sparse regime: n0.73 < k < n0.85. For this
regime, a d = 4 stage FFAST architecture is chosen. The number of samples per sub-stream in each of the 4 stages are not
co-prime but have “cyclically-shifted” overlapping co-prime factors: f0 = 16 × 17 × 19 = 5168, f1 = 17 × 19 × 21 = 6783,
f2 = 19× 21× 16 = 6384 and f3 = 21× 16× 17 = 5712 respectively. We note that the FFAST algorithm exhibits a threshold
behavior in terms of sample complexity m. For example, when η1 ≥ 0.427 and η2 ≥ 0.354, for the very-sparse and the less-
sparse regimes respectively, the FFAST algorithm successfully computes all the non-zero DFT coefficients for almost all the
runs. Further, in one or two instances when it failed to recover all the non-zero DFT coefficients, it has recovered all but 8
(for d = 3) or 16 (for d = 4) non-zero DFT coefficients. This validates our theoretical findings of the bottleneck failure event
being that the FFAST decoder decodes all but a handful (2d) of the DFT coefficients. From Table 3.4 in Section 3.5.3, we see
that the optimal threshold values for the very-sparse and less-sparse regimes are η∗1 = 0.4073 and η∗2 = 0.3237 resp., which are
in close agreement with the simulation results. The table also shows that the average number of iterations `, required for the
FFAST algorithm to successfully compute the DFT for both the regimes, are quite modest.

Thus, confirming that the CRT ensemble is equivalent to the balls-and-bins ensemble, for
both the ‘very-sparse’ and the ‘less-sparse’ regimes, as was used in the theoretical analysis.

Simulation Setup

• Very sparse regime: The desired signal ~x is of ambient dimension n = 511×512×513
≈ 134 × 106. The sparsity parameter k is varied from 400 to 1300 which corresponds
to the very-sparse regime of k ∝ n1/3. We consider a FFAST architecture with d = 3
stages and 2 sub-streams per stage, i.e., two delay chains per stage (see Fig. 3.1). The
uniform sampling periods for the 3 stages are 512 × 513, 511 × 513 and 511 × 512
respectively. This results in the number of samples per sub-stream, for the three
stages to be f0 = 511, f1 = 512 and f2 = 513 respectively. Note that the number
of samples per sub-stream in all the three different stages, i.e., fi’s, are pairwise co-
prime. The total number of samples used by the FFAST algorithm for this simulation
is6 m < 2(f0 + f1 + f2) = 3072.

6The samples used by the different sub-streams in the three different stages overlap, e.g., x[0] is common
to all the zero delay sub-streams in each stage. Hence, m < 2(f0 + f1 + f2) and not equal.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 49

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η: average number of samples
per sub−stream normalized by

the number of non−zero coefficients k

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

Very−sparse regime, d = 3 stages
Less−sparse regime, d = 4 stages

Figure 3.10: The probability of success of the FFAST algorithm as a function of η, the average number of samples per sub-
stream normalized by the number of non-zero coefficients k. The plot is obtained for the two different sparsity regimes: 1)
Very-sparse regime, i.e., k ∝ n1/3. For this regime, a d = 3 stage FFAST architecture is chosen. The number of samples
per sub-stream in the three stages are perfectly co-prime, (f0 = 511, f1 = 512 and f2 = 513), and 2) Less-sparse regime,
specifically (n0.73 < k < n0.85). For this regime, a d = 4 stage FFAST architecture is chosen. The number of samples per
sub-stream in the 4 stages are not co-prime, (f0 = 5168, f1 = 6783, f2 = 6384 and f3 = 5712). Each point on the plot is
obtained by averaging over 10000 runs. The ambient signal dimension n and the number of samples m are fixed, while the
number of non-zero coefficients k is varied to get different values of η. We note that the FFAST algorithm exhibits a threshold
behavior with η1 = 0.427 being the threshold for the very-sparse regime, and η2 = 0.354 for the less-sparse regime respectively.
From Table 3.4 in Section 3.5.3, we see that the optimal threshold values are η∗1 = 0.4073 and η∗2 = 0.3237, which are in close
agreement with our simulation results.

• Less sparse regime: The desired signal ~x is of ambient dimension n = 16×17×19×21
≈ 0.1× 106. The sparsity parameter k is varied from 5000 to 19000 which corresponds
to the less-sparse regime of n0.73 < k < n0.85. We consider a FFAST architecture
with d = 4 stages and 2 sub-streams per stage. The uniform sampling periods for the 4
stages are 21, 16, 17 and 19 respectively. This results in the number of samples per sub-
stream, for the four stages to be f0 = 16× 17× 19 = 5168, f1 = 17× 19× 21 = 6783,
f2 = 19 × 21 × 16 = 6384 and f3 = 21 × 16 × 17 = 5712 respectively. Note that
the number of samples per sub-stream in the four stages are composed of “cyclically-
shifted” co-prime numbers and are not pairwise co-prime. The total number of samples
used by the FFAST algorithm for this simulation is m < 2(f0 + f1 + f2 + f3) = 48094.

• For each run, an n-dimensional k-sparse signal ~X is generated with non-zero values
Xi ∈ {±10} and the positions of the non-zero coefficients are chosen uniformly at

random in {0, 1 . . . , n− 1}. The time-domain signal ~x is then generated from ~X using
an IDFT operation. This discrete-time signal ~x is then given as an input to our FFAST
architecture.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 50

• Each sample point in the Fig. 3.10, is generated by averaging over 10000 runs.

• Decoding is successful if all the DFT coefficients are recovered perfectly.

We observe the following aspects of the simulations in detail and contrast it with the
claims of Theorem 3.3.1

Density Evolution threshold η The density evolution recursion (3.8) in Section 3.5.3,
implies a threshold behavior: if the average number of samples per sub-stream normalized
by k, i.e., η, is above a certain threshold (as specified in Section 3.5.3 Table 3.4), then
the recursion (3.8) converges to 0 as ` → ∞ otherwise p` is strictly bounded away from
0. In Fig. 3.10 we plot the probability of success, averaged over 10000 runs, of the FFAST
algorithm as a function of η, i.e., varying k for a fixed number of samples m. We note that
the FFAST algorithm exhibits a threshold behavior with η1 = 0.427 being the threshold for
the very-sparse regime with d = 3, and η2 = 0.354 for the less-sparse regime with d = 4
respectively. From Table 3.4 in Section 3.5.3, we see that the optimal threshold values are
η∗1 = 0.4073 and η∗2 = 0.3237, which are in close agreement with our simulation results of
Fig. 3.10.

The FFAST algorithm is verified to compute the DFT with high probability using as few
as m = rk samples, where the oversampling ratio r ≈ 2dη < 4 as given in Table 3.4.

Iterations In the theoretical analysis of Section 3.5.3, we showed that the FFAST algo-
rithm, if successful, decodes all the DFT coefficients in ` iterations, where, ` is a large but
a fixed constant. In order to get an empirical sense of how large ` has to be, we consider
an example with n = 504, k = 30, and a three-stage FFAST architecture. The number of
samples per sub-stream in the three stages are f0 = 56, f1 = 72 and f2 = 63 respectively.
Further, each stage has 2 delay sub streams. An example of an n-length input signal ~x that
has a 30-sparse DFT is shown in Fig. 3.11(a). In this simulation, we observe that the FFAST

algorithm computes the sparse DFT ~X perfectly in ` = 2 iterations, as shown in Fig 3.11(c)
using m = 2

∑2
i=0 fi = 382 samples of ~x. Note that the number of samples m > 4k for this

example. This is done intentionally for the illustrative purpose and to avoid the clutter in
Fig. 3.11. Table 3.5 shows more empirical values of ` for different settings of the problem.

3.8.2 Sample and Computational Complexity

In this section, we empirically validate the sample and the computational complexity of
the FFAST algorithm. In particular, we show that both the sample and the computational
complexity are independent of the signal dimension n and are given by m = rk, where
oversampling ratio r < 4, and O(k log k) respectively.

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 51

0 50 100 150 200 250 300 350 400 450 500
−15

−10

−5

0

5

10

15

(a) Original k-sparse n-length DFT ~X,
where k = 30 and n = 504.

0 50 100 150 200 250 300 350 400 450 500
−15

−10

−5

0

5

10

15

(b) Estimated signal ~̂X after 1 iteration.

0 50 100 150 200 250 300 350 400 450 500
−15

−10

−5

0

5

10

15

(c) Estimated signal ~̂X = ~X after 2 iter-
ations.

Figure 3.11: Consider a FFAST architecture with d = 3 stages, ambient signal dimension n = 504 and sparsity k = 30. The
number of samples per sub-stream in the three stages are f0 = 56, f1 = 72 and f2 = 63 respectively. Further, each stage has 2,
delay sub-streams. Thus, the total number of samples m = 2

∑2
i=0 fi = 382. Note that the number of samples m > 4k for this

example. This is done intentionally for the illustrative purpose and to avoid the clutter in the figure. The figure shows a) the

original 30-sparse spectrum ~X. b) the spectrum estimated by the FFAST algorithm after 1 iteration. Note that it has correctly
recovered 29 out of the 30 non-zero DFT coefficients. c) The FFAST algorithm recovers all the 30 non-zero DFT coefficients
perfectly after 2 iterations.

Dependency on k We consider a signal ~x of length n ≈ 7.7 × 106 that has a k-sparse
DFT ~X. We vary the sparsity parameter k from 10 to 500. For each sparsity, we design a
d = 3 stage FFAST architecture.

In Fig. 3.12(a) we plot the number of samples m required for the FFAST algorithm to
successfully reconstruct all the non-zero DFT coefficients for different values of k. We note
that the plot is piece-wise flat, since the design space of the sub-sampling patterns is not
continuous. The oversampling ratio r ≈ 3 at the highest sparsity level for every flat segment
of the plot. Thus, justifying the theoretical claim of r < 4 for asymptotically large values
of k, n. The plot in Fig. 3.12(b) shows the average time in sec required by the FFAST

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 52

0 100 200 300 400 500
0

500

1000

1500

Samples used by FFAST Vs. Sparsity k
Fixed: n = 7776000 and P(success) >= 0.95

Sparsity: k

N
um

be
r o

f s
am

pl
es

 u
se

d

(a) Number of samples used by the FFAST algo-
rithm for varying values of sparsity.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 x 10−3
FFAST execution time Vs. Sparsity k

Fixed: n = 7776000 and P(success) >= 0.95

Sparsity: k
FF

AS
T

ex
ec

ut
io

n
tim

e
(s

ec
)

(b) Average execution time, i.e., computational
complexity, of the FFAST algorithm to success-
fully reconstruct all the non-zero DFT coefficients.

Figure 3.12: Consider a signal ~x of length n ≈ 7.7× 106 that has a k-sparse DFT ~X. We vary the sparsity parameter k from 10
to 500. For each sparsity we design a d = 3 stage FFAST architecture. Each point in both the plots is generated by averaging
over 200 runs. A successful run is when the FFAST algorithm recovers all the non-zero DFT coefficients. Probability of success
> 0.95 means that parameters are chosen so that the FFAST algorithm succeeds in 95% or more runs the simulations.

algorithm, for a successful reconstruction of the DFT ~X. We note that the increase in time
is almost super-linear, i.e., O(k log k), in the sparsity k of the signal.

Dependency on n Consider a signal ~x of length n that has a k = 40 sparse DFT ~X. We
vary the ambient dimension n of the signal from 0.6 million to 6 million keeping the sparsity
fixed at 40. In Fig. 3.13(a) and Fig. 3.13(b) respectively, we plot the number of samples used
and the average execution time required for the FFAST algorithm to successfully reconstruct
all the k = 40 non-zero DFT coefficients. Note that both the sample complexity and the
computational complexity are almost constant even when the signal length n changes by a
ten fold factor.

3.A Edge degree-distribution polynomial for balls-and-

bins model

The edge-degree distribution polynomial of a bi-partite graph is defined as ρ(α) =
∑∞

i=1 ρiα
i−1,

where ρi denotes the probability of an edge (or a fraction of edges) of the graph is connected
to a check node of degree i. Recall that in the randomized construction based on a balls-
and-bins model described in Section 3.5.1, every variable node chooses one neighboring node

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 53

1 2 3 4 5 6 7
x 106

0

50

100

150

200

250

300

350

400

450

500

Samples used by FFAST Vs. Signal length n
Fixed: k = 40 and P(success) >= 0.95

Signal length: n

N
um

be
r o

f s
am

pl
es

 u
se

d

(a) Number of samples used by the FFAST algo-
rithm for varying values of signal length n.

1 2 3 4 5 6
x 106

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2 x 10−4
FFAST execution time Vs. Signal length n

Fixed: k = 40 and P(success) >= 0.95

Signal length: n
FF

AS
T

ex
ec

ut
io

n
tim

e
(s

ec
)

(b) Average execution time, i.e., computational
complexity, of the FFAST algorithm to success-
fully reconstruct all the non-zero DFT coeffi-
cients.

Figure 3.13: Consider a signal ~x of length n that has a k = 40 sparse DFT ~X. We vary the ambient dimension n of the signal
from 0.6 million to 6 million (by factor of 10) keeping the sparsity fixed at 40. Note that both the sample complexity and the
computational complexity are almost constant even when the signal length n changes by a ten fold factor.

in each of the d subsets of check nodes uniformly at random. Thus, the number of edges
connected to a check node, in the subset with f0 check nodes, is a binomial B(1/f0, k) ran-
dom variable. So when k is large and f0 = ηk + O(1), the binomial distribution B(1/f0, k)
is well approximated by a Poisson random variable with mean 1/η. Thus,

Pr(check node has edge degree = i) ≈ (1/η)ie−1/η

i!
. (3.15)

Let ρ0,i be the fraction of the edges, that are connected to a check node of degree i in set 0.
Then, we have,

ρ0,i =
if0

k
Pr(check node has edge degree = i)

(a)≈ if0

k

(1/η)ie−1/η

i!
(b)≈ (1/η)i−1e−1/η

(i− 1)!
, (3.16)

where (a) follows from Poisson approximation of the Binomial random variable and (b) from
f0 = ηk +O(1). Since, fi = ηk +O(1) for all i = 0, 1 . . . , d− 1. We have,

ρi ≈
(1/η)i−1e−1/η

(i− 1)!
(3.17)

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 54

and

ρ(α) = e−(1−α)/η (3.18)

3.B Proof of Lemma 3.5.4

Proof. We provide a proof using a contradiction argument. If possible let S be the set of
the variable nodes that the peeling-decoder fails to decode. We have |S| ≤ αk. Without
loss of generality let |N1(S)| ≥ |Ni(S)|, ∀i ∈ {0, . . . , d− 1}. Then, by the hypothesis of the
Theorem |N1(S)| > |S|/2.

Note that the peeling-decoder fails to decode the set S if and only if there are no more
singleton check nodes in the neighborhood of S and in particular in N1(S). For all the check
nodes in N1(S) to be multi-ton, the total number of edges connecting to the check nodes in
set N1(S) have to be at least 2|N1(S)| > |S|. This is a contradiction since there are only |S|
edges going from set S to N1(S) by construction.

3.C Proof of Lemma 3.5.5

Proof. Consider a set S of variable (left) nodes in a random graph from the ensemble
Ck1 (F , nb), where |F| = d ≥ 3. Let Ni(S) be the right neighborhood of the set S in the
ith subset of check nodes, for i = 0, 1, . . . , d − 1. Also, let ES denote the event that the all
the d right neighborhoods of S are of size |S|/2 or less, i.e., max{|Ni(S)|}d−1

i=0 ≤ |S|/2. First,
we compute an upper bound on the probability of the event ES as follows:

Pr(ES) <
d−1∏

i=0

(|S|
2fi

)|S|(
fi
|S|/2

)

(a)≈
(|S|

2F

)d|S|(
F

|S|/2

)d

<

(|S|
2F

)d|S|(
2Fe

|S|

)d|S|/2

<

(|S|e
2F

)d|S|/2
(3.19)

where the approximation (a) uses fi = F + O(1) for all i = 0, . . . , d − 1. Next, using a
union bound, over all possible sets of size |S|, we get an upper bound on the probability of
an event E, that there exists some set of variable nodes of size |S|, whose all the d right

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 55

neighborhoods are of size |S|/2 or less.

Pr(E) < Pr(ES)

(
k

|S|

)

<

(|S|e
2F

)d|S|/2(
ke

|S|

)|S|

(b)
<

[(|S|
F

)d−2 (e
2

)d(e
η

)2
]|S|/2

< O
(
(|S|/nb)|S|/2

)
(3.20)

where in (b) we used F = ηk and in the last inequality we have used d ≥ 3 and nb = O(F).
Then, specializing the bound in (3.20) for |S| = αk, for small enough α > 0, and |S| = o(k)
we get,

• For |S| = αk, for small enough α > 0:

Pr(E) < e−εk log(nb/k), for some ε > 0 (3.21)

• For |S| = o(k):

Pr(E) < O (1/nb) (3.22)

3.D Proof of Lemma 3.5.2

Proof. a) [Expected behavior] Consider decoding on a random graph in the ensemble Ck1 (F , nb).
Let Zi, i = 0, . . . , kd − 1, be an indicator random variable that takes value 1 if the edge ~ei
is not decoded after ` iterations of the peeling-decoder and 0 otherwise. Then by symmetry
E[Z] = kdE[Z1]. Next, we compute E[Z1] as,

E[Z1] = E[Z1 | N 2`
~e1

is tree-like]Pr(N 2`
~e1

is tree-like)

+E[Z1 | N 2`
~e1

is not tree-like]Pr(N 2`
~e1

is not tree-like)

≤ E[Z1 | N 2`
~e1

is tree-like] + Pr(N 2`
~e1

is not tree-like).

In Appendix 3.E we show that Pr(N 2`
~e1

is not tree-like) ≤ γ/F for some positive constant γ.
Also we have E[Z1 | N 2`

~e1
is tree-like] = p` by definition. Thus,

E[Z] < kdp` +
dγ

η
, (3.23)

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 56

where we have used F = ηk.
b) [Concentration] In this part, we want to show that the number of edges Z, that are

not decoded at the end of ` iterations of the peeling-decoder, is highly concentrated around
kdp`. There are two potential ways of an edge not being decoded after ` iterations: 1) the
2` depth neighborhood of the edge is not tree-like or 2) the neighborhood is tree-like but
the edge belongs to the fraction of edges that are not decoded after ` rounds (as per density
evolution equation (3.8)). Let T be the number of edges, out of the total of kd, that have
tree-like neighborhood of depth 2`. Let T ′ ⊆ T , be the number of edges not decoded despite
having tree-like neighborhood. Then from Appendix 3.E we know,

E[T] > kd(1− ε/4) (3.24)

for any ε > 0. Moreover, from equation (3.8)

E[T ′] = Tp`. (3.25)

Next, we obtain a concentration result for T , by using the (now) standard argument
of exposing the k variable nodes vj, j = 1, . . . k, (and hence the edges in the graph) one
by one to set up a Doob’s martingale and applying Azuma’s inequality. In particular, let
Yi = E[T |vi1] be the expected value of T after exposing i variable nodes. Then, Y0 = E[T]
and Yk = T and the sequence Yi forms a Doob martingale.

Now, consider any pair of graphs (determined by the choice of variable nodes) that differ
only on (i + 1)th variable node. The number of edges with tree-like neighborhood of depth
2` in these graphs differ at most by a constant number, since the differing variable node can
influence the 2` depth neighborhood of only constant number of edges (since the left edge
degree d is a constant). Hence, |Yi+1 − Yi| < ci, for some constant ci ∀ i = 0, . . . , k − 1.
Hence, using Azuma’s inequality along with (3.24), we get,

Pr (kd− T > εkd/2) < exp(−β1ε
2k), (3.26)

for some constant β1 that depends on the left degree d and constant η. Using Azuma’s
inequality the following concentration result for T ′ holds,

Pr (|T ′ − Tp`| > εkd/2) < 2 exp(−β2ε
2k). (3.27)

The assertion then follows from (3.26), (3.27) and T ′ ≤ Z ≤ T ′ + |kd− T |.

3.E Probability of Tree-like Neighborhood

Consider an edge ~e in a randomly chosen graph G ∈ Ck1 (F , nb). Next, we show that the
neighborhood N 2`∗

~e of ~e is tree-like with high probability, for any fixed `∗. Towards that
end, we first assume that the neighborhood N 2`

~e of depth 2`, where ` < `∗, is tree-like and

CHAPTER 3. COMPUTING A SPARSE DISCRETE-FOURIER-TRANSFORM 57

show that it remains to be tree-like when extended to depth 2` + 1 w.h.p. Let C`,i be the
number of check nodes, from set i, and M` be the number of variable nodes, present in
N 2`
~e . Also assume that t more edges from the leaf variable nodes in N 2`

~e to the check nodes
at depth 2` + 1 are revealed without creating a loop. Then, the probability that the next
revealed edge from a leaf variable node to a check node (say in set i) does not create a loop

is
fi−C`,i−t
fi−C`,i

≥ 1− C`∗,i
fi−C`∗,i

. Thus, the probability that N 2`+1
~e is tree-like, given N 2`

~e is tree-like,

is lower bounded by mini(1− C`∗,i
fi−C`∗,i

)C`+1,i−C`,i . Similarly assume that N 2`+1
~e is tree-like and

s more edges from check nodes to the variable nodes at depth 2` + 2 are revealed without
creating a loop. Note the probability that a check node has degree ≥ 2 is upper bounded
by k/F and conditioned on the event that a check node has an outgoing edge it has equal
chance of connecting to any of the edges of the variable nodes that are not yet connected to
any check node. Thus, the probability of revealing a loop creating edge from a check node
to a variable node at depth 2` + 2 is upper bounded by, (k/F)(1 − (k−M`−s)d

kd−M`d−s
) ≤ kM`∗

F(k−M`∗)
.

Thus, the probability that N 2`+2
~e is tree-like given N 2`+1

~e is tree-like is lower bounded by

(1− kM`∗
F(k−M`∗)

)M`+1−M` .

It now follows that the probability that N 2`∗

~e is tree-like is lower bounded by

min
i

(
1− kM`∗

F(k −M`∗)

)M`∗
(

1− C`∗,i
fi − C`∗,i

)C`∗,i

Hence, for k sufficiently large and fixed `∗,

Pr
(
N 2`∗

~e not tree-like
)
≤ max

i

M2
`∗

F
+
C2
`∗,i

fi
≤ γ

F

for some constant γ > 0, since for any fixed value of `∗, C`∗,i and M`∗ are constant w.h.p
and fi = F +O(1) for all i = 0, . . . , d− 1.

58

Chapter 4

Stable recovery of approximately
sparse DFT

4.1 Introduction

The Fast Fourier Transform (FFT) is the fastest known way to compute the DFT of an
arbitrary n-length signal, and has a computational complexity of O(n log n)1. Many appli-
cations of interest involve signals, e.g. relating to audio, image, and video data, seismic
signals, biomedical signals, financial data, social graph data, cognitive radio applications,
surveillance data, satellite imagery, etc., which have a sparse Fourier spectrum. In such
cases, a small subset of the spectral components typically contains most or all of the signal
energy, with most spectral components being either zero or negligibly small. In Chapter 3,
we have proposed a novel FFAST (Fast Fourier Aliasing-based Sparse Transform) frame-

work, that exploits this additional sparse structure to compute the n-length DFT ~X, using
only O(k) time-domain samples in O(k log k) arithmetic computations, for the case when

the n-length DFT, ~X, has exactly k non-zero coefficients, where k << n. For long signals,
i.e., when n is of order of millions or tens of millions, as is becoming more relevant in the
Big-data age, the gains over conventional FFT algorithms can be significant.

In contrast, although many real world signals have a compact representation in the
spectral-domain, they are rarely exactly sparse, i.e., have precisely k non-zero DFT coeffi-
cients. Typically such signals can be modeled as approximately sparse signals. Moreover,
the observations acquired through typical sensing mechanisms have imperfections, e.g., the
acquired samples may have additional thermal noise at the acquisition sensors, or have im-
perfect sampling due to jitter, sampling pulse shape, quantization effects, etc. The idealized

1Recall that a single variable function f(x) is said to be O(g(x)), if for a sufficiently large x the function
|f(x)| is bounded above by |g(x)|, i.e., limx→∞ |f(x)| < c|g(x)| for some constant c. Similarly, f(x) = Ω(g(x))
if limx→∞ |f(x)| > c|g(x)| and f(x) = o(g(x)) if the growth rate of |f(x)| as x→∞, is negligible as compared
to that of |g(x)|, i.e. limx→∞ |f(x)|/|g(x)| = 0.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 59

assumptions in Chapter 3, of the signal being exactly sparse and the observations being
perfect, were used primarily to highlight the novel ideas underlying the FFAST architecture
with conceptual clarity.

In this chapter, we extend the FFAST framework of Chapter 3 to address the effects of
imperfect measurements due to additional thermal noise at the acquisition sensors, i.e.,
noise in the observations. In particular, we show that the FFAST framework acquires
and reconstructs an n-length signal ~x, whose DFT ~X has k non-zero coefficients, using
O(k log2 k log n) noise-corrupted samples, in O(n log n log2 k) computations. This contrasts
with the best known scaling of the partial Fourier measurements, i.e., O(k log2 k log n), in
compressed-sensing literature [66]. Our algorithm succeeds with probability approaching 1
asymptotically in the number of measurements. We emphasize the following caveats. First,
we assume that the non-zero DFT coefficients of the signal ~x have uniformly random support
and take values from a finite constellation2(as explained in Section 4.2). Secondly, our results
are probabilistic and are applicable for asymptotic values of k, n, where k is sub-linear in n.
Lastly, we assume i.i.d Gaussian noise model for observation noise.

The sparse signal acquisition framework and the associated peeling-based reconstruction
algorithm SWIFT (Short-and-Wide-Iterative-Fast-Transform) discussed in Chapter 2 are
very similar to the FFAST front-end architecture and the FFAST peeling-decoder. Hence,
all the analysis techniques and the results developed in this chapter carry over in a straight-
forward way to the discrete compressed sensing problem of Chapter 2.

4.1.1 Main idea

We use a simple example to illustrate the key ideas. Consider an n = 20 length input signal
~x, whose DFT ~X, is k = 5 sparse. Further, let the 5 non-zero DFT coefficients of ~x be
X[1], X[3], X[5], X[10] and X[13]. Let ~y = ~x + ~w be the noise-corrupted observation of
the signal. In general, the FFAST sub-sampling ‘front-end’ consists of d stages, where each
stage further has D subsampling paths. For illustrative purposes, in Fig. 4.1 we show the
processing of ~y through stage 0 of a 2-stage FFAST architecture. The FFAST front-end
subsamples 3 circularly shifted versions of the observation ~y, by a sampling period of 5. The
output of stage 0, of the FFAST front-end, is then obtained by computing the 4-point DFT
of each of the sub-sampled stream and further grouping them into ‘bins’, as shown in Fig. 4.1.
Let ~yb,i,j denote the 3-dimensional observation vector of bin j of stage i. Using the basic
signal processing identities of sampling-aliasing and circular shifts, the relation between the

2The framework and the reconstruction algorithm generalize to arbitrary complex-valued non-zero DFT
coefficients as long as all the non-zero DFT coefficients are above a certain threshold. But the proof technique
becomes much cumbersome and we do not address this issue in this chapter.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 60

4 � DFT# 5

(y[0], y[1], . . . , y[19])
bin-0 bin-1 bin-2 bin-3

4 � DFT# 5

4 � DFT# 5

(y[2], y[7], y[12], y[17])

(y[9], y[14], y[19], y[4])

(y[0], y[5], y[10], y[15])
z0

z2

z9

(yb,0,0[0] , yb,0,1[0] , yb,0,2[0] , yb,0,3[0])

(yb,0,0[1] , yb,0,1[1] , yb,0,2[1] , yb,0,3[1])

(yb,0,0[2] , yb,0,1[2] , yb,0,2[2] , yb,0,3[2])

stage-0

Figure 4.1: The noise-corrupted observation ~y = ~x+ ~w, is processed through a 2-stage FFAST architecture. In general, the sub-
sampling front-end of the FFAST architecture consists of 3 or more stages depending on the sparsity index δ, where k = O(nδ).
In this example, we consider the FFAST architecture with 2-stages only for the purpose of illustration. Further, here we show
only stage 0 of a 2-stage FFAST architecture. The 20-point DFT of the signal ~x is 5 sparse, with the non-zero DFT coefficients
being X[1], X[3], X[5], X[10] and X[13]. The FFAST front-end subsamples 3 circularly shifted versions of the observation ~y,
by a sampling period of 5. The number and the pattern of the circular shifts are chosen carefully as explained in Section 4.5.2.
The circular shifts z0, z2 and z9 used in this example are only for illustrative purposes. The output of stage 0, of the FFAST
front-end, is then obtained by computing the 4-point DFT of each of the sub-sampled stream and further grouping them into
‘bins’. A 3-dimensional vector ~yb,i,j denotes the observation of bin j of stage i, e.g., ~yb,0,1 is the observation of bin 1 of stage 0.

bin-observation vectors and the DFT coefficients of the input signal ~x, can be written as,

~yb,0,0 =

wb,0,0[0]
wb,0,0[1]
wb,0,0[2]

 , ~yb,0,2 =

1
eı2π20/20

eı2π90/20

X[10] +

wb,0,2[0]
wb,0,2[1]
wb,0,2[2]

 ,

~yb,0,1 =

1
eı2π2/20

eı2π9/20

X[1] +

1
eı2π10/20

eı2π45/20

X[5] +

1
eı2π26/20

eı2π117/20

X[13] +

wb,0,1[0]
wb,0,1[1]
wb,0,1[2]

(4.1)

The FFAST algorithm proceeds as follows:

• Divides the problem into simpler sub-problems: The FFAST sub-sampling front-end
takes a 20-length noise-corrupted observation ~y, and disperses it into 4 bin observations,
as shown in Fig. 4.1. Each bin has 3 output samples (corresponding to the 3 delay
chains), and forms an instance of a sub-problem of computing a sparse DFT of a high-
dimensional signal. Most sub-problems are trivial, consisting of computing a 0-sparse
DFT, e.g., ~yb,0,0, or a 1-sparse DFT, e.g., ~yb,0,2, while the others are almost trivial, of
computing a 3-sparse DFT, e.g., ~yb,0,1.

• Iterative peeling-decoder: The FFAST decoder identifies an instance of a sub-problem
that is 1-sparse and reliably computes the support and the value of the non-zero DFT
coefficient, e.g., X[10] in ~yb,0,2, participating in this sub-problem. Then, it peels off the
contribution of the identified non-zero DFT coefficient, from other sub-problems, to

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 61

create more instances of 1-sparse sub-problems. This peeling-style iterative recovery
algorithm eventually uncovers all the non-zero DFT coefficients.

• Noise robust processing: The circular shift (or delay) pattern, used in the FFAST
front-end architecture, determines the structure of the effective measurement matrix
Ai,j ∈ C3×20, of the sub-problem corresponding to bin j of stage i. The noise robust
decoding of the 1-sparse sub-problems is achieved by judiciously choosing the delay
pattern, such that the measurement matrices of all the sub-problems have good mutual
incoherence property, i.e., the columns of the measurement matrix are uncorrelated,
like Restricted-Isometry-Property (RIP) [12].

At a high level, the FFAST architecture through its multi-stage sub-sampling front-
end, divides the original “difficult” (k-sparse) problem into many “simpler” (1-sparse) sub-
problems. Then, it solves the 1-sparse sub-problems reliably, in the presence of observation
noise, using multiple D measurements per sub-problem and iterates. Reliable decoding of
1-sparse sub-problems is achieved by 1) using carefully designed bin-measurement matrices
Ai,j and 2) using a robust bin-processing/reconstruction algorithm.

The rest of the chapter is organized as follows: In Section 4.2, we provide the problem
formulation along with the modeling assumptions of the signal and observation noise. Sec-
tion 4.3 provides the main result of this chapter. In Section 4.4, we provide a brief overview
of the related literature and contrast it with the results of this chapter. In Section 4.5, we
exemplify the connection between the sampling pattern of the FFAST front-end and the
resulting bin-measurement matrices. Section 4.6 describes the noise-robust version of the
FFAST algorithm. In Section 4.7, we provide extensive simulations for various settings to
empirically validate the performance of the FFAST algorithm in the presence of observation
noise. Additionally, we also demonstrate an application of the FFAST framework for an
MRI acquisition.

4.2 Signal model and Problem formulation

Consider an n-length discrete-time signal ~x that is a sum of k << n complex exponentials,
i.e., its n-length discrete Fourier transform has k non-zero coefficients:

x[p] =
k−1∑

q=0

X[`q]e
2πı`qp/n, p = 0, 1, . . . , n− 1, (4.2)

where the discrete frequencies `q ∈ {0, 1, . . . , n − 1} and the amplitudes X[`q] ∈ C, for

q = 0, 1, . . . , k − 1. We consider the problem of computing the k sparse n length DFT ~X
when the observed time-domain samples are corrupted by white Gaussian noise, i.e., we can
only observe a subset of the samples of ~y, where,

~y = ~x+ ~w, (4.3)

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 62

and ~w ∈ CN(0, In×n)3.
Further, we make the following modeling assumptions on the signal and the noise:

• All the non-zero DFT coefficients have magnitude
√
ρ, where ρ is signal-to-noise ratio,

while the phase is chosen uniformly at random from the set {2πi/M}M−1
i=0 , for some

fixed constant M (see Remark 4.3.2 for general constellation).

• The support of the non-zero DFT coefficients is uniformly random in the set {0, 1, . . . , n−
1}.

• The signal-to-noise ratio ρ, is defined as,

ρ = min
X[`]6=0

|X[`]|2
E{||~w||2} .

Note, when ~x is 1-sparse, ρ = ||~x||2
E{||~w||2} .

4.3 Main results

We provide a robust version of the FFAST algorithm that processes the noise-corrupted time-
domain observations, ~y = ~x + ~w, to reliably compute the k-sparse DFT ~X, i.e., || ~X||0 ≤ k.
The observation noise ~w ∼ CN(0, In×n) and the non-zero DFT coefficients of the signal ~x are
assumed to have magnitude

√
ρ, where ρ denotes signal-to-noise-ratio, and phase uniformly

random in the set {2πi/M}M−1
i=0 , for some constant M . A precise statement of the main

result is given by the following theorem.

Theorem 4.3.1. For any given 0 < ε < 1 and a finite signal-to-noise-ratio, there exist
(infinitely many) sufficiently large n, such that the FFAST algorithm computes the k-sparse

DFT ~X, where k = Ω(nδ) and 0 < δ < 1, of an n-length signal ~x from its noise-corrupted
samples ~y, with the following properties:

• Sample complexity: The algorithm needs m = O(k log2(k) log(n)) samples of ~y.

• Computational complexity: The computational complexity of the algorithm is
O(n log(n) log2(k)).

• Probability of success: The algorithm successfully recovers all the non-zero DFT
coefficients of the signal ~x, with probability at least 1− ε.

Proof. Please see Appendix 4.C

3The energy of signal is chosen appropriately to achieve the targeted signal-to-noise-ratio.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 63

Remark 4.3.2. [finite constellation] The FFAST framework and the reconstruction algo-
rithm generalize to arbitrary complex-valued non-zero DFT coefficients, as long as the mag-
nitudes of all the non-zero DFT coefficients are above signal-to-noise-ratio. The proof tech-
niques for the arbitrary complex-valued non-zero DFT coefficients becomes much cumbersome
and we do not address this issue in this chapter. At high level, the difficulty in the analysis
arises due to the fact that when the non-zero DFT coefficients have arbitrary complex val-
ues, the FFAST decoders value-estimate is not perfect. Hence, the peeling-off step, of the
iterative decoder, leaves behind a residual signal, i.e., self-interference, in the observation of
other bins. The statistics of the interference plus noise is no more Gaussian, thus making the
analysis technically cumbersome. Nonetheless, as shown in Chapter 3, the sparse bi-partite
aliasing graph has a local tree-like neighborhood. Using this fact one can show that every
singleton bin suffers at the most from O(1) self-interference components and hence decoder
succeeds with similar guarantees as in Theorem 4.3.1.

4.4 Related work

The problem of computing a sparse discrete Fourier transform of a signal is related to the
rich literature of frequency estimation [64, 62, 71, 69] in statistical signal processing as well
as compressive-sensing [20, 8]. In frequency estimation, it is assumed that a signal consists
of k complex exponentials in the presence of noise and the focus is on ‘super-resolution’
spectral estimation techniques based on well-studied statistical methods like MUSIC and
ESPRIT [64, 62, 71, 69]. The methods used are based on subspace decomposition principles,
e.g., singular-value-decomposition, which very quickly become computationally infeasible as
the problem dimensions (k, n) increase. In contrast, we take a different approach combining
tools from coding theory, number theory, graph theory and statistical signal processing, to
divide the original problem into many instances of simpler problems. The divide-and-conquer
approach of FFAST alleviates the scaling issues in a much more graceful manner.

In compressive sensing, the bulk of the literature concentrates on random linear measure-
ments, followed by either convex programming or greedy pursuit reconstruction algorithms
[8, 9, 75]. A standard tool used for the analysis of the reconstruction algorithms is the
restricted isometry property (RIP) [12]. The RIP characterizes matrices which are nearly
orthonormal or unitary, when operating on sparse vectors. Although random measurement
matrices like Gaussian matrices exhibit the RIP with optimal scaling, they have limited use
in practice, and are not applicable to our problem of computing a sparse DFT from time-
domain samples. So far, to the best of our knowledge, the tightest characterization of the
RIP, of a matrix consisting of random subset of rows of an n × n DFT matrix, provides
a sub-optimal scaling, i.e., O(k log3 k log n), of samples [66]. The analysis of the FFAST
recovery algorithm uses the RIP condition of individual bin-measurement matrices rather
than the full measurement matrix, thus providing a better scaling for the number of samples,
i.e., O(k log2 k log n). An alternative approach, in the context of sampling a continuous time

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 64

signal with a finite rate of innovation is explored in [76, 21, 5, 58].
At a higher level though, despite some key differences in our approach to the problem of

computing a sparse DFT, our problem is indeed closely related to the spectral estimation
and compressive sensing literature, and our approach is naturally inspired by this, and draws
from the rich set of tools offered by this literature.

A number of previous works [31, 32, 35, 38, 39] have addressed the problem of computing
a 1-D DFT of a discrete-time signal that has a sparse Fourier spectrum, in sub-linear sample
and time complexity. Most of these algorithms achieve a sub-linear time performance by first
isolating the non-zero DFT coefficients into different bins, using specific filters or windows
that have ‘good’ (concentrated) support in both, time and frequency. The non-zero DFT
coefficients are then recovered iteratively, one at a time. Although the time complexity
of these algorithms sub-linear, their robustness to observation noise is limited. In [42],
the author proposes a sub-linear time algorithm with a sample complexity of O(k log4 n)
or O(k2 log4 n) and computational complexity of O(k log5 n) or O(k2 log4 n) to compute a
sparse DFT, with high probability or zero-error respectively. The algorithm in [42] exploits
the Chinese-Remainder-Theorem (CRT), along with O(poly(log n)) number of subsampling
patterns to identify the locations of the non-zero DFT coefficients. In contrast, the FFAST
algorithm exploits the CRT to induce ‘good’ sparse-graph codes using a small constant
number of subsampling patterns and computes the sparse DFT with a vanishing probability
of failure.

4.5 FFAST sampling pattern and the measurement ma-

trix

In this section, we describe a connection between the sampling pattern of the FFAST front-
end and the measurement matrix of a sparse recovery problem. Consider again the example
signal ~x of length n = 20, whose 20-point DFT ~X is k = 5 sparse. The 5 non-zero DFT
coefficients of ~x are X[1], X[3], X[5], X[10] and X[13]. The noise-corrupted signal ~y =
~x+ ~w, is processed through stage 0 of a 2-stage FFAST sub-sampling front-end as shown in
Fig. 4.1. The output samples of the FFAST front-end are grouped into ‘bins’, as shown in
Fig. 4.1. Using the basic signal processing identities of sampling-aliasing and circular shifts,
the relation between the bin-observation vectors and the DFT coefficients of the input signal
~x, can be computed, e.g., see equation (4.1).

More generally, the observation vector ~yb,i,j of bin j of stage i in a FFAST front-end
architecture with d stages and D delays is given as,

~yb,i,j = Ai,j
~X + ~wb,i,j, 0 ≤ i < d, 0 ≤ j < D, (4.4)

where ~wb,i,j ∼ CN(0, ID×D) and Ai,j is the bin-measurement matrix. Next, we describe the
generic structure of bin-measurement matrices for different bins.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 65

4.5.1 Bin-measurement matrix

-point!
Input Signal!

n

f0

n

f0

f0

f0

DFT!

DFT!

DFT!

DFT!

fd�1

fd�1

Peeling-based!
FFAST!

Decoder!

-point !
DFT!

Stage (d-1)!

Stage 0 !

...

CRT-guided set of
uniform sampling periods !

n n

n

fd�1

n

fd�1

~X~y = ~x + ~w

n

f0

f0

DFT!

DFT!
fd�1n

fd�1

zr0

zr1

zr2

zr0

zr1

zr2

FFAST front-end ! FFAST back-end !

Figure 4.2: Schematic block diagram of the FFAST architecture for processing noise-corrupted samples ~y = ~x+ ~w. The n-point
input signal ~y is uniformly subsampled by a carefully chosen set of d patterns, guided by the Chinese-Remainder-Theorem.
Further, each stage has D circularly shifted and sampled streams of data, e.g., D = 3 in this figure. Each sub stream of sampled
data in stage i has fi number of samples. The delay shift pattern (r0, r1, r2) is chosen carefully so as to induce bin-measurement
matrices with “good” mutual incoherence property and the RIP (as explained in Section 4.5.1). Next, the (short) DFTs, of

each of the sub-streams are computed using an efficient FFT algorithm of choice. The big n-point DFT ~X is then synthesized
from the smaller DFTs using the peeling-like FFAST decoder.

Consider the FFAST front-end architecture that processes the noise-corrupted observa-
tions ~y = ~x+ ~w, with d stages and D delay sub-streams per stage as shown in Fig. 4.2. For
the case when the observations are noiseless, D = 2 is sufficient to reconstruct the sparse
DFT ~X from the sub-sampled data. However when the observed samples are corrupted by
noise, D > 2 is necessary. As shown in Fig. 4.2, the ith delay sub-stream of the jth stage,
circularly shifts the input signal by ri and then sub-samples by a sampling period of n/fj,

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 66

where fj is the number of samples in each delay sub-stream of stage j. The number of delays
D and the shift pattern (r0, . . . , rD−1) influence bin-measurement matrices as shown below.

Let ~a(`), be a discrete D-dimensional complex vector given by:

~a(`) =

eı2π`r0/n

eı2π`r1/n

...
eı2π`rD−1/n

 , (4.5)

in the sequel, we refer to ~a(`), ` = 0, 1 . . . , n − 1, as a steering-vector of frequency 2π`/n
sampled at (r0, . . . , rD−1). Then, the bin-measurement matrix Ai,j ∈ CD×n of bin j of stage
i is given by:

~Ai,j(`) =

{
~a(`) if ` ≡ j mod fi
~0 otherwise,

(4.6)

where ~Ai,j(`) is the `th column, ` = 0, . . . , n− 1, of Ai,j. For example in equation (4.1), the
bin-measurement matrix A0,1 is,

A0,1 =
[
~0 ~a(1) ~0 ~0 ~0 ~a(5) ~0 ~0 ~0 ~a(9) ~0 ~0 ~0 ~a(13) ~0 ~0 ~0 ~a(17) ~0 ~0

]
,

where ~a(`) =

(
1

eı2π`/20

)
for ` = 0, 1, . . . , 19.

Thus, the FFAST front-end effectively divides the problem of recovering a k-sparse DFT
~X of an n-length signal ~x from its noise-corrupted samples ~y into multiple bin-level problems
of the form (4.4). The FFAST peeling-decoder then detects which of these bin-level problems
are “single-tons”, solves them (identifies the support and the value of the single-ton) using
bin observation ~yb,i,j and “peels-off” their contribution from other bin observations to create
more singleton bins. In the case when the observations were not corrupted by noise, D = 2
measurements per bin were sufficient. However, in the presence of observation noise we
need more measurements per bin, i.e., D > 2, to make bin-processing reliable and robust
against noise. Moreover, the structure of the delays, i.e., the choice of the circular shifts
(r0, . . . , rD−1), also plays a crucial role in the design of the measurement matrices of the
individual bins as shown in (4.6), which is further used to make the individual bin-processing
robust against observation noise.

Incoherence properties of bin-measurement matrices In the compressed sensing
literature the mutual-incoherence and the Restricted-isometry-property (RIP) [12], of the
measurement matrix, are widely studied and well understood to play an important role in
stably recovering a high-dimensional sparse vector from linear measurements in the presence
of observation noise. The problem in (4.4) is a special case of the compressed sensing problem.
In particular, if the processed bin is a single-ton, then the bin-processing algorithm attempts

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 67

to recover a 1-sparse high-dimensional signal from linear measurements in the presence of
observation noise. We establish the mutual-incoherence and the RIP of bin-measurement
matrices and use them to analyze the noise-robustness of the FFAST algorithm. Next, we
define the mutual-incoherence property and the RIP for a general measurement matrix A.

Definition 4.5.1. The mutual incoherence µmax(A) of a measurement matrix A is defined
as

µmax(A) , max
∀p 6=q

|~A(p)† ~A(q)|
||~A(p)|| · ||~A(q)||

, (4.7)

where ~A(p) is the pth column of the matrix A.

The mutual-incoherence property of the measurement matrix indicates the level of cor-
relation between the distinct columns of the measurement matrix. Smaller value of µmax(A)
implies more stable recovery, e.g., µmax(A) = 0 for an orthogonal measurement matrix A.

Definition 4.5.2. The restricted-isometry constant γs(A) of a measurement matrix A, with
unit norm columns, is defined to be the smallest positive number that satisfies

(1− γs(A))|| ~X||2 ≤ ||A ~X||2 ≤ (1 + γs(A))|| ~X||2, (4.8)

for all ~X such that || ~X||0 ≤ s.

The RIP characterizes the norm-preserving capability of the measurement matrix when
operating on sparse vectors. If the measurement matrix A has a good RIP constant (small
value of γ2s(A)) for all 2s-sparse vectors, then a stable recovery can be performed for any s-

sparse input vector [10]. This is because a small value of γ2s(A) implies that ||A(~X1− ~X2)||2
is bounded away from zero for any two distinct, ~X1 6= ~X2, s-sparse vectors.

Thus stable recovery performance of the FFAST algorithm is a function of the constants
µmax and γs. From equation (4.6) it is clear that these constants dependent on the number
of delays D as well as on the choice of the delay pattern (r0, . . . , rD−1), i.e., sub-sampling
patterns of the FFAST front-end. There are multiple options for choosing the delay patterns,
e.g., uniform periodic delays, aperiodic deterministic delays, random delays, etc. We would
like to choose a delay pattern that has good constants µmax and γs, to guarantee a stable
recovery performance. Next, we describe the delay pattern used in the FFAST architecture
and establish its mutual incoherence property and the RIP.

4.5.2 FFAST sampling patterns

A FFAST front-end architecture with d-stages has {fi}d−1
i=0 samples per sub-stream in each

of the d stages (see Fig. 4.2). For a given (k, n), in Chapter 3, we show how to choose the
parameters {fi}d−1

i=0 using the CRT. As an example consider a d = 3 stage FFAST front-end
architecture such that the sampling period of stage i = 0, 1, 2, is Ti = n/fi. Without loss

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 68

T0

T1

T2

Figure 4.3: Principal sampling pattern, corresponding to the r0 = 0 delay, of the FFAST front-end with d = 3 stages. The
sampling periods of the three stages are T0, T1, T2 respectively. The overall sampling pattern is a union of periodic sampling
patterns.

of generality we assume that r0 = 0. This results in a basic sampling pattern, as shown in
Fig. 4.3, that we refer to as “principal sampling pattern” in the sequel. We use the principal
sampling pattern in conjunction with the choice of the remaining D−1 delays (r1, . . . , rD−1)
to construct the overall FFAST sampling pattern. For example, sampling pattern of a d = 3
stages and D = 3 uniformly random delays, (r0, r1, r2), is shown in Fig. 4.6.

0" 0" 0" 0" 0"1" 1" 1" 1" 1"2" 2" 2" 2" 2"

0" 0" 0" 0" 0"1" 1" 1" 1" 1"2" 2" 2" 2"

0" 0" 0" 0"1" 1" 1" 1"2" 2" 2" 2"

r1

r2

Figure 4.4: Sampling pattern of the FFAST front-end with d = 3 stages and D = 3 delay sub-stream per stage. The sampling
periods of the three stages are T0, T1, T2 respectively. Sampling impulse train corresponding to the delay sub stream 0 is
indexed by 0 and so on. The delay pattern (r0, r1, r2) is chosen uniformly at random from the set {0, 1 . . . , n− 1}. For sake of
representation WLOG r0 = 0.

Next, we characterize the mutual incoherence and the RIP properties of the bin mea-
surement matrices, of the FFAST architecture, when delays are chosen uniformly at random
from the set {0, . . . , n−1}. In the sequel we use these properties to prove the stable recovery
of the proposed FFAST peeling-style iterative recovery algorithm.

Lemma 4.5.3. The mutual incoherence µmax(Ai,j) of the bin-measurement matrix Ai,j, of
the FFAST front-end with D delays, is upper bounded by

µmax(Ai,j) < 2
√

log(5n)/D , ∀ i, j (4.9)

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 69

with probability at least 0.2, where the delays (r0, . . . , rD−1) are chosen uniformly at random
from the set {0, 1, . . . , n− 1}.

Proof. Please see Appendix 4.A.

Thus, for a random choice of delay pattern r0, . . . , rD−1, the coherence parameter µmax(Ai,j)
satisfies the bound in (4.9) with probability at least 0.2. Also, it is easy, i.e., O(nD) com-
plexity, to verify if a given choice of r0, . . . , rD−1 satisfies (4.9) or not. Hence, using offline
processing, one can choose a pattern (r0, . . . , rD−1), such that deterministically the bound
in (4.9) is satisfied.

Lemma 4.5.4. The bin-measurement matrix Ai,j, of the FFAST front-end with D delays,

satisfies the following RIP condition for all ~X that have || ~X||0 ≤ s,

D (1− µmax(Ai,j)(s− 1))+ || ~X||2 ≤ ||Ai,j
~X||2 ≤ D (1 + µmax(Ai,j)(s− 1)) || ~X||2 , ∀ i, j

(4.10)
where the delays (r0, . . . , rD−1) are chosen uniformly at random from the set {0, 1, . . . , n−1}.

Proof. Please see Appendix 4.B

4.6 Noise robust FFAST algorithm

A generic structure of the FFAST architecture, that processes noise-corrupted observations
~y = ~x+ ~w, is shown in Fig. 4.2. In Chapter 3, we described in detail how to carefully design
the sub-sampling parameters, i.e., number of stages d and samples per sub-stream {fi}d−1

i=0

in each of the d stages, of the FFAST front-end architecture, using the CRT, for a given
sparsity-index δ. For the case when there is no noise in the observations, we showed that
D = 2 is sufficient to reconstruct the sparse DFT ~X from the sub-sampled data. However
when the observed samples are corrupted by noise, as explained in Section 4.5, we use D > 2
number of delay sub-streams per stage. As shown in Fig. 4.2, the ith delay sub-stream of
the jth stage, circularly shifts the input signal by ri and then sub-samples by a sampling
period of n/fj, where fj is the number of samples in each delay sub-stream of stage j.
The number of delays D and the shift pattern (r0, . . . , rD−1) influence the bin-measurement
matrices as shown in Section 4.5.1. We choose the delay pattern (r0, r1, . . . , rD−1) such that
bin-measurement matrices have “good” mutual incoherence property and the RIP.

From an algorithmic perspective, the only difference between the presence and the absence
of observation noise is in the thresholds used by the algorithm and the subroutine ‘Singleton-
Estimator’ that processes individual bins to test if it is a single-ton. In Algorithm 5 and
Algorithm 6, we provide the pseudocode of the noise-robust FFAST algorithm.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 70

Algorithm 5 FFAST Algorithm

1: Input: The noise-corrupted bin observations ~yb,i,j obtained through the FFAST front-end
of Fig. 4.2, for each bin j in stage i for all i, j.

2: Output: An estimate ~X of the k-sparse n-point DFT.

3: FFAST Decoding: Set the initial estimate of the n-point DFT ~X = 0. Let ` denote the
number of iterations performed by the FFAST decoder.

4: Set the energy threshold T = (1 + γ)D for appropriately chosen γ (see Appendix 4.C).
5: for each iteration do
6: for each stage i do
7: for each bin j do
8: if ||~yb,i,j||2 < T then
9: bin is a zero-ton.

10: else
11: (singleton, vp, p) = Singleton-Estimator (~yb,i,j).
12: if singleton = ‘true’ then
13: Peel-off: ~yb,s,q = ~yb,s,q − vp~a(p), for all stages s and bins q ≡ p mod fq.
14: Set, X[p] = vp.
15: else
16: bin is a multi-ton.
17: end if
18: end if
19: end for
20: end for
21: end for

4.7 Simulations

The FFAST front-end uses coding-theoretic tools, in particular CRT-guided sampling patterns
that induce LDPC-like graphs in the frequency-domain, to divide the original problem of
computing a k-sparse DFT ~X, into multiple simpler (mostly 1-sparse) bin level compressed
sensing problems. Next, we use techniques from signal processing and estimation theory to
robustly solve these individual bin-level problems, in conjunction with iterative peeling. This
modular approach of solving the problem, is exploited in providing a proof of Theorem 4.3.1

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 71

Algorithm 6 Singleton-Estimator

1: Inputs: The noise-corrupted bin observation ~yb,i,j and indices (i, j) indicating the stage
and the bin number respectively.

2: Outputs: 1) A boolean flag ‘singleton’, 2) Estimate of the value vp of the non-zero DFT
coefficient and 3) the position p of the non-zero DFT coefficient.

3: Singleton-Estimator:
4: Set the singleton = ‘false’.
5: Set the energy threshold T = (1 + γ)D for appropriately chosen γ (see Appendix 4.C).
6: for each position q ≡ i mod fj for all q = 0, . . . , n− 1 do
7: vq = ~a(q)†~yb,i,j/D.
8: if ||~yb,i,j − vq~a(q)||2 < T then
9: singleton = ‘true’.

10: p = q and vp = vq.
11: end if
12: end for

in Appendix 4.C. The analytical result of Theorem 4.3.1, can be interpreted as,

of samples m required by FFAST = {# of bins required for successful decoding

of the resulting sparse graph} ×
{# of delays required for robust bin-processing}

= {c1(δ)k} ×
{
c2(ρ)c3 log2 k log n

}
(4.11)

where the constant c1(δ) depends on the sparsity index 0 < δ < 1 and constant c2(ρ) is
a function of signal-to-noise-ratio ρ. In coding theory, it is now well understood that the
optimal scaling of the number of bins, required for successful decoding of a sparse graph code
with k variable nodes, is O(k). On contrary, the scaling O(log2 k log n) for the number of
delays, required for robust bin-processing, is sub-optimal and is an artifact of our analytical
techniques. We believe that the actual performance of the FFAST algorithm is,

of samples m required by FFAST = {# of bins required for successful decoding

of the resulting sparse graph} ×
{# of delays required for robust bin-processing}

= {c1(δ)k} × {c2(ρ)c3 log(n)} . (4.12)

The theoretical analysis of Theorem 4.3.1, falls short of proving this conjectured FFAST
performance, due to technical difficulties. In this section we empirically explore the FFAST
performance for various settings, in an attempt to validate the conjectured performance of

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 72

(4.12). In Chapter 3 we have shown theoretically and validated empirically that c1(δ) <
2, ∀ 0 < δ < 0.99.

4.7.1 Sample complexity m as a function of n

0 0.5 1 1.5 2
x 106

2780

2800

2820

2840

2860

2880

2900

2920

2940

2960

Samples used by FFAST Vs. Signal length n
Fixed: k = 40, snr = 5dB and P(success) >= 0.95

Signal length: n

Sa
m

pl
es

 u
se

d:
 m

Figure 4.5: The plot shows the scaling of the number of samples m required by the FFAST algorithm to reliably reconstruct a
k = 40 sparse DFT ~X, from noise-corrupted observations ~y = ~x+ ~w, for increasing signal length n. For a fixed reliability, signal-
to-noise ratio and sparsity, we note that m scales logarithmically with increasing n. This is consistent with the conjectured
performance in (4.12).

In this section we empirically validate the scaling of the number of measurements m
required by the FFAST algorithm to reliably compute the DFT ~X for various signal lengths
n.

Simulation Setup

• An n-length DFT vector ~X with k = 40 non-zero coefficients is generated. The non-zero
DFT coefficients are chosen to have uniformly random support from the set {0, . . . , n−
1}, with values from the set {±√ρ}4 randomly. The input signal ~x is obtained by

taking IDFT of ~X. The length of the signal n is varied from n = 49 ∗ 50 ∗ 51 ≈ 0.1

4We have also simulated the case where the amplitudes of the non-zero DFT coefficients are arbitrary
complex numbers, with fixed magnitude and uniformly random phase, and obtained similar performance
plots. In this section, we provide the simulation results for the case when the non-zero DFT coefficients take
antipodal values, only to be consistent with the theoretical analysis of the chapter.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 73

million to n = 49 ∗ 50 ∗ 51 ∗ 15 ≈ 1.87 million. This corresponds to the very-sparse
regime of k ∝ n1/3. Note that the choice of the ambient dimension n, to be a product
of approximately equal sized relatively co-prime numbers, is induced by the Chinese-
Remainder-Theorem.

• A noise-corrupted signal ~y = ~x + ~w, is generated by adding zero-mean, unit variance
complex white Gaussian noise ~w with ρ chosen to have a signal-to-noise ratio of 5dB.

• The noise-corrupted signal ~y is input to a d = 3 stage FFAST architecture with D sub-
streams per stage (see Fig. 4.2). The sampling periods of the 3 stages in the FFAST
architecture are 50 ∗ 51, 51 ∗ 49 and 49 ∗ 50 respectively. This results in the number
of samples per sub-stream, for the three stages to be f0 = 49, f1 = 50 and f2 = 51
respectively. Thus the total number of bins in the FFAST front-end architecture is
nb =

∑2
i=0 fi = 150 = 3.75k, i.e., c1(δ) = 3.75.

• As the signal length n varies the number of delays D per bin are varied to have reliable
decoding, i.e., Pr(success) ≥ 0.95. For each value of D, the total number of samples
used by the FFAST are m = nb ∗D = 3.75 ∗ k ∗D.

• Each sample point in the plot is generated by averaging the performance of FFAST
over 1000 runs for each configuration.

We note that the number of samples, in particular D, increase logarithmically with in-
creasing n. Thus, empirically confirming the conjectured performance of m = (3.75k) ∗
(c2(ρ)c3 log(n)).

4.7.2 Sample complexity m as a function of ρ

In this section we experimentally probe the scaling of the number of measurements m as a
function of signal-to-noise-ratio ρ, i.e., c2(ρ).

Simulation Setup

• An n = 49 ∗ 50 ∗ 51 ≈ 0.1 million length, DFT vector ~X, with k = 40 non-zero
coefficients is generated. The non-zero DFT coefficients are chosen to have uniformly
random support from the set {0, . . . , n− 1}, and the values from the set {±√ρ}. The

input signal ~x is obtained by taking IDFT of ~X.

• A noise-corrupted signal ~y = ~x + ~w, is generated by adding zero-mean, unit variance
complex white Gaussian noise ~w.

• The parameter ρ is varied such that the effective signal-to-noise ratio ranges from −1dB
to 9dB.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 74

−2 0 2 4 6 8 10
1000

2000

3000

4000

5000

6000

7000

8000

Samples used by FFAST Vs. Signal−to−noise ratio(dB)
Fixed: k = 40, n = 124950, and P(success) >= 0.95

Signal−to−noise ratio(dB)

Sa
m

pl
es

 u
se

d:
 m

Figure 4.6: The plot shows the scaling of the number of samples m required by the FFAST algorithm to reliably compute an
n ≈ 0.1 million, k = 40 sparse DFT ~X, from noise-corrupted observations ~y = ~x + ~w, for increasing signal-to-noise ratio ρ.
For fixed values of all other parameters, the number of samples decreases roughly in an inverse relation with the increasing
signal-to-noise ratio on log-scale, i.e., in (4.12) the parameter c2(ρ) ∝ 1/ log(ρ).

• The noise-corrupted signal ~y is input to a d = 3 stage FFAST architecture with D sub-
streams per stage (see Fig. 4.2). The sampling periods of the 3 stages in the FFAST
architecture are 50 ∗ 51, 51 ∗ 49 and 49 ∗ 50 respectively. This results in the number
of samples per sub-stream, for the three stages to be f0 = 49, f1 = 50 and f2 = 51
respectively. Thus the total number of bins in the FFAST front-end architecture is
nb =

∑2
i=0 fi = 150 = 3.75k, i.e., c1(δ) = 3.75.

• As the signal-to-noise ratio varies the number of delays D per bin are varied to have
reliable decoding, e.g., Pr(success) ≥ 0.95.

• Each sample point in the plot is generated by averaging the performance of FFAST
over 1000 runs for each configuration.

The number of samples decrease roughly in an inverse relation with increasing signal-to-
noise ratio on log-scale, i.e., in (4.12) the parameter c2(ρ) ∝ 1/ log(ρ).

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 75

4.A Mutual incoherence bound

In this section we provide a proof of Lemma 4.5.3. Let ~a(p) be a D-dimensional steering
vector with frequency 2πp/n, for p = 0, . . . , n− 1, as given in equation (4.5). Then,

µmax(Ai,j) ≤ max
p 6=q

1

D
|~a(p)†~a(q)|

= max
` 6=0

1

D
|
D−1∑

s=0

exp(ı2π`rs/n)|

= max
` 6=0

µ(`) , (4.13)

where µ(`) , |∑D−1
s=0 exp(ı2π`rs/n)|/D.

Now consider the summation
∑D−1

s=0 cos(ı2π`rs/n)/D for any fixed ` 6= 0. Each term in
the summation is a zero-mean random variable i.i.d with bounded support in [−1/D, 1/D].
Thus, using Hoeffding’s inequality for the sum of independent random variables with bounded
support we have, for any t > 0,

Pr(|
D−1∑

s=0

cos(ı2π`rs/n)/D| > t) ≤ 2 exp(−t2D/2).

Similarly,

Pr(|
D−1∑

s=0

sin(ı2π`rs/n)/D| > t) ≤ 2 exp(−t2D/2).

Applying a union bound over the real and the imaginary parts of the summation term in
µ(`), we get,

Pr(µ(`) >
√

2t) ≤ 4 exp(−t2D/2). (4.14)

Further applying a union bound over all ` 6= 0, we have,

Pr(µmax(Ai,j) >
√

2t) ≤ 4n exp(−t2D/2)

= 0.8

for t =
√

2 log(5n)/D. Thus, over all the random choices of the delays r0, . . . , rD−1, with
probability at least 0.2,

µmax(Ai,j) < 2
√

log(5n)/D , ∀ i, j.

�

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 76

4.B Restricted-isometry-property

Consider a s-sparse vector ~X and a measurement matrix Ai,j corresponding to bin j of stage
i of the FFAST. Using basic linear algebra we get the following inequality,

λmin(A†i,jAi,j)|| ~X||2 ≤ ||Ai,j
~X||2 ≤ λmax(A†i,jAi,j)|| ~X||2

The Gershgorin circle theorem [29], provides a bound on the eigen-values of a square
matrix. It states that, every eigen-value of a square matrix lies within at least one of the
Gershgoring discs. A Gershgorin disc is defined for each row of the square matrix, with
diagonal entry as a center and the sum of the absolute values of the off-diagonal entries as
radius. Note that for all (i, j), irrespective of the values of the delays r0, . . . , rD, the diagonal
entries of the matrix A†i,jAi,j are equal to D. Hence, Dµmax(Ai,j) provides an upper bound

on the absolute values of the off-diagonal entries of A†i,jAi,j.
Then, using the Gershgorin circle theorem we have,

D (1− µmax(Ai,j)(s− 1))+ || ~X||2 ≤ ||Ai,j
~X||2 ≤ D (1 + µmax(Ai,j)(s− 1)) || ~X||2.

�

4.C Proof of Theorem 4.3.1

In this section we provide a proof of the main result of this chapter. The proof consists of
two parts. In the first part of the proof, we show that the FFAST reconstructs the DFT ~X,
with probability at least 1− ε for any ε > 0, using m = O(k log2(k) log(n)) samples. In the
second part of the proof we show that computational complexity of the FFAST decoder is
O(n log2(k) log(n)).

4.C.1 Reliability Analysis and sample complexity of the FFAST

Sample complexity

In Chapter 3, we have shown that for the noiseless case, for any given 0 < δ < 1 and
sufficiently large (k, n), the FFAST algorithm computes the k-sparse n-length DFT ~X, with
probability at least 1−O(1/k), using a total of O(k) number of bins. Later in Section 4.C.1
we show that D = O(log2(k) log(n)) number of samples per bin are sufficient to make
Algorithm 6 robust against observation noise. Hence, the total sample complexity of the
FFAST algorithm in the presence of observation noise is

m = O(k log2(k) log(n)).

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 77

Reliability analysis

In Lemma 4.5.3, we have shown that a random choice of delay parameters r0, . . . , rD−1

satisfies the upper bound of (4.9) with probability at least 0.2. Also, it is easy, i.e., O(nD)
complexity, to verify if for a given choice of r0, . . . , rD−1 (4.9) is satisfied or not. Hence
WLOG henceforth we assume that the r0, . . . , rD−1 are chosen such that deterministically
the bound in (4.9) is satisfied.

Let Eb be an event that a bin processed by the Algorithm 6 is decoded wrongly. We
first show that the Algorithm 6 processes each bin reliably, i.e., Pr(Eb) < O(1/k2), using
D = O(log2(k) log(n)) number of samples per bin. Then, we show that an event E that

some bin is wrongly decoded by the FFAST algorithm, while reconstructing the DFT ~X has
a low probability. In particular, we use a union bound over the constant number of iterations
required for the FFAST to reconstruct the DFT ~X and over O(k) bins used in the FFAST
architecture to get,

Pr(E) < number of iterations× number of bins× Pr(Eb)
< O(1/k). (4.15)

Let Ef denote an event that the FFAST algorithm fails to reconstruct the DFT ~X. Then
putting the pieces together, we get,

Pr(Ef) < Pr(E) + Pr(Ef | E)
(a)
< O(1/k) +O(1/k)

< ε (4.16)

where in (a) we used the bound from (4.15) and the results from Chapter 3 along with the
fact that if there is no error in any bin-processing, the FFAST algorithm performs as if it
has access to the noiseless observations.

Hence, in order to complete the reliability analysis of the FFAST algorithm we need to
show that D = O(log2(k) log(n)) samples per bin are sufficient to achieve Pr(Eb) < O(1/k2).
The following lemma, that analyzes the performance of an energy-based threshold rule to
detect the presence of a complex vector in the presence of noise, plays a crucial role in the
analysis of the event Eb.

Lemma 4.C.1. For a complex vector ~u ∈ CD and ~w ∼ CN(0, ID×D), we have,

Pr(||~u+ ~w||2 < (1 + γ)D) < 2e−Dγ
2/9 + e−(||~u||−

√
2γD)2+ , (4.17)

for any constant 0 < γ < 1 and D > 1.5/γ.

Proof. Please see Appendix 4.D

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 78

Without loss of generality consider processing of bin j from stage i of the FFAST archi-
tecture. As shown in the Section 4.5 bin observation noise is CN(0, ID×D). Bin j in stage i is
either a zero-ton bin, or a single-ton bin or a multi-ton bin. We analyze all the three events
below and show that irrespective of the type, the Algorithm 6 decodes bin successfully with
probability at least 1−O(1/k2), as long as D = O(log2(k) log(n)).

Analysis of a zero-ton bin Consider a zero-ton bin with an observation ~yb,i,j = ~wb,i,j.
Let Ez be an event that a zero-ton bin is not identified as a ‘zero-ton’. Then,

Pr(Ez) = Pr(||~wb,i,j||2 > (1 + γ)D)

= P (χ2
2D > 2(1 + γ)D)

< 2 exp(−Dγ2/9) ∀ γ ∈ [0, 1/3]. (4.18)

where the last inequality follows from a standard concentration bound for Lipschitz functions
of Gaussian variables, along with the fact that the Euclidean norm is a 1-Lipschitz function.
Thus, Pr(Ez) < O(1/k2) if,

D > 18 log(k)/γ2 (4.19)

Analysis of a single-ton bin Let ~yb,i,j = X[`]~a(`) + ~wb,i,j, be an observation vector of
a single-ton bin. The steering vector ~a(`) is the `th column of the bin-measurement matrix
Ai,j and X[`] is the only non-zero DFT coefficient connected to this bin. Let Es be an event
that a single-ton bin is not decoded correctly. The event Es consists of the following three
events.

Single-ton bin is wrongly classified as a zero-ton bin [Esz] Let Esz denote an event
that the single-ton bin fails the energy test of the Algorithm 6 and is classified as a zero-ton.

Pr(Esz) = Pr(||~yb,i,j||2 < (1 + γ)D)

= Pr(||X[`]~a(`) + ~wb,i,j||2 < (1 + γ)D)

< 2 exp{−Dγ2/9}+ exp{−(||X[`]~a(`)|| −
√

2γD)2
+}

where the last inequality follows from Lemma 4.C.1. The non-zero DFT coefficient X[`] =√
ρeıφ and the steering vector ||~a(`)|| =

√
D. Hence,

Pr(Esz) < 2 exp{−Dγ2/9}+ exp{−(
√
ρD −

√
2γD)2

+}. (4.20)

Single-ton bin is wrongly classified as some other single-ton bin [Ess] Let Ess de-
note an event that the Algorithm 6 wrongly concludes that the observation ~yb,i,j corresponds

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 79

to a single-ton bin with steering vector ~a(`′) and the non-zero DFT coefficient X[`′], for some
`′ 6= `. Then,

Pr(Ess) = Pr(||~yb,i,j −X[`′]~a(`′)||2 < (1 + γ)D)

= Pr(||X[`]~a(`)−X[`′]~a(`′) + ~wb,i,j||2 < (1 + γ)D)
(a)
= Pr(||Ai,j~v + ~wb,i,j||2 < (1 + γ)D)

< 2 exp{−Dγ2/9}+ exp{−(||Ai,j~v|| −
√

2γD)2
+} (4.21)

where ~v used in (a) is an n-dimensional complex vector with only two non-zero values v[`] =
X[`] and v[`′] = X[`′], i.e., 2-sparse. The last inequality again follows from Lemma 4.C.1.

Using Lemma 4.5.3 and Lemma 4.5.4,

||Ai,j~v||2 ≥ 2||~v||2D(1− µmax(Ai,j))+

= 2ρD(1− µmax(Ai,j))+

≥ 2ρD(1− 2
√

log(5n)/D)+.

Thus, bound in (4.21) becomes,

Pr(Ess) < 2 exp{−Dγ2/9}+ exp

{
−
(√

2ρD(1− 2
√

log(5n)/D)+ −
√

2γD

)2

+

}
(4.22)

Single-ton bin is wrongly classified as a multi-ton bin [Esm] Let Esm be an event
that bin is processed by the Algorithm 6 but no single-ton is found. Thus,

Pr(Esm) < Pr(Esm | X̂[`] = X[`]) + Pr(X̂[`] 6= X[`])

= Pr(Ez) + Pr(X̂[`] 6= X[`]) (4.23)

From Algorithm 6 we have X̂[`] = ~a(`)†~yb,i,j/D = X[`] + CN(0, 1/D). Then, using the
fact that non-zero DFT coefficients take value from a M -PSK constellation with magnitude√
ρ we have,

Pr(X̂[`] 6= X[`]) < Pr(|CN(0, 1/D)| > √ρ sin(π/M))

= exp{−Dρ sin2(π/M)}.

Substituting the above bound and (4.18) in (4.23), we get,

Pr(Esm) < 2 exp{−Dγ2/9}+ exp{−Dρ sin2(π/M)}. (4.24)

Further using a union bound, we get an upper bound on the probability of event Es as,

Pr(Es) < Pr(Esz) + Pr(Ess) + Pr(Esm)

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 80

Thus, from (4.20), (4.22) and (4.24), to reliably decode a single-ton bin with probability
at least 1−O(1/k2) we need

D > max

{
2 log(k)

(
√
ρ−√2γ)2

+

, 16 log(n),
18 log(k)

γ2
,

2 log(k)

ρ sin2(π/M)

}
(4.25)

Analysis of a multi-ton bin Consider a multi-ton bin, in particular a L-ton bin where
L ≥ 2. Then, the observation vector of this bin can be written as ~yb,i,j = Ai,j~v+ ~wb,i,j, where
~v ∈ Cn is some L-sparse vector. Let Em be an event that a multi-ton bin is decoded as a
single-ton bin with a steering vector ~a(`) and the non-zero DFT coefficient X[`] for some `,
i.e., Em = (||Ai,j~v −X[`]~a(`) + ~wb,i,j||2 < (1 + γ)D).

First we compute a lower bound on the term ||Ai,j~v−X[`]~a(`)||2 using the RIP Lemma 4.5.4.
Let ~u = ~v−X[`]~e`, where ~e` is a standard basis vector with 1 at `th location and 0 elsewhere.
The vector ~u is either L + 1 or L sparse. Then, using the Lemmas 4.5.3, 4.5.4 and the fact
that all the non-zero components of ~u are of the form

√
ρeıφ, we have,

||Ai,j~v −X[`]~a(`)||2 = ||Ai,j~u||2
≥ LρD(1− µmax(Ai,j)L)+

> LρD(1− 2L
√

log(5n)/D)+ (4.26)

Next, we compute an upper bound on the probability of the failure event Em,

Pr(Em) < Pr(Em | L < log(k)) + Pr(L ≥ log(k))

< Pr(Em | L < log(k)) +O(1/k2), (4.27)

where in last inequality we have used the fact that the number of the non-zero DFT coef-
ficients connected to any bin L is a Binomial B(1/(ηk), k) random variable (see Chapter 3
for more details), for some constant η > 0. Hence to show that Pr(Em) < O(1/k2), we need
to show Pr(Em | L < log(k)) < O(1/k2). Towards that end,

Pr(Em | L < log(k)) = Pr(||Ai,j~v −X[`]~a(`) + ~wb,i,j||2 < (1 + γ)D | L < log(k))

(a)
< max

2≤L<log k
exp

{
−
(√

LρD(1− 2L
√

log(5n)/D)+ −
√
γD

)2

+

}
,

where in (a) we used the Lemma 4.C.1 and the lower bound from (4.26).
Hence, Pr(Em) < O(1/k2), if

D > 4(1 + β) log2(k) log(n), (4.28)

for some constant β > 0.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 81

Upper bound on the probability of event Eb We set the threshold γ = min{1, ρ/4}.
Then, using (4.19), (4.25) and (4.28) we have,

Pr(Eb) < O(1/k2), (4.29)

for any fixed ρ > 0 and D = O(log2(k) log(n)).

4.C.2 Computational complexity of the FFAST algorithm

The computational cost of the FFAST algorithm can be roughly computed as,

Total # of operations = # of operations for the FFAST front-end

+ # of operations for the backend peeling-decoder

= O(k log3 k log n)

+ # of iterations× {# of bins× (operations/bin)} .

As shown in Chapter 3 for all values of sparsity index 0 < δ < 1 the FFAST front-end
employs no more than O(k) number of bins and if successful completes decoding in constant
number of iterations. Now, from the pseudocode of function Singleton-Estimator provided
in Algorithm 6, it is clear that per bin, the FFAST decoding algorithm performs exhaustive
search over O(n/k) columns of the bin-measurement matrix, where each column is of di-
mension D. Further as shown in Section 4.C.1, the number of delays D = O(log2(k) log(n))
is sufficient for reliable reconstruction. Thus, the overall computational complexity of the
FFAST algorithm is no more than,

Total # of arithmetic operations = O(k log3 k log n)

+ # of iterations× {O(k)× (O(n/k)×D)} ,
= O(k log3 k log n) +O(n log2(k) log(n))

�

4.D Threshold based energy-detector

In this section we provide a proof of the Lemma 4.C.1. Let ~u ∈ CD be a complex D-
dimensional vector embedded in zero mean white Guassian noise ~w ∈ CN(0, ID×D). The
energy detector fails to identify the presence of the vector ~u, if ||~u+ ~w||2 < (1 + γ)D, where
0 < γ < 1 is a constant. Next, we analyze the probability of this event.

CHAPTER 4. STABLE RECOVERY OF APPROXIMATELY SPARSE DFT 82

Pr(||~u+ ~w||2 < (1 + γ)D)

= Pr(||
√

2~u+
√

2~w||2 < 2D(1 + γ))
(a)
= Pr(N (

√
2||~u||, 1)2 + χ2

2D−1 < 2D(1 + γ))

< Pr(χ2
2D−1 < 2D(1− γ)) + Pr(N (

√
2||~u||, 1)2 < 2D(1 + γ)− 2D(1− γ))

= Pr(χ2
2D−1 < 2D(1− γ)) + Pr(N (

√
2||~u||, 1)2 < 4Dγ), (4.30)

in (a) we did a change of basis such that ~u/||~u|| is one of the basis vectors. Since ~w is circularly
symmetric, change of basis does not change its distribution. Using the fact that N (0, 1)2−1
is a sub-exponential random variable with parameters (4, 4), we obtain a standard tail bound
for χ2

2D−1 as follows,

Pr(χ2
2D−1 < (2D − 1)(1− t)) < 2e−(2D−1)t2/8, ∀ 0 < t < 1

Set t = 2Dγ−1
2D−1

and using D > 1.5/γ, we get,

Pr(χ2
2D−1 < 2D(1− γ)) < 2e−Dγ

2/9. (4.31)

Now consider the second term in (4.30) as,

Pr(N (
√

2||~u||, 1)2 < 4Dγ)

< Pr(N (
√

2||~u||, 1) < 2
√
Dγ))

= Pr(N (0, 1) < −(
√

2||~u|| − 2
√
Dγ))

< 2Pr(N (0, 1) < −(
√

2||~u|| − 2
√
Dγ)+)

< exp

{
−
(
||~u|| −

√
2Dγ

)2

+

}
. (4.32)

Substituting (4.31) and (4.32) in (4.30), we get,

Pr(||~u+ ~w||2 < (1 + γ)D) < 2e−Dγ
2/9 + e

−(||~u||−
√

2Dγ)
2

+

�

83

Chapter 5

Computing a sparse 2D
discrete-Fourier-transform

5.1 Introduction

Spectral analysis using the Discrete Fourier Transform (DFT) has been of universal impor-
tance in engineering and scientific applications for a long time. The Fast Fourier Transform
(FFT) is the fastest known way to compute the DFT. Many applications of interest involve
signals, especially 2D signals relating to images, e.g. Magnetic-Resonance-Imaging (MRI),
video data, surveillance data, satellite imagery, etc., which have a sparse Fourier spectrum.
In such cases, a small subset of the spectral components typically contains most or all of
the signal energy, with most spectral components being either zero or negligibly small. A
naive approach of using a standard 2D FFT algorithm to compute the DFT of an N0 ×N1

dimensional 2D signal, requires all the N0N1 spatial samples and O(N0N1 log(N0N1)) arith-
metic computations. In applications like MRI, the acquisition time and hence the sample
complexity, is of vital importance. This motivates us to address the following question in
this chapter: In the case when the 2D-DFT, of an N0 × N1 signal is known to have only k
non-zero DFT coefficients, where k << N0N1, how much improvement can one obtain both
in terms of the sample complexity and the computational complexity of computing the DFT?

In Chapter 3, we have addressed the above question for 1D signals and proposed a novel
FFAST (Fast Fourier Aliasing-based Sparse Transform) framework, which computes an n-
length DFT, that has k non-zero coefficients, using only O(k) time-domain samples and
O(k log k) arithmetic operations. In this chapter, we extend the results of Chapter 3 to
compute the 2D-DFT’s of 2D signals. In particular, we provide an efficient algorithm for
computing a k-sparse 2D-DFT, i.e., has k non-zero coefficients, for the following two classes
of 2D signals;

• Signals with co-prime dimensions: A 2D signal of dimensionN0×N1, where gcd1(N0, N1)

1Greatest common divisor

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 84

(a) Log intensity plot of the 2D-
DFT of the original ‘Brain’ image.

(b) Original ‘Brain’ image in
spatial-domain.

(c) Reconstructed ‘Brain’ image
using the 2D-FFAST architecture.
The total number of Fourier sam-
ples used is 60.18%.

Figure 5.1: Application of the 2D-FFAST algorithm to reconstruct the ‘Brain’ image acquired on an MR scanner with dimension
504×504. The 2D-FFAST algorithm reconstructs the ‘Brain’ image, as shown in Fig. 5.8(c), using overall 60.18% of the Fourier
samples of Fig. 5.8(a).

= 1. For this class of 2D signals, we use the following approach to compute 2D-DFT.
First, we map the problem of computing an N0×N1 2D-DFT into that of computing an
N , length 1D-DFT using the Chinese-Remainder-Theorem (CRT), where N = N0N1.
Then, we use the 1D-FFAST architecture from Chapter 3 to efficiently compute the
1D-DFT. Finally, using the Good-Thomas algorithm [36, 74] we recover the desired
2D-DFT.

• Signals with equal dimensions: A 2D signal of dimension N0 × N1, where N0 = N1.
For this class of 2D signals, we propose a new 2D-FFAST architecture based on the
ideas of the 1D-FFAST framework.

As a motivating example, we demonstrate an application of our proposed 2D-FFAST
algorithm to acquire Magnetic Resonance Imaging (MRI) of the ‘Brain’ image shown in
Fig. 5.8(b). In MRI, recall that the samples are acquired in the Fourier-domain, and the
challenge is to speed up the acquisition time by minimizing the number of Fourier samples
required to reconstruct the desired spatial-domain image. The FFAST algorithm reconstructs
the ‘Brain’ image acquired on an MR scanner with dimension 504×504, using overall 60.18%
of the Fourier samples shown in Fig. 5.8(a). The reconstructed ‘Brain’ image is shown in
Fig. 5.8(c). In Section 5.5.3, we elaborate on the specifics of this simulation result.

The main contribution of this chapter is a 2D-FFAST algorithm that computes a k-
sparse 2D-DFT of an N0 × N1 signal, where the dimensions N0, N1 are either co-prime
or equal and the non-zero DFT coefficients have uniformly random support, using O(k)
samples and in O(k log k) computations. Our algorithm is applicable for the entire sub-

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 85

linear sparsity regime, i.e., k = O(N δ), 0 ≤ δ < 1, where N = N0N1. It succeeds with
probability approaching 1 asymptotically in k. We emphasize the following caveats. Firstly,
our analytical results are probabilistic and are applicable for asymptotic values of N0, N1.
Secondly, we assume that the 2D-DFT X is exactly k-sparse, i.e., has k non-zero DFT
coefficients with uniformly random support.

The application of the proposed 2D-FFAST algorithm to acquire MRI of the ‘Brain’
image of Fig 5.8(b) leads to some interesting observations. Although the theoretical results
of this chapter are applicable to signals that have exactly k non-zero DFT coefficients with
uniformly random support, in practice our algorithm is applicable even to realistic signals
such as the ‘Brain’ image of Fig 5.8(b), that are approximately sparse and have a “non-
uniform” (or clustered) support for the dominant DFT coefficients.

5.1.1 Related Work

A number of previous works [31, 32, 35, 38, 39] have addressed the problem of computing a
1-D DFT of an n-length signal that has a k-sparse Fourier transform, in sub-linear time and
sample complexity. Most of these algorithms achieve a sub-linear time performance by first
isolating the non-zero DFT coefficients into different groups/bins, using specific filters or
windows that have ‘good’ (concentrated) support in both, time and frequency. The non-zero
DFT coefficients are then recovered iteratively, one at a time. The filters or windows used
for the binning operation are typically of length O(k log n). As a result, the sample and
the computational complexity is O(k log n) or more. The work of [35] provides an excellent
tutorial on some of the key ideas used by most sub-linear time sparse FFT algorithms for 1D
signals in the literature. The FFAST algorithm in Chapter 3 is the first algorithm to compute
a k-sparse 1D-DFT of an n-length signal using O(k) samples and O(k log k) computations.

While there has been much work in the literature on sub-linear time and sample com-
plexity algorithms for computing a 1D-DFT, there are very few algorithms designed for 2D
signals. The algorithm in [34], has O(k logc(N0N1)) sample and time complexity, for com-
puting a k-sparse N0×N1 2D-DFT. In [30], the authors propose sub-linear time algorithms
for computing a k-sparse 2D-DFT for 2D signals with equal dimension, i.e., N0 = N1 =

√
N ,

where the dimensions are powers of 2. For an exactly sparse signal, when k = O(
√
N), the

algorithm in [30] uses O(k) samples and O(k log k) time. For a general sub-linear sparsity
regime the computational complexity of the algorithm in [30] is O(k log k + k(log logN)c)
for some constant c. The algorithms proposed in [30] succeed with a constant probability
that does not approach 1. In contrast, the 2D-FFAST algorithm proposed in this chapter
computes a k-sparse 2D-DFT, for the entire sub-linear regime of sparsity, using O(k) sam-
ples and O(k log k) computations, and succeeds with probability at least 1 − O(1/k) that
asymptotically (in k) approaches to 1.

In summary, the 2D-FFAST algorithm is the first to compute an exactly k-sparse N0×N1-
point DFT that has all of the following features:

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 86

• it has O(k) sample complexity and O(k log k) computational complexity;

• it covers the entire sub-linear regime (k ∝ N δ, 0 < δ < 1), where N = N0N1.

• it has a probability of failure that vanishes to zero asymptotically;

The rest of the chapter is organized as follows. In Section 5.2, we provide the description
of the problem formulation and the signal model. The main result of the chapter is provided
in Section 5.3. In Section 5.4, we describe the 2D-FFAST framework for both the classes,
i.e., co-prime dimensions and equal dimensions, of 2D signals using simple examples. We
provide extensive simulation results in Section 5.5, for a variety of 2D signals, and contrast
it with the theoretical claims of this chapter. We also demonstrate an application of the 2D-
FFAST architecture to acquire Magnitude Resonance Imaging (MRI) data of the ‘Brain’,
thus providing an empirical evidence that the 2D-FFAST architecture is applicable to more
realistic signals.

5.2 Problem formulation, notation and preliminaries

Consider a 2D signal x ∈ CN0×N1 . A 2D-DFT of the signal x is given as:

X[ω1][ω2] =
∑

t1,t2

x[t1][t2]eı2πω1t1/N0eı2πω2t2/N1 . (5.1)

We consider the problem of computing the 2D-DFT of the signal x. A straightforward
computation using a 2D fast Fourier transform (FFT) algorithm [4], would require N =
N0N1 samples and O(N logN) complex operations. We show that when the transform X
is known to be exactly k-sparse, with a uniformly random support of the non-zero DFT
coefficients, one can achieve significant gains in both the number of samples used and the
computational complexity of computing the 2D-DFT. In particular, we propose a 2D-FFAST
framework that computes a k-sparse 2D-DFT, for the entire sub-linear regime of sparsity,
using O(k) samples in O(k log k) computations and succeeds with probability approaching
1 asymptotically in the number of measurements. The 2D-FFAST framework proposed in
this chapter is an extension of the FFAST architecture from Chapter 3, hence for ease of
exposition, we closely follow the notations used in Chapter 3.

We now describe the Chinese-Remainder-Theorem (CRT) which plays an important role
in our proposed 2D-FFAST architecture. For integers a, n, we use (a)n to denote the modulo
operation, i.e., (a)n , a mod n.

Theorem 5.2.1 (Chinese-Remainder-Theorem [4]). Suppose n0, n1, . . . , nd−1 are pairwise
co-prime positive integers and N =

∏d−1
i=0 ni. Then, every integer ‘a’ between 0 and N − 1

is uniquely represented by the sequence r0, r1, . . . , rd−1 of its remainders modulo n0, . . . , nd−1

respectively and vice-versa.

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 87

Notation Description
N0, N1 Ambient signal size in each of the 2 dimensions respectively.
k Number of non-zero coefficients in the 2D-DFT X.
δ Sparsity-index: k ∝ N δ, 0 < δ < 1 and N = N0N1.

m
Sample complexity: Number of samples of x used by the 2D-FFAST
algorithm to compute the 2D-DFT X.

r = m/k Oversampling ratio: Number of samples per non-zero DFT coefficient.
d Number of stages in the sub-sampling “front-end” of the FFAST architecture.

Table 5.1: Glossary of important notations and definitions used in the rest of the chapter.

Further, given a sequence of remainders r0, r1, . . . , rd−1, where 0 ≤ ri < ni, Gauss’s
algorithm can be used to find an integer ‘a’, such that,

(a)ni ≡ ri for i = 0, 1, . . . , d− 1. (5.2)

For example, consider the following pairwise co-prime integers n0 = 3, n1 = 4 and n2 = 5.
Then, given a sequence of remainders r0 = 2, r1 = 2, r2 = 3, there exists a unique integer ‘a’,
such that,

2 ≡ a mod 3

2 ≡ a mod 4 (5.3)

3 ≡ a mod 5

It is easy to verify that a = 38 is a unique integer modulo N = n0n1n2 = 60 that satisfies
(5.3).

5.3 Main Result

In this chapter, we propose a novel 2D-FFAST algorithm, to compute the 2D-DFT of an
N0 ×N1 signal x, when either N0 = N1 or gcd(N0, N1) = 1. The input signal x is such that
the 2D-DFT, X, has at most k complex-valued non-zero coefficients with a uniformly random
support in the set {(0, 0), . . . , (N0 − 1, N1 − 1)}. The 2D-FFAST algorithm computes the
k-sparse N0×N1 point 2D-DFT, with high probability, using O(k) samples of x in O(k log k)
arithmetic computations. The following theorem states the main result:

Theorem 5.3.1. For any given 0 < ε < 1, there exist (infinitely many) sufficiently large
(N0, N1), for either N0 = N1 or gcd(N0, N1) = 1, such that the 2D-FFAST algorithm com-
putes the 2D-DFT X of a N0×N1 signal x, where ||X||0 ≤ k and k = Ω((N0N1)δ), with the
following properties:

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 88

1. Sample complexity: The algorithm needs m = r(δ)k samples of the signal x, where
the oversampling ratio r(δ) > 1, is a small constant2 that depends on the sparsity index
δ;

2. Computational complexity: The computational complexity of the 2D-FFAST algo-
rithm is O(k log k), where the constant in big-Oh is small.

3. Probability of success: The FFAST algorithm successfully computes all the non-zero
2D-DFT coefficients of the signal x, with probability at least 1− ε.

Proof. The proof for the case when the dimensions N0, N1 are co-prime is provided in Sec-
tion 5.4.1. For the proof of the case when N0 = N1, please see Appendix 5.A.

Note, that although Theorem 5.3.1 is for asymptotic values of k, it applies for any signal
that has ||X||0 ≤ k. Hence, the regime of δ = 0 (esp. constant k) is covered by the 2D-
FFAST algorithm designed to operate for any δ > 0, at the expense of being sub-optimal.

5.4 FFAST architecture for 2D signals

In this section, we extend the 1D-FFAST architecture proposed in Chapter 3 to 2D signals
x ∈ CN0×N1 . We consider two classes of 2D signals. First, when the dimensions N0 and N1

are co-prime. In this case, there exists a map between a 2D signal and a 1D signal, such
that the 2D-DFT of a 2D signal can be computed using the 1D-DFT of the mapped 1D
signal. Hence, one can use the 1D-FFAST architecture proposed in Chapter 3 off-the-shelf,
in conjunction with this mapping, to compute the k-sparse 2D-DFT. The second class of
signals that we consider in this chapter is where the dimensions are equal, i.e., N0 = N1. For
this class of signals, we propose a new 2D-FFAST architecture constructed by extending the
1D architecture of Chapter 3. Further, we show that the extended 2D-FFAST architecture
gives almost similar performance guarantees as, for the 1D case considered in Chapter 3.

5.4.1 2D signals with co-prime dimensions

Consider an example signal x ∈ C4×5, that has a sparse 2D-DFT. We use the Chinese-
Remainder-Theorem (CRT) based forward mapping [36, 74], to obtain a 1D signal ~x from
the 2D signal x as follows: 1D vector ~x is constructed by reading out the samples from
2D signal x in a diagonally downward direction, towards right, starting from top left corner
as shown in Fig. 5.2. A uniformly random support in 2D-DFT corresponds to a uniformly
random support in CRT mapped 1D-DFT. Hence, we use the 1D-FFAST architecture from
Chapter 3, to compute the sparse 1D-DFT, ~X. Then, we perform the reverse mapping of
1D-DFT ~X, to the 2D-DFT X using the Good-Thomas algorithm [36, 74]. The elements of

2See Fig. 3.2 of Chapter 3, for a relation between the oversampling ratio r(δ) and the sparsity index δ.

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 89

0

1

2

3

4

4

55

6

7

8

9

10

11

12

13

14

15

16

17

18

19

CRT!
Mapping! 10 2 3 19181716. . .

10 2 3 19181716. . .

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Good-Thomas!
Mapping!

1D!
FFAST!

2D-DFT X 2 C4⇥5

2D signal x 2 C4⇥5

1D signal ~x 2 C1⇥20

1D-DFT ~X 2 C1⇥20

1

Figure 5.2: Architecture for computing the 2D-DFT of a 2D signal with co-prime dimensions, e.g., N0 = 4, N1 = 5. First,
we use a forward mapping based on the Chinese-Remainder-Theorem (CRT) to convert a 2D signal x in to a 1D signal ~x.

Then, we use our 1D-FFAST architecture to compute the 1D-DFT, ~X. We transform back the result from 1D-DFT ~X, using
a reverse mapping based on Good-Thomas algorithm, to get the 2D-DFT X.

the 1D vector ~X are read out sequentially and placed in a diagonally downward direction,
but towards left, starting from the top-left corner as shown in Fig. 5.2.

In [36, 74], the authors show that the forward and the reverse mapping can be done as
long as the dimensions are co-prime. Hence, for the signals with co-prime dimensions, the
sparse 2D-DFT can be computed using the 1D-FFAST algorithm of Chapter 3, along with
the forward and reverse mapping from [36, 74].

5.4.2 2D signals with equal dimensions N0 = N1

In this section we describe a 2D-FFAST architecture, shown in Fig. 5.3, built on the design
principles of the 1D-FFAST architecture in Chapter 3. Again, we use a simple example to
illustrate the 2D-FFAST framework. Consider a 6×6, 2D signal x, such that its 2D-DFT X is
4-sparse. Let the 4 non-zero 2D-DFT coefficients of x be X[1][3] = 7, X[2][0] = 3, X[2][3] = 5
and X[4][0] = 1. The 2D-FFAST ‘fonrt-end’ sub-samples the input signal and its circularly
shifted version through multiple stages d. Each stage, further has D = 3 delay paths and is
parametrized by a single sampling factor. For example, the FFAST architecture of Fig. 5.3,
has d = 2 stages and 3 delay (circular shift) paths per stage. Let ni denote the sampling
factor of stage i, e.g., n0 = 3 and n1 = 2, in Fig. 5.3.Stage i of the FFAST front-end samples

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 90

2D-DFT# (3, 3)

x =

0
BBB@

x[0][0] x[0][1] . . . x[0][5]
x[1][0] x[1][1] . . . x[1][5]

...
...

. . .
...

x[5][0] x[5][1] . . . x[5][5]

1
CCCA

2D-DFT# (3, 3)

2D-DFT# (3, 3)

z(1,0)

z(0,1)

Matrix to!
bin!

observations!

0
BB@

~yb,0,0

~yb,0,1

~yb,0,2

~yb,0,3

1
CCA

12⇥1

2D-DFT

2D-DFT

2D-DFT

z(1,0)

z(0,1)

Matrix to!
bin!

observations!

0
BBBBB@

~yb,1,0

~yb,1,1

~yb,1,2

...
~yb,1,8

1
CCCCCA

27⇥1

stage-0

stage-1

(2, 2)

(2, 2)

(2, 2)

X 2 C6⇥6

2D-DFT2D-FFAST

peeling-decoder

Figure 5.3: A 2D-FFAST architecture with d = 2 stages. In general, the sub-sampling front-end of the 2D-FFAST architecture
consists of 3 or more stages depending on the sparsity index δ, where k = O(Nδ) and N = N0N1. In this example, we show
the 2D-FFAST architecture with 2-stages only for the purpose of illustration. Each stage further has 3 delay chains and a
common sub-sampling factor. The smaller 2D-DFTs are computed of the output of each sub-sampler. Then, bin-observations
are formed by collecting one scalar output from each of the 3 delay chains. The bin-observations are further processed by a
‘peeling-decoder’ to reconstruct the large 2D-DFT X.

the input signal x and its 3 circular shifts, x(0,0),x(1,0),x(0,1), by (ni, ni), in each of the two
dimensions. The FFAST algorithm synthesizes the big 2D-DFT X, from the short 2D-DFT
of each of the sub-sampled stream, using the peeling-decoder. In Section 5.4.2, we describe
in detail, the operation of the block matrix-to-bin observations, which essentially groups the
output of the short DFTs in a specific way.

Before we describe how to compute the 2D-DFT of the signal x, using the 2D-FFAST
framework, we review some basic signal processing properties of subsampling-aliasing and
circular shifts. In Fig. 5.4, we show a detailed view of stage 0 of the 2D-FFAST architecture
of Fig. 5.3.

• Sub-sampling and aliasing: If a 2D signal is subsampled in the spatial-domain,
its 2D-DFT coefficients mix together, i.e., alias, in a pattern that depends on the
sampling procedure. For example, consider uniform subsampling of x by 3 in both the
dimensions. The sub-sampling operation in the first path or delay chain of Fig. 5.4,

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 91

x(0,0)
s =

✓
x[0][0] x[0][3]
x[3][0] x[3][3]

◆

x(1,0)
s =

✓
x[1][0] x[1][3]
x[4][0] x[4][3]

◆

x(0,1)
s =

✓
x[0][1] x[0][4]
x[3][1] x[3][4]

◆

2D-DFT

X

(0,0)
s [0][0] X

(0,0)
s [0][1]

X
(0,0)
s [1][0] X

(0,0)
s [1][1]

!

X

(1,0)
s [0][0] X

(1,0)
s [0][1]

X
(1,0)
s [1][0] X

(1,0)
s [1][1]

!

X

(0,1)
s [0][0] X

(0,1)
s [0][1]

X
(0,1)
s [1][0] X

(0,1)
s [1][1]

!

(3, 3)

x =

0
BBB@

x[0][0] x[0][1] . . . x[0][5]
x[1][0] x[1][1] . . . x[1][5]

...
...

. . .
...

x[5][0] x[5][1] . . . x[5][5]

1
CCCA

2D-DFT# (3, 3)

2D-DFT# (3, 3)

z(1,0)

z(0,1)

Matrix to!
bin!

observations!

0
BB@

~yb,0,0

~yb,0,1

~yb,0,2

~yb,0,3

1
CCA

12⇥1

Figure 5.4: A detailed view of stage 0 of the 2D-FFAST architecture of Fig. 5.3. A 2D signal x and its 2D circularly shifted
versions are subsampled by (3, 3) to obtain the sub-sampled signals x0,0

s ,x1,0
s and x0,1

s . Then, the 2D-DFT of the sub-sampled
signal is computed and the outputs are collected to form bin-observations.

results in xs =

(
x[0][0] x[0][3]
x[3][0] x[3][3]

)
. Then, the 2D-DFT coefficients of xs are related

to the 2D-DFT coefficients X as:

Xs[0][0] = X[0][0] +X[2][0] +X[4][0] +X[0][2] +X[2][2]

+ X[4][2] +X[0][4] +X[2][4] +X[4][4]

= 4

Xs[0][1] = X[0][1] +X[2][1] +X[4][1] +X[0][3] +X[2][3]

+ X[4][3] +X[0][5] +X[2][5] +X[4][5]

= 5

Xs[1][0] = X[1][0] +X[3][0] +X[5][0] +X[1][2] +X[3][2]

+ X[5][2] +X[1][4] +X[3][4] +X[5][4]

= 0

Xs[1][1] = X[1][1] +X[3][1] +X[5][1] +X[1][3] +X[3][3]

+ X[5][3] +X[1][5] +X[3][5] +X[5][5]

= 7.

More generally, if the sampling periods of the row and columns of the 2D-signal x are
n0 and n1 (we assume that n0 divides N0 and n1 divides N1) respectively, then,

Xs[i][j] =
∑

i≡(a)N0/n0
,j≡(b)N1/n1

X[a][b] (5.4)

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 92

where notation i ≡ (a)N0/n0 , denotes i ≡ a mod (N0/n0).

• Circular spatial shift: A circular shift in the spatial-domain results in a phase shift
in the frequency-domain. Consider a circularly shifted signal x(1,0) (each column is
circularly shifted by 1) obtained from x as x(1,0)[i][j] = x[(i+ 1)N0][j]. Then the 2D-
DFT coefficients of the shifted signal are given as, X(1,0)[i][j] = ωiN0

X[i][j], where
ωN0 = exp(2πı/N0). Similarly, the 2D-DFT coefficients of a circularly shifted sequence
x(0,1) obtained from x as x(0,1)[i][j] = x[i][(j+1)N1], are X(0,1)[i][j] = ωjN1

X[i][j], where

ωN1 = exp(2πı/N1). In general, a circular shift of (s1, s2) results in X(s1,s2)[i][j] =
ωis1N0

ωjs2N1
X[i][j].

Using the above signal processing properties of sub-sampling and spatial circular shift, we
compute the relation between the 2D-DFT coefficients X and the output of stage 0 (shown
in Fig. 5.4) of the 2D-FFAST front-end. Next, we group the output of the 2D-FFAST front
end into “bin-observation” as follows:

Bin observation

A bin observation is a 3-dimensional vector formed by collecting one scalar output value
from each of the 3 delay chains in a stage of the 2D-FFAST front-end. For example, ~yb,0,0 is
an observation vector of bin 0 in stage 0 of the 2D-FFAST front-end and is given by,

~yb,0,0 =

X
(0,0)
s [0][0]

X
(1,0)
s [0][0]

X
(0,1)
s [0][0]

 . (5.5)

Note, that there are total of 4 bins in stage 0 shown in Fig. 5.4. The bins are indexed by
a single number as follows: a bin formed by collecting the scalar outputs indexed by (i, j)
from each of the delay chains is labelled (N0/n0) × i + j, e.g., all the delay chain outputs
indexed by (1, 0) form the observation vector of bin 2 of stage 0 (also see Fig. 5.5), and is
denoted by

~yb,0,2 =

X
(0,0)
s [1][0]

X
(1,0)
s [1][0]

X
(0,1)
s [1][0]

 .

Next, using the above 6 × 6 example signal x, we explain how to compute a sparse
2D-DFT of a signal using decoding over an appropriately designed sparse graph.

Computing a sparse 2D-DFT via decoding on a sparse-graph

Let the 6 × 6 example signal x be processed through the 2-stage 2D-FFAST architecture
of Fig. 5.3. Then, the relation between the resulting bin-observations and the non-zero 2D-
DFT coefficients X can be computed using the sub-sampling and the circular shift properties

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 93

~yb,0,0 ~yb,0,1

~yb,0,3

~yb,1,0 ~yb,1,1 ~yb,1,2

~yb,1,5

~yb,1,6 ~yb,1,7 ~yb,1,8

~yb,1,3 ~yb,1,4

X[4][0]

X[2][0]

X[1][3]

X[2][3]

stage-0

stage-1

Figure 5.5: A bi-partite graph representing the relation between the bin-observations and the non-zero 2D-DFT coefficients X.
Left nodes in the graph represent the non-zero 2D-DFT coefficients and the right nodes represent the “bins” (we sometime refer
them also as check nodes) with vector observations. An edge connects a left node to a right check node iff the corresponding
non-zero 2D-DFT coefficient contributes to the observation vector at that particular check node, e.g., the 2D-DFT coefficient
X[4][0] contributes to the observation vector of bin 0 of stage 0 and bin 3 of stage 1. A zeroton check node has no left neighbor.
A singleton check node has exactly one left neighbor and a multiton check node has more than one left neighbors in the graph.

explained earlier and is graphically represented in Fig. 5.5. Left nodes of the graph in
Fig. 5.5 represent the non-zero DFT coefficients and the right nodes represent the “bins”
(check nodes) with vector observations. An edge connects a left node to a right check node
iff the corresponding non-zero 2D-DFT coefficient contributes to the observation vector of
that particular check node, e.g., after aliasing, due to sub-sampling, the 2D-DFT coefficient
X[4][0] contributes to the observation vector of bin 0 of stage 0 and bin 3 of stage 1.

We define the following:

• zero-ton: A bin that has no contribution from any of the non-zero DFT coefficients
of the signal, e.g., bin 2 of stage 0 or bin 0 of stage 1 in Fig. 5.5. A zero-ton bin can
be trivially identified from its observations.

• single-ton: A bin that has contribution from exactly one non-zero DFT coefficient of
the signal, e.g., bin 1 of stage 0. Using the signal processing properties the observation
vector of bin 1 of stage 0 is given as,

~yb,0,1 =

X[2][3]
e2πı2/6X[2][3]
e2πı3/6X[2][3]

 .

The observation of a singleton bin can be used to determine the 2D support and the
value, of the only non-zero DFT coefficient contributing to that bin, as follows:

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 94

– row support: The row-support of the non-zero DFT coefficient contributing to a
singleton bin can be computed as,

2 =
6

2π
∠yb,0,1[1]y†b,0,1[0] (5.6)

– column support: The column-support of the non-zero DFT coefficient contributing
to a singleton bin can be computed as,

3 =
6

2π
∠yb,0,1[2]y†b,0,1[0] (5.7)

– Value: The value of the non-zero DFT coefficient is given by the observation
yb,0,1[0].

We refer to this procedure as a “ratio-test”, hence forth. Thus, a simple ratio-test on
the observations of a singleton bin correctly identifies the 2D support and the value of
the only non-zero DFT coefficient connected to that bin. This property holds for all
the singleton bins.

• multi-ton: A bin that has contribution from more than one non-zero DFT coefficients
of the signal, e.g., bin 0 of stage 0. The observation vector of bin 0 of stage 0 is,

~yb,0,0 =

X[4][0] +X[2][0]
e2πı4/6X[4][0] + e2πı2/6X[2][0]

X[4][0] +X[2][0]

 =

4

−2 + ı
√

3
4

 .

Now if we perform the “ratio-test” on these observations, we get the column support to
be 2.3184. Since we know that the column support has to be an integer value between
0 to 5, we conclude that the observations do not correspond to a singleton bin. In
Chapter 2, we rigorously show that the ratio-test identifies a multi ton bin almost
surely.

Hence, using the “ratio-test” on the bin-observations, the FFAST decoder can determine
if a bin is a zero-ton, a single-ton or a multi-ton, almost surely. Also, when the bin is singleton
the ratio-test provides the 2D-support as well as the value of the non-zero DFT coefficient
connected to that bin. We use the following peeling-decoder on the graph in Fig. 5.5, to
compute the support and the values of the non-zero DFT coefficients of x.

Peeling-Decoder: The peeling-decoder repeats the following steps:

1. Select all the edges in the graph with right degree 1 (edges connected to singleton
bins).

2. Remove these edges from the graph as well as the associated left and the right nodes.

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 95

3. Remove all other edges that were connected to the left nodes removed in step-2. When
a neighboring edge of any right node is removed, its contribution is subtracted from
that bins observation.

Decoding is successful if, at the end, all the edges have been removed from the graph. It
is easy to verify that performing the peeling procedure on the graph of Fig. 5.5, results
in successful decoding with the coefficients being uncovered in the following possible order:
X[2][3], X[1][3], X[4][0], X[2][0].

Thus, the 2D-FFAST architecture of Fig. 5.3, has transformed the problem of computing
a 2D-DFT of a signal x into that of decoding over a sparse graph of Fig. 5.5, induced by
the sub-sampling operations. The success of the peeling-decoder depends on the properties
of the induced graph. In Appendix 5.A we show that, if the sub-sampling parameters are
chosen carefully, guided by the Chinese-Remainder-Theorem (CRT), the FFAST decoder
succeeds with probability approaching 1, asymptotically in k.

5.5 Simulations

In this section we validate the empirical performance of the 2D-FFAST architecture for
various settings. First, we provide simulations for synthetic 2D signals with an exactly
sparse 2D-DFT and contrast it with the theoretical claims of this chapter. Then we show an
application of the 2D-FFAST architecture to acquire Magnitude Resonance Imaging (MRI)
data, which is not exactly sparse and also has a structured, rather than a uniformly random,
support for the dominant 2D-DFT coefficients. Thus, providing an empirical evidence that
the 2D-FFAST architecture is applicable to realistic signals, although the theoretical claims
are only for signals with an exactly sparse 2D-DFT with uniformly random support.

5.5.1 Application of 2D-FFAST for signals with N0 = N1, and ex-
actly k-sparse 2D-DFT

• Very sparse regime 0 < δ ≤ 1/3: We construct a 2D signal x of ambient dimensions
N0 = N1 = 2520. The sparsity parameter k is varied from 70 to 170 which corresponds
to the very-sparse regime of k < O(N1/3), where N = N0N1 = 6.35 million. We use
a 4 stage 2D-FFAST architecture (see Fig. 5.3 for reference). The uniform sampling
periods for each of the 4 stages are (5×7×8)2, (7×8×9)2, (8×9×5)2 and (9×5×7)2

respectively. Thus the number of bins/check-nodes in the 4 stages are 92, 52, 72 and 82

respectively. Further, each stage has 3 delay sub-streams. Thus, the total number of
samples used by the FFAST algorithm for this simulation is m < 3(92 +52 +72 +82) =
657. We define η as an average number of bins per stage normalized by the sparsity
k. For example, when k = 100 the value of η = 0.5475. In Chapter 3, we have shown
that for a 4-stage 1D-FFAST architecture the theoretical threshold η∗ = 0.3237. We

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 96

P
ro

b
ab

il
it
y

of
su

cc
es

s

⌘ : average number of samples
per sub-stream normalized by

the number of non-zero coe�cients k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

/HVVïVSDUVH�UHJLPH��G� ���VWDJHV
9HU\ïVSDUVH�UHJLPH��G� ���VWDJHV

Figure 5.6: The probability of success of the 2D-FFAST algorithm as a function of η, the average number of bins per stage
normalized by the number of non-zero coefficients k. The plot is obtained for the two different sparsity regimes: 1) Very-sparse
regime, i.e., δ ≤ 1/3. For this regime, a d = 4 stage 2D-FFAST architecture is used; 2) Less-sparse regime, i.e., 1/3 < δ < 1. For
this regime, a d = 3 stage 2D-FFAST architecture is used. Each point in the plot is obtained by averaging over 100 runs of the
simulations. The ambient signal dimension N0 ×N1, and the number of samples m are fixed in both the simulations, while the
number of the non-zero 2D-DFT coefficients k, is varied to get different values of η. We note that the FFAST algorithm exhibits
a threshold behavior with the thresholds η1 = 0.38 and η2 = 0.47 for the very-sparse and the less-sparse regimes respectively.
From Chapter 3, we know that the optimal thresholds for a d = 4 and d = 3 stage FFAST architecture are η∗1 = 0.3237 and
η∗2 = 0.4073 respectively. Thus, confirming that the empirical behavior of the 2D-FFAST architecture is in close agreement
with the theoretical results.

observe that the 2D-FFAST algorithm also shows a threshold behavior and successfully
reconstructs the 2D-DFT for all values of η > 0.38, which is in close agreement with
the theoretical claims.

• Less sparse regime 1/3 < δ < 1: We construct a 2D signal x of ambient dimensions
N0 = N1 = 280. The sparsity parameter k is varied from 2000 to 5000 which corre-
sponds to the less-sparse regime, O(N2/3) < k < O(N3/4), where N = N0N1 = 78400.
We use a d = 3 stage 2D-FFAST architecture (see Fig. 5.3 for reference). The uniform
sampling periods for each of the 3 stages are 5, 8 and 7 respectively. Thus the number
of bins/check-nodes in the 3 stages are 352, 562 and 402 respectively. Further, each
stage has 3 delay sub-streams. Thus the total number of samples used by the FFAST
algorithm for this simulation is m < 3(352 + 562 + 402) = 17883. From Chapter 3, for
a 3-stage 1D-FFAST architecture, the theoretical threshold η∗ = 0.4073. We observe

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 97

that the 2D-FFAST algorithm successfully reconstructs the 2D-DFT for all values of
η > 0.47, which is in close agreement with the theoretical thresholds.

• For each run of the simulation, a 2D-DFT X of dimension N0 ×N1 is generated, with
exactly k non-zero coefficients. The support of the non-zero DFT coefficients is chosen
uniformly at random from the set {0, 1, ..., N0 − 1}×{0, 1, ..., N1 − 1}. The spatial 2D
signal x is then generated from X using an inverse 2D-DFT operation. This discrete
signal x is then given as an input to the 2D-FFAST front-end.

• Each sample point in Fig. 5.6 is generated by averaging over 100 runs of the simulations.

• Decoding is successful if all the 2D-DFT coefficients are recovered perfectly.

5.5.2 Application of 2D-FFAST for signals with exactly k-sparse
2D-DFT but with non-uniform support

The theoretical guarantees of Theorem 5.3.1 are for signals that have an exactly k-sparse
2D-DFT, with the support of the non-zero DFT coefficients being uniformly random. In
this section we empirically show that the proposed 2D-FFAST architecture works quite well
even for signals that have non-uniform support of the 2D-DFT coefficients. We provide
simulation results for two different types of images with the parameters specified as below.

• ‘Cal’ Image: The ‘Cal’ image shown in Fig. 5.7(c), is a synthetic image of size
280 × 280. The number of the non-zero pixels in the ‘Cal’ image is k = 3509, and
the support is non-uniform. Note, since the image is sparse in the spatial-domain,
we sub-sample in the frequency-domain, i.e., the input to the FFAST front-end is the
2D-DFT of the ‘Cal’ image (see Fig. 5.7(a)). We use a 3 stage 2D-FFAST architecture
with sampling periods 5, 7 and 8 in each of the 3 stages respectively. The FFAST
algorithm perfectly reconstructs the spatial image using m = 16668 samples of its
Fourier-domain.

• ‘House’ Image: The ‘House’ image shown in Fig. 5.7(f) is created by applying
the Canny edge detection algorithm on the commonly used House image in the image
processing literature. The ‘House’ image is cropped to size 247× 238. The number of
non-zero pixels is k = 4599 and the support is non-uniform. Since the dimensions of
the image are co-prime, we use the prime factor mapping of Section 5.4.1, and apply
the 1D-FFAST algorithm to perfectly reconstruct the image using m = 5.46k = 25126
samples of its Fourier-domain.

5.5.3 Application of the 2D-FFAST for MR imaging

In this section, we apply the 2D-FFAST algorithm to reconstruct a brain image acquired
on an MR scanner with dimension 504 × 504. In MR imaging the samples are acquired

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 98

(a) Log-intensity plot of the
2D-DFT of the ‘Cal’ image of
dimension 280× 280.

(b) 2D-FFAST subsampled
2D-DFT of the ‘Cal’ image
with m = 4.75k = 16668
samples. The white pixels
correspond to the sampled
data.

(c) Perfectly reconstructed
‘Cal’ image using the 2D
FFAST algorithm

(d) Log-intensity plot of the
2D-DFT of the ‘House’ image
of dimension247× 238.

(e) 1D-FFAST subsampled
2D-DFT of ‘House’ image
with m = 5.46k = 25126
samples.

(f) Perfectly reconstructed
‘House’ image using prime-
factor mapping and the 1D-
FFAST algorithm

Figure 5.7: The figure shows the performance of the 2D and 1D FFAST algorithm for signals with exactly-sparse spatial
image-domain, with non-uniform support of the non-zero pixels. The signal is sampled in the Fourier-domain and the FFAST
algorithm is used to perfectly recover the image-domain data.

in the Fourier-domain and the task is to reconstruct the spatial image from significantly
less number of Fourier samples. To reconstruct the full brain image using 2D-FFAST, we
perform the following two-step procedure:

• Differential space signal acquisition: We perform a vertical finite difference operation
on the image by multiplying the 2D-DFT signal with 1 − e2πıω0 . This operation ef-
fectively creates an approximately sparse differential image, as shown in Fig. 5.8(e),
in spatial-domain and can be reconstructed using FFAST. Note, that the finite differ-
ence operation can be performed on the sub-sampled data and at no point we access

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 99

(a) Log intensity plot of
the 2D-DFT of the original
‘Brain’ image. The red en-
closed region is fully sampled
and used for the stable inver-
sion.

(b) Original ‘Brain’ image in
spatial-domain.

(c) Reconstructed ‘Brain’
image using the 2D-FFAST
architecture along with the
fully sampled center fre-
quencies. The total number
of Fourier samples used is
60.18%.

(d) Log intensity plot of 2D-
DFT of the original ‘Brain’
image, after application of
the vertical difference opera-
tion.

(e) Differential ‘Brain’ image
obtained using the vertical
difference operation on the
original ‘Brain’ image.

(f) Differential ‘Brain’ im-
age reconstructed using the
2D FFAST algorithm from
56.71% of Fourier samples.

Figure 5.8: Application of the 2D-FFAST algorithm to reconstruct the ‘Brain’ image acquired on an MR scanner with dimension
504 × 504. We first reconstruct the differential ‘Brain’ image shown in Fig. 5.8(e), using d = 3 stage 2D-FFAST architecture
with 15 random delays in each of the 3 stages of the FFAST architecture. Additionally we acquire all the Fourier samples from
the center frequency as shown, by the red enclosure, in Fig. 5.8(a). Then, we do a stable inversion using the reconstructed
differential ‘Brain’ image of Fig. 5.8(f) and the fully sampled center frequencies of Fig. 5.8(a), to get a reconstructed full ‘Brain’
image as shown in Fig. 5.8(c). Our proposed two-step acquisition and reconstruction procedure takes overall 60.18% of Fourier
samples.

all the input Fourier samples. The differential brain image is then sub-sampled and
reconstructed using a 3 stage 2D-FFAST architecture. Also, since the brain image
is approximately sparse, we take 15 delay sub-streams in each of the 3 stages of the
2D-FFAST architecture, instead of 3 delay sub-streams as in the exactly sparse case.
The FFAST algorithm reconstructs the differential brain image using 56.71% of Fourier

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 100

samples.

• Inversion using fully sampled center frequencies: After reconstructing the differential
brain image, as shown in Fig. 5.8(f), we invert the finite difference operation by dividing
the 2D-DFT samples with 1− e2πıω0 . Since the inversion is not stable near the center
of the Fourier-domain, only the non-center frequencies are inverted. The center region
of the 2D-DFT is fully sampled and used in the inversion process.

• Overall we use a total of 60.18% of Fourier samples to reconstruct the brain image
using the 2D FFAST algorithm along with the fully sampled center frequencies.

5.A proof of Theorem 5.3.1

In this section we provide a proof of Theorem 5.3.1, for the case when N0 = N1. In Chapter 3,
we have shown that for the 1D signals, for all values of the sparsity index 0 < δ < 1, and
sufficiently large (k, n), where k = Ω(nδ), there exists a 1D-FFAST architecture, that com-

putes a k-sparse 1D-DFT ~X, using O(k) sample in O(k log k) computations. The FFAST
algorithm succeeds with probability approaching 1, asymptotically in the number of mea-
surements. In order to show a similar result for the 2D signals, for the case when N0 = N1,
we use the following approach.

First we show that, for any given sparsity index δ and sufficiently large k,N0, N1, with
N0 = N1, there exists a mapping between a 2D-FFAST architecture and a 1D-FFAST
architecture designed for (δ, k,N). The proof then follows from the results in Chapter 3.
For the sake of brevity we show the mapping for δ = 2/3. The mapping extends in a
straightforward way for the other values of 0 < δ < 1.

Let {P0,P1,P2} be a set of pairwise co-prime integers, such that Pi = F + O(1), for an
asymptotically large number F. Also, let N0 = N1 = P0P1P2, and k = (P0P1)2. Then,
k = O(N2/3), where N = N0N1, i.e., δ = 2/3. Consider a 3-stage 2D-FFAST architecture
with the sub-sampling factors n0 = P2, n1 = P0 and n2 = P1 for the 3 stages respectively.
For example, the FFAST architecture in Fig 5.3, has sub-sampling factors n0 = 3 and n1 = 2
for the two stages respectively. Then an input signal x ∈ CN0×N1 , processed through this
3-stage 2D-FFAST architecture results in the output observations with (P0P1)2, (P1P2)2 and
(P2P0)2 check nodes in the three stages respectively (see Fig. 5.9).

Using the CRT every 2D location (0, 0) ≤ (i, j) < (N0, N1), is uniquely represented
by (rrow

0 , rrow
1 , rrow

2) and (rcol
0 , rcol

1 , rcol
2), where rrow

` = i mod P` and rcol
` = j mod P`, for

` = 0, 1, 2. Then, a uniformly random choice of the 2D-support for a non-zero DFT co-
efficient corresponds to a uniformly random choice of the remainders (rrow

0 , rrow
1 , rrow

2) and
(rcol

0 , rcol
1 , rcol

2). Using the sub-sampling-aliasing and the circular shift properties explained
in Section 5.4.2 we obtain a sparse graph, shown in Fig. 5.9(a), representing the relation
between the k non-zero DFT coefficients of the 2D signal x, and the bin-observations. Note

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 101

⌘

...
...

...

...
...

...

...
...

...

(rrow
0 , rrow

1)

(rcol
0 , rcol

1)

(rcol
1 , rcol

2)

(rcol
2 , rcol

0)

(rrow
2 , rrow

0)

(rrow
1 , rrow

2)

(rrow
0 , rrow

1 , rrow
2)

(rcol
0 , rcol

1 , rcol
2)

...

X[i0][j0]

X[i1][j1]

X[i][j]

P0P1

P0P1

P1P2

P2P0

P2P0

...
...

...

...
...

...

...
...

...

...

X[i0][j0]

X[i1][j1]

X[i][j]

Q0

Q1

Q2

Q1

(s0, s1)

(s1, s2)

(s2, s0)

(s0, s1, s2)

Q0

(a)! (b)!

Figure 5.9: A bi-partite graph representation of relation between the non-zero 2D-DFT coefficients, of a 2D signal x, and the
observations of a 3-stage 2D-FFAST architecture. (a) A non-zero DFT coefficient with support (i, j) is indexed by a 6-tuple
((rrow0 , rrow1 , rrow2), (rcol0 , rcol1 , rcol2)), where rrow` = i mod P` and rcol` = j mod P`, for ` = 0, 1, 2. Each check node is indexed

by a quadruplet, e.g., check node in stage 0 is indexed by ((rrow0 , rrow1), (rcol0 , rcol1)). A non-zero DFT coefficient with an index
((rrow0 , rrow1 , rrow2), (rcol0 , rcol1 , rcol2)) is connected to a check node ((rrow0 , rrow1), (rcol0 , rcol1)) in stage 0. (b) A non-zero DFT
coefficient with support (i, j) is indexed by a triplet (s0, s1, s2), where s` = rrow` P` + rcol` , for ` = 0, 1, 2. Each check node is
indexed by a doublet, e.g., check node in stage 0 is indexed by (s0, s1). A non-zero DFT coefficient with an index (s0, s1, s2)
is connected to a check node (s0, s1) in stage 0.

that a non-zero DFT coefficient with a 2D support (i, j) is connected to a check node indexed
by (rrow

0 , rrow
1) and (rcol

0 , rcol
1) in stage 0.

Let, Q` = P2
` for ` = 0, 1, 2. Then, any doublet (0, 0) ≤ (i, j) < (P`,P`) can be uniquely

represented by an integer q = iP` + j. Using this mapping, we convert every doublet
(rrow
` , rcol

`) into a single number s` = rrow
` P` + rcol

` , for ` = 0, 1, 2. Thus, each check node can
now be represented by a doublet instead of a quadruplet and each non-zero DFT coefficient
can now be indexed by a triplet instead of a 6-tuple. For example, a check node, in stage
0, with a quadruplet index ((rrow

0 , rrow
1), (rcol

0 , rcol
1)) can be represented by a doublet (s0, s1).

The re-arranged bi-partite graph with this new labeling is shown in Fig 5.9(b).

CHAPTER 5. COMPUTING A SPARSE 2D DISCRETE-FOURIER-TRANSFORM 102

The bi-partite graph of Fig 5.9(b) has k left nodes and Q0Q1 +Q1Q2 +Q2Q0 right nodes.
Further, each left node has one uniformly random neighbor in each of the 3 stages. This
graph is a member of the ensemble of bi-partite graphs generated by a 3-stage 1D-FFAST
architecture, in Chapter 3, designed for the following parameters: {Q0,Q1,Q2} is a set of
co-prime integers such that Q` = O(F2), n =

∏2
`=0Q` and k = Q0Q1, i.e., δ = 2/3. Thus,

the proof follows from the results of Chapter 3, for δ = 2/3. �

103

Chapter 6

Sparse multivariate polynomial
regression

6.1 Introduction

Polynomial interpolation is a well-studied and important problem that frequently occurs in
fields like computer algebra and symbolic computation. It is an important step in compu-
tational operations such as calculating the GCD (greatest common divisor) of two numbers
which arises in many applications. Further, some of the machine learning applications [40, 48]
use polynomial regression methods to estimate prediction functions. In general, a polyno-
mial interpolation is the interpolation of a given data set by a polynomial. In most cases
the data set consists of some given points and the task is to find a polynomial which fits
these these points. In other cases, we may have the flexibility of obtaining evaluations of an
underlying unknown polynomial at specific data points of interest and discover the unknown
polynomial using these evaluations. In this chapter, we are interested in a special case of the
polynomial interpolation problem when the polynomial is known to be of high-degree but is
sparse, i.e., the number of the non-zero coefficients of the polynomial is very small compared
to the degree of the polynomial.

In many modern day applications, it is common for the features/variables to be regressed
to run into tens of thousands of variables. Executing a brute force polynomial regression al-
gorithm for such dimensions is practically impossible. On other hand it is often the case that
the feature space has some additional structure and the regressed polynomial is sparse. Mo-
tivated by this observation, we are interested in developing efficient interpolation algorithms
that exploit the sparse structure of the polynomial to be regressed to reduce the number of
evaluation data points as well as the computations required to determine the polynomial.

In this chapter, we focus on the case where the field is either complex or a finite field.
The key idea is to obtain evaluations of the underlying polynomial over the roots of unity,
for example in the case of the complex field on the unit circle, and transform the problem

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 104

of sparse polynomial interpolation to that of computing a sparse large (degree of the poly-
nomial) dimension discrete Fourier transform (DFT) of the evaluation points. Then use the
algorithm proposed in Chapter 3 for computing a sparse DFT to solve the interpolation
problem using these evaluations.

Our results can be summarized as follows. We show that, under certain conditions, a
polynomial with highest degree n having at most k non-zero coefficients, where k = o(n),
can be interpolated using 4k or less1 number of carefully chosen evaluations in O(k log k)
operations for the complex field or O(k log k log2 q) operations in the case of a finite field
Fq. This can be contrasted with the best known algorithms in the literature (see Table
6.1). Note that for interpolating a sparse polynomial over the complex field all the known
algorithms in the literature require the number of computational operations to be a function
of the maximum degree n. To the best of our knowledge the algorithm proposed in this
chapter is the first to have both the evaluation complexity and the computational complexity a
function of k and independent of the maximum degree n. This can be of significant advantage
especially when k << n. As a concrete example, consider a polynomial of degree n = 106,
over the complex field, with some k = 200 non-zero coefficients. Then our proposed sparse
polynomial interpolation algorithm computes all the non-zero coefficients from 600 carefully
chosen evaluations and ≈ 600 log(100) computations (where we assumed that a k-length
DFT can be computed in k log k complex operations). We also extend our results to the
sparse multivariate polynomial interpolation problem using a method known as Kronecker
substitution that maps a multivariate polynomial to a univariate polynomial.

We emphasize the following caveats. Our analytical results are probabilistic, and are
applicable for asymptotic regime of k, with probability of success approaching 1 asymptot-
ically. The probability space is of uniformly random support of the non-zero coefficients
of the polynomial. This can be contrasted with the Ben Or and Tiwari algorithm [2] that
deterministically works for any support of the non-zero coefficients and for all values of k, n,
but requires O(k2 log2 k + k2 log n) operations.

The rest of the chapter is organized as follows. In Section 6.2, we set up the notations
and discuss the problem setup. Section 6.3 discusses the main contributions of our work.
In Section 6.4, we provide a brief overview of the related work and contrast it with our
results. Section 6.5 discusses the mathematical preliminaries and provides a brief review of
an algorithm proposed in Chapter 3, for computing a sparse DFT. In Sections 6.6 and 6.7,
we discuss our results for the complex and finite fields.

1The number of evaluations used by our algorithm depend on the sparsity index 0 < δ < 1, that relates
the number of the non-zero coefficients k and the degree n of the polynomial, as k = O(nδ). For the entire
range of practical interest of sub-linear sparsity, i.e., 0 < δ < 0.99, the evaluation complexity of our algorithm
is 4k. For the other values of sparsity index δ, the evaluation complexity is O(k).

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 105

6.2 Problem Setup and notations

Let f(x1, · · · , xt) ∈ F[x1, · · · , xt] be a multivariate polynomial in t variables defined over a
field F, with the highest degree of each variate less than N , i.e.,

f(x1, · · · , xt) =
∑

(i1,··· ,it)∈[0,··· ,N−1]t

ci1···itx
i1
1 x

i2
2 · · ·xitt . (6.1)

We assume that at most k of the coefficients {ci1···it} in (6.1) are non-zero, and the support of
the non-zero coefficients is uniformly random, i.e., f is a k-sparse polynomial with uniformly
random support. Then the sparse multivariate polynomial interpolation problem is one of
determining all the coefficients of the polynomial f , from some set of evaluation points of the
polynomial. In this chapter, we assume that one can specify the input values at which the
underlying polynomial is evaluated. A special case of a multivariate polynomial interpolation
problem is the univariate case, i.e., t = 1. Let f(x) ∈ F[x] be a k-sparse univariate polynomial
in x, defined over the field F, with degree less than n, i.e.,

f(x) =
n−1∑

i=0

cix
i, (6.2)

where at most k of the coefficients {ci} ∈ F are non-zero and the task is to determine all the
coefficients of the polynomial f , from some set of evaluation points of the polynomial. In
Section 6.5.1, we show that a sparse multivariate interpolation problem can be mapped into a
sparse univariate interpolation problem. We use this mapping to extend a sparse univariate
interpolation algorithm to the multivariate case under certain conditions. Therefore, in
the rest of the chapter we focus mostly on the sparse univariate polynomial interpolation
problem.

The performance of a sparse univariate polynomial interpolation algorithm can be evalu-
ated using various metrics. We list below some of the performance metrics that can be used
to compare different algorithms.

• Sample complexity [m]: The number of polynomial evaluations required by an
algorithm to determine all the non-zero coefficients.

• Computational complexity: The number of algebraic operations required by an
algorithm to determine the non-zero coefficients. We assume the algebraic RAM model
where the operations +,−,×,÷ are considered as unit step operations.

• Reliability: If the algorithm is probabilistic or assumes a probabilistic model for
the input sparse polynomials, then reliability is the probability of determining all the
non-zero coefficients correctly over the appropriate probability space.

• Robustness: Reliability performance of the algorithm in the presence of either addi-
tive noise in the evaluations or finite machine precision arithmetic.

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 106

6.3 Main Contributions

We summarize below the main contributions of this chapter. We propose an efficient algo-
rithm to determine the coefficients of a sparse univariate polynomial, over the complex or
a finite field, given evaluations of the polynomial at known locations. The algorithm can
be extended to interpolate a sparse multivariate polynomial using the mapping described
in Section 6.5.1. The algorithm has the following features on the performance metrics of
interest.

• Sample complexity: It is well known that 2k evaluations are sufficient to uniquely de-
termine the coefficients of a k-sparse univariate polynomial [2]. Our algorithm requires
O(k) evaluations, where the constant in big-oh is small. For example, the number of
the evaluations required is less than 4k, for any k < O(n0.99). This is slightly more
than in [2] but significantly lesser than O(nk) as required by Zippel [80].

• Computational complexity: The computational complexity of our proposed algo-
rithm is dependent on the field over which the polynomials are defined. For a sparse
polynomial interpolation problem over the complex field, the computational complex-
ity of our proposed algorithm is O(k log k), in contrast the computational complexity
of Ben Or and Tiwari’s algorithm is O(k2 log2 k + k2 log n) and Zippel’s algorithm is
O(nk3). To the best of our knowledge, this is the first result we know of in the litera-
ture that has computational complexity independent of n, the maximum degree of the
polynomial. This can be a significant advantage when k << n, which is the case in
many applications. For a sparse polynomial interpolation problem over a finite field,
the computational complexity of our proposed algorithm is O(k log k log2 q), which is
so far the best in the literature (see Table 6.1).

• Reliability: Our results are probabilistic in nature, like that of Zippel [80], wherein
all the non-zero coefficients of the polynomial are correctly determined with high prob-
ability. The proposed algorithm reliably recovers all the coefficients correctly with
probability approaching 1 asymptotically in k. In contrast, algorithms like that of
Ben Or and Tiwari always determines the coefficients of the sparse polynomial deter-
ministically, but are computationally inefficient. Thus, our algorithm trades-off the
computational complexity at the expense of probabilistic guarantees.

• Parallelizable: Our proposed algorithm interpolates the non-zero coefficients of the
sparse polynomial using an iterative peeling-style recovery algorithm. The peeling-
style iterative algorithm, as described in Section 6.5.3, is immensely parallelizable and
can result in significant speed up on a multi-core machine.

• Robustness to noise and finite precision arithmetic: The algorithm of Ben Or
and Tiwari [2], is based on finding roots of polynomials which is known to be very ill-
conditioned numerically. In contrast, an extended version of our algorithm is robust to

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 107

Algorithm Deterministic (D) Sample Computational Field
Random (R) Complexity Complexity

Ben Or & Tiwari D 2k O(k2(log2 k + log n)) C
Zippel R O(nk) O(nk3) C
Ours R O(k) O(k log k) C

Alg. Deterministic (D) Sample Computational Field
Random (R) Complexity Complexity

Garg & Schost I D O(k2 log n) O(k4 log2 n) Fq
Garg & Schost II R O(k log n) O(k3 log2 n) Fq

Roche R O(log n) O(k2 log2 n) Fq
Javadi & Monagan R O(k) O(nk log k) Fq

Ours R O(k) O(k log k log2 q) Fq
Table 6.1: Comparison of algorithms for sparse polynomial interpolation.

additive noise or finite precision arithmetic, albeit at the cost of increased evaluation
and the computational complexity.

6.4 Related work

There are many algorithms in the literature for interpolating polynomials starting with
basic Lagrangian interpolation [77]. However, not all of these algorithms exploit the sparsity
structure of the polynomial for computational efficiency, which is important when dealing
with high-degree polynomials. The algorithms in the literature can be categorized as either
deterministic or random and are applicable for either the complex field or a finite field or
both. A summary of all these algorithms is provided in Table 6.1.

The earliest work is that of Zippel [80], who proposed a probabilistic algorithm to in-
terpolate a k-sparse polynomial defined over the complex field with maximum degree n,
using O(nk) evaluations and O(nk3) computations. Ben Or and Tiwari [2] proposed a deter-
ministic interpolation algorithm that requires only 2k evaluations but has a computational
complexity of O(k2(log2 k + log n)).

The works of Kaltofen and Yagati [46, 47], Garg and Schost [28], Roche [68], Javadi and
Monagan [45] consider the problem of designing an efficient sparse polynomial interpolation
algorithm for polynomials over finite fields. The main challenge of operating in finite fields
is the computation of the discrete-logarithm which is efficient only under certain constraints
[63]. There are also works that consider finite bit precision effects [57, 68].

In this work, we focus mainly on the setup similar to that of Ben Or and Tiwari [2],
wherein the assumption is that we can get exact evaluations of the polynomials at desired
values of the variable. We first propose a sparse univariate polynomial interpolation al-

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 108

gorithm, for polynomials over the complex field, that has evaluation complexity O(k) and
computational complexity O(k log k), i.e., independent of the maximum degree n. This con-
trasts all existing algorithms in the literature that have computational complexities which
are a function of n. We then extend our results to interpolate sparse univariate polynomials
over finite fields, using efficient algorithms for computing discrete logarithms proposed in
[63], for a certain class of finite fields.

6.5 Preliminaries

In this section, we first provide a mapping of a multivariate polynomial interpolation problem
to a univariate polynomial interpolation, which we further map to the problem of computing
a sparse DFT. Then, we briefly review an efficient algorithm proposed in Chapter 3 for
computing a k-sparse n-length DFT.

6.5.1 Mapping multivariate polynomial interpolation to univari-
ate polynomial interpolation.

Every multivariate polynomial can be mapped to a unique univariate polynomial. In par-
ticular, for a given multivariate polynomial, we can find a univariate polynomial such that
each monomial term in the multivariate polynomial can be mapped to a unique term in
the univariate polynomial. This mapping can be achieved using the method of Kronecker
Substitution. The following theorem illustrates the mapping from a multivariate polynomial
to a univariate polynomial.

Theorem 6.5.1. (Kronecker, 1882:) Let F be a field and t, N ∈ N. For any polynomial

f ∈ F[x], with degree less than N t, there exists a unique polynomial f̂ ∈ F[x1, · · · , xt] with
partial degrees less than N , such that,

f(x) = f̂(x, xN , xN
2

, · · · , xNt−1

). (6.3)

For many problems with multivariate polynomials, making such a substitution allows
the use of univariate algorithms. This holds true in the case of polynomial interpolation
algorithms as well.

The Kronecker substitution corresponds to writing the exponent of each monomial term
of the univariate polynomial in radix-N representation, which gives the corresponding term
in the multivariate polynomial. This makes use of the fact that every non-negative integer
less than N t has a unique t-tuple representation in the radix-N representation. For example
consider the following bivariate polynomial,

f̂(x1, x2) = 6x11
1 x2 + 5x1x

3
2 − 3. (6.4)

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 109

Here N = 12. The corresponding univariate polynomial is given by,

f(x) = f̂(x, x12) = 6x23 + 5x37 − 3. (6.5)

The mapping from f(x) to f̂(x1, x2) is obtained by writing each exponent of the univariate
polynomial f(x) in the radix representation with basis N = 12. The radix representation of
the exponents in base 12 is given below,

23 = 11(120) + 1(121), (6.6)

37 = 1(120) + 3(121). (6.7)

Thus, one can see that the exponents of the monomial terms in a multivariate polynomial
are the coefficients of the radix representation in basis N . Hence, one could adapt any
univariate polynomial interpolation algorithm to a multivariate interpolation algorithm by
evaluating the coefficients of the Kronecker substituted univariate polynomial and map the
coefficients and exponents back to the multivariate polynomial. Note that the dimension of
the maximum degree of the univariate polynomial is increased exponentially in the number
of variables. However, since the sample complexity of our algorithms depend only on the
number of non-zero coefficients k, which remains unchanged after the mapping, the increase
in the degree does not affect the sample complexity of our algorithms. As for the computa-
tional complexity, for the case when the polynomials are over the complex field it remains
unchanged, while for the polynomials over finite fields the increase is quadratic in logarithm
of the field size.

6.5.2 Univariate polynomial interpolation is equivalent to com-
puting a discrete-Fourier-transform

In this section, we discuss how the polynomial interpolation problem can be mapped into
that of computing the DFT of an appropriately defined time-domain signal. The mapping
is obtained by evaluating the underlying unknown polynomial at different powers of the
complex root of unity. Consider a k-sparse univariate polynomial with maximum degree n,
over some field F. We assume that the field is such that, there exists an element α ∈ F that
has order n, i.e. n is the smallest positive integer for which αn = 1. For example, in the
case of the complex field, α = eı2π/n. Note that no such element exists in the real field for
n > 2. Then, evaluating the underlying unknown polynomial at different powers of α, we
obtain the following:

f(αj) =
n−1∑

i=0

ciα
ij. (6.8)

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 110

Writing this in matrix form, we get:

f(α0)
f(α1)

...
f(α(n−1))

 =

1 1 . . . 1
1 α . . . αn−1

...

1 α(n−1) . . . α(n−1)2

c0

c1
...

cn−1

 . (6.9)

In the above equation, one can view the vector (c0, . . . , cn−1) as the DFT of a time-domain
signal (f(α0), f(α1), . . . , f(αn−1)). Thus, the univariate polynomial interpolation problem
is equivalent to computing the DFT of the given time-domain signal, i.e., evaluations at
{αi}n−1

i=0 , in an efficient manner. When there is no additional structure imposed on the DFT
coefficients, the Fast Fourier Transform (FFT) is the best known algorithm that computes
the DFT coefficients using n evaluations and O(n log n) computations. However, given the
additional sparsity constraint that only k out of n DFT coefficients are non-zero, one can
potentially design algorithms that are more efficient than the FFT. There have been many
recent algorithms targeted towards computing the sparse DFT from a subset of the time-
domain signal. In this chapter, we provide a sparse univariate polynomial interpolation
algorithm that is based on the algorithm in Chapter 3 for computing a k-sparse DFT using
O(k) samples and O(k log k) arithmetic computations. The algorithm in Chapter 3 is referred
to as FFAST and stands for Fast Fourier Aliasing-based Sparse Transform.

Next, for sake of completeness we provide a brief overview of the FFAST architecture
and the algorithm. Further, for ease of exposition we use the complex field to explain the
ideas underlying the FFAST architecture, which further generalize to finite fields.

6.5.3 Computing a sparse DFT using the FFAST algorithm

In this section, we describe the FFAST sub-sampling “front-end” architecture, as shown
in Fig. 6.1, as well as the associated “back-end” FFAST peeling-decoder to compute a k-
sparse n-length DFT over the complex field. We use a simple example to illustrate the
FFAST sub-sampling front-end and the backend. Consider a 20-point discrete-time signal
~x = (x[0], . . . , x[19]), such that its 20-point DFT ~X, is 5-sparse. Let the 5 non-zero DFT
coefficients of the signal ~x be X[1] = 1, X[3] = 4, X[5] = 2, X[10] = 3 and X[13] = 7. The
FFAST sub-sampling front-end shown in Fig. 6.1, samples the input signal and its circularly
shifted version to get 2 sub-sampling paths in each stage. The output of the FFAST sub-
sampling front-end is then obtained by computing short DFT’s of each of the sub-sampled
data as shown in Fig. 6.1. Next, we group the output of the FFAST subsampling front-end
into “bin-observations” as follows:

Bin observation

A bin-observation is a 2-dimensional vector formed by collecting one scalar output value
from each of the 2 sub-sampling paths in a stage. For example, ~yb,0,1 is an observation vector

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 111

5

4 5 � DFT

4 � DFT

z

z

5

4 5 � DFT

4 � DFT

(Zs[0], . . . , Zs[4])

(Z̃s[0], . . . , Z̃s[4])

(X̃s[0], . . . , X̃s[3])

(Xs[0], . . . , Xs[3])

(x[0], x[4], x[8], x[12], x[16])

(x[1], x[5], x[9], x[13], x[17])

(x[1], x[6], x[11], x[16])

(x[0], x[5], x[10], x[15])(x[0], x[1], . . . , x[19])

stage-0

stage-1

FFAST!
Peeling!
decoder!

~X 2 C20

FFAST front-end! FFAST !
back-end!

Figure 6.1: A toy-example of the FFAST architecture. The input to the FFAST architecture is a 20-point discrete-time signal
~x = (x[0], . . . , x[19]). The FFAST ‘front-end’, first samples the input signal and its circularly shifted version by 5 to obtain two
sub-streams, each of length 4. A 4-point DFT of each sub-stream is then computed to obtain the observations (Xs[.], X̃s[.]).
Similarly, downsampling by 4 followed by a 5-point DFT provides the second set of 5 observations (Zs[.], Z̃s[.]). The FFAST

‘back-end’ consists of a peeling-decoder that synthesizes the big 20-point DFT ~X, from the short DFT’s of each of the sub-
sampled data stream. In general, the sub-sampling front-end of the FFAST architecture consists of 3 or more stages depending
on the sparsity index δ, where k = O(nδ). In this example, we show the FFAST architecture with 2-stages only for the purpose
of illustration.

of bin 1 in stage 0 and is given by,

~yb,0,1 =

(
Xs[1]

X̃s[1]

)
. (6.10)

The first index of the observation vector corresponds to the stage number, while the second
index is the bin number within a stage. Note, that in the FFAST architecture of Fig. 6.1,
there are total of 4 bins in stage 0 and 5 bins in stage 1.

The relation between the bin-observations and the non-zero DFT coefficients ~X can
be computed using the signal processing properties of sub-sampling and circular shift. A
graphical representation of this relation is shown in Fig. 6.2. Left nodes of the graph in
Fig. 6.2 represent the non-zero DFT coefficients and the right nodes represent the “bins”
(check nodes) with vector observations. An edge connects a left node to a right check node
iff the corresponding non-zero DFT coefficient contributes to the observation vector of that
particular check node, e.g., after aliasing, due to sub-sampling, the DFT coefficient X[10]
contributes to the observation vector of bin 2 of stage 0 and bin 0 of stage 1.

We define the following:

• zero-ton: A bin that has no contribution from any of the non-zero DFT coefficients

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 112

X[1]

X[5]

X[10]

X[13]

X[3]

(Xs[0], X̃s[0])

(Xs[1], X̃s[1])

(Xs[2], X̃s[2])

(Xs[3], X̃s[3])

(Zs[0], Z̃s[0])

(Zs[1], Z̃s[1])

(Zs[4], Z̃s[4])

(Zs[2], Z̃s[2])

(Zs[3], Z̃s[3])

~yb,0,0 =

~yb,0,1 =

~yb,0,2 =

~yb,1,2 =

~yb,1,3 =

~yb,0,3 =

~yb,1,4 =

~yb,1,0 =

~yb,1,1 =

Figure 6.2: A 2-left regular degree bi-partite graph representing the relation between the unknown non-zero DFT coefficients
and the observations obtained through the FFAST architecture shown in Fig. 6.1, for the 20-point example signal ~x. Variable
(left) nodes correspond to the non-zero DFT coefficients and the check (right) nodes are the observations. The observation at
each check node is a 2-dimensional complex-valued vector e.g., ~yb,0,0 = (Xs[0], X̃s[0]).

of the signal, e.g., bin 0 of stage 0 or bin 2 of stage 1, as shown in Fig. 6.2. A zero-ton
bin can be trivially identified from its observations.

• single-ton: A bin that has contribution from exactly one non-zero DFT coefficient of
the signal, e.g., bin 2 of stage 0. Using the signal processing properties the observation
vector of bin 2 of stage 0 is given as,

~yb,0,2 =

(
X[10]

e2πı10/20X[10]

)
.

The observation vector of a singleton bin can be used to determine the support and
the value, of the only non-zero DFT coefficient contributing to that bin, as follows:

– support: The support of the non-zero DFT coefficient contributing to a singleton
bin can be computed as,

10 =
20

2π
∠~yb,0,2[1]y†b,0,2[0] (6.11)

– Value: The value of the non-zero DFT coefficient is given by the observation
yb,0,2[0].

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 113

We refer to this procedure as a “ratio-test”, in the sequel. Thus, a simple ratio-test
on the observations of a singleton bin correctly identifies the support and the value of
the only non-zero DFT coefficient connected to that bin. It is easy to verify that this
property holds for all the singleton bins.

• multi-ton: A bin that has a contribution from more than one non-zero DFT coeffi-
cients of the signal, e.g., bin 1 of stage 0. The observation vector of bin 1 of stage 0
is,

~yb,0,1 = X[1]

(
1

eı2π/20

)
+X[5]

(
1

eı2π5/20

)
+X[13]

(
1

eı2π13/20

)

=

(
10

−3.1634− ı3.3541

)

Now, if we perform the “ratio-test” on these observations, we get, the support to be
12.59. Since, we know that the support has to be an integer value between 0 to 19, we
conclude that the observations do not correspond to a singleton bin. In Section 2.A,
we rigorously show that the ratio-test identifies a multi ton bin almost surely.

Hence, using the “ratio-test” on the bin-observations, the FFAST decoder can determine
if a bin is a zero-ton, a single-ton or a multi-ton, almost surely. Also, when a bin is singleton
the ratio-test provides the support as well as the value of the non-zero DFT coefficient
connected to that bin. We use the following peeling-decoder on the graph in Fig. 6.2, to
compute the support and the values of the non-zero DFT coefficients of ~x.

FFAST peeling-decoder: The FFAST decoder repeats the following steps:

1. Select all the edges in the graph with right degree 1 (edges connected to single-tons).

2. Remove these edges from the graph as well as the associated left and right nodes.

3. Remove all the other edges that were connected to the left nodes removed in step-2.
When a neighboring edge of any right node is removed, its contribution is subtracted
from that check node.

Decoding is successful if, at the end, all the edges have been removed from the graph. It is
easy to verify that performing the peeling procedure on the example graph of Fig. 6.2 results
in successful decoding, with the coefficients being uncovered in the following possible order:
X[10], X[3], X[1], X[5], X[13].

Thus, the FFAST architecture computes the DFT of ~x by performing peeling-decoding
over an appropriate bi-partite graph. Clearly the success the FFAST decoder depends on
the properties of the sparse bi-partite graph resulting from the sub-sampling operation of
the FFAST front-end. In Chapter 3, we provide a detailed description of how to judiciously
choose the FFAST front-end parameters, depending on the problem dimensions (k, n), and

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 114

show using rigorous analysis that the FFAST peeling-decoder successfully computes a k-
sparse n-length DFT, with high probability, using O(k) samples and O(k log k) complex
operations.

6.6 Univariate sparse polynomial interpolation over the

complex field

In this section, we are interested in interpolating the non-zero coefficients of a k-sparse
univariate polynomial f , with degree less than n, for the case where the coefficients {ci} ∈ C.
We use the mapping of the univariate sparse polynomial interpolation problem to that of
computing a sparse DFT as described in Section 6.5.2, and the FFAST architecture of
Section 6.5.3, to construct the FFAST-based sparse polynomial interpolation algorithm over
the complex field. The following theorem precisely characterizes the performance guarantees
of the FFAST-based sparse polynomial interpolation algorithm.

Theorem 6.6.1. For any given ε > 0, there exist (infinitely many) sufficiently large n,
such that the FFAST-based sparse polynomial interpolation algorithm computes the non-zero
coefficients of a k-sparse univariate polynomial, over the complex field, of degree less than n,
where k = Ω(nδ) and 0 < δ < 1, with the following properties:

1. Sample complexity: The algorithm needs m = r(δ)k evaluations of the underlying
polynomial, where r(δ) > 1, is a small constant that depends on δ. For example, for
0 < δ < 0.99, the constant r(δ) < 4.

2. Computational complexity: The computational complexity of the interpolation al-
gorithm is
O(k log k), where the constant in big-Oh is small.

3. Probability of success: The interpolation algorithm successfully recovers all the non-
zero coefficients with probability at least 1− ε.

Proof. We use the evaluations of the underlying sparse polynomial at specific powers of
α = eı2π/n, as dictated by the FFAST architecture. Then, the proof of the theorem follows
from the mapping described in Section 6.5.2, and the results of Chapter 3.

The algorithm of Ben Or and Tiwari [2] is based on finding roots of polynomials. The
location of the roots can be very sensitive to the perturbations in the coefficients of the
polynomial, i.e., is well-known to be a very ill-conditioned numerically. In contrast, the
FFAST architecture naturally generalizes to a noise robust version, albeit at the expense of
more sample and computational complexity. In Chapter 4, we provide a noise robust version
of the FFAST algorithm, that can further be used to design a noise robust sparse polynomial
interpolation algorithm over the complex field.

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 115

6.7 Univariate sparse polynomial interpolation over fi-

nite field

In this section, we discuss the adaptation of the FFAST algorithm to a sparse univariate
polynomial interpolation over finite fields and the conditions under which this adaptation is
applicable.

6.7.1 Finite field preliminaries

We recall some basic definitions related to finite fields. Consider a finite field Fq of size q.
Then, we have the following:

Definition 6.7.1. [Order of an element] An order of an element α ∈ Fq is defined as the
smallest positive integer r ≥ 1, such that αr = 1. The order of all the non-zero elements
α ∈ Fq, divides (q − 1), i.e., r | (q − 1).

Definition 6.7.2. [Discrete-Logarithm] Consider elements α, β ∈ Fq, such that β = αi, for
some i = 0, . . . , q − 2. Then, the exponent ‘i’ can be computed using a discrete-logarithm of
β with respect to base α, i.e.,

i = logα β.

Definition 6.7.3. [DFT] Let α ∈ Fq, be a primitive nth root of unity, i.e., the order of α is
n. Then, one can define the following transform and its inverse,

X[i] =
n−1∑

j=0

x[j]α−ij

x[j] =
n−1∑

i=0

X[i]αij,

where α · α−1 = 1. The transform and its inverse as defined above satisfy all the basic
discrete-Fourier-transform properties [4], e.g., sampling, aliasing, convolution etc.

6.7.2 FFAST-based sparse univariate polynomial interpolation al-
gorithm for finite fields

The sparse univariate interpolation problem over a finite field Fq is given as follows. Let
f(x) ∈ Fq[x] be a k-sparse univariate polynomial in x, defined over the field Fq, with degree
less than n, i.e.,

f(x) =
n−1∑

i=0

cix
i, (6.12)

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 116

where at most k of the coefficients ci ∈ Fq are non-zero. The polynomial interpolation
problem is one of determining all the k non-zero coefficients of the polynomial f , from a set
of evaluations of f(x) at some elements of the finite field Fq. Using techniques similar to
those described in Section 6.6, for interpolating a sparse polynomial over the complex field,
we propose a sparse polynomial interpolation algorithm for polynomials over finite fields.
The proposed polynomial interpolation algorithm is applicable whenever the finite field Fq
satisfies certain (mild and expected) conditions. This is not unlike the widely used Reed-
Solomon codes, that require the field size to be larger than the block length of the code [51].
Next, we define two properties of a finite field Fq, which are crucial for the FFAST-based
sparse polynomial interpolation algorithm to exist.

Property 6.7.4. The finite field Fq has a primitive nth root of unity, where n is a positive
integer greater than or equal to the highest degree of the polynomial f .

The property 6.7.4 is required to define an n-length DFT, as in 6.7.3, over the finite field
Fq.

Property 6.7.5. The finite field Fq is such that (q − 1) factors into “small” primes, i.e.,
the largest prime in the factorization of (q − 1) is much smaller than q (technically o(q)).

In general, computing the discrete-logarithm over a finite field Fq is considered to be
computationally hard, and hence finds applications in many cryptographic systems. The
FFAST peeling-decoder needs to compute a discrete-logarithm while performing the ‘ratio-
test’ in (6.11) over the elements from finite fields. In [63], the authors show that when
Fq satisfies property 6.7.5 a discrete-logarithm can be computed efficiently using O(log2 q)
computations.

Consider a finite field Fq that satisfies the properties 6.7.4 and 6.7.5. Then, using the
mapping of the univariate sparse polynomial interpolation problem to that of computing a
sparse DFT described in Section 6.5.2, and the FFAST architecture of Section 6.5.3, we can
construct the FFAST-based algorithm to interpolate a sparse polynomial over the field Fq.
The following theorem precisely characterizes the performance guarantees of the FFAST-
based sparse polynomial interpolation algorithm.

Theorem 6.7.6. For any given ε > 0, there exist (infinitely many) sufficiently large n,
such that the FFAST-based sparse polynomial interpolation algorithm computes all the non-
zero coefficients of a k-sparse univariate polynomial, over the finite field Fq that satisfies the
properties 6.7.4 and 6.7.5, of degree less than n, where k = Ω(nδ) and 0 < δ < 1, with the
following properties:

1. Sample complexity: The interpolation algorithm needs m = r(δ)k evaluations of
the underlying polynomial, where r(δ) > 1 is a small constant that depends on δ. For
example, for 0 < δ < 0.99, the constant r(δ) < 6.

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 117

2. Computational complexity: The computational complexity of the interpolation al-
gorithm is O(m log(m) log2 q), where the constant in big-Oh is small.

3. Probability of success: The interpolation algorithm successfully recovers the non-
zero coefficients with probability at least 1− ε.

Proof. Please see Appendix 6.A

Next, we provide some example constructions of the FFAST-based sparse polynomial
interpolation algorithm, over finite fields.

Example 6.7.7. Consider a finite field Fq of size q = 21601 = 253352 + 1, where q is prime
and let n = q−1 = 21600. Note, that the field Fq satisfies both the properties 6.7.4 and 6.7.5.
We construct a 3-stage FFAST architecture with the sampling factors 3352, 2552 and 3325 for
each of the 3 stages respectively. Then, using Theorem 6.7.6, we conclude that the resulting
FFAST-based sparse polynomial interpolation algorithm perfectly recovers a k sparse n-degree
polynomial over the field Fq, using O(k) evaluations and O(k log k log2 q) computations, with
high probability.

Example 6.7.8. Consider a finite field Fq of size q = 5184001 = 8(263453) + 1, where q is
prime and let n = (q−1)/8 = 648000. Note, that the field Fq satisfies both the properties 6.7.4
and 6.7.5. We construct a 3-stage FFAST architecture with the sampling factors 3453, 2653

and 3426 for each of the 3 stages respectively. Then, using Theorem 6.7.6, we conclude that
the resulting FFAST-based sparse polynomial interpolation algorithm perfectly recovers a k
sparse n-degree polynomial over the field Fq, using O(k) evaluations and O(k log k log2 q)
computations, with high probability.

6.A Analysis of the sparse polynomial interpolation al-

gorithm over finite fields

Consider a finite field Fq that satisfies the properties 6.7.4 and 6.7.5. Let α ∈ Fq, be a
primitive nth root of unity, i.e., αn = 1. We define the DFT over the field Fq using α, as in
6.7.3. Then, from [4] we know that the DFT over the finite field Fq satisfies all the sampling-
aliasing and circular shift properties. Hence, processing an n-length discrete-time signal
(corresponding to the evaluations of the underlying sparse polynomial at powers of α) with
entries from the finite field Fq, whose finite field DFT is k-sparse, through the FFAST sub-
sampling front-end will result in a sparse bi-partite graph (see Fig. 6.2 for an example). The
FFAST peeling-decoder can then recover all the non-zero DFT (or polynomial) coefficients,
provided that it can identify the zero-ton, single-ton and multi-ton bins with high probability.

The FFAST architecture for the finite field case is similar to the one shown in Fig. 6.1,
except that each stage has 3 sub-sampling paths instead of 2 as in Fig. 6.1. In other words,

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 118

the FFAST sub-sampling front-end samples the input signal and its 2 circularly shifted, i.e.,
z, z2, versions to get 3 subsampled streams per stage. The output of the FFAST sub-sampling
front-end is then obtained by computing short finite field DFT’s of the 3 sub-sampled data
streams. Similar to Section 6.5.3, we form the bin-observations as follows:

• zero-ton: A bin that has no contribution from any of the non-zero DFT coefficients
of the signal. A zero-ton bin can be trivially identified from its observations.

• single-ton: A bin that has contribution from exactly one non-zero DFT coefficient
of the signal. Then, using the sub-sampling and circular shift properties the bin-
observation vector ~yb of a singleton bin is given as,

~yb =

c`
c`α

`

c`α
2`

 ,

where c` is the value of the only non-zero coefficient connected to this bin and ` is its
support location. The observation vector of a singleton bin can be used to determine
the support and the value of the only non-zero DFT coefficient contributing to that
bin, as follows:

– support: The support of the non-zero DFT coefficient contributing to a singleton
bin can be computed as,

if (logα yb[1]y−1
b [0] == logα yb[2]y−1

b [1]) (6.13)

then ` = logα yb[1]y−1
b [0]

– Value: The value of the non-zero DFT coefficient is given by the observation yb[0].

Thus, a simple ratio-test on the observations of a singleton bin correctly identifies the
support and the value of the only non-zero DFT coefficient connected to that bin. It
is easy to verify that this property holds for all the singleton bins.

• multi-ton: A bin that has a contribution from L > 1 non-zero DFT coefficients of the
signal. Then, using the sub-sampling and circular shift properties the bin-observation
vector ~yb of a singleton bin is given as,

~yb =

∑L−1
i=0 c`i∑L−1

i=0 c`iα
`i

∑L−1
i=0 c`iα

2`i

 ,

where {c`i , `i}L−1
i=0 are the values and the supports of the L non-zero coefficient con-

nected to this bin. Later, we show that, with high probability, the “ratio-test” on these
observations fail to satisfy the equality condition in (6.13), thus identifying a multiton
bin.

CHAPTER 6. SPARSE MULTIVARIATE POLYNOMIAL REGRESSION 119

Next, we compute the probability of the event that the ratio-test fails to identify a
multiton bin.

6.A.1 Analysis of the ratio-test for a multiton bin

First consider a multiton bin with L = 2. Let, if possible the ratio-test on the multiton
bin-observation, provide the value and the support of the non-zero coefficient to be c`2 and
`2 respectively. Then, we have,

~yb =

1 1
α`0 α`1

α2`0 α2`1

(
c`0
c`1

)
=

1
α`2

α2`2

 c`2 . (6.14)

This is a contradiction since the matrix has a Vandermonde structure and hence invertible.
Now, consider the case where a multiton bin consists of L > 2 components. Then, it is

easy to see that a uniformly random choice of the values of the coefficients {ci}, induces a
uniformly random distribution on the bin-observation ~yb ∈ F3

q. There are total of n possi-
bilities for the support and q possibilities for the value of a singleton. Thus, the probability
that a uniformly random vector in F3

q is identical to some singleton is upper bounded by
n/q2 < 1/n.

Let Eb, be an event that the FFAST peeling-decoder makes an error in processing any
bin during the whole decoding process. Then, applying union bound over O(k) bins and
constant iterations, we get, Pr(Eb) < O(k/n). Now, if Ef denote the event that the FFAST
decoder fails to recover all the non-zero coefficients. Then,

Pr(Ef) < Pr(Ef | Eb) + Pr(Eb)
(a)
< O(1/k) +O(n/k)

< ε.

The inequality (a) follows from Chapter 3.
The computational complexity of the FFAST algorithm without the discrete-log operation

is O(k log k). In [63], the authors have shown that, when the Fq satisfies property 6.7.5, then
a discrete-logarithm can be computed efficiently using O(log2 q) computations. Hence, the
overall complexity of the FFAST-based sparse polynomial interpolation algorithm, over the
finite field Fq, is O(k log k log2 q). �

120

Chapter 7

Conclusion and Future Research
Directions

7.1 Conclusion

In this thesis, we considered the problem of computing a sparse Discrete-Fourier-Transform
of a high-dimensional signal from its time-domain samples, as a representative example of
compressed-sensing problems. Further, we used the problem of computing a sparse DFT
to investigate the tradeoff between the number of measurements, noise robustness and the
computational complexity of the recovery algorithm, for a realistic sensing mechanism such
as partial Fourier measurements.

We proposed a new family of deterministic sparse sensing matrices, obtained by intellec-
tually blending together diverse ideas from sparse graph codes, digital signal processing and
number theoretic concepts like the Chinese-remainder-theorem (CRT). The specific sparse
structure of the proposed family of measurement matrices further enables a Peeling-based
Ultra-Low complexity algorithms for Sparse signal Estimation, that are accordingly dubbed
as PULSE algorithms. The key idea is to perform a filterless subsampling of the input signal
using a small set of uniform subsampling patterns, guided by the CRT, to cleverly exploit
the resulting aliasing artifacts. Further, using the CRT, we established an intimate con-
nection between the problem of computing a sparse DFT of a signal and decoding over an
appropriately designed sparse graph code. This connection was then exploited 1) to design
a sample efficient measurement matrix and a low-complexity peeling-style iterative recovery
algorithm, and 2) to perform a rigorous analysis of the recovery algorithm by wielding power-
ful and well-established analytical tools such as density-evolution, martingales, and expander
graphs from the coding theory literature. In particular, we have shown that under some
mild conditions, a k-sparse n-length DFT of a signal can be computed using nearly optimal
4k measurements and O(k log k) computations. We also extended these results to the cases
of noise-corrupted observations, computing sparse 2D-DFTs as well as to interpolation of

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 121

multi-variate sparse polynomials over the complex field and finite fields.
To summarize, we augment the compressive-sensing literature by a family of sample

efficient deterministic sparse measurement matrices and the associated family of a low-
complexity PULSE recovery algorithms. However, there are a few caveats that we would
like to emphasize. First, our results are for asymptotic regimes of the sparsity k and the
signal dimension n, where k is sub-linear in n. Secondly, we assume a stochastic model on the
input signal, in particular, we assume that the k-sparse signal has a uniformly random sup-
port. Thus, our proposed PULSE algorithms trades off the sample and the computational
complexity for asymptotically zero probability of failure guarantees in a non-adversarial
sparsity setting.

We have also implemented a C++ prototype of our FFAST (Fast Fourier Aliasing-based
Sparse Transform) algorithm, which is a member of the family of PULSE algorithms. We
use this prototype to empirically validate the theoretical claims of the performance of the
proposed sparse sensing matrices and the FFAST algorithm. All the simulation results
provided in this thesis were generated using this code. Implementation details of the code
can be found at http://www.eecs.berkeley.edu/~kannanr/project_ffft.html

7.2 Future research directions

There are many interesting future research directions of this work. In the remainder of
chapter, we attempt to categorize them into a few topics and provide a brief overview of
each of them.

7.2.1 Modeling assumptions

In our problem formulation of computing a k-sparse n-length DFT of a signal from its time-
domain samples, we have assumed a stochastic model for the input signal. In particular, we
assume that the non-zero DFT coefficients of the n-length signal have a uniformly random
support. For this stochastic model of the input signal, we have proposed a family of deter-
ministic sparse measurement matrices and designed associated deterministic low-complexity
recovery algorithms. The proposed algorithms thus, provide a deterministic bound on the
sample and the computational complexity with probabilistic recovery guarantees of the input
signal. Many real world applications have signals with a non-uniform spectral support, e.g.,
speech signals have most of its energy concentrated in low frequencies, while relatively less
energy in higher frequencies. For such settings, one may need to study a systematic exten-
sion of the ideas and the results of this thesis to accommodate other stochastic models of
the input signal. Additionally, some applications may require worst-case or deterministic
guarantees on the input signal while being tolerant to probabilistic guarantees of the sample
and the computational complexity of the recovery algorithm.

http://www.eecs.berkeley.edu/~kannanr/project_ffft.html

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 122

Non-uniform support

In Chapter 5, we demonstrated an application of the 2D-FFAST framework to acquire the
magnetic-resonance-image of the ‘Brain’ image shown in Fig. 7.1(a). Thus, providing an
empirical evidence of our algorithm being applicable to signals with a “non-uniform” (or
clustered) support for the dominant DFT coefficients, such as the ‘Brain’ image of Fig 5.8(b).
A systematic study of extending the FFAST 1D and 2D frameworks for signals with a non-
uniform spectral support would be of interest.

Worst-case input signal

We have proposed a family of deterministic sparse measurement matrices and designed asso-
ciated deterministic low-complexity recovery algorithms. This provides a deterministic bound
on the sample complexity and the computational complexity with probabilistic recovery guar-
antees of the input signal. We can turn around this approach, to provide probabilistic bounds
on the sample and the computational complexity of the recovery algorithm, while determin-
istically accommodating worst-case input signals. For example, in the absence of observation
noise, consider the following hybrid recovery scheme. First use the efficient FFAST algorithm
to recover the input signal with a high probability. If the FFAST algorithm fails to recover
all the non-zero coefficients, then use a computationally expensive algorithm like [64] or [2],
that deterministically works for any support of the non-zero coefficients, on the residual
signal. For this hybrid approach, one can show that the expected sample and computational
complexity of recovering a k-sparse n-length signal, from linear noiseless observations, is
O(k) and O(k log k). The expectation is computed over the probability space of input sig-
nals with a uniformly random support. Such an approach provides a probabilistic bound on
the sample complexity and the computational complexity of the recovery algorithm, while
deterministically accommodating all the input signals.

7.2.2 Analysis

In this thesis we have analyzed the following two cases:

Noiseless

In Chapter 3, we show that the FFAST algorithm computes a k-sparse n-length DFT, using
O(k) time-domain samples of the input signal and O(k log k) computations. If we assume
that the FFT algorithm is computationally optimal, i.e., Ω(N logN) computations are nec-
essary to compute an N -length DFT of an arbitrary N -length signal, then the FFAST algo-
rithm is order optimal w.r.t both the sample complexity and the computational complexity.

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 123

Noisy

A standard tool used in the compressed sensing literature for the analysis of reconstruction
algorithms is the restricted isometry property (RIP) [12]. The RIP essentially character-
izes matrices which are nearly orthonormal or unitary when operating on sparse vectors.
Although random measurement matrices like Gaussian matrices exhibit the RIP constants
with optimal O(k log(n/k)) scaling of the sample complexity, they have limited use in prac-
tice, and are not applicable to our problem of computing a sparse DFT from the time-domain
samples. For a measurement matrix consisting of m rows from an n × n discrete Fourier
transform matrix, slightly weaker estimates of RIP constants are available [8, 70, 65, 66].
For example, a stable recovery of a k-sparse n-length signal is guaranteed for the case when
the number of measurements scale as O(k log3 k log n).

The analysis of the FFAST recovery algorithm provided in Chapter 4, also uses the RIP
condition, to show a stable recovery of the signal. Specifically, we show that the FFAST
algorithm recovers a k-sparse n-length DFT of a signal from O(k log2 k log n) noise-corrupted
time-domain samples, with a high probability. The improvement in the sample complexity is
obtained as a result of a divide-and-conquer approach of the FFAST algorithm, wherein we
analyze the RIP constants of individual bin-level measurement matrices rather than the full
measurement matrix. Thus, the divide-and-conquer approach of the FFAST architecture is
not only useful in designing a low complexity recovery algorithm, but also provides a better
bounds on the sample complexity. Unfortunately, the analysis of the FFAST algorithm,
specifically of the “multi-ton” bins, is not tight. The simulation results in Chapter 4, pro-
vide ample empirical evidence that the partial Fourier measurements exhibit nearly-optimal
scaling of the number of measurements required for a stable recovery, i.e., O(k log n). The
key component in tightening the multi-ton bin analysis is to use probabilistic bounds on the
RIP constants rather than the worst-case bounds as used in Chapter 4.

7.2.3 Algorithms

The FFAST sub-sampling front-end divides the original problem of computing a k-sparse
n-length DFT into multiple “bin-level” simpler problems (see Chapter 4 for details), using
the CRT-guided small set of uniform subsampling patterns. Most of these bin-level sub-
problems are trivial, of computing a 0-sparse DFT or 1-sparse DFT, while the others are
almost trivial, i.e., of computing a log k sparse DFT. The FFAST decoder then performs the
following iterative peeling procedure: it first identifies an instance of a sub-problem that is
1-sparse and reliably computes the support and the value of the non-zero DFT coefficient
participating in this sub-problem. Then, it peels off the contribution of the identified non-zero
DFT coefficient from other sub-problems, to create more instances of 1-sparse sub-problems.
This peeling-style iterative recovery algorithm eventually uncovers all the non-zero DFT
coefficients.

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 124

Bin-processing

The FFAST decoder achieves the robustness against observation noise by carefully designing
the bin-measurement matrices, and performing a robust bin-processing/reconstruction algo-
rithm. The bin-processing algorithm (proposed in Section 4.6) performs an exhaustive search
over n/k columns of the corresponding bin-measurement matrix, thus resulting in an overall
computational complexity to be super-linear in the signal length n. A more systematic and
structured design of the bin-measurement matrices is required to design a sub-linear time
robust bin-processing algorithm.

Message passing algorithm

The FFAST peeling-style iterative decoder proposed in this thesis is based on the peeling-
decoder used in the erasure correcting sparse graph codes [53]. A key property in decoding
for the erasures is that the messages flowing between the parity-check nodes and the variable
nodes of the sparse graph are error-free. However, in the presence of observation noise, the
messages from the check nodes to the variable nodes in the FFAST decoder have an asymp-
totically small (but non-zero) probability of being erroneous. More sophisticated techniques
like “belief-propagation”, if used appropriately, in the FFAST decoder, may provide better
results in terms of the robustness against observation noise.

Iterative-soft-thresholding (IST) back-end algorithm

The FFAST architecture consists of a sub-sampling “front-end” and a peeling-decoder “back-
end” (for example, see Fig. 4.2). The FFAST front-end structure induces the sparse mea-
surement matrix A. In Chapter 4, we have established the RIP and mutual incoherence
properties of A and its sub-matrices (bin-measurement matrices). In principle, one can use
the FFAST front-end, i.e., A, in conjunction with the well studied reconstruction algorithms
from compressed-sensing literature, e.g., LASSO (least absolute shrinkage and selection oper-
ator), IST, etc. As an example, consider a 2D-FFAST sub-sampling front-end that acquires
60.18% of the Fourier samples of the ‘Brain’ image shown in Fig. 7.1(a). We can recon-
struct the Brain image from these samples using either an IST back-end algorithm, as shown
in Fig. 7.1(b), or the FFAST peeling-decoder, as shown in Fig. 7.1(c). We note that for
the same input Fourier samples, the IST back-end performs a higher quality recovery as
compared to the FFAST peeling-decoder. For specific details of the simulation set-up, see
Section 5.5.3 of Chapter 5. The FFAST sub-sampling front-end thus provides a new family
of measurement matrices that can also be used in conjunction with the well studied recon-
struction algorithms from the compressed-sensing literature. A formal analysis of such a
combination of the FFAST front-end and IST back-end algorithms would be of interest.

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 125

(a) Original ‘Brain’ image of
size 504 × 504 in spatial-
domain.

(b) Reconstructed ‘Brain’
image using the 2D-FFAST
front-end and the IST
back-end. The total number
of Fourier samples used is
60.18%.

(c) Reconstructed ‘Brain’
image using the 2D-FFAST
front-end and the FFAST
peeling back-end. The total
number of Fourier samples
used is 60.18%.

Figure 7.1: An application of the 2D-FFAST sub-sampling front-end to acquire the Fourier samples of the ‘Brain’ image of size
504× 504. The Brain image is then reconstructed from these samples using, b) an IST back-end algorithm, and c) the FFAST
peeling back-end. In both the reconstructions we use 60.18% of the Fourier samples.

7.2.4 Sampling of continuous-time signals

In this thesis, we have explored the problem of recovering an n-length discrete-time signal,
whose DFT is k-sparse, from its time-domain samples. The sub-sampling front-end of the
proposed FFAST architecture consists of a few stages of a low-rate uniform sampling units.
Thus, making the FFAST front-end amenable to hardware implementation. An extension
of the FFAST architecture to sample a continuous-time signal would result in sub-Nyquist,
low-power, wide-band analog-to-digital-converter (ADC) designs, that have numerous engi-
neering applications. As a preliminary investigation of this topic, we empirically applied the
FFAST architecture to acquire a continuous-time discrete-multi-tone (DMT) signals. We
provide the results of this preliminary investigation in the sequel.

Discrete-Multi-Tone signals

A discrete-multi-tone signal x(t) is a summation of a few, say k, complex sinusoids. The
problem of acquisition of the continuous-time signal x(t) can be discretized as follows. Let
fmax be the highest frequency in the signal x(t). First, sample the continuous-time signal x(t)
at the Nyquist-rate of 2fmax, for a duration T , to get n = 2Tfmax samples. Then, compute
the n-point DFT of the sub-sampled signal. If the sinusoidal components of the signal
x(t) are harmonically related with a fundamental frequency of 1/T , then the DFT of the
sub-sampled signal has precisely k non-zero terms and the signal x(t) can be reconstructed
perfectly from the DFT. However, if the sinusoidal components of the signal x(t) are not
harmonically related, then the DFT of the sub-sampled signal has k dominant terms with

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 126

−15 −13 −11 −9 −7 −5 −3 −1 1 3 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(Success) Vs SNR for off−the−grid frequencies
n = 4 million, m = 9874, k = 20

signal−to−noise−ratio(dB)

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

Figure 7.2: A plot of the probability of success of the FFAST algorithm for various values of the signal-to-noise ratio. A
continuous-time DMT signal x(t) of duration T = 2 seconds, with k = 20 sinusoidal components is generated. The unknown
frequencies are real valued between −1MHz and 1MHz. The Nyquist-rate sampling generates n = 4 million samples in a 2
seconds duration. The FFAST architecture reconstructs the signal x(t) from m ≈ 10, 000 noise-corrupted samples, using the
“Blackman-Nuttall” window to reduce the Gibbs-effect. A successful run corresponds to the case where the FFAST algorithm
recovers all the k = 20 sinusoidal components with frequency estimates within ±2 Hz of the true frequency. Each point in the
plot is obtained by averaging over 200 runs of the simulations.

many small terms due to the Gibbs effect that arises as a result of windowing. In compressed-
sensing literature this problem is known as the “off-the-grid compressed sensing” problem
[72]. In both the cases, i.e., on-the-grid or off-the-grid, the reconstructed signal x̂(t) obtained
using the aforementioned discretization approach provides the frequency estimates with a
small error, e.g., |fi− f̂i| < 1/n, if there is a sufficient separation between any two frequency
components, specifically if |fi − fj| > O(1/n) for i 6= j. The sample complexity of this
approach is n, and the resolution of the estimates is O(1/n). We empirically observe that the
FFAST architecture, provides similar resolution guarantees with merely O(k log n) samples.
This can be a significant advantage in terms of designing low-rate ADC’s.

For example, consider a signal x(t) of duration T = 2 sec, with k = 20 sinusoidal
components. Let the maximum frequency fmax be less than 1MHz. Then, using the Nyquist-
rate sampling we get n = 4 million samples in 2 sec duration. The FFAST architecture
reconstructs the signal x(t) from m ≈ 10, 000 noise-corrupted samples, using the “Blackman-
Nuttall” window to reduce the Gibbs-effect. In Fig. 7.2, we provide a plot of the probability
of success of the FFAST algorithm for various values of the signal-to-noise ratio. A successful

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 127

run corresponds to the case where the FFAST algorithm recovers all the k = 20 sinusoidal
components with frequency estimates within ±2 Hz of the true frequency. Each point in
the plot is obtained by averaging over 200 runs of simulations. The signal-to-noise ratio
is defined as

∫ T
t=0
|xi(t)|2dt/E{

∫ T
t=0
|w(t)|2dt} for each sinusoidal component i = 0, 1, . . . , 19,

where w(t) is a white Gaussian noise process. A systematic study of the window design
principles, as well as the analysis of the theoretical guarantees to acquire a continuous-time
signal using the FFAST framework would be paramount interest.

Many applications like cognitive radio have signals with sparse band occupancy rather
than discrete-multi-tone. The extension of the FFAST architecture to acquire multi-band
signals with sparse band occupancy is related to the multiple measurement vector (MMV)
problem [24, 58] in the compressed-sensing literature.

7.2.5 Extensions to other transforms

In this thesis, we have shown the application of the FFAST framework to compute the 1D
and 2D DFTs of signals from the time-domain and the space-domain samples respectively.
Recently, the authors of [37] extended the FFAST framework to compute a fast sparse
Hadamard transform. It would be interesting to extend the FFAST framework to other
transforms such as wavelet transform, discrete-cosine-transform (DCT), time-domain sparse
signals, etc.

In summary, the proposed FFAST architecture provides a new and promising direction
for acquiring signals that have a sparse structure in the transform-domain, e.g., the Fourier-
domain. The framework and the recovery algorithm is sample efficient and robust against
observation noise. There are many open challenges that need to be addressed and we have
discussed some of them in earlier sections. Overall, we believe that the FFAST framework
provides a possible direction towards designing sample efficient, low-power, engineering so-
lutions for sparse signal acquisition.

128

Bibliography

[1] M. Bakshi, S. Jaggi, S. Cai, and M. Chen. Sho-fa: Robust compressive sensing with
order-optimal complexity, measurements, and bits. Arxiv preprint arXiv:1207.2335,
2012.

[2] Michael Ben-Or. A deterministic algorithm for sparse multivariate polynomial interpo-
lation. In Proceedings of the twentieth annual ACM symposium on Theory of computing,
pages 301–309. ACM, 1988.

[3] R. Berinde, P. Indyk, and M. Ruzic. Practical near-optimal sparse recovery in the l1
norm. In Communication, Control, and Computing, 2008 46th Annual Allerton Con-
ference on, pages 198–205. IEEE, 2008.

[4] R.E. Blahut. Fast algorithms for digital signal processing. 1985.

[5] T. Blu, P.L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot. Sparse sampling of
signal innovations. Signal Processing Magazine, IEEE, 25(2):31–40, 2008.

[6] John W Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A digital
fountain approach to reliable distribution of bulk data. In ACM SIGCOMM Computer
Communication Review, volume 28, pages 56–67. ACM, 1998.

[7] E Candes and J Romberg. l1-magic: Recovery of sparse signals via convex programming
(2005). URL: www.acm.caltech.edu/l1magic/downloads/l1magic.pdf, 2006.

[8] E.J. Candes and T. Tao. Near-optimal signal recovery from random projections: Univer-
sal encoding strategies? Information Theory, IEEE Transactions on, 52(12):5406–5425,
2006.

[9] E.J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal re-
construction from highly incomplete frequency information. Information Theory, IEEE
Transactions on, 52(2):489–509, 2006.

[10] E.J. Candes, J.K. Romberg, and T. Tao. Stable signal recovery from incomplete and
inaccurate measurements. Communications on pure and applied mathematics, 59(8):
1207–1223, 2006.

BIBLIOGRAPHY 129

[11] Emmanuel J Candes and Justin Romberg. Quantitative robust uncertainty principles
and optimally sparse decompositions. Foundations of Computational Mathematics, 6
(2):227–254, 2006.

[12] Emmanuel J Candes and Terence Tao. Decoding by linear programming. Information
Theory, IEEE Transactions on, 51(12):4203–4215, 2005.

[13] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by
reweighted 1 minimization. Journal of Fourier Analysis and Applications, 14(5-6):
877–905, 2008.

[14] Venkat Chandar, Devavrat Shah, and Gregory W Wornell. A simple message-passing
algorithm for compressed sensing. In Information Theory Proceedings (ISIT), 2010
IEEE International Symposium on, pages 1968–1972. IEEE, 2010.

[15] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In Automata, Languages and Programming, pages 693–703. Springer, 2002.

[16] Graham Cormode and S Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[17] Graham Cormode and S Muthukrishnan. Combinatorial algorithms for compressed
sensing. In Structural Information and Communication Complexity, pages 280–294.
Springer, 2006.

[18] Wei Dai and Olgica Milenkovic. Subspace pursuit for compressive sensing: Closing the
gap between performance and complexity. Technical report, DTIC Document, 2008.

[19] Geoffrey M Davis, Stephane G Mallat, and Zhifeng Zhang. Adaptive time-frequency
decompositions. Optical Engineering, 33(7):2183–2191, 1994.

[20] D.L. Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52(4):
1289–1306, 2006.

[21] P.L. Dragotti, M. Vetterli, and T. Blu. Sampling moments and reconstructing sig-
nals of finite rate of innovation: Shannon meets strang–fix. Signal Processing, IEEE
Transactions on, 55(5):1741–1757, 2007.

[22] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle
regression. The Annals of statistics, 32(2):407–499, 2004.

[23] Michael Elad, Boaz Matalon, Joseph Shtok, and Michael Zibulevsky. A wide-angle view
at iterated shrinkage algorithms. In Optical Engineering+ Applications, pages 670102–
670102. International Society for Optics and Photonics, 2007.

BIBLIOGRAPHY 130

[24] Ping Feng and Yoram Bresler. Spectrum-blind minimum-rate sampling and reconstruc-
tion of multiband signals. In Acoustics, Speech, and Signal Processing, 1996. ICASSP-
96. Conference Proceedings., 1996 IEEE International Conference on, volume 3, pages
1688–1691. IEEE, 1996.

[25] Mário AT Figueiredo, Robert D Nowak, and Stephen J Wright. Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse problems.
Selected Topics in Signal Processing, IEEE Journal of, 1(4):586–597, 2007.

[26] M. Finiasz and K. Ramchandran. Private stream search at the same communication
cost as a regular search: Role of ldpc codes. In Information Theory Proceedings (ISIT),
2012 IEEE International Symposium on, pages 2556–2560. IEEE, 2012.

[27] Robert Gallager. Low-density parity-check codes. Information Theory, IRE Transac-
tions on, 8(1):21–28, 1962.

[28] Sanchit Garg and Éric Schost. Interpolation of polynomials given by straight-line pro-
grams. Theoretical Computer Science, 410(27):2659–2662, 2009.

[29] Semyon Aranovich Gershgorin. Uber die abgrenzung der eigenwerte einer matrix. Pro-
ceedings of the Russian Academy of Sciences. Mathematical series, pages 749 – 754,
1931.

[30] Badih Ghazi, Haitham Hassanieh, Piotr Indyk, Dina Katabi, Eric Price, and Lixin Shi.
Sample-optimal average-case sparse fourier transform in two dimensions. arXiv preprint
arXiv:1303.1209, 2013.

[31] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal
sparse fourier representations via sampling. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, STOC ’02, pages 152–161, New York, NY,
USA, 2002. ACM. ISBN 1-58113-495-9. doi: 10.1145/509907.509933. URL http:

//doi.acm.org/10.1145/509907.509933.

[32] A. C. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-
optimal sparse fourier representations. In in Proc. SPIE Wavelets XI, 2003.

[33] AC Gilbert, MJ Strauss, JA Tropp, and R. Vershynin. Algorithmic linear dimension
reduction in the l 1 norm for sparse vectors. Arxiv preprint cs/0608079, 2006.

[34] Anna C Gilbert, S Muthukrishnan, and M Strauss. Improved time bounds for near-
optimal sparse fourier representations. In Optics & Photonics 2005, pages 59141A–
59141A. International Society for Optics and Photonics, 2005.

[35] Anna C Gilbert, Martin J Strauss, and Joel A Tropp. A tutorial on fast fourier sampling.
Signal Processing Magazine, IEEE, 2008.

http://doi.acm.org/10.1145/509907.509933
http://doi.acm.org/10.1145/509907.509933

BIBLIOGRAPHY 131

[36] Irving John Good. The interaction algorithm and practical fourier analysis. Journal of
the Royal Statistical Society. Series B (Methodological), pages 361–372, 1958.

[37] Saeid Haghighatshoar, Robin Scheibler, Martin Vetterli, et al. A fast hadamard trans-
form for signals with sub-linear sparsity. In 51st Annual Allerton Conference on Com-
munication, Control, and Computing, 2013.

[38] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse fourier trans-
form. In Proc. of the 44th SOTC. ACM, 2012.

[39] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical
algorithm for sparse fourier transform. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1183–1194. SIAM, 2012.

[40] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur Naik.
Predicting execution time of computer programs using sparse polynomial regression. In
Advances in Neural Information Processing Systems, pages 883–891, 2010.

[41] Piotr Indyk and Milan Ruzic. Near-optimal sparse recovery in the l1 norm. In Founda-
tions of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on,
pages 199–207. IEEE, 2008.

[42] MA Iwen. Combinatorial sublinear-time fourier algorithms. Foundations of Computa-
tional Mathematics, 10(3):303–338, 2010.

[43] MA Iwen, A Gilbert, and M Strauss. Empirical evaluation of a sub-linear time sparse
dft algorithm. Communications in Mathematical Sciences, 5(4):981–998, 2007.

[44] Sina Jafarpour, Weiyu Xu, Babak Hassibi, and Robert Calderbank. Efficient and ro-
bust compressed sensing using optimized expander graphs. Information Theory, IEEE
Transactions on, 55(9):4299–4308, 2009.

[45] Seyed Mohammad Mahdi Javadi and Michael Monagan. Parallel sparse polynomial
interpolation over finite fields. In Proceedings of the 4th International Workshop on
Parallel and Symbolic Computation, pages 160–168. ACM, 2010.

[46] Erich Kaltofen and Lakshman Yagati. Improved sparse multivariate polynomial inter-
polation algorithms. In Symbolic and Algebraic Computation, pages 467–474. Springer,
1989.

[47] Erich L Kaltofen. Fifteen years after dsc and wlss2 what parallel computations i do
today: invited lecture at pasco 2010. In Proceedings of the 4th International Workshop
on Parallel and Symbolic Computation, pages 10–17. ACM, 2010.

BIBLIOGRAPHY 132

[48] Vassilis Kekatos and Georgios B Giannakis. Sparse volterra and polynomial regression
models: Recoverability and estimation. Signal Processing, IEEE Transactions on, 59
(12):5907–5920, 2011.

[49] M Amin Khajehnejad, Alexandros G Dimakis, Weiyu Xu, and Babak Hassibi. Sparse
recovery of nonnegative signals with minimal expansion. Signal Processing, IEEE Trans-
actions on, 59(1):196–208, 2011.

[50] Seung-Jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd, and Dimitry
Gorinevsky. An interior-point method for large-scale¡ i¿ l¡/i¿¡ sub¿ 1¡/sub¿-regularized
least squares. Selected Topics in Signal Processing, IEEE Journal of, 1(4):606–617,
2007.

[51] Shu Lin and Daniel J Costello. Error control coding, volume 123. Prentice-hall Engle-
wood Cliffs, 2004.

[52] M.G. Luby, M. Mitzenmacher, and M.A. Shokrollahi. Analysis of random processes via
and-or tree evaluation. In Proceedings of the ninth annual ACM-SIAM symposium on
Discrete algorithms, pages 364–373. Society for Industrial and Applied Mathematics,
1998.

[53] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman. Efficient erasure
correcting codes. Information Theory, IEEE Transactions on, 47(2):569–584, 2001.

[54] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman. Improved low-
density parity-check codes using irregular graphs. Information Theory, IEEE Transac-
tions on, 47(2):585–598, 2001.

[55] Michael Luby. Digital fountain, inc. luby@ digitalfountain. com. 2002.

[56] Michael Luby and Michael Mitzenmacher. Verification codes: simple ldpc codes for
large alphabets. In Proc. 40th Annu. Allerton Conf., 2002.

[57] Yishay Mansour. Randomized interpolation and approximation of sparse polynomials.
SIAM Journal on Computing, 24(2):357–368, 1995.

[58] M. Mishali and Y.C. Eldar. From theory to practice: Sub-nyquist sampling of sparse
wideband analog signals. Selected Topics in Signal Processing, IEEE Journal of, 4(2):
375–391, 2010.

[59] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algo-
rithms and probabilistic analysis. Cambridge University Press, 2005.

BIBLIOGRAPHY 133

[60] Deanna Needell and Roman Vershynin. Uniform uncertainty principle and signal recov-
ery via regularized orthogonal matching pursuit. Foundations of computational mathe-
matics, 9(3):317–334, 2009.

[61] Yagyensh Chandra Pati, Ramin Rezaiifar, and PS Krishnaprasad. Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet decomposition.
In Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-
Seventh Asilomar Conference on, pages 40–44. IEEE, 1993.

[62] Vladilen F Pisarenko. The retrieval of harmonics from a covariance function. Geophysical
Journal of the Royal Astronomical Society, 33(3):347–366, 1973.

[63] Stephen Pohlig and Martin Hellman. An improved algorithm for computing logarithms
over gf(p) and its cryptographic significance. Information Theory, IEEE Transactions
on, 24(1):106–110, 1978.

[64] R Prony. Essai experimental–,-. J. de l’Ecole Polytechnique, 1795.

[65] Holger Rauhut. Stability results for random sampling of sparse trigonometric polyno-
mials. Information Theory, IEEE Transactions on, 54(12):5661–5670, 2008.

[66] Holger Rauhut, Justin Romberg, and Joel A Tropp. Restricted isometries for partial
random circulant matrices. Applied and Computational Harmonic Analysis, 32(2):242–
254, 2012.

[67] T.J. Richardson and R.L. Urbanke. The capacity of low-density parity-check codes
under message-passing decoding. Information Theory, IEEE Transactions on, 47(2):
599–618, 2001.

[68] Daniel Steven Roche. Efficient Computation with Sparse and Dense Polynomials. PhD
thesis, University of Waterloo, 2011.

[69] R. Roy and T. Kailath. Esprit-estimation of signal parameters via rotational invariance
techniques. Acoustics, Speech and Signal Processing, IEEE Transactions on, 37(7):
984–995, 1989.

[70] Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaus-
sian measurements. Communications on Pure and Applied Mathematics, 61(8):1025–
1045, 2008.

[71] R. Schmidt. Multiple emitter location and signal parameter estimation. Antennas and
Propagation, IEEE Transactions on, 1986.

[72] Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin Recht. Com-
pressed sensing off the grid. arXiv preprint arXiv:1207.6053, 2012.

BIBLIOGRAPHY 134

[73] Clive Temperton. Self-sorting mixed-radix fast fourier transforms. Journal of computa-
tional physics, 52(1):1–23, 1983.

[74] L. H Thomas. Using a computer to solve problems in physics. Applications of Digital
Computers, 1963.

[75] Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via
orthogonal matching pursuit. Information Theory, IEEE Transactions on, 53(12):4655–
4666, 2007.

[76] M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate of innovation.
Signal Processing, IEEE Transactions on, 2002.

[77] Wilhelm Werner. Polynomial interpolation: Lagrange versus newton. Mathematics of
computation, pages 205–217, 1984.

[78] Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo. Sparse reconstruction by
separable approximation. Signal Processing, IEEE Transactions on, 57(7):2479–2493,
2009.

[79] Weiyu Xu and Babak Hassibi. Efficient compressive sensing with deterministic guaran-
tees using expander graphs. In Information Theory Workshop, 2007. ITW’07. IEEE,
pages 414–419. IEEE, 2007.

[80] Richard Zippel. Probabilistic algorithms for sparse polynomials. Springer, 1979.

	Introduction
	Compressed sensing
	Introduction
	System Model and Problem Formulation
	Main Result
	Related work

	Design of Measurement matrix and associated recovery algorithm
	Genie-assisted peeling decoder over a sparse bipartite graph
	Measurement Matrix bold0mu mumu AAAAAA
	Recovery algorithm: SWIFT

	Proof of Theorem 2.3.1
	Probability of success
	Sample complexity
	Computational complexity

	Computing a sparse discrete-Fourier-transform
	Introduction
	Related Work

	Problem formulation, notations and preliminaries
	Problem formulation
	Notation and preliminaries

	Main Results
	DFT using decoding on sparse-graphs
	Computing a sparse DFT is equivalent to decoding on a sparse-graph
	FFAST peeling-decoder
	Connection to coding for packet erasure channels

	Performance analysis of the FFAST algorithm for the very-sparse (k n, 0 < 1/3) regime
	Randomized construction based on the ``Balls-and-Bins'' model: Ck1(F,nb)
	Ensemble of bipartite graphs constructed using the Chinese-Remainder-Theorem (CRT): Ck2(F,n,nb)
	Performance analysis of the peeling-decoder on graphs from the ensemble Ck1(F,nb)
	Performance of the FFAST-decoder over graphs in Ck2(F,n,nb) for kn, for (0 < 1/3).

	Performance analysis of the FFAST algorithm for the less-sparse regime (kn, 1/3 < < 1)
	Less-sparse regime of = 2/3
	Sketch of proof for = 1-1/d, for integer d3
	Achieving the intermediate values of

	Sample and computational complexity of the FFAST algorithm
	Simulation Results
	The CRT based graph ensemble behaves like the balls-and-bins based graph ensemble
	Sample and Computational Complexity

	Edge degree-distribution polynomial for balls-and-bins model
	Proof of Lemma 3.5.4
	Proof of Lemma 3.5.5
	Proof of Lemma 3.5.2
	Probability of Tree-like Neighborhood

	Stable recovery of approximately sparse DFT
	Introduction
	Main idea

	Signal model and Problem formulation
	Main results
	Related work
	FFAST sampling pattern and the measurement matrix
	Bin-measurement matrix
	FFAST sampling patterns

	Noise robust FFAST algorithm
	Simulations
	Sample complexity m as a function of n
	Sample complexity m as a function of

	Mutual incoherence bound
	Restricted-isometry-property
	Proof of Theorem 4.3.1
	Reliability Analysis and sample complexity of the FFAST
	Computational complexity of the FFAST algorithm

	Threshold based energy-detector

	Computing a sparse 2D discrete-Fourier-transform
	Introduction
	Related Work

	Problem formulation, notation and preliminaries
	Main Result
	FFAST architecture for 2D signals
	2D signals with co-prime dimensions
	2D signals with equal dimensions N0 = N1

	Simulations
	Application of 2D-FFAST for signals with N0= N1, and exactly k-sparse 2D-DFT
	Application of 2D-FFAST for signals with exactly k-sparse 2D-DFT but with non-uniform support
	Application of the 2D-FFAST for MR imaging

	proof of Theorem 5.3.1

	Sparse multivariate polynomial regression
	Introduction
	Problem Setup and notations
	Main Contributions
	Related work
	Preliminaries
	Mapping multivariate polynomial interpolation to univariate polynomial interpolation.
	Univariate polynomial interpolation is equivalent to computing a discrete-Fourier-transform
	Computing a sparse DFT using the FFAST algorithm

	Univariate sparse polynomial interpolation over the complex field
	Univariate sparse polynomial interpolation over finite field
	Finite field preliminaries
	FFAST-based sparse univariate polynomial interpolation algorithm for finite fields

	Analysis of the sparse polynomial interpolation algorithm over finite fields
	Analysis of the ratio-test for a multiton bin

	Conclusion and Future Research Directions
	Conclusion
	Future research directions
	Modeling assumptions
	Analysis
	Algorithms
	Sampling of continuous-time signals
	Extensions to other transforms

